

ļ

Vorträge

über

Elastizitäts-Lehre

· als Grundlage für die

Festigkeits-Berechnung der Bauwerke

von

Wilh. Keck,

weil. Geh. Regierungsrat, . Professor an der Technischen Hochschule zu Hannover.

Zweite vermehrte Auflage,

neu bearbeitet von

Ludwig Hotopp, Baurat, Professor an der Technischen Hochschule zu Hanno

Erster Teil.

Mit 209 Holzschnitten.

Jacshk

Hannover. Helwingsche Verlagsbuchhandlung.

Liker

22

State.

357514L1

4945 G 165 Druck von Th. Schäfer, Hannover.

Vorwort zur ersten Auflage.

Das vorliegende Buch enthält im wesentlichen dasjenige, was als das Lehrfach "Elastizitätslehre" im zweiten Studienjahr an der technischen Hochschule zu Hannover vorgetragen wird. Das Hauptgewicht ist hierbei auf Leichtverständlichkeit und Anschaulichkeit gelegt; daher wird fast durchweg mit einfachen Sonderfällen, die dem Vorstellungsvermögen des Studierenden nahe liegen, begonnen und dann erst zu verwickelteren Aufgaben übergegangen. Ganz allgemeine Untersuchungen sind überhaupt vermieden, da diese Vorträge besonders die Einführung in die Elastizitätslehre bezwecken. In den Beispielen haben solche Fälle vorwiegende Berücksichtigung gefunden, die in den Baufächern von Wichtigkeit sind.

Car

Die graphische Statik kann in Folge besonderer Umstände in meinen mündlichen Vorträgen über Elastizitätslehre nicht benutzt werden, (abgeschen von den einfachsten Grundbegriffen; vielmehr erfolgt die zeichnerische Behandlung der Balken, Fachwerke, Stützmauern und Gewölbe in einem getrennten Lehrfache. Aus diesem Grunde habe ich auch im vorliegenden Buche die graphische Statik nicht in größerem Umfange verwendet, weil ich zu Gunsten meiner Hörer wesentliche Abweichungen zwischen den mündlichen und gedruckten Vorträgen vermeiden wollte.

Die Bedeutung der in den Formeln vorkommenden Buchstaben findet sich am Schlusse des Buches in alphabetischer Ordnung angegeben, u. zw. unter Hinweis auf diejenigen Stellen, wo die betreffende Gröfse in die Entwickelung eingeführt wurde. Mit Hülfe dieses Verzeichnisses kann der Leser jede Formel leicht verstehen, ohne erst im Texte nach der Bedeutung der einzelnen Zeichen suchen zu müssen.

Die neueren einschlägigen Arbeiten wurden benutzt soweit es dem Plane des Buches entsprach; dabei sind die betreffenden

Vorwort.

Quellen angeführt. Erschöpfende Quellennachweise für das ganze Gebiet der behandelten Wissenschaft habe ich aber nicht gegeben, weil dies dem Hauptzwecke des Buches nicht zu entsprechen schien.

Hannover, im März 1893.

Keck.

100

Vorwort zur zweiten Auflage.

Der Zuspruch, welchen das Buch seit seinem ersten Erscheinen gefunden hat, läßt erkennen, daß der bei seiner Abfassung leitend gewesene Grundgedanke des Verfassers, dem Anfänger eine von der Behandlung einfacher Sonderfälle zur Entwicklung allgemeiner Regeln fortschreitende, bequem und sicher leitende Einführung in die Elastizitäts- und Festigkeitslehre zu bieten, richtig war und das Buch einem vorhandenen Bedürfnisse entspricht. Bei der auf Ersuchen der Verlagsbuchhandlung von mir übernommenen Bearbeitung der inzwischen erforderlich gewordenen Neuauflage des Buches habe ich es daher in erster Linie als meine Aufgabe angesehen, jonen Gedanken weiter zu verfolgen und, wenn möglich, noch allgemeiner zur Geltung zu bringen. Daneben schien es geboten, eine dem Bedürfnis des Leserkreises, für welchen das Buch hauptsächlich bestimmt ist, entsprechende Vervollständigung desselben eintreten zu lassen. Auch sind in Übereinstimmung mit der Stoffanordnung in meinen den gleichen Lehrgegenstand umfassenden Vorträgen, wo angängig, die graphischen Methoden den analytischen hinzugefügt und beide in unmittelbarer Nebeneinanderstellung behandelt.

Bei Ableitung der Beziehungen zwischen den äußeren Kräften und den inneren Spannungen sind zwar hinsichtlich der Angriffsart der ersteren die charakteristischen Einzelfälle unterschieden; es ist jedoch Wert darauf gelegt, den Leser erkennen zu lassen, wie dieselben ineinander übergehen, und inwieweit danach die abgeleiteten

IV

Vorwort.

Regeln alle möglichen Angriffsarten umfassen. Um diesen Zweck im Rahmen des Buches einheitlich und ganz zu erreichen. war es notwendig, auch das in Keck, Mechanik II. Teil, behandelt Kapitel der einfachsten Fälle der Zug-, Druck-, Schub- und Biegungsfestigkeit mit einzuschließen.

Aus den dargelegten Gründen hat sich die Bearbeitung der neuen Auflage zu einer ziemlich eingehenden Umarbeitung des Buches gestalten müssen, von der ich hoffe, daß sie im Sinne des hochverdienten Verfassers ausgefallen sein möge.

Da die erste Auflage des Buches bereits seit einiger Zeit vergriffen war, erschien es in Rücksicht auf den interessierten Leserkreis geboten, den in der Bearbeitung inzwischen fertig gestellten I. Teil des Buches zunächst für sich erscheinen zu lassen. Derselbe umfaßt nach einer Einleitung in einem ersten Abschnitte den die Flächenmomente zweiter Ordnung behandelnden rein mathematischen Teil und in einem zweiten Abschnitte die Elastizität und Festigkeit grader Stäbe, also auch den geraden vollwandigen Balken in seinen verschiedenen Formen und Unterstützungsarten.

In das Kapitel über Biegung durch Kräfte rechtwinklig zur Stabachse sind auch Untersuchungen über die Biegungsspannungen in Stäben, welche dem Hooke'schen Gesetz nicht folgen, aufgenommen und im Anschluß daran die sogen. "Verbundbalken" aus Beton und Eisen behandelt.

Das dabei entwickelte graphische Verfahren zur Bestimmung der Biegungsspannungen, bezw. der Tragfähigkeit von Balken verdankt seine Entstehung einer Anregung durch die gleiche Ziele verfolgende interessante Arbeit des Dr.=Jug. Paul Weiske: "Graphostatische Untersuchung der Beton- und Betoneisenträger".

Von einer Benutzung der Arbeitsgesetze zur Bestimmung des äufsern Gleichgewichts, der Biegungsmomente und Querkräfte für Balken mit statisch unbestimmter Unterstützung ist hier zunächst abgesehen, weil die Ableitung dieser statischen Größen mit Hilfe der Biegungslinie geeigneter schien, den Anfänger mit dem Wesen der Spannungs- und Formänderungsvorgänge bekannt zu machen, sein für den ausübenden Ingenieur so wichtiges "statisches Gefühl" zu entwickeln. In Hinblick auf dieses Ziel ist auch bei Ableitung der Beziehungen zwischen äufseren und inneren Kräften von dem verfügbaren mathematischen Rüstzeug nur in knappster

Vorwort.

Form, von der orientierenden Wirkung der Figur aber ein ausgiebiger Gebrauch gemacht worden. Sollte aus gleichem Grunde die textliche Behandlung des Gegenstandes für den eingeweihten Leser etwas breit ausgefallen und sollten Wiederholungen nicht überall vermieden sein, so bitte ich, das zu Gunsten des Anfängers, für den das Buch eben in erster Linie bestimmt ist, in Kauf nehmen zu wollen.

Schließlich möchte ich es nicht unterlassen, den Herren Landesbauinspektor Bladt und Dipl.-Ing. Bohne und Müller für die freundlichst übernommene Nachprüfung der Rechnungsergebnisse und Unterstützung bei Ausführung der Korrekturen meine dankbare Anerkennung auszusprechen.

Hannover, im August 1905.

L. Hotopp.

Inhalt.

Einleitung

Erster Abschnitt.

. . . .

Flächenmomente 2. Ordnung, Trägheits- und Centrifugalmomente ebener Flächen.

I.	Begriffserklärung und allgemeine Eigenschaften der	
	Flächenmomente 2. Ordnung, sowie Beziehungen der-	
	selben zueinander	9
	a) Begriffserklärung	9
	b) Allgemeine Eigenschaften achsialer Trägheitsmomente	10
	c) Beziehungen zwischen achsialen und polaren Trägheitsmomenten	
	einer ebenen Fläche	11
	d) Beziehungen zwischen den polaren Trägheitsmomenten einer	
	ebenen Fläche für verschiedene Pole	12
	e) Allgemeine Eigenschaften der Centrifugalmomente einer ebenen	
	Fläche	12
	f) Trägheits- nnd Centrifugalmomente in Bezug auf schief-	
-	winklige Koordinatenachsen	14
П.	Ermittelung der Trägheits- und Centrifugalmomente	
	einiger Querschnittsformen in Bezug auf ihre Schwer-	
	punktsachsen	15
	a) Analytisches Verfahren	15
	b) Graphisches Verfahren.	22
II.	Abhängigkeit der Trägheits- und Centrifugalmomente	
	von der Lage und Richtung der Achsen	30
	a) Beziehung zwischen den Trägheitsmomenten für parallele	
	Achsen	30
	b) Abhängigkeit des Trägheitsmomentes von der Richtung der	
	Achse	31
	c) Allgemeine geometrische Beziehungen zwischen den Flächen-	
	momenten zweiter Ordnung für Achsen, welche durch einen	00
	Punkt genen	39
-	d) Bezienungen zwischen zwei zugeordneten Richtungen	43
LV.	Anwendungen	43

Zweiter Abschnitt.

Elastizität und Festigkeit gerader Stäbe, Spannungen und Formänderungen.

I. Zug- und Druckspannungen, Dehnungen	49
a) Spannungen in der Richtung der Stabachse, Längsdehnungen, Anwendungen	49 56
 b) Spannungen in der Richtung der Stabachse und senkrecht zu ihr, Gesamtdehnungen, Anstrengungen. c) Zug- und Druckspannungen und Dehnungen in der Achsrichtung 	60
eines verbundstades	60
Anwendungen.	69 75
III. Reine Biegungsspannungen, Biegungslinie	79 79
b) Biegung, Biegungslinie	86

Seite

Inhalt.

	Seite
IV. Biegungs- und Schubspannungen, Biegung durch be-	000
liebige Kräfte rechtwinklig zur Stabachse	89
a) Aligemeine Beziehungen zwischen den aufseren Kraften und inneren Spannungen	80
b) Äufsere Kräfte, Biegungsmomente und Querkräfte stabförmig	00
gerader Balken mit statisch bestimmter Unterstützung	92
Anwendungen	104
C) Angemeine Beziehungen zwischen der Biegungslinie und der Momentfläche	114
d) Biegungslinie für Balken mit statisch bestimmter Unterstützung	116
e) Äufsere Kräfte, Biegungsmomente und Querkräfte stabförmig	
gerader Balken mit statisch unbestimmter Unterstützung	126
Anwendungen	149
und beweglicher Belastung: Einflufslinien	155
g) Äufsere Kräfte, Biegungsmomente und Querkräfte für mehrfach	
gestützte Träger mit Gelenken. Gerber'sche Träger	169
Anwendungen	176
und Biegungslinie	178
i) Beziehung zwischen der Querkraft und den durch sie hervor-	
gerufenen Schubspannungen, Verteilung der letztern über den	
Stabquerschnitt.	179
k) Normalspannungen an wagerechten Schnitten eines durch senk-	100
rechte Belastung auf Biegung beanspruchten Stabes	189
1) Hauptspannungen und Anstrengungen in irgend einem Punkte	
eines gebogenen Stabes	192
m) Biegungsspannungen in Stähen, deren Stoffe dem Hooke'schen	151
Gesetz nicht folgen	198
Anwendungen	210
n) Biegungsspannungen in stabförmigen Verbundkörpern	212
V Normal Biographic and Schuberconnungen darab be-	222
liebige Kräfte in einer Ebene mit der Stabachse	225
a) Spannungen durch beliebige Kräfte in einer Symmetrieebene	
des Stabes	225
Anwendungen.	237
b) Spannungen durch Krätte in einer beliebigen Ebene mit der	940
Anwendungen.	247
c) Kern eines Querschnittes	250
d) Wirkung von Druckkräften aufserhalb des Kernes bei stab-	0.00
formigen Körpern ohne Zugfestigkeit	266
f) Zentrische Druckhelestung : Kniekung	212
VI Drehnngssnanningen Drehnngen	290
a) Reine Drehungssnannungen	290
Anwendungen	297
b) Dreh- und Biegungsspannungen	298
Anwendungen	301

VIII

Alle sogen, festen Körper denken wir uns aus kleinsten Teilen (Massenpunkten, Molekülen oder Molekülgruppen) bestehend, welche so miteinander verbunden sind, dafs sie einer Änderung ihrer Lage zueinander, also auch einer Änderung der Form des Körpers durch von aufsen her auf ihn wirkende Kräfte einen gewissen Widerstand entgegensetzen. Bei der Untersuchung der Bedingungen, unter welchen diese sogen. "äufseren Kräfte" sich an einem Körper das Gleichgewicht halten, setzt die reine Mechanik jenen Widerstand als absolut, unüberwindlich, d. h. den Körper als in seiner Form unveränderlich, unzerbrechlich, starr voraus. Tatsächlich aber erleiden alle Körper unter der Wirkung äufserer Kräfte eine gewisse Formänderung (Verlängerung, Verkürzung, Verbiegung, Verdrehung u. s. w) und, wenn die angreifenden Kräfte über ein gewisses Mafs hinaus gesteigert werden, tritt eine Trennung des Körpers in einzelne Teile, d. h. Bruch ein.

Solange äußere Kräfte auf einen elastisch festen Körper nicht einwirken, nehmen die kleinsten Teile desselben eine gewisse Normaloder Grundstellung gegeneinander ein. Mit dem Angriff äußerer Kräfte tritt eine Änderung dieser Grundstellung und damit eine Formänderung des Körpers ein und gleichzeitig werden im Innern desselben Kräfte wachgerufen, welche sich der Formänderung widersetzen, die Moleküle in ihre Grundstellung zurückzuführen streben. Beseitigt man die "äußeren Kräfte", so verschwinden auch diese sog. "inneren Kräfte" wieder und, sofern erstere ein bestimmtes Maß nicht überschritten haben, nimmt der Körper nach Beseitigung derselben mehr oder weniger genau seine ursprüngliche Form wieder ein. Diese Eigenschaft fester Körper nennt man ihre Elastizität.

Die inneren, den Zusammenhang und die Form der Körper verteidigenden Spannkräfte vermögen sich mit den auf Formänderung

Keck, Elastizitätslehre.

und Zerstörung derselben gerichteten äußeren Kräften bis zu einer gewissen Grenze im Gleichgewicht zu erhalten. Wird diese Grenze von letztern überschritten, so erfolgt der Bruch des Körpers, seine Trennung in einzelne Teile. Das Höchstmaß der inneren Kräfte, d. h. den äußersten Widerstand, den ein Körper seinem Bruche entgegenzusetzen vermag, nennt man seine Festigkeit.

Die Elastizitätslehre untersucht die Formänderungen, welche elastisch feste Körper unter Einwirkung äußerer Kräfte erfahren, sowie die inneren Spannkräfte, welche dabei in den Körpern auftreten.

In dem Folgenden werden die Körper durchweg als im Gleichgewichtszustande befindlich vorausgesetzt, d. h. es wird angenommen, dafs der zu untersuchende Körper in Ruhe (oder im Zustande einer geradlinig gleichförmig fortschreitenden Bewegung) sei.

In Wirklichkeit sind freilich die zu berechnenden Bauverbände durchaus nicht immer im Gleichgewichte. Es erfahren z. B. die Teile eines Gebäudes durch den Sturm, durch den menschlichen Verkehr zeitweise Erschütterungen, wobei sie in Schwingungen geraten. Ebenso führen auch die Teile einer Brücke schwingende Bewegungen aus, wenn sie von Fuhrwerken befahren werden. Solche Schwingungen sind offenbar A bweichungen vom Gleichgewichtszustande, die einzelnen Körperpunkte erfahren Beschleunigungen und Verzögerungen. Sehr erheblich sind die Beschleunigungen, welche unter Umständen bei beweglichen Maschinenteilen vorkommen. Nur in seltenen Fällen aber ist es möglich, diese Bewegungszustände bei der Untersuchung der elastischen Formänderungen und inneren Spannungen unmittelbar zu berücksichtigen; man mufs die betreffenden Bau- und Maschinenteile meist auf Gleichgewicht berechnen und sucht der Abweichung von der Wirklichkeit mittelbar (bei der Festsetzung der Zahl für die sogen zulässige Anstrengung) Rechnung zu tragen.

Soll ein elastisch fester Körper unter der Wirkung beliebiger äußerer Kräfte im Gleichgewicht sein, so müssen sich erstens, wie bei einem starren Körper, diese äußeren Kräfte in ihrer Wirkung auf den Körper gegenseitig aufheben. Eine solche Aufhebung kann aber nur unter Inanspruchnahme der Festigkeit des Körpers, d. h. durch Vermittelung der mit den äußeren Kräften gleichzeitig auftretenden inneren Kräfte geschehen; die Festigkeit des Körpers muß also hinreichen, um seine Trennung in einzelne Teile zu verhüten. Es müssen sich daher zweitens die auf Trennung des Körpers in seine Teile gerichteten äußeren Kräfte auch mit den sich der Trennung widersetzenden inneren Kräften in Bezug auf beliebige Teile des Körpers aufheben, alle Teile des Körpers, jeder für sich, im Gleichgewicht sein.

Denkt man sich durch den Körper (Fig. 1)/eine Schnittebene tt gelegt, so müssen sich an jedem der Teile des Körpers

links und rechts des Schnittes die äufseren Kräfte K_1 und K_2 bezw. K_3 und K_4 mit den an der Schnittstelle wirkenden inneren Spannkräften (in der Figur durch Pfeile angedeutet) das Gleichgewicht halten. Lassen sich, wie hier zunächst

angenommen werden möge, die äufseren Kräfte an dem zu betrachtenden Körperteil, z. B. links vom Schnitt, zu einer Mittelkraft R vereinigen, so verlangt das Gleichgewicht des Teiles, dafs diese der Mittelkraft P der inneren Spannkräfte an der Schnittstelle entgegengesetzt gleich (R = -P) sei und mit ihr in derselben Geraden A B liege. Mit der in bekannter Weise zu ermittelnden Mittelkraft R ist dann auch die Kraft P gefunden. Letztere wird von den Teilen links und rechts vom Schnitt wechselweise aufeinander ausgeübt und ist für das Gleichgewicht der einzelnen Teile als "äufsere Kraft", für den rechtsseitigen als +P, für den linksseitigen als -P anzusehen. Die Kräfte +P und -P treten an jeder beliebigen Schnittebene zwischen A und B in gleicher Richtung und Größe auf, durchdringen also gewissermaßen den Körper, pflanzen sich in ihrer Richtung von A nach B, bezw. B nach A fort und heben sich in jedem Punkte C der Geraden zwischen A und B auf. (Vergl. Keck, Mechanik I, S. 141 und 142.)

Sind demnach die äußeren Kräfte, welche einen festen Körper im ganzen im Gleichgewicht halten, bekannt, so lassen sich die an einer beliebigen Schnittebene wirkenden inneren Kräfte in ihrer Gesamtheit aus den Bedingungen für das Gleichgewicht eines der durch den Schnitt getrennten Teile jederzeit bestimmen. Von besonderer Wichtigkeit ist die Kenntnis der Gesetze, nach denen die inneren Spannkräfte sich über die Schnittfläche verteilen. Ihre Ermittelung bildet einen Hauptgegenstand der Elastizitätslehre.

Die auf die Flächeneinheit der Schnittfläche entfallende innere Spannkraft wird kurz als Spannung bezeichnet. Im allgemeinen

1*

weisen die Spannungen an den verschiedenen Stellen einer Schnittebene voneinander abweichende Richtung und Größe auf. Ist dPdie auf ein Element dF der Schnittfläche entfallende Spannkraft (vergl. Fig. 2), so kann man diese als über dF gleichmäßig verteilt ansehen, und es ist dann die an der fraglichen Stelle herrschende Spannung

$$p = \frac{dP}{dF},$$

Schliefst dieselbe mit der Normalen zur Schnittfläche an der betreffenden

Stelle den Winkel φ ein, so kann man sie sich stets zerlegt denken in eine mit der Normalen zusammenfallende sogenannte Normalspannung $\sigma = p \cdot \cos \varphi$ und eine in die Schnittebene fallende sog. Tangential-Spannung $\tau = p \sin \varphi$. Die Normalspannungen werden, je nachdem sie einer Trennung oder einem Zusammenpressen der Stoffteilchen in der Richtung senkrecht zur Schnittebene durch die äußeren Kräfte entgegentreten, als Zug- oder Druckspannungen bezeichnet. Die Tangentialspannungen wirken einer gegenseitigen Verschiebung der Teile des Körpers beiderseits der Schnittebene entgegen und werden deshalb Schub- oder Scheerspannungen, auch Gleitspannungen genannt.

Denkt man sich auch die Mittelkraft R der an dem abgeschnittenen Körperteile wirkenden äußeren Kräfte in eine Seitenkraft N normal und in eine solche Q parallel zur Schnittebene zerlegt, so erfordert das Gleichgewicht des abgeschnittenen Teiles, dafs N entgegengesetzt gleich der Mittelkraft aller über den Querschnitt verbreiteten Normalspannkräfte $\sigma \cdot dF$ und ebenso Q entgegengesetzt gleich der Mittelkraft aller Tangentialspannkräfte $\tau \cdot dF$ sei. Mit Hilfe dieser Bedingungen lassen sich später die Spannungen σ und τ selbst bestimmen. - Wie nun auch immer ein Körper von äußeren Kräften ergriffen sein möge, stets lassen sich die eintretenden inneren Spannungen auf jene Grundspannungen σ und τ zurückführen. Und wie nahe ein Körper seiner Zerstörung durch äufsere Kräfte, seinem Bruche ist, läfst sich im allgemeinen zutreffend erst dann beurteilen, wenn die Spannungen σ und τ , bezw. deren Größstwerte innerhalb des Körpers bekannt sind. Dabei ist indes, wie sich später zeigen wird, in vielen Fällen der Anwendung der Einfluß der einen oder

der anderen beider Spannungen auf den Bruch derart überwiegend, daß sie allein als für die Sicherheit gegen Bruch maßgebend angesehen werden kann.

Setzen wir nun zunächst eine gerade Stabform des Körpers, d. h. die Schwerpunktsachse desselben als gerade Linie voraus, so lassen sich je nach der Lage und Richtung der angreifenden äußeren Kräfte folgende Fälle unterscheiden.

I. Die Mittelkraft *R* aller äußeren Kräfte am abgeschnittenen Stabende falle mit der Stabachse zusammen. (Fig. 3a u. 3b.)

In diesem Falle treten im Querschnitt nur Normal-, aber keine Tangential- oder Schubspannungen auf.

1. Ist die Kraft *R* auf die Trennung der Teile gerichtet (Fig. 3a), so entstehen unter gleichzeitiger Verlängerung des Stabes Zugspannungen in dem-

selben; man sagt, das Material ist auf seine Zugfestigkeit beansprucht.

2. Bewirkt die Kraft R eine Zusammenpressung der Stabenden (Fig. 3 b), so ruft sie unter gleichzeitiger Verkürzung des Stabes Druckspannungen in demselben hervor und nimmt das Material auf seine Druckfestigkeit in Anspruch.

II. Die Mittelkraft *R* schneidet die Stabachse senkrecht und greift unmittelbar in oder neben der Schnittebene an. (Fig. 4 u. 4a.)

Jetzt treten im Querschnitt nur Tangential- oder Schubspannungen τ auf; diese allein müssen mit R im Gleichgewicht,

ihre Mittelkraft T muß entgegengesetzt gleich R sein. Das Material

wird im Querschnitt tt auf seine Schub- oder Scherfestigkeit beansprucht.

III. Die Kraft R ist gleich Null, liegt in unendlicher Ferne und mit der Stabachse in einer Ebene; die das Stabende angreifenden äußeren Kräfte bilden also ein Kräftepaar, dessen Drehungsebene senkrecht ist zur Schnittebene tt. (Fig. 5.)

In diesem Falle bedingt das Gleichgewicht des abgeschnittenen Stabendes, daß die im Querschnitt tätigen inneren Spannkräfte

gleichfalls ein Kräftepaar bilden, dessen Ebene senkrecht zur Schnittebene gerichtet und dessen Drehmoment entgegengesetzt gleich ist demjenigen der äufseren Kräfte. Etwaige Schubspannkräfte würden, da sie in der Schnittebene *tt* liegen müßten, ein

6

solches Kräftepaar nicht liefern können. Hierzu sind, wie leicht ersichtlich, nur Normal-, d. h. Zug- und Druckspannkräfte im stande. Nur solche können also unter der Wirkung des äußeren Kräftepaars auftreten. Im Bereiche und in der Richtung der ersteren aber entstehen Verlängerungen und im Bereiche der letzteren Verkürzungen der Materialfasern und infolge beider tritt eine Krümmung oder Biegung des Stabes ein. Die auftretenden Zug- und Druckspannungen nennt man in diesem Falle Biegungspannungen und der Stab wird auf seine Biegungsfestigkeit beansprucht.

IV. Die Kraft R schneidet die Stabachse senkrecht in beliebigem Abstande von der Schnittebene tt. (Fig. 6.)

In der Schnittebene werden zunächst Schubspannungen hervorgerufen, indem die Kraft R bezw. Q das von ihr ergriffene Stabende

gegen das durch die übrigen äufseren Kräfte festgehaltene zu verschieben strebt. Die Mittelkraft der Schubspannkräfte muß entgegengesetzt gleich der Kraft *R* sein. Beide bilden nun ein Kräftepaar, unter dessen Wirkung weiterhin

(vergl. unter III) Biegungsspannungen entstehen. Der Stab wird also

in diesem Falle gleichzeitig auf seine Schub- und seine Biegungsfestigkeit in Anspruch genommen.

V. Die Kraft \hat{R} schneidet die Stabachse unter einem beliebigen Winkel und in irgend einem Abstande von der Schnittebene tt. (Fig. 7.)

Zerlegt man die Kraft R in ihrem Schnittpunkte mit der Stabachse in eine Seitenkraft N in der Richtung der Achse und in

eine solche Q senkrecht zu ihr, so erzeugt erstere, je nach ihrem Richtungssinn, reine Zug- oder Druckspannungen und letztere nach den Ausführungen unter IV Schubund Biegungsspannungen. Der Stab wird gleichzeitig auf seine Zug-

oder Druckfestigkeit, sowie auf seine Schub- und seine Biegungsfestigkeit beansprucht.

VI. Die Kraft R ist gleich Null, kreuzt die Stabachse senkrecht und liegt in unendlicher Ferne von ihr, d. h. die an den Stabenden angreifenden äufseren Kräfte bilden ein Kräftepaar, dessen Drehungsebene senkrecht zur Stabachse, also parallel der Schnittebene tt gerichtet ist. (Fig. 8.)

Das Kräftepaar der äufseren Kräfte strebt das von ihm ergriffene Stabende gegen das durch die übrigen (gleichfalls ein Kräftepaar

bildenden) Kräfte festgehaltene zu verdrehen. Das Gleichgewicht des Stabendes erfordert, dafs die in der Schnittebene auftretenden Spannkräfte ein dem angreifenden entgegengesetzt gleiches, also in der Schnittebene liegendes Kräftepaar

bilden. Ein solches können, wie leicht ersichtlich, nur die Schubspannkräfte liefern. Unter dem bezeichneten Angriff der äußeren Kräfte können also nur Schub-, nicht aber Normalspannungen in der Schnittebene entstehen.

Die entstehenden Schubspannungen nennt man in diesem Falle Verdrehungs- oder Torsionsspannungen; das Material des

Körpers wird auf seine Verdrehungs- oder Torsionsfestigkeit beansprucht.

Wie nun auch immer der Angriff der äufseren Kräfte an dem betrachteten Stabende etwa abweichend von den hier unter I. bis VI. besprochenen Fällen erfolgen möge, stets läfst er sich auf diese zurückführen. Im allgemeinsten Falle würden die das Stabende ergreifenden äufseren Kräfte sich zu einer die Stabachse unter irgend einem Winkel schneidenden Mittelkraft R und zu einem in beliebiger Ebene gegen die Stabachse drehenden Achsmoment zusammensetzen lassen. Zerlegt man letzteres in je ein Seitenmoment senkrecht und parallel zur Schnittebene, so wird durch jenes reine Biegungs-, durch dieses reine Verdrehungsspannung hervorgerufen (vergl. die Ausführungen unter III. und VI.), während die Mittelkraft R (nach V.) gleichzeitig Zug- oder Druck-, sowie Biegungs- und Schubspannungen hervorruft.

Erster Abschnitt.

Flächenmomente 2. Ordnung, Trägheits- und Centrifugalmomente ebener Flächen.

1. Begriffserklärung und allgemeine Eigenschaften der Flächenmomente 2. Ordnung, sowie Beziehungen derselben zueinander.

Für die Beurteilung der Formänderungen, insbesondere der Biegung und Verdrehung gerader Stäbe, sowie der Gleichgewichtsverhältnisse zwischen den die Formänderung hervorrufenden äußeren Kräften und den mit ihr eintretenden inneren Spannkräften sind die Flächenmomente 2. Ordnung der Stabquerschnitte von Wichtigkeit; es sollen daher, bevor auf jene Verhältnisse selbst näher eingegangen wird, diese rein mathematischen Begriffe hier behandelt werden.

a) Begriffserklärung.

In Frage kommen hier:

1. Das achsiale Trägheitsmoment oder schlechthin Trägheitsmoment, d. h. die Summen aller kleinsten Flächenteilchen,

jedes multipliziert mit dem Quadrate seines Abstandes von einer in der Ebene der Fläche liegenden geraden Linie als Achse. Wir bezeichnen dasselbe hinfort mit \mathcal{J} und drücken seine Entstehung aus durch die Gleichung

 $J = \int \cdot y^2 d F$. (Vergl. Fig. 9.)

Wird die Fläche auf ein (in der Regel rechtwinkliges) Achsensystem bezogen (Fig. 10), so soll verstanden werden unter

 $J_x = \int y^2 \cdot dF$ das Trägheitsmoment in Bezug auf die X-Achse, $J_y = \int x^2 \cdot dF$ das Trägheitsmoment in Bezug auf die Y-Achse.

Erster Abschnitt. Flächenmomente 2. Ordnung.

Manchmal ist es zweckmäßig, das achsiale Trägheitsmoment einer ebenen Fläche durch den Flächeninhalt derselben und den sogen. Trägheitshalbmesser i auszudrücken. Denkt man sich nämlich den ganzen Inhalt F der Fläche in solchem Abstande i von der betreffenden Achse konzentriert, d. h. alle kleinsten Flächenteilchen dF in solchen Abstand i von der Achse verschoben, daßs $\int i^2 dF = i^2 \cdot \int dF = i^2 \cdot F = J$ wird, so nennt man i den Trägheitshalbmesser der Fläche in Bezug auf jene Achse. Man kann daher

jeder Zeit J mit $F \cdot i^2$ oder i mit $\sqrt{\frac{J}{F}}$ vertauschen.

2. Das polare Trägheitsmoment, d. h. die Summe aller kleinsten Flächenteilchen, jedes multipliziert mit dem Quadrate seines Abstandes ϱ von einem innerhalb der Ebene der Fläche gelegenen Punkte, als Pol. Es werde hinfort mit J_p bezeichnet und seine Entstehung ausgedrückt durch die Gleichung

 $J_p = \int \varrho^2 \cdot d F$. (Vergl. Fig. 11.)

3. Das Centrifugalmoment, d. b. die Summe aller kleinsten Flächenteilchen, jedes multipliziert mit dem Produkte seiner Koordinaten in Bezug auf ein in der Ebene der Fläche liegendes (in der Regel rechtwinkliges) Achsenkreuz. Wir bezeichnen es hinfort C_{xy} und drücken seine Entstehung aus durch die Gleichung

 $C_{xy} = \int x \cdot y \cdot dF$. (Vergl. Fig. 10.)

b) Allgemeine Eigenschaften achsialer Trägheitsmomente.

Die Entstehung der Trägheitsmomente, derzufolge sie aus einer Summe von Quadraten positiver oder negativer Strecken bestehen, jedes multipliziert mit einer absoluten Größe dF, bringt es mit sich, daß sie nur positiv sein und für eine endliche Fläche und eine im endlichen gelegene Achse nicht Null und nicht unendlich großs werden können. Mit der Richtung und Lage der Achse, auf die das achsiale Trägheitsmoment eines Querschnittes bezogen ist, ändert sich seine Größe und schwankt, wie später nachgewiesen werden

I. Begriffserklärung und allgemeine Eigenschaften.

wird, für Achsen, welche durch ein und denselben Punkt gehen, zwischen einem Gröfst- und einem Kleinstwert.

Ist J_s das Trägheitsmoment einer Fläche für eine durch ihren Schwerpunkt S gehende Achse (Fig. 12),

 J_1 dasjenige für eine im Abstande e_1 parallel zu derselben gelegenen Achse 1-1, so besteht zwischen beiden die Beziehung

 $J_1 = J_s + F \cdot e_1^2.$

1)

Es ist nämlich

$$J_{1} = \int y_{1}^{2} dF = \int (y + e)^{2} dF = \int y^{2} dF + 2e \int y dF \cdot + e^{2} \int dF$$

und $\int y^{2} dF = J_{4}, \quad \int y dF = 0, \quad \int dF = F.$

Aus Gleichung 1 folgt, dafs das Trägheitsmoment einer Fläche in Bezug auf eine Schwerpunktsachse kleiner ist, als irgend ein auf eine ihr parallele Achse bezogenes Trägheitsmoment.

, 1st ferner J_2 das Trägheitsmoment in Bezug auf eine Achse 2-2 im Abstande e_2 vom Schwerpunkt, so ist $J_2 = J_s + e_2^2 F$ und demnach 2) $J_1 - J_2 = F(e_1^2 - e_2^2)$.

c) Beziehungen zwischen achsialen und polaren Trägheitsmomenten einer ebenen Fläche.

Zwischen den Trägheitsmomenten J_x und J_y einer ebenen Fläche in Bezug auf zwei zueinander rechtwinklige Achsen X und Y und dem polaren Trägheitsmoment J_p der Fläche in Bezug auf den Schnittpunkt A der Achsen (Fig. 13) besteht die Beziehung 2) $J_x + J_y = J_p$.

Es ist nämlich

$$J_x + J_y = \int y^2 dF + \int x^2 dF = \int (y^2 + x^2) dF = \int \varrho^2 dF$$

and $\int \varrho^2 dF \cdot = J_{q_1}$. (Vergl. Fig. 13.)

Da ferner J_p in Bezug auf den Punkt A unabhängig von der gewählten Richtung der Achsen X und Y einen bestimmten Wert hat, so folgt aus Gleichung 2, dafs, wenn man das rechtwinklige Achsenkreuz X und Y um A dreht, in jedem Augenblicke die Summe der Trägheitsmomente J_x und J_y denselben Wert J_p hat.

 $J_{x_1} + J_{y_1} = J_x + J_y = J_p$.

d) Beziehungen zwischen den polaren Trägheitsmomenten einer ebenen Fläche für verschiedene Pole.

Zwischen den polaren Trägheitsmomenten J_{ps} und J_{p_1} einer ebenen Fläche in Bezug auf den Schwerpunkt S und irgend einen Punkt O_1 als Pol, dessen Entfernung $O_1 S$ von S gleich e_1 ist, besteht die Beziehung

4)
$$J_{p_1} = J_{ps} + e_1^2 \mathbf{F}$$
.
Denn es ist nach Fig. 14

$$J_{p_1} = \int \varrho^2 dF = \int ((e+x)^2 + y^2) dF = \int (x^2 + y^2) dF + e^2 \int dF + 2e \int x dF$$

= $\int r^2 dF + e^2 \cdot F \cdot + 0$, weil $\varrho^2 = (e+x)^2 + y^2$
 $x^2 + y^2 = x^2 \int dF = F$ and $(x dF = 0)$

Da ferner $\int r^2 dF = J_{ps}$, so ist die Beziehung der Gleichung 4 erwiesen.

Hat irgend ein anderer Punkt O_2 als Pol die Entfernung e_2 vom Schwerpunkte S, so ist ebenso $J_{p_2} = J_{ps} + e_2^2 \cdot F$ und demnach unter Beachtung der Gleichung 4

Fig. 14.

5) $J_{p_1} - J_{p_2} = F(e_1^2 - e_2^2).$

e) Allgemeine Eigenschaften der Centrifugalmomente einer ebenen Fläche.

Das Centrifugalmoment einer jeden ebenen Fläche in Bezug auf ein beliebiges Achsenkreuz kann zum Unterschiede von dem Trägheitsmoment derselben positiv, negativ oder auch gleich Null sein; denn im ersten und dritten Quadranten, wo alle Koordinaten der Flächenelemente dF gleiche Vorzeichen haben, ergeben sich nur positive, im zweiten und vierten Quadranten, wo jene Vorzeichen ungleich sind, dagegen nur negative Beiträge $x \cdot y dF$ zum Centrifugalmoment. Je nachdem die einen oder die anderen in ihren Summen überwiegen oder beide einander gleich sind, sich also aufheben, ist auch das Centrifugalmoment der ganzen Fläche positiv, negativ oder gleich Null.

In Bezug auf ein beliebig gewähltes schief- oder rechtwinkliges Achsenkreuz wird das Centrifugalmoment einer Querschnittsfläche im allgemeinen von Null verschieden, positiv oder negativ sein. Durch Festhalten der einen und allmähliche Drehung der anderen Achse in der Ebene des Querschnitts. welche je nach dem

12

ħ,

I. Begriffserklärung und allgemeine Eigenschaften.

Drehungssinn eine Vermehrung der positiven und eine Verminderung der negativen Beitragssumme oder umgekehrt im Gefolge hat, wird sich stets eine Neigung beider Achsen zueinander finden lassen, für welche beide Summen einander gleich sind, das Centrifugalmoment also gleich Null ist. Derartige Achsen nennt man "zugeordnete Achsen" und, wenn sie zufällig senkrecht aufeinander stehen, "Hauptachsen". Fällt in letzterem Falle der Koordinaten-Nullpunkt mit dem Schwerpunkt des Querschnitts zusammen, so handelt es sich um Schwerpunkts-Hauptachsen.

Denkt man sich ein beliebig angenommenes rechtwinkliges Koordinatensystem unter Beibehaltung des rechten Winkels allmählich um seinen Anfangspunkt A gedreht, so ändert sich das Centrifugalmoment stetig. Nach einer Drehung um 90° sind alle Flächenteilchen dF aus dem ersten und dritten Quadranten, je nach dem Drehungssinn, in den zweiten und vierten bezw. vierten und zweiten Quadranten übergetreten; die Beiträge $x \cdot y dF$ aller Teile zum Centrifugalmoment, sowie dieses selbst haben dabei ihre Vorzeichen gewechselt.

Während seiner Änderung muß dasselbe jedesmal beim Übergange vom Positiven zum Negativen oder umgekehrt für irgend eine bestimmte Richtung der Achsen auch den Wert Null annehmen. Für jeden Punkt A des Querschnittes als Koordinatenanfangspunkt gibt' es also ein derartiges Hauptachsenpaar. So ist z. B. leicht ersichtlich, daß, wenn eine der Achsen eines rechtwinkligen Koordinatensystems Symmetrieachse des Querschnittes ist, die Achsen Hauptachsen sind, denn jedem positiven Beitrage $x \cdot y dF$ eines

Flächenteilchens entspricht ein gleich großer negativer des symmetrisch gelegenen Flächenelementes.

Es wird sich zeigen, daß die Trägheitsmomente J, und J, für die Hauptachsen, also wenn $C_{xy} = 0$, ihre Gröfstund Kleinstwerte annehmen.

Zwischen den Centrifugalmomenten C_{xy} und $C_{x_1y_1}$ eines Querschnittes in Bezug

auf rechtwinklige Schwerpunktsachsen X und Y und auf zwei um Strecken e_1 und e_2 parallel gegen dieselben verschobene Achsen X_1 und Y_1 (Fig. 15), besteht die Beziehung $C_{x,y_1} = C_{xy} + e_1 e_2 \mathbf{F}.$

Es ist nämlich:

$$C_{x_1y_1} = \int x_1 \cdot y_1 \cdot dF = \int (x + e_1) (y + e_2) dF$$

= $\int xy dF + e_1 e_2 \int dF + e_1 \int y dF + e_2 \int x dT$

und $\int xy dF = C_{xy}$, $\int dF = F$, sowie $\int y dF = 0$ und $\int x \cdot dF = 0$.

Ist eine der Achsen X und Y eine Symmetrieachse des Querschnittes, oder sind beide solche, so wird auch $C_{xy} = 0$ und demnach $C_{y_1x_1} = e_1 e_2 \cdot F.$

f) Trägheits- und Centrifugalmomente in Bezug auf schiefwinklige Koordinatenachsen.

Im allgemeinen wollen wir zur Bezeichnung der Trägheits- und Centrifugalmomente

$$J_x = \int y^2 dF,$$

$$J_y = \int x^2 dF \text{ und}$$

$$C_{xy} = \int x \cdot y \cdot dF$$

in Bezug auf ein schiefwinkliges Achsenkreuz die Koordinaten x und y in der Richtung der Achsen messen. Es kann indes unter Umständen erwünscht sein, an Stelle dieser Koordinaten x und y die rechtwinklig zu den Achsen gemessenen x_r und y_r treten

zu lassen (siehe Fig. 16). Es ist dann $x_r = x \sin \beta$ und $y_r = y \sin \beta$ und demnach

$$J_{x_r} = \int x_r^2 dF = \sin^2 \beta \int x^2 dF = \sin^2 \beta J_x,$$

$$J_{y_r} = \int y_r^2 dF = \sin^2 \beta \int y^2 dF = \sin^2 \beta J_y,$$

$$C_{xy_r} = \int y_r \cdot x_r dF = \sin^2 \beta \int x \cdot y \cdot dF = \sin^2 \beta C_{xy}.$$

Man kann also, je nachdem es im gegebenen Falle erwünscht ist, leicht J_{x_r} durch $J_x \cdot \sin^2 \beta$, oder J_x durch $\frac{J_{x_r}}{\sin^2 \beta}$ ersetzen, und dasselbe gilt für J_y und J_{y_r} sowie für C_{xy} und C_{xy_r} . Für zugeordnete Achsen ist ebensowohl C_{xy} als C_{xy_r} gleich Null.

II. Ermittelung der Trägheits- und Centrifugalmomente einiger Querschnittsformen in Bezug auf ihre Schwerpunktsachsen.

a) Analytisches Verfahren.

1. Das Rechteck. (Fig. 17.)

Das Trägheitsmoment in Bezug auf eine den Seiten b parallele Schwerpunktsachse X berechnet sich wie folgt:

Ein unendlich kleiner Flächenstreifen dFparallel der X-Achse und im Abstande y von derselben liefert einen Beitrag zum Trägheitsmoment J_x

$$dJ_x = dF \cdot y^2 = b \cdot dy \cdot y^2.$$

Durch Integration zwischen den Grenzen

$$-rac{h}{2}$$
 und $+rac{h}{2}$ folgt

$$J_{x} = b \int_{-\frac{h}{2}}^{*+\frac{h}{2}} dy \cdot y^{2} = \frac{b \cdot h^{3}}{12} = \frac{F \cdot h^{2}}{12},$$

wenn F den Inhalt der Querschnittsfläche bezeichnet.

In gleicher Weise ergibt sich für die Y-Achse

$$J_y = h \int_{-\frac{b}{a}}^{+\frac{b}{2}} x^2 \cdot dx = \frac{h \cdot b^3}{12} = \frac{F \cdot b^2}{12}.$$

Das polare Trägheitsmoment J_p ist nach Ic.

$$J_p = J_x + J_y = \frac{F}{12} \cdot (b^2 + h^2) = \frac{bh}{12} \cdot (b^2 + h^2).$$

3)

0

4)

2)

1)

Das Centrifugalmoment ist, da die Fläche in Bezug auf die Achsen symmetrisch ist, gleich Null.

2. Das T- und D-Profil. (Fig. 18 u. 18a.)

Sieht man die Flächen als Unterschiede der vollen Rechtecke von der Breite b und der Höhe h und den Querschnittsflächen der Hohlräume an, so ergibt sich in Bezug auf die X-Achse für beide leicht:

$$J_x = \frac{b \cdot h^3 - b_1 h_1^3}{12}.$$

Erster Abschnitt. Flächenmomente 2. Ordnung.

In Bezug auf die Y-Achse ist für das \square -Profil ebenso 5) $J_y = \frac{h b^3 - h_1 b_1^3}{12}$.

Denkt man sich das $\underline{\top}$ -Profil in drei Rechtecke zerlegt, so ergibt sich für die Y-Achsen

5a)
$$J_y = \frac{(h-h_1) \cdot b^3 + h_1 (b-b_1)^3}{12}$$
.

Das polare Trägheitsmoment ist wie b

$$J_p = J_x + J_y.$$

Das Centrifugalmoment ist für beide Flächen gleich Null.

3. Eine beliebige zweiteilige Fläche. (Fig. 19.)

Die Schwerpunkte S_1 und S_2 , die Flächeninhalte F_1 und F_2 und die Trägheitsmomente J_{x_1} , J_{y_1} , J_{x_2} und J_{y_2} in Bezug auf die wagerechten und senkrechten Schwerpunktsachsen der Einzelflächen mögen hier als bekannt vorausgesetzt werden.

Für die Lage des Schwerpunktes S der Gesamtfläche ergibt sich bei den aus Fig. 19 ersichtlichen Bezeichnungen

6)

 $\begin{cases} x_1 = \frac{x \cdot F_2}{F_1 + F_2}, \\ \text{und } y_1 = \frac{y \cdot F_2}{F_1 + F_2}, \end{cases}$

 $\begin{array}{c} F_2 \\ S_2 \\ y_1 \\ y_2 \\ x_3 \\ S_1 \\ F_1 \end{array}$

worin x und y, der wagerechte und senkrechte Abstand der Schwerpunkte der Einzelflächen als bekannt anzusehen sind.

Der Beitrag der Fläche F_1 zum Trägheitsmoment J_x ist dann nach Ib. Gleichung 1 gleich $J_{x_1} + F_1 \cdot y_1^2$ und ebenso derjenigen von F_2 gleich $J_{x_2} + F_2 \cdot y_2^2$ und demnach

7) $J_x = J_{x_1} + J_{x_2} + F_1 y_1^2 + F_2 y_2^2$

und in gleicher Weise ergibt sich

8)
$$J_y = J_{y_1} + J_{y_2} + F_1 x_1^2 + F_2 x_2^2.$$

Da X und Y Schwerpunktsachsen sind, so ist ferner $F_1 x_1 = F_2 \cdot x_2$ und $F_1 \cdot y_1 = F_2 \cdot y_2$,

. II. Trägheitsmomente u. s. w. einiger Querschnittsformen.

und die Gleichungen 7 und 8 lassen sich schreiben:

9) $J_x = J_{x_1} + J_{x_2} + F_1 y_1 (y_1 + y_2)$

10)
$$J_y = J_{y_1} + J_{y_2} + F_1 x_1 (x_1 + x_2).$$

Ersetzt man endlich $x_1 + x_2$ durch x und $y_1 + y_2$ durch y, so folgt unter Beachtung der Gleichung 6

11)
$$J_x = J_{x_1} + J_{x_2} + \frac{F_1 \cdot F_2 y^2}{F_1 + F_2},$$

12)
$$J_y = J_{y_1} + J_{y_2} + \frac{F_1 F_2 \cdot x^2}{F_1 + F_2}.$$

Das Centrifugalmoment berechnet sich unter Beachtung von Ie Seite 13 zu

$$C_{xy} = C_{x_1y_1} + C_{x_2y_2} + F_1 \cdot x_1y_1 + F_2x_2y_2.$$

Ersetzt man wieder $x_2 \cdot F_2$ durch $x_1 \cdot F_1$ und $y_1 + y_2$ durch y, so folgt unter Beachtung der Gleichung 6

13)
$$C_{xy} = C_{x_1y_1} + C_{x_2y_2} + \frac{F_1 F_2 \cdot x \cdot y}{F_1 + F_2}.$$

Die Gleichungen 11 bis 13 ermöglichen in bequemer Weise die Berechnung der Trägheitsmomente und des Centrifugalmomentes in Bezug auf die Schwerpunktsachsen X und Y einer zweiteiligen Fläche, ohne dafs die Lage des Schwerpunktes derselben selbst bekannt ist.

4. Das L-Profil. (Fig. 20.)

In ihrer Anwendung auf das L-Profil gestalten sich die Gleichungen 11 bis 13 wie folgt:

11 a)
$$J_x = \frac{bh^3 + b_1h_1^3}{12} + \frac{b \cdot h \cdot b_1h_1\left(\frac{h + h_1}{2}\right)^2}{bh + b_1h_1},$$
 Fig. 20.
12 a) $J_y = \frac{hb^3 + h_1b_1^3}{12} + \frac{bh \cdot b_1h_1\left(\frac{b - b_1}{2}\right)^2}{bh + b_1h_1}.$

·b br>

2

Da $C_{x_1y_1}$ und $C_{x_2y_2}$ wegen der Symmetrie der Einzelflächen gleich Null sind, so ist ferner

13 a)
$$C_{xy} = -\frac{b h \cdot b_1 h_1 \cdot \left(\frac{h_1 + h}{2}\right) \left(\frac{b - b_1}{2}\right)}{b h + b_1 h_1}$$

Keck, Elastizitätslebre.

Ist ein Schenkel des Profils, wie in Fig. 19 in punktierten Linien angedeutet, durch ein Loch geschwächt, so ist dafür in Abzug zu bringen:

a) bei der Berechnung von J_x

$$\frac{b_1 d^3}{12} + b_1 d \cdot y_2^2,$$

b) bei der Berechnung von J_{y}

$$\frac{db_1^3}{12} + b_1 dx_2^2$$
, und

c) bei den Berechnungen von C_{xy}

$$b_1 d \cdot y_2 x_2$$
.

Über das Vorzeichen von C_{xy} für einen zweiteiligen Querschnitt entscheidet die Lage der Einzelschwerpunkte S_1 und S_2 . Sie können, wie leicht ersichtlich, nur im ersten und dritten, oder im zweiten und vierten Quadranten liegen. Im ersten Falle sind die Koordinaten x_1 u. y_1 und x_2 u. y_2 im Vorzeichnen gleichstimmig, ihre Produkte positiv und daher auch $C_{xy} > 0$, während im zweiten Falle aus den entgegengesetzten Ursachen $C_{xy} < 0$ ist. Bei der in Fig. 19 gezeichneten Lage ist sowohl $x_1 \cdot y_1 F_1$ als $x_2 y_2 F_2$ negativ und daher auch $C_{xy} < 0$.

5. Das T-Profil. (Fig. 21.)

Die Profilfläche sei in Bezug auf die Schwerpunktsachse Ysymmetrisch. Für die Trägheitsmomente J_x und J_y ergibt sich nach den Gleichungen 11 und 12 Seite 17, wenn man x gleich Null setzt,

14)
$$J_x = \frac{b h^3 + b_1 h_1^3}{12} + \frac{b h \cdot b_1 h_1 \cdot \left(\frac{h+2}{2}\right)}{b h + b_1 h_1}$$

$$15) J_y = \frac{h \, b^3 + b_1 \, b_1^3}{12}$$

und für das Centrifugalmoment $C_{xy} = 0.$

6. Das unregelmäßige L-Profil. (Fig. 22.)

In folgendem möge bezeichnen: S den Schwerpunkt der ganzen Profilfläche, S_1 , S_2 und S_3 diejenigen der einzelnen Rechtecke, x_1y_1 , x_2y_2 und x_3y_3 die Koordinaten derselben in Bezug auf ein zu

II. Trägheitsmomente u. s. w. einiger Querschnittsformen.

den Seiten der Fläche paralleles Achsenkreuz XY, dessen Nullpunkt in S liegt. Nach der Lehre vom Schwerpunkt ergibt sich dann

16)
$$x_{2} = \frac{b_{1}h_{1}\left(\frac{b_{1}-b_{2}}{2}\right) - b_{3}h_{3}\left(\frac{b_{3}-b_{2}}{2}\right)}{b_{1}h_{1} + b_{2}h_{2} + b_{3}h_{3}}.$$
17)
$$y_{2} = \frac{b_{1}h_{1}\left(\frac{h_{1}+h_{2}}{2}\right) - b_{3}h_{3}\left(\frac{h_{2}+h_{3}}{2}\right)}{b_{1}h_{1} + b_{2}h_{2} + b_{3} + h_{3}}.$$

1

Damit ist die Lage des Schwerpunktes S bekannt.

Unter Beachtung der Ausführungen auf Seite 11 folgt nun 18) $J_x = \frac{b_1 h_1^3 + b_2 h_2^3 + b_3 h_3^3}{12} + b_1 h_1 y_1^2 + b_2 h_2 y_2^2 + b_3 h_3 y_3^2,$ 19) $J_y = \frac{b_1^3 h_1 + b_2^3 h_2 + b_3^3 h_3}{12} + b_1 h_1 x_1^2 + b_2 h_2 x_2^2 + b_3 h_3 x_3^2.$ Die Centrifugalmomente der Einzelflächen in Bezug auf ihre eigenen wagerechten und senkrechten Schwerpunktsachsen sind je gleich Null. Das Centrifugalmoment der Gesamtfläche ist daher nach den Ausführungen auf Seite 13

20)
$$C_{xy} = b_1 \cdot h_1 \cdot x_1 \cdot y_1 + b_2 h_2 x_2 y_2 + b_3 h_3 x_3 y_3.$$

In den Gleichungen 18-20 sind x_2 und y_2 aus Gleichung 16 und 17 bekannt und nach der Figur ist

$$\begin{split} x_1 &= -\left(\frac{b_1 - b_2}{2} - x_2\right) \qquad x_3 = \left(\frac{b_3 - b_2}{2} + x_2\right), \\ y_1 &= -\left(\frac{h_1 + h_2}{2} - y_2\right) \qquad y_3 = \left(\frac{h_2 + h_3}{2} + y_2\right). \end{split}$$

Da die Koordinatenpaare x_1 und y_1 , x_2 und y_2 , x_3 und y_3 nach der Fig. 22 je gleichsinnige Vorzeichen haben, so ist C_{xy} positiv.

7. Zusammengesetztes Profil eines Blechbalkens. (Fig. 23.).

Für den schraffierten Teil der Fläche ergibt sich zunächst das Trägheitsmoment in Bezug auf die X-Achse

21)
$$J_0 = \frac{(b_0 - 2d)h_0^3 - (b_0 - b_1 - 2d)h_1^3 - (b_1 - b_2)h_2^3}{12}.$$

Durch Hinzutritt der nicht schraffierten Kopfplatte vergrößert sich das Trägheitsmoment zu

22)
$$J = J_0 + 2 \cdot \frac{(b-2d) \cdot s^3}{12} + 2 F_k \cdot \left(\frac{h_0 + s}{2}\right)^2$$

wenn F_k die Querschnittsfläche der Kopfplatte und s deren Stärke bezeichnet. Setzt man im zweiten Gliede noch $(b-2d)s=F_k$ und $h_0+2s=h$, so folgt

Fig. 23.

23)
$$J = J_0 + \frac{F_k}{2} \left(h_0 \cdot h + \frac{4}{3} s^2 \right).$$

In den meisten Fällen kann man ohne merklichen Fehler das zweite Glied in der Klammer als verschwindend klein gegen das erste vernachlässigen, so dafs dann wird

$$J = J_0 + F_k \cdot \frac{h \cdot h_0}{2}$$

Das Trägheitsmoment in Bezug auf die Y-Achse J_y hat für diesen Querschnitt kein Interesse. Das Centrifugalmoment C_{xy} ist gleich Null, da der Querschnitt symmetrisch ist.

II. Trägheitsmomente u. s. w. einiger Querschnittsformen.

8. Das Dreieck. (Fig. 24.)

Es sollen die Trägheitsmomente J_{x_r} und J_{y_r} (vergl. S. 14 u. f.) in Bezug auf ein im allgemeinen schiefwinkliges Achsenkreuz bezogen

werden, dessen Nullpunkt mit dem Schwerpunkte des Dreiecks, dessen X-Achse mit der zur Grundlinie AB parallelen Schwerlinie, und dessen Y-Achse mit der die ABhalbierenden Schwerlinie zusammenfällt. Die Koordinaten der Flächenelemente sollen hier zunächst rechtwinklig von den Achsen angenommen werden.

In Bezug auf eine durch die Spitze C parallel zur Grundlinie gedachte Achse 1-1 ist

25a)
$$J_1 = \int u^2 dF = \int_0^{\frac{u}{h}} \cdot a \cdot du \cdot u^2 = \frac{ah^3}{4} = \frac{F \cdot h^2}{2}$$

und nach Ib Gleichung 1: 25) $J_{x_r} = J_1 - \left(\frac{2}{3} \cdot h\right)^2 \cdot F = \frac{h^2 \cdot F}{18} = \frac{a \cdot h^3}{36}.$

Das Trägheitsmoment J_2 in Bezug auf die Grundlinie ist 25 b) $J_2 = J_{z_r} + \left(\frac{h}{3}\right)^2 \cdot F = \frac{h^2}{6} F = \frac{a h^3}{12}.$

Für die Ermittelung von J_{y_r} beachten wir, dafs die Schwerlinie CD des Dreiecks zugleich Grundlinie der Dreiecke ACDund BCD ist und dafs nach Gleichung 25b das Trägheitsmoment jedes der beiden Dreiecke in Bezug auf CD

$$\frac{J_{\nu_r}}{2} = \frac{\frac{F}{2} \cdot \left(\frac{a}{2} \cdot \sin \alpha\right)^2}{6} = \frac{a^2 \cdot \sin^2 \alpha \cdot F}{48} \text{ und daher}$$
$$J_{\nu_r} = \frac{a^2 \cdot \sin^2 \alpha \cdot F}{24} = \frac{a^3 h \sin^2 \alpha}{48} \text{ ist.}$$

26)

Für Koordinaten parallel den Achsen wird nach S. 14 unter f.

$$J_{x} = \frac{J_{x_{r}}}{\sin^{2}\alpha} = \frac{F \cdot h^{2}}{18 \cdot \sin^{2}\alpha} = \frac{F/l^{2}}{18},$$
$$J_{y} = \frac{J_{y_{r}}}{\sin^{2}\alpha} = \frac{a^{2}F}{24}.$$

Das Centrifugalmoment in Bezug auf die gewählten Achsen ist gleich Null, da jedem positiven Beitrage $x \cdot y dF$ ein gleich großer negativer entspricht; die Achsen sind also einander zugeordnete.

9. Kreisfläche und Kreisring. (Fig. 25.)

Für die Kreisfläche sind die Trägheitsmomente J in Bezug auf alle Durchmesser einander gleich. Es ist also $J_x = J_y = J$ und nach S. 11 Ic (Gl. 3) das polare Trägheitsmoment $J_p = J_x + J_y = 2J$, also

28)

 $J = \frac{J_p}{2}.$

 J_p berechnet sich wie folgt:

Der Beitrag eines konzentrischen Ringes vom Radius ϱ und der Dicke $d\varrho$ ist,

$$dJ_p = dF \cdot \varrho^2 = (2\varrho \cdot \pi \cdot d\varrho) \cdot \varrho^2 = 2\pi \cdot \varrho^3 d\varrho,$$

woraus sich durch Integration zwischen der Grenze $\varrho = 0$ und $\varrho = R$ ergibt Fig. 25.

24

$$J_p = 2\pi \int_{\varrho}^{R} d\varrho = \frac{\pi}{2} I$$

und nach Gleichung 27 29)

$$J = \frac{J_p}{2} = \frac{\pi}{4} R^4.$$

Für den Kreisring mit dem äufseren Radius R und dem inneren Radius r wird

30)
$$J_p = \left(\frac{\pi}{2} \cdot R^4 - \frac{\pi}{2}r^4\right) = \frac{\pi}{2}(R^4 - r^4)$$
 und

31)
$$J = \frac{\pi}{4} (R^4 - r^4)$$

Das Centrifugalmoment ist für beide Querschnittsformen gleich Null.

b) Graphisches Verfahren.

1. Verfahren von Culmann.

Die ebene Fläche, deren Trägheitsmoment zu bestimmen ist, sei beliebig begrenzt, symmetrisch oder unsymmetrisch. Die Richtung der Schwerpunktsachse, auf welche das Trägheitsmoment bezogen werden soll, sei yy (Fig. 26). Wir zerlegen die Fläche durch Parallelen zu yy in Streifen von solcher Breite, daß sie mit hinreichender Genauigkeit als Trapeze betrachtet werden können. Die

II. Trägheitsmomente u. s. w. einiger Querschnittsformen.

Flächeninhalte ΔF_1 , ΔF_2 u. s. w. derselben werden in Rechtecke von gleicher Grundlinie *b* verwandelt. Dann sind die zugehörigen Höhen z_1 , z_2 , z_3 u. s. w. den Flächenteilen verhältnisgleich und man kann diese durch jene ausdrücken. Sieht man die Flächenteile ΔF_1 , ΔF_2 u. s. w. als durch die Strecken z_1 , z_2 u. s. w. dargestellte,

in den Schwerlinien, oder (meist auch genau genug) in den Mittellinien der Flächenteile wirkende Kräfte an, zeichnet das Krafteck (1-2...7) und mit einem beliebigen Pol O das Seileck ABCDEG, so ergibt sich in der durch den Schnittpunkt L der äufseren Seilecksseiten I und VII gehenden Parallelen *ss* zur yy zunächst die Schwerpunktsachse für das gesuchte Trägheitsmoment.

Bei den aus der Figur ersichtlichen Bezeichnungen ist nun 1) $J = \Delta F_1 \cdot x_1^2 + \Delta F_2 \cdot x_2^2 + \dots$, oder, da $\Delta F_1 = b \cdot z_1$, $\Delta F_2 = b \cdot z_2$ u. s. w. auch 2) $J = b (z_1 \cdot x_1^2 + z_2 \cdot x_2^2 + \dots)$.

Die Produkte $z_1 \cdot x_1$ u.s. w. können als statische Momente angesehen werden und nach den bekannten Regeln über die zeichnerische Ermittelung statischer Momente kann man $z_1 \cdot x_1$, $z_2 \cdot x_2$ u.s. w. gleichsetzen den Produkten aus der Polweite a und den Strecken 1,-2,, 2,-3, u.s. w., welche die entsprechenden Seilecksseiten auf der Momentenachse ss abschneiden. Es ist also $z_1 \cdot x_1 = a \cdot 1, -2,$, $z_2 \cdot x_2 = a \cdot 2, -3,$ u.s. w., und damit schreibt sich Gleichung 2 3) $J = a \cdot b (1, -2, \cdot x_1 + 2, -3, \cdot x_2 + \ldots).$

Sieht man nun weiterhin die Strecken 1,-2,, 2,-3, u. s. w. unter Beachtung ihres Richtungssinnes (z. B. 1,-2, aufwärts, 5,-6, abwärts gerichtet) als in den Mittellinien der Flächenteile wirkende Kräfte, den Streckenzug 1,-2,-3,-4,-5,-6,-7, als Krafteck an und zeichnet mit der Polweite a_1 das zugehörige zweite Seileck A'B'C'D'E'G', so wird wie oben 1,-2, $x_1 = 1$, -2, a_1 , 2, -3, $x_2 = 2$, -3, a_1 u. s. w. und demnach unter Beachtung der Gleichung 3

4) $J = a \cdot a_1 \cdot b \ (1, -2, +2, -3, ...) = a \cdot a_1 \cdot b \cdot u_1.$

Hat man, wie zu empfehlen, den Pol 0 so gewählt, daß die äußeren Polstrahlen I und VII je unter 45° zur 1-7 gerichtet sind, also $a = \frac{(z_1 + z_2 + \ldots)}{2} = \frac{1-7}{2}$ und der Inhalt des gegebenen Querschnittes $F = b(z_1 + z_2 + \ldots) = 2 \cdot ab$ ist, so nimmt Gleichung 4 die Form an

5)
$$J = F \cdot \frac{a_1 \cdot u_1}{2}$$
 und $i^2 = \frac{J}{F} = \frac{a_1 \cdot u_1}{2}$.

Das Trägheitsmoment J ist also gleich dem Inhalte eines aus der Polweite a_1 und der Strecke u_1 gebildeten Dreiecks, multipliziert mit der Querschnittsfläche F.

2. Verfahren von Mohr.

Dieses Verfahren ermöglicht die Ermittelung des Trägheitsmomentes ohne Zeichnung eines zweiten Seilecks.

In Gleichung 3 drücken nämlich die Glieder in der Klammer $1,-2, \cdot x_1, 2,-3, \cdot x_2$ u. s. w. die doppelten Flächeninhalte der Dreiecke $1, A 2, \cdot 2, B 3$, u. s. w. bis 6, G 7, aus. Diese erfüllen in
II. Trägheitsmomente u. s. w. einiger Querschnittsformen.

ihrer Gesamtheit die ganze Seilecksfläche ABCDEGL. Bezeichnen wir den Inhalt derselben mit F_1 , so ist

 $1,-2, \cdot x_1 + 2, -3, \cdot x_2 + \ldots = 2 \cdot F_1$ and nach Gleichung 3 6) $J = a \cdot b \cdot 2 \cdot F_1,$ oder, da wieder $a = \frac{(z_1 + z_2 + \ldots)}{2}$ also $a \cdot b = \frac{F}{2}$

7)

$J = F \cdot F_1$ und $i^2 = F_1$.

Das Ergebnis beider-Verfahren ist um so genauer, je enger die Parallelteilung, je schmäler die Teile ΔF gemacht wurden. Für unendlich schmale Teile geht ΔF in dF und das Seileck in eine Seillinie über, welche die Seiten eines für endliche Teilung gezeichneten Seilecks ABCDEG tangiert und zwar die äufseren Seiten I und VII in H und K. Die von den äufseren Seilecksseiten und der Seillinie eingeschlossene Fläche möge als Seilliniendreieck bezeichnet werden. Für die genaue Bestimmung des Trägheitsmomentes nach Mohr ist die Fläche F_1 dieses Seilliniendreiecks maßgebend. Ist für eine angemessene endliche Teilung der gegebenen

Querschnittsfläche zunächst das Seileck und sodann die dessen Seiten berührende Seillinie gezeichnet, so kann F_1 entweder mittelst eines Polarplanimeters, oder nach Simpson's Regel, oder endlich durch Verwandlung in ein inhaltsgleiches Dreieck bestimmt werden.

Beispielsweise ist für ein Rechteck (Fig. 27) die Seillinie eine Parabel und das Seilliniendreieck *ABCD* als Parabel-

dreieck gleich einem Drittel des Dreiecks ABC

$$F_1 = \frac{h \cdot \frac{h}{2}}{2 \cdot 3} = \frac{h^2}{12}$$
 und $J = F \cdot F_1 = \frac{b \cdot h \cdot h^2}{12} = \frac{b \cdot h^3}{12}$

übereinstimmend mit Gleichung 1 Seite 15.

Macht man $BE = \frac{1}{3} \cdot BC$, so ist $Fl \cdot \triangle ABE = F_1$.

Erster Abschnitt. Flächenmomente 2. Ordnung.

Ist die gegebene Querschnittsfläche zwar kein Rechteck, aber in ihrer Höhe wenig veränderlich, so kann die nach Maßgabe der Fig. 24 gezeichnete Seillinie dennoch annähernd als Parabel, das Seilliniendreieck als Parabeldreieck angesehen und F_1 dementsprechend ermittelt werden.

Besonders häufig sind die Fälle, wo die gegebene Querschnittsfläche als aus einzelnen Rechtecken bestehend angesehen werden kann.

Die Fläche (Fig. 28) kann man entweder als aus den drei Rechtecken JLMP, NPQR und RTVW (wagerechte Teilung), oder aus KLMN, JKTU und QUVW (senkrechte Teilung) bestehend ansehen. Die Höhen z_1 , z_2 und z_3 der auf die gleiche Grundlinie bzurückgeführten erstgenannten Rechtecke sind als Kräfte in der Linie 1-4, die bezüglichen Höhen z_1' , z_2' und z_3' der letztgenannten in der Linie 1'-4' zu einem Krafteck zusammenzutragen und zu jenen das Seileck ABC, zu diesen das Seileck A'B'C' zu zeichnen.

Dem Rechteck JLMP entspricht dann eine die Seiten Iund II des Seilecks ABC in E und F berührende Parabel als Seillinie; ebenso entsprechen den Rechtecken NPQR und RTVWdie die Seilecksseiten II und III in F und G, bezw. III und IVin G und H berührenden Parabeln.

Die aus den drei Parabelabschnitten EF, FG und GH bestehende Kurve EFGH ist somit die aus der wagerechten Teilung der Gesamtquerschnittsfläche sich ergebende Seillinie und EFGHDdas zugehörige Seilliniendreieck. Die senkrechte Teilung der Querschnittsfläche führt ebenso zu der aus den Parabelabschnitten E'F', F'G' und G'H' bestehenden Seillinie und zu dem Seilliniendreieck E'F'G'H'D'. Wir ersetzen jetzt die Parabeldreiecke EAF, FBGund GCH, bezw. E'A'F', F'B'G' und G'C'H' durch die inhaltsgleichen Dreiecke $EA\mathfrak{A}$, $\mathfrak{B}BG$ und $GC\mathfrak{H}$, bezw. $E'A'\mathfrak{A}'$, $\mathfrak{B}'B'G'$ und $G'C'\mathfrak{H}'$, in denen $\mathfrak{A}A = \frac{AF}{3}$, $\mathfrak{B}B = \frac{FB}{3}$ und $C\mathfrak{F} = \frac{C'H}{3}$, bezw. $A'\mathfrak{A}' = \frac{A'F'}{3}$, $\mathfrak{B}'B' = \frac{F'B'}{3}$ und $C'\mathfrak{H}' = \frac{C'H'}{3}$ gemacht ist. Es sind dann die Vielecke $E\mathfrak{A}\mathfrak{B}G\mathfrak{H}$ bezw. $E'\mathfrak{A}'\mathfrak{B}'G'\mathfrak{H}'D'$

II. Trägheitsmomente u. s. w. einiger Querschnittsformen.

inhaltsgleich den Seilliniendreiecken EFGHD bezw. E'F'G'H'D'. Verwandelt man in bekannter Weise das Vieleck $E\mathfrak{ABG}D$ in

das inhaltsgleiche Dreieck EDD_1 und das Vieleck $E'\mathfrak{A}'\mathfrak{B}'G'\mathfrak{H}'$ in das Dreieck $E'D'D_1'$, so erhält man in den leicht zu ermittelnden

Flächeninhalten beider Dreiecke zugleich die Flächen F_x bezw. F_y der Seilliniendreiecke EFGHD und E'F'G'H'D'.

Damit ist

8)
$$J_x = F \cdot F_x \quad (i_x^2 = F_1) \quad \text{und}$$

9)
$$J_y = F \cdot F_y \quad (i_y^2 = F_1') \quad \text{gefunden}$$

Das Centrifugalmoment C_{xy} des ganzen Querschnitts setzt sich zusammen aus den Beiträgen $x_1 \cdot y_1 \cdot F_1$, $x_2 \cdot y_2 \cdot F_2$ und $x_3 \cdot y_3 \cdot F_3$ der Teilflächen.

Es ist daher

 $\begin{array}{ll} 10) & C_{xy} = F_1 \cdot x_1 \cdot y_1 + F_2 \, x_2 \, y_2 + F_3 \, x_3 \, y_3, \\ \text{oder} \ \ F_1 = b \, z_1, \ \ F_2 = b \, z_2, \ \ F_3 = b \, z_3 \ \ \text{gesetzt}, \\ 11) & C_{xy} = b \, (z_1 \, x_1 \, y_1 + z_2 \, x_2 \, y_2 + z_3 \, x_3 \, y_3). \end{array}$

Wird die X-Achse nach rechts und die Y-Achse nach oben positiv angenommen, so sind x_1 und y_1 negativ, $x_1 \cdot y_1$ also positiv, und ebenso weisen die Koordinaten der Punkte S_2 und S_3 gleichstimmige Vorzeichen auf. Die Glieder in der Klammer der Gl. 11 sind daher alle positiv und somit ist auch C_{xy} selbst positiv.

Ersetzt man die statischen Momente $z_1 \cdot y_1$, $z_2 \cdot y_2$ und $z_3 \cdot y_3$ (vergl. S. 24) durch die Produkte $a \cdot 1,-2, a \cdot 2,-3$, und $a \cdot 3,-4,$, so folgt

12) $C_{xy} = b \cdot a \cdot (1, -2, \cdot x_1 + 2, -3, \cdot x_2 + 3, -4, \cdot x_3).$

Sieht man jetzt die Strecken 1,-2,, 2,-3, und 3,-4, als in den Schwerpunkten S_1 , S_2 und S_3 senkrecht wirkende Kräfte an und zeichnet vermittelst des Poles O_2 und der Polweite a_1 das Seileck $A_2 B_2 C_2$, dessen Seiten $I_{,,,} II_{,,,} III_{,,}$ und $IV_{,,}$ die X-Achse in $1_{,,,} 2_{,,,} 3_{,,}$ und $4_{,,}$ schneiden, so ist wieder das Moment $1,-2, \cdot x_1 = a_1 \cdot 1_{,,-2_{,,}} 2,-3, \cdot x_2 = 2_{,,-3_{,,}} \cdot a_1$ und $3,-4, \cdot x_3 = a_1 \cdot 3_{,,-4_{,,}}$ und nach Gleichung 12

13)
$$C_{xy} = b \cdot a \cdot a_1 (1_{,,-2_{,,+2_{,,-3_{,,+3_{,,-4_{,,-1}}}}).$$

Im Seileck $A_2 B_2 C_2$ sind die Seiten I_1 , II_1 u.s. w. senkrecht zu den Polstrahlen O_2^{-1} , O_2^{-2} u.s. w. gezogen, um ein nochmaliges Zeichnen des Krafteckes O_2^{-1} , -4, in einer um 90° gedrehten Lage zu vermeiden.*)

Setzt man noch $1_{,,-2,,} + 2_{,,-3,,} + 3_{,,-4,,} = 1_{,,-4,,} = u_1$, so ist auch

*) Vergl. Keck, Mechanik I, Dritte Aufl., Seite 161.

II. Trägheitsmomente u. s. w. einiger Querschnittsformen.

Sieht man endlich die Strecken a_1 und u_1 als Grundlinie und Höhe eines Dreiecks an, dessen Flächeninhalt $F_{xy} = \frac{a_1 \cdot u_1}{2}$ ist und

beachtet, dafs $b \cdot a = b \cdot \frac{(Z_1 + Z_2 + Z_3)}{2} = \frac{F}{2}$, so folgt nach Einsetzung dieser Werte in Gl. 14 15) $C_{xy} = F \cdot F_{xy}$.

In dieser Form erscheint also auch das Centrifugalmoment als Produkt zweier Flächen, der Querschnittsfläche F und Dreiecksfläche F_{xy} .

Erster Abschnitt. Flächenmomente 2. Ordnuny.

Sind die Rechtecke KLMN und QUVW einander völlig gleich, so tritt an Stelle des unregelmäfsigen \neg - Profils (Fig. 28) ein regelmäfsiges (Fig. 29) und der Schwerpunkt der Gesamtfläche fällt mit den Schwerpunkten S_2 bezw. S_2' auf der X-Achse in S zusammen. Das Seileck ABC wird in Bezug auf die X-Achse und A'B'C' in Bezug auf die Y-Achse symmetrisch und zur Ermittelung von F_x und F_y bezw. J_x und J_y in der oben erläuterten Weise braucht man daher von beiden je nur die eine Hälfte zu zeichnen (vergl. Fig. 29). Die Flächen F_x und F_y der Seilliniendreiecke erscheinen in die doppelten Dreiecke A BD und $C_1B_1D_1$, bezw. in die Rechtecke BEFD und $B_1E_1F_1D_1$ verwandelt.

Die Hälfte eines dieser Seilecke, z. B. ABC, genügt dann auch ohne weiteres zur Ermittelung des Centrifugalmomentes. Der Beitrag des Rechteckes NOQR zu demselben ist gleich Null und der Beitrag jedes der Rechtecke LMOP und RTVW, wenn F_1 ihren Flächeninhalt bezeichnet, gleich $F_1 \cdot x_1 \cdot y_1$. Demnach ist

$$C_{xy} = 2 F \cdot x_1 \cdot y_1.$$

Bezüglich des Vorzeichens vergl. die Bemerkungen auf Seite 28. Mit $F_1 = b \cdot z_1$ schreibt sich Gleichung 16

17)
$$C_{xy} = 2 b z_1 x_1 y_1$$
.

Das statische Moment $z_1 \cdot y_1$ ist wieder gleich $a \cdot u$ und daher

$$C_{xy} \stackrel{\cdot}{=} 2b \cdot a \cdot u \cdot x_1 = F \cdot F_{xy},$$

worin F = 2 a b den Inhalt der Querschnittsfläche und $F_{xy} = u \cdot x_1$ den Inhalt eines aus dem Abschnitt u und der wagerechten Entfernung x_1 der Schwerpunkte S_1 und S, bezw. S und S_3 gebildeten Rechtecks bezeichnet.

III. Abhängigkeit der Trägheits- und Centrifugalmomente von der Lage und Richtung der Achsen.

a) Beziehung zwischen den Trägheitsmomenten für parallele Achsen.

Wie unter I b bereits nachgewiesen, besteht zwischen den Trägheitsmomenten J_s und J_x eines ebenen Querschnitts für eine durch seinen Schwerpunkt gehende Achse *s-s* und eine im Abstande *x* davon verlaufende parallele Achse *x-x* (Fig. 30) die Beziehung 1) $J_x = J_s + x^2 F.$ III. Abhängigkeit d. Trägheitsmomente v. d. Lage u. Richtung d. Achsen. 31

Ersetzen wir J_x durch $i_x^2 \cdot F$ und J_s durch $i_s^2 \cdot F$ und teilen durch F, so folgt

2) $i_x^2 = i_s^2$ worin i_s als Trägheitshalbmesser in Bezug auf eine ihrer Richtung und Lage nach festliegende Schwerpunktsachse als konstante, i_x , Trägheitshalbmesser für die Achse x-x, als von dem Abstande x beider Achsen abhängige veränderliche Gröfse anzusehen ist. Das in Gl. 2 ausgedrückte Gesetz dieser Abhängigkeit zwischen i_x und x wird geometrisch durch eine gleichseitige Hyperbel ausgedrückt; i_s

stellt die reelle Achse derselben, i_x und x stellen die Koordinaten der Hyperbelpunkte dar.

b) Abhängigkeit des Trägheitsmomentes von der Richtung der Achse.

Denken wir uns das Trägheitsmoment eines ebenen Querschnitts auf eine beliebige Achse AP bezogen und diese um irgend einen ihrer Punkte, z. B. A, innerhalb der Querschnittsebene allmählich

gedreht, so ändert sich dasselbe stetig. Um zu dem Gesetze dieser Änderung zu gelangen, beziehen wir die Fläche und die ihrer Richtung nach veränderliche Achse AP auf ein in der Querschnittsebene festliegendes rechtwinkliges Achsenkreuz XY (Fig. 31), setzen die Trägheitsmomente J_x und J_y , sowie das Centrifugalmoment C_{xy} in Bezug auf dasselbe als bekannt voraus und be-

zeichnen den veränderlichen Winkel, den AP mit der X-Achse einschließt, mit α .

Bei den aus der Figur ersichtlichen Bezeichnungen ist dann das Trägheitsmoment in Bezug auf A P

$$J = \int u^2 \cdot dF, \quad \text{und da } u = y \cdot \cos \alpha - x \sin \alpha, \text{ auch}$$

$$J = \int (y \cos \alpha - x \sin \alpha)^2 dF = \cos^2 \alpha \int y^2 dF + \sin^2 \alpha \int x^2 dF$$

$$-2 \sin \alpha \cdot \cos \alpha \int x \cdot y \cdot dF.$$

Nun ist aber $\int y^2 dF = J_x$, $\int x^2 dF = J_y$, $\int x \cdot y dF = C_{xy}$ und $2 \sin \alpha \cos \alpha = \sin 2 \alpha$, daher

1)
$$J = \cos^2 \alpha \cdot J_x + \sin^2 \alpha \cdot J_y - \sin 2 \alpha C_{xy}.$$

Diese Gleichung stellt das Gesetz der Abhängigkeit des Trägheitsmomentes J von dem Richtungswinkel α der Achse AP dar.

Ist in Gleichung 1 aufser J_x und J_y für einen bestimmten $\preceq \alpha$ auch J bekannt, so kann sie auch zur Berechnung von C_{xy} benutzt werden. Für $\alpha = 45^{\circ}$ wird beispielsweise

$$C_{xy} = \frac{J_x + J_y}{2} - J_{45}0.$$

Das in A rechtwinklige Achsenkreuz XY ist in beliebiger Richtung angenommen. Denken wir uns dasselbe in der Richtung der Hauptachsen I und II, für welche $C_{xy} = 0$ ist (vergl. S. 13), bezeichnen die Trägheitsmomente in Bezug auf diese mit J_1 und J_2 und setzen in Gleichung 1 $J_x = J_1$, $J_y = J_2$, $C_{xy} = 0$, so folgt 2) $J = \cos^2 \alpha \cdot J_1 + \sin^2 \alpha \cdot J_2$.

Ersetzt man nun in Gleichung 2 einmal $\cos^2 \alpha$ durch $1 - \sin^2 \alpha$ und ein anderes mal $\sin^2 \alpha$ durch $1 - \cos^2 \alpha$, so entsteht

2a)
$$J = J_1 - (J_1 - J_2) \sin^2 \alpha$$
,

2b)
$$J = J_2 + (J_1 - J_2) \cos^2 \alpha$$
.

Für $\alpha = 0$ wird $J = J_1$ und für $\alpha = 90^\circ J = J_2$. Sind die Bezeichnungen J_1 und J_2 so gewählt, dafs $J_1 > J_2$, so folgt ferner für alle Winkel α zwischen 0 und 90° aus den Gleichungen 2 a und 2 b $J_1 > J > J_2$.

 J_1 stellt daher den Größstwert und J_2 den Kleinstwert aller Trägheitsmomente J dar für Achsen, die durch den Punkt A gehen. Diese auf die Hauptachsen I und II bezogenen Trägheitsmomente J_1 und J_2 nennt man daher Hauptträgheitsmomente.

Ist der Querschnitt in Bezug auf irgend eine durch A gehende Achse symmetrisch, so ist diese nach Seite 13 eine der Hauptachsen und die dazu winkelrechte die andere. In diesem Falle kann man also die Hauptachsen meist leicht erkennen. Liegt eine solche Symmetrie nicht vor, so ermittelt man die Hauptachsen, indem man mit Hilfe der Gleichung 1 diejenigen Werte des Winkels α bestimmt, für welche J seinen Größt- und Kleinstwert annimmt.

Die Differentiation der Gleichung 1 von J nach a ergibt

3)
$$\frac{dJ}{d\alpha} = -\sin 2\alpha (J_x - J_y) - 2\cos 2\alpha C_{xy},$$

4)

$$\frac{d^2 J}{d \alpha^2} = -2 \cos 2 \alpha \Big[J_x - J_y - 2 \operatorname{tg} 2 \alpha C_{xy} \Big].$$

Die Nullsetzung der ersten Abgeleiteten führt zu

5)
$$\operatorname{tg} 2 \alpha = -\frac{2 C_{xy}}{J_x - J_y}$$

1.) 7

und die Einsetzung dieses Wertes in Gleichung 4 zu

4a)
$$\frac{d^2J}{da^2} = -\frac{2\cos 2a}{J_x - J_y} \Big[(J_x - J_y)^2 + 4C_{xy}^2 \Big].$$

Die Bezeichnung der Koordinatenachsen sei so gewählt, dafs $J_x \ge J_y$; dann ist das Vorzeichen der zweiten Abgeleiteten nur von $\cos 2\alpha$ abhängig und zwar mit $-\cos 2\alpha$ übereinstimmend.

Der Gleichung 5 genügen zwei Winkel 2α , welche um 180° , bezw. zwei Winkel α , welche um 90° voneinander abweichen. Für einen derselben erreicht J seinen Größstwert J_1 und für den andern seinen Kleinstwert J_2 . Welchem Winkel der erstere und welchem der letztere Wert entspricht, läßt sich meist ohne weiteres erkennen, nötigenfalls aber auch mit Hilfe der Gleichung 4a feststellen.

Sind danach für einen gegebenen Querschnitt in Bezug auf ein geeignetes rechtwinkliges Achsenkreuz die Werte J_x , J_y und C_{xy} berechnet, so gelangt man zu den Hauptträgheitssmomenten J_1 und J_2 wie folgt:

Nach Gleichung 2 ist für die X-Achse eines unter einem $\measuredangle \alpha$ gegen die Hauptachsen geneigten Koordinatensystemes

$$J_x = \cos^2 \alpha \cdot J_1 + \sin^2 \alpha J_2,$$

und für die Y-Achse, wenn man α mit $\alpha + 90^{0}$ vertauscht $J_{\nu} = \sin^{2} \alpha J_{1} + \cos^{2} \alpha J_{2}.$

Durch Addition und Subtraktion beider Gleichungen erhält man $J + J = J + J_{c}$ (verg) Seite 11)

und
$$J_x - J_y = \cos 2 \alpha (J_1 - J_2)$$
, woraus sich ergib

$$\begin{cases} J_1 = \frac{J_x + J_y}{2} + \frac{J_x - J_y}{2 \cos 2 \alpha} \\ J_2 = \frac{J_x + J_y}{2} - \frac{J_x - J_y}{2 \cos 2 \alpha} \end{cases}$$

t

3

6)

Kock. Elastizitätslehre.

Erster Abschnitt. Flächenmomente 2. Ordnung.

Ist der Winkel α aus Gleichung 5 bereits bestimmt, so lassen sich J_1 und J_2 aus den Gleichungen 6 leicht berechnen. Um J_1 und J_2 direkt aus J_x , J_y und C_{xy} zu erhalten, beachten wir, daß nach den Regeln der Goniometrie und nach Gleichung 5

$$\frac{1}{\cos 2 \alpha} = \sqrt{1 + \tan^2 2 \alpha} = \sqrt{1 + \frac{4 C_{xy}^2}{(J_x - J_y)^2}}$$

und setzen diesen Wert in Gleichung 6 ein. Dann wird

7) $J_{\frac{1}{2}} = \frac{J_x + J_y}{2} \pm \sqrt{\left(\frac{J_x - J_y}{2}\right)^2 + C_{xy}^2}.$

Trägheitsellipse, Centralellipse.

Die hier behandelte in den Gleichungen 1 und 2 analytisch ausgedrückte Abhängigkeit des Trägheitsmomentes eines beliebigen Querschnittes von der Richtung der Achse, auf die es bezogen ist, läfst sich geometrisch wie folgt darstellen:

Wir setzen in Gleichung 2 nach S. 10 $J = i^2 F$, $J_1 = a^2 \cdot F$ und $J_2 = b^2 \cdot F$, worin *i*, *a* und *b* die Trägheitshalbmesser der Querschnittsfläche in Bezug auf die Achsen AP, *I* und *II* (Fig. 32) und *F* den Inhalt der Fläche bezeichnen, und dividieren beiderseits durch *F*; dann erhalten wir für den mit α veränderlichen Trägheitshalbmesser

 $8) \qquad i^2 = a^2 \cos^2 \alpha + b \sin^2 \alpha.$

Tragen wir jetzt den der Achse AP entsprechenden Trägheitshalbmesser i in A senkrecht zu AP auf, sodafs LA = i wird, ziehen durch L die Gerade $MN \parallel AP$ und bezeichnen die Abschnitte NA und MA mit q, bezw. p, so ist $\frac{i}{q} = \cos \alpha$ und $\frac{i}{p} = \sin \alpha$. Diese Werte für $\cos \alpha$ und $\sin \alpha$ in Gleichung 8 eingeführt und beiderseits mit i^2 dividiert, entsteht

9)
$$1 = \frac{a^2}{q^2} + \frac{b^2}{p^2}.$$

III. Abhängigkeit d. Trägheitsmomente v. d. Lage u. Richtung d. Achsen. 35

Dies ist die Gleichung der Ellipse in Linien-Koordinaten, d. h. die obige Beziehung zwischen den mit α veränderlichen Abschnitten p und q und den Festlängen a und b bedingen ein System von Geraden MN, welche sämtlich Tangenten an eine Ellipse mit den Halbachsen a und b sind, diese Ellipse also umhüllen.

Zum Beweise bringen wir in der Gleichung der Ellipse $\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$ die Koordinaten x und y eines beliebigen Ellipsenpunktes K in Beziehung mit den Abschnitten p und q, welche die Tangente in K auf den Koordinatenachsen abschneidet. Aus der Gleichung der Tangente im Punkte K, $\frac{xx_1}{b^2} + \frac{yy_1}{a^2} = 1$ mit x_1 und y_1 als laufende Koordinaten der Tangentenpunkte ergibt sich für $y_1 = 0$, $x_1 = p = \frac{b^2}{x}$ und für $x_1 = 0$, $y_1 = q = \frac{a^2}{y}$, also $x = \frac{b^2}{p}$ und $y = \frac{a^2}{q}$. Mit Einführung dieser Werte für x und y in die Ellipsengleichung nimmt diese die Form der Gleichung 9 an.

Die der Gleichung 9 entsprechende Ellipse nennen wir die Trägheitsellipse und, wenn der beliebig gewählte Nullpunkt Ades Achsenkreuzes XY als Mittelpunkt der Ellipse mit dem Schwerpunkte des Querschnittes zusammenfällt, Zentralellipse. Sobald demnach die Hauptachsen und Hauptträgheitsmomente eines Querschnittes ermittelt sind, ist man ohne weiteres im stande, auch die Trägheits-, bezw. Zentralellipse desselben zu verzeichnen und mit Hülfe derselben für jede Achsrichtung α den zugehörigen Trägheitshalbmesser i (vergl. Fig. 32) und das Trägheitsmoment $J = i^2 \cdot F$ zu bestimmen.

Trägheitsellipse für schiefwinkelige Achsen.

In obigem wurde, wie meist empfehlenswert, von einem rechtwinkligen Achsenkreuz ausgegangen. Zuweilen kann indes die Benutzung eines schiefwinkligen Achsenkreuzes wünschenswert sein. (Fig. 33.) Das Trägheitsmoment in Bezug auf die Achse AP ist

$$J = \int u^2 . dF$$

worin u den senkrechten Abstand des Flächenteilchens dF von der AP bedeutet.

Bei den aus der Figur ersichtlichen Bezeichnungen ist $u = y \cos \gamma - x \sin \alpha$ und daher

$$J = \int (y \cos \gamma - x \sin \alpha)^2 dF =$$

= $\cos^2 \gamma \cdot \int y^2 dF + \sin^2 \alpha \int x^2 dF - 2 \cos \gamma \sin \alpha \int xy dF.$
3*

Erster Abschnitt. Flächenmomente 2. Ordnung.

Mit $\int y^2 dF = J_x$, $\int x^2 dF = J_y$ und $\int xy dF = C_{xy}$ wird 10) $J = \cos^2 \gamma \cdot J_x + \sin^2 \alpha J_y - 2 \cos \gamma \cdot \sin \alpha \cdot C_{xy}$.

Nimmt man die Achsen des Koordinatensystems als einander zugeordnet an (vergl. S.13), so wird $C_{xy} \equiv 0$ und daher 11) $J = \cos^2 \gamma \cdot J_x^* + \sin^2 \alpha J_y$.

Mit $J = i^2 F$, $J_x = a_1^2 F$ und $J_y = b_1^2 F$ entsteht

12)
$$i^2 = \cos^2 \gamma \cdot a_1^2 + \sin^2 \alpha \cdot b_1^2$$
.

Zieht man wieder wie in Fig. 32 S. 34 im Abstande ivon AP die Parallele MN zur AP, so wird bei den Bezeichnungen der Figur

 $\sin \alpha = \frac{i}{p_1}$ und $\cos \gamma = \frac{i}{q_1}$ und damit nach Gleichung 12

13)

 $1 = \frac{a_1^2}{p_1^2} + \frac{b_1^2}{a_1^2}.$

Gleichung 13 ist die Gleichung der Trägheitsellipse in Linienkoordinaten, bezogen auf zugeordnete Achsen derselben, wobei a_1, b_1 ihre zugeordneten Halbachsen sind.

Jedes Achsenkreuz, in Bezug auf welches $C_{xy} = 0$ ist und dessen Achsen wir daher als für den Querschnitt einander zugeordnet bezeichnen (Seite 13), stellt hiernach im Sinne der Lehre von den Kegelschnitten auch ein zugeordnetes (conjugiertes) Achsenpaar der Trägheitsellipse dar und umgekehrt, für jedes zugeordnete Achsenpaar der Trägheitsellipse ist $C_{xy} = 0$.

Trägheitskreis.

Jedem Punkte A der Ebene eines Querschnittes entspricht also eine nach obigem bestimmbare Trägheitsellipse. Denkt man sich den Punkt A in der Querschnittsebene allmählich bewegt, so ändert die Form der Trägheitsellipse sich stetig und es liegt die Frage nahe, ob dieselbe nicht für gewisse Punkte A Kreisform annimmt. Für alle durch solche Punkte A gebende Achsen müßte das Trägheitsmoment ein und denselben, von dem Richtungswinkel α unab-

III. Abhängigkeit d. Trägheitsmomente v. d. Lage u. Richtung d. Achsen. 37

hängigen Wert aufweisen. Um zu untersuchen, ob Punkte A von dieser Eigenschaft vorhanden sind, stellen wir, von der als bekannt anzusehenden Zentralellipse ausgehend, für eine in beliebiger Rich-

tung durch irgend einen Punkt A (Fig. 34) mit den Koordinaten xy gehende Achse uuden Ausdruck für das Trägheitsmoment auf. Das Trägheitsmoment J_s für eine der uu parallele Schwerpunktsachse ss des Querschnittes ist nach Gleichung 2

14) $J_s = \cos^2 \alpha \ J_1 + \sin^2 \alpha \cdot J_2$ und in Bezug auf die Achse u u selbst

$$15) \quad J = J_s + e^2 \cdot F.$$

Für J_s den Wert aus Gl. 14 und $e = y \cos \alpha + x \sin \alpha$ gesetzt, folgt

16) $J = J_1 \cos^2 \alpha + J_2 \sin^2 \alpha + y^2 F \cdot \cos^2 \alpha + x^2 \cdot F \cdot \sin^2 \alpha + 2xyF \cdot \sin \alpha \cos \alpha$. Läfst man noch an Stelle von J_1 und J_2 die Produkte $F \cdot a^2$

und $F \cdot b^2$ treten und ersetzt $\cos^2 \alpha$ durch $\frac{1 + \cos 2\alpha}{2}$, $\sin^2 \alpha$ durch $\frac{1 - \cos 2\alpha}{2}$, so wird

17)
$$J = \frac{F}{2} \Big(a^2 + b^2 + x^2 + y^2 + (a^2 - b^2 + y^2 - x^2) \cos 2\alpha - 2x \cdot y \sin 2\alpha \Big).$$

Aus dieser Gleichung geht hervor, daß für diejenigen Punkte A, für welche

18)
$$a^2 - b^2 + y^2 - x^2 = 0$$
 und
18a) $x \cdot y = 0$,

das Trägheitsmoment

19)
$$J = \frac{F}{2} (a^2 + b^2 + x^2 + y^2),$$

also unabhängig vom Richtungswinkel a ist.

Die Lösung der Gleichungen 18 und 18a ergibt

$$\begin{array}{ll} y_1 = 0 & x_2 = 0 \\ x_1 = \pm \sqrt{a^2 - b^2} & y_2 = \pm \sqrt{b^2 - a^2}. \end{array}$$

Setzen wir wieder $J_1 > J_2$, also $a^2 > b^2$ voraus, so fällt x_1 reell und y_2 dagegen imaginär aus. Es gibt also nur zwei wirkliche Punkte A_1 und A_2 , welche die Bedingung erfüllen, dafs in Bezug auf sie als Mittelpunkt die Trägheitsellipsen Kreise sind. Wir nennen diese die Trägheitskreise des Querschnitts.

Die Punkte A_1 und A_2 liegen, da für sie y = 0, auf der kleinen Achse der Zentralellipse beiderseits in Abständen gleich $SA_1 = SA_2 = \sqrt{a^2 - b^2}$, d. i. gleich der Exzentrizität der Ellipse vom Mittelpunkte derselben. Man nennt sie daher Antibrennpunkte der Zentralellipse.

Fügt man in Gleichung 19 y=0 und $x=\pm \sqrt{a^2-b^2}$ ein, so wird $J=F \cdot a^2$ und der für alle Richtungswinkel α in A_1 und A_2 gleiche Trägheitshalbmesser

$$i = \sqrt{\frac{J}{F}} = a$$
.

Letzterer, gleich der großen Halbachse der Zentralellipse, ist der Radius der Trägheitskreise.

Ist in einem Sonderfalle die Exzentrizität der Zentralellipse gleich Null, so fallen beide Antibrennpunkte in den Schwerpunkt des Querschnittes und beide Trägheitskreise decken sich mit der nun gleichfalls kreisförmigen Zentralellipse.

Mit Hilfe der Antibrennpunkte der Zentralellipse läßt sich in bequemster Weise für jede nach Richtung und Lage beliebige Achse eines Querschnittes das Trägheitsmoment bestimmen. Es handele sich um eine Achse vv, deren senkrechte Abstände von den Antibrennpunkten v_1 und v_2 seien (Fig. 35). Ist u der Abstand der zur vv parallelen Antibrennpunktsachse uu vom Schwerpunkte Sdes Querschnitts und $J_1 = F \cdot a^2$ das auch für die Achse uu gültige größte Hauptträgheitsmoment des Querschnittes, also a die großse Halbachse der Zentralellipse, so ist das Trägheitsmoment für vvnach S. 11 Gl. 2: $J_v = J_1 + F(v^2 - u^2)$, oder auch, da $v = \frac{v_1 + v_2}{2}$ $u = \frac{v_2 - v_1}{2}$

$$J_{\nu} = J_1 + F \cdot v_1 \cdot v_2$$

d. i., wenn man J_v mit $F \cdot i_v^2$ und J_1 mit $F \cdot a^2$ vertauscht und beiderseits durch F teilt, $i_v = \sqrt{a^2 + v_1 v_2}$.

III. Abhängigkeit d. Trägheitsmomente v. d. Lage u. Richtung d. Achsen. 39

Liegt die Achse v-v zwischen den Antibrennpunkten, so sind die Abstände v_1 und v_2 mit entgegengesetzten Vorzeichen, das Produkt $v_1 \cdot v_2$ also negativ einzuführen.

Der Trägheitshalbmesser i_v läßt sich auch wie folgt leicht konstruieren: Man beschreibt (Fig. 35) um einen der Antibrennpunkte, z. B. A_2 mit *a* als Radius, den Trägheitskreis, zieht durch den Schwerpunkt *S* des Querschnittes eine Parallele zur gegebenen Achse v-v, welche den Kreis in *B* schneidet und durch

 A_2 , $A_2C \perp v - v$, dann ist die Linie *BC* gleich dem gesuchten Trägheitshalbmesser i_v und damit $J_v = i_v^2 \cdot F$ gefunden.

Zum Beweise haben wir nach der Fig. 35

$$BC = \sqrt{DC^{2} + BD^{2}} = \sqrt{DC^{2} + A_{2}B^{2} - A_{2}D^{2}}.$$

Nun ist $DC = SE = \frac{v_1 + v_2}{2}$, $A_2B = a$ und $A_2D = \frac{v_2 - v_1}{2}$,

daher auch

$$BC = \sqrt{\left(\frac{v_1 + v_2}{2}\right)^2 + a^2 - \left(\frac{v_2 - v_1}{2}\right)^2} = \sqrt{a^2 + v_1 \cdot v_2} = i_v.$$

Damit ist eine ganz allgemeine Abhängigkeit des Trägheitsmomentes einer ebenen Fläche von der Richtung und Lage der Achse gewonnen, auf die es bezogen ist.

c) Allgemeine geometrische Beziehungen zwischen den Flächenmomenten zweiter Ordnung für Achsen, welche durch einen Punkt gehen.

Der Querschnitt werde auf ein beliebiges schiefwinkliges Achsenkreuz XY (Fig. 36) bezogen; die Koordinaten irgend eines Flächenteilchens dF aber rechtwinklig zu den Achsen gemessen. Dann liefert das Flächenelement einen Beitrag zum Centrifugalmoment $dC_{xy} = x \cdot y \cdot dF$, oder, bei den aus der Figur ersichtlichen Bezeichnungen $x = \rho \sin \alpha$, $y = \rho \cdot \sin \beta$ gesetzt $dC_{xy} = \sin \alpha \cdot \sin \beta \cdot \rho^2 \cdot dF$.

Beschreiben wir jetzt von irgend einem Punkte M der Quer-

schnittsebene aus einen Kreis durch A, dessen Radius r sei und der die Achsen X und Y in B und C und den Fahrstrahl ϱ in D schneidet, so ist, wie leicht ersichtlich, $CD = 2r \cdot \sin \beta$ und, wenn man $DE \perp BC$ zieht, DE = h = $CD \cdot \sin \alpha = 2r \cdot \sin \alpha \cdot \sin \beta$, also $\sin \alpha \cdot \sin \beta = \frac{h}{2r}$ und

$$dC_{xy} = \frac{h \cdot \varrho^2 \cdot dF}{2r}.$$

Sieht man jetzt $\frac{\varrho^2 dF}{2r}$ als

eine in Punkten D auf dem Kreisumfange angreifende, für alle Flächenteilchen dF gleichgerichtete Kraft und h als ihren mit der Lage von dF veränderlichen Hebelsarm an, so erscheint dC_{xy} als statisches Moment in Bezug auf die Sehne BC. Die Mittelkraft aller jener Kräfte ist dann

$$\int \frac{\varrho^2 \, dF}{2 \, r} = \frac{J_p}{2 \, r} \, .$$

wenn J_p das polare Trägheitsmoment des Querschnittes für den Punkt A bezeichnet. Hat ihr Angriffspunkt T einen Abstand h_{xy} von der Sehne BC als Momentenachse, so muß sein nach dem Satze von den statischen Momenten

1) $C_{xy} = \int \frac{h \cdot \varrho^2 dF}{2r} = h_{xy} \cdot \frac{J_p}{2r}.$

Die Kräfte $\frac{\varrho^2 dF}{2r}$, bezw. deren Mittelkraft $\frac{J_p}{2r}$ sind unabhängig von den Achsenrichtungen. Erstere haben wir uns auf dem Kreisumfange in irgend einer Weise verteilt zu denken und der Angriffspunkt T der letzteren hat daher eine ganz bestimmte Lage innerhalb des Kreises.

III. Abhängigkeit d. Trägheitsmomente v. d. Lage u. Richtung d. Achsen. 41

Drehen wir die Achsen um A, so wird an diesen Verhältnissen nichts geändert. Lassen wir sie in die Richtung der X-Achse zusammenfallen, so wird x = y und xydF geht in y^2dF , das Centrifugalmoment C_{xy} in das Trägheitsmoment J_x über. Ebenso tritt, wenn wir beide Achsen in der Richtung der Y-Achse zusamendrehen, an Stelle von C_{xy} das Trägheitsmoment J_y . Die Sehne BC wird in einem Falle zur Tangente in B, im andern zu einer solchen in C. Bezeichnen wir die Abstände des Punktes T von diesen Tangenten mit h_x und h_y , so wird

2) $J_x = h_x \cdot \frac{J_p}{2r} \quad \text{und}$ 3) $J_y = h_y \cdot \frac{J_p}{2r}.$

Sind nun beispielsweise zwei von den Werten J_x , J_y und C_{xy} etwa die ersteren beiden für irgend ein bestimmtes Achsenpaar und aufserdem J_p bekannt, so könnte man aus den Gleichungen 2 und 3 leicht die Abstände h_x und h_y des Punktes T von den Tangenten in B und C berechnen und dadurch die Lage von T bestimmen. Der Punkt T läfst sich aber auch, was meist zweckmässiger ist, aus den Werten von J_x . J_y und C_{xy} direkt bestimmen. Alle drei sind verhältnisgleich den Abständen h_x , h_y und h_{xy} Man braucht also T nur so zu bestimmen, dafs diese Bedingung erfüllt ist.

Ist der Punkt T bekannt geworden, so lassen sich für irgend ein durch A gehendes Achsenkreuz die Werte J_x , J_y und C_{xy} leicht bestimmen. Ist dasselbe so gelegen, dafs die Sehne BC durch T geht, so wird h_{xy} und damit auch C_{xy} gleich Null, die Achsen sind einander zugeordnet. Denkt man sich durch T (Fig. 37) eine Zahl von Geraden gelegt, so bilden die durch die Schnitt-

Fig. 37.

punkte B_1 und C_1 , B_2 und C_2 u. s. w. der einzelnen Geraden mit dem Kreise gehenden Achsen $X_1 Y_1$, $X_2 Y_2$ u. s. w. zugeordnete Achsenpaare und in ihrer Gesamtheit einen involutorischen Strahlenbüschel, dessen Involutionsmittelpunkt T ist. Für die durch den Mittelpunkt M gehende Gerade B_nC_n sind die zugehörigen Achsen AB_n und AC_n Hauptachsen des Querschnittes.

Geht man, wie meist üblich, von rechtwinkligen Achsenkreuzen aus, so wird $J_p = J_x + J_y$ (vergl. S. 11).

Wird ferner der in obigem beliebig angenommene Kreisdurchmesser so gewählt, dafs $2r = J_p = J_x + J_y$ ist, so erscheint, wenn man den Mittelpunkt M des Kreises in beliebiger Lage annimmt, die Sehne BC als Durchmesser des Kreises und Tbestimmt sich nach Fig. 38,

da $J_x = h_x \cdot \frac{J_p}{2r} = h_x$, $J_y = h_y$ und $C_{xy} = h_{xy}$ wird.

Wählt man den Mittelpunkt M auf einer der Achsen, z. B. auf der X-Achse, so fällt die Sehne BC mit dieser zusammen, und

die Y-Achse wird Tangente des Kreises. T bestimmt sich nach Fig. 39. Das Centrifugalmoment C_{xy} ist in beiden Fällen, je nachdem es positiv oder negativ ist, in der Richtung nach T oder T_1 aufzutragen.

Zieht man in jeder der Fig. 38 und 39 von T aus den Mittelpunktsstrahl B_1C_1 , so erhält man in den Richtungen AB_1 und AC_1 die Haupt-

achsen und in den Strecken B_1T und TC_1 die Hauptträgheitsmomente.

IV. Anwendungen.

d) Beziehung zwischen zwei zugeordneten Richtungen.

Für irgend ein rechtwinkliges Achsenkreuz mit dem Nullpunkt A seien die Querschnittsmomente J_x , J_y und C_{xy} bekannt

U und V seien zwei unter den Winkeln α_1 und α_2 gegen

 $C_{uv} = \int (y \cdot \cos \alpha_1 - x \sin \alpha_1) (x \sin \alpha_2 - y \cos \alpha_2) dF$ = $-\cos \alpha_1 \cdot \cos \alpha_2 \cdot \int y^2 dF - \sin \alpha_1 \cdot \sin \alpha_2 \int x^2 dF + (\cos \alpha_1 \sin \alpha_2 + \sin \alpha_1 \cdot \cos \alpha_2) \int xy dF.$

Sollen die Achsen U und V einander zugeordnet sein, so mufs sein $C_{uv} = 0$, woraus folgt

2)
$$J_x + \operatorname{tg} \alpha_1 \cdot \operatorname{tg} \alpha_2 \cdot J_y = (\operatorname{tg} \alpha_1 + \operatorname{tg} \alpha_2) C_{xy}.$$

Ist einer der Winkel z. B. α_1 gegeben, so ergibt sich aus Gleichung 2 für den andern

3)
$$\operatorname{tg} \alpha_2 = \frac{J_x - \operatorname{tg} \alpha_1 \cdot C_{xy}}{C_{xy} - \operatorname{tg} \alpha_1 \cdot J_y}$$

Für $\alpha_1 = 0$

$$\operatorname{tg} \alpha_2 = \frac{J_x}{C_{xy}}.$$

4)

IV. Anwendungen.

Beispiel 1: Fig. 41 stellt den Querschnitt eines Winkeleisens von beiderseits 8 cm Schenkellänge und 1 cm Stärke dar, welches durch ein Nietloch von 2 cm Durchmesser im wagerechten Schenkel unsymmetrisch geworden ist.

Es ist $F_1 = 5$, $F_2 = 8$, F = 13 qcm, x = 4, y = 3,5 cm (während $x_1 = 2,46$, $x_2 = 1,54$, $y_1 = 2,15$, $y_2 = 1,35$ cm sind); $C_{x_1y_1} = C_{x_2y_2} = 0$;

$$J_{x} = \frac{1}{12} 5 \cdot \frac{1^{3}}{1^{3}} + \frac{1}{12} 1 \cdot \frac{8^{3}}{13} + \frac{5 \cdot 8}{13} 3_{5} + \frac{80}{13} 3_{5} + \frac{5}{13} + \frac{$$

Beispiel 2: Für ein Rechteck der Seiten d und h (Fig. 42) sind die beiden Mittellinien offenbar Schwerpunkts-Hauptachsen (weil $\int dFxy = 0$). Es ist Fig. 42.

$$J_1 = \frac{dh^3}{12} = \frac{Fh^2}{12}$$
, also $a = \frac{h}{\sqrt{12}} = 0,2887 h$;

ebenso b = 0,3887 d.

sprechend.

Um a durch Zeichnung zu erhalten, zerlegt man $a^2 = \frac{1}{12} h^2$ (wie in allen ähnlichen Fällen) in zwei bequeme Faktoren, z. B $\frac{h}{2} \cdot \frac{h}{6}$ und findet die mittlere Proportionale aus diesen mit Hülfe eines Kreises über dem Durchmesser $\frac{h}{2}$. Zur Ermittelung von b verfährt man ent-

Beispiel 3: Für den T-Querschnitt der Figur 43 sind die beiden Mittellinien ebenfalls Hauptachsen. Es ist

 $J_1 = \frac{1}{12} \cdot \frac{12}{30^3} - \frac{1}{12} \cdot \frac{10}{8} \cdot \frac{26^3}{26^3} = 11\,182;$ $J_2 = \frac{1}{12} \cdot \frac{26}{26} \cdot \frac{1}{12^3} + \frac{1}{12} \cdot \frac{4}{4} \cdot \frac{12^3}{26} = 580;$ $F = 79,2; \text{ daher } a^2 = 141 \text{ und } b^2 = 7,31;$ mithin a = 11,9; b = 2,7.

Beispiel 4: Das unregelmäßige - Profil (Fig. 22) habe folgende Abmessungen:

 $h_1 = 2 \operatorname{cm}, h_2 = 7 \operatorname{cm}, h_3 = 1 \operatorname{cm}, b_1 = 4 \operatorname{cm}, b_2 = 0, {}^8 \operatorname{cm}, b_3 = 3 \operatorname{cm}.$

Seine Flächenmomente J_x , J_y und C_{xy} in Bezug auf das zu den Seiten rechtwinklige Achsenkreuz und sodann die Hauptachsen und Hauptträgheitsmomente sollen bestimmt werden.

a) Durch Rechnung: Für die Lage des Schwerpunktes S in Bezug auf den Teilschwerpunkt S_2 ist zunächst

$$x_{2} = \frac{2 \cdot 4 \cdot \frac{(4-0,8)}{2} - \frac{3 \cdot 1 (3-0,8)}{2}}{2 \cdot 4 + 0,8 \cdot 7 + 3 \cdot 1} = 0,57 \text{ cm}$$

$$y_{2} = \frac{2 \cdot 4 \cdot \frac{(7+2)}{2} - 3 \cdot 1 \frac{(7+1)}{2}}{2 \cdot 4 + 0,8 \cdot 7 + 3 \cdot 1} = 1,45 \text{ cm}$$

IV. Anwendungen.

und danach
$$x_1 = 0,57 - \frac{4-0,8}{2} = -1,55$$
 $x_3 = \frac{3-0,6}{2} + 0,57 = 1,67$;
 $y_1 = 1,45 - \frac{2+7}{2} = -3,55$ $y_3 = \frac{7+1}{2} + 1,45 = 5,45$;
 $J_x = \frac{4 \cdot 2^9 + 0,8 \cdot 7^3 + 3 \cdot 1^3}{12} + 2 \cdot 4 \cdot 3,55^2 + 0,8 \cdot 7 \cdot 1,45^2 + 3 \cdot 1 \cdot 5,45^2 = 201 \text{ cm}^4$;
 $J_y = \frac{2 \cdot 4^3 + 7 \cdot 0,8^3 + 1 \cdot 3^3}{12} + 2 \cdot 4 \cdot 1,567 + 0,8 \cdot 7 \cdot 0,57^2 + 3 \cdot 1 \cdot 1,67^2 = 31,9 \text{ cm}^4$;
 $C_{xy} = 4 \cdot 2 \cdot (-1,58) (-3,55) + 0,8 \cdot 7 \cdot 0,57 \cdot 1,45 + 3 \cdot 1 \cdot 1,67 \cdot 5,45 = 57,1 \text{ cm}^4$.
die Querschnittstläche
 $F = 2 \cdot 4 + 0,8 \cdot 7 + 1 \cdot 3 = 16,6 \text{ cm}^2$
 $\text{tg } 2 \alpha = -\frac{2 \cdot 57,1}{201 - 31,9} = -0,67$, $2 \alpha_1 = -33 \cdot 50'$; $\alpha_1 = -16 \cdot 55'$;
 $2 \alpha_2 = 146 \cdot 10'$ $\alpha_2 = 73 \cdot 5'$;
 $\cos 2 \alpha = 0,83$ $J_1 = \frac{201 + 31,9}{2} + \frac{201 - 31,9}{2 \cdot 0,85} = \frac{218,3 \text{ cm}^4}{14,5 \text{ cm}^4}$.

Die Halbachsen der Zentralellipse $a = \sqrt{\frac{218}{16,6}} = 3_{,62} \text{ cm};$ $b = \sqrt{\frac{14}{16,6}} = 0_{,93} \text{ cm}.$

b) Durch Zeichnung: Die Aufzeichnung nach Maßsgabe der Fig. 28 ergibt

$$\begin{split} F_x = & \Delta D D_1 E = \frac{4,25 \cdot 5,75}{2} = 12,2 \text{ cm}^2, \ F_y = \Delta D' D_1' E' = \frac{0,9 \cdot 4,3}{2} = 1,93 \text{ cm}^2.\\ \text{Nimmt man die Polweite } a_1 = 2,5 \text{ cm an, so wird } u_r = 2,7 \text{ cm und}\\ F_{xy} = \frac{2,5 \cdot 2,75}{2} = 3,44 \text{ cm}^2. \ \text{Danit wird } J_x = F \cdot F_x = 16,6 \cdot 12,2 = 202 \text{ cm}^4,\\ J_y = F \cdot F_y = 16,6 \cdot 1,93 = 32 \text{ cm}^4 \text{ und } C_{xy} = F \cdot F_{xy} = 16,6 \cdot 3,44 = 57,1 \text{ cm}^4;\\ \text{d. i. hinreichende Übereinstimmung mit dem Rechnungsergebnis.} \end{split}$$

Beispiel 5: Der regelmäßsige _____ förmige Querschnitt (Fig. 29) sei 10 cm hoch, im mittleren Rechteck (Steg) 0,8 cm breit und in den untereinander gleichen seitlichen Rechtecken (Flanschen) 5 cm lang und 1 cm breit. Die Rechnung ergibt für die Flächenmomente

$$\begin{split} J_x &= \frac{0,8 \cdot 8^3 + 2_{12} \cdot 5 \cdot 1^3}{12} + 2 \cdot 5 \cdot 4, 8^2 = 238 \text{ cm}^4;\\ J_y &= \frac{8 \cdot 0, 8^3 + 2 \cdot 1 \cdot 5^3}{12} + 2 \cdot 5 \cdot 2, 1^2 = 65 \text{ cm}^4;\\ C_{xy} &= 2 \cdot 5 \cdot 2, 1 \cdot 4, 8 = 95 \text{ cm}^4 \text{ und die Fläche } F = 2 \cdot 5 + 0, 8 \cdot 8 = 16, 4 \text{ cm}^2;\\ \text{tg } 2 \alpha &= -\frac{2 \cdot 95}{238 - 65} = -1, 094 \quad 2 \alpha_1 = -47^\circ 34', \ 2 \alpha_2 = 132^\circ 26',\\ \alpha_1 &= -23^\circ 47', \quad \alpha_2 = 66^\circ 13';\\ J_1 &= \frac{238 + 65}{2} \pm \sqrt{\left(\frac{238 - 65}{2}\right)^2 + 95^2} = \frac{281 \text{ cm}^4}{22, 5 \text{ cm}^4;}\\ &= \frac{\sqrt{281}}{\sqrt{281}} & \sqrt{\sqrt{292}}. \end{split}$$

Die halben Achsen der Zentralellipse $a = \sqrt{\frac{281}{16,4}} = 4,14 \text{ cm } b = \sqrt{\frac{22,5}{16,4}} = 1,17 \text{ cm}.$

Die Aufzeichnung nach Maßgabe der Fig. 29 ergibt $F_x = 2 \cdot \varDelta A \mathfrak{B} D = [] \mathfrak{B} D F E = h \cdot \mathfrak{B} D = 3_{3^3} \cdot 4_{4^4} = 14_{5^2} \operatorname{cm};$ $F_y = 2 \cdot \varDelta B_1 C_1 D_1 = [] B_1 D_1 F_1 G_1 = h_1 \cdot D_1 F_1 = 1_{2^5} \cdot 3_{2^2} = 4_{5^0} \operatorname{cm}^2;$ $F_{xy} = [] D B H J = x_1 \cdot D B = 2_{5^1} \cdot 2_{7^{75}} = 5_{7^{78}} \operatorname{cm}^2.$

Danach ist $J_x = F \cdot F_x = 16, 4 \cdot 14, 52 = 238 \text{ cm}^4$,

$$J_y = F \cdot F_y = 16, 4 \cdot 4 = 65, 6 \text{ cm}^4,$$

$$C_{xy} = F \cdot F_{xy} = 16.4 \cdot 5.78 = 95 \text{ cm}^4$$

in hinreichender Übereinstimmung mit der Rechnung.

Die Ermittelung der Hauptachsen und Hauptträgheitsmomento soll nach Anleitung der Fig. 39 durch Zeichnung geschehen. Dabei wollen wir die Werte J_x , J_y und C_{xy} durch die ihnen verhältnisgleichen Flächen F_x , F_y und F_{xy} ausdrücken und letztere für ihre zeichnerische Benutzung auf dieselbe Grundlinie d zurückführen, wofür hier 4 cm angenommen werden mögen.

Diese Flächenumwandlung ist in Fig. 29 geometrisch ausgeführt und nach den aus der Figur ersichtlichen Bezeichnungen $F_x = h \cdot \mathfrak{B}D = d \cdot \mathfrak{B}'D$ $F_y = h_1 \cdot F_1 D_1 = d \cdot B_1' D_1$ und $F_{xy} = x_1 \cdot DB = d \cdot DB'$. Damit wird $J_x = F \cdot F_x = F \cdot d \cdot \mathfrak{B}'D$, $J_y = F \cdot F_y = F \cdot d \cdot B_1 \cdot D_1$, $C_{xy} = F \cdot F_{xy} =$ $F \cdot d \cdot DB'$. Wählt man den Maßstab für die Auftragung von J_x , J_y und C_{xy} so, daßs $F \cdot d = 1$ wird, so erscheint J_x durch $\mathfrak{B}'D$, J_y durch $B_1'D_1$ und C_{xy} durch DB' ausgedrückt. In Fig. 29 sind die Strecken entsprechend bezeichnet.

Fig. 44.

In Fig. 44 sind J_x und J_y auf der X-Achse zusammengetragen und im Punkte E das Centrifugalmoment C_{xy} , weil > 0 als Lot in der Richtung der

IV. Anwendungen.

positiven Y-Achse errichtet, wodurch der Punkt T gewonnen ist. Die durch T und M gelegte Gerade ergibt mit dem um M beschriebenen Kreise vom Durchmesser $J_x + J_y$ die Schnittpunkte B und C. In den Richtungen SB und SC liegen die Hauptachsen I und II und die Haupträgheitsmomente J_1 und J_2 werden in den Strecken TB und TC gewonnen. Numerisch ist $J_1 = TB \cdot F \cdot d = TB \cdot F \cdot 4 = a^3 F$ und $J_2 = TC \cdot F \cdot d = TC \cdot F \cdot 4 = b^3 F$, worin a und b die halben Achsen der Zentralellipse bezeichnen. Aus beiden Gleichungen folgt $a^2 = TB \cdot d = TB \cdot 4$ und $b^4 = TC \cdot d = TC \cdot 4$. Die Halbachsen a und b erscheinen als mittlere geometrische Proportionalen zwischen d und TB, bezw. d und TC und können, wie in Fig. 45 geschehen, leicht zeichnerisch ermittelt werden.

Beispiel 6: Für ein Dreieck (Fig. 45) von der Grundlinie d, der Höhe h, der Mittellinie $l = h: \sin \beta$ sind SX und SY konjugierte Achsen. Vergl. S. 21. Es ist $J_x = \frac{1}{18} F l^2 = F a_1^2$, mithin Fig. 45.

$$a_1^2 = \frac{1}{18} \frac{h^2}{\sin^2\beta} = \frac{l^2}{18} = \frac{l}{3} \cdot \frac{l}{6},$$

woraus $a_1 = \frac{t}{\sqrt{18}} = 0,707 \cdot \frac{t}{3}$ leicht zu konstruieren ist.

Hiermit kennt man 2 Tangenten an die Ellipse nebst
ihren Berührungspunkten
$$E$$
 und F . In Bezug auf SY
ist $J_y = F \frac{d^2}{24} = b_1^2 F$, daher $b_1^2 = \frac{1}{24} d^2$ und $b_1^2 = 0,204 d$,

womit wiederum 2 Tangenten mit den Berührungspunkten

G und H gefunden sind. Da man nun jede Seite des Dreiecks als Grundlinie behandeln kann, lassen sich in dieser Weise im Ganzen 12 Tangenten mit ihren Berührungspunkten bestimmen.

Beispiel 7: Für ein Parallelogramm sollen in Bezug auf den Schwerpunkt S die Hauptachsen und Hauptträgheitsmomente ermittelt werden (Fig. 46).

Wir erkennen zunächst, dafs die zu den Seiten des Parallelogramms (Fig. 46), parallelen Schwerpunktsachsen X und Y, sowie die beiden Diagonalen je einander zugeordnete Achsenpaare sind. Beschreiben wir daher um irgend einen Punkt M, etwa auf einer der Diagonalen liegend, einen Kreis durch den Schwerpunkt S, so erhalten wir im Schnitt der Geraden BC und B_1C_1 den Punkt T (Involutionsmittelpunkt vergl. S. 41). Indem wir ferner durch M und T den Durchmesser $B_{\mu}C_{\mu}$ legen, ergeben sich in den Richtungen SC_{μ} und SB_{μ} , die Hauptachsen I und II. Die Trägheitsmomente J_1, J_2, J_{Y_T} u. s. w. sind nach Seite 41 verhältnisgleich den Abständen TC_{μ}, TB_{μ}, TD u. s. w. Es besteht daher die Gleichung

$$\frac{J_1}{TC_{\prime\prime}} = \frac{J_2}{TB_{\prime\prime}} = \frac{J_{y_r}}{TD} = \dots$$

Daraus ergeben sich die Hauptträgheitsmomente zu

$$J_1 = J_{y_r} \cdot \frac{TC_n}{TD}, \ J_2 = J_{y_r} \cdot \frac{TB_n}{TD},$$

X

worin das Trägheitsmoment J_{y_r} für die Y-Achse bei rechtwinklig gemessenen Abszissen x (vergl. Seite 14 Fig. 16) wie für das Rechteck (Seite 15)

$$J_{y_r} = \frac{d_2 \cdot h^3}{12} = \frac{F \cdot h^2}{12}$$

zu setzen ist. Die Halbachsen a und b der Zentralellipse werden damit

$$a = \sqrt{\frac{J_1}{F}} = h \cdot \sqrt{\frac{TC_n}{12 \cdot TD}} \text{ und } b = \sqrt{\frac{J_2}{F}} = h \cdot \sqrt{\frac{TB_n}{12 \cdot TD}}.$$

Sie lassen sich leicht durch Zeichnung gewinnen.

Macht man TE = h, zieht $EF \parallel DC_{,i}$ und $EH \parallel DB_{,i}$, verlängert HFüber F und H hinaus je um $FG = HJ = \frac{h}{12}$ und beschreibt über TG und TJ je einen Halbkreis, so erhält man in den Loten in F und H gegen HFdie Halbachsen a und b. Es ist nämlich

$$a^{2} = GF \cdot FT = \frac{GF \cdot C_{1}T \cdot ET}{DT} = \frac{h^{2}}{12} \cdot \frac{C_{n}T}{DT} \quad \text{und}$$
$$b^{3} = HJ \cdot HT = \frac{HJ \cdot B_{1}T \cdot ET}{DT} = \frac{h^{2}}{12} \cdot \frac{B_{n}T}{DT}.$$

In ähnlicher Weise lassen sich für Querschnittsformen die Hauptachsen und Hauptträgheitsmomente etc. leicht ermitteln, wenn zwei zugeordnete Achsenpaare von vornherein erkennbar und die Trägheitsmomente für eines derselben bequem bestimmbar sind.

Zweiter Abschnitt.

Elastizität und Festigkeit gerader Stäbe, Spannungen und Formänderungen.

I. Zug- und Druckspannungen, Dehnungen.

a) Spannungen in der Richtung der Stabachse, Längsdehnungen.

Ein gerader prismatischer Stab werde in der Richtung seiner Achse von Zugkräften K ergriffen (Fig. 47), welche unter sich und mit den durch sie im Stabe hervorgerufenen Spannkräften im Gleichgewicht stehen. F sei der Querschnitt, l die Länge des Stabes, beide in ungespanntem

Zustande gemessen. Dann kann erfahrungsgemäß angenommen werden, daß die Spannungen σ

in allen Punkten eines beliebigen Stabquerschnittes — abgesehen von der unmittelbaren Nähe des Kraftangriffs — gleich groß und in ihrer Gesamtheit für den ganzen Querschnitt also gleich $\sigma \cdot F$ sind. Das Gleichgewicht der äußeren und inneren Kräfte verlangt danr., daß

1)
$$K = \sigma \cdot F \text{ oder } \sigma = \frac{K}{F}$$

sei, worin σ , d. h. die auf die Flächeneinheit entfallende Zugspannkraft, als Zugspannung bezeichnet wird. Gleichzeitig mit der Zugspannung erfährt der Stab eine gewisse Verlängerung Δl , welche, solange die Spannung σ eine gewisse Grenze nicht überschreitet, derselben verhältnisgleich ist. Da sie naturgemäß auch verhältnisgleich ist der Stablänge, so folgt sie der Gleichung $\Delta l = \alpha \cdot l \cdot \sigma$ oder $\frac{\Delta l}{l} = \alpha \cdot \sigma$, worin α eine vom Stoff abhängige

Keck. Elastizitätslehre.

50 Zweiter Abschnitt. Elastizität und Festigkeit gerader Stäbe.

Erfahrungsgröße als Dehnungszahl bezeichnet wird. Die auf die Längeneinheit entfallende Verlängerung $\varepsilon = \frac{\Delta l}{l} = \alpha \cdot \sigma$ wird die Längsdehnung des Stabes, oder kurz die Dehnung, genannt. — Statt der von Bach eingeführten Dehnungszahl α wurde bisher und wird noch jetzt in der Elastizitätslehre fast allgemein die sogenannte Elastizitätszahl E benutzt. Beide stehen im reziproken Verhältnis zueinander. Damit schreibt sich die allgemeine Dehnungsgleichung

2)
$$\varepsilon = \frac{\Delta l}{l} = \frac{\sigma}{E} = \alpha \cdot \sigma$$

und unter Beachtung der Gleichung 1

3)

Die in Gleichung 2 ausgedrückte Proportionalität zwischen Dehnung und Spannung wurde von dem englischen Physiker Rob. Hooke (geb. 1635, gest. 1703) 1679 in die Mechanik eingeführt und heifst nach ihm das Hooke'sche Gesetz. Dieses hat indes nur Geltung bis zu einem gewissen, vom Stoffe abhängigen Grenzwerte der Spannung σ , den man die Proportionalitätsgrenze nennt. –

 $\varepsilon = \frac{K}{F \cdot F}.$

In Gleichung 2 stellt die Dehnungszahl α diejenige wirkliche Dehnung ε dar, welche der Spannung $\sigma = 1$ entspricht. Für $\sigma = 1$ wird in Gl. 2 $\varepsilon = \alpha$, während man sich unter der Elastizitätszahl diejenige ideelle Spannung $\sigma = E$ vorzustellen hat, welche eine Dehnung eins hervorzurufen, d. h. den Stab um seine ganze Länge $\Delta l = l$ auszudehnen im Stande wäre. In Gleichung 2 wird für $\varepsilon = \frac{\Delta l}{l} = 1$, $\sigma = E$. Da indes eine so großse

Spannung σ einerseits aufserhalb des Geltungsbereiches des Hookeschen Gesetzes liegen würde, andererseits auch von keinem Stoff (abgesehen von Gummi) würde ausgehalten werden können, so stellt E keinen wirklich möglichen, sondern, wie erwähnt, nur einen ideellen Spannungswert dar. Wenngleich danach die Benutzung der Dehnungszahl α natürlicher erscheinen würde als diejenige der Elastizitätszahl E, so wollen wir im folgenden doch ausschließlich die letztere anwenden, weil sie z. Z. sowohl in der betreffenden Literatur, als auch in der Anwendung noch weitaus vorwiegend verbreitet ist und ein praktischer oder wissenschaftlicher Vorzug in der Verwendung der einen oder anderen beider Zahlen nicht zu erblicken ist, beide auch jederzeit leicht durch einander ersetzt werden können.

Je nachdem die Spannung σ unterhalb eines gewissen Grenzwertes z verbleibt oder denselben überschreitet, nimmt der Stab nach Beseitigung der Spannungen bezw. der sie hervorrufenden äufseren Kräfte genau seine ursprüngliche Länge wieder an, oder er behält eine mehr oder weniger erhebliche, sogen. bleibende Verlängerung bei. Hierin äufsert sich das eigentliche Wesen der Elastizität, und jenen Grenzwert z nennt man die Elastizitätsgrenze des Stoffes. Diese Grenze ist dem Wesen des Dehnungsvorganges nach zwar grundsätzlich verschieden von der Proportionalitätsgrenze (Seite 50), beide fallen indes für die meisten technisch wichtigen Stoffe hinreichend genau zusammen, um bei den hier zu behandelnden Theorien von ihrer zahlenmäßigen Unterscheidung absehen zu können. Wächst die Spannung σ über die Proportionalitätsgrenze, bezw. Elastizitätsgrenze hinaus weiter, so nimmt die Dehnung schneller zu als die Spannung, der Stab nimmt nach Beseitigung der Spannungen nicht genau seine ursprüngliche Länge wieder an, er verhält sich für Spannungen $\sigma > z$ unvollkommen elastisch, und, wenn letztere eine gewisse Höhe erreicht haben, tritt ein Zerreifsen des Stabes ein. Der Höchstwert der Spannung, bei welchem dies erfolgt, heifst die Zugfestigkeit des Stoffes und soll mit Z bezeichnet werden.

Kehren die Zugkräfte K ihren Richtungssinn um (Fig. 48), so werden sie zu Druckkräften und rufen in den Stabquerschnitten Druckspannungen hervor, die, wenn die Länge des Stabes im Verhältnis zu

seinen Querschnittsabmessungen ein gewisses Maß nicht überschreitet, sich gleichmäßig über den Querschnitt verteilen und eine gewisse

Verkürzung des Stabes im Gefolge haben. (Bei größeren Längen entsteht gleichzeitig eine seitliche Ausbiegung desselben, womit die gleichmäßige Spannungsverteilung

Bei einer im vorbezeichneten blänge ist also auch die Druckspannung in allen Punkten eines beliebigen Querschnittes die gleiche und wie in Gleichung 1, indem wir K mit -K vertauschen,

 $\sigma = \frac{-K}{F}.$

Fig. 48.

+ OF

4*

1a)

52 Zweiter Abschnitt. Elastizität und Festigkeit gerader Stäbe.

Ebenso gilt innerhalb gewisser Grenzen das in Gleichung 2 ausgedrückte Dehnungsgesetz auch für die Verkürzung des Stabes. Es ist hier wie dort

2a)
$$\varepsilon = \frac{\Delta l}{l} = \frac{\sigma}{E} = \sigma \cdot \alpha$$

und unter Beachtung der Gleichung 1a

 $\varepsilon = \frac{-K}{F \cdot E}.$

Die in den Gleichungen 1 und 1a durch positive und negative Vorzeichen geschehene Kennzeichnung der Kräfte K als Zug- und Druckkräfte, bezw. der Spannungen σ als Zug- und Druckspannungen empfiehlt sich allgemein. In Übereinstimmung damit erscheint die positive Dehnung in Gleichung 3 als Verlängerung, die negative in Gleichung 3a als Verkürzung. Die positiven oder negativen Spannungen σ werden wegen ihres Parallelismus zur Längsachse des Stabes Längsspannungen, oder wegen ihrer zur Querschnittsebene rechtwinkligen Richtung auch wohl Normalspannungen genannt.

Die Proportionalitäts- bezw. die Elastizitätsgrenze für Druckspannungen, welche letztere mit d bezeichnet werden möge, kennzeichnen sich in gleicher Weise wie diejenigen für Zug. — Die Druckspannung, bei der die Zerstörung erfolgt, nennt man die Druckfestigkeit D des betreffenden Stoffes.

Trägt man die zusammengehörigen Spannungen und Dehnungen,

wie sie sich bei Versuchen ergeben, als Ordinaten und Abscissen im Sinne der Fig. 49 auf, so erhält man eine dem betreffenden Stoffe entsprechende, das wirkliche Dehnungsgesetz darstellende Schaulinie, die Dehnungslinie, die für Schmiedeeisen ungefähr die Form HGABC hat. Immerhalb des mittleren Stückes GABvon $\sigma = -d$ bis $\sigma = z$ gelten

die Gleichungen 2 und 2a, das Hooke'sche Gesetz.

I. Zug- und Druckspannungen, Dehnungen.

Es mag hier kurz bemerkt werden, dafs das Hooke'sche Gesetz nur für gewisse Materialien genaue, für andere nur mehr oder weniger annähernde Giltigkeit besitzt. So gut wie genau folgen dem Gesetz in ihrem elastischen Verhalten die meisten Metalle; namentlich die für die Technik wichtigsten, Schmiedeeisen und Stahl, sowie Holz u. a. Stoffe. Das Gufseisen und vor allen Dingen natürliche Bausteine, Beton, Mörtel etc. erfüllen das Gesetz nicht, oder nur annähernd. Für diese Materialien ist die genaue Abhängigkeit zwischen Dehnung und Spannung $\varepsilon = f(\sigma)$ im allgemeinen nicht bekannt. Die Elastizitäts- und Festigkeitseigenschaften derselben sind übrigens auch so sehr von Zufälligkeiten ihrer Entstehung bezw. Herstellung und den Grundstoffen, aus denen sie bestehen, abhängig, daß die Aufstellung allgemein giltiger Dehnungsgesetze in für die Anwendung brauchbaren mathematischen Formen Schwierigkeiten begegnet. Man ist daher auch bezüglich dieser Materialien z. Z. im allgemeinen noch auf die Anwendung des Hooke'schen Gesetzes angewiesen. In wichtigeren Einzelfällen bietet die genaue Ermittelung der Dehnungslinien für ein bestimmtes Material durch Versuche und damit die Nachprüfung der etwa auf Grund des Hooke'schen Gesetzes gewonnenen Rechnungsergebnisse keine besonderen Schwierigkeiten. Es soll darauf hier nicht näher eingegangen, später jedoch noch zurückgekommen werden.

Die Elastizitätszahl E ist für alle Stoffe, welche dem Hooke'schen Gesetze genau folgen, für Zug- und Druckspannungen gleich groß. Bei denjenigen Stoffen, bei welchen das nur annähernd der Fall ist, ist die Elastizitätszahl E mit der Spannung σ veränderlich. Um trotzdem auch auf sie das Hooke'sche Gesetz in tunlichster Übereinstimmung mit den wirklichen Spannungs- und Dehnungsvorgängen anzuwenden, empfiehlt es sich zuweilen, für die in Frage kommenden Spannungsintervalle beiderseits des spannungslosen Zustandes Mittelwerte von E einzuführen, die dann meist für Zug- und Druckspannungen verschieden sind.

Der Verlauf der ganzen Dehnungslinie vom spannungslosen Zustande bis zum Bruch durch Zerreifsen, wic sie sich etwa für zähes Flufseisen ergibt, ist in Fig. 50 und 50 a dargestellt, wobei in Fig. 50 a die Dehnungen in gröfserem Mafsstabe aufgetragen sind. Danach wächst die Dehnung mit der Spannung verhältnisgleich bis zum Punkte B, wo $\sigma = AB_1$, darüber hinaus bis C nimmt die Dehnung stärker zu als die Spannung, die Dehnungslinie löst sich tangential von der Geraden AB ab und verläuft dann jenseits C

54 Zweiter Abschnitt. Elastizität und Festigkeit gerader Stäbe.

eine gewisse Strecke bis D fast wagerecht, ohne wesentliche Vermehrung der Spannung wächst die Dehnung schnell weiter; es findet ein "Strecken" des Stabes, oder bei Druckbeanspruchung ein "Stauchen" oder "Quetschen" desselben statt. Den Wert $\sigma = AC$ nennt man daher wohl "Streck-" oder

"Fliefsgrenze" bezw. "Stauch- oder Quetschgrenze". Bei weiterer Steigerung der Spannung σ bis zu ihrem möglichen Höchstwerte $Z = A E_1$ der Zugfestigkeit erhebt sich die Dehnungslinie bis zum Punkte E entsprechend einer Dehnung $e = A E_2$, welch letztere sich noch gleichmäßig über die Stablänge verteilt. Jetzt aber tritt inmitten der Stablänge an einer etwa zufällig etwas weniger widerstandsfähigen Stelle eine örtlich begrenzte, den Bruch vorbereitende schnelle Dehnung und gleichzeitig eine Einschnürung des Stabes, eine starke Verminderung seines Querschnittes ein. (Vergl. Fig. 51.) Dabei nimmt die Spannung

zuerst allmählich von ihrem Höchstwert Z bis zum Betrage $\sigma = AG$, wieder ab und sinkt alsdann mit dem Eintritt des Bruches plötzlich auf Null herab, während die Dehnungslinie von G abwärts nach G_2 verläuft. Um aus der Kraft K, welche den Stab vom Querschnitt F zum Zerreifsen brachte, seine Festigkeit $Z = \frac{K}{F}$ zu berechnen, ist für F die Querschnittsfläche im spannungslosen Zustande, also nicht der vor dem Bruche eingeschnürte Querschnitt, einzuführen.

Ausführliche und wertvolle Ergebnisse von Festigkeitsversuchen finden sich u. a. in dem Werke über "Elastizität und Festigkeit" von C. Bach.

Als Maßeinheiten wählen wir auch hier wieder in der Regel für die Kräfte das Kilogramm, für die Längen das Zentimeter. Eine Spannung (vergl. S. 3) kann nur als bekannt angesehen werden, wenn die Kraft- und Flächeneinbeit bekannt sind, auf die sie bezogen ist. Als Spannungseinheit gilt die Spannkraft von ein Kilogramm auf einen Quadratzentimeter, technisch als eine Atmosphäre bezeichnet.

I. Zug- und Druckspannungen, Dehnungen.

Die für einzelne Stoffgattungen geltenden Elastizitäts- und Festigkeitszahlen E, z, d, Z und D sind je nach der Güte des Stoffes im Einzelfalle natürlich verschieden. In folgender Tabelle geben wir Mittelwerte derselben für die wichtigsten Materialien an.

Stoff	Elastizitätsgrenze		Festigkeit		
	Zug z	Druck d	Zug Z	Druck D	Elastizitätszahl
Gufseisen	600	1600	1300	7000	1 000 000
Schmiedeeisen	1600	1600	3500	3500	2 000 000
Stahl	3000	3000	5000	- 6000	2 200 000
Gufsstahl	4500	4500	7000	8000	2 200 000
Holz	250	170	750	500	100 000
Glas	340	1450	340	1450	1 000 000
Kautschuk	20	-	30	-	10

Elastizitäts- und Festigkeitszahlen in at.

Wie Seite 2 und 3 ausgeführt, betrachten wir einen elastisch festen Körper als im Gleichgewicht, wenn nicht nur die auf ihn wirkenden äufseren Kräfte für sich, sondern auch die an einem beliebigen durch eine Schnittebene abgegrenzten Teile desselben wirkenden äußeren Kräfte mit den in der Schnittebene auftretenden inneren Spannkräften im Gleichgewicht sind. Erreichen letztere dabei eine solche Höhe, daß sie der Festigkeit des Körpers gleichkommen, so befindet sich der Körper bezüglich des Widerstandes der inneren Kräfte gegenüber den Angriffen der äufseren im Grenzzustande des Gleichgewichtes, die geringste Steigerung der Kraftwirkungen würde eine Zerstörung des Körpers im Gefolge haben. Die Anforderungen an die Standsicherheit der Bauwerke, bezw. an die Tragsicherheit der Bauteile oder an die Betriebssicherheit der Maschinen gegenüber den angreifenden Kräften werden durch ein derartiges Gleichgewicht naturgemäß nicht befriedigt, es muß vielmehr verlangt werden, dafs die unter der den obwaltenden Umständen nach gröfstmöglichen Belastung eines Bau- oder Maschinenteiles in irgend einem Querschnitt desselben auftretende stärkste Spannung o nur einen Teil der Bruchfestigkeit des betr. Baustoffes betrage, bezw. daß die mögliche größte, d. h. die zulässige größte Belastung nur einen Teil der äufsersten Tragfähigkeit des Bauteiles ausmache. Unter allen Umständen darf die Spannung σ die Elastizitätsgrenze nicht

56 Zweiter Abschnitt. Elastizität und Festigkeit gerader Stäbe.

überschreiten, weil bleibende Formänderungen unzulässig sind. Den Quotienten $\frac{\text{Bruchfestigkeit}}{\text{Eintretende größte Spannung }\sigma}$ gleich $\frac{\text{Tragfähigkeit}}{\text{Zulässige Belastung}}$ nennt man das Maß der Sicherheit gegen Bruch; wir bezeichnen es hinfort mit *n*. Die "zulässige Spannung" oder "Beanspruchung" ist $\sigma = \frac{Z}{n}$, bezw. $= \frac{D}{n}$. Die Zahl *n* ist eine durch die Erfahrung an die Hand gegebene; für ihre Wahl im bestimmten Einzelfalle kommen u. a. folgende Umstände in Betracht:

1. Ob und inwieweit der betr. Bauteil je nach seinem Verwendungszwecke der Abnutzung, oder je nach den örtlichen Verhältnissen und den herrschenden Witterungseinflüssen der Rostbildung oder der Fäulnis etc. unterliegt und dadurch eine Verminderung seiner Widerstandsfähigkeit gegen Bruch erfährt.

2. Welchen Grad der Genauigkeit die Unterlagen für die Berechnung der erforderlichen Stärkenabmessungen, d. h. für die "statische Berechnung" aufweisen, bezw. mit welcher. Schärfe sich die in dem Bauteile herrschenden Spannungsverhältnisse beurteilen lassen.

3. Die Wichtigkeit des Zweckes, welchem das Bauwerk etc. dient, und die Dauer, welche man von ihm verlangt.

Es ist ersichtlich, daß bei der statischen Berechnung eines nur im geringen Maße der Abnutzung und der Vergänglichkeit unterliegenden, in seinen Spannungsverhältnissen genau zu beurteilenden Bauteiles das anzuwendende Sicherheitsmaß n geringer angenommen werden kann, als im entgegengesetzten Falle, zumal wenn auch noch der zu erfüllende Zweck ein untergeordneter und die verlangte Dauer nur eine geringe ist. Nach diesen Gesichtspunkten schwankt der übliche Wert für n etwa zwischen $2^{1/2}$ bis 8.

Anwendungen.

Beispiel I: Eine Stange aus Stabeisen 2^{m} Länge und $2^{\text{cm}} \times 10^{\text{cm}}$ Querschnitt kann bei $\sigma = 700^{\text{nt}}$ zulässiger Spannung eine Zugkraft $20 \cdot 700 = 14000$ kg aufnehmen. Die entsprechende Dehnung beträgt $\varepsilon = 700: 2\,000\,000 = 0,00035$, die Verlängerung $\Delta l = l \cdot \varepsilon = 200 \cdot 0,00035 = 0,0005$. Um den Stab bis zur Elastizitätsgrenze zu spannen, würde eine Zugkraft von $20 \cdot 1600 = 32\,000$ kg erforderlich sein. Dabei wird die Dehnung $\varepsilon = 1600: 2\,000\,000 = 0,0005$ und die Verlängerung $\Delta l = 0,0005 \cdot 200 = 0,16$ cm.

Zum Zerreifsen würde eine Kraft von 20.3500 = 70000 kg notwendig sein.

I. Zug- und Druckspannungen, Dehnungen.

Beispiel 2: Eine ursprünglich spannungslose runde Eisenstange von 2 cm Durchmesser wird an den Enden festgehalten und sodann um 20°C abgekühlt. Wäre die Stange frei, so würde sie bei einer Ausdehnungszahl von ¹/s0000 für 1°C eine Verkürzung von 20:80000 = 1:4000 erfahren. Diese Verkürzung mufs, da die Enden festgehalten sind, durch eine gleich großse elastische Dehnung des Stabes $\varepsilon = 1:4000$ wieder ausgeglichen werden. Es entsteht also eine Spannung $\sigma = \varepsilon \cdot E = 2000000 \cdot 4000 = 500$ at und eine Spannkraft $K = 500 \cdot 3, 14 = 1570$ kg.

Beispiel 3: Eine prismatische Stange von der Länge l und der Stoffdichte γ sei an ihrem einen Ende lotrecht aufgehängt und werde am andern in achsialer Richtung von einer Kraft K ergriffen (Fig. 52).

Welchen Querschnitt F muß die Stange erhalten und welche Verlängerung erfährt sie, wenn die unter der Wirkung der Kraft K und des Eigengewichtes der Stange eintretende gröfste Spannung zu σ_1 angenommen wird?

Wir denken uns die Stange im Abstande x vom unteren Ende geschnitten und an dem abgetrennten Ende einerseits das Eigengewicht derselben und die Kraft K und andererseits die über die Schnittfläche verteilten Spannkräfte σF angreifend. Dann verlangt das Gleichgewicht des Trennstückes, daß

$$\sigma F = K + G = K + x \cdot F \cdot \gamma$$

$$\sigma = \gamma \cdot x + \frac{K}{F} \quad \text{sei.}$$

Fig. 52.

 σ erscheint mit x in linearer Abhängigkeit-veränderlich und ebenso die Dehnung $\epsilon = \frac{\sigma}{E} = \frac{1}{E} \cdot \left(\gamma \cdot x + \frac{K}{E} \right).$

und

Für x = l nimmt σ den Gröfstwert σ_1 an und es wird $\sigma_1 = \gamma \cdot l + \frac{K}{F}$, der erforderliche Querschnitt demnach $F = \frac{K}{\sigma_1 - \gamma l}$.

Bezeichnen wir mit Δx die Verlängerung des Trennstückes x, so ist diejenige eines Längenelementes dx im Abstande x

$$d(\Delta x) = \varepsilon \cdot dx = \frac{dx}{E} \sigma = \frac{dx}{E} \left(\gamma \cdot x + \frac{K}{F} \right),$$

und durch Integration zwischen den Grenzen 0 und x erhält man

$$\Delta x = rac{1}{E} \int_{0}^{4x} \left(\gamma x + rac{K}{F} \right) dx = rac{x}{E} \left(rac{\gamma x}{2} + rac{K}{F}
ight);$$
 also für $x = l \quad \Delta l = rac{l}{E} \cdot \left(rac{\gamma l}{2} + rac{K}{F}
ight)$

und mit dem oben berechneten Werte für F

$$\Delta l = \frac{l}{E} \left(\sigma_1 - \frac{\gamma l}{2} \right).$$

Zweiter Abschnitt. Elastizität und Festigkeit gerader Stäbe.

Für l = 200 m = 20000 cm, $K = 40000 \text{ kg} \cdot \sigma_1 = 400 \text{ at}$, E = 2000000 at, $\gamma^{\rm I} = 7800 \text{ kg/m}^3 = 0.0078 \text{ kg/cm}^3$ wird

$$F = \frac{40\,000}{400 - 156} = 164 \text{ cm}^3$$
$$\Delta l = \frac{l}{E} \left(\sigma_1 - \frac{\gamma l}{2} \right) = \frac{20\,000}{2\,000\,000} \cdot (400 - 78) = 3,22 \text{ cm} .$$

Die Spannung σ_0 am unteren Ende für x = 0 stellt sich auf

$$\sigma_0 = \frac{40\,000}{164} = 244 \,\mathrm{at}$$
.

Beispiel 4: Im Beispiel 3 ist die Widerstandsfähigkeit des Materials der Stange nur am oberen Ende, von da abwärts aber nicht mit der zulässigen Spannung σ_i ausgenutzt. Es soll eine solche Form der Stange, bei welcher in je dem Querschnitte die Spannung σ_i herrscht, d. h. eine sogenannte "Form von überall gleichem Widerstande" ermittelt werden.

Der Querschnitt F der Stange muß nunmehr mit seinem Abstande xvom unteren Ende zunehmen. Im Abstande x sei er gleich F und im Abstande x + dx, F + dF. Denken wir uns ein Stück von der Länge dx herausgeschnitten, so wirken an Fig. 53.

von der Länge dx herausgeschnitten, so wirken an demselben die aus der Fig. 53 ersichtlichen Kräfte, wobei $dG = F \cdot dx \cdot \gamma$ ist. Es muß daher sein

$$F \cdot \sigma_1 + dG - (F + dF) \sigma_1 = 0$$
$$\frac{dF}{F} = \frac{\gamma \cdot dx}{r},$$

oder, zwischen den Grenzen 0 und x, bezw. F_0 und F integriert,

$$l \frac{F}{F_0} = \frac{\gamma \cdot x}{\sigma_1}$$
 d. i. $\frac{F}{F_0} = \frac{\gamma \cdot x}{\sigma_1}$

Nimmt man beiderseits die Briggsschen Logarithmen, so wird $F x \cdot x$.

$$\log \frac{T}{F_0} = \frac{\gamma \cdot x}{\sigma_1} \log e$$

Die Dehnung ε ist, wie die Spannung σ in allen Querschnitten gleich; daher die Verlängerung $\Delta l = \varepsilon \cdot l = \frac{\sigma_1}{E} \cdot l$.

Für die in Beispiel 3 angenommenen Zahlwerte ergibt sich zunächst für den Querschnitt am unteren Ende $F_0 = \frac{K}{\sigma_1} = \frac{40\,000}{400} = 100$ cm². Mit $\log e = 0,434$ und $\frac{\gamma}{\sigma_1} = \frac{0,0078}{400} = \operatorname{rot} 0,00000$ wird für x = 5000 cm $\log \frac{F}{F_0} = 0,434 \cdot 0,10$ und $\frac{F}{F_0} = 1,105$ $F = 1,105 \cdot 100 = 110,5$ cm³, $x = 10\,000$ cm $\log \frac{F}{F_0} = 0,434 \cdot 0,20$ und $\frac{F}{F_0} = 1,221$ F = 122,1 cm², $x = 15\,000$ cm $\log \frac{F}{F_0} = 0,434 \cdot 0,30$ und $\frac{F}{F_0} = 1,35$ F = 135 cm², $x = 20\,000$ cm $\log \frac{F}{F_0} = 0,434 \cdot 0,40$ und $\frac{F}{F_0} = 1,49$ F = 149 cm².

I. Zug- und Druckspannungen, Dehnungen.

Die Verlängerung ist $\Delta l = \frac{400}{2000000} \cdot 20000 = 4 \text{ cm}$.

Das Gewicht der ganzen Stange erhält man aus der Gleichgewichtsbedingung für den oberen Querschnitt $G + K = F \cdot \sigma_1$ zu

 $G = F\sigma_1 - K = 149 \cdot 400 - 40000 = 19600 \text{ kg};$

während die Stange mit überall gleichem Querschnitt von 164 cm^2 ein Gewicht $G = 164 \cdot 0, \phi_{073} \cdot 20\,0000 = 25\,584 \text{ kg}$ aufweist.

Beispiel 5: Die Herstellung der genauen Form von gleichem Widerstande begegnet häufig Schwierigkeiten, und man muſs sich mit einer gewissen Annäherung an dieselbe begnügen, indem man den Querschnitt

statt allmählich stufenweise vom unteren Ende aufwärts anwachsen läfst (Fig. 54), so dafs jede Stufe in ihrem oberen Querschnitt die zulässige Höchstspannung σ_1 erfährt.

Sind h_1 , h_2 , h_3 ... l_n die Längen, F_1 , F_2 ... F_n die Querschnitte der einzelnen prismatischen Stabenden, so gilt nach den Ausführungen zu Beispiel 3 für den Querschnitt der unteren Stufe

$$F_1 = \frac{K}{\sigma_1 - \gamma h_1}$$

Am unteren Ende der zweiten Stufe wirkt dann eine abwärts gerichtete Kraft

$$K_1 = \sigma_1 \cdot F_1 = \frac{\sigma_1 K}{\sigma_1 - \gamma h_1}.$$

Der Querschnitt der zweiten Stufe muß daher sein

$$F_2 = \frac{K_1}{\sigma_1 - \gamma h_2} = \frac{\sigma_1 K}{(\sigma_1 - \gamma h_1) (\sigma_1 - \gamma h_2)}$$

Ebenso ergibt sich für die dritte Stufe

$$F_3 = \frac{\sigma_1 F_2}{\sigma_1 - \gamma h_3} = \frac{\sigma_1^2 \cdot K}{(\sigma_1 - \gamma h_1) (\sigma_1 - \gamma h_2) (\sigma_1 - \gamma h_3)}$$

und für die nte Stufe

$$F_n = \frac{\sigma_1^{n-1} K}{(\sigma_1 - \gamma h_1) (\sigma_1 - \gamma h_2) \dots (\sigma_1 - \gamma h_n)}.$$

Erhalten die einzelnen Stufen alle die gleiche Länge h, so wird der Querschnitt der nten Stufe

$$F_n = \frac{\sigma_1^{n-1} K}{(\sigma_1 - \gamma h)^n}.$$

Für die in Beispiel 3 genannten Zahlenwerte ergibt sich bei Anordnung von fünf gleichen Stufen je von der Länge 4000 cm

$$\begin{split} F_1 &= \frac{40000}{400 - 31_{3^2}} = 108_{3^5} \, \mathrm{cm}^2, \ F_2 &= \frac{400 \cdot 40000}{(400 - 31_{3^2})^2} = 117_{7^6} \, \mathrm{cm}^2, \\ F_3 &= \frac{400^2 \cdot 40000}{(400 - 31_{3^2})^8} = 128 \, \mathrm{cm}^2, \ F_4 &= \frac{400^3 \cdot 40000}{(400 - 13_{3^2})^4} = 138_{3^2} \, \mathrm{cm}^2, \\ F_5 &= \frac{400^4 \cdot 40000}{(400 - 31_{3^2})^6} = 150 \, \mathrm{cm}^2. \end{split}$$

- h Fs

F2

K

Fig. 54.

60 Zweiter Abschnitt. Elastizität und Festigkeit gerader Stäbe.

Das Gesamtgewicht ist wie in Beispiel 4

4

 $G = \sigma_1 \cdot F_5 - K = 400 \cdot 151 - 40000 = 20400 \text{ kg}$.

Alles hier im Beispiel 3 bis 5 für hängende, auf Zug beanspruchte Stangen gesagte gilt sinngemäß auch für stehende auf Druck beanspruchte Stäbe, Säulen u. s. w, sofern eine Knickgefahr nicht eintritt (vergl. Seite 51).

Beispiel 6: Eine in ihrer Oberkante 0.38 m starke 25 m Mohe lotrechte Backsteinmauer ist in ihrer Oberfläche so belastet, dafs auf 1.6 m ihrer Länge eine Last von $35\,000 \text{ kg}$ entfäht. Sie soll nach unten stufenweise auf 0.51 und^3 0.64 m so verstärkt werden, dafs die Druckspannungen an keiner Stelle 10 st übersteigen. In welchen Abständen von ihrer Oberfläche haben die Verstärkungen stattzufinden, wenn die Dichte der Mauer $2000 \text{ kg/m}^3 = 0.002 \text{ kg/cm}^3$ beträgt?

Die Spannung in einer Tiefe h_1 unter der Oberfläche (vergl. Fig. 55) ist

$$\sigma = \frac{G+K}{F_1} = \frac{h_1 F_1 \cdot \gamma + K}{F_1} \text{ und daraus}$$

$$h_1 = \frac{F_1 \cdot \sigma - K}{\gamma \cdot F_1}.$$
Fig. 55.

Für die zweite Stufe ist $K_1 = \sigma \cdot F_1$, also wie oben

$$h_2 = \frac{F_2 \sigma - K_1}{\gamma \cdot F_2} = \frac{\sigma \cdot (F_2 - F_1)}{\gamma \cdot F_2}$$
$$h_3 = \frac{\sigma (F_3 - F_2)}{\gamma \cdot F_3}$$

Mit $K = 35\,000$ kg, $\sigma = 10$ at, $\gamma = 0,002$ kg/cm³ und $F_1 = 38 \cdot 100 = 3800$ cn², $F_2 = (38 + 13) \cdot 100 = 5100$ cm², $F_3 = (38 + 2 \cdot 13) \cdot 100 = 6400$ cm² wird

$$\begin{split} h_1 &= \frac{3800 \cdot 10 - 35\,000}{0,002 \cdot 3800} = 395 \text{ cm} = 3\,95 \text{ m}, \\ h_2 &= \frac{10\,(5100 - 3800)}{0,002 \cdot 5100} = 1275 \text{ cm} = 12,75 \text{ m}, \\ h_3 &= \frac{10\,(6400 - 5100)}{0,002 \cdot 6400} = 1015 \text{ cm} = 10,15 \text{ m}. \end{split}$$

Da die Mauer nur 25 m hoch ist, obige Einzelhöhen aber zusammen bereits eine Höhe von 3,95 + 12,75 + 10,15 = 26,85 m ergeben, so ist eine Verstärkung über 64 cm hinaus nicht erforderlich.

b) Spannungen in der Richtung der Stabachse und senkrecht zu ihr, Gesamtdehnungen, Anstrengungen.

Die Formänderung eines in der Richtung seiner Achse von Zug- oder Druckkräften ergriffenen Stabes besteht nicht allein in einer gewissen Verlängerung oder Verkürzung desselben, sondern mit den Längsspannungen treten außer den Längsdehnungen auch Querdehnungen ein.
I. Zug- und Druckspannungen, Dehnungen.

Wirkt an zwei einander gegenüberliegenden Endflächen eines rechtwinkligen Parallelepipeds, dessen Stoff dem Hooke'schen Gesetze folgt (Fig. 56), eine in allen Punkten der Flächen gleiche Spannung σ_x , so bedingt dieselbe im Gleichgewichtszustande eine Dehnung des Körpers in ihrer Richtung

$$\varepsilon_x = \frac{\Delta x}{x} = \frac{\sigma_x}{E}.$$

(Vergl. GI. 2, S. 50.)

Erfahrungsgemäß treten gleichzeitig in den Richtungen der Kanten y und z Verkürzungen, negative Querdehnungen genannt,

ein, welche, wenn der Körper völlig "isotrop" ist, den Gesetzen folgen,

$$\varepsilon_y = \frac{\Delta y}{y} = -\frac{\sigma_x}{m \cdot E}, \qquad \varepsilon_z = \frac{\Delta z}{z} = -\frac{\sigma_z}{m \cdot E},$$

worin der Koeffizient m nach angestellten Versuchen zwischen 3 und 4 schwankt, für Schmiedeeisen aber zu 4 angenommen werden kann. Die Querdehnungen ε_y und ε_z fallen also gleich groß aus, und nach obigem ist $\varepsilon_y = \varepsilon_z = -\frac{\sigma_x}{m \cdot E} = -\frac{1}{4} \cdot \varepsilon_x$.

Wirken nun gleichzeitig an allen Seitenflächen des Parallelepipeds Normalspannungen σ_x , σ_y und σ_z , so entstehen in der X-Richtung: durch die Spannung σ_x die Längsdehnung $\frac{\sigma_x}{E}$ und durch die Spannungen σ_y und σ_z die Querdehnungen $-\frac{\sigma_y}{m \cdot E}$, bezw.

$$-\frac{\sigma_z}{m \cdot E}, \text{ im ganzen also die Dehnung}$$

$$\left\{ \begin{aligned} \varepsilon_x &= \frac{1}{E} \left(\sigma_x - \frac{\sigma_y + \sigma_z}{m} \right) \text{ und ebenso in der } Y\text{- und } Z\text{-Richtung} \\ \varepsilon_y &= \frac{1}{E} \left(\sigma_y - \frac{\sigma_x + \sigma_z}{m} \right), \\ \varepsilon_z &= \frac{1}{E} \left(\sigma_z - \frac{\sigma_x + \sigma_y}{m} \right), \end{aligned} \right.$$

worin je nach der relativen Größe und dem Vorzeichen der Spannungen σ_x , σ_y und σ_z die Dehnungen ε_x , ε_y und ε_z positiv oder negativ ausfallen können. Für die Sicherheit eines elastisch festen

Körpers, hier also des Parallelepipeds, gegen Zerstörung, ist nun, wenn nur in einer Richtung eine Spannung σ auftritt, diese oder die ihr verhältnisgleiche Dehnung $\varepsilon = \frac{\sigma}{E}$ mafgebend; wirken gleichzeitig mehrere Spannungen σ_x , σ_y und σ_z , so hängt die Sicherheit eines Körpers von der durch die Spannungen erzeugten größten Dehnung ab. Diejenigen Spannungen s_x , s_y und s_z in der X-, Y- und Z-Richtung, welche dieselben Dehnungen ε_x , ε_y und ε_z hervorbringen würden wie die drei Einzelspannungen σ_x , σ_y und σ_z zusammen und welche daher auch den Körper der Zerstörung durch Zerreißen oder Zerdrücken in den drei Richtungen ebenso nahe bringen würden, wie diese in ihrer Zusammenwirkung, nennen wir hinfort die Anstreng ung des Körpers in den drei Richtungen. Wie nach Gl. 2 $\sigma = \varepsilon \cdot E$, so ist demnach zufolge Gl. 4

$$\begin{cases} s_x = \varepsilon_x \cdot E = \sigma_x - \frac{\sigma_y + \sigma_z}{m}, \\ s_y = \varepsilon_y \cdot E = \sigma_y - \frac{\sigma_x + \sigma_z}{m}, \\ s_z = \varepsilon_z \cdot E = \sigma_z - \frac{\sigma_z + \sigma_y}{m}. \end{cases}$$

5)

Je nach der relativen Größe und dem Vorzeichen von σ_x , σ_y und σ_z können s_x , s_y und s_z positiv oder negativ, größer oder kleiner als die Einzelspannungen σ_x , σ_y und σ_z in denselben Richtungen ausfallen.

Beispiel: Der schmiedeeiserne Mantel eines Hohlzylinders erleidet infolge inneren hydrostatischen Überdruckes in der Richtung senkrecht zur Zylinderachse eine Zugspannung $\sigma_x = 600$ at und in der Richtung parallel zu derselben eine solche $\sigma_y = 300$ at. Welche Anstrengungen und welche Dehnung erfährt das Material in den bezeichneten Richtungen?

Nach Gleichung 5 ergeben sich, indem man $\sigma_z = 0$ und m = 4 setzt, die Anstrengungen zu

 $s_x = \sigma_x - \frac{\sigma_y}{4} = 600 - \frac{300}{4} = 525 \text{ st}$ und $s_y = \sigma_y - \frac{\sigma_x}{4} = 300 - \frac{600}{4} = 150 \text{ st}.$

Die Dehnungen betragen mit $E = 2\,000\,000$ at

$$\varepsilon_x = rac{s_x}{E} = rac{52\partial}{2\,000\,000} = 0,000\,26\,,$$

 $\varepsilon_y = rac{s_y}{E} = rac{150}{2\,000\,000} = 0,000\,075\,.$

Hierbei sind die Anstrengung s_z und die Dehnuug ε_z aufser acht gelassen.

I. Zug- und Druckspannungen, Dehnungen.

Bei einer Länge des Zylinders von 10 m == 1000 cm und einem Durchmesser von 2 m == 200 cm würde

die elastische Verlängerung $\Delta d = \varepsilon_x \cdot l = 0,000 \pm 0.26$ cm und die elastische Erweiterung $\Delta l = \varepsilon_y \cdot d = 0,000 \times 0.200 = 0.015$ cm ausmachen.

Tritt an Stelle der Zugspannung $\sigma_y = 300$ at parallel zur Achse eine gleich große Druckspannung, so wird

$$s_x = \sigma_x + \frac{\sigma_y}{4} = 600 + \frac{300}{4} = 675 \text{ at},$$

$$s_y = \sigma_y + \frac{\sigma_x}{4} = 300 + \frac{600}{4} = 450 \text{ at},$$

$$\varepsilon_x = \frac{675}{2\,000\,000} = 0,000\,337\,5,$$

$$\varepsilon_y = \frac{450}{2\,000\,000} = 0,000\,225,$$

$$J d = 0,000\,337\,5 \cdot 200 = \text{rot. } 0,34 \text{ cm},$$

$$J l = 0,000\,225 \cdot 1000 = 0,045 \text{ cm}$$

c) Zug- und Druckspannungen und Dehnungen in der Achsrichtung eines Verbundstabes.

Unter einem Verbundstabe wollen wir einen prismatischen Stab verstehen, der in symmetrischer Anordnung zu seiner Achse aus stofflich verschiedenen prismatischen Längsteilen so zusammengefügt ist, daß eine gegenseitige Verschiebung der Teile nicht eintreten kann; die Zahl der Stoffe soll hier auf zwei beschränkt werden. Ein solcher Verbundstab entsteht z. B., wenn eine Eisenstange in einen prismatischen Beton- oder Zementkörper eingebettet wird.

Greifen achsiale Zug- oder Druckkräfte K einen Verbundstab (Fig. 57 a und 57 b) an, so entsteht die Frage, welche Spannungen

und Dehnungen werden in den stofflich verschiedenen Teilendesselben hervor-

gerufen?

In folgendem bezeichnen nun σ_1 und σ_2 die unter der Wirkung der Achsialkräfte K in den stoff-

lich verschiedenen Teilen auftretenden Spannungen, F_1 und F_2 die Querschnitte, E_1 und E_2 die Elastizitätszahlen der beiden verbundenen

Stoffe. Bei der gemachten Annahme gegenseitiger Unverschiebbarkeit der Teile erfahren diese naturgemäß die gleiche Verlängerung Δl , bezw. die gleiche Dehnung ε .

Nach Gleichung 2 bezw. 2a ist diese gemeinsame Dehnung für Stoffe, welche dem Hooke'schen Gesetze folgen,

$$\varepsilon = \frac{\sigma_1}{E_1} = \frac{\sigma_2}{E_2}.$$

Gleichmäßige Verteilung der Spannungen σ_1 und σ_2 auf die Querschnitte F_1 bezw. F_2 vorausgesetzt, fordert das Gleichgewicht zwischen den äußeren und inneren Kräften ferner

$$K = \sigma_1 \cdot F_1 + \sigma_2 \cdot F_2.$$

Aus Gleichung 6 und 7 folgt

$$\left\{ \begin{array}{l} \sigma_1 = \frac{K \cdot E_1}{F_1 E_1 + F_2 \cdot E_2} = \frac{K}{F_1 + F_2 \cdot \left(\frac{E_2}{E_1}\right)} = \frac{K}{F_1 + \frac{F_2}{m}}, \\ \sigma_2 = \frac{K \cdot E_2}{F_1 E_1 + F_2 E_2} = \frac{K}{F_1 \cdot \frac{E_1}{E_2} + F_2} = \frac{K}{m \cdot F_1 + F_2}, \end{array} \right.$$

wenn $\frac{E_1}{E_2}$ mit *m* bezeichnet wird, und die gemeinsame Dehnung

7)

8)

$$\varepsilon = \frac{\sigma_1}{E_1} = \frac{K}{F_1 E_1 + F_2 E_2},$$

wobei σ_1 und σ_2 und ε mit K im Vorzeichen gleichstimmig ausfallen.

Folgen die Stoffe nicht dem Hooke'schen Gesetze, ist dagegen eine andere Abhängigkeit zwischen der Spannung und Dehnung bekannt. etwa $\varepsilon = \frac{\sigma^n}{E}$, so tritt an Stelle der Gleichung 6 eine Gleichung von der Form $\varepsilon = \frac{\sigma_1^{n_1}}{E_1} = \frac{\sigma_2^{n_2}}{E_2}$.

Die Gleichungen 8 unterscheiden sich von Gleichung 1 dadurch, dafs in den ersteren die Spannung σ abhängig, in der letzteren unabhängig von dem elastischen Verhalten der Stoffe erscheinen. Für $E_1 = E_2 = E$ gehen Gleichungen 8 und 9 in die Gl. 1 und 2 über; es wird $\sigma_1 = \sigma_2 = \frac{K}{F_1 + F_2} = \frac{K}{F}$ und $\varepsilon = \frac{\sigma}{E}$.

Nach den Gleichungen 7 und 8 sind die in beiden Stoffen eintretenden Spannungen σ_1 und σ_2 verhältnisgleich den Elastizitätszahlen E_1 und E_2 derselben. Stehen micht auch die Festigkeiten

I. Zug- und Druckspannungen, Dehnungen.

beider Stoffe in gleichem Verhältnis zueinander, so sind bei einer hestimmten Belastung K die Sicherheitsziffern n_1 und n_2 der beiden Stoffe gegen Bruch verschieden.

Verlangt man, dafs die Spannungen σ_1 und σ_2 im gleichen Verhältnis mit den Festigkeiten der verbundenen Stoffe, oder in irgend einem anderen Verhältnis $\frac{\sigma_1}{\sigma_2} = \beta$ stehen sollen, so müssen auch die Dehnungen ε_1 und ε_2 ein entsprechendes Verhältnis aufweisen; es muß sein

$$arepsilon_1 = rac{\sigma_1}{E_1} ext{ und } arepsilon_2 = rac{\sigma_2}{E_2}, ext{ also } rac{arepsilon_1}{arepsilon_2} = rac{\sigma_1}{\sigma_2} \cdot rac{E_2}{E_1} = rac{eta}{m} ext{ und daraus} \ \epsilon_1 - \epsilon_2 = \left(rac{eta}{m} - 1
ight) \epsilon_2 = \left(rac{eta}{m} - 1
ight) rac{\sigma_2}{E_2} = \left(1 - rac{m}{eta}
ight) rac{\sigma_1}{E_1}.$$

Dieser Unterschied in den Dehnungen beider Teile mußs zur Zeit der Herstellung ihrer unverschiebbaren Verbindung bereits vorhanden sein und einer derselben daher vorher eine solche Anfangsdehnung $\varepsilon_1 - \varepsilon_2$, bezw. eine entsprechende Anfangsspannung σ_a erhalten. Letztere müßste für den Teil von der Elastizitätsziffer E_1

$$\sigma_{1a} = (\epsilon_1 - \epsilon_2) E_1 = \left(1 - \frac{m}{\beta}\right) \sigma_1$$
 oder für den anderen Teil
 $\sigma_{2a} = (\epsilon_2 - \epsilon_1) E_2 = \left(1 - \frac{\beta}{m}\right) \sigma_2$ betragen.

Beispiel I: Der Verbundstab besteht aus Schmiedeisen und Gufseisen, sodafs $m = \frac{E_1}{E_3} = \frac{2000000}{1000000} = 2$ ist. Ferner sei $F_1 = F_2 = 10$ cm² und K = +15000 kg (Zugkraft). Dann wird nach Gl. 8

$$\sigma_1 = \frac{K}{F_1 + \frac{F_2}{2}} = \frac{15000}{15} = 1000 \text{ at},$$

$$\sigma_2 = \frac{K}{2 \cdot F_1 + F_2} = \frac{15000}{30} = 500 \text{ at}.$$

Da für Schmiedeisen $Z_1 = 3500$ at und für Gufseisen $Z_2 = 1300$ at, so ergibt sich für ersteres die Sicherheitsziffer $n_1 = \frac{3500}{1000} = 3.5$ und für letzteres $n_2 = \frac{1300}{500} = 2.6$. Verlangt man für beide Stoffe gleiche Sicherheit gegen Bruch, so mufs $\beta = \frac{\sigma_1}{\sigma_2} = \frac{Z_1}{Z_2} = \frac{3500}{1300} =$ rot. 2,7 sein. Dann folgt aus Gleichung 7, wenn man $\sigma_2 = \frac{\sigma_1}{2.5}$ setzt

$$\sigma_1 = \frac{K}{F_1 + \frac{F_2}{2,7}} = \frac{15\,000}{10 + \frac{10}{2,7}} = 1095 \text{ at},$$

$$\sigma_2 = \frac{1095}{2,7} = 405 \text{ at}.$$

5

Keck, Elastizitätslehre.

Die Anfangsspannung für Schmiedeisen müßste betragen

$$\sigma_{1a} = \left(1 - \frac{2}{2,7}\right) \cdot 1095 = +285 \text{ at}$$

und für das Gufseisen $\sigma_{2a} = \left(1 - \frac{2,7}{2}\right) \cdot 405 = -142 \text{ at}$ entsprechend einer Anfangsbelastung $K_{1a} = +10 \cdot 285 = +2850 \text{ kg}$ bezw. $K_{2a} = -10 \cdot 142, 0 = -1420 \text{ kg}.$

Beispiel 2: Ein Eisenstab 3 cm^2 Querschnitt ist achsial in einen prismatischen Betonkörper*) von 100 cm^2 Querschnitt im spannungslosen Zustande einbetoniert. Für Zugspannungen in Beton sei $E_2 = 100\,000 \text{ at}$, also $m = \frac{2000\,000}{100\,000} = 20$.

Wird der Verbundstab durch eine Zugkraft von 4000 kg ergriffen, so wird für den Eisenstab

$$\sigma_1 = \frac{4000}{3 + \frac{100}{20}} = 500 \text{ at}$$

oder für den Betonkörper $\sigma_2 = \frac{500}{20} = 25$ at.

66

Ersterer trägt $3 \cdot 500 = 1500$ kg, letzterer $100 \cdot 25 = 2500$ kg.

Bei diesen Spannungen ist die Festigkeit des Eisens in nicht befriedigender, diejenige des Betons in unzulässiger Höhe in Anspruch genommen. Der Eisenstab soll mit einer solchen Anfangsspannung σ_{1a} einbetoniert werden,

dafs $\beta = \frac{\sigma_1}{\sigma_2} = 200$ wird. Aus Gleichung 7 folgt dann

$$\sigma_1 = \frac{4000}{3 + \frac{100}{200}} = 1143 \text{ at}$$
$$\sigma_2 = \frac{1143}{200} = 5,71 \text{ at}.$$

Die Anfangsspannung des Eisenstabes muls

$$\sigma_{1a} = \left(1 - \frac{20}{200}\right) \cdot 1143 = 1028, 7 \text{ at}$$

betragen. Der Eisenstab trägt jetzt $3 \cdot 1143 = 3429$ kg und der Betonkörper $100 \cdot 5.1 = 571$ kg.

Wird bedungen, daß der Eisenstab nur 1000 at, der Betonkörper 5 at Spannung erhalten und das Querschnittsverhältnis beider $\frac{F_1}{F_2}$ =40 sein soll, so ergibt sich aus Gleichung 7 der erforderliche Eisenquerschnitt

$$F_1 = \frac{4000}{1000 + 40 \cdot 5} = 3{,}33 \text{ cm}^2$$

und für den Betonkörper $F_2 = 40 \cdot 3{,}_{33} = 133{,}_{3} \text{ cm}^2$

^{*)} Die Elastizitätsziffer ist für Beton mit der Spannung σ veränderlich. Die in den Beispielen angenommenen Werte für Druckspaunungen $E_2 = 200\,000\,\mathrm{at}$ und für Zugspannungen $E_2 = 100\,000\,\mathrm{at}$ sind Mittelwerte für die nächsben Intervalle beiderseits des spannungslosen Zustandes.

I. Zug- und Druckspannungen, Dehnungen.

Die Anfangsspannung des Eisenstabes muß jetzt sein

$$\sigma_{1a} = \left(1 - \frac{20}{200}\right) 1000 = 900 \text{ at}.$$

Beispiel 3: Bei Herstellung des Verbundstabes in Beispiel 2 — Eisenquerschnitt $F_1 = 3 \text{ cm}^2$, Betonquerschnitt $F_2 = 100 \text{ cm}^2$ — werde die Eiseneinlage durch irgend eine achsiale Zugkraft K_a von 3000 ks in einer Anfangsspannung $\sigma_1 = \frac{3000}{3} = 1000 \text{ at}$ erhalten und nach völliger Erhärtung des Betons durch Beseitigung der Kraft K_a entlastet. Jetzt strebt die Eisenstange in den dehnungs- und spannungslosen Zustand zurückzukehren; dem widersetzt sich aber in gewissem Grade der sie einhüllende Betonkörper, der dadurch eine gewisse Druckspannung und Verkürzung erfährt. Da äufsere Kräfte auf den Verbundstab nun nicht mehr einwirken, müssen die einander entgegenwirkenden inneren Spannkräfte im Eisen und Beton sich das Gleichgewicht halten. In jedem Querschnitt muß sein die Summe aller Spannkräfte

$$I_1$$
) $F_1 \sigma_1 + F_2 \sigma_2 = 0$,

wenn σ_1 wieder die Spannung im Eisen, σ_2 diejenige im Beton bezeichnet.

Während die Spannung in der Eiseneinlage von σ_{1a} auf σ_1 zurück geht, vermindert sich die Dehnung der Stange um $\varepsilon_a - \varepsilon_1 = \frac{\sigma_{1a} - \sigma_1}{E_1}$ Eine genau gleiche negative Dehnung erfährt dabei die Betonhülle, während ihre Spannung von 0 auf σ_2 anwächst. Daraus folgt die Gleichung

$$\frac{a_{1a} - \sigma_1}{E_a} = -\frac{a_{1a}}{E_a}$$

31)

Die Lösung beider Gleichungen 1, und 2, ergibt

$$\sigma_{1} = \frac{\sigma_{1a}}{1 + \frac{F_{1}}{F_{2}} \cdot \frac{E_{1}}{E_{2}}}$$
$$\sigma_{2} = -\frac{\sigma_{1a}}{\frac{F_{2}}{F_{1}} + \frac{E_{1}}{E_{2}}}$$

Für $F_1 = 3 \text{ cm}^2$ $F_2 = 100 \text{ cm}^2$, also $\frac{F_1}{F_2} = 0.03$ und für Schmiedeisen $E_1 = 2000000 \text{ at}$, für Druckspannungen im Beton $E_2 = 200000 \text{ at}$, also $\frac{E_1}{E_2} = 10$ wird 1000 cm^2

$$\sigma_1 = \frac{1000}{1 + 0.03 \cdot 10} = 770 \text{ at}$$

$$\sigma_2 = -\frac{1000}{\frac{1}{0.05} + 10} = -23.1 \text{ at}$$

Die in allen Querschnitten von den beiden Stoffen wechselweise auf einander ausgeübte Zug- bezw. Druckkraft ist $770 \cdot 3 = 23.1 \cdot 100 = 2310$ kg.

Wird der Verbundstab einer beliebigen Achsialkraft K ausgesetzt, so tritt an Stelle der Gleichung $\sigma_1 F_1 + \sigma_2 F_2 = 0$ die Gleichung $\sigma_1 F_1 + \sigma_2 F_2 = K$.

Hieraus und aus der Gleichung 21 ergibt sich dann

$$\left\{ \begin{array}{c} \sigma_1 \!=\! \frac{\sigma_{1a} + \frac{K}{F_2} \cdot \frac{E_1}{E_2}}{1 + \frac{F_1}{F_2} \cdot \frac{E_1}{E_2}} \\ \sigma_2 \!=\! - \frac{\sigma_{1a} + \frac{K}{F_2} \cdot \frac{E_1}{E_2}}{\frac{F_2}{F_1} + \frac{E_1}{E_2}} + \frac{K}{F_2}. \end{array} \right.$$

Für K = 0 gehen die Gleichungen 4_1 in die Gleichungen 3_1 über. Für K = 2000 wird

$$\sigma_1 = \frac{1000 + \frac{2000}{100} \cdot 10}{1 + 0.53 \cdot 10} = +923 \text{ at}$$

$$\sigma_2 = -\frac{1000 + \frac{2000 \cdot 10}{100}}{\frac{1}{0.53} + 10} + \frac{2000}{100} = -7.7 \text{ at}$$

För K = 3000 wird $\sigma_1 = 1000$

 $\sigma_2 = 0$ wie zu erwarten.

1000 10

Für K = 4000 wird

41)

$$\sigma_{1} = \frac{1000 + \frac{4000 \cdot 10}{100}}{1 + 0.08 \cdot 10} = +1077 \text{ at},$$

$$\sigma_{2} = -\frac{1000 + \frac{4000 \cdot 10}{100}}{\frac{1}{1.03} + 10} + \frac{4000}{100} = +7.7 \text{ at}.$$

Da σ_2 sich jetzt als Zugspannung herausstellt, wie zu erwarten war, so mufs die dafür mafsgebende kleinere Elastizitätsziffer $E_2 = :00\,000$ at, also $\frac{E_1}{E_2} = 20$ angenommon werden. Dann wird

$$\sigma_1 = \frac{1000 + \frac{4000 \cdot 20}{100}}{1 + 0{,}^{03} \cdot 20} = +1125 \text{ at},$$

$$\sigma_2 = -\frac{1000 + \frac{4000 \cdot 20}{100}}{\frac{1}{0{,}^{03}} + 20} + \frac{4000}{100} = +6{,}^{55} \text{ at}.$$

Die Frage, für welche Druckkraft —K die Spannung σ_1 in der Eiseneinlage gleich Null wird, beantwortet sich nach der ersten Gleichung 4_1 , indem man den Zähler im Ausdruck für σ_1 gleich Null setzt. Es wird dann für $\frac{E_1}{E_2} = 10$

$$K = -\frac{\sigma_{1a} F_2 \cdot E_2}{E_1} = -\frac{1000 \cdot 100}{10} = 10\,000 \text{ kg}$$

und dabei $\sigma_2 = -10$ at.

II. Schub- oder Scherspannungen, Gleitungen.

II. Schub- oder Scherspannungen, Gleitungen.

Befindet sich ein Körper unter der Wirkung äußerer Kräfte im Gleichgewicht und fallen die Mittelkräfte R der beiderseits einer Schnittebene tt angreifenden Kräftegruppen in diese hinein

(Fig. 58, 58a und 58b), so streben dieselben die Teile des Körpers zu beiden Seiten des Schnittes in der Schnittebene gegeneinander Dadurch werden in dieser sogenannte zu verschieben. Fig. 58 b. Schub- oder Scherspannungen wachgerufen, welche sich der Verschiebung widersetzen und in ihrer Gesamtheit mit den äufseren Kräften im Gleichgewicht stehen. Die Verteilung der Schubspannkräfte über den Querschnitt hängt von der Art des Angriffes der äußeren Kräfte ab; sie ist im allgemeinen keine gleichmäßige, d. h. die Schubspannung ist weder nach Richtung noch Größe in allen

Querschnittspunkten dieselbe, der Gesamtwiderstand aber, welchen ein Querschnitt der Abscherung entgegen zu setzen vermag, ist bei den meisten in der Anwendung vorkommenden Querschnittsformen annähernd verhältnisgleich der abzuscherenden Fläche. Bezeichnen wir die durchschnittliche Schubspannung eines Querschnittes F in der Richtung der angestrebten Abscherung mit Tm, so muß sein

 $R = \tau_m \cdot F$.

1)

Die durchschnittliche Schubspannung $\tau_m = \frac{R}{E}$, bei welcher die Abscherung wirklich eintritt, kann nach vorliegenden Versuchen zu rund O,s der Zug- oder Druckfestigkeit des betreffenden Stoffes angenommen werden, wobei, wenn beide verschieden sind, der Kleinstwert zu berücksichtigen ist. Demgemäß ist die zulässige mittlere Schubspannung eines Stoffes zu etwa $\tau_m = 0.8 \sigma$ zu wählen, wenn o die zulässige Normalspannung bezeichnet.

Wirkt die Mittelkraft R der angreifenden äußeren Kräfte, bezw. die etwa allein angreifende Kraft K (Fig. 59) nicht in der Schnittebene, sondern in einem gewissen Abstande l

von derselben parallel zu ihr, so bildet der in der Schnittebene auftretende, der äußeren Kraft K entgegengesetzt gleiche Scherwiderstand T ein Kräftepaar mit K, unter dessen Wirkung eine später zu behandelnde Biegung oder Krümmung des Stabes entsteht. Daneben aber ist mit den Scherspannungen eine Formänderung verbunden, welche darin besteht,

dafs sich die zwischen der Schnittebene tt und dem Angriffspunkte von K gedachten Querschnitte in ihrer Richtung parallel zur tt um ein gewisses Maß gegeneinander verschieben, so daß die zur Schnittfläche ursprünglich rechtwinkligen Flächen, z. B. AB und DC, sich um den Winkel y schiefwinklig zu ihr stellen das rechtwinklige Parallelepipedon ABCD in das Rhomboid AB_1C_1D übergeht. Den Winkel y nennt man den Gleitwinkel oder die Gleitung. Sie entsteht also lediglich als Folge der Schubspannungen und hat für diese eine ähnliche Bedeutung wie die Dehnung für die Zugund Druckspannungen. Wie diese $\varepsilon = \frac{\sigma}{E}$, so ist 2) $\gamma' = \frac{\tau}{C}$

also auch verhältnisgleich der Scherspannung τ . G ist wie E eine vom Stoff abhängige Erfahrungszahl und beide stehen in bestimmter einfacher Abhängigkeit voneinander. G nennt man die Gleitzahl oder das Gleitmaßs. Ehe wir zum Nachweis der Abhängigkeit zwischen der Elastizitäts- und Gleitzahl schreiten, wollen wir kennen lernen die

Beziehung zwischen den Schubspannungen in zueinander rechtwinkligen Ebenen.

Denken wir uns aus einem in beliebiger Weise von äußeren Kräften ergriffenem Körper an irgend einer Stelle ein unendlich kleines rechtwinkliges Parallelepipedon mit den Kantenlängen d.x. dy und dz herausgeschnitten und die in den Seitenflächen desselben wirkenden Spannkräfte als äufsere Kräfte angebracht (Fig. 60), so mufs das Körperelement unter der Wirkung derselben im Gleichgewicht sein. Der Übersichtlichkeit wegen möge hier zunächst

II. Schub- und Scherspannungen, Gleilungen.

angenommen werden, daß die Spannungen reine Schubspannungen sind, nur in den vier Seitenflächen senkrecht zur X- und Y-Achse vorkommen und hier zur Z-Achse senkrechte Richtungen aufweisen. Normalspannungen sollen also vorläufig ausgeschiossen sein.

Die Schubspannungen in der Richtung der X-Achse wollen wir mit τ_x , diejenigen in der Richtung der Y-Achse mit τ_y bezeichnen.

Da die Spannungen innerhalb eines Körpers an verschiedenen Stellen im all-

gemeinen von verschiedener Größe sind, so müssen die in einander gegenüberliegenden Seitenflächen des unendlich kleinen Parallelepipeds auftretenden Schubspannungen sich um Beträge $d\tau_x$ bezw. $d\tau_y$ voneinander unterscheiden. Ist die Schubspannung also in den Flächen ABCD und ADEF gleich τ_x bezw. τ_y , so ist sie in *EFGH* und *BCHG* gleich $\tau_x + d\tau_x$ bezw. $\tau_y + d\tau_y$. Es entstehen also in den vier Seitenflächen die Schubspannkräfte $\tau_x \cdot dx \cdot dz$ in ABCD, $(\tau_x + d\tau_x) dx \cdot dz$ in EFGH, $\tau_y \cdot dy \cdot dz$ in ADEF und $(\tau_y + d\tau_y) dy \cdot dz$ in BCHG, welche Kräfte wir uns in den Mittellinien JM bezw. KL, KJ und LM der Flächen wirkend zu denken haben. Der Richtungssinn derselben hängt von dem Angriff der äufseren Kräfte ab, das Gleichgewicht verlangt aber, wie leicht ersichtlich, dass sowohl die beiden in der Richtung der X-Achse wie der Y-Achse tätigen Kräfte eine Mittelkraft Null, also entgegengesetzten Richtungssinn haben, je ein Kräftepaar bilden. Das Drehungsgleichgewicht verlangt ferner, daß beide in der Ebene JKLM liegenden Kräftepaare erstens einander entgegengesetzten Drehungssinn und zweitens gleiche Momente haben.

Aus der ersten Bedingung folgt, daß die in zwei benachbarten Seitenflächen des Parallelepipeds liegenden Spannkräfte gegen die Schnittlinie derselben gleichen Richtungssinn haben müssen, denn andernfalls wäre ein entgegengesetzter Drehungssinn nicht möglich und die zweite Bedingung führt in Bezug auf eine zur Z-Achse

71

parallele (in der rechtwinkligen Projektion Figur 61 als Punkt erscheinende) Schwerpunktsachse zu der Momentengleichung

$$\begin{aligned} \tau \cdot dx \cdot dz \cdot \frac{dy}{2} + (\tau_x + d\tau_x) \cdot dx \cdot dz \cdot \frac{dy}{2} - \tau_y \cdot dy \cdot dz \cdot \frac{dx}{2} \\ -(\tau_y + d\tau_y) dy \cdot dz \cdot \frac{dx}{2} = 0, \end{aligned}$$

woraus folgt, wenn man mit $dx \cdot dy \cdot dz$ dividiert und die unendlich kleinen Größen $d\tau_x$ und $d\tau_y$ gegen die endlich τ_x und τ_y vernachlässigt

$$\tau_x = \tau_y.$$

Kommen entgegen der gemachten Annahme in sämtlichen Seitenflächen sowohl beliebig gerichtete Schubspannungen als auch Normal-

spannungen vor, d. h. wirken in allen Seitenflächen beliebig gerichtete Spannungen, so wird auch dadurch an obigem Ergebnis nichts geändert.

Zerlegt man "nämlich die in den senkrecht zur *X*- und *Y*-Achse gerichteten Flächen in beliebiger Richtung wirkenden Schubspann-

kräfte in solche parallel zu den drei Achsen, so haben die parallel zur Z-Achse gerichteten Seitenkräfte in Bezug auf die ihr parallele Schwerpunktsachse kein Moment, kommen also für obige Momentengleichung nicht in Betracht, die in die Richtung der X- und Y-Achse fallenden Seitenkräfte sind aber oben schon berücksichtigt. — Die in den Flächen senkrecht zur Z-Achse wirkenden Schubspannungen sowie etwa vorhandene Normalspannungen liefern Kräfte, welche die angenommene Momentenachse schneiden oder mit ihr zusammenfallen, also gleichfalls zu der Momentensumme keinen Beitrag bringen und daher auf das Drehungsgleichgewicht des Körperelementes ohne Einfluß sind. Auch etwaige Massenkräfte (Gewicht, Trägheitswiderstand etc.), deren Mittelkraft im Schwerpunkt angreifen müßste, sind aus gleichem Grunde ohne Einfluß.

Was hier für die Schubspannungen senkrecht zur Z-Achse bezw. zu den ihr parallelen Kanten nachgewiesen ist, läfst sich in genau gleicher Weise für Schubspannungen senkrecht zur X- und Y-Achse nachweisen und es gilt daher allgemein der Satz:

Die an irgend einer Stelle innerhalb eines Körpers in zwei zueinander senkrechten Ebenen normal

II. Schub- und Scherspannungen, Gleitungen.

zu deren Durchschnittslinie auftretenden Schubspannungen sind einander gleich und haben gleichen Richtungssinn gegen jene Durchschnittslinie.

Alle Schubspannungen treten also gewissermaßen paarweise auf. Ist in irgend einem Punkte einer bestimmten Schnittebene Schubspannung nicht vorhanden, so tritt auch in der dazu senkrechten Ebene an betreffender Stelle Schubspannung nicht auf. Mit Hilfe des hier gewonnenen Satzes läßt sich nun auch die

Beziehung zwischen der Elastizitätsziffer E und der Gleitzahl G nachweisen.

An einem kleinen rechtwinkligen Parallelepiped von dem quadratischen Querschnitt $a \times a$ und einer Länge 1 (rechtwinklig zur Bildfläche gemessen) (Fig. 62) wirken in den vier Seitenflächen parallel den Kanten "a" gleichmäßig über dieselben

verteilte Schubspannungen. Wie oben festgestellt, müssen dieselben in den in einer Kante "1" zusammenstofsenden Flächen einander gleich und zu dieser Kante gleich gerichtet sein. Die demnach in allen vier Seitenflächen gleiche Schubspannung werde mit τ bezeichnet, so dafs auf jede Seitenfläche eine Schubkraft $a \cdot \tau$ kommt. Führt man jetzt einen Schnitt nach AC und betrachtet den Abschnitt ADC(Fig. 63), so verlangt das Gleichgewicht an der Schnittfläche AC eine normale Druckkraft von der Größe $\sqrt{2 \cdot (a\tau)^2} = a \cdot \tau \cdot \sqrt{2}$, welche durch die Mitte von AC geht und über die Fläche $AC = a\sqrt{2}$ gleichmäßig verteilt angesehen werden kann, so dafs an AC eine reine Druckspannung $\sigma = -\frac{a\tau \cdot \sqrt{2}}{\sqrt{2}} = -\tau$

Fig. 62.

D

a

auftritt. Eine gleichgroße reine Zugspannung $+\tau$ verlangt das Gleichgewicht in der Schnittfläche BD(Fig. 64). In Schnittflächen parallel AC bezw. BDherrscht, wie sich leicht zeigen läßt, die gleiche

Druck- bezw. Zugspannung. Unter der Wirkung dieser reinen Zugund Druckspannungen in der Richtung der beiden Diagonalen erfährt die eine AC von der Länge d eine Verlängerung Δd und die

73

andere BD von gleicher Länge eine Verkürzung Δd . Aus dem Quadrat (Fig. 62) wird daher ein Rhombus (Fig. 65) (dessen Diagonalen sich rechtwinklig schneiden). Zur Berechnung des Winkels γ , der Gleitung, bedenke man, dafs $\not\prec DBC = 45^{0} + \frac{\gamma}{2}$ und daher

$$\operatorname{tg} DBC = \operatorname{tg} \cdot \left(45^{\,0} + \frac{\gamma}{2} \right) = \frac{\frac{1}{2} AC}{\frac{1}{2} BD} = \frac{d + \Delta d}{d - \Delta d} = \frac{1 + \frac{\Delta d}{d}}{1 - \frac{\Delta d}{d}}$$

11

da aber γ stets nur klein sein wird, kann tg $\frac{\gamma}{2} = \frac{\gamma}{2}$ und

$$\operatorname{tg}\left(45^{\,0}+\frac{\gamma}{2}\right) = \frac{\operatorname{tg}45^{\,0}+\operatorname{tg}\frac{\gamma}{2}}{1-\operatorname{tg}45^{\,0}\cdot\operatorname{tg}\frac{\gamma}{2}} = \frac{1+\frac{\gamma}{2}}{1-\frac{\gamma}{2}} = \frac{1+\frac{\Delta d}{d}}{1-\frac{\Delta d}{d}}$$

gesetzt werden, so dafs $\gamma = 2 \frac{\Delta d}{d} = 2 \varepsilon$ wird. Wegen der in den zueinander rechtwinkligen Diagonalrichtungen gleichzeitig herrschenden Zug- und Druckspannung τ wird nach S. 61 die Dehnung

3)
$$\varepsilon = \frac{\tau}{E} \cdot \left(1 + \frac{1}{m}\right)$$
, also

$$\gamma = \frac{\tau}{G} = 2 \varepsilon = \frac{\tau \cdot 2}{E} \left(1 + \frac{1}{m} \right)$$
, woraus folgt

 $G = \frac{E}{2\left(1+\frac{1}{m}\right)}$ Für m = 4 wird G = 0,4 E.

4)

Wirken nicht nur rechtwinklig zu einer Kantenrichtung, sondern rechtwinklig zu allen drei Kantenrichtungen Schubspannungen τ_x , τ_y und τ_z , so entstehen auch in allen drei Richtungen die entsprechenden Gleitungen $\gamma_x = \frac{\tau_x}{G}$, $\gamma_y = \frac{\tau_y}{G}$ und $\gamma_z = \frac{\tau_z}{G}$.

Nachdem so die Beziehung zwischen G und E und damit auch die Gleitzahl G selbst bekannt geworden, steht der beliebigen Anwendung des in Gleichung 2 ausgedrückten Formänderungs- bezw. Gleitungsgesetzes nichts mehr entgegen.

11. Schub- und Scherspannungen, Gleitungen.

Bei der Berechnung des Scherwiderstandes wurde oben der Begriff einer in der Schnittebene herrschenden mittleren Scherspannung τ_m zu grunde gelegt. Auf die Verteilung der Scherspannungen über die Schnittfläche und die eintretende größte Scherspannung werden wir später noch zurückkommen.

Anwendungen.

Die Scherfestigkeit kommt besonders bei den Nietverbindungen in Frage. Will man zwei Stäbe von rechteckigem Querschnitt (Flacheisen), die von

Längskräften K ergriffen sind, durch Nietung verbinden, so kann das entweder nach Mafsgabe der Fig. 66 durch Übereinanderlegen der Stabenden unter Verwendung eines Nietbolzens, oder, wenn die Mittellinie der

Stäbe in einer Geraden liegen müssen, wie in Fig. 67 gezeichnet, unter Benutzung einer Lasche mit zwei Nietbolzen, oder endlich nach Anleitung der Fig. 68 durch zwei Laschen und zwei Nietbolzen geschehen. Dabei wird in allen Fällen vorausgesetzt, dafs die zylindrischen Löcher durch die Nietbolzen völlig ausgefüllt werden, was ein Ein-

ziehen der letzteren in erwärmtem (schwach weißsglühendem) Zustande erfordert. Sollte nun die Vernietung durch die Kräfte K zerstört werden, so müßsten

diese in erster Linie die Scherfestigkeit des Nietbolzens in der mit der Berührungsebene der Stäbe (Fig. 66), oder der Stäbe und Laschen Fig. 67 und

Fig. 67.

68 zusammenfallenden Querschnittsfläche ab Fig. 66 bezw. ab und cd Fig. 68, daneben aber auch die Reibung in den Berührungsflächen überwinden. Die warm eingezogenen Niete ziehen .sich nämlich entsprechend ihrer Abkühlung zusammen und pressen dabei die Stäbe mit eine gewisse Reibung erzeugendem Drucke aufeinander. Der dadurch entstehende Reibungswiderstand ist indes ein unsicherer Faktor und entzieht sich einer zuverlässigen rechnerischen Beurteilung; wir wollen daher hier nur den Scherwiderstand der Nietbolzen in Retracht ziehen. Bei einer Vernietung nach Fig. 66 ist der Scherwiderstand eines Nietquerschnittes ab, bei einer solchen nach Fig. 67, derjenige des einen oder anderen Nietquerschnittes, bei einer Vernietung nach Fig. 68 endlich ist der Scherwiderstand beider Nietquerschnitte zu überwinden. In den ersten beiden Fällen nennt man die Niete einscherig, im dritten zweischerig.

Ist F der Querschnitt eines Nietes, d sein Durchmesser, so besteht nach Seite 69 zwischen der mittleren Scherspannung τ_m und der Kraft K bei einscheriger Vernietung (Fig. 66 u. 67) die Beziehung

$$K = F \cdot \tau_m = \frac{d^2 \cdot \pi}{4} \cdot \tau_m$$

und bei zweischeriger (Fig. 68) $K = 2 \cdot F \cdot \tau_m = \frac{d^2 \cdot \pi}{2} \cdot \tau_m$.

Nach S. 69 kann gesetzt werden die zulässige Scherspannung $\tau_m = 0_{,3} \cdot \sigma$, wenn σ die kleinere der zulässigen Normal- oder Längsspannungen ist.

Beispiel 1: Für $d=2 \text{ cm} \tau_m=0.\text{s} \sigma=0 \text{ s} \cdot 1000=800 \text{ st}$ ergibt sich die zulässige Längsbelastung der Verbindungsstelle für einscherige Nietung $K=\frac{2^2 \cdot \pi}{4} \cdot 800=2512 \text{ kg}$ und für zweischerige Nietung $K=\frac{2^2 \cdot \pi}{2} \cdot 800=5024 \text{ kg}$.

Soll bei der gleichen zulässigen Spannung $\tau_m = 800 \,\mathrm{at}$ die Belastung $K = 6000 \,\mathrm{kg}$ betragen, so muß sein bei einscheriger Vernietung

$$d = \sqrt{\frac{6000 \cdot 4}{\pi \cdot 800}} = \text{rot } 3,1 \text{ cm}$$
$$d = \sqrt{\frac{6000 \cdot 2}{\pi \cdot 800}} = 2,2 \text{ cm}.$$

und für zweischerige Nietung $d = \sqrt{\frac{6000 \cdot 2}{\pi \cdot 800}} = 2.2 \text{ cm}.$

Die Vernietung bringt infolge der notwendigen Durchlochung und dadurch bedingten Querschnittsverminderung der Stäbe eine gewisse Schwächung derselben an der Verbindungsstelle mit sich. Ist

die Breite der zu verbindenden Stäbe b, ihre Dicke ∂ , so ist der dem Zerreifsen widerstehende Reinquerschnitt an der Verbindungsstelle (Fig. 69) gleich $(b-d) \partial$ und die zulässige Zugbelastung $K=(b-d) \partial \cdot \sigma$. Eine zweckmäßig hergestellte

Verbindung muß die Bedingung erfüllen, daß ihre Widerstandsfähigkeit gegen Zerreifsen ebensogrofs ist, als die gegen Abscheren.

Daraus folgt für einscherige Nietung die Gleichung

$$K = (b-d) \,\delta \cdot \sigma = \frac{\pi \cdot d^2}{4} \cdot 0_{,8}$$

und für zweischerige

1)

1)

2)

2) $K = (b-d) \,\delta \cdot \sigma = \frac{\pi \cdot d^2}{2} \cdot 0_{,8} \cdot \sigma.$

Zwischen den Querschnittsabmessungen und dem Nietdurchmesser mußs also die Beziehung bestehen:

1)für einscherige Nietung $(b-d) \partial = 0, 2 \cdot \pi \cdot d^2$ und2)für zweischerige Nietung $(b-d) \partial = 0, 4 \cdot \pi \cdot d^2$.

Beispiel 2: Für b=8 cm, $\delta=1,2 \text{ cm}$ wird im Falle d=3,10 cmd=2,30 cm.

II. Schub- und Scherspannungen, Gleitungen.

Im Falle 1 erzeugt eine Zugbelastung K = 6000 an der Verbindungsstelle im Stabe eine Zugspannung $\sigma = \frac{6000}{(8-3,1)} = \operatorname{rot} 1000 \operatorname{at}$ und eine Scher-

spannung im Nietquerschnitt $\tau_m = \frac{6000}{3,1^2 \cdot \pi} = 800^{\text{at}}$, während im Falle 2 sich

für eine Zugbelastung K von 6800 kg im Stabe die gleiche Zugspannung und in den beiden Nietquerschnitten die gleiche Scherspannung ergibt. In beiden Fällen herrscht also annähernd gleiche Sicherheit gegen Zerreifsen der Stäbe wie gegen Abscheren der Niete; $\tau_m = \operatorname{rot} 0, \mathrm{s} \sigma$. Da indes im Falle 2 (Anwendung von Doppellaschen) zur Verbindung der Stäbe ein wesentlich kleinerer Nietdurchmesser genügt (2,s gegen 3,1 cm), so war die Schwächung der Stäbe eine entsprechend geringere, und die zulässige Belastung K eine entsprechend gröfsere (6800 – 6000 kg).

Aufserhalb der Verbindungsstelle, wo der Stab seinen vollen Querschnitt behält, besitzt er bei gleicher Sicherheit ein Tragvermögen von $K = 8 \cdot 1, 2 \cdot 1000 = 9600$ kg. Von dieser Tragfähigkeit sind im Falle 1 $\frac{6000}{9600} = {}^{b}/{s} = 0, s25$ oder $62, 5^{\circ}/{\circ}$, im Falle 2 $\frac{6800}{9600} = \frac{17}{24} = \operatorname{rot} 0, 70^{\circ}$ oder 70°/ \circ erhalten geblieben. Das Verhältnis der Festigkeit, bezw. des Tragvermögens der Verbindung zu dem des ungeschwächten Stabes nennt man das Güte-. verhältnis der Verbindung. Bezeichnet man dasselbe mit η , so ist allgemein

Handelt es sich anstatt um die Verbindung von Stäben um solche von Platten, so treten an die Stelle der Einzelniete sogen. Nietnähte.

(Vergl. Fig. 70 u. 71.) Denkt man sich die Platten in Stäbe zerlegt, deren Breite gleich ist der Nietentfernung l, so bleibt die Rechnung grundsätzlich dieselbe.

$$\eta = \frac{b-d}{b}.$$

Beispiel 3: Die Nietnaht zweier Blechplatten hat wie die Platten selbst für ihre Längeneinheit eine Zugkraft P zu übertragen. Die Verbindung soll so hergestellt werden, daß die Zugspannung des Bleches in der Naht σ und die mittlere Scherspannung der Niete $\tau_m = 0.8 \sigma$ beträgt. Die erforderliche Blechstärke ϑ , die Nietstärke d und die Nietentfernung l sind unter der Annahme zu bestimmen, daß das Verhältnis $\frac{\text{Nietdurchmesser}}{\text{Blechstärke}} = \frac{d}{\vartheta} = m$ ist. Auf die Länge l einer Nietteilung entfällt eine Kraft $l \cdot P$. Dieselbe muß einerseits als Zugkraft von einem Reinquerschnitt $(l-d)\vartheta$ der Platten und andererseits als Scherkraft von einem Nietquerschnitt $\frac{\pi d^2}{4}$ aufgenommen und übertragen werden. Das führt, wenn die Verbindung nach Fig. 70 hergestellt wird, zu den beiden Gleichungen $Pl = (l-d)\vartheta \cdot \sigma$ und $Pl = \frac{\pi}{4} \cdot d^2 \cdot \tau_m = \frac{\pi}{4} \cdot d^2 \cdot 0.8 \sigma$. Aufserdem ist wie oben bemerkt $\frac{d}{\vartheta} = m$.

Die Lösung der drei Gleichungen ergibt .

$$d = \frac{P}{\sigma} \cdot \left(\frac{5}{\pi} + m\right)$$
$$l = \frac{P}{\sigma} \left[\frac{5}{\pi} + m\left(\frac{m\pi}{5} + 2\right)\right]$$

und nachdem d bekannt geworden $\delta = \frac{d}{m}$.

Für $P = 400 \text{ kg } \sigma = 800 \text{ at}$ und $m = \frac{d}{\delta} = 2,5$

wird $d = \frac{400}{800} \left(\frac{5}{\pi} + 2, 5 \right)^{\circ} = \operatorname{rot} 2 \operatorname{cm} l = \frac{400}{800} \left[\frac{5}{\pi} + 2, 5 \cdot \left(\frac{2, 5 \cdot \pi}{5} + 2 \right) \right] = 5, 25 \operatorname{cm}$

 $\delta = \frac{d}{2,5} = \frac{2,6}{2,5} = 0,80$ cm. Das Güteverhältnis der Nietverbindung

$$\eta = \frac{5,25-2}{5,25} = 0,62$$
 d. i. $62^{0}/o$.

Bei Anwendung einer Doppelverlaschung (Fig. 71), also zweischeriger Niete geht die zweite der obigen drei Gleichungen über in

$$Pl = \frac{\pi}{2} \cdot d^2 \cdot 0, s \sigma = \frac{\pi}{2, s} \cdot d^2 \sigma;$$

im übrigen bleibt alles ungeändert. Die Lösung ergibt dann

$$d = \frac{P}{\sigma} \cdot \left(\frac{2,5}{\pi} + m\right) \text{ und } l = \frac{P}{\sigma} \left[\frac{2,5}{\pi} + m\left(\frac{m \cdot \pi}{2,5} + 2\right)\right]$$
$$\delta = \frac{d}{m}.$$

Für dieselben Zahlwerte wie oben wird

das

$$d = \frac{400}{800} \cdot \left(\frac{2,5}{\pi} + 2,5\right) = 1,65 \text{ cm}, \ l = \frac{400}{800} \left[\frac{2,5}{\pi} + 2,5\left(\frac{2,5 \cdot \pi}{2,5} + 2\right)\right] = 6,6 \text{ cm}.$$

$$\delta = \frac{1,65}{2,5} = 0,66 \text{ cm}.$$

Güteverhältnis $\eta = \frac{6,8 - 1,65}{6,8} = 0,76.$

Es mag hier kurz bemerkt werden, dafs für manche Nietverbindungen nicht allein sichere Kraftübertragung, sondern daneben auch ein dichter Schlufs der Nähte für die Bestimmung der Nietentfernung, Nietstärke u. s. w. bestimmend ins Gewicht fällt, worauf einzugehen indes hier nicht der Ort ist.

III. Reine Biegungsspannungen, Biegungslinie.

a) Biegungsspannungen, Biegungsmomente.

Ein gerader Stab befinde sich unter der Wirkung äußerer Kräfte im Gleichgewicht und die beiderseits einer zur Stabachse rechtwinkligen Schnittebene tt angreifenden Kräfte bilden je ein Kräftepaar, dessen Drehungsebene rechtwinklig zur Querschnittsebene gerichtet ist. (Vergl. Fig. 5.) Dann erfordert das Gleichgewicht jedes der beiden durch den Schnitt getrennten Stabteile, daß die in der Schnittebene auftretenden Spannkräfte in ihrer Gesamtheit gleichfalls ein Kräftepaar (P und -P) bilden, dessen Drehungsebene rechtwinklig zur Schnittebene gerichtet, und dessen Moment in Bezug auf das betreffende Stabende demjenigen der dieses angreifenden äußeren Kräfte entgegengesetzt gleich ist. Das gegen die Schnittebene rechtwinklig drehende Kräftepaar der inneren Spannkräfte kann nur durch Spannungen normal zur Schnittebene, durch Normalspannungen, d. i. durch Zug- und Druckspannungen, nicht aber durch in der Ebene tätige Tangential- oder Schubspannungen entstehen; nur erstere können also durch den bezeichneten Angriff der äußeren Kräfte in dem Querschnitte hervorgerufen werden.

Die im Bereiche und in der Richtung der Zugspannungen auftretenden positiven Dehnungen oder Verlängerungen, und die im Bereiche der Druckspannungen entstehenden negativen Dehnungen oder Verkürzungen der Materialfasern haben eine Krümmung oder Biegung des Stabes zur Folge. Man nennt daher die auftretenden Normalspannungen in diesem Falle Biegungsspannungen und zwar

wegen des Fehlens anderer Spannungen, "reine Biegungsspannungen". Fig. 72 und 72a, ein Balken auf zwei Stützen mit gleichen und symmetrisch gelegenen Einzellasten und ein einseitig durch Einspannung oder Einmauerung festgehaltener, am freien

Ende durch ein Krättepaar ergriffener Balken, zeigen auf der Strecke AB bezw. CD Beispiele reiner Biegungsspannungen.

Das bisher Gesagte gilt für jeden darin bezeichneten Kraftangriff und für jede Querschnittsform des ergriffenen Stabes. In folgendem möge aber zunächst die vereinfachende Annahme gemacht werden, daß die äußeren Kräfte unter sich und mit der Stabachse in einer Ebene liegen und daß diese sog. "Kraftebene" für den Stab eine Symmetrieebene ist, jeden Querschnitt rechtwinklig zur Stabachse also in einer Symmetrielinie, der sog. "Kraftlinie" schneidet. Die Biegung sei so gering, daß die damit verknüpfte Änderung der Richtung und Lage der äußeren und inneren Kräfte für das Gleichgewicht beider außer Acht bleiben kann. Setzen wir ferner in fast völliger Übereinstimmung mit der Erfahrung voraus, daß jeder vor der Biegung ebene Stabquerschnitt auch nach derselben noch eben ist, so nimmt ein durch zwei parallele Querschnittsebenen begrenztes Längenteilchen abcd des Stabes nach der

III. Reine Biegungsspannungen, Biegungslinien.

Biegung die Form $a_1b_1c_1d_1$ eines abgestumpften Keiles an. (Vergl. Fig. 72 und 73). Die in der Nähe der konvexen Außenkante ab und in der Richtung derselben eintretende Verlängerung der Stoffteilchen sowohl, als die nach der konkaven Außenkante cd hin entstehende Verkürzung werden, wenn man durch $n ef \parallel a_1d_1$ zieht, durch die Keilstücke b_1ne und c_1nf dargestellt; sie sind also ver-

hältnisgleich dem Abstande der Materialfasern von der Schicht nn_1 , welche weder Verlängerung noch Verkürzung erfährt. Diese Dehnungs- und daher auch spannungslose Faserschicht wird

dementsprechend neutrale Schicht genannt. Sie schneidet jeden Stabquerschnitt in einer geraden Linie nn, der sogenannten Biegungsachse oder Spannungsnullinie oder kurz Nullinie des Querschnittes. Bei

der vorausgesetzten Symmetrie der Querschnitte in Bezug auf die Kraftlinie kk (Schnittlinie der Querschnitts- und Kraftebene) kann die Nullinie nn nur rechtwinklig zu derselben gerichtet sein.

Wie die Dehnungen der Materialfasern, so sind nach den Ausführungen unter I S. 50 auch die mit ihnen entstehenden Normalspannungen σ verhältnisgleich dem Abstande von der neutralen Schicht, bezw. von der Nullinie des Querschnittes. Denkt man sich daher in jedem Querschnittspunkte die dort herrschende Spannung als Ordinate rechtwinklig zur Querschnittsebene unter Berücksichtigung ihres Vorzeichens aufgetragen (Fig. 74), so erfüllen die positiven und negativen Spannungswerte je einen Keil, den sog. Spannungskeil, dessen geradlinige Schneide mit der Nullinie nn zusammenfällt und dessen Volumen $\int d F \cdot \sigma$ auf der einen Seite der Nullinie

Keck. Elastizitätslehre.

die Mittelkraft aller Zugspannkräfte und auf der andern Seite die Mittelkraft aller Druckspannkräfte darstellt. Da das Gleichgewicht

des abgeschnittenen Stabendes verlangt, daß die Gesamtheit aller im Querschnitt tätigen Spannkräfte ein Kräftepaar bilden, also ihre

Mittelkraft $\int_{-\epsilon_2}^{+\epsilon_1} \sigma = 0$

ist, so mufs auch die Mittelkraft aller Zugspannkräfte entgegengesetzt gleich der Mittelkraft aller Druck-

2.

spannkräfte, das Volumen des positiven Spannungskeiles gleich demjenigen des negativen sein.

Für den Stab mit rechteckigem Querschnitt (Fig. 74a) erkennt man leicht aus der Gleichheit der positiven und negativen Spannungskeile, dats die Nullinie den Querschnitt halbieren, also durch seinen Schwerpunkt gehen mufs und dafs die gröfsten Zug- und Druckspannungen in den der Nulllinie entferntesten Stoffteilen, die sog. Kanten- oder Randspannungen, einander gleich sind. Bezeichnen wir sie mit σ_1 , so ist der Inhalt edes Spannungskeiles, die Mittelkraft der Zug- und Druckspannkräfte, gleich $\frac{\sigma_1 d}{2} \cdot \frac{h}{2} = \frac{\sigma_1 d h}{4}$. Ihre Richtungslinien gehen durch die Schwerpunkte der Spannungskeile, haben also einen Abstand von der Nullinie gleich $\frac{2}{3} \cdot \frac{h}{2} = \frac{h}{3}$ und unter sich einen solchen von $\frac{2h}{3}$. Das Moment des Kräftepaares der inneren Spannkräfte ist danach gleich $\frac{2}{3} \cdot \frac{\sigma_1 d \cdot h}{4} = \sigma_1 \cdot \frac{d \cdot h^2}{6}$. Das Gleichgewicht, die Momentengleichheit der äufseren und inneren Kräfte, bedingt die Gleichung $M = K \cdot a = \sigma_1 \cdot \frac{dh^2}{6}$, womit eine Beziehung zwischen der für die Widerstandsfähigkeit des Stabes maßgebenden größten Randspannung σ_1 und dem angreifenden Kräftepaar gefunden ist.

Für eine beliebige, aber zur Kraftebene symmetrische Querschnittsform des Stabes ergibt sich aus der Bedingung, daß die im Querschnitt tätigen Normalspannkräfte ein Kräftepaar bilden, eine Mittelkraft Null haben müssen, die allgemeine Gleichung

 $\int_{-}^{+\epsilon_1} \sigma \cdot dF = 0.$

Zwischen der Spannung σ_1 im äußersten Faserabstande e_1 von der Nullinie und der Spannung σ im beliebigen Abstande y von derselben besteht aber nach Seite 81 die Beziehung $\frac{\sigma}{\sigma_1} = \frac{y}{e_1}$, also $\sigma = \sigma_1 \frac{y}{e_1}$ Damit geht, weil σ_1 und e_1 von y nicht abhängig sind, Gleichung 1 über in

2)

$$\frac{\sigma_1}{e_1} \int_{-e_2}^{+e_1} y \cdot dF = 0, \text{ also auch } \int_{-e_2}^{+e_1} y \cdot dF = 0.$$

Der Integralwert stellt das statische Moment der Querschnittsfläche in Bezug auf die Nullinie nn dar. Aus der Nullgleichheit desselben folgt:

Die Spannungsnullinie in jedem Querschnitt eines nur gebogenen Stabes geht durch den Schwerpunkt des Querschnittes, die Schwerpunktsachse oder Mittellinie des Stabes liegt in der neutralen Schicht

Um zu dem Moment der inneren Spannkräfte zu gelangen, beziehen wir sie auf die Nullinie als Momentenachse. Auf ein Flächenteilchen dF im Abstande y von der Nullinie nn entfällt eine Spannkraft $\sigma \cdot dF$ und das Moment derselben in Bezug auf die nnist $\sigma \cdot dF \cdot y$. Die Summe aller dieser Momente, gebildet für den ganzen Querschnitt, ist das Moment des Kräftepaares der inneren Spannkräfte und muß dem Moment M der das Stabende angreifenden äufseren Kräfte entgegengesetzt gleich sein. Daraus ergibt sich die Gleichung

$$M = K \cdot a = \int_{-\epsilon_2}^{+\epsilon_1} \sigma dF \cdot y$$

6#

und, wenn man wieder $\sigma = \frac{\sigma_1 \cdot y}{e_1}$ setzt

$$M = K \cdot a = \frac{\sigma_1}{e_1} \cdot \int_{-\epsilon_a}^{+\epsilon_1} dF \cdot y^2.$$

In dem Integralwert erkennen wir das Trägheitsmoment des Querschnittes in Bezug auf die Nullinie (vergl. Seite 9). Bezeichnen wir ihn mit \mathcal{J} , so schreibt sich obige Gleichung

3)

3a)

$$M = K \cdot a = \frac{J}{e_1} \cdot \sigma_1.$$

Gleichung 3 drückt die Beziehung zwischen der größten Zugspannung σ_1 und dem Angriffs- oder Biegungsmoment Mder äußeren Kräfte aus.

Zwischen der stärksten Zugspannung σ_1 und der stärksten Druckspannung σ_2 besteht aber Verhältnisgleichheit mit den äußersten Esserabständen auch eine die $\sigma_1 = \sigma_1$ und dempsch auch

Faserabständen e_1 und e_2 ; es ist $\frac{\sigma_1}{\sigma_2} = \frac{x_1}{e_2}$ und demnach auch

 $M = K \cdot a = rac{J}{e_2} \cdot \sigma_2 \,.$

Die rechte Seite der Gleichungen 3 und 3a drückt das sog. Spannungsmoment aus. Den lediglich von der Form und Größe des Querschnitts abhängenden Faktor $\frac{J}{e_1}$ bezw. $\frac{J}{e_2}$ derselben nennt man kurz das Widerstandsmoment des Querschnittes, wobei zu unterscheiden ist zwischen demjenigen $\left(W_1 = \frac{J}{e_1}\right)$ für die Zugspannung (σ_1) und dem $\left(W_2 = \frac{J}{e_2}\right)$ für die Druckspannung (σ_2) . Ist für einen Querschnitt $e_1 = e_2$, wie beispielsweise für alle zur Nullinie symmetrischen Querschnitt, so wird $W_1 = W_2$ und, wenn der Stoff des Stabes dem Hoke'schen Gesetz folgt, $\sigma_1 = \sigma_2$.

Für den rechteckigen Querschnitt z. B. ist nach Seite 15 $J = \frac{bh^3}{12}$, $e = \frac{h}{2}$, $W = \frac{bh^2}{6}$ und daher $M = \frac{bh^2}{6}\sigma$, wie Seite 82 bereits anderweit nachgewiesen.

85

Handelt es sich im gegebenen Falle um ein bekanntes Biegungsmoment M und um einen Stabquerschnitt von bekanntem Widerstandsmoment $\frac{J}{a} = W$, so hat man

Randspannung $\sigma = \frac{\text{Biegungsmoment } M}{\text{Widerstandsmoment } W}$.

Die Widerstandsmomente, wie sie sich für die gebräuchlichsten Querschnittsformen nach Seite 15 u. f. aus den dort ermittelten Trägheitsmomenten ergeben, sind mit diesen in der Tabelle S. 85 zusammengestellt.

b) Biegung, Biegungslinie.

Die Linie, nach der sich die ursprünglich gerade Stabachse unter der Wirkung des Biegungsmomentes krümmt, nennt man die Biegungslinie. Ihre Krümmung ist in den meisten Fällen der Anwendung eine einfache, und die Ebene, in welcher sie erfolgt, heifst die Biegungsebene. Nur in Fällen besonderer Stabformen und Angriffsarten der äufseren Kräfte, welche indes hier aufser Acht bleiben sollen, kann die Biegungslinie auch doppelte Krümmung aufweisen.

In Fig. 73 ist 0 der Krümmungsmittelpunkt der Biegungslinie für das Längenteilchen $ab = nn_1 = dx$ derselben, $0n = \varrho$ ihr Krümmungshalbmesser. Aus der Figur ergibt sich

$$\frac{nn_1}{n0} = \frac{dx}{\varrho} = \frac{eb_1}{b_1 n}$$

Die mit der Spannung σ_1 eintretende Verlängerung der Kante ab = dx, in der Figur durch die Linie eb_1 ausgedrückt, ist nach Seite 50 $\Delta dx = eb_1 = \frac{dx \cdot \sigma_1}{E}$. Dieses und $b_1n = e_1$ in obige Gleichung eingeführt ergibt

$$\varrho = \frac{e_1 E}{\sigma_1}.$$

1)

Da E nach Seite 55 stets bedeutend größer ist, als die in Frage kommenden Spannungswerte σ_1 , so folgt aus Gleichung (1), daß der Krümmungshalbmesser ϱ meist sehr groß, die Krümmung $\frac{1}{\varrho}$ daher sehr klein ausfällt. Für einen <u>T</u>-Träger von $0,2^{\text{m}}$ Höhe, also $e_1 = e_2 = 0,1^{\text{m}}$ und $\sigma_1 = 1000^{\text{at}}$, $E = 20000000^{\text{at}}$ ist $\varrho = 0,10 \cdot \frac{2000000}{1000} = 200^{\text{m}}$. III. Reine Biegungsspannungen, Biegungslinien.

Setzt man in Gleichung (1) $\sigma_1 = \frac{M}{J/e_1}$, so folgt $\varrho = \frac{JE}{M}; \ \frac{1}{\varrho} = \frac{M}{JE}.$

2)*)

Für alle Querschnitte, für welche ausschliefslich die hier angenommene Wirkung eines Kräftepaares in Frage kommt (in Fig. 72 zwischen A und B, in Fig. 72a zwischen C und D), hat das Moment M denselben Wert. Ist der von dem Kräftepaar ergriffene Stab prismatisch, d. h. von überall gleichem Querschnitt, so ist auch Jund nach Gleichung 2 auch ϱ konstant; die Biegungslinie ist in diesem Falle eine Kreislinie.

Nach den Lehren der höheren Mathematik besteht allgemein zwischen dem Krümmungshalbmesser ϱ einer durch ihre Gleichung bekannten Kurve in irgend einem Kurvenpunkte mit den Koordinaten x und y die Beziehung

$$\frac{1}{\varrho} = \frac{\frac{d^2 y}{d x^2}}{\left[1 + \left(\frac{d y}{d x}\right)^2\right]^{3/2}}.$$

Sieht man hierin x und y als Koordinaten der Biegungslinie in Bezug auf ein Achsenkreuz an, dessen X-Achse mit der ursprünglich geraden Stabachse zusammenfällt (Fig. 75 und 75a), so wird bei den meist in Frage kommenden kleinen Werten der Ordinaten yund kleinen Krümmungen $\left(\frac{dy}{dx}\right)^2$ gegen die Einheit verschwindend klein und kann vernachlässigt werden. Es folgt dann unter Beachtung der Gleichung 2

3)

ł

$$\frac{1}{\varrho} = \frac{d^2 y}{dx^2} = \frac{M}{JE}.$$

Gleichung 3 ist die sog. Grundgleichung der Biegungslinie. Bei ihrer Anwendung ist zu beachten, daß für Punkte, in welchen die Kurve ihre konkave Seite nach der positiven y-Richtung kehrt, $\frac{d^2y}{dx^2} > 0$ ist, und daß daher Biegungsmomente M, welche solche Krümmung des Stabes hervorrufen, mit positiven Vorzeichen in Gl. 3 einzuführen sind und umgekehrt.

*) Gleichung 2 rührt her von Jacob Bernoulli (geb. 27. Dez. 1654 zu Basel, gest. 16. Aug. 1705 das.).

Legt man in dem Belastungsfalle Fig. 72 den Koordinatennullpunkt in die Trägermitte nach O (Fig. 75) oder im Falle der

Fig. 75 a.

Fig. 72a nach D (Fig. 75a) und nimmt die positive Richtung der Y-Achse nach unten an, so ergibt die Integration der Gleichung 3, in welche M mit positiven Vorzeichen einzusetzen ist,

$$\frac{dy}{dx} = \frac{M \cdot x}{JE} + \text{Const.}$$

Für x = 0 in den Punkten 0 bezw. *D* ist die Tangente an die Biegungslinie ersichtlich horizontal, daher $\frac{dy}{dx} = 0$ und Const. = 0. Die nochmalige Integration führt zu der Gleichung

$$y = \frac{Mx^2}{2JE} + \text{Const.},$$

worin für x = 0 auch y = 0 und somit auch Const. = 0 sein mußs. Danach ist die aus der nur annähernd richtigen Grundgleichung 3 sich ergebende Biegungslinie eine Parabel, während, wie weiter oben festgestellt wurde, die genaue Form derselben für den vorliegenden Belastungsfall eine Kreislinie ist. Der Unterschied zwischen einem derart schwach gekrümmten Kreisbogen und einer Parabel ist indes so gering, daß er praktisch völlig verschwindet.

Die größte Durchbiegung f für den Belastungsfall Fig. 75 erhält man für $x = \frac{l}{2}$ zu $f = \frac{M \cdot l^2}{8JE}$ und für den Belastungsfall Fig. 75 a für $x = l_f$ $f = \frac{M l^2}{2JE}$.

Setzt man beispielsweise K = 2000 kg, a = 100 cm, l = 400 cm, so wird $M = 100 \cdot 2000 = 200000 \text{ cm/kg}$. Bei einem <u>T</u>-Querschnitt von 20 cm Höhe, einem Trägheitsmoment von 2140 cm⁴ und einer Elastizitätszahl des Materials von E = 2000000 at ergibt sich dann nach Gleichung 2 eine Krümmung vom Radius

$$\varrho = \frac{EJ}{M} = \frac{2000000 \cdot 2140}{200000} = 21400 \, {\rm cm}.$$

Dem entspricht im Belastungsfalle Fig. 75a eine Durchbiegung $f = \varrho - \sqrt{\varrho^2 - l^2} = 21400 - \sqrt{(21400)^2 - (400)^2} = 3,739$ cm, während obige Annäherungsgleichung

$$f = \frac{Ml^2}{2JE} = \frac{200\,000 \cdot 400^2}{2 \cdot 2140 \cdot 2000\,000} = 3,738 \,^{\text{cm}},$$

also eine kaum merkbare Abweichung ergibt. Bei den meist vorkommenden verhältnismäßig geringeren Durchbiegungen ist die Abweichung noch kleiner, sodafs die oben abgeleitete Grundgleichung der Biegungslinie $\frac{d^2y}{dx^2} = \frac{M}{JE}$ in den meist vorkommenden Fällen schwacher Biegung so gut als genau gelten kann.

IV. Biegungs- und Schubspannungen, Biegung durch beliebige Kräfte rechtwinklig zur Stabachse.

a) Allgemeine Beziehungen zwischen den äufseren Kräften und den inneren Spannungen.

Der zu betrachtende Stab werde auch hier wieder symmetrisch zur Kraftebene angenommen. Er befinde sich unter der Wirkung der äußeren Kräfte im Gleichgewicht.

Dann müssen auch die an einem durch eine Schnittebene tt(Fig. 76) abgetrennten Stabende angreifenden äußeren Kräfte mit den in der Schnittebene auftretenden inneren Spannkräften im Gleichgewicht sein. Erstere aber lassen sich stets zu einer Mittelkraft Q

senkrecht zur Stabachse, also parallel zur Schnittebene, der sogenannten Querkraft, vereinigen. Indem diese das von ihr ergriffene Stabende gegen das durch die übrigen äußeren Kräfte festgehaltene in ihrer Richtung zu verschieben strebt, ruft sie in der Schnittebene Schubspannungen τ , bezw. einen Tangential- oder Schubwiderstand T hervor, welcher der Kraft Q entgegengesetzt gleich sein, mit ihr also ein Kräftepaar bilden muß, dessen Drehungsebene senkrecht zur Schnittebene gerichtet ist.

$$Q = T$$
.

Ist x der Abstand der Querkraft von der Schnittebene, so ist $M = Q \cdot x$ das von der Lage des Querschnitts abhängige Moment des genannten Kräftepaares, bezw. das Biegungsmoment der am Stabende tätigen äufseren Kräfte. Unter der Wirkung desselben entstehen in der Schnittebene Biegungsspannungen, für welche nach den Ausführungen unter III (S. 84 Gl. 3) die Gleichung gilt

$$M = Q \cdot x = \frac{J}{e} \cdot \sigma \,.$$

1)

Dabei erinnern wir uns, daß, wenn der Querschnitt in Bezug auf die Nullinie unsymmetrisch ist, die Randspannungen σ für die konvexe und die konkave Aufsenkante verschiedene Werte σ_1 und σ_2 annehmen (vergl. S. 84).

Das Zusammenwirken der inneren Kräfte, des Schubwiderstandes T und des Spannungsmomentes $\frac{J}{e} \cdot \sigma$ bei der Aufrechterhaltung des Gleichgewichtes gegenüber den angreifenden äufseren Kräften wird aus Fig. 77 klar ersichtlich.

Denkt man sich das abgeschnittene Stabende ein wenig von dem andern abgerückt und in den Angriffspunkten der Mittelkräfte aller Zug- und Druckspannkräfte (Schwerpunkte der Spannungskeile Fig. 74) durch horizontale Gelenkstangen verbunden, so verhindern diese zwar eine Drehung des Stabendes in der Kraftebene, aber die Querkraft Q würde dasselbe in ihrer Richtung parallel verschieben, wenn nicht in der Schnittebene von dem festgehaltenen Stabende ausgehend eine ihr entgegengesetzt gleiche Kraft T, der Tangential- oder Schubwiderstand, tätig wäre. Unter der Wirkung des Kräftepaares Q-T entstehen in den Gelenkstangen Spannkräfte S und -S, d i. ein zweites Kräftepaar mit entgegengesetzt gleichem Drehmoment. Die Erfüllung der drei Gleichgewichtsbedingungen für Kräfte in einer Ebene wird nun in Bezug auf das Stabende aus den Gleichungen Q-T=0, S-S=0, $Q \cdot x-S \cdot s=0$ klar ersichtlich.

Mit den Schubspannungen tritt nun eine gewisse elastische Gleitung, mit den Biegungsspannungen Biegung auf und die Gesamtformänderung des Stabes setzt sich aus beiden zusammen. Die erstere ist indes gegenüber der letzteren in den meisten Fällen der Anwendung verschwindend klein, läfst sich auch infolge der nicht gleichmäßigen, verwickelten Verteilung der Schubspannungen über den Stabquerschnitt meist nur sehr umständlich ermitteln. Es soll deshalb hier nur die Biegung nach Maßgabe der Gleichung 3 S. 87 berücksichtigt werden. Die Biegung sowohl als nach den Gleichungen 1 und 2 die Biegungs- und Schubspannungen sind nun von dem Biegungsmohent der äußeren Kräfte $M = Q \cdot x$, bezw. von der Querkraft Q abhängig. In folgendem sollen diese mechanischen Werte für verschiedene Angriffsarten der äußeren Kräfte ermittelt

91

werden. Bezüglich des Vorzeichens von Q und M wollen wir dabei festsetzen, daß eine Querkraft, welche an einem Stabende links vom Schnitt nach oben, oder rechts vom Schnitt nach unten wirkt, als positiv und ein Moment, welches auf ein Stabende links vom Schnitte rechtsherum drehend, oder rechts vom Schnitte linksherum drehend wirkt, den Stab also konkav nach oben zu biegen strebt, als positiv, beides im entgegengesetzten Falle als negativ gelten soll.

Es kommen hier u. a. in Betracht alle senkrecht belasteten, wagerecht gelagerten stabförmig geraden Balken.

Hinsichtlich der Art der Unterstützung soll dabei unterschieden werden, ob die das äufsere Gleichgewicht gegenüber den Lasten herstellenden Stützkräfte sich mit Hilfe der rein statischen Gleichgewichtsbedingungen für starre Körper ermitteln lassen, oder ob hierbei auch das elastische Verhalten der Balken mit herangezogen werden mußs, bezw. ob eine statisch bestimmte oder statisch unbestimmte Unterstützung vorliegt. (Vgl. Keck, Mechanik I, 3. Aufl., S. 181 u.f.)

b) Aufsere Kräfte, Biegungsmomente und Querkräfte stabförmig gerader Balken mit statisch bestimmter Unterstützung.

1. Der einseitig wagerecht eingespannte, am freien Ende durch eine Einzellast Kergriffene Balken. (Fig. 78.)

Das äufsere Gleichgewicht gegenüber der Last K wird hier durch die Einspannung, d. h. durch die auf das eingespannte Stab-

ende von seiner Umhüllung ausgeübten Kräfte hergestellt. Die Kenntnis der letzteren ist für die vorliegende Aufgabe ohne Bedeutung und kann ihre Ermittelung daher hier unterbleiben.

Die Querkraft ist für alle Stabquerschnitte von A bis B von gleicher Größe

Q = K.

1)

Das Biegungsmoment für einen Querschnitt im Abstande x von B ist 2) $M = K \cdot x$.

Es läßt sich also, weil mit x im linearen Verhältnis veränderlich, für die verschiedenen Querschnitte durch eine gerade Linie darstellen, deren Ordinate bei C gleich Null, bei A gleich $K \cdot l$ ist. Das entstehende

IV. Biegungs- und Schubspannungen, äufsere Kräfte.

Dreieck ABC nennen wir die Momentenfläche. Seinen Größstwert erreicht das Moment am Einspannungsquerschnitt und ist hier 3) $M_1 = K \cdot l$.

2. Der einseitig wagerecht eingespannte Balken mit einer gleichmäßig über seine Länge verteilten Last p für die Längeneinheit. (Fig. 79.)

Die Querkraft für einen Querschnitt im Abstande x vom freien Ende ist Fig. 79.

1) $Q = p \cdot x$,

3)

also mit x linear veränderlich.

Das Biegungsmoment in Bezug auf jenen Querschnitt ist

2)
$$M = p \cdot x \cdot \frac{x}{2} = \frac{p x^2}{2}$$

und wird in seiner Abhängigkeit von der Lage des Querschnittes durch eine Parabel ausgedrückt, deren Achse senkrecht ist

und am freien Stabende liegt. Die Momentenfläche ist ein Parabeldreieck; der Größtwert des Momentes ist für x = l

 $M_1 = \frac{p l^2}{2}.$

Balken auf zwei Stützen mit einer Einzellast. (Fig. 80.)

Die beiden Stützen befinden sich an den Enden des Balkens bei A und B. Die Last P ruht in Abständen a und b von denselben. Zur Herstellung des äufseren Gleichgewichtes haben die Stützen A und B "Stützwiderstände", d. h. senkrecht aufwärts gerichtete Kräfte A und B zu leisten, deren Bestimmung auf Grund der allgemeinen Gleichgewichtsbedingungen (vergl. Keck, Mechanik I. Teil, 3. Aufl., S. 117 u. 186) geschehen kann.

Es ergibt sich auf dem Wege der Rechnung

$$A = \frac{P \cdot b}{l}$$
 und $B = \frac{P \cdot a}{l}$.

Graphisch erhält man die Stützwiderstände A und B aus der Bedingung, daß sie mit der Last zusammen ein schließendes Kraftund Seileck bilden müssen (Keck, Mech. I, 3. Aufl. S. 125). Man

93

zieht durch irgend einen Punkt C der Richtungslinie von P die Seillinien I und II parallel den Polstrahlen I und II, verbindet deren Schnittpunkte A_1 und B_1 mit den Stützvertikalen und erhält

in der Verbindungslinie A_1B_1 die Schlufsseite III des Seilecks. Der ihr parallele Polstrahl III schneidet auf P die Stützwiderstände A und B ab.

Die Querkraft ist für alle Querschnitte zwischen A und C von gleicher Gröfse

$$Q = A = \frac{P \cdot b}{l}.$$

Für Querschnitte rechts von C ist sie gleich der Mittelkraft aus A und P also

1a)
$$Q = A - P = \frac{P \cdot b}{l} - P = \frac{P(b-l)}{l} = -\frac{P \cdot a}{l} = -B.$$

Sie wird geometrisch durch den gebrochenen Linienzug $A_{,,C',C',,B_{,,C'}}$ bezw. durch die von demselben eingeschlossone Fläche, die sogen. Querkraftfläche, dargestellt; links von C ist Q > 0, rechts Q < 0.

IV. Biegungs- und Schubspannungen, äufsere Kräfte.

Das Biegungsmoment in Bezug auf irgend einen Querschnitt tt zwischen A und C im Abstande x von A ist

2)
$$M_x = \mathbf{A} \cdot \mathbf{x} = \frac{\mathbf{P} \cdot \mathbf{b}}{l} \cdot \mathbf{x},$$

also im linearen Verhältnis mit x veränderlich, geometrisch durch die Ordinaten einer geraden Linie $A_1'C_1'$ ausgedrückt. Im Querschnitt bei C für x = a erreicht

$$M_1 = \frac{P \cdot a \cdot b}{l}$$

seinen Größtwert und nimmt über C hinaus bis B wieder geradlinig bis Null ab. Dreieck $A_1'B_1'C_1'$ ist die Momentenfläche.

Die erhaltene geometrische Darstellung der Veränderlichkeit des Biegungsmomentes mit der Lage des Querschnittes ist auch im Seildreieck $A_1B_1C_1$ bereits gewonnen. Es ist $M = u \cdot H$. (Vergl. Keck, Mech. I, 3. Aufl. S. 121-123.)

Rückt die Last in die Trägermitte, so wird $a = b = \frac{l}{2}$ und das gröfste Moment

4)

$$M=\frac{P\cdot l}{4}.$$

4. Der Balken auf zwei Stützen mit mehreren Einzellasten. (Fig. 81.)

Wir wollen die Querkraft und Momentenfläche zunächst graphisch ermitteln und zeichnen zu diesem Zwecke zu den Lasten P_1 bis P ein Krafteck und ein Seileck. In der Verbindungslinie $A_1 B_1$ der Schnittpunkte A_1 und B_1 der die Lasten einschließenden Seilecksseiten I und IV mit den Stützvertikalen wird wieder die Schlußlinie V des Seilecks erhalten und der ihr parallele Polstrahl schneidet auf dem Kräftezuge 1-4 des Kraftecks die Stützwiderstände 5-1 = A und 4-5 = B ab. Die Entstehung der Querkraftfläche ist aus der Fig. ohne weiteres ersichtlich und die Momentenfläche in dem Seileck $A_1 B_1 CD E$ gewonnen. Für einen beliebigen Querschnitt tt ist das Biegungsmoment 1) $M = u \cdot H$.

Aus der Ähnlichkeit der Dreiecke
$$FGH$$
 und 0-2-5 folgt nämlich mit $2-5=Q$

 $M = Q \cdot z = u H$. (Vgl. auch Keck, Mech. I, 3. Aufl. S. 121-123.)

95

Die Veränderlichkeit des Momentes mit der Entfernung x des Querschnittes von der Stütze A tritt in der Momentenfläche in sehr übersichtlicher Weise hervor. Wir erkennen, daß das Moment von Null aus bis zu einem Größtwert anwächst und gegen die Stütze B hin wieder bis auf Null abnimmt. Der Größtwert von u bezw.

M fällt stets mit einem Eckpunkt des Seilecks bezw. dem Angriffspunkt einer Last zusammen und zwar, wie aus der Figur leicht ersichtlich, mit derjenigen Last, bei welcher die Querkraft ihr Vorzeichen wechselt, vom Positiven zum Negativen übertritt. In dem Sonderfalle, wenn der Abschnitt u für zwei benachbarte Eckpunkte gleiche Größtwerte zeigt, die zwischenliegende Seilecksseite parallel ist der Schlußlinie des Seilecks, ist M zwischen den entsprechenden Lasten konstant.
IV b. Äufsere Kräfte, Biegungsmomente u. s. w. stat. best. Balken. 97

Auf rechnerisch analytischem Wege ist ein gleich klarer Überblick über die Veränderlichkeit des Momentes nicht zu gewinnen. Dagegen läßt die analytische Behandlung die Einzelwirkungen der Kräfte und ihre Beiträge zur Bildung des Gesamtmomentes deutlicher hervortreten. Auch kann sie unter Umständen, z. B. wenn nur das größte Biegungsmoment zu ermitteln ist, schneller zum Ziele führen. Sie gestaltet sich wie folgt: Die Momentengleichung in Bezug auf den Stützpunkt B als Drehpunkt ergibt den Stützwiderstand

2)
$$A = \frac{P_1 b_1 + P_2 \cdot b_2 + P_3 b_3}{l}$$

und aus der Gleichgewichtsbedingung "Summe der Vertikalkräfte gleich Null" folgt:

2a)
$$B = P_1 + P_2 + P_3 - A$$
.

Die Querkraft nimmt stufenweise von A auf $A - P_1$, $A - P_1 - P_2$ u. s. w. ab.

Das größste Biegungsmoment findet sich, wie oben erwähnt, im Angriffsquerschnitt derjenigen Last, bei welcher die Querkraft ihr Vorzeichen wechselt. Ist also z. B. $A-P_1 > 0$ und $A-P_1-P_2 < 0$, so findet sich das Größstmoment im Querschnitt der Last P_2 . Es ist dort

$$M = A \cdot a_2 - P_1(a_2 - a_1).$$

Setzt man für A den weiter oben ermittelten Wert ein und beachtet, daß $a_3 + b_3 = a_2 + b_2 = u.s.w. = l$ ist, so läßt sich obige Momentengleichung in die Form bringen

3a)
$$M = \frac{P_1 a_1 b_2}{l} + \frac{P_2 a_2 b_2}{l} + \frac{P_3 a_2 b_3}{l}.$$

Für die Momente in beliebigen anderen Querschnitten ergeben sich ähnlich gebildete Ausdrücke, in denen wie in vorstehender Gleichung der Anteil einer jeden Last am Biegungsmoment durch ein besonderes Glied ausgedrückt erscheint. Das jeder Last entsprechende Glied stellt das Moment dar, welches die Last, für sich allein wirkend, in dem betreffenden Querschnitte erzeugen würde. Die Einzelwirkungen der Lasten erscheinen also im Gesamtmoment einfach summiert. Wie für die Biegungsmomente, so gilt diese Summierung der Kraftwirkungen auch in Bezug auf die inneren Spannungen, Formänderungen u. s. w.

Keck, Elnstizitätslehre.

7

In Abstande x von A bezw. x_1 von B wird $\boldsymbol{M}_x = \frac{\boldsymbol{P}_1 \boldsymbol{a}_1 \cdot \boldsymbol{x}_1}{l} + \frac{\boldsymbol{P}_2 \boldsymbol{a}_2 \cdot \boldsymbol{x}_1}{l} + \frac{\boldsymbol{P}_3 \cdot \boldsymbol{b}_3 \cdot \boldsymbol{x}}{l}.$

5. Balken auf zwei Stützen mit mehreren Einzellasten • und einerseits überkragendem Ende. (Fig. 82.)

Die Ermittelung der Stützwiderstände, der Querkraft und Momente gestaltet sich in diesem Belastungsfalle grundsätzlich nicht verschieden von dem unter 4 behandelten. Das Ergebnis aber ist insofern ein abweichendes, als wir hier zum ersten Male der Erscheinung begegnen, daß das mit der Lage des Querschnitts veränderliche Biegungsmoment in einem bestimmten Querschnitte sein Vorzeichen wechselt, einerseits desselben positiv und andererseits negativ ist und daß dem entsprechend auch Biegungen mit wechselndem Krümmungssinn entstehen.

Die Schlufslinie $A_1 B_1$ des zu den Kräften gezeichneten Seilecks nimmt jetzt eine solche Lage ein, daß sie den Zug der andern Seilecksseiten in C_1 schneidet. In diesem Punkte wird der Momentenabschnitt u und daher auch das Moment selbst gleich Null, während beide links von C positiv und rechts negativ sind. Der Krümmungsradius der unter der Wirkung der Lasten gebogenen Stabachse (Biegungslinie) ist nach Seite 87 Gl. 2 im Punkte C

$$=\frac{JE}{M}=\frac{JE}{0}=\infty;$$

die Krümmung ist hier gleich Null, C ist ein Wendepunkt. (Biegungslinie A'B'F'.) Im Angriffsquerschnitt einer der Lasten zwischen A und C sowohl als in B erreicht das Moment $M = u \cdot H$ je einen absoluten Größstwert. Die Querkraft Q wechselt in den entsprechenden Punkten D und B ihr Vorzeichen.

Denkt man sich die Stütze B nach links oder rechts bewegt, so wandert der Punkt B_1 auf der Seilecksseite IV. In irgend einer Stützlage B_1' werden die Abschnitte u_1 und u_2 und somit auch die Momenten-Größtwerte $M_1 = u_1 \cdot H$ und $M_2 = u_2 \cdot H$ einander gleich (Momentenausgleich).

Verschiebt man die Stütze B soweit nach links, dafs B_1 mit E, die Schlufslinie V des Seilecks mit der Richtung der Seite I desselben zusammenfällt, so decken sich am Krafteck auch die Polstrahlen I und V, Punkt 5 fällt mit 1 zusammen und der Stütz-

98

4)

99

7*

widerstand A wird gleich Null, B = 4-1 gleich $\Sigma \cdot K$; der Balken ruht balanzierend auf der Stütze B. Durch diese ist die Mittelkraft R aller Lasten gerichtet. Der positive Teil der Momentenfläche ist jetzt verschwunden, das Moment und die Krümmung des Balkens ist durchweg gleichsinnig, letztere konkav abwärts gerichtet (Biegungslinie A''B''F').

Wird die Stütze *B* noch weiter nach links verschoben, so gewinnt die Mittelkraft *R* in Bezug auf sie ein rechtsdrehendes Moment, unter dessen Wirkung der Balken aufkippen müßte, wenn nicht in *A* ein abwärts gerichteter (negativer) Stützwiderstand angebracht würde. Am Krafteck nimmt der der Schlufsseite $A_1 B_1''$ parallele Polstrahl V' die Lage 0-5' ein; die jetzt abwärts gerichtete Strecke 5'-1 stellt den negativen Stützdruck A''' und 4-5' den entsprechend größeren Stützdruck B''' dar. Im Uebrigen bleiben die Verhältnisse ungeändert.

Auf die analytische Behandlung dieses Belastungsfalles, die sich grundsätzlich von der unter 4 erläuterten nicht unterscheidet, soll hier nicht eingegangen werden.

Balken auf zwei Stützen mit gleichmäßig verteilter Last. (Fig. 83.)

Eine gleichmäßig verteilte Last stellt meistens auch das Eigengewicht eines Balkens dar und kann daher als solche mit in die Berechnung eingeführt werden. Hier möge die Gesamtlast für die Längeneinheit mit p bezeichnet werden.

Die Gesamtlast $p \cdot l$ verteilt sich auf beide Stützen gleichmäßig und die Stützdrücke werden daher

$$A = B = \frac{pl}{2}.$$

1)

Die Querkraft für einen Schnitt im Abstande x von A ist

2)
$$Q_x = A - px = p\left(\frac{l}{2} - x\right),$$

geometrisch dargestellt durch eine gerade Linie $A_1C_1B_1$, welche die X-Achse im Abstande $x = \frac{l}{2}$ von A schneidet. Je nachdem

$$x \leq \frac{l}{2}$$
 ist $Q_x \geq 0$.

IVb. Aufsere Kräfte, Biegungsmomente u. s. w. stat. best. Balken. 101

Das Biegungsmoment für einen Schnitt im Abstande x von A ist

$$M_x = A \cdot x - px \cdot \frac{x}{2} = p \frac{x}{2}(l-x).$$

Der geometrische Ausdruck dieser Gleichung ist (nach Keck, Mechanik I, 3. Aufl. S. 207) eine Parabel, welche die Stützweite lsymmetrisch überspannt. Für $x = \frac{l}{2}$ erreicht das Moment seinen Größstwert

5)

 $M_{max} = \frac{p \cdot l^2}{8}.$

Die Differentiation der Gleichung 3 ergibt nämlich

$$\frac{dM_x}{dx} = p\left(\frac{l}{2} - x\right)$$

und die Nullgleichheit des ersten Differenzialquotienten tritt ein für $x = \frac{l}{2}$. Es sei übrigens hier besonders darauf hingewiesen, daß

nach Gleichung 2 u. 5 $\frac{d M_x}{d x} = Q_x$ ist und $A=\frac{1}{12}$ dafs daher in Übereinstimmung mit dem weiter oben gesagten mit dem Durchgange

der Querkraft Q_x durch Null der Momentengröfstwert eintritt, eine Beziehung, die später noch allgemein nachgewiesen werden wird. Setzt man die Gesamtlast des Balkens pl = P, so wird

d. i. halb so grofs, als wenn eine gleich grofse Einzellast in der Trägermitte angreift, in welchem Falle nach S. 95 Gl. 4 das gröfste

Moment gleich $\frac{Pl}{4}$ wird. Ein Balken kann daher eine doppelt so großse Last tragen, wenn sie über seine Länge gleichmäßig verteilt, als wenn sie in seiner Mitte vereinigt ist.

7. Balken auf zwei Stützen mit mehreren Einzellasten und einer gleichmäßig verteilten Last. (Fig. 84.)

Die Stützwiderstände A und B sowohl als die Querkraft und das Moment in irgend einem Querschnitte erscheinen hier nach dem unter 4 Seite 97 nachgewiesenen Satze von der Summierung der Wirkungen als Summen der unter 4 und 6 berechneten bezügl. Werte.

Zur graphischen Ermittelung der Querkraft- und Momentenfläche zeichnen wir zunächst für die gleichmäßig verteilte Last die Seillinie $A_1 C_1 B_1$ und mit gleicher Polweite H für die Einzellasten das Seileck abdef. Durch Zusammenfügung beider an der Geraden $A_1 B_1$ entsteht die Gesamtmomentenfläche $A_1 C_1 B_1 D_1 E_1 F_1$, welche die Veränderlichkeit des Momentes mit der Lage des Querschnittes und den Größtwert des Momentes leicht erkennen läßt. Für einen beliebigen Querschnitt tt im Abstande x von A ist

$$M_x = u \cdot H.$$

1)

Die Entstehung der Querkraftfläche ist aus der Figur ohne weiteres ersichtlich. Rechnerisch ergibt sich

2) $A = \frac{pl}{2} + \frac{P_1 \cdot b_1 + P_2 \cdot b_2 + P_3 \cdot b_3}{l}, B = pl + P_1 + P_2 + P_3 - A$

und für einen Querschnitt im Abstande x von A die Querkraft 3) $Q_x = A - px - P_1$.

Ferner folgt aus der Addition der bezügl. Werte der Gleichung 4 Seite 98 und der Gleichung 3 Seite 101 das Moment

4)
$$M_x = \frac{px}{2}(l-x) + \frac{P_1 \cdot a_1 x_1}{l} + \frac{P_2 \cdot b_2 x}{l} + \frac{P_3 \cdot b_3 x}{l}.$$

Der Größstwert M_{max} des Momentes tritt wieder an der Stelle ein, wo die Querkraft ihr Vorzeichen wechselt. Nur wenn dies zwischen den Einzellasten erfolgt, läßt sich der Größstwert des Momentes als analytisches Maximum aus der Gleichung $\frac{dM_x}{dx} = 0$

Fig. 84.

ermitteln, weil nur dann für M_x beiderseits der Stelle seines Gröfstwertes das gleiche Gesetz der Abhängigkeit von x besteht und nur dann $\frac{d}{dx} M_x$ in stetiger Änderung durch Null geht. In den Angriffspunkten der Einzellasten ändert sich das Gesetz, wie aus der Momentenfläche deutlich zu erkennen ist. Findet hier der Vorzeichenwechsel von Q_x bezw. $\frac{d}{dx} M_x$ statt, so geschieht der Durchgang durch Null nicht stetig, sondern sprungweise, und der Gröfstwert von M_x ist mit Hilfe der Gleichung $\frac{d}{dx} M_x}{dx} = 0$ nicht bestimmbar, weil $\frac{d}{dx} M_x$ an betr. Stelle den Wert Null überhaupt nicht annimmt.

Anwendungen.

Beispiel 1: Ein einseitig eingespannter Holzbalken (Fig. 78) von rechteckigem Querschnitt und $2_{,0}$ m = 200 cm freier Länge trägt am freien Ende eine Last K=1000 kg; die größste Spannung σ am Einspannungsquerschnitt soll 80 at nicht überschreiten. Welche Höhe h muß der Balken erhalten, wenn seine Breite b=20 cm angenommen wird. Nach Gleichung 3 Seite 84 muß sein das erforderliche Widerstandsmoment $W = \frac{K \cdot l}{\sigma} = \frac{1000 \cdot 200}{80} = 2500$. Nach der Tabelle Seite 85 ist für das Rechteck $W = \frac{b h^2}{6} = \frac{20 \cdot h^2}{6} = 3_{,53} h^2$ und daher

$$h = \sqrt{\frac{W}{3_{,43}}} = \sqrt{\frac{2500}{3_{,33}}} = 27_{,4} \text{ cm}.$$

Wird verlangt, dafs $\frac{b}{h} = \frac{2}{3}$ sei, so mufs sein $W = 2500 = \frac{b h^2}{6} = \frac{h^3}{9}$ und $h = \sqrt[3]{9 \cdot 2500} = 28_{s^2}$ cm $b = \frac{2}{3} \cdot 28_{s^2} = 18_{s^3}$ cm.

Beispiel 2: Der Balken Beispiel 1 soll aus einem ruuden Stamm geschnitten werden und zwar so, dafs der erforderliche Durchmesser *d* möglichst klein ausfällt. Diese Bedingung wird erfüllt, wenn das Verhältnis der Breite *b* zur Höhe *h* des Balkens so bestimmt wird, dafs das Widerstandsmoment *W* für den betreffenden Durchmesser *d* zu einem Maximum wird. Zwischen *b* und *h* besteht die Beziehung $h^2 = d^2 - b^2$ (vergl. Fig. 85) und demnach ist $W = \frac{bh^2}{6} = \frac{b(d^2 - b^2)}{6}$; *W* erscheint also abhängig von *b* und wird für $\frac{dW}{db} = 0$ zu einem Maximum. Die Lösung ergibt $\frac{dW}{db} = \frac{d^2 - 3b^2}{6} = 0$ und 1Vb. Aufsere Kräfte, Biegungsmomente u. s. w. stat. best. Balken. 105

$$b = \frac{d}{\sqrt{3}}. \text{ Somit } W_{max} = \frac{d}{6\sqrt{3}} \left(d^2 - \frac{d^2}{3} \right) = \frac{d^3}{9\sqrt{3}} \text{ und, wenn man } W_{max} = 2500$$

setzt, $2500 = -\frac{d^3}{3}$. Fig. 85.

daraus

$$d = \sqrt{9 \cdot \sqrt{3 \cdot 2500}} = 34_{,9} \text{ cm},$$

$$b = \frac{34_{,9}}{\sqrt{3}} = 20_{,2} \text{ cm},$$

$$h = \sqrt{34_{,9^2} - 20_{,2^2}} = 28_{,5} \text{ cm}.$$

3/

9.13

Für einen zylindrischen Stamm vom gegebenen Durchmesser d läfst sich der rechteckige Querschnitt mit gröfstem Widerstandsmoment in der aus der Figur ersichtlichen Weise auch leicht geometrisch konstruieren.

Beispiel 3: Ein rechteckiger Holzbalken von oben berechnetem Widerstandsmoment $W=2500 \text{ cm}^3$ ruhe auf zwei l=4,0 m=400 cm voneinander entfernten Stützen (vergl. Fig. 80). Welche Einzellast P vermag er in seiner Mitte zu tragen, wenn die gröfste Spannung σ zu 80 at angenommen wird. Setzt man in der Gleichung $\dot{M}=W\cdot\sigma$ (S. 85) gemäß Gleichung 4 S. 95 $\dot{M}=\frac{P\cdot l}{4}, l=400, \sigma=80$ und löst für P auf, so folgt $P=\frac{2500\cdot 80\cdot 4}{400}=2000 \text{ kg}.$

Beispiel 4: Der Balken sei wie in Beispiel 3 gestützt und über seine Länge gleichmäßig mit einer Last von 400 kg für den lfd. m gleich 4 kg für den lfd. cm belegt. Welche Einzellast P vermag er in seiner Mitte aufserdem noch zu tragen, wenn wieder $\sigma = 80$ at angenommen wird. Setzt man in der Gleichung $M = W \cdot \sigma$ gemäß Gleichung 4 S. 94 u. 101

 $M = \frac{ql^3}{8} + \frac{P \cdot l}{4} = \frac{4 \cdot 400^3}{8} + \frac{P \cdot 400}{4} = 80\ 000 + 100\ P$

aufserdem $W = 2500 \text{ cm}^4 \sigma = 80 \text{ at}$ und löst für P auf, so ergibt sich $P = 2500 \cdot 80 - 80000 = 1800 \text{ kg}$

$$P = -----= 1200 \text{ kg}.$$

Beispiel 5: Ein gufseiserner Balken von \perp -förmigem Querschnitt ruhe wie in Beispiel 4 auf zwei Stützen in 4,0 m Entfernung und sei wie dort belastet. Die Querschnittsabmessungen sind unter der Bedingung zu ermitteln, dafs die gröfste Druckspannung σ_1 nicht mehr als 900 at und die gröfste Zugspannung σ_2 nicht mehr als 300 at betrage. Fig. 86.

Bei der gewählten Art der Unterstützung und der Querschnittsanordnung (vergl. Fig. 86) tritt die gröfste Druckspannung σ_1 in der Oberkante der senkrechten Rippe, des sog. Steges, die gröfste Zugspannung σ_2 in der Unterkante der wagerechten Rippe, des sog. Flansches ein. Sind e_1 und e_2 die äufsersten Faserabstände von der wagerechten Schwerpunktsachse des Querschnittes, J das Trägheitsmoment in Bezug auf dieselbe, so ist $W_{-} = \begin{bmatrix} J \\ W \end{bmatrix} = \begin{bmatrix} V \\ W \end{bmatrix} (vergl. S. 84)$ und

dieselbe, so ist $W_1 = \frac{J}{e_1}$, $W_2 = \frac{J}{e_2}$ (vergl. S. 84) und $M = W_1 \sigma_1 = W_2 \cdot \sigma_2$.

Nach Beispiel 4 ist $M = 80\,000 + 100 P = 80\,000 + 100 \cdot 1200 = 200\,000 \,\mathrm{cm/kg}$. Für $\sigma_1 = 900 \,\mathrm{at}$ und $\sigma_2 = 300 \,\mathrm{at}$ wird $W_1 = \frac{M}{\sigma_1} = 223 \,\mathrm{cm^3}$ und $W_2 = \frac{M}{\sigma_2} = 667 \,\mathrm{cm^3}$ und ferner $\frac{W_1}{W_2} = \frac{\sigma_2}{\sigma_1} = \frac{1}{3}$.

Aus der Tabelle Seite 85 ergibt sich

$$\begin{split} 1_1) \qquad W_1 = 223 = \frac{(b_1h_1^3 + b_2h_2^3) \ (b_1h_1 + b_2h_2) + 3 \ b_1h_1b_2h_2 \ (h_1 + h_2)^2}{6 \ (b_1h_1^2 + b_2h_2) \ (2 \ h_1 + h_2)} \\ 2_1) \qquad \qquad \text{und} \ \frac{W_1}{W_2} = \frac{1}{3} = \frac{b_2h_2^2 + b_1h_1 \ (2 \ h_2 + h_1)}{b_1h_1^2 + b_2h_2 \ (2 \ h_1 + h_2)}. \end{split}$$

Der Querschnitt ist durch vier Abmessungen b_1 , h_1 , b_2 , h_2 bestimmt. Durch obige beiden Gleichungen sind erst zwei derselben festgelegt, die anderen beiden können dem jeweiligen Zwecke entsprechend beliebig angenommen werden. Es möge hier $b_2 = h_1$ und $h_2 = \frac{h_1}{5}$ gewählt werden. Damit wird nach Gleichung 2_1 $b_1 = \frac{h_1}{10}$ und nach Gleichung 1_1 $h_1 = 18, 2 \text{ cm}$ $b_1 = \frac{h_1}{10} = 1, 82 \text{ cm}$ $b_2 = h_1 = 18, 2 \text{ cm}$ $h_2 = \frac{h_1}{5} = 3, 84 \text{ cm}$.

In den unter 1-5 behandelten Beispielen ist die Tragfähigkeit der betreffenden Balken nur in denjenigen Querschnitten voll, d. h. bis zu der zulässigen höchsten Spannung σ ausgenutzt, in welchen das Biegungsmoment seinen Größtwert aufweist, also in Beispiel 1 u. 2 im Einspannungsquerschnitt, in Beispiel 3-5 in der Balkenmitte. In allen übrigen Querschnitten ist die Spannung $\sigma = \frac{M}{W}$ dem kleineren Biegungsmoment M entsprechend kleiner, das Material nicht völlig ausgenutzt.

Um in allen Querschnitten eine gleichmäßige Ausnutzung des Materials bis zur zulässigen Höchstspannung σ herbeizuführen, müssen die Querschnittsabmessungen mit dem Biegungsmomente sich so ändern, daß der Quotient $\frac{M}{W}$ stets gleich der zulässigen Spannung σ , also constant bleibt. Jede dieser Bedingung entsprechende Balkenoder Stabform nennt man eine "Form von überall gleichem Widerstande" oder "gleicher Sicherheit".

Beispiel 6: Für den Balken in Beispiel 1 sollen Formen von gleichem Widerstande ermittelt werden.

Im Abstande x vom freien Ende ist das Biegungsmoment $M = K \cdot x$ (Fig. 87), das Widerstandsmoment für den rechteckigen Querschnitt $W = \frac{bh}{6}$, worin b und h im allgemeinen mit x veränderlich sind. Es muß also sein 1_1) $\frac{M}{W} = \sigma = \frac{6 \cdot Kx}{b \cdot h^3}$.

IV b. Aufsere Kräfte, Biegungsmomente u. s. w. stat. best. Balken. 107

Danach lassen sich Formen von gleichem Widerstande in der Hauptsache nach drei Gesichtspunkten entwickeln, nämlich:

1. Man legt der Breite des Balkens ein bestimmtes Maß b bei. Dann ergibt sich nach Gl. 1 seine Höhe

$$h = \sqrt{\frac{6 K \cdot x}{b \cdot \sigma}}$$

Sie steht also zu x in parabolischer Abhängigkeit (vergl Fig. 88). Mit K = 1000 kg, $b = 20 \text{ cm}, \sigma = 80 \text{ at} \text{ wird } h = 1/3,75 \cdot x.$ Der Balken wird im Aufrifs (Seitenansicht) durch eine Parabel begrenzt. Tangierende Ebenen in C und D schneiden die Vertikalebene bei B in E und F und der abgestumpfte Keil CDFE umschliefst die parabolische

Form. Er stellt eine annähernde, praktisch leicht herzustellende Form von gleicher Sicherheit dar. Dem Körperinhalte nach ist die parabolische Form gleich zwei Drittel, die Keilform gleich drei Viertel des prismatischen Balkens in Beispiel 1.

2. Man wählt für die Höhe des Balkens ein bestimmtes Mafs h. Dann wird nach Gl. 1, die Breite desselben Fig. 89.

 $b = \frac{6 K \cdot x}{\sigma \cdot h^2}.$ Sie ist also nach linearem Gesetz von x abhängig.

Für h = 30' wird $b = \frac{x}{12}$ und für x = 0, b = 0;für x = l = 200 cm, $b = \frac{200}{12} = 16,67$ cm. Der Balken wird allseitig von Ebenen begrenzt und erhält im Grundrifs Keilform (vergl. Fig. 89), wobei indes zu bemerken ist, dafs der Endquerschnitt wegen des unmittelbaren Kraft-

angriffes nicht Null sein darf, sondern in Wirklichkeit eine gewisse Breite erhalten mufs.

3. Man verlangt, daß alle Querschnitte des Balkens einander ähnlich sind, Höhe h und Breite b desselben ein bestimmtes Verhältnis $\frac{n}{h} = n$ aufweisen. Setzt man dann in Gl. 1, einmal $h = b \cdot n$ und ein anderes Mal $b = \frac{h}{n}$, so wird im ersten Falle

$$b = \sqrt[3]{\frac{6 K \cdot x}{\sigma \cdot n^2}} \quad \text{und im zwelten}$$

$$b = \sqrt[3]{\frac{6 K \cdot x}{\sigma \cdot n^2}} \quad \text{und im zwelten}$$

$$b = \sqrt[3]{\frac{6 \cdot n K \cdot x}{\sigma \cdot n^2}}.$$

Sowohl h als b hängen nach sog, kubisch-parabolischem Gesetze von x Trägt man die für jeden Querschnitt sich ergebenden Breiten und Höhen ab.

im Grundrifs und Aufrifs auf, so ergeben sich als Begrenzungslinien des Balkens sog. kubische Parabeln (vergl. Fig. 90). Legt man in den vier Seiten des

Einspannungsquerschnittes wieder je eine tangierende Ebene an die parabolisch gekrümmte Begrenzungsfläche, so umschliefsen diese Ebenen die parabolische Form und es läfst sich nachweisen, dafs der Endquerschnittder entstehenden abgestumpften Pyramide in Höhe und Breite gleich zwei Drittel des Einspannungsquerschnittes ist.

Die Ent-

Die größste

wird

ti

fe

betragen. Die Form der Achse ist zu bestimmen (Fig. 91).

Die bei A und B wirkenden Lagerkräfte sind je gleich 50000 kg. Im Abstande x von A, bezw. B wirkt ein Biegungsmoment $M_x = 50000 \cdot x$. Der

mit x veränderliche Halbmesser der Achse sei y. Dann ist $W_x = \frac{\pi \cdot y^3}{4}$; also nach der Gleichung $\sigma = \frac{M}{W}$

$$800 = \frac{50\,000 \cdot x}{\frac{\pi}{4} \cdot y^3} \quad \text{und} \quad y = \sqrt[3]{79, 6 \cdot x}$$

zwischen A u. C und B u. D, bezw. von x = 0 bis x = 100 cm ist die Form gleicher Sicherheit ein kubisch-parabolischer Umdrehungskörper. Bei x = 100 cm ist y = 20 cm.

Für die Querschnitte zwischen C und D, von x = 100 cm bis x = 300 cm bilden die äufseren Kräfte ein Kräftepaar von konstantem Biegungsmoment. Der oben für x = 100 cm berechnete Halbmesser y = 20 cm bleibt also zwischen den Lasten unverändert. Die punktierte Linie Fig. 91 stellt die ideelle Form der Achse dar, die von der wirklich auszuführenden umschlossen wird.

Beispiel 8: Ein Balken von rechteckigem Querschnitt, auf zwei Endstützen ruhend, trägt bei einer Stützweite l eine gleichmäßig verteilte Last qf. d. lfd. m. Seine Form soll so bestimmt werden, daß die Randspannung in allen Querschnitten gleich σ ist. Nach Gleich. 3 S. 101 ist $M_x = \frac{qx}{2} (l-x)$. Ferner ist $W = \frac{b h^2}{6}$ und daher

$$\sigma = \frac{M_x}{W} = \frac{3 \cdot q x (l-x)}{b \cdot h^2}.$$

Aus dieser allgemeinen Gleichung läßt sich, je nachdem för die Breite boder die Höhe h des Balkens ein bestimmtes Maß, oder zwischen beiden ein bestimmtes Verhältnis $n = \frac{h}{b}$ angenommen wird, die Form des Balkens leicht ableiten.

In ähnlicher Weise wie in Beispiel 6 erhält man für die als mit x veränderlich gedachte Breite und Höhe der Querschnitte folgende Beziehungen:

1. Bei konstantem b	$h = \sqrt{\frac{3 q x (l-x)}{b \cdot \sigma}},$	
2. " " h	$b = \frac{3 q x (l-x)}{h^2 \cdot \sigma},$	
3. Für $\frac{h}{b} = n$	$h = \sqrt[3]{\frac{3 n q x (l-x)}{\sigma}},$	$b = \sqrt[3]{\frac{3 q x (l-x)}{\sigma \cdot n^2}}.$

Für $\sigma = 80$ at (Balken aus Holz), l = 500 cm, q = 500 kg f. d. lfd. m = 5 kg f. d. lfd. cm wird bei

$$b = 20 \text{ cm}, \quad h = \sqrt{\frac{1500 \cdot x - 3 x^2}{320}},$$

$$h = 30 \text{ cm}, \quad b = \frac{500 x - x^2}{4800},$$

$$n = \frac{h}{b} = 2, \quad h = \sqrt[3]{\frac{1500 \cdot x - 3 x^2}{8}}, \quad b = \frac{h}{2}.$$

In der Trägermitte für x = 250 cm, mit b = 20 wird h = 24,2 cm und mit h = 30, b = 13, mit n = 2, h = 28,6 cm, b = 14,3 cm.

Beispiel 9: In manchen Fällen ist die Herstellung genauer Formen von gleicher Sicherheit nicht angängig und man muß sich mit einer gewissen Annäherung an dieselben begnügen. Beispielweise werden schmiedeeiserne Balken häufig aus einzelnen Stäben zusammengenietet, welche durch Walzung hergestellt stets prismatische Form haben. Der Querschnitt des so gebildeten "genieteten Trägers" oder "Blechbalkens" läfst sich daher nicht allmählich, sondern nur stufenweise ändern.

In Folgendem soll für einen auf zwei Endstützen ruhenden Blechbalken von 10 m Stützweite (Fig. 92), der eine gleichmäßig verteilte Last q = 5000 kgf. d. lfd. m = 50 kg f. d. lfd. cm trägt, eine annähernde Form von gleicher Sicherheit ermittelt und dabei die zulässige Spannung $\sigma = 1000 \text{ at}$ angenommen

werden. Der Querschnitt des Balkens soll nach Fig. 23 S. 20 gebildet und $h_0 = 80$ cm, b = 20 cm, $b_0 = 17$ cm, $b_1 = 3$ cm, $b_2 = 1$ cm, d = 2 cm angenommen werden. Bei Wahl gleichschenkliger Winkeleisen ist dann

IVb. Äufsere Kräfte, Biegungsmomente u. s. w. stat. best. Balken. 111

 $h_2 = 80 - 2 \cdot 8 = 64$ cm und $h_1 = 80 - 2 \cdot 1 = 78$ cm. Nach Gleichung 21 S. 20 ist das Trägheitsmoment des nur aus dem der vertikalen Blechplatte ("Stehblech") und den vier Winkeleisen bestehenden Profiles

$$J_{0} = \frac{(17 - 2 \cdot 2) \, 80^{3} - (17 - 3 - 2 \cdot 2) \, 78^{3} - (3 - 1) \cdot 64^{3}}{12} = 91\,167 \, \text{cm}^{4}$$

und $W_{0} = \frac{J_{0}^{\oplus}}{h_{0/2}} = \frac{91\,167}{40} = 2280 \, \text{cm}^{3}.$

Für den ganzen Querschnitt ist nach Gl. 24 S. 20

$$J = J_0 + F_K \cdot \frac{h \cdot h_0}{2}$$
 und demnach

$$W = \frac{J}{h_{12}} = \frac{J_0}{h_{12}} + F_K \cdot h_0 = \frac{J_0}{h_{0/2}} \cdot \frac{h_0}{h} + F_K \cdot h_0 = W_0 \cdot \frac{h_0}{h} + F_K \cdot h_0.$$

Mit obigen Werten für W_0 und h_0 wird

$$W = \frac{182\,400}{\hbar} + 80 \cdot F_K$$

Bezeichnen wir die noch zu bestimmende Stärke der Kopfplatte mit s, so wird $h = h_0 + 2s = 80 + 2s$ und $F_K = (20 - 2 \cdot 2) \cdot s = 16 \cdot s$, also

$$W = \frac{182\,400}{80+23} + 1280 \cdot s.$$

Für einen Querschnitt im Abstande x von der Stütze A ist

3₁)
$$M_x = \frac{q x (l-x)}{2} = 25 \cdot (1000 x - x^2) \text{ cm/kg}$$

und für die Trägermitte, x = 500 cm, ist das größste Biegungsmoment

$$M_{max} = \frac{q l^2}{8} = \frac{50 \cdot 1000^2}{8} = 6\,250\,000 \,\,\mathrm{cm/kg}\,.$$

Das erfordert ein größtes Widerstandsmoment

$$W = \frac{M_{max}}{\sigma} = \frac{6\,250\,000}{1000} = 6250\,\,\mathrm{cm^3}$$

und es ergibt sich, wenn man diesen Wert in Gl. 2, einsetzt, daraus eine Stärke der Kopfplatte s = 3,3 cm. Diese oben und unten auf die Winkeleisen zu nietende Kopfplatte pflegt man, wenn ihre Stärke s ein gewisses Mafs (1,9-1,5 cm) überschreitet, nicht einteilig, sondern aus mehreren übereinander gelegten Platten — sog. Lamellen — herzustellen. Dadurch, dafs man diese nicht alle über die gauze Balkenlänge erstreckt, sondern nur insoweit, als das Biegungsmoment M_x es erfordert, kommt eine annähernde Form gleicher Sicherheit zustande, welche naturgemäfs um so genauer ausfällt, je dünner die Einzelplatten gewählt werden:

Im vorliegenden Falle möge die Kopfplatte aus drei Lamellen bestehend angenommen werden, so dafs jede derselben eine Stärke von $\frac{3,3}{3} = 1,1$ cm Stärke erhält und eine Abstufung der Gesamtstärke der Kopfplatte von 3,3 cm

auf 2,2 cm, 1,1 cm und 0 cm ermöglicht wird. Dem entsprechen nach Gl. 21 Widerstandsmomente

$$\begin{split} W_2 &= \frac{182400}{80 + 2 \cdot 2_{2}^{2}} + 1280 \cdot 2_{2}^{2} = 4977 \, \mathrm{cm}^{3} \,, \\ W_1 &= \frac{182400}{80 + 2 \cdot 1_{1}} + 1280 \cdot 1_{1} = 3627 \, \mathrm{cm}^{3} \quad \mathrm{und} \quad W_0 = 2280 \, \mathrm{cm} \,. \end{split}$$

Das in beliebigem Abstande x von der Stütze A herrschende Biegungsmoment M_x erfordert ein Widerstandsmoment

4₁)
$$W_x = \frac{M_x}{\sigma} = \frac{q x}{2 \sigma} (l - x)$$
 (vergl. Gl. 3₁),

das also, wie M_x , zu x in parabolischer Abhängigkeit steht. Gl. 4_1 ist die Gleichung einer Parabel und die von derselben und der zugehörigen Sehne gleich der Balkenlänge l umschlossene Parabelfläche wollen wir die W-Fläche nennen (Fig. 92).

Löst man Gl. 4_1 für x auf, so folgt

5₁)
$$x = \frac{l}{2} \pm \sqrt{\frac{l^4}{4} + \frac{W_x \cdot 2 \cdot \sigma}{q}} = 500 \pm \sqrt{250\,000 + 40 \cdot W_x}.$$

Setzt man in Gl. 5_1 der Reihe nach $W_x = W_0 = 2280$, $W_x = W_1 = 3627$, $W_x = W_2 = 4977$, so erhält man die Entfernungen x_0 , x_1 , x_2 u.s. w. von der Stütze A, in welcher die stufenweise Verstärkung der Kopfplatte von s = 0 auf s = 1, 1 cm, 2, 2 cm und 3, 3 cm zu erfolgen hat. Es ergeben sich für dieselben folgende Wertpaare:

$$x_0 = \frac{102 \text{ cm}}{898 \text{ m}}, \quad x_1 = \frac{176 \text{ cm}}{824 \text{ m}}, \quad x_2 = \frac{274 \text{ cm}}{726 \text{ m}}.$$

Die Stufenlinie (Fig 92) stellt die in den einzelnen Querschnitten vorhandenen Widerstandsmomente dar; sie umschliefst die Parabel der erforderlichen. Zu bemerken bleibt dabei noch, dafs die einzelnen Lamellen beiderseits um so viel über die Querschnitte t_0 , t_1 und t_2 hinaus weiter zu führen sind, dafs sie in denselben bereits einen ihrem Reinquerschnitte entsprechenden Nietanschlufs gefunden haben, dessen Berechnung nach Anleitung des auf Seite 75 u. f. gesagten zu geschehen hat.

Beispiel 10: Die Belastung des Balkens in Beispiel 9 bestehe aus den aus Fig. 93 ersichtlichen Einzellasten, und die Momentenfläche sei auf graphischem Wege mit Hilfe eines Kraft- und Seilecks ermittelt. Dann ist

$$M_x = u_x \cdot H = W_x \cdot \sigma$$
 und $W_x = w_x \cdot \frac{H}{\sigma}$.

Danach lassen sich die Ordinaten W_x der *W*-Fläche aus den Ordinaten u_x der Momentenfläche leicht berechnen oder durch Zeichnung ermitteln. Letzteres ist in Fig. 93 (annähernd maßstäblich) geschehen. Um keine unbequem großsen Ordinaten W_x zu erhalten, kann man diese in nfach verkleinertem Längenmaßstabe auftragen und erhält dann $W_x = u_x \cdot \frac{H}{n \cdot \sigma}$. In Fig. 93 ist

IV b. Aufsere Kräfte, Biegungsmomente u. s. w. stat. best. Balken. 113

n = 10 angenommen. Während die Längen im Mafsstabe 1:100 gemessen sind, müssen daher die Ordinaten W_x im Mafsstabe 1:1000 abgegriffen werden. Die Konstruktion von W_x für den Querschnitt tt ist aus der Figur ersichtlich. Es wurde $A_1F = H = 25\,000$ kg, $A G = 10 \cdot \sigma = 10\,000$ kg gemacht und durch Geine Parallele zu A_iB_i gezogen bis zum Schnitt J mit der Senkrechten durch G; ferner von A_1 aus eine Gerade durch J bis zum Schnitt K mit der Senkrechten durch F und endlich durch K eine Parallele zu A_1B_1 bis zum Schnitt L mit

der Senkrechten durch C. Es ist dann $FK = ML = W_x$. In gleicher Weise werden die Eckpunkte O und N der polygonalen W-Linie gefunden. Die umschliefsende punktierte Stufenlinie stellt wieder die im herzustellenden Träger wirklich vorhandenen Widerstandsmomente dar und läfst erkennen, in welcher Erstreckung die einzelnen Lamellen anzubringen sind.

Keck, Elastizitätslehre.

8

c) Allgemeine Beziehungen zwischen der Biegungslinie und der Momentenfläche.

Es sei AB (Fig. 94) ein beliebiger Teil der Achse eines Stabes; er weiche nur wenig von der (wagerecht gedachten) X-Richtung

ab und habe eine Länge l, die demnach mit ihrer wagerechten Projektion gleich gesetzt werden kann. Wird der Stab bei A eingespannt gedacht und wirkt nur an dem Teilchen PQ = dx ein Moment, so krümmt sich PQnach dem Halbmesser ϱ und einem Centriwinkel

 $d\alpha = \frac{dx}{\varrho} = \frac{Mdx}{EJ}$ (vergl. Gl. 2 S. 87). Um

diesen Winkel neigt sich dann das noch gerade bleibende Stück QB gegen AB, und der Punkt B verschiebt sich um

$$BB_1 = df = x \, d \, \alpha = \frac{M x \, d x}{EJ}.$$

Werden alle Teile des Stabes gebogen, so wird die Biegungslinie am freien Ende von der an der Einspannungsstelle A gezogenen Tangente um einen Winkel

1)
$$\alpha = \int_{0}^{t} \frac{Mdx}{EJ}$$

abweichen, und der Abstand des freien Endes von der Tangente wird betragen

2) $f = \int_{0}^{l} \frac{Mx \, dx}{EJ}.$

Diese Abweichung kann, wegen der geringen anfänglichen und nachherigen Neigung des Stabes gegen die X-Richtung, rechtwinklig zu x oder auch rechtwinklig zur Tangente gemessen werden. Bei der Benutzung der Gl. 2 ist jedoch zu beachten, daß der Abstand x eines Punktes der Biegungslinie nicht von A, sondern von demjenigen Punkte aus gerechnet werden muß, dessen Verschiebung man ermitteln will.

Ist der Stab von überall gleichem Querschnitte, ist daher *EJ* unveränderlich, so wird einfacher

$$EJ\alpha = \int_{a}^{t} Mdx$$
 und $EJf = \int_{a}^{t} Mx \, dx$.

Denkt man sich das veränderliche Moment M rechtwinklig zu einer mit der X-Richtung parallelen Achse aufgetragen (Fig. 94), so ist M dx

IV c. Allgem. Beziehungen zwischen Biegungslinie u. Momentenfläche. 115

ein Flächenstreifen dieser Momentenfläche und $Mx \, dx = M \, dx \cdot x$ das statische Moment desselben, bezogen auf eine Senkrechte durch B. Nennt man daher die ganze Momentenfläche F_M und den Abstand ihres Schwerpunktes von der genannten Senkrechten ξ , so dafs $F_M \cdot \hat{\xi}$ das statische Moment der Momentenfläche, so wird einfach 3) $EJa = F_M$ und $EJf = F_M \cdot \tilde{\xi}$ (wobei wiederum zu bemerken, dafs ξ von der Stelle zu messen ist, deren Verschiebung man sucht). Da hiernach $f = \alpha \hat{\xi}$, so schneidet die bei C (Fig. 94) gezogene Tangente die an A gezogene Berührende im Abstande ξ von C.

Auf Grund dieser Beziehungen zwischen der Momentenfläche und der Biegungslinie läßt sich, wenn erstere bekannt, letztere wie folgt leicht durch Zeichnung bestimmen: A_1B_1C (Fig. 95) sei die hier positiv angenommene Momentenfläche eines Stabes AB. Dann

ist bei den aus der Figur ersichtlichen Bezeichnungen und wenn man die Biegungslinie auf ein rechtwinkliges Achsenkreuz bezieht, dessen X-Achse mit der ungekrümmten Stabachse AB (Nullpunkt in B) zusammenfällt, für irgend einen Punkt (xy) der Biegungslinie

4) $y = \frac{F_x \cdot \xi}{JE}$ oder, wenn die Momentenfläche auf graphischem Wege durch Zeichnung eines Seileckes mit der Polweite *H* gewonnen wurde

8*

4a)
$$y = \frac{H \cdot F_x \cdot S}{J \cdot E}.$$

Sieht man nun die Momentenfläche als Belastung des Stäbes an und zeichnet zu ihr mit einer Polweite H_1 eine Seillinie, und zwar so, dafs der Polstrahl *I* eine wagerechte Lage erhält und die Seillinie in *A* beginnt, die dem Polstrahl *I* entsprechende Tangente der Seillinie in *A* also mit der *X*-Achse zusammenfällt, so wird $F_x \cdot \xi = u \cdot H_1$ und nach Gl. 4 a

5) $y = \frac{H \cdot H_1}{JE} \cdot u = \frac{u}{JE : H \cdot H_1}.$

Wählt man $\frac{JE}{H \cdot H_1}$ als Längeneinheit für die Ordinaten y der Biegungslinie, so wird y = u, d. h. die Seillinie AG ist zugleich die Biegungslinie, wobei ihre Ordinaten y gegenüber den Abscissen xin $\frac{JE}{H \cdot H_1}$ facher Vergrößerung erscheinen.

d) Biegungslinie für Balken mit statisch bestimmter Unterstützung.

1. Der einseitig eingespannte prismatische Stab oder Balken. (Fig. 96.)

Der prismatische Stab oder Balken sei einseitig unwandelbar eingespannt, und zwar, um der Untersuchung eine tunlichst allgemeine Gültigkeit zu geben, nicht völlig wagerecht, sondern mit einer

kleinen Neigung ω ; auch werde aus gleichem Grunde neben einer Einzellast K am freien Ende, eine gleichmäßig verteilte Last p für die Längeneinheit angenommen.

Die Biegungslinie werde auf ein rechtwinkliges Achsenkreuz bezogen, dessen Lage aus Fig. 96 ersichtlich ist. Die Neigung ω der ungebogenen

Stäbachse sei so gering und die entstehende Biegung so klein, daß die wagerecht gemessenen Längen l und x^{f} gleich den entsprechenden Längen in der Richtung der gebogenen Stabachse gesetzt werden können.

VId. Biegungslinien für Balken mit stat. best. Unterstützung. 117

Für einen Punkt P(x.y) der Biegungslinie ist das Biegungsmoment

1)
$$M = K(l-x) + \frac{p(l-x)^2}{2}$$
.

Dieses Moment ist, da es ersichtlich eine konkave Biegung in der Richtung der positiven *Y*-Achse erzeugt, mit positiven Vorzeichen in die Grundgleichung der Biegungslinie $\frac{d^2y}{dx^2} = \frac{M}{JE}$ (vergl. Gl. 3 S. 87) einzusetzen. Daraus folgt

2)
$$JE\frac{d^2y}{dx^2} = K(l-x) + \frac{p(l-x)^2}{2}$$

und durch Integration

3)
$$J_{k}E\frac{dy}{dx} = K\left(lx - \frac{x^{2}}{2}\right) + \frac{p}{2}\left(l^{2}x - lx^{2} + \frac{x^{3}}{3}\right) + C.$$

Im Einspannungsquerschnitt für x = 0 ist $\frac{dy}{dx} = \operatorname{tg} \omega$ und in Rücksicht auf die vorausgesetzte Kleinheit von ω auch $\frac{dy}{dx} = \omega$. Mithin $C = J \cdot E \cdot \omega$. Am freien Ende für x = l wird nach Gl. 3

4)
$$\frac{dy}{dx} = \operatorname{tg} \alpha = \alpha = \frac{Kl^2}{2JE} + \frac{ql^3}{6JE} + \omega.$$

Die abermalige Integration der Gl. 3 ergibt

5)
$$JE \cdot y = K\left(\frac{lx^2}{2} - \frac{x^3}{6}\right) + \frac{p}{2}\left(\frac{l^2x^2}{2} - \frac{lx^3}{3} + \frac{x^4}{12}\right) + \omega \cdot JEx + C.$$

Für x = 0 ist y = 0, also C = 0.

Gleichung 5 ist die Gleichung der Biegungslinie des Stabes für den vorliegenden Belastungsfall.

Für x = l wird y = f, gleich der Senkung oder Durchbiegung des freien Endes B. Es ist

6)
$$f = \frac{Kl^3}{3JE} + \frac{pl^4}{8JE} + \omega l.$$

In den Gleichungen 1-6 treten die Wirkungen der Einzellast K und der verteilten Last p und in den Gleichungen 4-6 auch der Einfluß der Neigung ω des ungebogenen Stabes völlig unabhängig voneinander als Summanden auf. Verschwindet eine der Ursachen (K, p und ω), so verschwindet auch der ihre Wirkung ausdrückende Summand. Ist der Stab wagerecht eingespannt ($\omega = 0$)

und nur mit K belastet (p = 0), so ergibt sich aus GI. 4 u. 6 seine Neigung und seine Senkung am freien Ende zu

7)
$$\alpha = \frac{Kl^{2}}{2JE}$$
 und $f = \frac{Kl^{3}}{3JE}$

und nach Gl. 5 die Gleichung seiner Biegungslinien

8)
$$y = \frac{Kx^2}{2JE} \left(l - \frac{x}{3} \right).$$

Ist der Stab nur gleichmäßig mit p belastet und ist K = 0, so wird

9)
$$a = \frac{pl^3}{6JE}$$
 und $f = \frac{pl^4}{8JE}$ und

10)
$$y = \frac{p x^2}{24 JE} (6 l^2 - 4 l x + x^2).$$

2. Der prismatische Balken auf zwei Stützen mit einer Einzellast.

Liegt die Last in der Trägermitte (Fig. 97), so ist die Biegungslinie symmetrisch und ihre Tangente in der Mitte bei C wagerecht. Für die Spannungen und Formänderungen, hier insbesondere für die Biegung ist es ersichtlich einerlei, durch welche Mittel die wagerechte

Richtung bei C erzwungen wird; ob durch den Zusammenhang der einen Trägerhälfte mit der andern, oder durch feste Einspannung. Denkt man sich daher den Anfangspunkt des Achsenkreuzes bei wagerechter X-Achse nach C verlegt, so läfst

sich die Biegung beider Trägerhälften ohne weiteres auf Gl. 7 u. 8 zurückführen. Die am freien Ende bei A und B wirkende Einzelkraft ist hier gleich $\frac{P}{2}$. Vertauscht man daher in jenen Gleichungen K mit $\frac{P}{2}$ und l mit $\frac{l}{2}$, so folgt

11)
$$\alpha = \frac{PU}{16JE}, \quad f = \frac{PU}{48JE}$$

und die Gleichung der Biegungslinien

12)
$$y = \frac{Fx^2}{24JE}(3l-2x).$$

IV d. Biegungslinien für Balken mit stat. best. Unterstützung. 119

Liegt die Last *P* dagegen nicht in der Mitte (Fig. 98), so gestaltet sich die Ermittelung der dann unsymmetrischen Biegungslinie etwas umständlicher.

An der Stelle des Lastangriffs bei C sei die Durchbiegung gleich f, die Neigung der Biegungslinie ω . Denken wir uns den

Balken nach eingetretener Krümmung bei C nach Richtung und Lage festgehalten und die Auflager A und B beseitigt, so würde die Krümmung verschwinden und die gerade Stabachse sich in die Richtung der Tangente DE mit der Neigung ω gegen die Wagerechte einstellen. Der Punkt A gelangt dabei nach D und der Punkt Bnach E und es würde sein $A D = f + a\omega$ und, $BE = f - b\omega$.

Bringt man nun die Endstützen und mit ihnen die Stützkräfte A und B wieder an, so muß der Stab seine gebogene Form wieder annehmen, die Stützkraft A also eine Biegung aufwärts um AD und die Kraft B eine solche um BE herbeiführen. Nach Gl. 7 S. 118 muß daher sein

$$A D = f + \omega \cdot a = \frac{A \cdot a^3}{3 J E}$$
 and $B \cdot E = f - \omega \cdot b = \frac{B \cdot b^3}{3 J E}$.

Löst man beide Gleichungen für die Unbekannten f und ω und setzt $A = \frac{P \cdot b}{l}$ und $B = \frac{P \cdot a}{l}$, so folgt

13) $f = \frac{P \cdot a^2 b^2}{3JEl}$ und $\omega = \frac{Pab(a-b)}{3JE \cdot l}$. Für $a = b = \frac{l}{2}$ wird $f = \frac{Pl^3}{48JE}$ (vergl Gl. 11) und $\omega = 0$.

Ist aber nicht a = b, etwa, wie hier angenommen werden möge, a > b, so stellt das in Gl. 13 berechnete f nicht die größste Durchbiegung dar, diese ist vielmehr zwischen C und der Trägermitte zu

suchen und zu diesem Zwecke die Gleichung der Biegungslinie aufzustellen. Legt man derselben das aus der Fig. 98 ersichtliche Achsenkreuz zu Grunde, so ist für einen Punkt P(xy) der Biegungslinie das Biegungsmoment $M = A \cdot x$. Es erzeugt eine Biegung konkav nach der negativen Y-Richtung und ist daher negativ in die Grundgleichung der Biegungslinie einzuführen. Es wird

$$JE \frac{d^2y}{dx^2} = -Ax.$$
 Die erstmalige Integration liefert
 $JE \frac{dy}{dx} = -\frac{Ax^2}{2} + C.$ Für $x = a$ ist $\frac{dy}{dx} = \omega$,

also $C = JE \cdot \omega + \frac{Aa^2}{2}$ und demnach $JE \frac{dy}{dx} = \frac{A}{2}(a^2 - x^2) + \omega \cdot JE$. Die nachmalige Integration ergibt

$$JE \cdot y = \frac{A}{2} \left(a^2 x - \frac{x^3}{3} \right) + \omega JE \cdot x + C_1.$$

Für x=0 ist y=0, also $C_1=0$. Setzt man aufserdem $A = \frac{Pb}{l}$, so wird $y = \frac{P \cdot bx}{6JEl}(a^2 + 2 ab - x^2)$ die Gleichung der Biegungslinie, welche mit a = l - b die Form annimmt

14)
$$y = \frac{P \cdot b \cdot x}{6 J E \cdot l} (l^2 - b^2 - x^2).$$

In dieser Gleichung kommen b und x völlig gleichartig vor, können also nach Belieben vertauscht werden, ohne daß dadurch ysich ändert. Verlegt man daher die Last von C nach P, so tritt in C die in Gleichung 14 berechnete Durchbiegung ein.

Gleichung 14 gilt indes nur für das Stück AC der Biegungslinie, während für BC eine besondere Gleichung aufzustellen sein würde (deren man aber bei Bestimmung der stärksten Durchbiegung nicht bedarf). Nach Fig. 80 S. 94 wird nämlich das Biegungsmoment durch eine gebrochene Linie ACB dargestellt; die Stetigkeit der Momentenfunktion erleidet bei C eine Unterbrechung und die Integration kann daher nicht ohne weiteres über C hinaus erstreckt werden. Es würde vielmehr für BC eine andere Momentengleichung aufzustellen und die Integration wie oben zu wiederholen sein. Jede Einzellast an einem Stabe bedingt eine Stetigkeitsunterbrechung der Biegungslinie an der betreffenden Stelle, so dafs bei mehreren Einzellasten für jede Seite der dann polygonal begrenzten Momentenfläche eine besondere Gleichung der Biegungslinie zur Geltung kommt.

IVd. Biegungslinien für Balken mit stat. best. Unterstützung. 121

Zwei solcher Stücke der letzteren haben aber an der Übergangsstelle nicht nur gemeinsame Neigung $\frac{dy}{dx}$, sondern auch (weil an der Stelle nur ein bestimmtes Biegungsmoment in Frage kommt), gemeinsame Krümmung $\frac{1}{\varrho} = \frac{d^2y}{dx^2}$.

In Gleichung 14 erreicht y seinen Größtwert für

15)
$$x_1 = \sqrt{\frac{1}{3} (l^2 - b^2)}$$
 und zwar ist

16)
$$y_{max} = \frac{P \cdot b}{9 JE l} \cdot (l^2 - b^2) \left| \sqrt{\frac{1}{3} (l^2 - b^2)} \right|.$$

Für $b = \frac{l}{2}$ wird

17)
$$y_{max} = \frac{P \cdot l^3}{48 JE}$$
 wie in Gl. 11 S. 118.

Rückt nun die Last nach rechts, so dafs *b* allmählich kleiner wird, so wächst x_1 (Gl. 15), die Stelle der größten Durchbiegung rückt ebenfalls nach rechts, aber erheblich weniger als die Last. Wenn diese das rechtsseitige Auflager erreicht hat, b = 0 geworden ist, ist $x_1 = l \cdot \sqrt{\frac{1}{3}} = 0.577 l$. Die Stelle der stärksten Durchbiegung liegt daher immer nur wenig, höchstens $0.077 l = \text{ca. } \frac{1}{13} l$ von der Balkenmitte entfernt und kann daher nur wenig größer sein als die Durchbiegung y_m für $x = \frac{l}{2}$, welche man nach Gl. 14 erhält zu 18) $y_m = \frac{P \cdot b}{48 \cdot l E} \cdot (3 l^2 - 4 b^2).$

Der Wert y_m ist zwar nur ein Annäherungswert an den Gröfstwert y_{max} der Durchbiegung, er weicht von dieser aber nur sehr wenig ab und bietet den Vorteil einfacherer Ermittelung namentlich auch in dem Falle, wenn mehrere Einzellasten auf den Stab wirken. Die von diesen einzeln in der Balkenmitte erzeugten Durchbiegungen summieren sich dann einfach, während die von den einzelnen Lasten hervorgebrachten gröfsten Durchbiegungen sich nicht an derselben Stelle des Balkens befinden und daher auch nicht summieren lassen. Die genaue Ermittelung der durch mehrere Einzellasten erzeugten gröfsten Durchbiegung aus der Biegungslinie gestaltet sich aber wegen der oben erörterten Unstetigkeit der letzteren sehr umständlich und man kann in den meisten Fällen der Anwendung um so eher von

.

ihr absehen, als die genaue Kenntnis der Durchbiegung in der Mitte gleiche Dienste leistet.

Wie geringfügig der Unterschied zwischen y_m und y_{max} (Gl. 16 u. 18) ausfällt, möge aus folgendem Beispiel entnommen werden: Ein 4 cm dicker Rundeisenstab von der Stützweite l = 200 cm ist im Abstande b = 50 cm von der einen Stütze mit P = 200 kg belastet. Dabei liegt die gröfste Durchbiegung um $x_1 = 111$, s cm von der andern Stütze, bezw. 11, s cm von der Stabmitte und beträgt $y_{max} = 0.9273$ cm, während in der Stabmitte $y_m = 0.9152$ cm, d. i. nur um ca. $1, 3^{0}/0$ verschieden ist.

3. Der prismatische Balken auf zwei Endstützen mit einer Einzellast P in der Mitte und einer verteilten Last p für die Längeneinheit.

Wir beziehen die Biegungslinie auf das aus Fig. 99 ersichtliche Achsenkreuz mit dem Anfangspunkte in A_1 .

Der Stützdruck in A und B ist $A = B = \frac{P}{2} + \frac{pl}{2}$ und das Biegungsmoment für einen Punkt P(x, y) $M_x = Ax - \frac{px^2}{2}$. Dieses erzeugt eine Biegung konkav aufwärts nach der negativen Y-Richtung hin und ist daher negativ in die Grundgleichung der Biegungslinie einzuführen. Es ist daher

 $JE\frac{d^2y}{dx^2} = -Ax + \frac{px^2}{2} \text{ und die erstmalige Integration}$ ergibt $JE\frac{dy}{dx} = -\frac{Ax^2}{2} + \frac{px^3}{6} + C$

für $x = \frac{l}{2}$ ist $\frac{dy}{dx} = 0$, (wegen der Symmetrie der Belastung und der Biegungslinie); daher $C = \frac{A l^2}{2} - \frac{p l^3}{48}$ und somit

19)
$$JE\frac{dy}{dx} = \frac{A}{8}(l^2 - 4x^2) - \frac{p}{48}(l^3 - 8x^3).$$

Die nochmalige Integration führt zu

20)
$$J E \cdot y = \frac{A}{8} \left(l^2 x - \frac{4 x^3}{3} \right) - \frac{p}{48} \left(l^3 x - 2 x^4 \right) + C_1.$$

Für $x = 0$ ist $y = 0$, folglich $C_1 = 0.$

In Gl. 19 u. 20 den Wert $A = \frac{P+pl}{2}$ eingesetzt, wird

21)
$$\frac{dy}{dx} = \frac{P}{16JE}(l^2 - 4x^2) + \frac{P}{48JE}(2l^3 - 12lx^2 + 8x^3)$$
 und

22)
$$y = \frac{P}{16JE} \left(l^2 x - \frac{4x^3}{3} \right) + \frac{p}{48JE} (2 \, l^3 x - 4 \, l \, x^3 + 2 \, x^4).$$

Der Einfluß der Einzellast P und der verteilten Last p erscheint in den Gleichungen 21 u. 22 wieder gesondert.

Die Neigung des Balkens an den Enden wird nach Gl. 21 für
$$x = 0$$

23) $\alpha = \frac{Pl^2}{16JE} + \frac{pl^3}{24JE}$ und die größte Biegung

in der Mitte nach Gl. 22 für $x = \frac{l}{2}$ •

24)
$$f = \frac{l^3}{48 JE} \left(P + \frac{5}{8} \cdot pl \right) = \frac{l^3}{48 JE} \left(P + \frac{5}{8} Q \right).$$

Mit P=0 wird für nur verteilte Last p

25)
$$\alpha = \frac{p l^3}{24 JE}$$
 und $f = \frac{5}{384} \cdot \frac{p l^4}{JE} = \frac{5}{384} \cdot \frac{Q l^3}{J \cdot E}$

und mit p = 0 für eine Einzellast P

27)

26)
$$\alpha = \frac{P \cdot l^2}{16 JE}$$
 und $f = \frac{P l^3}{48 JE}$ wie in Gl. 11.

Für Zahlenrechnungen sind die Gl. 25 u 26 bequemer, wenn man die stärkste Randspannung

$$\sigma = \frac{P \cdot l \cdot e}{4J} \text{ bezw. } \sigma = \frac{p l^2 \cdot e}{8J} \text{ einführt. Es wird dann}$$
$$\frac{P l}{4J} = \frac{\sigma}{e} \text{ bezw. } \frac{p l^2}{8J} = \frac{\sigma}{e} \text{ und damit}$$
$$\alpha = \frac{l \cdot \sigma}{8K}, \quad f = \frac{5 l^2 \cdot \sigma}{48K} \text{ für verteilte Last } p, \text{ und}$$

28)
$$\alpha = \frac{l \cdot \sigma}{4 E \cdot e}, \quad f = \frac{l^2 \cdot \sigma}{12 \cdot E \cdot e}$$
 für eine Einzellast *P* i. d. M

Handelt es sich um Träger, deren Querschnitt in Bezug auf die Biegungsachse symmetrisch ist, so dafs $e = \frac{h}{2}$ wird, so lassen sich die Gl. 27 u. 28

123

auch benutzen, um bei eingebauten Trägern mit freier Unter- und Oberfläche, deren Höhe und Länge l bekannt sind, aus der gemessenen Durchbiegung f die Spannung σ zu berechnen, also event. die Bruchgefahr zu beurteilen. Es wird

 $\sigma = \frac{24}{5} \cdot \frac{f \cdot E \cdot h}{l^2} \quad \text{bezw.} \quad \sigma = \frac{6f \cdot E \cdot e}{l^2}.$

4. Träger mit veränderlichem Querschnitt.

Es soll hier nur der für die Anwendung wichtigere Fall stufenförmiger oder sprungweiser Querschnittsänderung behandelt werden. Die rechnerische Ermittelung der Biegungslinie gestaltet sich meist sehr umständlich, weil die Stetigkeit der Linie jedesmal an den Stellen der Querschnittswechsel eine Unterbrechung erleidet. Wir wollen uns deshalb hier darauf beschränken, an einem einfachen Belastungsfall den grundsätzlichen Gang der Untersuchung zu erläutern.

Der an einem Ende eingespannte Balken (Fig. 100) trägt am freien Ende eine Last K. Das Trägheitsmoment seines Querschnittes sei auf der Strecke a gleich J_1 und auf der Strecke b gleich J_2 .

Fig. 100.

Für einen Punkt x, y der Biegungslinie zwischen A und C ist

$$\frac{d^2y}{dx^2} = \frac{K(l-x)}{J_L E}$$

29) $\frac{dy}{dx} = \frac{K}{2J_1E} (2lx - x^2) + 0, \ 30) \ y = \frac{K}{2J_1E} \left(lx^2 - \frac{x^3}{3}\right) + 0.$

Im Punkte C für x = a ist

$$a_1 = \frac{K \cdot a}{2J_1 E} (2 \ l - a), \quad f_1 = \frac{K a^2}{2J_1 E} \left(l - \frac{a}{3} \right).$$

Die Gleichungen 29 u. 30 gelten, wenn man J_1 mit J_2 vertauscht, auch für die Strecke CB, mit dem Unterschiede jedoch, daß hier die Integrationskonstanten nicht Null sind. Es ist vielmehr

31)
$$\frac{dy}{dx} = \frac{K}{2J_2E} (2lx - x^2) + C$$
, für $x = a$, $\frac{dy}{dx} = a_1 = \frac{K \cdot a}{2J_1E} \cdot (2l - a)$

IV d. Biegungslinien für Balken mit stat. best. Unterstützung. 125

und daher
$$C = \frac{K \cdot a}{2E} (2l-a) \left(\frac{1}{J_1} - \frac{1}{J_2}\right)$$
, also auch

32)
$$\frac{dy}{dx} = \frac{K}{2J_2E} \left(2\,l\,x - x^2 \right) + \frac{Ka}{2J_1E} \left(2\,l - a \right) \left(1 - \frac{J_1}{J_2} \right) \text{ und}$$

33)
$$y = \frac{K}{2J_2E} \left(lx^2 - \frac{x^3}{3} \right) + \frac{Kax}{2J_1E} (2l - a) \left(1 - \frac{J_1}{J_2} \right) + C_1.$$

Für x = a ist $y = f_1 = \frac{Ka^2}{2J_1E} \left(l - \frac{a}{3} \right)$ und demnach $C_1 = \frac{Ka^2}{2J_1E} \left(\frac{J_1}{J_2} - 1 \right) \left(l - \frac{2}{3}a \right).$

Danach wird, wenn man in Gl. 32 u. 33 x = l setzt, für das Trägerende B

34)
$$\alpha = \frac{Kl^2}{2J_1E} + \frac{Kb^2}{2J_1E} \left(\frac{J_1}{J_2} - 1\right) \text{ und } f = \frac{Kl^3}{3J_1E} + \frac{Kb^3}{3J_1E} \left(\frac{J_1}{J_2} - 1\right).$$

Wesentlich einfacher gestaltet sich und einer allgemeineren Anwendung fähig ist die Ermittelung der Biegungslinie, bezw. der größten Durchbiegung eines Stabes mit sich sprungweise änderndem Querschnitt aus der Momentenfläche auf Grund der Gleichungen 4 oder 5 Se 115 u. 116. Ändert sich das Trägheitsmoment des Stabquerschnittes plötzlich von einem Wert J_1 auf einen solchen J_2 , so dafs $\frac{J_1}{J_2} = n$, so gilt auf der einen Seite des betr. Querschnittes die Gleichung $y = \frac{F_x \cdot \xi}{J_1 \cdot E}$ und auf der andern $y = \frac{F_x \cdot \xi}{J_2 \cdot E}$. Multipliziert man die rechte Seite der letzteren Gleichung im Zähler und Nenner mit n und setzt im Nenner $J_2 \cdot n = J_1$, so wird nichts geändert und es ist dann $y = \frac{F_x \cdot n \cdot \xi}{J_0 \cdot n \cdot E} = \frac{F_x \cdot n \cdot \xi}{J_1 \cdot E}$. Anstatt der Änderung des Trägheitsmomentes von J_1 auf $\frac{J_1}{n} = J_2$ erfährt die Momentenfläche eine reciproke Änderung von F_x auf $n \cdot F_x$, welche durch eine entsprechende Änderung der Höhen u in $n \cdot u$ zu bewirken ist. In gleicher Weise lassen sich etwaige weitere plötzliche Anderungen des Trägheitsmomentes durch entsprechende reciproke Anderung der Höhe der Momentenfläche ersetzen. Letztere erscheint also für den vorliegenden Zweck auf dasselbe Trägheitsmoment reduziert.

In dem oben durch Rechnung behandelten Belastungsfalle Fig. 100 stellt die Momentenfläche ein Dreieck von Grundlinie l und der Höhe Kl

dar. (Fig. 101.) Auf der Strecke b erscheint die Höhe der Momentenfläche im Verhältnis $\frac{J_1}{J_2} = n$ vergrößert.

Der Inhalt der Momentenfläche ist

$$F_{M} = rac{Kl^{2}}{2} + rac{Kb^{2}}{2} \Big(rac{J_{1}}{J_{2}} - 1 \Big)$$
 und ihr

statisches Moment in Bezug auf das freie Trägerende

$$F_M \cdot \hat{\varsigma} = \frac{K l^3}{3} + \frac{K b^3}{3} \left(\frac{J_1}{J_2} - 1 \right)$$

und daher nach Gl. 3 S. 115

 $\alpha = \frac{Kl^2}{2J_1E} + \frac{Kb^2}{2J_1E} \left(\frac{J_1}{J_2} - 1\right) \text{ und } f = \frac{Kl^3}{3J_1E} + \frac{Kb^3}{3J_1E} \left(\frac{J_1}{J_2} - 1\right)$ wie in Gl. 34.

In ähnlicher Weise lassen sich auch verwickeltere Fälle behandeln.

e) Äufsere Kräfte, Biegungsmomente und Querkräfte stabförmig gerader Balken mit statisch unbestimmter Unterstützung.

1. Der prismatische Balken auf drei Stützen.

Hier möge zunächst angenommen werden, daß der Balken eine gleichmäßig verteilte Belastung p f. d. Längeneinheit trage, die Stützen in gleicher Entfernung stehen (Fig. 102), die Mittelstütze aber um ein Mass c gegen die Endstützen

gesenkt sei. Da für das äufsere Gleichgewicht nur senkrechte Kräfte in einer Ebene, nämlich die Belastung und die Stützkräfte, in Frage kommen, so stehen

nur zwei Gleichgewichtsbedingungen, bezw. zwei Gleichungen für die Bestimmung der drei unbekannten Stützdrücke zur Verfügung. Die Unterstützung ist also einfach statisch unbestimmt und es kann die Ermittelung der Stützkräfte nur unter Heranziehung der Biegung des Balkens bezw. seiner Biegungslinie geschehen. Letztere nimmt im allgemeinen die aus Fig. 103 ersichtliche Form an und hat über der Mittelstütze wagerechte Richtung. Wird der Balken hier in dieser Richtung festgehalten und eine der Endstützen, etwa A, beseitigt, so senkt sich das linksseitige Trägerende nach S. 118 Gl. 9 unter der Wirkung der verteilten Last gegen die Mittelstütze um

 $\frac{pl^4}{8JE} + c$. Der Stützdruck A hat die Wirkung das Trägerende um dieses Mass aufwärts zu biegen und in seiner Anfangslage zu erhalten. Als Einzelkraft vermag A nach S. 118 Gl. 7 dem bei C festgehaltenen Balken an seinem freien

1)

Ende eine Aufwärtsbiegung $\frac{Al^3}{3JE}$ beizubringen. Es muß daher die Gleichung bestehen

 $AA_1 = \frac{pl^4}{8JE} + c = \frac{Al^3}{3JE}$. Daraus ergibt sich $A = \frac{3}{8}pl + \frac{3JE \cdot c}{l^3} \text{ und we gen der Symmetrie auch}$ $B = A = \frac{3}{8}pl + \frac{3JE \cdot c}{l^3}.$

Aus der Nullgleichheit der Summe der senkrechten Kräfte folgt ferner

$$C = 2 p l - A - B = \frac{5}{4} p l - \frac{6 J E c}{l^3}.$$

Der zweite Summand in dem Ausdruck für A und B stellt den Anteil beider Stützkräfte dar, welcher den in der Höhe der Mittelstütze wagerecht und unbelastet ruhenden Träger an seinen Enden um das Maís c aufwärts zu biegen vermag und das zweite (negative) Glied im Ausdruck für C drückt die Kraft-aus, welche bei C angreifend dem unbelasteten Träger von der Länge 2 l in seiner Mitte bei C um das Mass c durchzubiegen im stande ist (vergl. Gl. 11 S. 118). Der Einfluß von c auf die Stützkräfte ist

also völlig unabhängig von der Belastung des Balkens und würde bei jeder anderen Belastung derselbe sein. Für c = 0 wird

1a)
$$A = B = \frac{3}{8}pl$$
 and $C = \frac{5}{4}pl$.

Läfst man c allmählich größer werden, so werden auch die Stützkräfte A und B immer größer und C immer kleiner. Für einen bestimmten Wert von c wird C = 0 und die ganze Last geht auf die Stützen A und B über; der Träger verhält sich. wie ein zweifach gestützter. (Vergl. Fig. 104)

Setzt man $C = \frac{5}{4} \cdot pl - \frac{6JEc}{l^3} = 0$, so erhält man den ent-

sprechenden Wert $c = \frac{5}{24} \frac{p l^4}{JE}$ und damit werden

$$A = B = \frac{3}{8}pl + \frac{3JE}{l^3} \cdot \frac{5}{24} \cdot \frac{pl^4}{JE} = pl.$$

Läßt man c negativ werden, hebt die Mittelstütze gegen die Endstützen, so wird $A = B = \frac{3}{8}p \, l - \frac{3JEc}{l^3}$ und $C = \frac{5}{4}p \, l + \frac{6JEc}{l^3}$. Für einen bestimmten Wert von $c = \frac{pl^4}{8JE}$ wird nun A = B = 0und $C = \frac{5}{4}pl + \frac{6JE}{l^3} \cdot \frac{pl^4}{8 \cdot JE} = 2pl.$ Fig. 105. ÅC Der Balken ruht allein auf der Mittelstütze. (Vergl. Fig. 105.)

Das Biegungsmoment in einem Abstande *w* von *A* ist

2)

$$M_x = Ax - \frac{px^2}{2}.$$

Aus der in Gl. 2 erhaltenen Beziehung zwischen M_x und x läfst sich, wenn A nach Gl. 1 bekannt geworden ist, die Momentenfläche wie folgt entwickeln: Fügt man auf der rechten Seite $+\frac{p \ell x}{2}$ und $-\frac{plx}{2}$ hinzu, so wird

$$M_x = \frac{px}{2}(l-x) - x\left(\frac{pl}{2} - A\right).$$

Das erste Glied drückt die Ordinaten einer Parabel in Bezug auf die Sehne $A_1C_1 = l$ (Fig. 103 a) aus und entspricht der Momentenfläche

IVe. Äufsere Kräfte, Biegungsmomente u. s. w. stat. unbest. Balken. 129

eines gleichförmig belasteten Balkens auf zwei Stützen. (Vergl. S. 101 Gl. 3 Fig. 83.) Das zweite Glied stellt die Ordinaten einer geraden Linie A_1C_2 dar. In der Differenz beider erhalten wir die Ordinaten der Momentenfläche. Sie sind in den Punkten N1 und N2 gleich Null, beiderseits derselben größer und zwischen ihnen kleiner als Null. Zu einer gleichen, nur in der Form etwas abweichenden Darstellung gelangt man, wenn man den Balken als auf den Endstützen A und B ruhend und den aus Gl. 1 bekannten Stützdruck C als negative, aufwärts gerichtete Einzellast ansieht. Die Momentenfläche ergibt sich dann aus der Differenz einer Parabel von der Sehne 2*l* und der Pfeilhöhe $\frac{p(2l)^2}{8}$ und einem Dreieck von der Grundlinie 2*l* und der Höhe $\frac{5}{4}pl\cdot\frac{2l}{4} = \frac{5}{8}pl^2$. Beide Darstellungsweisen lassen erkennen, daß beiderseits zwischen den Stützen und über der Mittelstütze das Biegungsmoment je einen absoluten Größstwert besitzt und in Punkten N_1 und N_2 gleich Null wird. Die Größtwerte zwischen den Stützen, wo Mx sich stetig ändert, sind analytische Maxima und lassen sich in bekannter Weise ermitteln.

Für $\frac{dM_x}{dx} = A - px = 0$ wird $x_1 = \frac{A}{p}$ und wenn man diesen Wert in Gl. 2 einsetzt 3) $M_{max} = \frac{A^2}{p}$

$$I_{max} = \frac{A^2}{2p}.$$

Die Entfernungen der Punkte N_1 und N_2 von A und B ergeben sich aus der Gleichung $M_x = Ax - \frac{px^2}{2} = 0$ zu $x_0 = \frac{2A}{p} = 2x_1$. Für x = l erreicht das Biegungsmoment seinen negativen Größstwert 4) $M_1 = Al - \frac{pl^2}{2}$.

 M_{max} u. M_1 erscheinen nach Gl. 3 u. 4 von A und somit nach Gl. 1 auch von c abhängig. Für die Anwendung ist die Frage von Interesse, für welchen Wert von c der positive und negative Gröfstwert des Biegungsmomentes absolut genommen einander gleich werden.

Die Gleichsetzung der bezüglichen Werte der Gl. 3 u. 4 ergibt $\frac{A^2}{2p} = -\left(Al - \frac{pl^2}{2}\right)$ und daraus $A = (\sqrt{2} - 1) pl = 0.414 pl.$ Diesen Wert für A in die erste der Gl. 1 eingeführt und für c gelöst, erhält man 5) $c = \frac{0.013 pl^4}{2}$

$$=\frac{d_{I}d_{I}d_{I}p_{I}}{JE}$$

9

Keck, Elastizitätslehre.

Ersetzt man in Gl. 3 u. 4 A durch 0,414 pl, so wird 6) $M_{max} = (-M_1) = 0.086 pl^2.$

Ohne jede Senkung der Mittelstütze (für c = 0) wird nach Gl. 1 $A = B = \frac{3}{8} pl$ und $C = \frac{5}{4} pl$ und damit nach Gl. 3 u. 4

7)
$$M_{max} = \frac{A^2}{2p} = \frac{9}{128} \cdot pl^2 = 0,07 \cdot pl^2$$
 und

8)

$$M_1 = \frac{3}{8}pl^2 - \frac{pl^2}{2} = -\frac{pl^2}{8} = -0,125 pl^2.$$

Das Moment über der Mittelstütze M_1 ist danach bei gleicher Höhenlage aller drei Stützen genau so groß, wie das größte Moment eines Trägers auf zwei Endstützen von der Stützweite l und gleichförmiger Belastung p.

Die größte Spannung σ' , die bei einem Balkenquerschnitt vom Widerstandsmoment W über der Mittelstütze eintreten würde, ist im Falle c = 0 $\sigma' = \frac{M_1}{W} = \frac{0, 125 pl^2}{W}$ und die Spannung σ'' die im Falle $c = \frac{0, 013 pl^4}{JE}$ — gleiches positives und negatives Größtmoment, Momentenausgleich sowohl über der Mittelstütze als an der Stelle des Maximalmomentes entstehen würde $\sigma'' = \frac{M_1}{W} = \frac{M_{max}}{W} = \frac{0, 086 pl^2}{W}$; das Verhältnis beider demnach $\frac{\sigma'}{\sigma''} = 1, 45$. Die Spannung σ'' beträgt also bei derselben Belastung im Falle des Momentenausgleichs durch Senkung der Mittelstütze nur $\frac{1}{1, 45} = \text{rot } 0, 5$; der Spannung σ' für die Lage der Stützen in gleicher Höhe. Umgekehrt würde bei derselben zulässigen Spannung σ die Tragfähigkeit im Falle des Momentenausgleichs 1, 45 mal so großs sein.

Das Mafs der Senkung c, das eine so erhebliche Wirkung im Gefolge hat, ist verhältnismäßig sehr gering. Beispielsweise würde ein dreifach gestützter **I**-Balken von 30 cm Höhe, $J = 9800 \text{ cm}^4$ und $\frac{J}{e} = 652$, l = 4,0 m und einer gleichförmigen Belastung p = 3000 kg pr. lfd. m für den Momentenausgleich eine Senkung (Gl. 5) $c = \frac{0,013 \cdot 30 \cdot 400^4}{2\,000\,000 \cdot 9800} = 0,51 \text{ cm}$, d. i. rund $\frac{1}{800}$ der Stützweite l = 400 cm erfordern. Die Spannung würde betragen

a) ohne Momentenausgleich $\sigma' = \frac{0,125 \cdot 30 \cdot 400^2}{652} = 920 \text{ at},$ b) mit " , $\sigma'' = \frac{0,086 \cdot 30 \cdot 400^2}{652} = 634 \text{ at}.$

Wir erkennen hieraus, dafs der dreifach gestützte Balken hinsichtlich der eintretenden gröfsten Randspannung σ sehr empfindlich ist gegenüber der Höhenlage der Stützen gegeneinander und die genaueste Verlegung erfordert, wenn die rechnungsmäßige Spannung innegehalten werden soll. Eine Ungenauigkeit in der Höhenlage von 1¹/4⁰/00 der Stützweite hat bereits die oben berechnete Spannungsverschiedenheit im Gefolge und diese Unsicherheit ist allen Balken mit statisch unbestimmter Unterstützung eigen. Aus Sicherheitsrücksichten tut man daher gut, von der Anwendung derartiger Balken nur den vorsichtigsten Gebrauch zu machen. Die Querkraft im Abstande x von der Endstütze A ist 9) $Q_x = A - p \cdot x$.

Sie stimmt überein mit dem auf S. 129 für $\frac{dM_x}{dx}$ abgeleiteten Ausdrucke und wird geometrisch durch die Ordinaten einer geraden Linie A_2C_3 , bezw. C_4B_2 dargestellt. In den Abständen $x_1 = \frac{A}{p}$ und l von A, also in den Querschnitten, für welche M_x seine absoluten Größstwerte annimmt, ist die Querkraft gleich Null, bezw. sie wechselt ihr Vorzeichen. Ihre absoluten Größstwerte finden sich links und rechts unmittelbar neben der Mittelstütze. Für c = 0 (Stützen in gleicher Höhe) ist hier nach Gl. 9

9a)
$$Q_1 = \pm (A - pl) = + \left(\frac{3}{8}pl - pl\right) = + \frac{5}{8}pl = 0,625 pl$$

und für $c = \frac{0.013 \, p \, l^4}{JE}$ (Momentenausgleich) ist 9 b) $Q_1 = \pm (A - p \, l) = \pm (0.414 \, p \, l - p \, l) = \mp 0.586 \, p \, l.$

Um nun zu dem Falle allgemeinster Belastung des Balkens auf drei Stützen zu gelangen, setzen wir zunächst eine Einzellast *P* in beliebiger Lage, Fig. 106.

hier im linksseitigen Träger-

felde voraus. (Fig. 106.) Die Stützkraft *B* mufs dabei abwärts gerichtet,

negativ sein; denn sie hat das rechtsseitige

Trägerende niederzuhalten, weil es sich sonst von der Stütze abheben und in der

Richtung der Tangente an die

Biegungslinie bei C frei und gerade überragen, der Balken zu einem solchen auf zwei Stützen werden würde. Die Stützen sollen in

9*

gleicher Höhe angenommen und der von der Belastung unabhängige Einfluß einer Senkung c der Mittelstütze soll nach den Ausführungen auf S. 127 u. 128 beurteilt werden.

Wir denken uns den Balken bei C in der Richtung A'CB'seiner Biegungslinie unter dem Winkel ω festgehalten, bezw. eingespannt und die Stütze A beseitigt. Dann senkt sich nach S. 118 Gl. 7 der Lastangriffspunkt D unter Wirkung von P gegen die Tangente A'C um $z = \frac{P(l-u)^3}{3JE}$ und das Trägerstück DA stellt sich gegen A'C in die Neigung $\alpha = \frac{P(l-u)^2}{2JE}$. Dabei gelangt der Endpunkt A des Balkens nach A'' und es wird $AA''=\omega l+z+\alpha u=\omega l+\frac{P}{JE}\left\{\frac{(l-u)^3}{3}+\frac{(l-u)^2}{2}u\right\}=\omega \cdot l+\frac{P(l-u)^2}{6JE}(2l+u).$ Der Stützdruck A hat die Wirkung, das Trägerende um dieses Maís wieder aufwärts, also in seine Anfangslage zurück zu biegen. Daraus

ergibt sich die Gleichung

$$\frac{Al^3}{3JE} = \omega l + \frac{P(l-u)^2}{6JE}(2l+u).$$

Ebenso muß der abwärts gerichtete Stützdruck *B* das Trägerende *B* von *B'* nach *B*, d. i. um ein Maß $BB' = l \cdot \omega$ abwärts biegen können, also die Gleichung erfüllen $\frac{Bl^3}{3JE} = l\omega$.

Aus beiden Gleichungen entsteht durch Abziehen

$$A - B = \frac{P}{2} \left(1 - \frac{u}{l} \right)^2 \left(2 + \frac{u}{l} \right) \quad \text{und die Momenten-}$$
in Bezug auf C liefert

gleichung in Bezug auf C liefert

$$A + B = \frac{P}{2} \left(2 - 2 \frac{u}{l} \right).$$
 Aufserdem muß sein
 $A^{2} + B + C = P$ und man erhält

10)
$$A = \frac{P}{4} \left(4 - 5 \frac{u}{l} + \frac{u^3}{l^3} \right),$$

$$B = \frac{P}{4} \left(\frac{u}{l} - \frac{u^3}{l^3} \right),$$

12)'
$$C = \frac{P}{4} \left(6 \frac{u}{l} - 2 \frac{u^3}{l^3} \right).$$

Bei einer Senkung der Mittelstütze um c würde sich A und B um je $\frac{3 c JE}{l^3}$ vergrößern und Cum $\frac{6 c JE}{l^3}$ verkleinern (vgl. Gl. 1 S. 127), wobei zu bemerken ist, daß, da B abwärts gerichtet, negativ ist, sein Absolutwert durch c in vorliegendem Falle eine Verkleinerung erfahren würde.
IVe. Äufsere Kräfte, Biegungsmomente u. s. w. stat. unbest. Balken. 133

Nachdem so die Stützkräfte gefunden sind, kann die Ermittelung des Biegungsmomentes und der Querkraft für irgend einen Querschnitt in bekannter Weise geschehen.

Zu der Momentenfläche Fig. 106, a gelangt man auf folgende Weise. Man betrachtet den Balken als auf zwei Stützen A und Cruhend und von Lasten P und B ergriffen. Der Last P entspricht dann das Dreieck $A_1C_1D_1$ mit der Höhe $\frac{Pu(l-u)}{l}$ als Momentenfläche und der Last B das Dreieck $A_1B_1C_2$ mit der. Höhe $B \cdot l = \frac{P \cdot l}{4} \left(\frac{u}{l} - \frac{u^3}{l^3} \right)$. Ersteres ist positiv, letzteres negativ zu bewerten, beide heben sich bezüglich der Fläche A_1ND_1 und die negative $B_1C_1NC_2$ mit dem Momentennullpunkt N gewonnen wird.

Wirken mehrere Einzellasten auf den Balken ein, so sind ihre Beiträge zu den Stützkräften nach den Gleichungen 10, 11 u. 12 einzeln zu ermitteln und zu summieren.

'Handelt es sich um eine gesetzmäßig verteilte stetige Last pfür die Längeneinheit (Fig. 106 c), so kann man den auf ein Längenteilchen du entfallenden Lastenteil $p \cdot du$

als Einzellast ansehen und auf ihn die Gleichungen 10, 11 u. 12 anwenden. Der durch denselben in A erzeugte Stützdruck ist $p \cdot du (1 - u - u^3)$

t $dA = \frac{p \cdot du}{4} \left(4 - 5 \frac{u}{l} + \frac{u^3}{l} \right).$

Erstreckt sich die Belastung von $u = u_1$ bis $u = u_2$, so ist der Gesamtstützdruck (^{2u2}

$$A = \int_{-\infty}^{\infty} \frac{p \, du}{u} \left(4 - 5 \frac{u}{l} + \frac{u^3}{l^3} \right).$$

Ist p = f(u) bekannt, so kann die Ausführung der Integration in üblicher Weise geschehen. Für eine gleichmäßig verteilte Last (*p* konstant) wird

13)
$$A = \frac{pl}{4} \left(4 \frac{u_2 - u_1}{l} - \frac{5}{2} \frac{u_2^2 - u_1^2}{l^2} + \frac{1}{4} \frac{u_2^4 - u_1^4}{l^4} \right) \text{ und ebenso}$$

14)
$$B = \frac{p l}{4} \left(\frac{1}{2} \frac{u_2^2 - u_1^2}{l^2} - \frac{1}{4} \frac{u_2^4 - u_1^4}{l^4} \right)$$

15)
$$C = \frac{p l}{4} \left(3 \frac{u_2^2 - u_1^2}{l^2} - \frac{u_2^4 - u_1^4}{2 l^4} \right)$$

Für $u_1 = 0$, $u_2 = l$ Belastung des ganzen linken Trägerfeldes wird $A = \frac{7}{16}pl, B = -\frac{pl}{16}$ und $C = \frac{5}{8}pl.$ Die volle 16)

Belastung des rechtsseitigen Balkenfeldes würde ebenso ergeben

16a)
$$A = -\frac{pl}{16}, B = \frac{7pl}{16} \text{ und } C = \frac{5}{8}pl;$$

die volle Belastung des ganzen Trägers mithin $A = B = \frac{3}{8}pl$, $C = 2 \cdot \frac{5}{8} p l = \frac{5}{4} p l$, wie weiter oben bereits gefunden.

Ist der ganze Träger gleichmäßig mit g und außerdem das linke Feld mit p belastet, so wird

17)
$$A = \frac{3}{8}gl + \frac{7}{16}pl, \quad B = \frac{3}{8}gl - \frac{pl}{16}, \quad C = \frac{5}{4}gl + \frac{5}{8}pl.$$

2. Der einseitig wagerecht eingespannte und am freien Ende unterstützte prismatische Balken.

Ist der Balken, wie hier zunächst angenommen werden möge, gleichmäßig belastet, so läßt sich seine Behandlung ohne Weiteres auf den unter 1 besprochenen dreifach gestützten Balken mit gleich-

mäßiger Belastung zurückführen. Da die Richtung der Biegungslinie des letzteren bei symmetrischer Anordnung über der Mittelstütze wagerecht ist, so kann man sich die eine Trägerhälfte, beispielsweise die linksseitige in dieser Richtung, fest

eingespannt denken, ohne dafs das Biegungsmoment, die Querkraft und somit auch die Biegungs- und Spannungsverhältnisse der rechtsseitigen Trägerhälfte irgend eine Anderung erfahren. (Fig. 107 u. 108.)

Die Stützdrücke A und B ergeben sich aus Gl. 1 S. 127 für c = 0 zu $A = \frac{C}{2} = \frac{5}{8}pl \quad \text{und} \quad B = \frac{3}{8}pl$

1)

IVe. Aufsere Kräfte, Biegungsmomente u. s. w. stat. unbest. Balken. 135 und wenn die Stütze B gegen diejenige bei A und c erhöht wird $A = \frac{5}{8}pl - \frac{3JEc}{l^3}$ und $B = \frac{3}{8}pl + \frac{3JEc}{l^3}$. 1a) Das Biegungsmoment im Abstande x von B ist nach Gl. 2 S. 128 $M_{z} = Bx - \frac{x^{2}p}{2}.$ Es erreicht im 2) Abstande $x_1 = \frac{B}{p}$ seinen positiven Größtwert $M_{max} = \frac{B^2}{2p}$ (vergl. Gl. 3 S. 129) und im Be-3)festigungsquerschnitt für x = l (Gl. 2) seinen negativen Größstwert $M_1 = Bl - \frac{pl^2}{2}.$ 4) Für c = 0 wird $M_{max} = \frac{9}{128} \cdot p l^2$ 3a) und $M_1 = -\frac{p l^2}{q}.$ 4a) Für $c = \frac{0.013 \, p \, l^4}{JE}$ (Momentenausgleich vergl. Gl. 5 S. 129) wird Fig. 109 $M_{max} = (-M_1) = 0.086 \ p \ l^2$ (vergl. Gl. 6 S. 130). Wir lassen jetzt eine (M Einzellast P im Abstande u von B auf den Balken einwirken. (Fig. 109.) Ohne D Λ Bi die Stütze bei B würde das freie Trägerende sich um

$$\frac{P(l-u)^3}{3JE} + u \cdot \frac{P(l-u)^2}{2JE}$$

gegen die Wagerechte durch A herabsenken. Der Stützdruck B vermag dasselbe in seine Lage zurückzubiegen und darin zu erhalten. Daraus

folgt

$$\frac{Bl^{3}}{3JE} = \frac{P(l-u)^{3}}{3JE} + u \frac{P(l-u)^{2}}{2JE} \quad \text{und somit}$$
(5)

$$B = \frac{P}{2} \left(2 - 3 \frac{u}{l} + \frac{u^{3}}{l^{3}} \right)$$

und aus der Nullgleichheit der senkrechten Kräfte 6) $A = P - B = \frac{P}{2} \left(3 \frac{u}{I} - \frac{u^3}{I^2} \right).$

Nachdem A und B bekannt geworden, läßt sich das Biegungsmoment für jeden Querschnitt in bekannter Weise ermitteln.

Die Momentenfläche ergibt sich wie folgt: Auf den bei A eingespannten Balken wirken die Kräfte P und B biegend ein, und zwar erstere abwärts, negativ, letztere aufwärts, positiv. Der Kraft Pentspricht das Dreieck $A_1D_1C_1$, der Kraft B das Dreieck $A_1B_1C_2$ als Momentenfläche. Die Zusammenfügung beider, erstere negativ, letztere positiv genommen, ergibt die Momentenfläche $B_1D_1NC_1C_2$ mit dem Momenten-Nullpunkte N. Der Gröfswert des Momentes an der Einspannungsstelle, das sog. Einspannungsmoment, ist

7)
$$M_1 = B \cdot l - P \cdot (l - u) = -\frac{Pu}{2} \left(1 - \frac{u^2}{l^2} \right)$$

und im Angriffsquerschnitt der Kraft bei D

8)
$$M_a = B \cdot u = \frac{Pu}{2} \left(2 - \frac{3u}{l} + \frac{u^3}{l^3} \right).$$

Greifen gleichzeitig mehrere Einzellasten an, so lassen sich deren Beiträge zu A, B, M_1 u.s. w. mit Hilfe der Gleichungen 5, 6, 7 u.s. w. einzeln berechnen und summieren. Auch für eine beliebige verteilte Last lassen sich die Gleichungen 5-7 benutzen, wenn man, wie unter 1 S. 133 $P = du \cdot p$ setzt und die entsprechende Differenzialgleichung wie dort löst.

Der hier besprochene Belastungsfall ist wie der dreifach gestützte Träger einfach statisch unbestimmt.

Als unbekannte mechanische Werte kommen für das äufsere Gleichgewicht hier aufser den Stützdrücken bei A und B das Einspannungsmoment M_1 bei A in Betracht, denen, da es sich um Parallelkräfte in einer Ebene handelt, nur zwei Gleichgewichtsbedingungen gegenüberstehen. Die Entstehung des-Einspannungsmomentes M_1 hat man sich wie folgt zu erklären: Man denkt sich den Balken zunächst in A und B als zweifach gestützten Träger frei aufliegen; dann wird seine Biegungslinie

bei A um einen Winkel α gegen die Wagerechte geneigt sein (Fig. 110). Läfst man nun auf das Balkenstück links von A ein linksdrehendes allmählich gröfser werdendes Moment M_1 einwirken, so wird bei einer bestimmten Gröfse desselben die Biegungslinie im

Punkt A wagerecht. Das gleiche Moment entsteht in A, wenn man das

IV e. Äufsere Kräfte, Biegungsmomente u. s. w. stat. unbest. Balken. 137

dort überragende Balkenstück durch Belastung in die wagerechte Richtung zwingt, d. h. dasselbe wagerecht einspannt.

3. Der an beiden Enden fest eingespannte Balken.

Für das äußere Gleichgewicht kommen außer der als gegeben anzusehenden Belastung die beiderseitigen Stützdrücke A und B und die beiden Einspannungsmomente M_1 und M_2 (Fig. 111), also vier unbekannte mechanische Werte in Frage, denen, da es sich um

Parallelkräfte in einer Ebene handelt, nur zwei Gleichgewichtsbedingungen gegenüberstehen, so daß der Zustand des Balkens ein zweifach statisch unbestimmter ist.

Wir machen zunächst die Annahme, daß die Einspannung des Balkens beiderseits in gleicher Höhe und unter gleichen Richtungswinkeln ω gegen die Wagerechte erfolgt und der Balken gleichmäßig mit p für die Längeneinheit belastet ist. (Fig. 111.) Bei der dann herrschenden völligen Symmetrie müssen sowohl die beiderseitigen Einspannungsmomente M_1 und M_2 als auch die Stützkräfte einander gleich sein. Letztere sind demnach

$$A = B = \frac{pl}{2}.$$

Das Biegungsmoment im Abstande x von A ist

2)
$$M_s = A x - \frac{p x^2}{2} - M_1 = \frac{p x}{2} (l - x) - M_1$$

138 IV. Biegungs- und Schubspannungen, äufsere Kräfte.

und für die Biegungslinie in Bezug auf das aus Fig. 111 ersichtliche Achsenkreuz gilt die Gleichung

3)
$$\frac{d^2y}{dx^2} = -\frac{M_x}{JE} = -\frac{1}{JE} \left[\frac{p \, l x - x^2}{2} - M_1 \right].$$

Die Integration liefert

4)
$$\frac{dy}{dx} = -\frac{1}{JE} \left[\frac{p}{2} \left(\frac{lx^2}{2} - \frac{x^3}{3} \right) - M_1 \cdot x \right] + C.$$

Für x = 0 wird $\frac{dy}{dx} = \omega$ und demnach $C = \omega$.

Für $x = \frac{l}{2}$ wird $\frac{dy}{dx} = 0$, also $0 = -\frac{1}{JE} \cdot \left(\frac{p l^3}{24} - \frac{M_1 l}{2}\right) + \omega$ und daraus

5)
$$M_{l} = \frac{pl^{2}}{12} - \frac{2 \omega \cdot JE}{l}.$$
 Mit $\omega = 0$ (wager. Einsp.)
5a)
$$M_{l} = \frac{pl^{2}}{12}.$$

Damit sind sowohl die Einspannungsmomente als die Stützkräfte bekannt und nach Gl. 2 läßt sich auch für jeden Querschnitt das Biegungsmoment M_x berechnen. Die Momentenfläche ergibt sich ohne weiteres aus Gl. 2. Das erste positive Glied $\frac{p \cdot x}{2}(l-x)$ wird geometrisch durch eine Parabel mit der Sehne l und der Pfeilhöhe $\frac{p \cdot l^2}{8}$, und das zweite, negative, durch ein Rechteck von der Länge lund der Höhe M_1 ausgedrückt. Aus der Zusammenfügung, bezw. der Differenz beider entsteht die wirkliche Momentenfläche Fig. 111, a, deren mittlerer Teil positiv ist und deren seitliche Teile negativ sind.

Die Gleichungen 5 u. 5a lassen sich auch ohne Integration unmittelbar aus der Momentenfläche ersehen. Die Richtungen der Biegungslinie in A und B weichen nämlich um 2ω voneinander ab und nach Gl. 3 S. 115 muß sein

$$JE \cdot 2\omega = F_{M} = \frac{2}{3}l \cdot \frac{pl^{2}}{8} - M_{1}l = \frac{pl^{3}}{12} - M_{1}l,$$

woraus durch Auflösung für M_1 Gl. 5 entsteht.

6)

Das größste Moment in der Balkenmitte wird nach Gl. 2 für $x = \frac{l}{2}$

$$M_{max} = \frac{p \, l^2}{8} - M_1$$

IVe. Äufsere Kräfte, Biegungsmomente u. s. w. stat. unbest. Balken. 139

und für $\omega = 0$ (wagerechte Einspannung) unter Beachtung der Gl. 5 6 a) , $M_{max} = \frac{pl^2}{8} - \frac{pl^2}{12} = \frac{pl^2}{24}$.

Die Verschiedenheit der positiven und negativen Größtwerte M_{max} und M_1 , wie sie für wagerechte Einspannung aus Gl. 5a u. 6a ersichtlich ist, läfst sich durch einen bestimmten Wert für ω ausgleichen. Die Bedingung $M_{max} = M_1$ führt gemäß Gl. 6 zu

 $M_{max} = M_1 = \frac{p l^2}{8} - M_1$, woraus sich ergibt

 $M_{max} = M_1 = \frac{pl^2}{16}.$

Diesem Momentenausgleich entspricht nach Gl. 5 ein Winkel

8)
$$\omega = \left(\frac{pl^3}{24} - \frac{M_1l}{2}\right) \frac{1}{JE} = \left(\frac{pl^3}{24} - \frac{pl^2}{16}\frac{l}{2}\right) \frac{1}{JE} = \frac{pl^3}{96JE}.$$

Die Durchbiegung in der Trägermitte erhält man entweder durch weitere Integration der Gleichung 4 S. 138, oder mit Hilfe der Gl. 3 S. 115 in dem statischen Moment der Momentenfläche der äufseren Trägerhälfte in Bezug auf das Trägerende A (vergl. Fig. 111, b) zu

 $f = \frac{1}{JE} \left(\frac{5}{16} l \cdot \frac{2}{3} \frac{l}{2} \frac{pl^2}{8} - \frac{l}{4} \cdot \frac{l}{2} M_1 \right) = \frac{1}{JE} \left(\frac{5}{384} pl^4 - \frac{l^2 M_1}{8} \right).$

Für wagerechte Einspannung $\omega = 0$ $M_1 = \frac{p l^2}{12}$ wird $f = \frac{p l^4}{384 JE}$, d i. ¹/₅ der Durchbiegung des beiderseits frei aufliegenden Balkens (Gl. 25 S. 123).

Für den Momentenausgleich $M_1 = \frac{p l^2}{16}$ wird $f = \frac{p l^4}{192 J E}$.

Der hier besprochene Unterstützungsfall eines prismatischen Balkens durch beiderseitige Einspannung ist für die unmittelbare Anwendung von verhältnismäßig geringer Tragweite, weil eine Einspannung in genau wagerechter oder sonst bestimmter Richtung praktischen Schwierigkeiten begegnet. Die Ergebnisse lassen sich aber für andere wichtige Untersuchungen mit Vorteil verwenden. Es soll daher in folgendem noch der allgemeine Fall einer beiderseitigen Einspannung in verschiedener Höhe und Neigung, sowie mit beliebiger Belastung erörtert werden.

Wir betrachten den Balken zunächst unbelastet, in den Stützpunkten A und B nur gegen Verschiebung, d. h. drehbar festgehalten, und an den Enden von Momenten M_1 und M_2 mit entgegengesetztem Drehungssinn ergriffen. (Fig. 112.) Stehen beide Momente nicht miteinander im Gleichgewicht, ist beispielsweise $M_1 > M_2$, so müssen

an den Stützpunkten entgegengesetzt gleiche Stützkräfte A_1 und B_1 (d. h. ein Kräftepaar) auftreten, welche das Gleichgewicht herstellen, so dafs $M_1 - M_2 - A_1 l = 0$, also

Die geometrische Darstellung dieses durchweg negativen Momentes ist geradlinig, daher durch zwei Punkte bestimmt. Für x = 0 ist $M = -M_1$ und für x = l $M_x = -M_2$. Die durchweg negative Momentenfläche ist also ein Trapez; man hat die Endmomente als Ordinaten aufzutragen und durch eine Gerade zu verbinden.

Die Querkraft ist für alle Querschnitte

11)

 $Q_x = A_1 = \frac{M_1 - M_2}{l}.$

Unter der Wirkung der negativ angenommenen Momente M_1 und M_2 entsteht eine konkav, nach unten gerichtete Krümmung des Balkens und die Biegungslinie schließt in den Endpunkten desselben gewisse Winkel ω_1 und ω_2 mit der Wagerechten ein. Diese Winkel stehen daher zu den Momenten M_1 und M_2 in bestimmter Beziehung, zu der man wie folgt gelangt:

Der Punkt A_1 der Biegungslinie hat von der Tangente A_2B_1 in B_1 den Abstand A_2A_1 und ebenso der Punkt B_1 von der Tangente A_1B_2 den Abstand B_2B_1 und zwar ist bei den aus der Figur ersichtlichen Winkelbezeichnungen

 $A_2A_1 = (\omega_2 - \beta) l$ und $B_2B_1 = (\omega_1 + \beta) l$, kleine Winkel ω und β vorausgesetzt. IVe. Aufsere Kräfte, Biegungsmomente u. s. w. stat. unbest. Balken. 141

Nach Gl. 3 S. 115 ist nun

 $(\omega_2 - \beta)l \cdot J \cdot E = F_1 \cdot \xi_1$ und $(\omega_1 + \beta)l \cdot J E = F_1 \cdot \xi_2$,

worin F_1 den Inhalt der trapezförmigen Momentenfläche und ξ_1 und ξ_2 die Abstände des Schwerpunktes derselben von A_1 und B_1 bezeichnen. Denkt man sich das Trapez in zwei Dreiecke zerlegt (siehe Fig. 112), so erhält man

$$F_1 \cdot \tilde{\varsigma}_1 = \frac{l}{3} \frac{M_1 l}{2} + \frac{2}{3} l \cdot \frac{M_2 l}{2} = \frac{l^2}{6} \left(M_1 + 2 M_2 \right) \text{ und}$$

$$F_1 \cdot \tilde{\varsigma}_2 = \frac{2}{3} l \cdot \frac{M_1 l}{2} + \frac{l}{3} M_2 l = \frac{l^2}{6} \left(2 M_1 + M_2 \right). \text{ Daher wird}$$

12)
$$l \cdot (\omega_2 - \beta) JE = \frac{l^2}{6} (M_1 + 2 M_2) \quad \text{und}$$

13)
$$l \cdot (\omega_1 + \beta) JE = \frac{l^2}{6} (2 M_1 + M_2).$$

Die Gleichungen 12 und 13 drücken allgemein die Beziehungen aus zwischen den Neigungswinkeln ω_1 und ω_2 der Biegungslinie in den Stützpunkten A_1 und B_1 und den Momenten M_1 und M_2 daselbst. Tritt nun zu den letzteren noch eine beliebige Belastung des Balkens' hinzu, so addieren sich die Wirkungen beider sowohl hinsichtlich der Stützkräfte als der Biegungsmomente M_x und der Querkräfte Q_x . Sind A' und B' die durch die Belastung hervorgerufenen Anteile der Stützkräfte, A und B die Gesamtstützkräfte, so wird unter Beachtung der Gleichung 9

)
$$\begin{cases} A = A' + A_1 = A' + \frac{M_1 - M_2}{l}, \\ B = B' + B_1 = B' + \frac{M_2 - M_1}{l}. \end{cases}$$

14

Ist ferner F' die aus der Belastung sich ergebende positive Momentenfläche und sind ξ' und ξ'' die Schwerpunktsabstände derselben von den Stützpunkten A und B, so ist die Gesamtmomentenfläche $M \to M$

$$F_{M} = F' - F_{1} = F' - \frac{M_{1} + M_{2}}{2} \cdot l$$
 (Fig. 113)

und die statischen Momente derselben in Bezug auf die Stützpunkte *A* und *B* sind $F' \cdot \xi' - F_1 \cdot \xi_1 = F' \cdot \xi' - \frac{l^2}{c} (M_1 + 2 \cdot M_2),$

$$F' \cdot \xi'' - F_1 \cdot \xi_2 = F' \cdot \xi'' - \frac{l^2}{6} (2 M_1 + M_2)$$

An Stelle der Gleichungen 12 u. 13 treten für den belasteten Träger

15)
$$l(\omega_2 + \beta) JE = E' \cdot \xi' - \frac{l^2}{6} (M_1 + 2 M_2),$$

16)
$$l(\omega_1 - \beta) J E = F' \cdot \xi'' - \frac{l^2}{6} (2 M_1 + M_2).$$

Fig. 113.

Denkt man sich nun die Balkenenden in den unter Zusammenwirkung der positiven Momente der Belastung und der negativen Momente M_1 und M_2 entstandenen Neigungen ω_1 und ω_2 festgehalten oder eingespannt, so hat die Einspannung die Momente M_1 und M_2 zu leisten.

Nach Gl. 15 u. 16 lassen sich, wenn ω_1 , $\tilde{\omega}_2$, β und F' bekannt bezw. in bekannter Weise ermittelt sind, die Einspannungsmomente M_1 und M_2 und dann mit Hilfe der Gl. 14 auch die Stützkräfte A und B berechnen. Damit ist die Frage des äufseren Gleichgewichts gelöst.

Das Biegungsmoment in beliebigem Abstande vom Stützpunkt 4 ergibt sich unter Beachtung der Gleichung 10 zu

17)
$$M_{x} = M_{x'} - M_{1} \left(1 - \frac{x}{t} \right) - M_{2} \frac{x}{t},$$

worin das erste Glied M_x' das positive Biegungsmoment des beiderseits frei aufliegenden Trägers, das zweite und dritte Glied die negativen Beiträge der Einspannungsmomente darstellen.

Für die Querkraft Q, erhält man mit Beachtung der Gl. 11

18)
$$Q_x = Q_x' + \frac{M_1 - M_2}{l}$$

worin wieder Q_x' die Querkraft des beiderseits frei aufliegenden Balkens bezeichnet.

IV e. Äufsere Kräfte, Biegungsmomente u. s. w. stat. unbest. Balken. 143

Besteht die Belastung beispielsweise aus einer Einzellast P (Fig. 114), so ist F' ein Dreieck von der Grundlinie l und der Höhe $\frac{P \cdot a b}{l}$. Ferner ist $\xi' = \frac{l}{2} + \frac{1}{3}\left(a - \frac{l}{2}\right) = \frac{a+l}{3}$ und $\xi'' = \frac{b+l}{3}$, $F' = \frac{P \cdot a b}{2}$. Für beiderseits

Fiz. 114.

wagerechte Einspannung und gleiche Höheplage der Stützen wird aufserdem $\omega_1 = \omega_2 = 0$ und $\beta = 0$. Nach Gl. 15 u. 16 wird dann

$$0 = \frac{P \cdot a \cdot b \cdot (a+l)}{l} - l(M_1 + 2 M_2) \text{ und}$$

$$0 = \frac{P \cdot a \cdot b \cdot (b+l)}{l} - l(2 M_1 + M_2) \text{ und daraus}$$

$$M_1 = \frac{P a b^2}{l^2}, \quad M_2 = \frac{P a^2 b}{l^2}.$$

Im Angriffsquerschnitt der Last für x = u wird $M_{x'} = \frac{P \cdot a b}{l}$ und somit nach Gl. 17 das Biegungsmoment

$$M_{a} = \frac{P \cdot a \, b}{l} - \frac{P \cdot a \, b^{2}}{l^{2}} \left(1 - \frac{a}{l}\right) - \frac{P \cdot a^{2} b}{l^{2}} \cdot \frac{a}{l} = \frac{P \cdot a \, b}{l} \left(1 - \frac{a^{2} + b^{2}}{l^{2}}\right).$$

Nach Gl. 14 werden die Stützdrücke

$$A = \frac{P \cdot b}{l} + \frac{P \cdot a b}{l^2} \left(\frac{b - a}{l} \right) = \frac{P \cdot b}{l^3} (l^2 - a^2 + a b),$$

$$B = \frac{P \cdot a}{l^3} (l^2 - b^2 + a b).$$

Für den Lastangriff in der Balkenmitte $a=b=\frac{l}{2}$ wird $M_1=M_2=\frac{P\cdot l}{8}$ und ebenso $M_a=\frac{P\cdot l}{8}$, $A=B=\frac{P}{2}$. Für eine Einzellast in der Balkenmitte ist also bei wagerechter Einspannung Momentenausgleich vorhanden.

Wirken gleichzeitig mehrere Einzellasten P_n in beliebigen Abständen a_n und b_n von A und B, so summieren sich deren Beiträge zu dem Einspannungsmomente. Es wird $M_1 = \frac{1}{l^2} \Sigma P_n a_n b_n^2$ und $M_2 = \frac{1}{l^2} \Sigma P_n a_n^2 b_n$. Nachdem M_1 und M_2 danach bekannt geworden sind, lassen sich die Stütz-kräfte A und B, sowie das Biegungsmoment M_x und die Querkraft Q_x nach

Gl. 14, 17 u. 18 bestimmen. Bei stetiger Belastung p auf beliebiger Strecke von $x = x_1$ bis $x = x_2$ sieht man $p \cdot dx$ als Einzellast an. Es wird dann, wenn man in obigen Summen $P_n = p \cdot dx$, $b_n = x$ und $a_n = l - x$ setzt.

$$M_1 = p \int_{x_1}^{x_2} (1-x) dx$$
 und $M_2 = p \int_{x_1}^{x_2} (1-x)^2 \cdot x \cdot dx$.

4. Prismatischer Balken auf beliebig vielen Stützen. (Fig. 115.)

Der unter 1 behandelte prismatische Träger auf drei Stützen wurde als einfach statisch unbestimmt erkannt, weil zur Bestimmung der das äufsere Gleichgewicht gegenüber der senkrechten Belastung

herstellenden drei unbekannten Stützkräften nur zwei Gleichgewichtsbedingungen, bezw. zwei Bestimmungsgleichungen zur Verfügung standen (Nullgleichheit der Summe aller senkrechter Kräfte und desgleichen der Summe aller ihrer Momente). Jede hinzutretende weitere Stütze bringt in die zu behandelnde Aufgabe des äußeren Gleichgewichts eine neue unbekannte Stützkraft. Bei r Trägerfeldern,

IVe. Äufsere Kräfte, Biegungsmomente u. s. w. stat. unbest. Balken. 145

also r+1 Stützen, und ebensoviel unbekannten Stützkräften stehen zur Bestimmung der letzteren wiederum nur zwei Gleichungen zur Verfügung, es fehlen also r-1 Gleichungen, die aus der Biegungslehre gewonnen werden müssen; der Träger ist somit (r-1)-fach statisch unbestimmt. Sind die Stützkräfte alle bekannt geworden, so läßt sich aus diesen und den Lasten das Biegungsmoment für jeden Querschnitt des Balkens in üblicher Weise bestimmen. Auch in den Querschnitten senkrecht über den Stützen ergeben sich im allgemeinen bestimmte Biegungsmomente, die sog. "Stützmomente", welche, wie man leicht erkennt, nur über den beiden Endstützen gleich Null sind. Im ganzen sind demnach r-1 Stützmomente vorhanden. Denkt man sich den Balken über allen (r-1) Zwischenstützen senkrecht durchschnitten (Fig. 115, b), so verschwinden damit alle (r-1) Stützmomente und der Balken zerfällt in r zweifach gestützte, also statisch bestimmte Einzelträger. Die Zahl der Zwischenstützen, bezw. Stützmomente drückt also den Grad der statischen Unbestimmtheit des Balkens aus. Die Stützmomente werden von den auf den Zwischenstützen zusammentretenden Einzelträgern gegenseitig aufeinander ausgeübt (Fig. 115, a) und können daher für das Gleichgewicht jedes Einzelträgers als äufsere mechanische Werte angesehen werden (Fig. 115, c). Sind sie ermittelt, so lassen sich nach Gl. 14 S. 141 auch die Stützkräfte leicht bestimmen und die Frage des äußeren Gleichgewichts kann als gelöst, bezw. auf die rein statischen Gleichgewichtsbedingungen zurückgeführt angesehen werden. In folgendem möge dieser von dem französischen Ingenieur Clapeyron zuerst eingeschlagene Weg verfolgt und die Stützmomente als Unbekannte zunächst ermittelt werden.

Einzuführende Bezeichnungen. (Fig. 115.)

Die Stützen werden mit 0, 1, 2 ... n-1, n, n+1 ... und die einzelnen Stützweiten mit $l_1, l_2 \ldots l_n \ldots$ bezeichnet. Die Verbindungsgerade je zweier benachbarter Stützen schließe mit der Wagerechten die Neigungswinkel $\beta_1, \beta_2 \ldots \beta_n \ldots$ und die Richtung der Biegungslinie über den Stützen mit der Wagerechten die Winkel $\omega_1, \omega_2 \ldots \omega_n \ldots$ ein. Die Stützmomente (über den Endstützen gleich Null) seien über den Zwischenstützen $M_1, M_2 \ldots M_n \ldots$ und zwar in Übereinstimmung mit den Ausführungen auf S. 92 (oben) positiv gedacht, wenn die Biegungslinie

Keck, Elastizitätslehre.

10.

über den Stützen ihre konkave Seite nach oben kehrt, negativ in dem (meist eintretenden) entgegengesetzten Falle.

Die Endstützkräfte seien A und B, die Zwischenstützkräfte $C_1, C_2 \ldots C_n \ldots$ Das *n*te Trägerfeld wird danach linksseits von der n-1ten, rechtsseits von der *n*ten Stütze begrenzt und an den Enden von den Stützmomenten M_{n-1} und M_n ergriffen. Die Richtung der Biegungslinie schliefst dort mit der Wagerechten die Winkel ω_{n-1} bezw. ω_n ein und die Verbindungsgerade der Stützen ist unter dem Winkel β_n gegen die Wagerechte geneigt. Das *n*te Trägerfeld können wir uns daher als linksseits unter dem Winkel ω_{n-1} und rechtsseits unter dem Winkel ω_n eingespannt und die Stützmomente M_{n-1} und M_n als Einspannungsmomente wirkend denken.

Wenden wir dann Gleichung 16 S. 142 auf das *n*te Trägerfeld an, indem wir vertauschen ω_1 mit ω_{n-1} , l mit l_n , β mit β_n , F' mit F_n , ξ'' mit ξ_n'' , M_1 mit M_{n-1} und M_2 mit M_n , so wird

)
$$l_n \cdot (\omega_{n-1} - \beta_n) JE = F'_n \cdot \xi''_n - \frac{t_n^*}{6} (2 M_{n-1} + M_n)$$

und ebenso für das n+1 te Trägerfeld

2)
$$l_{n+1}(\omega_n - \beta_{n+1})JE = F'_{n+1} \cdot \tilde{z}_{n+1}^{"} - \frac{l_{n+1}}{6}(2M_n + M_{n+1}).$$

Durch Abziehen beider Gleichungen und entsprechende Ordnung erhält man

3)

(0)

$$J_{n-1} = (\omega_n) J E = (\beta_n - \beta_{n+1}) J E + \frac{F_n \cdot \tilde{s}_n''}{l_n} - \frac{F_{n+1} \cdot \tilde{s}_{n+1}''}{l_{n+1}} - \frac{1}{6} \left(2 M_{n-1} l_n + M_n (l_n - 2 l_{n+1}) - M_{n+1} l_{n+1} \right).$$

Auf der linken Seite der Gleichung 3 stellt die Differenz $\omega_{n-1} - \omega_n$ den Winkel α_n dar, welchen die Tangenten der Biegungslinie über der n-1ten und nten Stütze miteinander einschließen, und nach Gl. 3 S. 115 ist

4)

$$\alpha_n \cdot JE = (\omega_{n-1} - \omega_n) JE = F_n' - \frac{l_n}{2} (M_{n-1} + M_n).$$

Die Gleichsetzung der Werte aus Gleichung 3 u. 4 ergibt nach entsprechender Ordnung und wenn man $l_n - \hat{\xi}_n'' = \hat{\xi}_n'$ setzt

¹
¹
¹

$$= \frac{6 F_n \cdot \xi'_n}{l_n} + \frac{6 F_{n+1} \cdot \xi''_{n+1}}{l_{n+1}} + 6 JE(\beta_{n+1} - \beta_n).$$

IVe. Äufsere Kräfte, Biegungsmomente u. s. w. stat. unbest. Balken. 147

Die ersten beiden Glieder der rechten Seite allein sind direkt von der Belastung abhängig.

Befindet sich in jedem Felde eine Einzellast P_n in Abständen a_n bezw. b_n von den Stützen, so ist P_n ein Dreieck von der Höhe $\frac{P_n.a_nb_n}{l_n}$ (Fig. 114), daher $F_n = \frac{P_n \cdot a_n \cdot b_n}{2}$; der Abstand des Schwerpunktes von der Stütze n-1

$$\dot{s}_{n}' = \frac{l_{n}}{2} - \frac{1}{3} \left(\frac{l_{n}}{2} - a_{n} \right) = \frac{l_{n} + a_{n}}{3}$$
, mithin

 $\frac{6 F_n \cdot \xi_n'}{l_n} = P_n \cdot \frac{b_n}{l_n} \cdot a_n (l_n + a_n).$ In gleicher Weise erhält man $\frac{6 F_{n+1} \xi_{n+1}''}{6 F_{n+1} \xi_{n+1}''} = P_n \cdot \frac{a_{n+1}}{l_n} + Q_n \cdot \frac{a_$

$$\frac{1}{l_{n+1}} = P_{n+1} \cdot \frac{1}{l_{n+1}} \cdot b_{n+1} (l_{n+1} + b_{n+1}).$$

Damit geht Gleichung I über in

II)

 $M_{n-1}l_n + 2 M_n(l_n + l_{n+1}) + M_{n+1} \cdot l_{n+1}$ = $P_n \frac{b_n}{l_n} \cdot a_n(l_n + a_n) + P_{n+1} \cdot \frac{a_{n+1}}{l_{n+1}} \cdot b_{n+1}(l_{n+1} + b_{n+1})$ + $6 JE(\beta_{n+1} - \beta_n).$

Bei mehreren Lasten in jedem Felde würde jede zu dem betreffenden Gliede in Gl. II ihren Beitrag liefern und die ersten beiden Glieder der rechten Seite würden dann werden:

 $\frac{1}{l_n} \Sigma P_n \cdot b_n a_n (l_n + a_n), \text{ bezw. } \frac{1}{l_{n+1}} \Sigma P_{n+1_*} \cdot b_{n+1} \cdot a_{n+1} (l_{n+1} + b_{n+1}).$

Bei gleichmäßig verteilter Belastung ganzer Felder mit p_n f. d. Längeneinheit wird F_n eine Parabelfläche der Pfeilhöhe $\frac{l_n^2 \cdot p_n}{8}$, daher $F_n = \frac{2}{3} l_n \cdot \frac{l_n^2 p_n}{8} = \frac{1}{12} p_n \cdot l_n^3$, $\xi'_n = \xi''_n = \frac{l_n}{2}$; folglich $\frac{6 F_n \cdot \xi'_n}{l_n} = \frac{1}{4} p_n l_n^3$ und Gleichung I wird

$$\begin{array}{c} M_{n-1}l_n + 2M_n(l_n+l_{n+1}) + M_{n+1}l_{n+1} \\ \text{III} &= \frac{1}{4}p_n l_n^3 + \frac{1}{4}p_{n+1}l_{n+1}^3 + 6JE(\beta_{n+1}-\beta_n). \end{array}$$

Sind Einzellasten und stetige Belastung ganzer Felder gleichzeitig vorhanden, so hat man den Gliedern mit P_n in Gl. II diejenigen mit p_n in Gl. III hinzuzufügen.

Das letzte Glied in den Gl. I—III hängt nur von der gegenseitigen Höhenlage der Stützen ab und verschwindet, wenn diese in einer Geraden liegen, $\beta_{n+1} = \beta_n$ ist. Die rechten Seiten der Gl. I,

10*

II und III enthalten gegebene Größen, die linken Seiten dagegen die unbekannten Stützmomente. Die zur Bestimmung der im ganzen r-1 unbekannten Stützmomente erforderlichen Gleichungen bekommt man, wenn man der Reihe nach in den Gl. I, II oder III n=1, n=2 bis n=r-1 setzt.

Sind so die Stützmomente bekannt geworden, so erhält man die Stützkräfte wie folgt: Auf der *n* ten Stütze entsteht lediglich infolge der Stützmomente nach Gl. 9 S. 140 aus dem *n* ten Trägerfelde herrührend (Fig. 115,c) die Kraft $\frac{M_n - M_{n-1}}{l_n}$ und aus dem *n* + 1 ten

Trägerfelde die Kraft $\frac{M_n - M_{n+1}}{l_{n+1}}$, im ganzen also die Kraft

A

$$\frac{l_n - M_{n-1}}{l_n} + \frac{M_n - M_{n+1}}{l_{n+1}} = -\frac{M_{n-1}}{l_n} + M_n \left(\frac{l}{l_n} + \frac{1}{l_{n+1}}\right) - \frac{M_{n+1}}{l_{n+1}}.$$

Hinzu kommt infolge der Belastung des nten und n+1 ten Trägerfeldes als Einzelträger eine in bekannter Weise zu ermittelnde Stützkraft C'_n . (Vergl. Fig. 115, b.) Die Gesamtstützkraft der nten Stütze ist daher

IV)
$$C_n = C'_n - \frac{M_{n-1}}{I_n} + M_n \left(\frac{1}{I_n} + \frac{1}{I_{n+1}}\right) - \frac{M_{n+1}}{I_{n+1}}.$$

Das erste auf C'_n folgende Glied ist die Entlastung des Punktes n infolge des Stützmomentes bei n-1, das dritte diejenige durch das Moment bei n+1, das zweite die Entlastung der Punkte n-1 und n+1 infolge des Stützmomentes M_n , welche eine Mehrbelastung des Punktes n um den gleichen Betrag bedingt.

Für die Endstützen (n = 0) ist sowohl M_{n-1} als M_n gleich Null und $M_{n+1} = M_1$; somit

IV a)
$$A = A' - \frac{M_1}{\overline{I_1}}$$
, wenn unter A' der Stütz-

druck der Endstütze des einfachen Einzelträgers im ersten, bezw. letzten Felde verstanden ist.

In den in Gl. IV u. IVa berechneten Stützkräften kommen positive und negative Glieder, bezw. Beiträge vor; je nachdem die ersteren oder die letzteren überwiegen, fallen die Stützkräfte selbst positiv oder negativ aus. Das Auftreten negativer Stützkräfte setzt stark ungleichmäßige Belastung der Einzelfelder voraus.

Das Biegungsmoment an beliebiger Stelle ist nach Gl. 17 S. 142

$$\mathbb{V}$$
) $M_x = M'_x - M_{n-1} \left(1 - \frac{x}{l_n} \right) - \frac{M_n x}{l_n}$. (Vergl. Fig. 115, d.)

IVe. Äufsere Kräfte, Biegungsmomente u. s. w. stat. unbest. Balken. 149

In Fig. 116 ist die der Gl. V entsprechende Momentenfläche für einen fünffach gestützten Balken in schematischer Weise dargestellt. Sie ergibt sich aus den der Belastung der Einzelfelder entsprechenden positiven Beiträgen $A_1D_1C_1$, $C_1D_2C_2$ u.s. w. und aus den durch die Stützmomente hervorgerufenen negativen Anteilen $A_1C_1E_1$, $C_1E_1E_2C_2$ u.s. w., welche entstehen, wenn man

 $C_1E_1 = M_1$, $C_2E_2 = M_2$ u.s. w. macht und die Punkte $E_1E_2E_3$ u.s. w. geradlinig verbindet. Der schraffierte Unterschied beider ist die wirkliche Momentenfläche, die, je nachdem der positive oder negative Anteil überwiegt, positiv oder negativ ist. Bei N_1 , N_2 , N_3 u.s. w. finden sich sog. Momenten-Nullpunkte.

Für die Querkraft an beliebiger Stelle erhalten wir nach Gl. 18 S. 142 M M

VI)
$$Q_x = Q'_x + \frac{M_{n-1} - M_n}{l_n}.$$

und in der En

Die Gleichungen I - VI, die sog. Clapeyron'schen Grundgleichungen, setzen uns in den Stand, für jede beliebige Belastung eines *n* fach gestützten prismatischen Trägers alle in Frage kommenden mechanischen Werte, Biegungsmomente, Querkräfte u. s. w. zu berechnen.

Anwendungen.

Beispiel 1: Ein I-Träger vom Querschnitt h=30, b=14, $h_1=26$ und $b_1=13$ cm (vergl. S. 85), dessen J=12500 cm⁴ und W=833 cm³, ruht auf drei gleich hohen Stützen in symmetrischer Anordnung mit l=5,0 m Stützweite und trägt eine gleichmäßig verteilte Last von p=2000 kg f. d. lfd. m. Dabei entsteht nach Gl. 8 S. 130 über der Mittelstütze ein Moment

$$M_1 = -\frac{p l^2}{8} = -\frac{20 \cdot 500^2}{8} = -625\,000 \text{ cm/kg}$$

tfernung $\frac{3}{8} l = 187,_5 \text{ cm}$ von den Endstützen ein Gröfstmoment

$$M_{max} = \left(\frac{3}{8} \cdot p l\right)^2$$
: 2 $p = \text{rd } 351\,600 \text{ cm/kg}$.

Die entsprechenden Randspannungen berechnen sich zu $\sigma_1 = \frac{M_1}{W} = \frac{625000}{833} = 750 \text{ at}$ $\sigma_{max} = \frac{351\,600}{833} = 422 \text{ at}$. Im Abstande $2 \cdot \frac{3}{8} \cdot l = 375 \text{ cm}$ von den Endstützen ist $M_x = 0$ und $\sigma_x = 0$.

Der Gröfstwert der Querkraft findet sich beiderseits unmittelbar neben der Mittelstütze und beträgt nach Gl. 9a S. 131 $Q = \pm \frac{5}{8} q l = 6250 \text{ kg}$.

Infolge Senkung der Mittelstütze um

$$c = \frac{0{,}^{013} p l^4}{J \cdot E} = \frac{0{,}^{013} \cdot 20 \cdot 500^4}{12500 \cdot 2000000} = 0{,}^{65} \text{ cm}$$

wird nach Gl. 6 S. 130

$$M_1 = M_{max} = \pm 0,086 \cdot p \, l^2 = \pm 0,86 \cdot 20 \cdot 500^2 = \pm 430\,000 \, \text{cm/kg} \, .$$

 M_{max} liegt jetzt im Abstande 0,414 · $l = 0,414 \cdot 500 = 207$ cm und der Momentennullpunkt $2 \cdot 207 = 414$ cm von der Endstütze. Ferner ist

$$\sigma_1 = \sigma_{max} = \frac{430\,000}{833} = 516 \text{ at}$$

Kommt durch Ungenauigkeit in der Ausführung oder durch Nachgiebigkeit der Endstützen die Mittelstütze um $c = \frac{l}{1000} = 5 \text{ mm}$ über die erstere zu liegen, so wird der Stützdruck

$$A = \frac{3}{8} p l - \frac{3 \cdot 0, 5 \cdot JE}{l^3} = \frac{3}{8} \cdot 20 \cdot 500 - 3 \cdot 0, 5 \cdot \frac{12500 \cdot 2000000}{(500)^3} = 3450 \text{ kg}$$

und über der Mittelstütze

$$M_1 = \left(A \, l - \frac{p \, l^2}{2}\right) = 3450 \cdot 500 - \frac{20 \cdot 500^2}{2} = -875\,000 \, \text{cm/kg} \, .$$

woraus $\sigma_1 = \frac{M_1}{W} = \frac{875\,000}{333} = 1050$ at, also 300 at größer als beabsichtigt.

Beispiel 2: Die Belastung des Balkens in Beispiel 1 bestehe aus einer ständigen Last (Eigengewicht) g = 1000 kg f. d. lfd. m und einer beweglichen (Verkehrs-) Last p = 1000 kg. Letztere sei nur im linksseitigen Balkenfelde vorhanden. Dann wird nach Gl. 17 S. 134

$$\begin{split} A &= \frac{3}{8} \cdot g \, l + \sqrt[7]{16} \, p \, l = \frac{3}{8} \cdot 10_{,0} \cdot 500 + \frac{7}{16} \cdot 10_{,0} \cdot 500 = 4062 \, \text{kg} \,, \\ M_1 &= A \, l - (p + g) \, \frac{l^2}{2} = 4062 \cdot 500 - \frac{20 \cdot 500^3}{2} = -469\,060 \, \text{cm/kg} \,, \\ M_{max} &= \frac{A^2}{2 \, (p + g)} = \frac{4062^2}{40} = 412\,500 \, \text{cm/kg} \,. \end{split}$$

 M_{max} und somit auch σ_{max} wird also größer wie bei voller Belastung beider Balkenfelder, während M_1 und σ_1 ihre Größstwerte bei voller Belastung annehmen.

Beispiel 3: Der Balken Beispiel 1 trage eine ständige verteilte Last gf. d. lfd. m und eine Einzellast P = 5000 kg bewege sich über ihn hinweg. Es sollen die eintretenden Gröfstwerte des Stützmomentes M_1 und des Maximalmomentes M_{max} zwischen den Stützen und die gröfsten Randspannungen ermittelt werden.

Der Beitrag M_{g_1} der verteilten Last zum Stützmoment M_1 ist $M_{g_1} = \frac{gl^2}{8} = \frac{10 \cdot 500^2}{8} = 312\,500 \,\mathrm{cm/kg}.$

Der Beitrag M_{P_1} der Einzellast P im Abstande u von der Endstütze Aläfst sich am einfachsten durch den von ihr in der rechtsseitigen Endstütze B

IVe. Äufsere Kröfte, Biegungsmomente u. s. w. stat. unbest. Balken. 151

erzeugten abwärts gerichteten Stützdruck B_P ausdrücken. Nach Gl. 11 S. 132 ist $B_P = \frac{P}{4} \left(\frac{u}{l} - \frac{u^3}{l^3} \right)$ und daher $M_{P_1} = B_P \cdot l = \frac{P \cdot l}{4} \left(\frac{u}{l} - \frac{u^3}{l^3} \right)$. M_{P_1} ist also von u abhängig und wird nach $\frac{d M_{P_1}}{d u} = 0$, für $u = \frac{l}{\sqrt{3}} = \frac{500}{\sqrt{3}} =$ 290 cm zu einem Maximum, das sich berechnet zu $M_{P_1} = \frac{Pl}{4} \left(\frac{u}{l} - \frac{u^3}{l^3} \right) =$ $\frac{5000}{4} \left(290 - \frac{290^3}{500^2} \right) = 241\,500 \,\mathrm{cm/kg}$. Der Gröfstwert des Gesamtstützmomentes ist daher $M_1 = M_{g_1} + M_{P_1} = 312\,500 + 241\,500 = 554\,000 \,\mathrm{cm/kg}$.

Da M_{max} zwischen den Stützen liegt, wie sich aus einer Betrachtung der Momentenflächen Fig. 106 S. 131 u. Fig. 103 S. 127 leicht erkennen läfst, im Angriffsquerschnitt der Einzellast P, ist mit deren Abstande u von der Endstütze A veränderlich und erreicht für eine bestimmte Lage von P seinen Gröfstwert. Der Beitrag der verteilten Last zu M_{max} ist gleich $\frac{3}{8} glu - \frac{u^2g}{2}$ und derjenige der Einzellast P gleich $A_p \cdot u$ d. i. unter Beachtung der Gl. 10 S. 132 auch gleich $\frac{Pu}{4} \left(4-5\frac{u}{l}+\frac{u^3}{l^3}\right)$, im ganzén also

$$M_{max} = \frac{gu}{2} \left(\frac{3l}{4} - u \right) + \frac{P \cdot u}{4} \left(4 - 5 \frac{u}{l} + \frac{u^3}{l^3} \right).$$

Zur Ermittelung des Gröfstwertes von Mmax setzen wir

$$\frac{d M_{max}}{d u} = \frac{g}{2} \left(\frac{3}{4} l + 2 u \right) + \frac{P}{4} \left(4 - \frac{10 \cdot u}{l} + \frac{4 u^3}{l^3} \right) = 0,$$

woraus sich mit g = 10 kg, P = 5000 kg und l = 500 cm ergibt u = 205 cm. Der Gröfstwert von M_{max} ist somit

$$M_{max} = \frac{10 \cdot 205}{2} \left(\frac{3}{4} \cdot 500 - 205 \right) + \frac{5000 \cdot 205}{4} \cdot \left(4 - \frac{5 \cdot 205}{500} + \frac{205^3}{500^3} \right) = 691\,000\,^{\text{cm/kg}}.$$

Die Querkraft erreicht ihre absoluten Gröfstwerte beiderseits unmittelbar neben der Mittelstütze, wie eine Betrachtung der Fig. 106 S. 131 leicht erkennen läfst. Der Beitrag der verteilten Last g zu derselben ist gleich $\pm \frac{5}{8}gl$ und derjenige der Einzellast P links von der Mittelstütze gleich $A_P - P$ und rechts derselben gleich B_P . Im ganzen ist rechts der Mittelstütze $Q_{max} = \frac{5}{8}gl + B_P$ und links derselben $Q_{min} = -\left(\frac{5}{8}gl + P - A_P\right)$.

Die den Gröfstwert des Stützmomentes M_1 erzeugende Laststellung u = 290 cm ergibt nach S. 132 Gl. 10 ein $A_P = \frac{5000}{4} \left(4 - 5 \cdot \frac{290}{500} + \frac{290^3}{500^3}\right) =$ 1620 kg und ein $B_P = \frac{5000}{4} \left(\frac{290}{500} - \frac{290^3}{500^3}\right) = 481 \text{ kg}$. Daraus folgt ein $Q_{max} = \frac{5}{8} \cdot 10 \cdot 500 + 481 = 3606 \text{ kg}$ und ein $Q_{min} = -\left(\frac{5}{8} \cdot 10 \cdot 500 + 5000 - 1620\right)$ = -6505 kg.

In gleicher Weise führt die Laststellung für M_{max} (u = 205 cm) zu einem $Q_{max} = 3553$ kg und $Q_{min} = -5602$ kg.

Unabhängig von den Momenten M_1 und M_{max} entsteht die überhaupt gröfste Querkraft in den Querschnitten links und rechts unmittelbar neben der Mittelstütze, wenn die Last P die Querschnitte trifft. Es ist dann rechts und links der Mittelstütze $Q_{max} = \pm \left(\frac{5}{8}gl + P\right) = \pm 8125$ kg.

Beispiel 4: Ein Balken überall gleichen Querschnitts liege auf 5 Stützen in gleicher Höhe (Fig. 117), so dafs $\beta_{n+1} - \beta_n$ in Gl. I – III S. 146 u. 147 durchweg verschwindet Die Feldweiten seien

$$l_1 = 4^{m}; l_2 = 6^{m};$$

 $l_3 = 4^{m}; l_4 = 6^{m}.$

Im ersten und letzten Felde befinde sich keine Last, im zweiten Felde eine Einzellast $P_2 = 4^{t}$ in dem Abstande $a_2 = 2^{m}$ vom Punkte 1, im dritten Felde eine Last $P_3 = 8^{t}$ in der Mitte. Drei Stützenmomente M_1, M_2 und M_3 sind zu berechnen, man hat daher Gleichung II 3 mal anzuwenden, für n = 1, n = 2. n = 3.

,2210 t ;

 $n = 1 \text{ gibt: } 0 + 2 M_1 (4+6) + M_2 \cdot 6 = 0 + \frac{4 \cdot 2}{6} 4 (6+4);$ $n = 2: M_1 \cdot 6 + 2 M_2 (6+4) + M_3 \cdot 4 = \frac{4 \cdot 4}{6} (6+2) + \frac{8 \cdot 2}{4} 2 (4+2).$ $n = 3: M_2 \cdot 4 + 2 M_3 (4+6) + 0 = \frac{8 \cdot 2}{4} \cdot 2 (4+2) + 0.$

Diese Gleichungen liefern:

 $M_1 = 1,5448 \,\mathrm{mt}; \quad M_2 = 3,7395 \,\mathrm{mt}; \quad M_3 = 1,6521 \,\mathrm{mt},$

Die einfachen Auflagerdrücke sind:

 $A'=0; \quad C_1'=2^{2/3}; \quad C_2'=5^{1/3}; \quad C_3'=4; \quad B'=0.$ Nach Gl. IV a ist dann

$$A = 0 - \frac{1{,}^{5448}}{4} = -0{,}^{3862} t;$$

Nach Gl. IV ist ferner:

$$\begin{array}{l} \gamma_1 = 2^2/3 - 0 + 1,5449 \left(\frac{1}{4} + \frac{1}{6}\right) & \frac{3,7395}{6} = 2,6871^{t};\\ \gamma_2 = 5^1/3 - \frac{1,5449}{6} + 3,7395 \left(\frac{1}{6} + \frac{1}{4}\right) - \frac{1,6521}{4} = 6,222 \end{array}$$

ebenso:

$$\begin{aligned} & \mathcal{L}_2 = 5^{1/3} - \frac{1,5^{343}}{6} + 3,7^{395} \left(\frac{1}{6} + \frac{1}{4}\right) - \frac{1,5^{377}}{4} = \\ & \mathcal{L}_3 = 4 - \frac{3,7^{395}}{4} + 1,6^{521} \left(\frac{1}{4} + \frac{1}{6}\right) - 0 = 3,7^{535} \end{bmatrix} \end{aligned}$$

ebenso: endlich:

$$B = 0 - \frac{1,^{6521}}{6} = -0,^{9754}$$

IVe. Aufsere Kräfte, Biegungsmomente u. s. w. stat. unbest. Balken. 153

Als Probe gilt: $-A - B + 4 + 8 = C_1 + C_2 + C_3$. (Selbstverständlich hätte man die letzten beiden Auflagerdrücke C_3 und B nach Berechnung der anderen auch mittels der Gleichgewichts-Bedingungen finden können.)

Da A und B (wegen des Fehlens der Lasten in den Endfeldern) negativ sind, müssen an den Balkenenden abwärts gerichtete Stützkräfte tätig sein, welche den Balken niederhalten; andernfalls würden die beiden Enden sich ohne jede Krümmung schräg in die Höhe strecken, und es würde dann ein Balken auf nur 3 Stützen vorliegen.

In Fig. 117, c sind die Momente M_x dargestellt. In den Endfeldern sind die einfachen Momente Null, die Momentenflächen schrumpfen zur Achse zusammen. Für die Mittelfelder entstehen die Dreiecke $D_1 E_2 D_2$ und $D_2 E_3 D_3$ als einfache Momentenflächen; die Höhen derselben sind 5¹/s bezw 8^{mt}. Auf den Auflager-Senkrechten sind nun, ebenfalls nach oben, die berechneten Stützenmomente aufgetragen und deren Endpunkte durch eine gebrochene Linie verbunden. Daraus entstehen die schraffierten Darstellungen von M_x Wo die Ordinaten der Momentenfläche Null sind, liegen Momenten-Nullpunkte, denen Wendepunkte der Biegungslinie (Fig. 117, b) entsprechen. Die Neigungen der Biegungslinie über den Stützen lassen sich nach Gl. 4 (S. 146) berechnen. Werden die Momenten-Ordinaten sämtlich von einer geraden Achse aus abgetragen, so entsteht Fig. 117, d. Die gröfsten negativen Momente sind die Stützenmomente, die gröfsten positiven liegen an den Laststellen, das überhaupt gröfste unter der Last 8^t; es beträgt

$8 - \frac{1}{2} (M_2 + M_3) = 5,3042 \text{ mt}.$

Die Querkraft Q_x (Fig. 117, e) ist am linken Auflager gleich dem Autlagerdruck A, mithin wie dieser negativ; sie ändert sich nicht, solange die Momentenlinie in derselben Geraden verläuft. Bei nach rechts steigender Momentenlinie (d) ist $Q_x > 0$ und umgekehrt. Den Knicken der Momentenlinie an den Angriffsstellen der Einzelkräfte entsprechen plötzliche Änderungen von Q_x , und zwar immer um die Gröfse jener Einzelkräft; jede aufwärts gerichtete Kraft vergröfsert Q_x , und umgekehrt. Sonach wird rechts von der Stütze 1: $Q_x = A + C_1 = -0,3862 + 2,0871 = 2,3000$ [‡]; die weiteren Q_x ergeben sich in gleicher Weise; an der Stütze 4 wird $Q_x = -B = 0,2754$ [‡].

Beispiel 5: Ein Träger auf 4 Stützen, die in einer Geraden liegen (Fig. 118), sei in allen 3 Feldern mit derselben Last p gleichmäßig belastet; die Weite der Mittelöffnung sei l_2 , die der Seitenöffnungen je l_1 . Dann ist wegen der symmetrischen Anordnung $M_2 = M_1$, mithin nur M_1 nach Gl. III (mit n = 1) zu bestimmen:

Dies gibt

$$0 + 2 M_1 (l_1 + l_2) + M_1 l_2 = \frac{1}{4} p l_1^3 + \frac{1}{4} p l_2^3.$$

$$M_1 = \frac{p}{4} \frac{l_1^3 + l_2^3}{2 l_1 + 3 l_2};$$

$$A = B = \frac{p l_1}{2} - \frac{M_1}{l_1}; \quad C = p (l_1 + \frac{1}{2} l_2) - A$$

(nach der Gleichung der senkrechten Kräfte). Der klareren Übersicht wegen seien nun gleiche Weiten *l* angenommen: dann wird

 $M_1 = \frac{1}{10} pl^2; A = \frac{4}{10} pl; C = \frac{11}{10} pl.$

Die einfachen Momentenflächen sind Parabeln vom Parameter 1/p und der Pfeilhöhe $1/s pl^2$; das Trapez der Stützenmomente bestimmt mit den Parabeln die wahren Momente M_x (Fig. 118,c),

die, (Fig. 118, d) von einer Achse aus abgetragen, wiederum Parabeln von demselben Parameter, nur mit verschobenen Scheiteln ergeben.

An beliebiger Schnittstelle des ersten Feldes ist die Querkraft $Q_x = A - px$. Die Darstellung davon (Fig. 118, e) ist eine Gerade mit dem Gefälle p f. d. Längeneinheit, und für die anderen Felder ergeben sich ebenfalls gerade Linien mit einem Gefälle = der Belastung. Im ersten Felde ist an der Stütze 0 die Querkraft = $A = \frac{4}{10} pl$, geht bei $x = \frac{4}{10} l$ durch Null ins Negative und hat an der Stütze 1 den Wert $-\frac{6}{10} pl$,

wo dann plötzlich eine Vergrößerung um $C = {}^{11}/{}_{10} p l$, d. h. auf $+ {}^{5}/{}_{10} p l$ eintritt. Wo $Q_x = 0$, hat M_x analytische Maxima, wo Q_x sprungweise aus + in — übergeht (oder umgekehrt), hat M_x relativ größte Werte, die keine analytische Maxima (mit der Abgeleiteten == 0) sind, sondern die nur von einer Unstetigkeit der Momenten-Funktion herrühren.

Im Endfelde ist $M_x = Ax - \frac{1}{2} px^2$; diese Funktion erreicht für $x = \frac{A}{p}$ (hier = $\frac{4}{10} l$) den Wert $M_{max} = \frac{A^2}{2p}$ (hier = $\frac{8}{100} pl^2$). Die Stelle dieses Gröfstwertes liegt in der Mitte zwischen 2 Momenten-Nullpunkten. Bei $x = \frac{8}{10} l$ geht M_x ins Negative und wächst nun schnell bis zum Stützenmomente $M_1 = \frac{1}{10} pl^2$. Dann nimmt im Mittelfelde das negative Moment wieder ab, geht durch Null und erreicht in der Mitte einen Gröfstwert, welcher sich ohne weiteres zu $M_0 = \frac{1}{8} pl^2 - M_1 = \frac{1}{40} pl^2$ ergibt. Dann wiederholt sich alles symmetrisch. Den Momenten-Nullpunkten entsprechen wiederum die Wendepunkte der Biegungslinie. Für die Neigungen derselben über den Stützen liefert Gl. 1 S. 146

$$EJ\omega_0 = \frac{1}{40} pl^3; EJ\omega_1 = -\frac{1}{120} pl^3.$$

An den Mittelstützen treffen gröfstes Moment und gröfste Querkraft in ungünstiger Weise zusammen. Die verhältnismäfsig gröfsten Momente sind sehr ungleich; sie verhalten sich wie 8:10:2,s. Eine bessere Ausgleichung ist zu erreichen durch Verschiebung der beiden Mittelstützen nach aufsen und nach unten; durch erstere wächst besonders M_0 unter Verminderung der beiden anderen Momente, und durch letztere wird der Auflagerdruck C vermindert, A vergröfsert und damit auch $M_{merx} = \frac{A^2}{2p}$ vergröfsert unter gleichzeitiger Verkleinerung von M_1 und Vergröfserung von M_0 . Durch diese beiden Stützenverschiebungen hat man es in der Hand, zwischen den Momenten jedes beliebige Verhältnis zu erreichen.

1Vf Aufs. Kräfte, Biegungsmom. u. s. w. bei bewegl. Belastg.; Einflufslinien. 155

Beispiel 6: Träger auf sehr vielen Stützen. Ist die Zahl der Stützen in gleichen Höhen und Abständen sehr groß bei derselben Belastung mit p in den Feldern, so werden diejenigen Felder, welche weit von den Enden entfernt sind, sich nicht wesentlich voneinander unterscheiden. Die Biegungslinie wird dann über den Stützen nahezu wagerecht sein und jedes Feld sich wie ein beiderseits wagerecht eingespannter Balken verhalten. Nach S. 138 sind dann die Stützenmomente $M_1 = \frac{1}{12} pl^2$, die Momente in den Mitten $M_0 = \frac{1}{24} pl^2$. Die Auflagerdrücke sind C = pl.

Sind die Felder abwechselnd unbelastet und mit p belastet (Fig. 119), so ist die Anordnung symmetrisch zur Mitte eines belasteten Feldes und

ebenso eines unbelasteten Feldes. Die Stützenmomente M_1 sind daher überall gleich, u. zw. müssen sie halb so grofs sein wie bei Belastung sämtlicher Felder; denn bei voller Belastung

ist die Anordnung auch zu einer beliebigen Stütze symmetrisch, es tragen daher zu dem Momente dieser Stützen die Belastungen zweier Felder, die symmetrisch zueinander liegen, gleichviel bei, und wenn man von zwei solchen Feldern eins entlastet, so wird M_1 halb so groß. Demnach ist $M_1 = \frac{1}{44} pl^2$ und $M_0 = \frac{1}{8} pl^2 - \frac{1}{44} pl^2 = \frac{1}{12} pl^2$. Die Größe M_1 behält das Moment längs eines unbelasteten Feldes bei, und die Querkraft ist auf dieser Strecke Null. Die Auflagerdrücke sind aus dem gleichen Grunde, wie bezüglich der Stützenmomente erläutert, halb so groß wie bei voller Belastung, d. h. $C = \frac{1}{2} pl$. Für die Neigung der Biegungslinie über eine Stütze findet man leicht $EJw_1 = \frac{1}{2} M_1 l$.

f) Äufsere Kräfte, Biegungsmomente und Querkräfte bei ständiger und beweglicher Belastung; Einflufslinien.

1. Allgemeine Methode der Einflufslinie.

Bisher haben wir die Belastung der betrachteten geraden Stäbe oder Balken als "ständig", d. h. dauernd oder ruhend vorausgesetzt. In vielen Fällen der Anwendung, insbesondere bei Brückenträgern, hat man indes neben der aus dem Eigengewicht des Balkens selbst der Fahrbahn u. s. w. bestehenden "ständigen" Last auch mit sog. "beweglichen" Lasten — Verkehrslast, Menschengedränge, Fuhrwerke u. s. w. — zu rechnen. Erst aus dem Zusammenwirken beider ergeben sich sowohl die das äußere Gleichgewicht bedingenden größten Stützkräfte, als auch die für die Bestimmung der Querschnittsabmessungen der Balken maßgebenden Größtwerte der Biegungsmomente und Querkräfte. Ein sehr übersichtliches und meist auch

recht bequemes Mittel sowohl zur allgemeinen Beurteilung als zur Berechnung des Einflusses der beweglichen Lasten auf irgend eine der in Frage kommenden statischen Werte (Stützkraft, Biegungsmoment u. s. w.) bietet die Methode der sog. Einflußlinien. Sie ergibt sich aus folgender Überlegung: Der von irgend einer Last Pin beliebiger Lage auf einem unterstützten Träger zu einem jener statischen Werte, der hier allgemein mit Z^*) bezeichnet werden möge, gelieferte Beitrag ist verhältnisgleich der Größe von P. Liefert eine Last 1 einen Beitrag η , so ergibt P einen solchen $Z=P\cdot\eta$. Es ist also η der Einfluß der Last 1 auf den Wert Z. Denkt man sich nun die Last 1 über den Träger hinweg bewegt und in jeder Lage ihren Beitrag η zu Z ermittelt, als Ordinate von einer Basis oder Nullinie AB (Fig. 120, a) aus aufgetragen und die Endpunkte der

Ordinaten miteinander verbunden, so entsteht die sog. Einflufslinie A D N C B. Die von ihr und der Basis eingeschlossene Fläche heifst die Einflufsfläche. Wie leicht begreiflich, kann der Einflufs η der Last 1 unter Umständen auch

gleich Null oder negativ werden, die Einflufslinie die Nullinie schneiden. Der Schnittpunkt N trennt dann Bereiche positiven und negativen Einflusses und man nennt ihn daher Belastungsscheide.

Ist die Einflußlinie bekannt, so erhält man den Beitrag irgend einer Last P_1 in beliebiger Lage zu dem Werte Z, in dem Produkte aus der Last und der mit ihr in derselben Senkrechten gelegenen Einflußsordinate $\eta_1 \ Z = \eta_1 \cdot P_1$. Bei dem gleichzeitigen Vorhandensein mehrerer Einzellasten P_1, P_2, P_3 u. s. w., denen die Einfluß-

*) Vergl. Müller-Breslau, Graph. Statik der Baukonstr. S. 115.

IVf. Äufs. Kräfte, Biegungsmom. u. s. w. bei bewegl. Belastg.; Biegungslinien. 157

ordinaten η_1 , η_2 , η_3 u. s. w. entsprechen, summieren sich die Beiträge der Einzellasten. Es wird

 $Z = \eta_1 \cdot P_1 + \eta_2 \cdot P_2 - \eta_3 \cdot P_3 + \ldots = \Sigma P \cdot \eta$ (Fig. 120, b), wobei die Vorzeichen der Einflußordinaten η zu berücksichtigen sind. Handelt es sich um eine gleichmäßig verteilte Last p f. d. Längeneinheit, so kann man den auf ein Längenelement dx entfallenden Lastanteil $p \cdot dx$ als Einzellast ansehen und sein Beitrag zu Z ist $dZ = p \cdot dx \cdot \eta$. Erstreckt sich die verteilte Last p auf eine bestimmte Strecke des Trägers (Fig. 120, c) von $x = x_1$ bis $x = x_2$ Fig. 120, so erhält man durch Integration $Z = p \cdot \int_{x_1}^{x_2} \eta \cdot dx = p F$. Der Integralwert stellt den der belasteten Strecke entsprechenden

Teil F der Einflußsfläche (in der Figur schraftiert) dar. Erstreckt sich die Last p über den ganzen Träger, bezw. gleichzeitig über positive und negative Einflußgebiete, und sind F_+ und F_- die entsprechenden Teile der Einflußfläche, so wird $Z = p(F_+ - F_-)$.

Kommt bewegliche Last in Frage, so entsteht der Gröfstwert von Z, wenn sich nur im positiven (Fig. 120, d), der Kleinstwert, wenn sich nur im negativen Einflußgebiete (Fig. 120, e) bewegliche Last befindet. Bei Einzellasten von verschiedener Gröfse sind bei Ermittelung der Gröfst- und Kleinstwerte von Z die gröfsten Lasten in dem Bereiche der absolut gröfsten Einflußordinaten zu plazieren. Kommt neben einer den Träger in seiner ganzen Länge bedeckenden ständigen verteilten Last g eine bewegliche Last p in Betracht, so entsteht der Gröfstwert von Z, wenn der Träger nur im Bereiche des positiven Einflusses voll mit p belastet ist. Er wird dann

 $Z_{max} = g(F_+ - F_-) + p \cdot F_+$ und im entgegengesetzten Falle $Z_{min} = g(F_+ - F_-) - F_- \cdot p.$ (Vergl. Fig. 120, d u. e.)

Es soll hier noch unterschieden werden, ob die Last unmittelbar auf den Träger einwirkt, ihn also in jedem Punkte treffen kann, oder durch Zwischenträger auf bestimmte Punkte, sog. "Knotenpunkte", übertragen wird. (Fig. 121.)

Ist die Einflusslinie für

unmittelbare Belastung bekannt, so gelangt man zu derjenigen für

mittelbare Belastung wie folgt: Die zur Erzeugung der Einflufslinie über dem Träger bewegte Last 1 befinde sich zwischen den um λ voneinander entfernten Knotenpunkten m und n im Abstande x von n, bezw. x_1 von m (Fig. 121). Dann verteilt sich die Last 1 durch den Zwischenträger mit $\frac{1 \cdot x}{\lambda}$ auf den Knotenpunkt m und mit $\frac{x_1 \cdot 1}{\lambda}$ auf den Punkt n. Sind η_m und η_n die Einflufsordinate für unmittelbare Belastung bei m und n, so ist der Einflufs η der Last 1 in der angenommenen Lage auf den Wert Z

$$\eta = \frac{x}{\lambda} \cdot \eta_m + \frac{x_1}{\lambda} \eta_n = \frac{x}{\lambda} \eta_m + \frac{\lambda - x}{\lambda} \eta_n.$$

Dies ist die Gleichung der wirklichen Einflußlinie zwischen den Knotenpunkten m und n, die, weil η und x linear voneinander abhängen, eine gerade Linie ist. Für $x_1 = \lambda$ ist $\eta = \eta_n$ und für $x = \lambda$ $\eta = \eta_m$; die Gerade ergibt sich also als Verbindung der Punkte m_1 und n_1 .

Die Einflufslinie für mittelbare Befastung ist also ein Schnenvieleck (in der Figur punktiert) derjenigen für unmittelbare Belastung, dessen Eckpunkte unter den Knotenpunkten des Trägers liegen.

2. Anwendung auf den einfachen Träger mit zwei Stützen. (Fig. 122.)

Es soll zunächst die Einflußlinie für das Biegungsmoment M., und die Größtwerte desselben Fig. 122.

in einem beliebigen Qaerschnitte tt im Abstande x von der Endstütze A ermittelt werden. Eine im veränderlichen Abstande u von B(Fig. 122, a) befindliche Last 1 erzeugt in A einen Stützdruck $A = 1 \cdot \frac{u}{l}$ und daher in C ein Moment

1)
$$\eta = A \cdot x = \frac{u}{l} \cdot x$$
,

worin x vorläufig konstant, η die mit der Bewegung der

IVf. Aufs. Kräfte, Biegungsmom. u.s.w. bei bewegl. Belastg.; Einflufslinien. 159

Last, d. h. mit u, veränderliche Einflußordinate derselben ist. Die lineare Gl. 1 ist die Gleichung der geraden Einflufslinie des Momentes in C für die Strecke BC des Balkens.

Mit $A_1 B_1$ als Grundlinie (Abscissenachse) der Einflußordinaten und B_1 als Koordinaten-Nullpunkt ist für u = 0 $\eta = 0$, und für $u = l \eta = x$. Die Einflußlinie geht also durch B_1 und ihre Richtung schneidet die durch A_1 gehende Senkrechte im Abstande $A_1A_2 = x$ über A_1 . Gleichung 1 gilt aber nur, solange die Last 1 rechts von tt sich befindet, d. h. für die Balkenstrecke BC, und B_1C_1 ist die für diese gültige Einflußlinie. Denkt man sich jetzt ebenso die Last 1 links vom Querschnitt tt in Bewegung von A nach C, so entsteht in völlig gleicher Weise die Einflußlinie A, C_1 für die Balkenstrecke AC, die auf der Senkrechten durch B_1 die Strecke $B_1B_2 = x_1$ abschneidet. Die Einflußlinie des Momentes in C für den ganzen Balken wird somit durch den gebrochenen Linienzug $A_1C_1B_1$ dargestellt. Das Dreieck $A_1C_1B_1$ ist die Einflußfläche. Die Einflussordinaten sind überall positiv, von beiden Seiten nach dem betrachteten Querschnitt tt gleichmäßig anwachsend. Soll daher eine gegebene bewegliche Lastengruppe, etwa die Raddrücke einer Lokomotive oder eines Wagens ein möglichst großes M. erzeugen, so müssen die Lasten in tunlichster Nähe des betreffenden Querschnittes und zwar die schwersten Lasten demselben am nächsten Aufserdem müssen tunlichst viele Lasten aufgebracht werden. gebracht, der Träger "voll" belastet werden. Es wird dann 2)

$$M_x = P_1 \eta_1 + P_2 \eta_2 + \ldots = \Sigma P \cdot \eta,$$

wenn η_1 , η_2 u. s. w. die den Stellungen der Lasten P_1 , P_2 u. s. w. entsprechenden Einflußordinaten sind.

Die ganze Einflußsfläche ist $F = \frac{x \cdot x_1}{2} = \frac{x(l-x)}{2}$ und für verteilte Last p daher das Gröfstmoment

 $M_{xmax} = \frac{x(l-x)}{2} \cdot p. \quad (\text{Vergl. auch S. 101 Gl. 3})$ 3) Bei veränderlichem x besteht zwischen M_{xmax} und x parabolische Abhängigkeit. Für die Trägermitte $x = \frac{l}{2}$ ist $M_{max} = \frac{p l^2}{8}$.

Für mittelbare Belastung Fig. 122, b erleidet die Einflußlinie die durch Punktierung angedeutete Veränderung und nimmt die Form des zweifach gebrochenen Linienzuges $A_1D_1E_1B_1$ an.

Die Einflufslinie der Querkraft (Fig. 123) ergibt sich wie folgt: Die Querkraft, welche eine Last 1 im Abstande *u* von der rechtsseitigen Stütze in beliebigem Querschnitte *tt* links der Last erzeugt, ist gleich der links-Fig. 123.

seitigen Stützkraft.

4) $\eta = 1 \cdot \frac{u}{l}$. Gl. 4 ist die Gleichung der Einflufslinie der Quer-

kraft auf der Strecke BC des Über-Balkens. schreitet die Last 1 in ihrer Bewegung von der Stütze B nach A den Querschnitt tt, so ändert sich die in Gl.4 ausgedrückte Querkraft insofern, als der Trägerteil links vom Schnitt aufser von der aufwärts gerichteten Stützkraft $\frac{u}{t}$ auch noch von der ab-

wärts gerichteten Last 1 selbst ergriffen wird. Es wird nun für die Balkenstrecke AC

ŋ

4a)

$$=\frac{u}{1}-1$$
.

Die der Gl. 4 ent-

sprechende Gerade geht durch B_1 und ihre Richtung schneidet, da für u = l $\eta = 1$ (Krafteinheit), die Senkrechte durch A_1 im Abstande $A_1A_2 = \eta = \frac{u}{l} = 1$ über A_1 , und die der Gleichung 4 a entsprechende Gerade geht durch B_2 und ihre Richtung schneidet, da für u = 0 $\eta = -1$, die Senkrechte durch B_1 im Abstande $B_1B_2 = \eta = 1$ unter B_1 . Der gebrochene Linienzug $A_1C_1C_2B_1$,

IVf. Aufs. Kräfte, Biegungsmom. u. s. w. bei bewegl. Belastg.; Einflufslinien. 161

dessen Zweige $A_1C_1^*$ und C_2B_1 einander parallel sind, ist die Einflußlinie der Querkraft.

Da $\frac{u}{l}$ stets ein echter Bruch, sind die Einflußordinaten links von *tt* gemäß Gl. 4a negativ.

Für die Benutzung der Einflußlinie zur Bestimmung der Querkraft für eine beliebige Belastung, insbesondere des Größstwertes der Querkraft, gilt das auf S. 156 u. 157 allgemein und auf S. 159 speziell für das Biegungsmoment Gesagte.

Der positive Anteil der Einflußfläche ist nach Fig. 123, $a F_{+} = \frac{x_{1}^{2}}{2l}$ und der negative $F_{-} = \frac{x^{2}}{2l}$. Wird der zunächst gewichtslos gedachte Balken einmal im positiven und ein anderes Mal im negativen Einflußbereiche mit einer gleichmäßig verteilten Last p belegt, so wird im ersten Falle

5)
$$\dots Q_{p_{max}} = \frac{p \cdot x_1^2}{2l}$$
, im zweiten
5 a) $\dots Q_{p_{min}} = -\frac{p \cdot x^2}{2l}$, ,

Dabei ist, wie ersichtlich, Q_{pmax} gleich der linksseitigen Stützkraft für eine volle Belastung mit p rechtsseits von tt, und Q_{pmin} die rechtsseitige Stützkraft für volle Belastung linksseits von tt. Denken wir uns jetzt den Querschnitt tt verschiebbar, x veränderlich, so zeigen die Gleichungen 5 u. 5a Q_{pmax} und Q_{pmin} in parabolischer Abhängigkeit von x_1 bezw. x. Die erstere Parabel hat in der geometrischen Darstellung Fig. 123, b ihren Scheitel in B, die zweite in A.

Die Zeichnung derselben, beispielsweise der ersteren, läßt sich bequem wie folgt bewirken: Man mache $AA_1 = \frac{pl}{2}$, verbinde Bmit A_1 , bringe tt in D zum Schnitt mit BA_1 , ziehe durch Dwagerecht DE und verbinde E mit B. Dann ist der Schnittpunkt Fvon EB und tt ein Punkt der Parabel und $FG = Q_{p max}$; denn es ist

$$FG = A E \cdot \frac{x_1}{l} = D G \cdot \frac{x_1}{l} = A A_1 \cdot \frac{x_1}{l} \cdot \frac{x_1}{l} = \frac{pl}{2} \cdot \frac{x_1}{l} \cdot \frac{x_1}{l} = \frac{px_1^2}{2l}.$$

Hat der Balken aufser der beweglichen Last p noch in ganzer Länge die ständige gleichmäßige Last g f. d. Längeneinheit zu tragen, so entstehen die absoluten Größtwerte der Querkraft, wenn die bewegliche Last p sich entweder über das Trägerstück rechts

Keck, Elastizitätslehre.

11

von tt (Fig. 123, c) oder links von tt (Fig. 123, d) erstreckt. Im Abstande x von A wird im ersten Falle

$$Q_{x \max} = F_{+} \cdot p + g(F_{+} - F_{-}) = \frac{p x_{1}^{2}}{2 l} + \frac{g}{2 l} (x_{1}^{2} - x^{2})$$

und im zweiten Falle

$$Q_{x\min} = F_{-} \cdot p + g(F_{+} - F_{-}) = -\frac{px^{2}}{2l} + \frac{g}{2l}(x_{1}^{2} - x^{2}).$$

Mit $x_1 + x = l$ und $x = l - x_1$, bezw. $x_1 = l - x$ entsteht

6)
$$Q_{x \max} = \frac{p x_1^2}{2l} + g \left(x_1 - \frac{l}{2} \right),$$

6a)
$$Q_{x\min} = -\frac{px^2}{2l} - g\left(x - \frac{l}{2}\right).$$

Links der Balkenmitte sind beide Glieder der Gl. 6 positiv, rechts derselben wird das zweite negativ und dort, wo rechts der Balkenmitte das negative zweite Glied dem positiv ersten gleich wird, wechselt Q_{xmax} sein Vorzeichen, ist $Q_{xmax} = \frac{p x_1^2}{2} + g \left(x \varphi - \frac{l}{2} \right) = 0$. Die Lösung für x_1 ergibt $x_1^0 = l \cdot \frac{g}{p} \left(-1 + \sqrt{1 + \frac{p}{g}} \right)$.

Ebenso sind rechts der Balkenmitte beide Glieder der Gl. 6a negativ, während links derselben das zweite positiv wird und für $x = x_0 = l \frac{g}{p} \left(-1 + \sqrt{1 + \frac{p}{g}} \right)$ beide sich aufheben, $Q_{x\min} = 0$ wird. Für gleiche Werte von x_1 und x sind die Absolutwerte von $Q_{x\max}$ und $Q_{x\min}$ einander gleich.

Das zweite Glied der Gl. 6 u. 6a wird geometrisch je durch eine gerade Linie dargestellt (vergl. S. 100 u. 101' Gl. 2, Fig. 83). Legen wir diese mit der Parabel des ersten Gliedes an eine Gerade AB so zusammen, daß sich die gleichsinnigen Beiträge von p und gaddieren, die mit entgegengesetzten Vorzeichen subtrahieren, so entsteht die Maximalquerkraftfläche $A_1A_2NB_2B$ bezw. Minimalquerkraftfläche $AA_2N_1B_2B$. Links von N_1 treten nur positive, rechts von N nur negative Querkräfte auf; zwischen N und N_1 auf der Strecke v ergeben sich, je nachdem der Balken nur rechts oder nur links von dem betreffenden Querschnitte bewegliche Last p trägt, positive oder negative Querkräft. IVf. Äu/s. Kräfte, Biegungsmom. u. s. w. bei bewegl. Belastg. ; Einflufslinien. 163

Für
$$\frac{g}{p} = 1$$
 wird $x^0 = x_1^0 = 0.41 l$, $v = l - 2 \cdot 0.41 l = 0.18 l$,
 $\frac{g}{p} = \frac{1}{2}$ wird $x^0 = x_1^0 = 0.36 l$, $v = 0.28 l$,
 $\frac{g}{p} = \frac{1}{4}$ wird $x^0 = x_1^0 = 0.31 l$, $v = 0.38 l$.

Für mittelbare Belastung erfährt die Einflußlinie der Querkraft nach S. 157 die aus Fig. 124 ersichtliche Veränderung und nimmt die Form des Linienzuges $A_1C_1D_1B_1$ an, wobei zu bemerken ist,

dass für alle zwischen zwei Knotenpunkten C und D denkbaren Querschnitte dieselbe Einflusslinie und daher auch die gleiche Querkraft gilt. Bei der aus der Figur ersichtlichen Bezeichnung wird jetzt

$$F_{+} = x \cdot \frac{D_{1}E_{1}}{2} = \frac{x \cdot z}{2l} \quad \text{und daher}$$
$$Q_{p \max} = F_{+} \cdot p = \frac{p \cdot x \cdot z}{2l}.$$

21

7)

Da in symmetrisch gelegenen Querschnitten die Absolutwerte von

 $Q_{p max}$ und $Q_{p min}$ wechselweise einander gleich sind (vergl. S. 162), so soll hier von einer besonderen Ermittelung des letzteren Wertes abgesehen werden.

In ähnlicher Weise wie für unmittelbare Belastung läßt sich $Q_{p \max}$ konstruieren (Fig. 124, b). Man mache wieder AA_2 gleich $\frac{pl}{2}$, verbinde B mit A_2 , ziehe durch D_1 eine Senkrechte bis zum Schnitt E mit A_2B , ferner durch E die Wagerechte EF, verbinde F mit B und ziehe durch N eine Senkrechte bis zum Schnitt G mit FB, dann ist $GH = Q_{p max}$, denn es ist

 $GH = AF \cdot \frac{x}{l} = EJ \cdot \frac{x}{l} = AA_2 \cdot \frac{z}{l} \cdot \frac{x}{l} = \frac{pl}{2} \cdot \frac{z}{l} \cdot \frac{x}{l} = \frac{p \cdot x \cdot z}{2l}.$

Diese Querkraft gilt für das ganze Balkenfeld 2 und wird durch die Wagerechte 2' dargestellt. Die der beweglichen Last p entsprechende Maximalquerkraftfläche wird in Fig. 124, b durch die Stufenlinie 1'-2'-3'-4'-5' dargestellt. Im rechtsseitigen Endfelde ist z = 0 und daher auch $Q_{p max} = 0$. Eine neben der beweglichen etwa vorhandene ständige gleichmäßige Belastung g (Eigengewicht) geht an jedem Knotenpunkte als Einzellast $g\lambda$ in den Balken über, die ihr entsprechende Querkraftfläche ist daher (in Ubereinstimmung mit Fig. 81 S. 96) die aus Fig. 124, b ersichtliche Stufenlinie 1"-2"-3"-4"-5" mit der Stufenhöhe $g\lambda$.

Fügt man die der beweglichen Last- p entsprechende Maximalquerkraftfläche 1'-2'-3'-4'-5' und die Querkraftfläche 1"-2"-3"-4"-5" an der AB Fig. 124, b zusammen, so dafs sich gleichsinnige Beiträge addieren, ungleichsinnige subtrahieren, so entsteht die schraffierte maximale Gesamtquerkraftfläche.

3. Der dreifach gestützte Träger.

Einflufslinie für das Stützenmoment M1. Bei der in Fig. 125 dargestellten Belastungsart ist Fig. 125.

der rechtsseitige, abwärts gerichtete Auflagerdruck (nach S. 132, Gl. 11):

$$B = \frac{P}{4} \left(\frac{u}{l} - \frac{u^3}{l^3} \right),$$

daher das Stützenmoment

IVf. Au/s. Kräfte, Biegungsmom. u. s. w. bei bewegl. Belastg.; Einflu/slinten. 165

Es empfiehlt sich wegen der weiteren Anwendungen, nicht für M_1 . selbst, sondern für $1/l M_1$ die Einflußlinie zu zeichnen. Lassen wir daher P=1 werden, so entsteht

1)
$$\frac{M_1}{l} = \frac{1}{4l} \left(u - \frac{u^3}{l^2} \right) = \frac{u(l-u)}{4l^2} \frac{l+u}{l}.$$

Die Darstellung dieses Wertes kann leicht konstruiert werden, denn der erste Faktor $\frac{u(l-u)}{4l^2}$ bedeutet bei veränderlichem u eine Parabel von der Spannweite l und der Pfeilhöhe $^{1}/_{16}$. Die Ordinaten dieser Parabel müssen dann noch in dem Verhältnisse (l+u):l vergrößsert werden, um die Ordinaten der Einflußlinie von $M_1:l$ darzustellen. Zu dem Ende projiziert man die Parabel-Ordinate wagerecht nach $A_1 E$, trägt links von A_1 eine Strecke $A_1 L = l$ ab und zieht durch L und E eine Gerade, deren Verlängerung auf der Richtung der ursprünglichen Parabel-Ordinate das Stück $HJ = M_1:l$ bestimmt.

Die Einflußlinie für $M_1: l$ hat noch folgende kennzeichnende Eigenschaften: Aus ihrer Gleichung $\eta = \frac{1}{4l} \left(u - \frac{u^3}{l^2} \right)$ (Gl. 1) folgt durch Differentiation $\frac{d\eta}{du} = \frac{1}{4l} \left(1 - 3 \frac{u^2}{l^2} \right)$. Für u = 0 ist $\frac{d\eta}{du} = \frac{1}{4l} = \frac{1}{4}: l$, für u = l ist $\frac{d\eta}{du} = -\frac{1}{2l} = -\frac{1}{2}: l$.

Die Tangenten an die Endpunkte der Kurve schneiden daher auf den Auflager-Senkrechten die Stücke ¹/₄ bezw. ¹/₂ ab. Für $u = l: \sqrt{3} = 0,577 l$ wird $\frac{d\eta}{du} = 0$, mithin $\eta_{max} = \frac{1}{6\sqrt{3}} = 0,0962$.

Die so erhaltene Einflußsfläche nennt man wohl auch die M_1 -Fläche mit dem Multiplikator $\mu = l$, d. h. die Ordinaten der Figur geben, mit l multipliziert, den Einfluß einer Last Eins auf das Moment M_1 . $M_1: l$ bedeutet eine Kraft; als Einheit für die Ordinaten η ist daher die Kraft- oder Lasteinheit zu wählen.

Auf die Einflußlinie der statisch unbestimmten Größe M_1 lassen sich alle ferner in Frage kommenden Einflußlinien zurückführen, so daß die Zeichnung weiterer krummer Linien nicht mehr erforderlich wird.

Einflußlinie für M_x . Gegenüber einem einfachen Träger von der Spannweite AC = l bringt das Stützenmoment M_1 eine Ver-

minderung des Auflagerdruckes A um $M_1:l$ daher eine Verminderung des Biegungsmomentes M_x an beliebiger Stelle um $\frac{M_1}{l}x$ hervor (nach Gl. IVa, S.-148). Ist also das "einfache Moment" M'_x , so wird das wirkliche Moment

$$M_x = M'_x - \frac{M_1}{l} x \,.$$

Um nun $M_1:l$ unmittelbar benutzen zu können, muß man x als Multiplikator absondern und erhält

 $M_x = x \left(\frac{M_x'}{x} - \frac{M_1}{l} \right).$

2)

Die Einflußlinie für das einfache Moment M'_x ist (nach Fig. 122 S. 158) ein Dreieck, zu dessen Auftragung die Strecke x(gleich der Abscisse der Schnittstelle) auf der linksseitigen Auflagersenkrechten abgeschnitten wird. Um nun $M'_x: x$ zu erhalten, wie jetzt nötig ist, braucht man nur statt der Strecke x die Lasteinheit aufzutragen und im übrigen nach Fig. 122 zu verfahren. Um nun nach Gl. 2 den Wert $M_1: l$ leicht abziehen zu können,

trägt man die Einflußlinie für $M'_x: x$ nach derselben Seite mit der M_1 -Linie auf; der Unterschied der Ordinaten stellt dann, mit dem Multiplikator xvervielfacht, die Einflußfläche für M_x dar (Fig. 126). Denkt man sich im Felde CB auch einen einfachen Träger, so hat eine Belastung desselben auf das einfache Moment M'_x des linksseitigen Trägers keinen Einfluß.

Zieht man von dem Einfluße = 0 den Wert $M_1:l$ ab, so entsteht $M_x = x \left(-\frac{M_1}{l}\right)$; die Einflußfläche für M_x wird daher im rechtsseitigen Felde einfach durch die M_1 -Linie begrenzt, deren Ordinaten negativ zu nehmen sind. Positive Einflußflächen sind in Fig. 126 senkrecht schraffiert, negative wagerecht; danach ist unter den Verhältnissen der Figur im linken Felde durchweg positiver Einfluß. Wird aber x größer, nähert sich die Schnittstelle mehr der Mittelstütze, so rückt der Punkt D, auf derselben Geraden DC bleibend, nach C hin, und AD dreht sich, flacher werdend um A, während die Figur im übrigen unverändert bleibt. Bei einer bestimmten

IVf. Aufs. Kräfte, Biegungsmom. u.s.w. bei bewegl. Belastg.; Einflufslinien. 167

Lage F des Schnittes wird dann AD in der Lage AD_0 die Kurve AC im Punkte A berühren und bei noch weiter gehender Verschiebung des Schnittes die Kurve AC schneiden, wodurch die Einflußverhältnisse geändert werden.

Ist für die Grenzlage F des Schnittes $A F = x_0$, so ist nach der Figur

$$D_0 F = \frac{1}{4} \frac{x_0}{l} = \frac{l - x_0}{*l} \text{ oder}$$
$$x_0 = \frac{4}{5} l.$$

Diese Stelle F in der Mittellinie des Trägers heifst Festpunkt.

Für eine Lage des Schnittes zwischen dem Festpunkte und der Mittelstütze (Fig. 127) wird die Kurve AC von der Geraden AD

in G geschnitten. Hat G die Koordinaten u_0 und y_0 , so wird nach der Fig. 127 und nach Gl. 1:

$$y_0 = \frac{1}{l} (l-x) \cdot \frac{1}{x} u_0 = \frac{1}{4l} \left(u_0 - \frac{u_0^3}{l^2} \right);$$

daraus ergibt sich

3)

$$\frac{u_0}{l} = \sqrt{5-4} \frac{d}{d}$$

Jetzt sind von u=0 bis $u=u_0$ die Einflüsse negativ, von $u=u_0$ bis u=l positiv, längs des rechten Feldes wieder negativ.

Nachdem so die, die Größstwerte der Momente M_x in den einzelnen Querschnitten herbeiführenden Laststellungen mit Hülfe der Einflußlinie bekannt geworden sind, lassen sich die Zahlwerte jener Momente selbst entweder auf Grund der Einflußsflächen oder von den nach S. 133 zu ermittelnden Stützkräften ausgehend in bekannter Weise berechnen.

Einflufslinie der Querkraft. Wie oben erwähnt, vermindert sich der Auflagerdruck A infolge des Stützmomentes M_1 um $\frac{M_1}{l}$ gegenüber demjenigen des einfachen Trägers. Dasselbe gilt für die Querkraft. Es ist also

$$Q_x = Q_x' - \frac{M_1}{l},$$

worin Q' die "einfache Querkraft". Hiernach hat man von den

Einfluß-Ordinaten für Q'_x (s. Fig. 123, S. 160) nur die Ordinaten der Fläche $M_1: l$ abzuziehen und erhält in Fig. 128 die Einflußfläche für Q_x .

Um $Q_{x max}$ zu erhalten, muß man die Strecke vom Schnitte bis zur Mitte belasten. Eine zwischenliegende Einflußordinate hat die Größe

und es wird

$$Q_{x \max} = p \int_{x}^{t} \left(1 - \frac{5}{4} \frac{u}{l} + \frac{u^{3}}{4l^{3}}\right) du$$
$$= \frac{pl}{4} \left(\frac{7}{4} - 4\frac{x}{l} + \frac{5}{2}\frac{x^{2}}{l^{2}} - \frac{1}{4}\frac{x^{4}}{l^{4}}\right).$$

Bei Belastung beider Felder mit p wird $Q_x = \frac{3}{8} p l - p x$; diesen Wert muß $Q_x \min + Q_x \max$ haben, so daß sich

$$Q_{x \min} = -\frac{pl}{4} \left(\frac{1}{4} + \frac{5}{2} \frac{x^2}{l^2} - \frac{1}{4} \frac{x^4}{l^4} \right)$$
 ergibt.

Bei gleichzeitiger Berücksichtigung der ständigen Last g wird dann

5)
$$Q_{x \max} = g\left(\frac{3}{8}l - x\right) + \frac{pl}{4}\left(\frac{7}{4} - \frac{4x}{l} + \frac{5}{2}\frac{x^2}{l^2} - \frac{1}{4}\frac{x^4}{l^4}\right)$$

6)
$$Q_{x\min} = g\left(\frac{3}{8}l - x\right) - \frac{pl}{4}\left(\frac{1}{4} + \frac{5}{2}\frac{x^2}{l^2} - \frac{1}{4}\frac{x^4}{l^4}\right).$$

Die überhaupt vorkommenden größten Querkräfte an den Stützen ergeben sich nach dieser Rechnung

für
$$x = o$$
 zu $Q_{x max} = 3/8 g l + 7/16 p l;$
 $Q_{x min} = 3/8 g l - 1/16 p l;$
für $x = l$ zu $Q_{x max} = -5/8 g l$
 $Q_{x min} = -5/8 g l - 5/8 p l.$
IVg. Äufsere Kräfte, Biegungsmomente u. s. w. Gerber'scher Träger. 169

g) Aufsere Kräfte, Biegungsmomente und Querkräfte für mehrfach gestützte Träger mit Gelenken. Gerber'sche Träger.

1. Anordnung der Gerber'schen Träger.

Wie S. 144 dargelegt, ist ein Träger auf n Stützen n-2-fach statisch unbestimmt, so dafs n-2 Elastizitäts-Gleichungen zu seiner Berechnung erforderlich sind. Diese werden entbehrlich, wenn man im Verlaufe des Trägers n-2 reibungslose Gelenke anbringt; an jeder solchen Stelle ist dann der Biegungswiderstand Null, also auch das Biegungsmoment gleich Null, so dafs n-2 neue Gleichgewichtsbedingungen entstehen, der Träger also statisch bestimmt wird. Für die Ausführung des Trägers ist ein wirkliches Gelenk meist nicht nötig, sondern es genügt in der Regel eine einfache Auflagerung des einen Trägerteiles auf das Ende des anderen. Es muß an der betreffenden Stelle eine Querkraft, nicht aber ein Moment übertragen werden können. Zweckmäßig wird die Anordnung so getroffen, dass die an der Gelenkstelle auftretende Querkraft stets in demselben Sinne wirkt, weil dann eben eine einfache Auflagerung hinreicht. Diese Bedingung wird erfüllt, wenn auf ein mit Gelenken versehenes Trägerfeld stets ein solches ohne Gelenke folgt; auch darf die Zahl der Gelenke in einem Felde höchstens zwei betragen.

Solche Träger sind zuerst von dem bayrischen Ingenieur Gerber ausgeführt worden.

Bei 3 Stützen ist ein Gelenk anzuwenden (Fig. 129). Bei 4 Stützen können die erforderlichen 2 Gelenke beide im Mittelfelde (Fig. 130), oder je eins in jedem Seitenfelde (Fig. 131) angeordnet sein. An diesen Trägern sind 4 Teile zu unterscheiden:

1. Der einfache Träger a, bei welchem die Momentennullpunkte an den Enden liegen. Ob derselbe an einem Ende auf einem Pfeiler ruht (wie bei B in Fig. 129, bei A und B in Fig. 131), oder sich an beiden Enden auf anschließende Trägerteile stützt, ist für seine Berechnung gleichgültig; er verhält sich in dieser Beziehung ganz wie ein gewöhnlicher einfacher Träger auf 2 Endstützen und wird nur durch Lasten beeinflußt, die an ihm selbst angreifen.

2. Das Kragstück *b* bildet die Verlängerung eines Trägers auf 2 Stützen, ist mit diesem steif verbunden und trägt an seinem Ende mittels Gelenkes oder gleichwertiger Anordnung den einfachen Balken *a*. In den Figuren sind CD, C_1D_1 , C_2D_2 solche Kragstücke.

3. Das Balkenstück c mit einem anschliefsenden Kragstücke ruht einerseits auf einem Endauflager und ist über der anderen festen Stütze mit dem Kragstück b zu einem steifen Körper verbunden. Dieses Stück wird daher nicht nur durch eigene Lasten, sondern auch durch diejenigen der anschliefsenden Teile a und bbeeinflufst. AC in Fig. 129, AC_1 und BC_2 in Fig. 130 sind solche Balken c mit einem anschliefsenden Kragstücke.

4. Das Balkenstück d mit zwei anschliefsenden Kragstücken b ruht auf 2 festen Mittelstützen, ist über beiden mit Kragstücken b steif verbunden und wird daher auch durch Lasten der beiderseits anschliefsenden Teile b und a beeinflufst. Ein Trägerstück d ist C_1C_2 in Fig. 131.

Will man die Zahl der Felder weiter vermehren, so kann man in Fig. 130 bei B ein Kragstück b anschliefsen und auf dieses wieder einen einfachen Träger a stützen; oder man entfernt in Fig. 131 die feste Stütze B und legt das Stück $a = D_2 B$ auf ein Kragstück b mit anschliefsendem Träger c, der auf 2 Stützen ruht. So fortfahrend, kann man aus den Teilen a, b, c und d Träger auf beliebig vielen Stützen zusammensetzen.

2. Äufsere Kräfte; gröfste und kleinste Momente und Querkräfte.

Für den einfachen Trägerteil a gilt das auf S. 158-164 Entwickelte, nur ist durchweg l mit a zu vertauschen.

Bei gleichmäßigen Belastungen g und g + p = q ist

1) $\begin{cases} M_{x \max} = \frac{1}{2} q x (a-x), \\ 1 \end{cases}$

1) $M_{x\min} = \frac{1}{2} g x (a - x)$, das überhaupt größte Moment 2) $M_1 = \frac{1}{8} g a^2$.

Ersetzt man in Gl. 6 u. 6a S. 162 x_1 durch l-x bezw. a-x und p durch q-g, so wird

3)
$$\begin{cases} Q_{x \max} = q \frac{(a-x)^2}{2a} - g \frac{x^2}{2a}, \\ Q_{x \min} = g \frac{(a-x)^2}{2a} - q \frac{x^2}{2a}. \end{cases}$$

IV g. Äufsere Kräfte, Biegungsmomente u. s. w. Gerber'scher Träger. 171

Das Kragstück b, in Fig. 132 durch CD dargestellt. Führt man durch dasselbe einen Schnitt tt in dem Abstande x vom Gelenke D und läfst eine Last Eins vom Schnitt aus nach rechts

wandern, u. zw. zunächst bis zum Gelenke D, so wächst das Moment der Last in Bezug auf die Schnittstelle, also das Biegungsmoment M_x , von Null an in gleichem Verhältnisse mit ihrem Abstande vom Schnitt und erreicht den Wert $1 \cdot x$, wenn die Last bis D gelangt ist. Dies wird durch die Einflufslinie TD_1 dargestellt. Rückt die Last über D hinaus

nach rechts, so wirkt sie auf das Kragstück nur noch mittelbar, indem sie an diesem einen Gelenkdruck D erzeugt, der das Moment Dx liefert. Dieser Gelenkdruck nimmt aber, während die Last von D nach B wandert, gleichmäßig bis auf Null ab, daher muß das Moment ebenfalls gleichmäßig abnehmen, und man erhält hiernach die weitere Einflußlinie D_1B_1 . Das Biegungsmoment M_x an einer Schnittstelle des Kragstückes ist aber immer so beschaffen, daß die entsprechende Biegungslinie ihre erhabene Seite nach oben kehrt, wir bezeichnen es daher als negativ. Dieses negative Moment wird möglichst groß bei voller Belastung der Strecken x und a. Beim Vorhandensein von Einzellasten müßten die schwersten derselben in der Nähe des Gelenkes D angebracht werden, weil hier die Einfluß-Ordinaten am größten sind. Bei gleichmäßiger Last g oder q bekommt man die Momente einfach durch Multiplikation dieser Werte mit der Einflußfläche.

Daher wird

4) $M_{x\min} = -\frac{1}{2} q x (a + x); \quad M_{x\max} = -\frac{1}{2} g x (a + x).$

Das dem Zahlenwerte nach größte Moment am Kragstücke findet sich (für x = b) über der Mittelstütze C; es beträgt

$$M_2 = \frac{1}{2} q b (a + b)$$

Die Querkraft Q_x an der Schnittstelle tt, welche durch eine wandernde Lasteinheit hervorgebracht wird, ist nach der Gleichung der senkrechten Kräfte gleich Eins, solange die Last zwischen dem Schnitt und dem Gelenke D liegt, wird aber gleich dem Gelenkdrucke D, sobald die Last auf den Trägerteil a rückt, vermindert

sich also mit diesem nach B hin gleichmäßig bis auf Null. Hiermit steht die Einflußfläche für Q_x fest (s. Fig. 132) und es wird

6)

 $Q_{x \max} = q(1/2a + x); \quad Q_{x \min} = g(1/2a + x).$

Das Trägerstück c mit einem anschliefsenden Kragstücke, in Fig. 133 mit AC bezeichnet. Der Teil c wird durch Lasten, die an ihm selbst auftreten, genau so beeinflufst, wie ein

einfacher Träger auf 2 Stützen, da das Kragstück b und der Teil a, solange sie unbelastet sind, keine Wirkung üben.

Einfluſsfläche für den Auflagerdruck A. Innerhalb des Feldes c ergibt sich die Linie A_1C_1 als Einfluſslinie für A. Schreitet die Last nun über die Stütze C hin nach rechts, so erfährt dadurch A keine unstetige Änderung; zur Bestimmung von A dient nach wie vor die Momentengleichung zwischen A und der Last in Bezug auf den Punkt C, es erfährt nur das Moment

der Last und damit auch A einen Zeichenwechsel. Daher ist die Gerade A_1C_1 bis D_1 zu verlängern. Am Gelenk aber tritt eine Änderung des Gesetzes ein, weil bei weiterem Fortschreiten die Last nur noch mit dem Anteile D auf A einwirkt; daraus ergibt sich die Fortsetzung D_1B_1 der Einflußlinie.

Die Ordinate bei D_1 ist $1/c \cdot b$. Es wird

7)

$$\begin{cases} A_{max} = q \frac{c}{2} - g \frac{b(a+b)}{2c} = q \frac{c}{2} \left(1 - \frac{g}{q} \frac{b(a+b)}{c^2} \right) \\ A_{min} = g \frac{c}{2} \left(1 - \frac{g}{g} \frac{b(a+b)}{c^2} \right). \end{cases}$$

Einfluſsſlāche fūr das Moment an einer Schnittstelle tt. Innerhalb des Feldes c ergibt sich die Einfluſslinie nach dem Früheren zu $A_2T_2C_2$. Aus denselben Gründen, wie vorstehend in Bezug auf A erläutert, und weil eine Last rechts vom Schnitte zu dem Momente M_x stets den Beitrag $A \cdot x$ liefert, ergibt sich, daſs die Einfluſslinie T_2C_2 bis D_2 einfach zu verlängern ist und dann mit einem Knick von D_2 nach B_2 sich fortsetzt. Die Ordinate von D_2 ist $x/c \cdot b$. IVg. Äufsere Kräfte, Biegungsmomente u. s. w. Gerber'scher Träger. 173

Hiernach wird dann

8)

10)

$$M_{x max} = q \, rac{x(c-x)}{2} - g \, rac{x}{2} \, rac{b(a+b)}{c}, \ M_{x min} = g \, rac{x(c-x)}{2} - q \, rac{x}{2} \, rac{b(a+b)}{c}.$$

Den größten Wert M_3 , welchen das positive Moment am Trägerteile c überhaupt erreicht, könnte man finden, indem man M_{xmax} nach x auf seinen Größtwert untersuchte. Einfacher gelangt man aber zum Ziele, wenn man bedenkt, daßs M_{xmax} wieder von der Form $A_x - \frac{1}{2}qx^2$ ist, dessen Größtwert $\frac{A^2}{2q}$. Nimmt man nun A aus Gl. 7 für A_{max} , so wird

9)
$$M_3 = \frac{q c^2}{8} \left(1 - \frac{g b (a+b)}{q c^2}\right)^2$$
.

Einflufsfläche für die Querkraft an der Schnittstelle tt. Innerhalb der Strecke c ergibt sich für Q_x die Einflufslinie $A_3T_4T_3C_3$, die sich dann, übereinstimmend mit derjenigen für den Auflagerdruck, nach D_3 und B_3 fortsetzt. Es wird dann

$$\begin{cases} Q_{x max} = q \, \frac{(c-x)^2}{2 \, c} - g \left(\frac{x^2}{2 \, c} + \frac{b \, (a+b)}{2 \, c} \right), \\ Q_{x min} = g \, \frac{(c-x)^2}{2 \, c} - q \left(\frac{x^2}{2 \, c} + \frac{b \, (a+b)}{2 \, c} \right). \end{cases}$$

Das Trägerstück d mit beiderseits anschliefsenden Kragstücken, in Fig. 134 mit C_1C_2 bezeichnet. Auch der Teil dwird durch Lasten, die an ihm selbst angreifen, ebenso beeinflufst, wie ein einfacher Träger auf 2 Stützen. Hufst, beiderseits anschliefsenden Krag-Fig. 134. AAA C_1 C_2 C_2 C

Einfluſsſläche für den Auflagerdruck C_1 . Die Linie $C_1'C_2'$ ist selbstverständlich, und ebenso wie beim Trägerstücke c ergibt sich die Fortsetzung $C_2'D_1'B_1$; aus denselben Gründen

muss aber auch nach links die Gerade $C_2'C_1'$ bis D weitergehen.

um dann nach A_1 abzufallen. Die Ordinate von D' ist $\frac{b+d}{d}$. Es wird dann

11)
$$\begin{cases} C_{1 \max} = q \frac{(b+d)(a+b+d)}{2d} - g \frac{b(a+b)}{2d}, \\ C_{1 \min} = g \frac{(b+d)(a+b+d)}{2d} - q \frac{b(a+b)}{2d}. \end{cases}$$

Die Einflußsfläche für das Moment an der Schnittstelle tt ergibt sich nach den bezüglich des Trägerstückes c gezogenen Schlüssen, wie in Fig. 134 gezeichnet. Die Ordinate des Punktes D'' wird $\frac{d-x}{d} \cdot b$, diejenige des Punktes D'_1 aber $\frac{x}{d} \cdot b$. Danach erhält man

12)
$$M_{x max} = q \frac{x(d-x)}{2} - g \frac{b(a+b)}{2},$$
$$M_{x min} = g \frac{x(d-x)}{2} - q \frac{b(a+b)}{2}.$$

Da die letzten Glieder der rechten Seiten von x unabhängig, der Größtwert von $\frac{1}{2}x(d-x)$ aber (für $x = \frac{1}{2}d$) $\frac{1}{8}d^2$ ist, so wird das in der Mitte von d auftretende größte positive Moment: 13) $M_4 = \frac{1}{8}q d^2 - \frac{1}{2}g b(a+b)$.

Die Einflußsfläche für die Querkraft Q_x in Fig. 134 bedarf ebenfalls keiner näheren Begründung mehr. Die Ordinaten der Punkte D''' und D'''_1 sind $1/d \cdot b$. Man erhält leicht

14)
$$\begin{cases} Q_{xmax} = q\left(\frac{(d-x)^2}{2d} + \frac{b(a+b)}{2d}\right) - g\left(\frac{x^2}{2d} + \frac{b(a+b)}{2d}\right), \\ Q_{xmin} = g\left(\frac{(d-x)^2}{2d} + \frac{b(a+b)}{2d}\right) - q\left(\frac{x^2}{2d} + \frac{b(a+b)}{2d}\right). \end{cases}$$

3. Einteilung der Spannweite, Momentenausgleich.

Die vorstehenden Entwickelungen liefern für alle Stellen die größsten und kleinsten Momente und Querkräfte, wenn außer den Lasten die einzelnen Längen a, b, c und d gegeben sind. Ist aber nur die ganze zu überspannende Weite und die Zahl der Zwischenstützen gegeben, so hat man bezüglich der Verhältnisse zwischen den Längen der einzelnen Teile innerhalb gewisser Grenzen freie

IVg. Äufsere Kräfte, Biegungsmomente u. s. w. Gerber'scher Träger. 175

Wahl. Es möge nun hier wieder, wie in früheren Fällen (vergl. S. 98, 129 u. 139), die Bedingung gestellt werden, dafs durch Ausgleichung der in den einzelnen Teilen auftretenden größten Momente das überhaupt vorkommende größte Moment möglichst vermindert werde. Es muß dann gleichzeitig stattfinden:

 $\begin{array}{cccc} M_2 = M_1; & M_3 = M_1; & M_4 = M_1.\\ \text{Zunächst liefern dann Gl. 2 und 5:} & & & \\ & & & ^{1/2} q \, b \, (a+b) = ^{1/8} q \, a^2, & \text{mithin} \\ 15) & & & & b \, (a+b) = ^{1/4} a^2 & \text{und} \end{array}$

16) $b = a (\sqrt{1/2} - 1/2) = 0,207 a.$

Sodann wird nach Gl. 2 u. 9:

$$c\left(1-\frac{g}{q}\frac{b\left(a+b\right)}{c^{2}}\right)=a\,,$$

a a2

oder wegen Gl. 15

(17)
$$c^{2} - \frac{g}{q} \frac{a}{4} = a c \text{ und}$$
$$c = \frac{a}{2} \left(1 + \sqrt{1 + \frac{g}{q}} \right).$$

Schliefslich gibt die Verbindung der Gl. 2 und 13 mit Berücksichtigung von Gl. 15:

$$d = a \sqrt{1 + \frac{g}{q}}.$$

Wichtiger als die Ausgleichung der Momente ist aber die Vermeidung negativer Auflagerdrücke. Durch starke Belastung der Strecke CB in Fig. 133 könnte der Träger bei Avor der Stütze abgehoben werden. Soll dies nicht erfolgen, so muß $A_{min} \ge 0$, oder nach Gl. 7

$$1 - \frac{q}{g} \frac{b(a+b)}{c^2} \ge 0 \text{ oder}$$
$$b(a+b) \le \frac{g}{q} c^2 \text{ sein.}$$

19)

Um zu erfahren, in welchen Fällen die Bedingungen für die Momenten-Ausgleichung mit dieser Standsicherheits-Bedingung in Übereinstimmung sind, führt man die Werte der Gl. 15 und 17 in die Bedingung 19 ein und erhält

 $\frac{g}{q} \left(1 + \sqrt{1 + \frac{g}{q}}\right)^2 \ge 1;$

Durch Probieren ergibt sich hieraus

$$\frac{g}{q} \ge 0.23.$$

Ist diese Bedingung erfüllt, so werden die Gleichungen 16 und 17 für Ausgleichung der Momente Verhältnisse liefern, die ein Aufkippen des Trägers nicht befürchten lassen.

Auch das Trägerstück d kann, wenn auch weniger leicht, durch starke Belastung der Strecke $C_2 B$ (Fig. 134) von der Stütze C_1 abgehoben werden. Damit dies nicht erfolge, muß $C_{1\min} \ge 0$, also nach Gleichung 11

21) $g(b+d)(a+b+d) \ge qb(a+b)$ sein. Die Ausgleich-Bedingungen 15, 16, 18 sind hiermit in Übereinstimmung, wenn

$$\frac{g}{q} \ge 0,09.$$

Anwendungen.

Beispiel I: Gelenkträger auf 3 Stützen. Wendet man die in den Gl. 16 und 17, S. 175 gegebenen Verhältnisse an so wird die Weite des linksseitigen Feldes

$$l_1 = c = \frac{a}{2} (1 + \sqrt{1 + g/q}),$$
 Fig. 135.

die des rechtsseitigen Feldes

22)

 $l_2 = a + b = 1,307 a$ (Fig. 135).

Diese Weiten sind einander nur gleich für g/q = 1, für alle anderen Fälle ist $l_2 > l_1$.

Ist eine solche Ungleichheit der Feldweiten nicht zulässig, wird vielmehr a + b = c als Bedingung gestellt, so mufs dafür eine der Bedingungen $M_1 = M_2$ und $M_2 = M_3$ unerfüllt bleiben. Würde man nun etwa $M_1 = M_2$ beibehalten, so erhielte man M_3 im allgemeinen gröfser als M_1 und M_2 , so dafs der Zweck: die Herabminderung des gröfsten Momentes, nicht erreicht sein würde. Ebensowenig liefert die Gleichsetzung von M_1 und M_3 ein befriedigendes Ergebnis. Brauchbar ist aber die Bedingung $M_2 = M_3$, und man erhält, wenn man bedenkt, dafs a + b = c sein mufs

23)
$$c = b (1 + \sqrt{1 + g/q})^2.$$

Da c gegeben ist, so steht hiernach b und auch a = c - b fest.

Man findet, dafs dieses auch der Bedingung 19 (S. 175) gegen Aufkippen genügt, sobald $g/g \ge 0,_{23}$ (übereinstimmend mit 20).

Ist die gesamte Weite beider Felder L und p/q = 0.5, so können ohne Gefahr des Aufkippens die Ausgleichungs-Bedingungen benutzt werden. Man erhält

b = 0,207 a, mithin $l_2 = a + b = 1,207 a$; $l_1 = c = 1/2 a (1 + \sqrt{1,5}) = 1,112 a$.

IV g. Äufsere Kräfte, Biegungsmomente u. s. w. Gerber'scher Träger. 177

Daher ist die Gesamtweite $L=2,s_{19}a$ oder $a=0,s_{31}L$; $b=0,s_{99}L$; $c=0,s_{490}L$. Bei diesen Verhältnissen sind die größten Momente M_1 , M_2 und M_3 einander gleich und am einfachsten nach

$$M_1 = \frac{1}{8} q a^2 = \frac{1}{32} q L^2 \cdot 0,431^2 = 0,743 \cdot \frac{1}{32} q L^2$$

zu berechnen. Bei der Wahl zweier einfachen Träger von der Weite 1/2 Lwäre das gröfste Moment $1/32 q L^2$ gewesen; die hier gewählte Anordnung ermöglicht aber eine Verminderung des gröfsten Moments um 25,7%.

Ist eine gleiche Weite der Felder Bedingung, so kann man nach Gl. 23 $c=b(1+\sqrt{1,5})^{4}=4,05 b$, also b=0,000 c und a=0,000 c wählen. Die beiden gröfsten Momente werden dann

$$M_{0} = M_{2} = \frac{1}{2} q b (a + b)^{2} = \frac{1}{2} q c \cdot 0{,}_{205} c = 0{,}_{81} \cdot \frac{1}{8} q c^{2} = 0{,}_{81} \cdot \frac{1}{32} q L^{2}.$$

Daneben wird $M_1 = \frac{1}{8} q a^2 = 0.636 \cdot \frac{1}{32} q L^2$. Die Verminderung des größsten Momentes beträgt jetzt also nur 19% gegenüber einfachen Trägern.

Beispiel 2: Gelenkträger auf 4 Stützen. Bei 4 Stützen gibt die Ausgleichung der Momente keine Veranlassung zu unsymmetrischer Anlage.

Nach den Fig. 130 u. 131 S. 169 sind 2 verschiedene Anordnungen möglich. Legt man die Gelenke in das Mittelfeld (Fig. 136) so wird jedes Seitenfeld $l_1 = c$, das Mittelfeld $l_1 = c$, das Mittel-

feld $l_2 = a + 2b$. Zur Ausgleichung der Momente führen:

$$l_1 = c = a/2 (1 + \sqrt{1 + a/2}); \ l_2 = 1,414 a.$$

Ist wieder g/q = 0.5, so wird $l_1 = c = 1,112a$, mithin das Verhältnis der Feldweiten

$$v = l_2: l_1 = 1,414: 1,112 = 1,27.$$

Die Gesamtweite ist L = (1, 112 + 1, 414 + 1, 112) a = 3,638 a und a = 0,274 L; folglich

$$b = 0,057 L; l_1 = c = 0,306 L; l_2 = 0,388 L.$$

Das gröfste Moment wird $M_1 = M_2 = M_3 = \frac{1}{8} q a^2 = 0,675 \cdot \frac{1}{72} q L^2$, also um $32,5 \, ^{\circ}/_{\circ}$ geringer als bei Einzelträgern.

Legt man aber die Gelenke in die Endfelder (Fig. 134, S. 173), so wird $l_1 = a + b$; $l_2 = d$. Zur Ausgleichung der Momente führen

 $b=0,207 a; l_1=1,207 a; l_2=d=a\sqrt{1+g/g}.$

Ist wieder g/q = 0.5, so ist nach Formel 22 (S. 176) die Ausgleichung der Momente zulässig. Es wird

$$l_1 = 1,207 a; l_2 = a / 1,5 = 1,224 a;$$

hier ergibt sich also die Mittelöffnung nur wenig gröfser als die Seitenöffnungen (bei kleinem g/q kann sie sogar etwas kleiner werden als letztere). Die Gesamtweite ist L = (1,207 + 1,224 + 1,207) a = 3,638 a; da diese Verhältniszahl dieselbe ist wie im vorigen Beispiele, so muß auch das gröfste Moment wieder $0,675 \cdot \frac{1}{72} q L^2$ sein.

Keck, Elastizitätslehre.

h) Beziehungen zwischen Biegungsmoment, Querkraft, Belastung und Biegungslinie.

Ein wagerechter Balken sei nach irgend einem Verteilungsgesetz p = f(x) über seine Länge lotrecht belastet, worin p die im allgemeinen veränderliche Belastung f. d. Längeneinheit, x die wagerechte Entfernung von einem Festpunkte, etwa einer der Stützen bedeutet. Schneidet man aus dem Balken ein Längenteilchen dxheraus (Fig. 137), so wirkt an der einen (linksseitigen) Schnittfläche ein dem Biegungsmomente M gleiches Widerstands-

moment und ein der Querkraft Q gleicher Schubwiderstand. An dem anderen (rechtsseitigen) Schnitte treten entsprechend das Widerstandsmoment M+dMund der Schubwiderstand Q+dQ auf, wobei wir bezügl. der Vorzeichen auf S. 92 verweisen. Die in den Schnittebenen wirkenden Moment- und Schubkräfte müssen mit dem auf das Balkenelement ent-

fallenden Lastanteil $p \cdot dx$ sich das Gleichgewicht halten. Die Momenten-Gleichung in Bezug auf O liefert dann unter Vernachlässigung des unendlich Kleinen höherer Ordnung $\frac{1}{2}p \cdot dx \cdot dx$,

),
$$Q = \frac{dM}{dx}$$
.

Aus der Gleichung der senkrechten Kräfte aber folgt

$$p = -\frac{dQ}{dx} = -\frac{d^2M}{dx^2},$$

3)

Die Querkraft ist daher die erste Abgeleitete des Biegungsmomentes (nach *x* genommen), die Belastung der Längeneinheit, mit negativen Zeichen gesetzt, die erste Abgeleitete der Querkraft oder die zweite Abgeleitete des Momentes. An einer Stelle, wo die Querkraft Null, hat das Moment einen größten oder kleinsten Wert.

Nach Gl. 3, S. 87 ist mit Rücksicht auf die daran geschlossene Bemerkung

 $EJ\frac{d^2y}{dx^2} = \pm M$; demnach wird nun

$$EJrac{d^3y}{dx^3} = \pm Q$$
 und $EJrac{d^4y}{dx^4} = -rac{dQ}{dx} = \mp p$

IVi. Beziehung zwischen Querkraft und Schubspannungen u. s. w. 179

Während die Grundgleichung der Biegungslinie in dem Vorhergehenden nur benutzt wurde, um für eine gegebene Belastungsart die Biegungslinie zu entwickeln, kann nun nach Gl. 3 auch umgekehrt aus der Gleichung der Biegungslinie das entsprechende Belastungsgesetz p = f(x) abgeleitet werden.

Ist beispielsweise die Biegungslinie AB (Fig. 138) eines zweifach gestützten Balkens durch die Gleichung gegeben:

$$y = \frac{p_1}{12 EJ} \left(\frac{x^5}{10 l} - \frac{l x^3}{3} + \frac{7}{30} l^3 x \right),$$

so ergibt sich durch Differenziation

EJ

$$EJ\frac{dy}{dx} = \frac{p_1}{12} \left(\frac{x^4}{2l} - lx^2 + \frac{7}{30} l^3 \right), \text{ ferner}$$

$$\frac{d^2y}{dx^2} = \frac{p_1}{12} \left(\frac{2x^3}{l} - 2lx \right) = -\frac{p_1}{6} \left(lx - \frac{x^3}{l} \right) = -$$

Fig. 138.

somit $EJ\frac{d^3y}{dx^3} = -\frac{p_1}{6}\left(l - \frac{3x^2}{l}\right) = -Q$, und schliefslich $EJ\frac{d^4y}{dx^4} = p_1\frac{x}{l} = p$. Die Belastung ist daher eine von links nach rechts gleichmäßig bis auf p_1 zunehmende.

M.

Für $x = \frac{l}{\sqrt{3}} = 0,57755 l$ ist Q = 0, mithin *M* am größsten, u. zw. wird $M_{max} = 0,66415 p_1 l^2 = 0,1255 Pl$, wenn die Gesamtlast $1/2 p_1 l = P$ gesetzt wird.

 $M_{max} = 0,0615 p_1 l^2 = 0,0255 Pl$, wenn die Gesamtdast $72 p_1 l = P$ gesetzt wird. (Bei gleichmäßiger Belastung wäre $M_{max} = 0,025 Pl$ gewesen.) Die gröfste Durchbiegung liegt bei 0,01903 l, nur wenig rechts von der Mitte, und es beträgt $EJy_{max} = 0,000524 p_1 l^4 = 0,0130068 Pl^3$. Die Durchbiegung in der Mitte wird natürlich genau so grofs wie bei gleichmäßiger Belastung. nämlich $\frac{5}{384} \frac{Pl^3}{EJ} = 0,0130208 \frac{Pl^3}{EJ}$, nur wenig kleiner als y_{max} .

i) Beziehung zwischen der Querkraft und den durch sie hervorgerufenen Schubspannungen, Verteilung der letztern über den Stabquerschnitt.

Die Gleichungen 1 u. 2 S. 90 stellen die Bedingungen für das Gleichgewicht zwischen den äußern senkrecht zur Stabachse wirkenden Kräften und den durch sie in einem beliebigen Querschnitt hervorgerufenen Spannkräften in allgemeiner Form dar. Gl. 2 ermöglicht zugleich die Berechnung der im Stabquerschnitt herrschenden größten Normalspannungen σ (Randspannungen) aus dem auf das abgeschnittene Stabende wirkenden Moment M der äußern Kräfte, während Gl. 1 nur die Gleichheit der Mittelkraft Qder letztern, der sogen. Querkraft und der Mittelkraft T der durch sie im Querschnitt hervorgerufenen Schubspannkräfte, also des vom

12*

Querschnitt geleisteten Gesamtschubwiderstandes ausdrückt, die Verteilung desselben über die Querschnittsfläche, die Bestimmung der Schubspannungen in den einzelnen Querschnittspunkten aber offen läßt. Wir wollen jetzt das Gesetz dieser Verteilung ableiten. Da nach der gemachten Annahme S. 80 u. 89 die Kraftebene den Querschnitt in einer Symmetrielinie der Hauptachse OZ schneidet

(Fig. 139), so muſs die gesamte Querkraft Q in OZ liegen. Der Angriff der äuſsern Kräſte sei derart, daſs unterhalb der Biegungsachse Zugspannung und oberhalb derselben Druckspannung herrscht. In einem Abstande z von der Achse sei die Querschnittsbreite w, so daſs ein wagerechter

Flächenstreifen die Größe dF = w dz hat. Ist die Spannung an dieser Stelle σ_x , an der Unterkante σ' , so wird $\sigma_x = \frac{\sigma'}{e'} z$ und die Normalkraft an dem Flächenstreifen:

1)
$$dN = \sigma_z dF = \frac{\sigma'}{e'} dF z = \frac{M}{J} dF z.$$

Die gesamte Normalkraft, welche auf den endlichen Teil ABCD des Querschnitts kommt, ist demnach

2)
$$N_z = \frac{\sigma'}{e'} \int_{z}^{e'} dF \cdot z = \frac{M}{J} \int_{z}^{e'} dF \cdot z = \frac{M}{J} S_z.$$

Hierin bedeutet S_z das statische Moment des Querschnittsteiles A B C D in Bezug auf die Biegungsachse.

Betrachtet man den ganzen Querschnittsteil auf der einen Seite der Biegungsachse, den wir kurz die Querschnittshälfte nennen wollen, so sei deren statisches Moment S; dann ist die gesamte Zugkraft an der einen Hälfte

$$N = \frac{\sigma'}{e'} S = \frac{M}{J} S.$$

Die gesamte Druckkraft ist ebenso groß (vergl. S. 83), das statische Moment beider Querschnittshälften von gleicher absoluter Größe.

Das Gesetz über die Verteilung der Normalspannungen steht hiernach und nach den Ausführungen unter IIIa bei gegebenem Querschnitte völlig fest.

Schneidet man nun von dem Längenteilchen dx des Stabes durch einen wagerechten Schnitt (wir denken uns die Mittellinie des

IVi. Beziehung zwischen Querkraft und Schubspannungen u. s. w. 181

Stabes wagerecht; die Kraftebene senkrecht) ein Stück von der Höhe e'-z ab (Fig. 140) und betrachtet von den an ihm wirkenden

Kräften nur die wagerechten, so sind dies die Normalkräfte N_x und N_x + seiner partiellen Zunahme nach x, sowie die Schubspannkraft an dem wagerechten Schnitte, von der wir annehmen wollen, daß sie sich quer über die wagerechte Schnittfläche gleichmäßig verteile, so daß sie gleich $\tau_y \cdot (w \cdot dx)$ ist, wenn man unter τ_y die Schubkraft f. d. Flächeneinheit, die

Schubspannung versteht.*) Es ist folglich, da sich die entgegengesetzt gerichteten Kräfte N_z aufheben, $\tau_y \cdot w \cdot dx = \frac{\partial N_z}{\partial x} dx$ die Schubspannkraft auf die Länge dx des wagerechten Schnittes und diejenige für die Längeneinheit $\tau_y \cdot w = \frac{\partial N_z}{\partial x}$. Weil aber nach Gl. 2 $N_z = \frac{M}{J} S_z$, so wird, wenn der Querschnitt sich nicht mit x ändert, wenn wenigstens S_z : J gleich bleibt, $\partial N_z = \frac{S_z}{J} \partial M$, oder, weil nach S. 178 Gl. 1 $\partial M = Q \partial x$

4)
$$\tau_y w = Q \frac{S_z}{J}.$$

Für z=0, d. h. für einen wagerechten Schnitt längs der Achse des Stabes, sei die Querschnittsbreite w_0 , die Schubspannung τ_0 , dann ist

$$\tau_0 w_0 = Q \frac{S}{J}.$$

Da das statische Moment S der einen Querschnittshälfte größer ist als S_z für einen anderen Querschnittsteil, und für z = e'oder z = -e'' $S_z = 0$ ist, so ist die wagerechte Schubkraft für die Längeneinheit in der Biegungsachse am größten und nimmt nach oben und unten bis auf Null ab.

Wie sich die Schubspannung τ_y mit z ändert, hängt von der Veränderlichkeit der Querschnittsbreite ab.

*) Die angenommene gleichmäßige Verteilung der Schubspannung in der Querrichtung trifft nur bei allmählicher Änderung der Querschnittsbreite genau zu, an Stellen sprungsweiser Änderung dagegen nicht (vergl die Ausf. S. 184).

Für ein Rechteck $d \times h$ (Fig. 141) ist das statische Moment des schraffierten Teiles

6)

7)

 $\tau_0 = \frac{3}{2} \frac{Q}{E}.$ In Gl. 6 steht die Schubspannung τ_y und der Abstand z von der Biegungsachse in mrabolischer Abhängigkeit voneinander.

Von dem Auftreten dieser wagerechten Schubspannung τ_0 kann man sich leicht eine Vorstellung machen, wenn man einen Holzbalken von rechteckigem Querschnitte betrachtet, der auf 2 Stützen liegt und in der Mitte die Last P trägt. Die Höhe h betrage das Doppelte der Breite d, das Widerstandsmoment des Querschnittes ist dann 2/s d3. In der oberen Balkenhälfte

werden die Längsfasern verkürzt, in der unteren verlängert. Zertrennt man aber den Balken durch einen wagerechten Schnitt in 2 Hälften (Fig. 142), so hat man 2 Balken, die, aufeinander gelegt, sich in die Last teilen; jede Hälfte hat nun ihre besondere neutrale Faser, und an der Trennungsfläche berühren sich eine

gezogene und eine gedrückte Faser, die mithin verschiedene Länge haben müssen, so dafs die Endflächen der Balken nicht mehr in gleicher Flucht liegen. Der Unterschied rührt daher, daß an der Trennungsfläche die vorher vorhanden gewesene Schubspannung To nicht mehr auftreten kann. Die Tragfähigkeit ist durch die Auftrennung vermindert worden, denn das Widerstandsmoment einer Querschnitts hälfte ist 1/e d3, beider Hälften zusammen 1/3 d3, d. h. halb so grofs wie beim ungetrennten Balken, und ebenso ist die Tragfähigkeit auf die Hälfte vermindert.

Die in der Querschnittsebene auftretenden Schubspannungen ausind in den einzelnen Querschnittspunkten im allgemeinen nach Richtung und Größe verschieden.

Für Punkte a_1 und a_2 des Querschnittes (Fig. 143), welche der Staboberfläche angehören, in der Schubspannung nicht herrscht, können sie nach den Ausführungen auf S. 72 u. 73 nur tangential zum Querschnittsumfange gerichtet sein und in der Symmetrieachse

IV i. Beziehung zwischen Querkraft und Schubspannungen u. s. w. 183

(Z-Achse Fig. 143) müssen sie in die Richtung derselben fallen. Denkt man sich τ in irgend einem Punkte a in Seitenspannungen $\tau_{y'}$ und $\tau_{z'}$ senkrecht zur Y- und Z-Achse zerlegt, so muß nach S. 72 u. 73 $\tau_{y'}$ gleich der in der anschliefsenden, den Querschnitt in aa senkrecht schneidenden wagerechten Schnittebene herrschenden

 τ_{ν} sein und gegen $a_1 a_2$ gleichen Richtungssinn Danach haben. gilt Gleichung 4 auch für die im Querschnitt tätigen senkrechten Schubspannungen τ_{ν}' und stellt das Verteilungsgesetz derselben über den Querschnitt dar. Die wagerechten

Schubspannung

Schubspannungen τ_z' nehmen von a_1 bezw. a_2 nach der Z-Achse hin allmählich bis auf Null ab. Unter der sehr wahrscheinlichen Voraussetzung, daß diese Abnahme im linearen Verhältnis mit dem Abstande y von der Kraftlinie (Z-Achse) stattfindet, schneiden sich die Richtungen aller Spannungen τ in Punkten a einer Parallelen a_1a_2 zur Biegungsachse (Y-Achse) in einem Punkte O der Z-Achse, durch den also auch die Tangenten in a_1 und a_2 gehen müssen.

Die wagerechten Schubspannungen beiderseits der Z-Achse heben sich gegenseitig auf und die senkrechten halten der Querkraft Q das Gleichgewicht. Bei Querschnittsformen, welche seitlich durch Parallelen zur Z-Achse begrenzt sind, liegt der Schnittpunkt Oin unendlicher Ferne und alle Schubspannungen τ sind senkrecht (\parallel der Z-Achse), τ_z' ist durchweg gleich Null. Bei sprungweiser Änderung der Querschnittsbreite, wie sie der τ -Querschnitt aufweist, hat (Fig. 144) die Schubspannung τ in den wagerechten Begrenzungslinien ac und bd wagerechte Richtung, die senkrechten Seitenspannungen τ_y' sind hier also gleich Null, während sie nach Gl. 4

in der in der gleichen Geraden liegenden Strecke cd von Null wesentlich verschiedene Werte aufweisen. Da sie bei allmählicher Aufwärtsverschiebung der Linie ab nur stetig anwachsen, so können

sie auch in einer der abunendlich nahen Linie a_1b_1 nicht gleichmäßig verteilt, müssen vielmehr auf der Strecke c_1d_1 noch erheblich größer sein. Die auf der Annahme gleichmäßiger Verteilung der Schubspannungen in wagerechten Geraden beruhende Gleichung 4 verliert also im Flansch eines \mathbf{I} -Trägers und ähnlichen Gliedern profilierter auf Biegung be-

anspruchter Stäbe ihre Gültigkeit. Wie wir sogleich an einem Beispiele nachweisen werden, ist indes die Anteilnahme des Flansches an der Leistung des Schubwiderstandes T, bezw. an der Übertragung der Querkraft Q nur ein äufserst geringer, so dafs es sich nicht lohnt, der Verteilung der Schubspannungen in derartigen Gliedern weiter nachzugehen. — Wie oben erwähnt, muß die Summe aller senkrechten Schubspannkräfte mit der Querkraft Q im Gleichgewicht. stehen.

Auf ein Höhenteilchen dz des Querschnittes kommt nun die Schubkraft $\tau_y w dz$, und es muß daher die gesamte Querkraft

$$\int_{z=-e''}^{z=e'} \tau_y w \, dz \qquad \text{sein.}$$

Trägt man die nach Gl. 4 für verschiedene Abstände z berechneten $\tau_y w$ rechtwinklig zur Trägerhöhe auf, so erhält man ein Schaubild für die Verteilung der Querkraft über die Höhe des Balkenquerschnittes und es ist der Inhalt der umschlossenen Fläche

$$\int \tau_y \cdot w \cdot dz = Q.$$

Bei rechteckigem Querschnitt (Fig. 145) ist die Darstellung von

$$\tau_y w = \frac{3}{2} \frac{Q}{\hbar} \left(1 - \frac{z^2}{e} \right)$$

IVi. Beziehung zwischen Querkraft und Schubspannungen u.s.u. 185

eine Parabel mit wagerechter Achse und der Pfeilhöhe $3/2 \frac{Q}{h}$. Der Flächeninhalt der Parabel ergibt, wie es sein mußs, $2/3 h \cdot 3/2 \frac{Q}{h} = Q$.

Die Darstellung der Schubspannung τ_y selbst ist wiederum eine Parabel, jedoch von der Pfeilhöhe $\frac{3}{2}\frac{Q}{F}$. Die Schubspannung ist daher in der Mitte der Höhe 1¹/₂ mal so groß,

als wenn Q sich gleichmäßig über den Querschnitt F verteilte. Bei einem \mathbf{I} -Querschnitt (Fig. 144) wirkt in einem Flächenteilchen $aF = b_1 dz$ des Steges ein senkrechter Schubwiderstand 8) $dT = \tau_y \cdot b_1 dz = Q \cdot \frac{S_z}{J} \cdot dz.$

Bei den aus der Figur ersichtlichen Bezeichnungen ist

9)
$$S_z = b \cdot \left(\frac{h^2 - h_1^2}{8}\right) + b_1 \cdot \frac{h_1^2 - 4z^2}{8}.$$

Durch Einsetzung dieses Wertes für S_z in Gl. 8 und Integration zwischen den Grenzen $\frac{h_1}{2}$ und $\frac{-h_1}{2}$ erhält man den auf den Steg entfallenden Anteil des Schubwiderstandes

10)
$$T_s = \frac{Q}{8J} \left\{ b \cdot (h^2 - h_1^2) h_1^2 + \frac{2}{3} b_1 h_1^3 \right\}$$

Mit b = 12 cm, $b_1 = 1,2$ cm, h = 30 cm und $h_1 \Rightarrow 26$ cm wir J = 11182 cm⁴ und daher nach Gl. 10

$$T_s = \frac{Q}{8 \cdot 11182} \left\{ 12 \left(30^2 - 26^2 \right) \cdot 26 + \frac{2}{3} \cdot 1.2 \cdot 26^3 \right\} = 0.94 Q.$$

Nur der Rest des Schubwiderstandes von 0,06~Q ist also von den Flanschen zu leisten.

Nach Gl. 4 u. 9 ist die Schubspannung im Abstande z von der Biegungsachse.

11)
$$\tau_y = \frac{S_z}{J} \cdot \frac{Q}{w} = \frac{Q}{8Jb_1} \left\{ b(h^2 - h_1^2) + b_1(h_1^2 - 4z^2) \right\}.$$

Sie steht also auch hier in parabolischer Abhängigkeit von z.

Für
$$z = 0$$
 wird $\tau_0 = 0.0325 \cdot Q$ und

$$z = \frac{n_1}{2} \quad z = 0,025 \cdot Q.$$

Die die Verteilung der Schubspannung im Steg darstellende Fläche efghi (Fig. 144) besteht aus dem Rechteck efgi und der

Parabel ghi und der vom Steg geleisteten Schubwiderstand ist gleich der Fläche efghi, multipliziert mit der Stegdecke b_1

$$T_s = 26 \cdot \left(0,025 + \frac{2}{3} \cdot 0,0075\right) \cdot 1,2 = \text{rot } 0,94 \ Q \text{ (wie oben).}$$

Wie für obiges Beispiel ziffermäßig nachgewiesen, so findet auch bei allen ähnlich gebildeten Stabquerschnitten, bei welchen in gewisser Entfernung von der Biegungsachse angehäufte Stoffmengen (Gurtungen) durch einen verhältnismäßig dünnen Steg miteinander verbunden werden, die Übertragung der Querkraft in der Hauptsache durch den Steg statt. Setzt man an Stelle des durch Gl. 4, bezw. die Fläche efghi ausgedrückten Verteilungsgesetzes eine gleichmäßige Verteilung der Schubkraft über den Steg voraus, so ergibt sich die entsprechende mittlere Schubspannung zu

$$\mathbf{r}_m = \frac{Q}{h_1 \cdot b_1},$$

aus welcher Gleichung, wenn τ_m als zulässige Schubspannung gegeben ist, die erforderliche Stegdicke b_1 sich bestimmen läfst.

Für obiges Beispiel wird

100

$$\tau_m = \frac{Q}{26 \cdot 1, 2} = 0,032 \ Q,$$

also ziemlich genau so groß, als die durch genaue Rechnung ermittelte größste Schubspannung τ_0 .

Anwendungen.

Beispiel I. Ein hölzerner Balken von der Höhe h = 20 cm, der Breite d = 12 cm und der freien Länge l = 400 cm kann bei einer zulässigen Randspannung $\sigma = 100 \text{ at}$ in seiner Mitte eine Last von 800 kg tragen. Die Querkraft ist dann für die beiden Balkenhälften in jedem Querschnitt linksseits + 400 kg und rechtsseits - 400 kg (vergl. Fig. 80). Die Schubspannung in der wagerechten Mittelebene (neutralen Schicht) ist daher nach Gl. 7

$$\tau_0 = \frac{3}{2} \cdot \frac{Q}{F} = \frac{3}{2} \cdot \frac{400}{12 \cdot 20} = 2,$$
^{s at}.

Wäre der Balken nur $l = 100 \,\mathrm{cm}$ lang, so könnte er bei gleicher Randspannung $\sigma = 100 \,\mathrm{at}$ eine Einzellast von $4 \cdot 800 = 3200 \,\mathrm{kg}$ tragen, hätte eine durchweg gleiche Querkraft $Q = 1600 \,\mathrm{kg}$ aufzunehmen und eine Schubspannung $\tau_0 = 4 \cdot 2, 5 = 10 \,\mathrm{at}$ auszuhalten.

Die Schubspannungen sind also bei verhältnismäßig längern und daher schwächer belasteten Balken weniger erheblich, als bei kürzern stärker belasteten Balken gleichen Querschnittes.

IVi. Beziehung zwischen Querkraft und Schubspannungen u. s. w. 187

Bei doppelter Höhe des 100 cm langen Baikens h=40 cm würde seine Tragfähigkeit bei gleicher Randspannung σ das Vierfache d. i. $4 \cdot 3200 = 12800$ kg, die Querkraft 6400 kg und die Schubspannung $\tau_0 = 4 \cdot 10 = 40$ at betragen. Eine solche Schubspannung vermag selbst das widerstandsfähigste Holz nicht aufzunehmen und es würde bei der bezeichneten Belastung mit Sicherheit Zerstörung durch Abscheerung eintreten.

Beispiel 2. Legt man zwei Balken von 400 cm Länge, 12 cm Breite und 20 cm Höhe ohne Verbindung aufeinander, so kann bei $\sigma = 100 \text{ at}$ jeder von ihnen eine Last von 800 kg, beide zusammen können also $2 \cdot 800 = 1600 \text{ kg}$ in der Mitte tragen, während in der Mittelebene jedes der Balken eine Schubspannung $\tau_0 = 2^{1/2} \text{ at}$ herrscht.

Stellt man eine solche Verbindung beider Balken her, dafs sie in ihrer Berührungsebene unverschiebbar gegen einander werden, was durch eine "Verzahnung" oder "Verdübelung" (Fig. 46) zu erreichen ist ("verzahnter" oder

"verdübelter" Balken), so wirken beide Balken zusammen wie ein einziger. Sie vermögen jetzt in ihrer Mitte eine Einzellast von $P = \frac{12 \cdot 100 \cdot 40^2}{6 \cdot 400} \cdot 4 = 3200 \text{ kg}$ zu trägen. Die Schubspannung in ihrer Berührungsebene beträgt

10

$$\tau_0 = \frac{3}{2} \cdot \frac{Q}{F} = \frac{3}{2} \cdot \frac{1600}{12 \cdot 2 \cdot 20} = 5 \text{ at}$$

und der Schubwiderstand für 1 cm Länge des Balken $\tau_0 \cdot 12 = 5 \cdot 12 = 60 \text{ kg}$. Die Kraft, mit welcher die Berührungsflächen der Zähne oder Dübel gegeneinander geprefst werden, berechnet sich, wenn t ihre Entfernung ist, zu $t \cdot \tau_0 \cdot d = t \cdot 5 \cdot 12 = 60 t$ und daraus, wenn s die Tiefe der Nuten bezw. Zähne ist, die entstehende Druckspannung $\sigma = \frac{t \cdot \tau_0 \cdot d}{d \cdot s} = \frac{t \cdot \tau_0}{s}$. Für t = 20 cm und s = 3 cm wird $\sigma = \frac{20 \cdot 5}{3} = 33, s^{\text{at}}$.

Beispiel 3: Vernietung eines Blechbalkens. Damit der nach Maßgabe des Querschnittes Fig. 23 S. 20 aus einzeln prismatischen Stäben zusammengesetzte Blechbalken (vergl. Beispiel 9 S. 110) in der Tat wie ein Balken wirke, müssen die einzelnen Teile gegenseitig völlig unverschiebbar miteinander verbunden sein. Die die Verbindung herstellenden Niete haben dabei

den erforderlichen Schubwiderstand zu leisten. Insbesondere kommen hierbei die die Verbindung der in Fig. 147 sehraffierten sog. Gurtung mit dem nicht schraffierten Stege herstellenden wagerechten Niete a in Betracht. Der für diese Verbindung erforderliche Schubwiderstand ist nach Gl. 4 S. 181 f. d.

Längeneinheit gleich $\frac{Q \cdot S_1}{J}$, wenn S_1 das statische Moment des Gurtquerschnittes allein, J das Trägheitsmoment des ganzes Querschnittes und Q die an betreffender Stelle

herrschende Querkraft bezeichnet. Ist t die Entfernung zweier Niete (die sogen. Nietteilung) (Fig. 147), so ist der von einem Niet zu leistende Schubwiderstand gleich $t \cdot Q \cdot S_1$. Die Niete sind "zweischerig" und können, wenn d ihr Durchmesser, τ_m die zulässige

durchschnittliche Scherspannung des Nietquerschnittes ist, einen Schubwiderstand $\frac{2 \cdot \pi \cdot d^2 \cdot \tau_m}{d} = \frac{\pi \cdot d^2 \cdot \tau_m}{2}$ leisten. Es mufs daher die Gleichung bestehen

$$\frac{t \cdot Q \cdot S_1}{J} = \frac{\pi \cdot d^2 \cdot \tau_m}{2} \text{ und daraus } t = \frac{\pi \cdot d^2 \cdot \tau_m \cdot J}{2 Q \cdot S_*}.$$

Der Balken Beispiel 9 S. 110 hat unmittelbar neben dem Auflager eine Querkraft $Q = \frac{ql}{2} = 25\,000$ kg aufzunehmen. Sein Querschnitt besteht hier nur aus dem 1 cm starken Steg und den 4-Stück $8 \times 8 \times 1$ cm⁴ starken Gurtungswinkeln (Fig. 147). Es ist nach S. 111 $J = J_0 = 91167$ cm⁴ und nach der Figur $S_1 = 39.5 \cdot 2 \cdot 8 + 34.5 \cdot 2 \cdot 7 = 1115$. Mit d = 2 cm und $\tau_m = 0.8 \cdot \sigma = 800$ at wird $t = \frac{3.14 \cdot 2^2 \cdot 800 \cdot 91167}{2 \cdot 25000 \cdot 1115} = 16.8$ cm.

Im Abstande 2,74 m von der Endstütze ist

$$Q = \frac{ql}{2} - 2,74 \cdot q = 2,26 \cdot 5000 = 11300 \text{ kg},$$

$$S_1 = 39,5 \cdot 2 (8 - 2) + 3,3 (20 - 4) \cdot 41,65 = 3160 \text{ cm}^3,$$

$$J = W \cdot l = 6250 \cdot 43,3 = 270000 \text{ cm}^4,$$

$$B_{142} \cdot 2^2, 800 \cdot 270000$$

mithin

$$t = \frac{1}{2 \cdot 11300 \cdot 3160} = 38 \,\mathrm{cm},$$

glich durch die Leistung des erforderlichen S

Diese lediglich durch die Leistung des erforderlichen Schubwiderstandes bedingte Nietentfernung wird aus praktischen Rücksichten zur Erzielung des notwendigen dichten Zusammenschlusses der verbundenen Teile erheblich kleiner, vielleicht auf etwa 15 cm herabzumindern sein.

IVk. Normalspannungen an wagerechten Schnitten.

Derselbe Balken kann bei der in Beispiel 9 S- 110 angenommenen Randspannung von $\sigma = 1000 \, \text{at}$ beiderseits im Abstande $100 \, \text{cm}$ von den Stützen (vergl. Fig. 148) je eine Einzellast

$$P = \frac{6250 \cdot 1000}{100} = 62500 \, \text{kg} \quad \text{tragen.}$$

Dabei weist die Querkraft Q zwischen Stütze und Kraftangriff den konstanten Wert P = 62500 kg und zwischen den Lasten den Wert Null auf. Das Biegungsmoment wächst beiderseits von den Stützen bis zum Lastangriff geradlinig von Null auf $62500 \cdot 100 = 6250000$ cm/kg an. In der Nähe der

Stütze genügt der Querschnitt ohne Kopfplatte, nur aus Steg und Winkeleisen bestehend. Bis zur Stelle des Lastangriffs mufs stufenweise eine Verstärkung mit drei Lamellen bis zusammen 3,3 cm Stärke erfolgen, die zwischen den Lasten unverändert bleiben kann. (Vergl. die Momentenfläche Fig. 148.)

Danach erfordert die Leistung des erforderlichen Schubwiderstandes in der Nähe der

Stützen, so weit der Querschnitt nur aus Steg und Winkeleisen besteht, mit d = 2 cm und $\tau_m = 800$ at, eine Nietentfernung

$$t = \frac{\pi \cdot d^{2} \cdot \tau_{m} J}{2 \cdot Q \cdot S_{1}} = \frac{3_{1} \cdot 4 \cdot 2^{2} \cdot 800 \cdot 91167}{2 \cdot 62500 \cdot 1115} = 6_{5} \text{ cm}$$

und in der Nähe des Lastangriffes zwischen diesen und den Stützen, wo der Querschnitt seine volle Ausbildung erhalten muß

$$t = \frac{3_{,14} \cdot 2^2 \cdot 800 \cdot 270\,000}{2 \cdot 62\,500 \cdot 3160} \stackrel{\circ}{=} 6_{,85} \,\mathrm{cm}.$$

Zwischen den beiden Lasten, wo die Querkraft Q = 0 und sich danach eine Nietteilung $t = \infty$ ergeben würde, ist diese nach praktischen Gesichtspunkten zu wählen. Wird die für den Teil des Balkens zwischen Stütze und Last errechnete Entfernung von 6,5 cm bezw. 6,55 cm aus praktischen Gründen für zu gering gehalten, so müssen stärkere Niete verwandt werden. Mit d = 2,5 cm würde sich t zu rund 10 cm berechnen.

k) Normalspannungen an wagerechten Schnitten eines durch senkrechte Belastung auf Biegung beanspruchten Stabes.

Je nach der Art, in welcher die Belastung in den belasteten Balken übergeht, finden auch in wagerechten Schnitten 'desselben Normalspannungen σ_z statt. Ruht die Last beispielsweise auf der

189

oberen Begrenzungsfläche des Balkens (Fig. 149, a), so erzeugt sie, wie leicht ersichtlich, Druckspannungen, hängt sie an der Unterfläche (Fig. 149, b), so ergeben sich Zugspannungen, wird sie endlich in einer gewissen Verteilung zwischen Oberund Unterkante, etwa seitlich in den Balken, übergeführt (Fig. 149, c), so hängt die in wagerechten Schnitten entstehende Spannung o, von dieser Verteilung ab.

Wir setzen zunächst eine beliebige Verteilung der Last q f. d. Längeneinheit über die Trägerhöhe voraus. Wird nun von dem Längenteilchen (dx) des Trägers mit der Last $q \cdot dx$ durch einen

wagerechten Schnitt wieder ein Stück von der Höhe e' - z abgeschnitten (Fig. 150), so möge auf dieses ein Teil $q_z dx$ der Gesamtlast q dx. Nur die senkrechten Kräfte an entfallen. diesem Stücke sollen jetzt betrachtet werden. An dem linken Querschnitte wirkt derjenige Teil Q. der gesamten Querkraft Q, welcher dem Höhenteile e' - z entspricht; an dem rechten Querschnitte wirkt demnach $Q_z + \frac{\partial Q_z}{\partial x} dx$; an

Fig. 150. g_dx

dem wagerechten Schnitte tritt die Kraft ozwdx auf. Das Gleichgewicht verlangt

$$\sigma_z w = q_z + \frac{\partial^2 Q_z}{\partial x}.$$

 $Q_z = \int_{\tau_y w}^{e'} dz, \quad \tau_y w = \frac{Q}{J} S_z,$ Nun ist aber also $Q_z = \frac{Q}{J} \int_{-\infty}^{\infty} dz$ und $\int_{-\infty}^{\infty} dz = Q_z \frac{J}{Q}$. $\frac{\partial Q_z}{\partial x} = \frac{\partial Q}{\partial x} \frac{1}{J} \int_{-\infty}^{\infty} S_z dz = -q \frac{Q_z}{Q}$

(wegen Gl. 2, S. 178, und unter Annahme gleich bleibenden Querschnitts). Daher wird

$$\sigma_z w = q_z - q \frac{Q_z}{Q}.$$

1)

IVk. Normalspannungen an wagerechten Schnitten.

Das Verhältnis Q_{z_i} : Q ist aus der Darstellung der Werte $\tau_y w$ (Fig. 150) zu erkennen.

Läge etwa die ganze Last q auf dem Träger, so wäre $q_{\epsilon} = 0$, und man erhielte

$$\sigma_z w = -q \frac{Q_z}{Q};$$

in diesem Falle ist σ_z durchweg Druckspannung, die Längsfasern werden durch die Last aufeinander geprefst. An der Oberkante ist $Q_z = Q$, mithin $\sigma_z w = -q$ (unmittelbarer Einfluß der Last q). Nach unten hin nimmt der Druck allmählich bis auf Null ab.

Hinge dagegen die Last q unten an dem Träger, so wäre $q_z = q$, und man erhielte

$$\sigma_z w = q \left(1 - \frac{Q_z}{Q} \right);$$

es ist nun σ_z eine Zugspannung, die an der Oberkante Null ist und nach unten allmählich bis auf q/w zunimmt.

Eine bestimmte Verteilung der Last über die Höhe gibt es, für welche σ_z durchweg gleich Null ist. Die Bedingung dafür würde nach Gl. 1 sein:

2)

$$\frac{q_z}{q} = \frac{Q_z}{Q};$$

d. h. die Normalspannung σ_z an wagerechten Schnitten verschwindet, wenn die Last sich nach demselben Gesetze über die Trägerhöhe verteilt wie die Querkraft $Q.^*$)

In der Anwendung wird man von den hier abgeleiteten Regeln zur Berechnung der Spannungen σ_z nur selten Gebrauch machen. Man erkennt aus ihnen aber das Wesen dieser durch den unmittelbaren Lastangriff erzeugten Spannung und kommt damit in die Lage, die Größe derselben durch geeignete Anordnung auf ein solches Maß zurückzuführen, daß eine rechnerische Würdigung nicht mehr erforderlich ist.

Bei dünnwandigen hohen Trägern wird nun Q nabezu allein und ziemlich gleichmäßig von der Mittelwand aufgenommen; will man die etwa oben liegende Last nun auch ziemlich gleichmäßig

191

^{*)} Vgl. A. Hänel, Die inneren Kräfte rechtwinklig belasteter Balken und die Berechnung eiserner I-Balken; Zeitschrift des Arch.- und Ing.-Vereins f. d. Königreich Hannover 1861, S. 138.

über die Höhe der Wand übertragen, so muß man diese mit senkrechten Rippen versehen, welche die Lasten oben aufnehmen und allmählich an die Trägerwand abgeben. Besondere Bedeutung gewinnt diese Anordnung, wenn es sich um den Angriff konzentrierter Lasten oder Kräfte handelt, wie beispielsweise auch der Stützkräfte eines beliebig belasteten Trägers.

1) Hauptspannungen und Anstrengungen in irgend einem Pnnkte eines gebogenen Stabes.

Nachdem unter IIIa, IVa, h, i und k die Regeln zur Ermittelung der an beliebiger Stelle eines auf Biegung beanspruchten Stabes in einem senkrecht zur Stabachse gerichteten oder wagerechten Schnitte auftretenden Normal- und Schubspannungen abgeleitet sind, liegt die Frage nahe, ob nicht in irgend einem gegen die Wagerechte geneigten Schnitte noch größere als die in jenen Regeln ermittelten Spannungen auftreten können. Um diese Frage für die für die Anwendung wichtigen Querschnittsformen zu beantworten, denken wir uns aus dem gebogenen Balken an beliebiger Stelle ein unendlich kleines rechtwinklig dreiseitiges Prisma so herausgeschnitten, daß die Katheten- und Hypothenusenrechtecke abed, acfd und bcfe(Fig. 151) senkrecht zur Kraftebene des Balkens und erstere Flächen aufserdem senkrecht bezw. parallel zur Stabachse gerichtet sind.

In diesen rechteckigen Flächen wirken dann parallel zur Kraftebene die aus der Fig. 151 ersichtlichen Spannungen und die ihnen entsprechenden Spannkräfte müssen sich das Gleichgewicht halten.

Bei der den bisherigen Betrachtungen zu Grunde liegenden Angriffsart

der äufseren Kräfte in einer senkrechten Symmetrieebene des Stabes und bei den für die Anwendung in Frage kommenden meist aus Rechtecken zusammengesetzten Balkenquerschnitten können etwaige Normal- oder Schubspannungen in den lotrechten Schnittflächen abcund def, sowie überhaupt Spannungen senkrecht zur Kraftebene praktisch nur von geringem Belang sein und daher aufser Acht bleiben.

IVI. Hauptspannungen und Anstrengungen.

Auch das Eigengewicht des Prismas ist als unendlich klein höherer Ordnung auf das Gleichgewicht desselben ohne Einflufs. Ist der Inhalt der Hypotenusenfläche dF, so ist derjenige der wagerechten Kathetenfläche $dF \cdot \cos \alpha$ und der der lotrechten $dF \sin \alpha$. Die in letzteren wirkenden Spannungen σ_x , σ_z und τ_y können als nach den bisherigen Betrachtungen bekannt angesehen werden. Die in der Hypotenusenfläche wirkende unbekannte Spannung p ist im allgemeinen schiefwinklig gegen diese Fläche gerichtet. Denken wir sie uns zerlegt in eine Normalspannung o und in eine Tangentialoder Schubspannung τ , so drücken sich die miteinander im Gleichgewicht stehenden Spannkräfte in den drei Schnittflächen wie folgt aus:

1. in der wagerechten Fläche $\sigma_z \cdot d F \cdot \cos \alpha$ und $\tau_y \cdot d F \cdot \cos \alpha$, 2. " " lotrechten $\sigma_x \cdot dF \cdot \sin \alpha$ und $\tau_y \cdot dF \cdot \sin \alpha$, ..

..

 $\sigma \cdot dF$ und $\tau \cdot dF$.

3. " " geneigten

Wie die unter 1 bis 3 genannten

Spannkräfte, so stehen auch die ihnen verhältnisgleichen Kräfte miteinander im Gleichgewicht, die entstehen, wenn man jede der ersteren durch dF teilt. So gelangen wir zu den aus Fig. 152 ersichtlichen Kräften. Zerlegen wir jetzt die in den lot- und wagerechten Flächen ab und ac wirkenden Kräfte in Seitenkräfte parallel den Richtungen

von σ und τ und setzen die Summen beider je gleich Null, so ergeben sich die Gleichungen

1) 2)

$$\sigma = \sigma_x \cdot \sin^2 \alpha + \sigma_z \cdot \cos^2 \alpha + 2 \tau_y \sin \alpha \cdot \cos \alpha,$$

 ${}^{\bullet}\tau = (\sigma_x - \sigma_x)\sin\alpha \cdot \cos\alpha + \tau_y \cdot (\cos^2\alpha - \sin^2\alpha).$

Die Spannungen σ_x , σ_z , τ_y , σ und τ haben wir uns wegen der Unendlichkleinheit des Prismas in einem Punkte wirkend zu denken. In beiden Gleichungen erscheinen die Spannungen σ und τ als Funktionen von dem Neigungswinkel a der beliebig geneigten Schnittebene bc. Beide Spannungen nehmen für bestimmte Werte von a ihre Größt- und Kleinstwerte an. Wir wollen hier nur diejenigen für σ untersuchen. Durch Differenziation der Gl. 1 und unter Beachtung der Gl. 2 gelangt man zu der Beziehung

3)
$$\frac{d \sigma}{d \alpha} = 2 \sin \alpha \cdot \cos \alpha \left(\sigma_x - \sigma_z \right) + 2 \left(\cos^2 \alpha - \sin^2 \alpha \right) \tau_y = 2 \tau.$$
Keck, Elastizitătelere.

Keck, Elastizitätslehre.

193

Mit $\frac{d\sigma}{d\alpha}$ wird also auch τ gleich Null. Wir erkennen daraus, daßs für denselben Winkel α , für welchen σ seinen Größt- und Kleinstwert annimmt, τ verschwindet. Jene Größt- und Kleinstwerte von σ nennen wir die an der Schnittstelle α herrschenden Hauptspannungen und bezeichnen sie mit σ_1 und σ_2 . Durch Nullsetzung von $\frac{d\sigma}{d\alpha}$ ergibt sich für den Winkel α

4)
$$\operatorname{tg} 2 \alpha = \frac{-2 \tau_y}{\sigma_x - \sigma_z}$$
. (Vergl. die Gl. 1 u. 5 S. 32 u. 33.)

Unter Benutzung der Gl. 4 erhalten wir nach den Regeln der Goniometrie aus Gleichung 1

5)
$$\sigma_1 = \frac{\sigma_x + \sigma_z}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_z}{2}\right)^2 + \tau_y^2}$$
. (Vergl. Gl. 7 S. 34.)

Der Gl. 4 entsprechen zwei Winkel 2α , welche um 180° , bezw. zwei Winkel α , welche um 90° voneinander verschieden sind. Dem einen entspricht die Hauptspannung σ_1 , dem andern diejenige σ_2 , beide Hauptspannungen treten also in zueinander senkrechten Schnittflächen auf. Nach S. 62 ergeben sich daher die entsprechenden Materialanstrengungen zu

$$\begin{cases} s_1 = \sigma_1 - \frac{\sigma_2}{m} = \frac{\sigma_x + \sigma_z}{2} \frac{(m-1)}{m} + \frac{m+1}{m} \cdot \sqrt{\left(\frac{\sigma_x - \sigma_z}{2}\right)^2 + \tau_y^2}, \\ s_2 = \sigma_2 - \frac{\sigma_1}{m} = \frac{\sigma_x + \sigma_z}{2} \frac{(m-1)}{m} - \frac{m+1}{m} \cdot \sqrt{\left(\frac{\sigma_x - \sigma_z}{2}\right)^2 + \tau_y^2}. \end{cases}$$

In dem meist vorliegenden Falle $\sigma_z = 0$ wird nach Gl. 4

4a)
$$tg 2 \alpha = \frac{-2\tau_y}{\sigma_x}$$
 und nach Gl. 5

5a)
$$\sigma_1 = \frac{\sigma_x}{2} \pm \sqrt{\left(\frac{\sigma_x}{2}\right)^2 + \tau_y^2}$$
 und mit $m = 4$

6a)
$$s_{\frac{1}{2}} = \frac{3}{8} \cdot \sigma_x \pm \frac{5}{4} \cdot \left[\sqrt{\left(\frac{\sigma_x}{2}\right)^2 + \tau_y^2} \right]$$

Aus Gl. 5a ergibt sich, dafs, wenn $\sigma_x \ge 0$, stets auch $\sigma_1 \ge 0$, also positiv, aber $\sigma_2 \le 0$ also negativ ist.

IVI. Hauptspannungen und Anstrengungen.

In der nentralen Schicht ist $\sigma_x = 0$, und nach Gl. 4a tg $2\alpha = \infty$. $2\alpha = \pm 90^{\circ}, \alpha = \pm 45^{\circ}$. Im größten Abstande e_1 bezw. e_2 von derselben ist nach Gl. 4 S. 181 $\tau = 0$, also $2\alpha = 0$ oder 180° und $\alpha = 0$ oder 90°. Die Richtungen der Hauptspannungen schneiden beide die neutrale Schicht unter 45°, die Faserrichtung im größten Abstande e_1 und e_2 von derselben aber unter 90° bezw. 0°.

Denkt man sich einen Punkt von der neutralen Schicht aus nach beiden Seiten einmal stets in der allmählich wechselnden

Richtung der einen Hauptspannung, sodann in derjenigen der andern bis zur

Aufsenkante des Balkens fortschreitend, so beschreibt er zwei Scharen krummer Linien, die sog. "Spannungstrajektorien" (Fig. 153), welche sich unter 90° schneiden.

Verfolgt man nach Gl. 2 die Richtungen der gröfsten und kleinsten Schubspannungen, so gelangt man zu den Trajektorien der Schubspannungen.

Es mag hier-kurz darauf hingewiesen werden, daß im Bau mancher tierischer Knochen (Schenkel-, Fersenknochen u. s. w.), deren Dienstleistung im Organismus eine Inanspruchnahme auf Biegung mit sich bringt, eine Stoffanlagerung nach ähnlichen Linien stattfindet.*)

Denken wir uns das rechtwinklig dreiseitige Prisma (Fig. 151 u. 152) jetzt so aus dem Stabe herausgeschnitten, daß die Kathetenseiten in die

Richtung der Hauptspannungen σ_1 und σ_2 fallen, so bleiben nur die aus Fig. 154 ersichtlichen Kräfte am Prisma wirksam. Die zur bcim allgemeinen schiefwinklige Spannung p ist gleich der umgekehrten Mittelkraft von $\sigma_1 \sin \alpha$ und $\sigma_2 \cos \alpha$. Bezogen auf ein in der Richtung ab und ac gedachtes Achsenkreuz XZ erscheinen $\sigma_1 \sin \alpha = x$ und $\sigma_2 \cos \alpha = z$ als Koordinaten des Endpunktes der

die Spannung p darstellenden Strecke und man hat

Fig. 154.

$$\sin \alpha = \frac{\alpha}{\sigma_1}$$
 und $\cos \alpha = \frac{\alpha}{\sigma_2}$

*) Auf diese interessante Tatsache hat der Anatom H. v. Meyer in Zürich zuerst hingewiesen, während dem um die Entwicklung der Statik hochverdienten Prof. Culmann daselbst die statische Würdigung derselben zu verdanken ist

Die Quadratur und Addition beider Gleichungen liefert

$$\frac{x^2}{\sigma_1^2} + \frac{z^2}{\sigma_2} = 1$$
 die Gleichung einer Ellipse

mit den Halbachsen σ_1 und σ_2 , welche man die "Spannungsellipse" nennt. Die Spannung p in beliebig gerichteter Schnittebene erscheint als Fahrstrahl (Radiusvektor) der Spannungsellipse. Die Richtung von p für einen gegebenen Neigungswinkel α der Schnittebene erhalten wir durch die Gleichung

$$\operatorname{tg} \varphi = \frac{\sigma_2 \cos \alpha}{\sigma_1 \sin \alpha} = \frac{\sigma_2}{\sigma_1} \operatorname{cotg} \alpha.$$

Mit den Hauptspannungen σ_1 und σ_2 ist danach auch die Spannungsellipse bekannt und man kann mit Hülfe derselben die Spannungsverhältnisse in beliebig gerichteter Schnittebene beurteilen.

Für alle Punkte der neutralen Schicht ist $\sigma_v = 0$ also $\sigma_1 = \sigma_2 = \tau$, die Spannungsellipse also ein Kreis. Für Punkte in den Außenkanten ist $\tau = 0$ also $\sigma_1 = \sigma_x$ und $\sigma_2 = 0$; die Spannungsellipse schrumpft zu einer Geraden zusammen.

Wirkt auf den Stab nur eine Querkraft und kein Moment, welcher Fall z. B. bei Nietverbindungen annähernd vorliegt, wenn die Nieten im Vergleich zu ihrem Durchmesser eine gewisse Länge nicht überschreiten, so wird $\sigma_x = 0$, $\sigma_1 = \sigma_2 = \tau$, $s_1 = s_2 = \pm \frac{5}{4}\tau$ und unter Beachtung der Gl. 4 S. 181 bei kreisförmigem Querschnitt mit $J = \frac{\pi}{4} \cdot r^4$ und $S_1 = \frac{2}{3} \cdot r^3$ in Bezug auf die zur Querkraft senkrechte Mittellinie

$$s_{\frac{1}{2}} = s = \pm \frac{5}{4} \tau_0 = \pm \frac{5}{4} \cdot \frac{Q \cdot S}{w \cdot J} = \pm \frac{5}{4} \cdot \frac{Q}{2r} \cdot \frac{2}{3} \frac{r^3 \cdot 4}{\pi \cdot r^4} = \pm \frac{5}{3} \frac{Q}{F},$$

wenn F den Inhalt der Querschnittsfläche bezeichnet.

Die im Querschnitte herrschende durchschnittliche Schubspannung ist $\tau_m = \frac{Q}{F}$ (vergl. S. 69). Zwischen der größten Stoffanstrengung *s* und der mittleren Schubspannung τ_m besteht daher die Beziehung $\tau_m = 0.6 \cdot s$. Ist *s* danach die zulässige Anstrengung, bezw. die zulässige Normalspannung, so ist die zulässige mittlere Schubspannung bei kreisförmigem Querschnitt eines auf reine Abscheerung beanspruchten Stabes gleich $0.6 \cdot s$.

Bei Nietverbindungen nimmt man indes in Übereinstimmung mit der vorliegenden Erfahrung und insbesondere mit ausgeführten Versuchen $\tau_m = 0.8 \sigma$ bezw. 0.80 s an, wobei der zwischen den zusammengenieteten Teilen entstehende Reibungswiderstand immerhin in gewissem Grade mit in Betracht kommt (vergl. S. 75).

Anwendungen.

Beispiel 1: Der auf drei gleich hohen Stützen ruhende \mathbf{I} -Balken Beispiel 1 S. 149 hat bei der dort angenommenen Belastung unmittelbar neben der Mittelstütze eine Querkraft Q = 6250 kg aufzunehmen. Dabei entsteht in der neutralen Schicht und senkrecht zu derselben eine Scheerspannung

$$\tau_0 = \frac{Q \cdot S}{b_1 \cdot J} = \frac{6250 \cdot \left(2 \cdot 14 \cdot 14 + 13^2 \cdot \frac{1}{2}\right)}{1, 0 \cdot 12\,500} = 238 \text{ at}$$

und im Anschlußs des Steges an den Flansch, d. i. im Abstande z = 13 cmin wagerechtem und lotrechtem Schnitt $\tau_1 = \frac{6250 \cdot 2 \cdot 14 \cdot 14}{1,0 \cdot 12\,500} = 196 \text{ at}$. Die Normalspannung an dieser Stelle ist $\sigma_x = \frac{750 \cdot 13}{15} = 650 \text{ at}$ und nach Gl. 5 a die Hauptspannungen $\sigma_1 = \frac{650}{2} \pm \sqrt{\left(\frac{650}{2}\right)^2 + 196^2} = \frac{+700 \text{ at}}{-50 \text{ at}}$. Daraus ergibt sich die größte Materialanstrengung

$$s = 700 + \frac{50}{4} = 712,$$
^{b at};

also geringer als die Randspannung $\sigma = 750$ at.

Wird die Stützweite auf die Hälfte = 2,50 m verringert, so kann der Balken bei $\sigma = 750 \text{ st}$ f. d. Längeneinheit eine Last

$$p = \frac{W \cdot \sigma \cdot 8}{l^2} = \frac{833 \cdot 750 \cdot 8}{(250)^2} = 80 \text{ kg f. d. cm} = 8000 \text{ kg f. d. lfd. m tragen.}$$

Dabei ist die gröfste Querkraft $Q = \frac{5}{8} \cdot p \, l = \frac{5}{8} \cdot 8000 \cdot 2,5 = 12500 \, \text{kg}$, $\tau_0 = 476 \, \text{at}$, $\tau_1 = 392 \, \text{at}$ und die Hauptspannungen im Anschluß des Steges an den Flansch

$$\sigma_{\frac{1}{2}} = \frac{650}{2} \pm \sqrt{\left(\frac{650}{2}\right)^2 + 392^2} = \frac{+835 \text{ at}}{-185 \text{ at}}, \quad s = 881 \text{ at}.$$

Jetzt ist also die Anstrengung an dieser Stelle größer als die Randspannung $\sigma = 750$ at.

Beispiel 2: Der Blechbalken Beisp. 3 S. 187 u.f. erfährt bei einer Belastung mit zwei Einzellasten P = 62500 kg, welche beiderseits in Abständen gleich $1,0^{\text{m}}$ von den Stützen angreifen (Fig. 148), im Querschnitt des Lastangriffs eine Raudspannung $\sigma = 1000$ at und hat dort eine Querkraft Q = 62500 kg aufzunehmen. Unter der Wirkung der letzteren entsteht im Abstande gleich $34,5^{\text{cm}}$ von der Biegungsachse (vergl. Fig. 147) die Scheerspannung $\tau_1 = \frac{Q \cdot S_1}{b \cdot J}$. Hier geht die volle Normalkraft N der Gurtung in den Steg über, für S_1 ist also das statische Moment der Gurtung, S. 188 zu 3160 cm^3 berechnet, einzuführen. Mit b = 1 cm und $J = 270\,000 \text{ cm}^4$ wird $\tau_1 = \frac{62\,500 \cdot 3160}{1,0 \cdot 270\,000} = 730 \text{ at}$.

Die Normalspannung ist an der fraglichen Stelle $\sigma_x = \frac{34,5}{43,3} \cdot 1000 = 800$ at und daher die Hauptspannungen $\sigma_1 = \frac{800}{2} \pm \sqrt{\left(\frac{800}{2}\right)^2 + 730^3} = \frac{+1235}{435}$ Dem entspricht eine größte Anstrengung des Stoffes von

$$s = \sigma_1 + \frac{\sigma_2}{4} = 1235 + \frac{435}{4} = 1344$$
 at.

Dies ist also für die vorliegende Belastungsart erheblich größer als die Randspannung σ . Wird sie nach den vorliegenden Umständen nicht für zulässig gehalten, so muß der Steg stärker gewählt werden.

m) Biegungsspannungen in Stäben, deren Stoffe dem Hooke'schen Gesetz nicht folgen.

Die unter IIIa entwickelten Beziehungen zwischen den Biegungsspannungen und Biegungsmomenten stabförmiger Körper stützen sich auf das Hooke'sche Gesetz, die Verhältnisgleichheit zwischen den Normalspannungen in einem Stabquerschnitte und den mit ihnen eintretenden Dehnungen. Wie auf S. 53 ausgeführt, erfüllen gewisse Stoffe in ihrem elastischen Verhalten dieses Gesetz nicht, oder nur annähernd. Auch ist für diese ein anderes allgemein gültiges Gesetz der Abhängigkeit der Spannungen von den Dehnungen in analytischer Form nicht bekannt. Für die wichtigeren der in Frage kommenden Stoffe sind indes durch Versuche namentlich von C. Bach einander entsprechende Spannungs- und Dehnungswerte ermittelt worden, durch deren Benutzung die tatsächlich auch für diese Stoffe bestehende Abhängigkeit zwischen Spannungen und Dehnungen in Form der sog. Dehnungslinie (vergl. Fig. 49 S. 52) geometrisch dargestellt werden kann.

Von dem in solcher Form als bekannt angenommenen Dehnungsgesetz ausgehend, soll in folgendem zunächst eine

graphische Untersuchung der Biegungsspannungen in geraden Stäben

stattfinden. Wir machen dabei wieder die mit der Erfahrung nahezu übereinstimmende Annahme, dafs vor der Biegung ebene Stabquerschnitte auch nach eingetretener elastischer Krümmung des Stabes noch eben sind. Die Dehnungen ε in den einzelnen Querschnittspunkten sind dann verhältnisgleich den Abständen y der letzteren von der

IV m. Biegungssp. in Stäben, deren Stoff d. Hooke'schen Ges. nicht folgt. 199

Spannungsnullinie (Biegungsachse) und man kann diese durch jene und umgekehrt ausdrücken. Ist ε_0 die Dehnung im Abstande y=1von der Nullinie, so ist diejenige im Abstande $y \ \varepsilon = \varepsilon_0 \cdot y$ und mit ε_0 als Längeneinheit $\varepsilon = y$. Das Verteilungsgesetz der Normalspannungen σ über den Querschnitt eines gebogenen Stabes, das Anwachsen derselben mit dem Abstande y von der Nullinie läfst sich daher gleichfalls durch ein entsprechendes Stück der Dehnungslinie ausdrücken. Denkt man sich danach in jedem Querschnittspunkte die dort herrschende Spannung unter Berücksichtigung ihres Vorzeichens als Ordinate rechtwinklig zur Querschnittsebene aufgetragen, so er-Fig. 155.

füllen die posi-

tiven und negativen Spannungswerte je in ihrer Gesamtheit wieder einen sog. Spannungskeil (vgl. S. 81 u. 82), der aber jetzt nur auf einer Seite eben, auf der

 $M\left(\begin{array}{c|c} & \sigma_2 \\ \uparrow & \sigma dF \\ \hline & h \\ \hline & n \\ \hline & \sigma_1 \\ \hline & \sigma_1 \\ \hline & & \sigma_1 \\ \hline & & & \sigma_1 \\ \hline & & & & & \\ \end{array}\right)$

andern dagegen nach der Dehnungslinie gekrümmt ist (vgl. Fig. 155). Die Schneiden beider Keile treffen in der Nullinie zusammen und ihre Rauminhalte stellen die Summe aller im Querschnitt tätigen Zug- bezw. Druckspannkräfte dar. Beide müssen wegen der Nullgleichheit der Summe der wagerechten Kräfte einander entgegengesetzt gleich sein. Das führt zu der Gleichung

 $\int_{0}^{\epsilon_{1}} \overset{\sigma_{1}}{\sigma} dF = \int_{0}^{\epsilon_{2}} \overset{\sigma_{2}}{\sigma} dF \quad \text{oder} \quad \int_{-\epsilon_{2}}^{\epsilon_{1}} \overset{\sigma_{1}}{\sigma} dF = 0 \quad (\text{vergl. Gl. 1 S. 83}). \quad \text{Ist } w$

die etwa mit y veränderliche Querschnittsbreite, also $dF = w \cdot dy$, so folgt

1)
$$\int_{0}^{e_{1}} w \cdot dy \cdot \sigma = \int_{0}^{e_{2}} w \cdot dy \cdot \sigma,$$

wodurch die Lage der Nullinie im Querschnitt bestimmt ist. Die für das Gleichgewicht erforderliche Gleichheit des Angriffsmomentes M

der äufsern Kräfte und des Widerstandsmomentes der innern Spannkräfte bedingt die Gleichung

2)
$$M = \int_{0}^{\epsilon_{1}} w \cdot dy \cdot \sigma \cdot y + \int_{0}^{\epsilon_{2}} w \cdot dy \cdot \sigma \cdot y.$$

Da indes die Abhängigkeit zwischen σ und y für die hier in Frage kommenden Stoffe in analytischer Form nicht bekannt ist, lassen sich die Gl. 1 u. 2 im allgemeinen nicht lösen. Unter Benutzung der

Dehnungslinie b_1Ob_2 (Fig. 156) lassen sich indes auf graphischem Wege mit Hülfe der Gl. 1 u. 2 die Normalspannungen aus dem Biegungsmoment herleiten. Hinsichtlich der Querschnittsform wollen

IVm. Biegungssp. in Stäben, deren Stoff d. Hooke'schen Ges. nicht folgt. 201

wir uns hier auf die in der Anwendung hauptsächlich vorkommenden Fälle beschränken, wo der Querschnitt ein Rechteck oder aus Rechtecken symmetrisch zusammengesetzt ist. Setzen wir zunächst ein einfaches Rechteck von der Breite *b* voraus und beachten, daßs $y = \frac{\varepsilon}{\varepsilon_0}$, also $dy = \frac{d\varepsilon}{\varepsilon_0}$, so gehen die Gl. 1 u. 2 über in

$$\int_{0}^{\varepsilon_{1}} \sigma \cdot d\varepsilon = \int_{0}^{\varepsilon_{2}} \sigma \cdot d\varepsilon \quad \text{und}$$

4)
$$M = \frac{b}{\varepsilon_0^2} \left(\int_0^{\varepsilon_1} d\varepsilon \cdot \varepsilon + \int_0^{\varepsilon_2} d\varepsilon \cdot \varepsilon \right),$$

3)

worin ε_1 und ε_2 die den äufsersten Faserabständen e_1 und e_2 entsprechenden Dehnungen sind.

Die Integralwerte der Gleichung 3 stellen die Flächeninhalte der von der Dehnungslinie, der ε -Achse und den den Dehnungs-Abscissen ε_1 und ε_2 entsprechenden Spannungsordinaten σ_1 und σ_2 eingeschlossenen Teile Oa_1b_1 und Oa_2b_2 der Dehnungsfläche dar (vergl. Fig. 156). Aus der danach in Gl. 3 ausgedrückten Flächengleichheit ergeben sich ohne weiteres zusammengehörige Werte von ε_1 und ε_2 bezw. σ_1 und σ_2 . Ist beispielsweise die größte Zugspannung (Randspannung) σ_1 und damit aus der Dehnungslinie auch ε_1 bekannt, so ist ε_2 bezw. σ_2 so zu bestimmen, daßs jene Flächengleichheit eintritt.

Die Integralwerte der Gleichung 4 drücken die statischen Momente der Flächen Oa_1b_1 und Oa_2b_2 in Bezug auf die σ -Achse aus. Zeichnet man zu den Flächen mit der Polweite H eine Seillinie $s_1O_2s_2$ und schneiden die Tangenten in den Endpunkten s_1 und s_2 derselben auf der σ -Achse die Strecke u ab (Fig. 156), so ist

5)
$$\int_{0}^{\varepsilon_{1}} d\varepsilon \cdot \varepsilon + \int_{0}^{\varepsilon_{2}} d\varepsilon \cdot \varepsilon = H \cdot u.$$

Bedenkt man ferner, dafs $\frac{e_1}{e_2} = \frac{\varepsilon_1}{\varepsilon_2}$ und $\frac{e_1}{e_1 + e_2} = \frac{e_1}{h} = \frac{\varepsilon_1}{\varepsilon_1 + \varepsilon_2}$, auch $\varepsilon_1 = e_1 \varepsilon_0$, so erhält man

6)
$$e_1 = h \cdot \frac{\varepsilon_1}{\varepsilon_1 + \varepsilon_2}$$
 und 7) $\varepsilon_0 = \frac{\varepsilon_1 + \varepsilon_2}{h}$

8)

Mit Gl. 6 ist die Lage der Nullinie im Querschnitt bekannt und unter Beachtung der Gl. 5 u. 7 nimmt Gl. 4 die Form an

 $\boldsymbol{M} = \frac{\boldsymbol{b} \boldsymbol{h}^2}{(\varepsilon_1 + \varepsilon_2)^2} \cdot \boldsymbol{H} \cdot \boldsymbol{u}.$

Gleichung 8 kann nach Belieben bei gegebener Randspannung σ_1 oder σ_2 und damit bekannten Dehnungen ε_1 und ε_2 zur Berechnung der Querschnittsabmessungen b oder h und umgekehrt benutzt, oder bei gegebenem Stabquerschnitt und Randspannung zur Berechnung des zulässigen Angriffsmomentes, bezw. der Belastung des Balkens benutzt werden.

Die Anwendung der entwickelten Regeln gestaltet sich wie folgt: Aus der für einen bestimmten Stoff gegebenen Dehnungslinie berechnet man ein für allemal die den einzelnen Dehnungsabscissen entsprechenden Dehnungsflächen, trägt diese als Ordinaten von einer Basis O1k aus auf, so dafs beispielsweise die Fläche Oa_1b_1 durch die Ordinate Z und die Fläche Oa_2b_2 durch die Ordinate D ausgedrückt wird. Die Dehnungsflächen bezw. die sie darstellenden Ordinaten Z und D sind verhältnisgleich der Summe der in den betr. Teilen des Querschnitts tätigen Zug- und Druckspannkräfte. Sie haben daher die Bedeutung von Kräften, und die entstehenden Linien $O_1 f_1$ bezw. $O_1 f_2$ wollen wir aus diesem Grunde die Z- bezw. D-Linie nennen. Ist nun in einem bestimmten Einzelfalle beispielsweise die zulässige größte Zugspannung (Randspannung) σ_1 gegeben und damit auch die Randdehnung ε_1 bekannt, so zieht man durch den der Abscisse ε_1 entsprechenden Punkt f_1 der Z-Linie eine Parallele zur ε -Achse bis zum Schnitt f_2 mit der Zieht man ferner durch f_2 eine Parallele zur σ -Achse, D-Linie. so schneidet diese auf der ε -Achse die zu ε_1 gehörige Randdehnung ε_2 ab und gleichzeitig erhält man in dem Abschnitt a_2b_2 die entsprechende Randspannung σ_2 . Ist endlich $s_1 O_2 s_2$ die zu der Dehnungsfläche gezeichnete Seillinie, auf welcher die Punkte s, und s_2 mit ihren Abscissen ε_1 und ε_2 bekannt geworden sind, so sind die Tangenten $s_1 h_1$ und $s_2 h_2$ an die Seillinie in s_1 und s_2 die die Dehnungsflächen Oa1b1 bezw. Oa2b2 einschließenden Seilecksseiten. Sie sind parallel dem Polstrahl O3 i und schneiden auf der σ -Achse die Strecke $h_1 h_2 = u$ ab, welche im gleichen Maßstabe, wie die Dehnungen zu messen ist. Damit steht der Anwendung

IVm. Biegungssp. in Stäben, deren Stoff d. Hooke'schen Ges. nicht folgt. 203

der Gl. 8 auf beliebige Belastungsfälle und Querschnittsabmessungen nichts mehr entgegen.

Ist der Querschnitt nicht ein einfaches Rechteck, sondern aus mehreren

Rechtecken symmetrisch zusammengesetzt, also etwa ein I- oder T-Querschnitt (Fig. 157), so ändert sich die Breite w (Gl. 1 u. 2) in sprungweiser Abstufung; sie ist nur für bestimmte Höhenerstreckungen konstant. Entsprechend den

einzelnen Breitenstufen nehmen Gl. 1 u. 2 die Form an

9)
$$b_1 \int_0^{y_1} \sigma dy + b \int_{y_1}^{e_1} dy = b_1 \int_0^{y_2} \sigma dy + b \int_{y_2}^{e_2} dy,$$

10)
$$M = b_1 \int_0^{y_1} dy \cdot y + b_1 \int_{y_1}^{\epsilon_1} dy \cdot y + b_1 \int_0^{y_2} dy \cdot y + b \int_{y_2}^{\epsilon_2} dy \cdot y.$$

Mit $y = \frac{\varepsilon}{\varepsilon_0}$ und $dy = \frac{d\varepsilon}{\varepsilon_0}$, und wenn man $\frac{b}{b_1} = n$ setzt, gehen beide Gleichungen über in

11)
$$\int_{0}^{\varepsilon'} d\varepsilon + \int_{\varepsilon'}^{\varepsilon_1} \sigma \cdot d\varepsilon = \int_{0}^{\varepsilon'} d\varepsilon + \int_{\varepsilon''}^{\varepsilon_2} \sigma d\varepsilon \text{ und}$$

12)
$$M = \frac{b_1}{\varepsilon_0^2} \left[\int_0^{\varepsilon'} d\varepsilon \cdot \varepsilon + \int_{\varepsilon'}^{\varepsilon_1} \sigma \cdot d\varepsilon \cdot \varepsilon + \int_0^{\varepsilon''} d\varepsilon \cdot \varepsilon + \int_0^{\varepsilon_2} \sigma \cdot d\varepsilon \cdot \varepsilon \right].$$

In dem zweiten Integralwert auf beiden Seiten der Gl. 11 sowie im zweiten und vierten Integralwert der Gl. 12 erscheint die Spannungsordinate σ mit *n* multipliziert, was, da n > 1, eine entsprechende Vergrößerung derselben zwischen den Dehnungsabscissen ε_1 und ε' bezw. ε_2 und ε'' bedeutet.

Führt man diese Multiplikation aus, so tritt an Stelle der Dehnungslinie die Linie $Og_1 d_1 c_1$ bezw. $Og_2 d_2 c_2$ (Fig. 158) und durch die Gleichheit der von diesen umschlossenen, durch die Integralwerte der Gl. 11 ausgedrückten Flächen ist wieder die verhältnismäßige Lage der Nullinie im Querschnitt bestimmt. Zeichnet

204
VIm. Biegungssp. in Stäben, deren Stoff d. Hooke'schen Ges. nicht folgt. 205

man zu den Flächen $Oa_1 b_1 c_1 d_1 g_1$ und $Oa_2 b_2 c_2 d_2 g_2$ eine Seillinie mit der Polweite *H*, so erhält man das Moment der innern Spannkräfte, wie beim einfachen Rechteck zu $M = \frac{b h^2 \cdot H u}{(\varepsilon_1 + \varepsilon_2)^2}$, und Gl. 8 läfst sich ohne weiteres auch hier anwenden.

Im Falle der Fig. 157, b (\bot -förmiger Querschnitt) tritt an Stelle der beiden Integralwerte der rechten Seite der Gl. 9 u. 11 je ein einziger Integralwert zwischen den Grenzen o und e_2 und ebenso werden die dritten und vierten Glieder der Gl. 10 u. 12 durch je eines ersetzt. In Fig. 158 tritt an Stelle der Linie $Og_2 d_2 c_2$ die Linie Ob_2 .

Ein derart gegliederter, d. h. aus Rechtecken zusammengesetzter Stabquerschnitt läfst sich stets so gestalten, dafs beide Randspannungen σ_1 und σ_2 , bezw. die Randdehnungen ε_1 und ε_2 bestimmte, etwa vorgeschriebene Werte annehmen. Durch eine solche Annahme sind die Punkte a_1 und a_2 (Fig. 158) festgelegt und es lassen sich nun die Punkte $c_1 d_1$ und $c_2 d_2$ so bestimmen, dafs die Gleichheit der Flächen $Oa_1 b_1 c_1 d_1 g_1$ und $Oa_2 b_2 c_2 d_2 g_2$ eintritt, wobei dann allerdings die Symmetrie des Querschnittes (Fig. 157, a) in Bezug auf seine wagerechte Schwerpunktsachse aufhört.

Handelt es sich beispielsweise um einen **T**-Querschnitt und entsprechen die Flächen $Oe_1g_1 = Z_1$ und $Oa_2b_2 = D$ dem rechteckigen Steg, so muß die dem Flansch entsprechende Fläche $a_1c_1d_1e_1 = Z_2$ die Bedingung erfüllen $Z_2 = D - Z_1$. Ferner ist $\frac{\varepsilon_1 - \varepsilon'}{\varepsilon_1 + \varepsilon_2} = \frac{h_1}{h}$ (Fig. 157 u. 158) und, wenn das Verhältnis $\frac{h_1}{h}$ gegeben, auch $\varepsilon_1 - \varepsilon' = (\varepsilon_1 + \varepsilon_2) \frac{h_1}{h}$ bekannt. Sieht man die Fläche $a_1c_1d_1e_1$ als Trapez an, so muß dessen mittlere Höhe $n \cdot \sigma''' = \frac{Z_2}{\varepsilon_1 - \varepsilon'}$ sein. Mit $n \cdot \sigma^{n'}$ ist auch $n = \frac{b}{b_1}$ bekannt und bei gegebenem Angriffsmoment M kann die erforderliche Querschnittshöhe h aus Gi. 8 bestimmt werden.

Analytisches Näherungsverfahren.

Durch das oben dargelegte graphische Verfahren lassen sich die Biegungsspannungen in einem Stabe aus beliebigem Stoff, dessen Dehnungsgesetz in Form der Dehnungslinie bekannt ist, mit der

gewünschten Genauigkeit aus dem den Stab ergreifenden Biegungsmoment herleiten. Für manche Zwecke der Anwendung bietet jedoch die analytische Behandlung des Gegenstandes gewisse Vorteile. Da indes, wie erwähnt, das Dehnungsgesetz für die hier fragl. Stoffe in genauer analytischer Form nicht bekannt ist, so müssen wir uns mit einer Annäherungsform begnügen. Ein solches Gesetz $\varepsilon = f(\sigma)$ läfst sich mit einer in vielen Fällen der Anwendung hinreichenden Annäherung aus der wirklichen Dehnungslinie, d. h. aus zusammengehörigen Versuchswerten von ε und σ für das hier nur in Frage kommende Spannungsgebiet innerhalb der Elastizitätsgrenze herleiten. Nach C. Bach ergibt z. B. die Potenzfunktion $\varepsilon = \alpha \cdot \sigma^n$, worin α und n vom Stoff abhängige Konstanten sind, befriedigende Übereinstimmung mit den wirklichen Dehnungs- und Spannungsverhältnissen. Wir wollen indes aus den auf S. 53 dargelegten Gründen, insbesondere um die analytischen Beziehungen zwischen Biegungsmoment und Biegungsspannungen in tunlichst einfacher für die Anwendung brauchbarer Form zu erhalten, für das mit σ und ε veränderliche Verhältnis

 $\frac{\sigma}{\varepsilon} = E$ in den hauptsächlich in Frage kommenden Spannungsgebieten beiderseits nahe der Nullinie konstante Mittelwerte E_1 und E_2 annehmen, bezw. die Dehnungslinie beiderseits der σ -Achse durch eine sich ihr möglichst genau anschliefsende Gerade ersetzen (vergl. Fig. 159). Damit gelangen wir zu einer Erweiterung des Hooke'schen Gesetzes mit verschiedenen Elastizitätszahlen E_1 für Zugund E_2 für Druckspannungen.*)

Sind σ_1 und σ_2 die Randspannungen für Zug und Druck, e_1 und e_2 die äufsersten Faserabstände von der Biegungsachse (Nulllinie) (Fig. 160), so ist die Spannung σ im Abstande y von der-

*) Vergl. G. Barkhausen, Die Verbundkörper aus Mörtel und Eisen im Bauwesen, Zeitschr. f. Architektur u. Ingenieurwesen, Jahrg. 1901 S. 134 u. 1902 S. 246, und G. Lang, Der Schornsteinbau, Heft I S. 127, Hannover, Helwings Verlag.

VIm. Biegungssp. in Stäben, deren Stoff d. Hooke'schen Ges. nicht folgt. 207

selben auf der Zugseite $\sigma = \frac{\sigma_1 y}{e_1}$ und auf der Druckseite $\sigma = \frac{\sigma_2}{e_2} \cdot y$. Fig. 160.

Setzt man diese Werte für σ an betreffender Stelle in die Gl. 1 und 2 ein, so folgt

13)
$$\frac{\sigma_1}{e_1} \int_0^{e_1} w \cdot y \cdot dy = \frac{\sigma_2}{e_2} \cdot \int_0^{e_2} w \cdot y \cdot dy \quad \text{und}$$

14)
$$M = \frac{\sigma_1}{e_1} \int_0^{e_1} w \cdot y^2 \cdot dy + \frac{\sigma_2}{e_2} \int_0^{e_2} w \cdot y^2 \cdot dy.$$

Nun ist $\sigma_1 = \varepsilon_1 E_1$ und $\sigma_2 = \varepsilon_2 E_2$, also $\frac{\sigma_2}{\sigma_1} = \frac{\varepsilon_2}{\varepsilon_1} \cdot \frac{E_2}{E_1} = \frac{e_2}{e_1} \cdot \frac{E_2}{E_1}$ und wenn wir $\frac{E_2}{E_1} = m$ setzen, $\frac{\sigma_2}{e_2} = m \cdot \frac{\sigma_1}{e_1}$. Hiermit gehen die Gl. 13 und 14 über in

 $M = \frac{\sigma_1}{e_1} \left[\int_{w}^{e_1} w \cdot y^2 dy + \int_{w}^{e_2} w \cdot y^2 dy \right].$

15)
$$\int_{0}^{\epsilon_{1}} w \cdot y \cdot dy = \int_{0}^{\epsilon_{2}} w \cdot y \cdot dy \quad \text{und}$$

In Gl. 15 und 16 sind die Querschnittsbreiten w im Verhältnis $m = \frac{E_2}{E_1}$ verändert, gleichsam auf dasselbe Elastizitätsmaß E_1 reduziert. Die Integralwerte in Gl. 15 drücken die statischen Momente der Teile des so reduzierten Querschnitts beiderseits der Biegungsachse aus, diese geht also durch den Schwerpunkt des reduzierten Querschnittes. Die Integralwerte der Gl. 16 drücken in ihrer Summe das Trägheitsmoment des reduzierten Querschnitts in Bezug auf die Biegungsachse aus. Bezeichnen wir dasselbe mit J_r , so schreibt sich Gl. 16

(17)
$$\boldsymbol{M} = \frac{\sigma_1 \boldsymbol{J}_r}{\boldsymbol{e}_1} = \sigma_1 \cdot \boldsymbol{W}_1,$$

wofür man mit $\frac{\sigma_1}{e_1} = \frac{\sigma_2}{m \cdot e_2}$ (siehe oben) auch schreiben kann 17 a) $M = \frac{\sigma_2 \cdot J_r}{m \cdot e_2} = \sigma_2 \cdot W_2.$

Die Gleichungen 17 und 17 a stimmen in ihrer Form genau mit den Gl. 3 und 3 a S. 87 überein. Fig. 161.

Für das einfache Rechteck als Stabquerschnitt (Fig. 161) ergibt die Integration der Gl. 15 und 16.

18)
$$e_1^2 = m \cdot e_2^2$$
,

19) $J_r = \frac{b}{3} (e_1^3 + m e_2^3).$

Mit $e_1 + e_2 = h$ wird nach Gl. 18

20)
$$e_1 = \frac{h \vee m}{1 + \sqrt{m}}$$
 und $e_2 = \frac{h}{1 + \sqrt{m}}$.

Diese Werte für e_1 , e_2 und J_r in Gl. 17 und 19 eingesetzt, folgt

21)
$$\boldsymbol{M} = \sigma_1 \cdot \frac{b h^2}{3} \left(\frac{V m}{1 + V m} \right) = \sigma_1 \cdot \boldsymbol{W}_1.$$

Die Verhältniszahl $m = \frac{E_2}{E_1}$ fällt je nach dem in Frage kommenden Spannungsgebiet verschieden aus. Für ganz kleine Spannungen nähert sie sich bei allen Stoffen dem Wert 1 und wächst dann mit den Spannungen. Für Zementmörtel oder Beton schwankt m bei mittleren Spannungen zwischen 1,5 und 2.

In Fig. 161 stellen die punktierten Linien oberhalb der Biegungsachse den reduzierten Querschnitt dar, und man kann danach die Gleichungen 18 und 19 unmittelbar der Figur entnehmen. Die Gleichsetzung der statischen Momente beider Querschnittshälften ergibt $m \cdot b \cdot e_2 \cdot \frac{e_2}{2} = b \cdot e_1 \frac{e_1}{2}$, d. i. Gl. 18. Das Trägheitsmoment eines Rechtecks in Bezug auf eine Seite ist nach Gl. 1 S. 11 und Gl. 1 S. 15

$$J = J_s + F\left(\frac{h}{2}\right)^2 = F\left(\frac{h^2}{12} + \frac{h^2}{4}\right) = \frac{Fh^2}{3}.$$

Die beiden Querschnittshälften Fig. 161 liefern daher zum Trägheitsmoment J die Beiträge $m \cdot b \cdot e_2 \cdot \frac{e_2^2}{3}$ und $\frac{b \cdot e_1 \cdot e_1^2}{3}$ wie in Gl. 19.

IV m. Biegungssp. in Stäben, deren Stoff d. Hooke'schen Ges. nicht folgt. 209

In fast gleich einfacher Weise lassen sich auch mit Hilfe des "reduzierten Querschnittes" die Trägheitsmomente J_r

für aus Rechtecken zusammengesetzte Querschnitte bilden. Dies möge hier z. B. für einen **T**-Querschnitt zuerst in der Anordnung Fig. 162,*a* und sodann

in derjenigen Fig. 162, b geschehen.

Für die Lage der Biegungsachse (Nullinie) im Querschnitt ergibt sich im ersten Falle die Gleichung

22 a)
$$\frac{b_1 e_1^2}{2} = m \left\{ b h_1 \left(h - e_1 - \frac{h_1}{2} \right) + \frac{b_1 (h - e_1 - h_1)^2}{2} \right\}$$
 und im zweiten
22 b) $b h_1 \left(e_1 - \frac{h_1}{2} \right) + \frac{b_1 (e_1 - h_1)^2}{2} = \frac{m \cdot b_1 (h - e_1)^2}{2}.$

Das Trägheitsmoment wird im ersten Falle
23 a)
$$J_r = \frac{m}{3} \Big[b (h-e_1)^3 - (b-b_1) \cdot (h-e_1-h_1)^3 \Big] + \frac{b_1 \cdot e_1^3}{3}$$
 und im zweiten
23 b) $J_r = \frac{m}{3} b_1 (h-e_1)^3 + \frac{b \cdot e_1^3 - (b-b_1) (e_1-h_1)^3}{3}.$

Sind die Abmessungen b, h, b_1 und h_1 des Querschnitts gegeben, so läßt sich aus den Gl. 22a oder b der Abstand e_1 und damit aus Gl. 23a oder 23b das Trägheitsmoment J_r berechnen.

Die Gliederung eines derartigen aus mehreren Rechtecken bestehenden Stabquerschnittes ermöglicht auch, ihn so zu gestalten, daß beide Randspannungen σ_1 und σ_2 bestimmte vorgeschriebene Werte annehmen. Bezeichnet man das Verhältnis beider $\frac{\sigma_2}{\sigma_1} = \alpha$, so ist nach S. 207 $\frac{\sigma_2}{\sigma_1} = \frac{e_2}{e_1} m = \frac{h - e_1}{e_1} \cdot m = \alpha$ und daraus 24) $e_1 = \frac{m \cdot h}{m + \alpha}$.

Nach Gl. 17 ist ferner für die Querschnittsanordnung Fig. 162, b 25) $M = \frac{\sigma_1}{3 e_1} \left\{ m \cdot b_1 (h - e_1)^3 + b \cdot e_1^3 - (b - b_1) (e_1 - h_1)^3 \right\}.$

Keck, Elastizitätslehre.

14

In Gleichung 25[°] steht das Angriffsmoment M der äufseren Kräfte mit der Randspannung σ_1 und den 5 Querschnittsmaßen b, h, b_1, h_1 und e_1 in Beziehung. Letztere haben aufserdem noch den Gl. 22 u. 24 zu genügen. Ist daher M und σ_1 bekannt, so kann man von den 5 Querschnittsmaßen noch 2 frei wählen; die drei anderen sind dann durch die Gleichungen 22, 24 u. 25 bestimmt.

Anwendungen.

Für eine Betonart seien folgende zusammengehörige Spannungs- und Dehnungswerte durch Versuche bekannt#geworden:

 ε 0,00025, 0,00075, 0,00125, 0,00175, 0,00225, 0,00275, 0,00325, σ in at 4,5, 10,5, 14,5, 16,5, 18,5, 19,5, 20,5; ferner:

E	- 0,000 25,	- 0,000 75,	0,00125,	-0,00175,	-0,00225,	-0,00 275 ,
σ in a	t — 5,5,	- 15,6	- 23,5	- 31,5,	- 39,5,	-46,5.

Für die Aufzeichnung der Dehnungslinie, welche in Fig. 156 annähernd maßstäblich geschehen ist, möge als Maßstab für die Dehnungen 0,0001 = 1 mm und für die Spannungen 2 at = 1 mm gewählt werden. Die Ausrechnung der den einzelnen Dehnungsabscissen ε entsprechenden Dehnungsflächen, bezw. Z- und D-Werte, wobei die Abscissen in Millimetern, die Spannungsordinaten in ihren wirklichen Zahlwerten in Rechnung gestellt sind, ergibt für

5	 +5	10	15	20	25	30
Z	 22,5	75	147,5	230	322,5	420
D	 27,5	102,5	220	377,8	575,0	807,5.

Für die Zeichnung der Z- und D-Linie mögen die Ordinaten Z und D; welche die Bedeutung von Kräften haben (vergl. S. 202), der Mafsstab 20 Einheiten = 1 mm gewählt und die entsprechende Seillinie $s_1 o_2 s_2$ mit der Polweite H = 500 gezeichnet werden.

Beispiel 1: Ein an seinen Enden frei gestützter Balken von 200 cm Stützweite und rechteckigem Querschnitt von b = 50 cm Breite hat f. d. lfd. im 3000 kgd. i. f. d. lfd. cm 30 kg zu tragen; welche Höhe h muß er erhalten, wenn die Randspannung σ nacheinander zu 20, 13 und 16 at angenommen wird?

a) Graphische Lösung: Aus der in oben genannten Mafsstäben ausgeführten Zeichnung erhält man

für	σ_1		ε_1	E2	· 02	$\varepsilon_1 + \varepsilon_2$	21
	20 at	-	30	21	37,5 at	51	27
	18 at	-	22	17	28 at	39	13
	16 at	-	15	12	23 at	27	4,5

Nach S. 202 u. Gl. 8 ist $M = \frac{p l^2}{8} = b h^2 \cdot \frac{H \cdot u}{(\varepsilon_1 + \varepsilon_2)^2}$ und daraus

$$h = l \cdot (\varepsilon_1 + \varepsilon_2) \cdot \sqrt{\frac{p}{8 \cdot b \cdot H \cdot u}} = 200 \cdot (\varepsilon_1 + \varepsilon_2) \cdot \sqrt{\frac{30}{8 \cdot b \cdot H \cdot u}}$$

IVm. Biegungssp. in Stäben, deren Stoff d. Hooke'schen Ges. nicht folgt. 211

Danach wird für
$$\sigma_1 = 20 \text{ at}$$
 $h = 200 \cdot 51 \cdot \sqrt{\frac{30}{8 \cdot 50 \cdot 500 \cdot 27}} = 24 \text{ cm},$
 $\sigma_1 = 18 \text{ at}$ $h = 200 \cdot 39 \cdot \sqrt{\frac{30}{8 \cdot 50 \cdot 500 \cdot 13}} = 26_{35} \text{ cm},$
 $\sigma_1 = 10 \text{ at}$ $h = 200 \cdot 27 \cdot \sqrt{\frac{30}{8 \cdot 50 \cdot 500 \cdot 4_{35}}} = 31_{32} \text{ cm},$

Wie man sich leicht überzeugt, sind diese Ergebnisse völlig unabhängig von der Wahl des Maßstabes für die Dehnungen, Spannungen und Z- und D-Werte; nur ist zu beachten, daßs die Polweite H mit den Z- und D-Werten in gleichem Maßstabe, der Abschnitt u aber im Maßstabe der Dehnungen gemessen wird.

b) Analytische Lösung: Nach S. 208 und der Näherungsgleichung 21 ist

$$M = \frac{p l^2}{8} = \sigma_1 \frac{b \cdot h^2}{3} \frac{V m}{1 + V m}$$

Mit m=2, b=50 cm, l=200 cm und p=30 kg f. d. lfd cm wird

$$h = 200 \sqrt{\frac{3}{8} \cdot \frac{30:2,41}{50\cdot 1,41\cdot \sigma_1}}$$
 und daraus für

$$\sigma_1 = 20 \text{ at} \quad h = 27,3 \text{ cm}, \quad \sigma_1 = 18 \text{ at} \quad h = 29,2 \text{ cm}, \quad \sigma_1 = 16 \text{ at} \quad h = 31 \text{ cm}.$$

Die durch das rechnerische Näherungsverfahren ermittelten Höhen übertreffen danach die durch das genaue Verfahren erzielten Ergebnisse für die höheren Spannungen von 18 und 20 at um etwa 10 %. In Wirklichkeit werden also bei den durch Annäherung errechneten Höhen die Spannungen in der der Rechnung zu Grunde gelegten Höhe nicht eintreten und es erscheint daher zulässig, bei Anwendung des Näherungsverfahrens eine etwas höhere Spannung zu Grunde zu legen. Das Mafs derselben läfst sich für ein bestimmt begrenztes Spannungsgebiet durch eine einmalige Kontrollrechnung nach dem genauen Verfahren leicht feststellen. In obigem Beispiel würde für $\sigma_1 = 24$ at die Rechnung h = 24,s und $\sigma_1 = 21$ at h = 27 cm ergeben.

Für Gebiete kleinerer Spannungen wird auch der Wert m kleiner (vergl. die bezügl. Bemerkung S. 208).

Nach dem Hooke'schen Gesetze mit m = 1 würde $\frac{p l^2}{8} = \frac{b h^2}{6} \cdot \sigma_4$

$$h = l \cdot \sqrt{\frac{3}{4} \frac{p}{b \cdot \sigma_1}}$$
 und für
 $\sigma_1 = 20 \text{ at } h = 30 \text{ cm}, \sigma_2 = 18 \text{ at } h = 31 \text{ scm}, \sigma_2 = 16 \text{ at } h = 33 \text{ scm}$

Beispiel 2: Ein Betonbalken mit \bot -förmigem Querschnitt (Fig. 157, b, 162, b) aus dem gleichen Stoff wie in Beispiel 1 von l = 400 cm, b = 50 cm, soll bei den Randspannungen $\sigma_1 = 18$ und $\sigma_2 = 45$ eine verteilte Last p = 30 kg f. d. 1fd. cm tragen. Welche Höhen h und h_1 und welche Breite b_1 muß er erhalten, wenn $h_1 = \frac{h}{5}$ angenommen wird?

a) Graphische Lösung: Aus der Dehnungslinie erhalten wir die den Spannungsordinaten $\sigma_1 = 18$ und $\sigma_2 = 45$ entsprechenden Dehnungsabscissen $\varepsilon_1 = 22$ und $\varepsilon_2 = 27$, also $\varepsilon_1 + \varepsilon_2 = 49$. Aus der Verhältnisgleichheit zwischen den Querschnittshöhen und den entsprechenden Dehnungsabscirsen folgt

$$\frac{\varepsilon_1-\varepsilon'}{\varepsilon_1+\varepsilon_2}=\frac{h_1}{\hbar}=\frac{1}{5}, \ \text{also} \ \ \varepsilon_1-\varepsilon'=\frac{\varepsilon_1+\varepsilon_2}{5}=9,\text{s}.$$

Dem rechteckigen Steg entsprechen die Dehnungsflächen $0e_1g_1 = Z_1 = 120$ bezw. $0a_2b_2 = D = 640$ und dem Flansch die trapezförmige Fläche $e_1a_1c_1d_1 = Z_2$. Aus der Gleichheit der Flächen beiderseits der σ -Achse folgt

Fl. $e_1 a_1 c_1 d_1 = Z_2 = D - Z_1 = 640 - 120 = 520$. Die Breite der Fl. $e_1 a_1 c_1 d_1$ ist oben zu $\varepsilon_1 - \varepsilon' = 9$,s ermittelt; ihre mittlere Höhe $n \cdot \sigma'''$ (siehe Figur) ist daher $n \cdot \sigma''' = \frac{Z_2}{\varepsilon_1 - \varepsilon'} = \frac{520}{9,s} = 53$ at. Nach der Figur ist $\sigma''' = 16, 2$ at, folglich $n = \frac{53}{16,2} = 3, 3$. Die Breite b_1 des Steges ist mithin $b_1 = \frac{b}{n} = \frac{50}{3,3} = 15, 0$ cm. Nach der Figur ist ferner u = 42, 5 und zufolge Gl. 8 S. 202

$$h = l \cdot (\varepsilon_1 + \varepsilon_2) \cdot \sqrt{\frac{p}{8 \cdot b_1 \cdot H \cdot u}} = 400 \cdot 49 \cdot \sqrt{\frac{30}{8 \cdot 15 \cdot 500 \cdot 42, 5}} = 67, 5 \text{ cm}.$$

b) Analytische Lösung: Nach Gl. 24 wird mit m=2 und

$$\alpha = \frac{\sigma_2}{\sigma_1} = \frac{45}{18} = 2, *, \ e_1 = \frac{2 \cdot h}{2 + 2, *} = 0, * h.$$

Diese Werte und aus den Daten der Aufgabe $b = 50 \text{ cm} \quad h_1 = \frac{h}{5}$ in Gl. 22 b eingesetzt, erhält man $b_1 = 13_{,0} \text{ cm}$. Nach Gl. 25 wird

$$M = \frac{p l^2}{8} = \frac{\sigma_1}{3e_1} \left\{ m b_1 (h - e_1)^3 + b e_1^3 - (b - b_1) (e_1 - h_1)^3 \right\},$$

$$= \frac{\sigma_1 h^2}{3 \cdot 0{}_{,45}} \left\{ 2 \cdot 13{}_{,6} \cdot 0{}_{,55}{}^3 + 50 \cdot 0{}_{,45}{}^3 - 36{}_{,4} \cdot 0{}_{,25}{}^3 \right\} = \sigma_1 \ 6{}_{,2} \ h^2.$$

und daraus $h = l \cdot \sqrt{\frac{p}{8 \cdot 6{}_{,3} \cdot \sigma_1}} = 400 \cdot \sqrt{\frac{30}{8 \cdot 6{}_{,3} \cdot 18}} = 73 \ \text{cm}.$

Mit $\sigma_1 = 21$ at wird h = 67,5 cm wie unter a.

Die Schubspannung in der neutralen Schicht unmittelbar neben den Endstützen ist $\tau_0 = \frac{Q \cdot S_r}{b_1 \cdot J_r} = \frac{Q m b_1 e_1^2}{2 \cdot b_1 \cdot 6_{,3} h^2 \cdot e_1} = 6000 \cdot \frac{2 \cdot 0_{,45}}{2 \cdot 6_{,5} \cdot 67_{,5}} = 6_{,5} \text{ at}$ und die Stoffanstrengung $s = 6_{,3} + \frac{6_{,3}}{4} = 7_{,9} \text{ at}.$

n) Biegungsspannungen in stabförmigen Verbundkörpern.

Unter einem stabförmigen Verbundkörper wollen wir hier einen aus stofflich verschiedenen, prismatischen Längsteilen zusammengesetzten Stab verstehen, dessen Teile unverschiebbar, d. h. so miteinander verbunden sind, daß sie bei eintretender Biegung in den IV n. Biegungsspannungen in stabförmigen Verbundkörpern. 213

gegenseitigen Berührungsflächen gleiche Dehnungen erfahren. Die Anordnung der verbundenen Teile im Stabquerschnitt soll, wie dieser selbst, hier symmetrisch zur Kraftebene vorausgesetzt werden.

Derartige Verbundbalken kommen mit Vorteil da zur Anwendung, wo ein dem Angriff eines Biegungsmomentes ausgesetzter Homogenbalken (Balken aus einerlei Stoff) die dabei auftretenden Zugspannungen mit erheblich geringerer Sicherheit aufzunehmen vermag, als die Druckspannungen, so daß der Bruch desselben durch Zerreißen an der konvex gekrümmten Seite erfolgen würde. In Betracht kommen hier hauptsächlich Balken oder Platten aus Beton oder Mörtel, in welche im Bereich der auftretenden größsten Zugspannungen Einlagen aus Stabeisen von meist rundem oder quadratischem, zuweilen auch rechteckigem Querschnitt eingebettet werden, um die Zugspannungen im Einhüllungsstoff in gewünschtem Maße zu vermindern oder ganz zu ersetzen.

Wir wollen die in folgendem abzuleitenden Regeln auf Stäbe von rechteckigen oder aus Rechtecken zusammengesetzten Querschnitten beschränken und wieder die Annahme machen, daß ein vor der Biegung ebener Stabquerschnitt auch nach derselben noch eben sei. Dann sind die Dehnungen in den einzelnen Punkten des Stabquerschnittes, einerlei welchem der verbundenen Teile sie angehören, verhältnisgleich ihrem Abstande von der Nullinie.

Der umhüllende Körper möge in folgendem kurz die "Umhüllung" und der eingebettete die "Einlage" genannt werden. Der Querschnitt der Einlage soll in seiner Höhenerstreckung senkrecht zur Biegungsachse im Vergleich zu den Abmessungen der

Umhüllung als sehr klein vorausgesetzt werden, so daß die Spannungen σ_{ϵ} der Einlage als über deren Querschnitt F_{ϵ} gleichmäßig

verteilt gelten können und die von ihr im Gleichgewicht der innern und äufsern Kräfte zu leistende Spannkraft gleich $F_e \cdot \sigma_e$ gesetzt werden kann (vergl. Fig. 163).

Die Nullgleichheit der Summe der Kräfte in der Richtung der Stabachse führt dann zu der Gleichung

1)
$$\int_{0}^{e_{1}} w \cdot \sigma \cdot dy + \sigma_{e} \cdot F_{e} = \int_{0}^{e_{2}} w \cdot \sigma \cdot dy$$

und die Momentengleichung in Bezug auf die Biegungsachse lautet

2)
$$M = \int_{0}^{\epsilon_{1}} w \cdot dy \cdot y \cdot \sigma + \sigma_{\epsilon} \cdot F_{\epsilon} \cdot y_{\epsilon} + \int_{0}^{\epsilon_{2}} w \cdot dy \cdot y \cdot \sigma.$$

Wir zetzen nun zunächst sowohl den Querschnitt des ganzen Verbundstabes, als den der Einlage als einfache Rechtecke mit der gemeinsamen Breite *b* voraus und bezeichnen die Höhe, bezw. Stärke der Einlage mit *s*, so dafs w=b und $F_e=b \cdot s$ wird. Dann folgt

3)
$$\int_{0}^{\epsilon_{1}} \sigma \cdot dy + \sigma_{\epsilon} \cdot s = \int_{0}^{\epsilon_{2}} \sigma \cdot dy \quad \text{und}$$

$$M = b \left[\int_{e}^{e_1} \sigma \cdot y \cdot dy + \sigma_e \cdot s \cdot y_e + \int_{0}^{e_2} \sigma \cdot y \cdot dy \right].$$

Ist ε_0 wieder die Dehnung im Abstande 1 von der Biegungsachse, also $y = \frac{\varepsilon}{\varepsilon_0}$ und $dy = \frac{d\varepsilon}{\varepsilon_0}$; ferner ε_1 und ε_2 die Randdehnungen, so nehmen, wenn man diese Werte einsetzt, die Gl. 3 und 4 die Form an

5)
$$\int_{0}^{\varepsilon_{1}} \sigma \cdot d\varepsilon + \sigma_{\epsilon} \cdot s \cdot \varepsilon_{0} = \int_{0}^{\varepsilon_{2}} \sigma \cdot d\varepsilon \quad \text{und}$$

$$M = \frac{b}{\varepsilon_0^2} \left[\int_0^{\varepsilon_1} \sigma \cdot \varepsilon \cdot d\varepsilon + \sigma_\epsilon \cdot s \cdot y_\epsilon \cdot \varepsilon_0^2 + \int_0^{\varepsilon_2} \sigma \cdot \varepsilon \cdot d\varepsilon \right].$$

Unter $s \cdot \varepsilon_0$ haben wir die auf den Maßstab der Dehnungen reduzierte Stärke der Einlage und unter $y_e \cdot \varepsilon_0$ die Dehnung derselben zu verstehen (vergl. Fig. 164). Bezeichnet man erstere mit δ und letztere mit ε_e , so gehen Gl. 5 u. 6 über in

7)
$$\int_{0}^{\varepsilon_{1}} \sigma \cdot d\varepsilon + \sigma_{e} \cdot \delta = \int_{0}^{\varepsilon_{2}} \sigma \cdot d\varepsilon \quad \text{und}$$

8)
$$M = \frac{b}{\varepsilon_0^2} \left[\int_0^{\varepsilon_1} \sigma \cdot \varepsilon \cdot d\varepsilon + \sigma_e \cdot \delta \cdot \varepsilon_e + \int_0^{\varepsilon_2} \sigma \cdot \varepsilon \cdot d\varepsilon \right].$$

In Fig. 164 stellt $b_1 O b_2$ die Dehnungslinie der Umhüllung, Oc diejenige der Einlage dar. Durch Gleichung 7 ist wieder die

IVn. Biegungsspannungen in stubförmigen Verbundkörpern.

215

Lage der Biegungsachse im Querschnitt bestimmt. Die beiden Integralwerte der Gl. 7 drücken die Dehnungsfläche der Umhüllung und das Produkt $\sigma_e \cdot \delta$ die der Einlage aus. Stellt man erstere beiderseits der σ -Achse wieder durch die sog. Z- und D-Linie dar, deren Ordinaten $Z = \int_{0}^{\varepsilon_1} \sigma \cdot d\varepsilon$ und $D = \int_{0}^{\varepsilon_2} \sigma \cdot d\varepsilon$ sind und bezeichnet $\sigma_e \cdot \delta$ mit Z_e , so wird nach Gl. 7 9) $Z + Z_e = D$.

In Gl. 9 kann man zwei der drei Größen frei wählen und nur die dritte muß dann einen bestimmten Wert erhalten. Verlangt man z. B., daß die Randspannungen σ_1 und σ_2 , bezw. die Randdehnungen ε_1 und ε_2 gegebene Werte annehmen, so sind damit Z und D festgelegt und Z_e muß nun gleichfalls einen bestimmten Wert erhalten. Man erhält Z_e , indem man durch f_2 (Fig. 164) eine Parallele zur $O_1 k$ zieht, in der Strecke $f_1 f_e = ii'$. Mit Z_e ist auch der erforderliche Querschnitt der Einlage bestimmt. Nach Gl. 9 wird nämlich

10)

 $Z_e = \sigma_e \cdot \delta = D - Z$ und daraus

11)

Nun ist aber $s = \frac{\delta}{\varepsilon_0}$ und zufolge der Beziehung

 $\delta = \frac{D-Z}{\sigma_{\star}}.$

12)

$$\begin{aligned}
\varepsilon_0 &= \frac{\varepsilon_1}{e_1} = \frac{\varepsilon_2}{e_2} = \frac{\varepsilon_1 + \varepsilon_2}{h} \quad \text{auch} \quad s = \frac{\delta \cdot h}{\varepsilon_1 + \varepsilon_2}; \quad \text{daher} \\
& \cdot F_e = b \cdot s = b \cdot h \cdot \frac{D - Z}{\sigma_e \cdot (\varepsilon_1 + \varepsilon_2)}.
\end{aligned}$$

Der Klammerwert der Gl. 8 stellt wieder das statische Moment der Dehnungsflächen der Umhüllung und der Einlage in Bezug auf die σ -Achse dar, das man mit Hülfe der Seillinie $s_2 O_2 s_e$ (Fig. 164) von der Polweite H zu $H \cdot u$ erhält. In dem Abschnitt $h_2 h_e$, welchen die dem Polstrahl $O_3 i$ parallelen äufsern Seilseiten $h_2 s_2$ und $s_e h_e$ auf der σ -Achse abschneiden, entsprechen die Strecken u_1 und u_2 den Zug- und Druckkräften der Umhüllung, u_e der Zugkraft der Einlage. Mit $\varepsilon_0 = \frac{\varepsilon_1 + \varepsilon_2}{h}$ wird daher nach Gl. 8

13)
$$\boldsymbol{M} = \frac{\boldsymbol{b} \cdot \boldsymbol{h}^2}{(\varepsilon_1 + \varepsilon_2)^2} \boldsymbol{H} \cdot \boldsymbol{u}.$$

IVn. Biegungsspannungen in stabförmigen Verbundkörpern. 217

Die Gleichungen 12 u. 13 können nun nach Belieben zur Berechnung der Querschnittsabmessungen F_e , b oder h benutzt werden.

Der Querschnitt der Einlage kann unbeschadet der Richtigkeit obiger Entwicklung in beliebiger Weise kreisförmig, quadratisch oder rechteckig gestaltet werden, wenn nur die Voraussetzung erfüllt bleibt, daß die Abmessung derselben normal zur Biegungsachse verhältnismäßig klein ist. Trifft diese Voraussetzung nicht zu, so hat man die Veränderlichkeit der Spannungen σ_e im Querschnitt der Einlage zu berücksichtigen und an Stelle der Glieder $F_e \cdot \sigma_e$ in Gl. 1 und $F_e \cdot \sigma_e \cdot y_e$ in Gl. 2 treten dann entsprechende Integralwerte, deren Entwicklung und graphische Bewertung keinerlei Schwierigkeiten bieten, hier aber nicht weiter verfolgt werden soll.

Verbundstäbe, deren Querschnitte aus mehreren Rechtecken in symmetrischer Anordnung bestehen, lassen sich unter Berücksichtigung des auf S. 203 gesagten in ähnlicher Weise behandeln.

Das verschiedene elastische Verhalten des Eisens als Einlage und des Betons als Umhüllung bringt es mit sich, daß, wenn der Beton an der Zugseite bereits der Bruchgefahr nahe, das Eisen im Verhältnis zu seiner Festigkeit erst schwach gespannt ist. Muß daher aus wirtschaftlichen Gründen auf eine tunlichste Ausnutzung der Festigkeit der Eiseneinlage Wert gelegt werden, so läßt es sich nicht umgehen, die Betonumhüllung soweit zu spannen, daß mit ihrem Bruch im Bereich der Zugspannungen zu rechnen ist. Für diesen in der Anwendung sehr häufig vorkommenden Fall ist zu untersuchen, ob nach Eintritt eines solchen Bruches die Tragsicherheit des Verbundstabes noch fortbesteht, bezw. welches Maßs die Druckspannung σ_2 des Betons oder die Zugspannung σ_e des Eisens erreichen. Die oben abgeleiteten Regeln lassen sich auch hierzu ohne weiteres benutzen.

Mit dem Verschwinden des Zugwiderstandes der Umhüllung kommen die denselben entsprechenden Glieder in Gl. 1 bis 13 zum Fortfall. Der Zweig Ob_1 der Dehnungslinie (Fig. 164) ist als mit der ε -Achse zusammenfallend anzusehen, weil σ an der Zugseite durchweg Null ist. Ebenso fällt die Z-Linie mit der Basis $O_1 k$ zusammen; nach Gl. 9 muß jetzt $Z_e = D$ und nach Gl. 12 $F_e = \frac{b h D}{\sigma_e \cdot (\varepsilon_1 + \varepsilon_2)}$ sein. Die Nullinie erfährt im allgemeinen eine gewisse Verschiebung im Querschnitt.

Um die gewünschte Ausnutzung der Eiseneinlage zu erreichen, ist dieselbe so anzuordnen, daß die Spannungsordinate σ_{e}' ihrer Dehnungslinie in Fig. 164 die entsprechende Länge erhält. Die Seillinie nimmt jetzt den Verlauf $s_2 O_2 s_e'$ und der Abschnitt $u = h_2 h_e'$ der äußern Seiten auf der σ -Achse besteht jetzt aus den Strecken u_2 und u_e' , der Druckkraft der Umhüllung und der Zugkraft der Einlage entsprechend.

Im übrigen bleibt das Verfahren völlig ungeändert. Die Randdehnung ε_1 der Umhüllung behält in Gl. 13 die gleiche Bedeutung wie bisher.

Scheidet damit die Zugspannung überhaupt als sicherer Summand aus dem Gleichgewicht der äufsern und innern Kräfte aus, so empfiehlt es sich meist auch nicht mehr, den Stabquerschnitt voll rechteckig zu gestalten. Die nun zum großen Teil als unwirksam anzusehen-

den Stoffmengen an der Zugseite der Biegungsachse können bis auf einen zur Aufnahme der Eiseneinlage und Leistung des Schubwiderstandes erforderlichen Steg erspart werden. Vergl. Fig. 165.

Analytisches Näherungsverfahren.

Um zu einem für die Anwendung bequemen und vielfach hinreichend genauen Annäherungsverfahren zu gelangen, führen wir wieder für die Gebiete der Zug- und Druckspannungen der Umhüllung verschiedene Elastizitätszahlen E_1 und E_2 ein, bezeichnen die Elastizitätszahl der Einlage mit E_e und benennen $\frac{E_2}{E_1}$ mit m und $\frac{E_e}{E_1}$ mit r. Damit lassen sich die Randspannung σ_2 und die Spannung σ_e der Einlage wie folgt durch die Randspannung σ_1 ausdrücken: Die Randdehnung ε_1 an der Zugseite ist $\varepsilon_1 = \frac{\sigma_1}{E_1}$, daher diejenige an der Druckseite $\varepsilon_2 = \frac{e_2}{e_1} \cdot \varepsilon_1 = \frac{e_2}{e_1} \frac{\sigma_1}{E_1}$ und an der Stelle der Einlage $\varepsilon_e = \frac{y_e}{e_1} \cdot \varepsilon_1 = \frac{y_e}{e_1} \frac{\sigma_1}{E_1}$. Somit ist

14)
$$\sigma_2 = \varepsilon_2 E_2 = \sigma_1 \frac{e_2}{e_1} \cdot \frac{E_2}{E_1} = \sigma_1 \cdot m \cdot \frac{e_2}{e_1} \quad \text{und}$$

14a)
$$\sigma_e = \varepsilon_e \cdot E_e = \sigma_1 \frac{y_e}{e_1} \cdot \frac{E_e}{E_1} = \sigma_1 r \cdot \frac{y_e}{e_1}.$$

Die Spannung σ der Umhüllung in beliebigem Abstande von der Biegungsachse ist an der Zugseite $\sigma = \frac{\sigma_1 \cdot y}{e_1}$ und an der Druckseite $\sigma = \frac{\sigma_2 y}{e_2} = m \frac{\sigma_1}{e_1} y$. Vergleiche Fig. 166. Damit nehmen die Gleichungen 1 und 2 S. 214 die Form an

15)
$$\int_{0}^{m} \cdot y \cdot dy + F_{e} \cdot r \cdot y_{e} = \int_{0}^{m} \cdot w \cdot y \cdot dy \quad \text{und}$$

16)
$$M = \frac{\sigma_1}{e_1} \left[\int_0^{e_1} w \cdot y^2 \cdot dy + F_e \cdot r \cdot y_e^2 + \int_0^{e_2} w \cdot y^2 dy \right]$$

In den Gl. 15 und 16 erscheinen die Querschnittsbreiten w auf der Druckseite mit m, und die Querschnittsfläche F_e der Einlage mit r multipliziert. Denken Fig. 166.

wir uns diese Flächenänderung wirklich ausgeführt, so drückt Gl. 15 aus, daß die Biegungsachse mit der

Schwerpunktsachse des solchermaßen reduzierten Querschnitts zusammenfällt, und der Klammerwert der Gl. 16 stellt das Trägheitsmoment J_r desselben dar.

Für das einfache Rechteck ist der reduzierte Querschnitt in Fig. 166 in punktierten Linien angedeutet. Sowohl aus dieser Figur wie durch Integration der Gl. 15 und 16 mit w = b (konstant) erhält man

$$\frac{b \cdot e_1^2}{2} + F_e \cdot r \cdot y_e = \frac{m b \cdot e_2^2}{2} \quad \text{und}$$

18)
$$M = \frac{\sigma_1}{e_1} \left(\frac{b \, e_1^{\,3}}{3} + F_e \cdot r \cdot y_e^2 + \frac{m \, b \, e_2^{\,3}}{3} \right) = \sigma_1 \, \frac{J_r}{e_1} = \sigma_1 \cdot W_1 \,.$$

Ersetzt man in Gl. 18 $\frac{\sigma_1}{e_1}$ gemäß Gl. 14 u. 14a einmal durch $\frac{\sigma_2}{m e_2}$ und ein anderes mal durch $\frac{\sigma_e}{r y_e}$, so folgt 18a) $M = \sigma_2 \cdot \frac{J_r}{m e_2} = \sigma_2 \cdot W_2$ und 18b) $M = \frac{\sigma_e}{r \cdot y_e} \cdot J_r = \sigma_e \cdot W_e$. Sind σ_1 und σ_2 oder ihr Verhältnis $\frac{\sigma_2}{\sigma_1}$, das wir mit α bezeichnen wollen, vorgeschrieben, so wird nach Gl. 14 $\frac{\sigma_2}{\sigma_1} = m \frac{e_2}{e_1} = m \frac{(h-e_1)}{e_1} = \alpha$ und daraus $e_1 = \frac{mh}{\alpha + m}$, $e_2 = h - e_1 = \frac{h\alpha}{m + \alpha}$. Ist ferner, wie in der Anwendung üblich, für die Entfernung der Einlage von der nächsten Außenkante der Umhüllung ein der Querschnittshöhe hverhältnisgleiches Maß $\beta \cdot h$ festgesetzt, so ergibt sich

$$e_1 = y_s + \beta h$$
, also $y_s = e_1 - \beta h = \frac{mh}{m+\alpha} - \beta h = h \frac{m-\beta(m+\alpha)}{m+\alpha}$.

Die obigen Werte für e_1 , e_2 und y_e in die Gl. 17 u. 18 eingesetzt, folgt

19)
$$F_e = \frac{b h m}{2 r (m+\alpha)} \cdot \frac{\alpha^2 - m}{m - \beta (m+\alpha)}.$$

20)
$$\boldsymbol{M} = \boldsymbol{W}_1 \sigma_1 = \frac{\boldsymbol{b} \cdot \boldsymbol{h}^2 \sigma_1}{3(m+\alpha)^2} \Big\{ \boldsymbol{m}^2 + \frac{3}{2} (\alpha^2 - \boldsymbol{m}) \big[\boldsymbol{m} - \beta(m+\alpha) \big] + \alpha^3 \Big\}.$$

Mit m = 1 und $\alpha = 1$ wird $F_e = 0$ und $M = \frac{b \hbar^2}{6} \sigma_1$, wie zu erwarten.

Für den T-Querschnitt wollen wir die den Gleichungen 19 u. 20 entsprechenden Gleichungen dem reduzierten Querschnitt Fig. 167 entnehmen: In Bezug auf die Schwerpunktsachse nn, die zugleich Biegungsachse ist, erhält man die Momentengleichung

21)
$$\frac{b_1 e_1^2}{2} + r F_{\epsilon} \cdot y_{\epsilon} = m b h_1 \left(h - e_1 - \frac{h_1}{2} \right) + m b_1 \left(h - e_1 - h_1 \right)^2.$$

IVn. Biegungsspannungen in stabförmigen Verbundkörpern. 221

Das Spannungsmoment wird

22)
$$M = \sigma_1 \frac{J_r}{e_1} = \frac{\sigma_1}{e_1} \bigg[\frac{b_1 e_1^3}{3} + r \cdot F_e \cdot y_e^2 + \frac{m b}{3} (h - e_1)^3 - \frac{m (b - b_1)}{3} (h - e_1 - h_1)^3 \bigg].$$

Beide Gleichungen unterscheiden sich von den Gl. 22a u. 23a S. 209 nur durch den Hinzutritt des der Einlage entsprechenden Gliedes. Setzen wir wieder wie oben $\frac{\sigma_2}{\sigma_1} = m \frac{h - e_1}{e_1} = \alpha$, also $e_1 = \frac{mh}{m+h}$ und $y_e = h \frac{m - \beta(m+\alpha)}{m+\alpha}$; sind ferner α , β , m und σ_1 für den vorliegenden Stoff bekannt und ist auch das Angriffsmoment M der äußeren Kräfte in bekannter Weise ermittelt, so kann man von den 5 Querschnittsgrößen b, h, b_1 , h_1 und F_e drei, etwa b, b_1 und h_1 frei wählen und die beiden andern, etwa h und F_e , aus den Gl. 21 u. 22 berechnen.

Läßt man nun wieder in Rücksicht auf die Unsicherheit des Zugwiderstandes der Umhüllung diesen für das Gleichgewicht zwischen den äufseren und inneren Kräften aufser acht, so kommen die demselben entsprechenden Glieder in Gl. 15—22 in Fortfall. Setzt man weiterhin jetzt $\boldsymbol{r}: \boldsymbol{m} = \frac{E_e}{E_1}: \frac{E_2}{E_1} = \frac{E_e}{E_2} = \boldsymbol{r}_1$ und vertauscht gemäßs Gl. 14 $\frac{\sigma_1}{e_1}$ mit $\frac{\sigma_2}{\boldsymbol{m}\cdot e_2}$, so gehen die Gl. 15 u. 16 über in 23) $F_e \cdot r_1 \cdot y_e^* = \int_{w}^{e_2} w \cdot y \cdot dy$ und

$$M = \frac{\sigma_2}{c_2} \cdot \left[r_1 F_\epsilon \cdot y_\epsilon^2 + \int_w^{\epsilon_2} w \cdot y^2 \cdot dy \right],$$

woraus für den rechteckigen Querschnitt folgt

24)

$$r_1 F_{\epsilon} \cdot y_{\epsilon} = b \frac{e_2^{-\epsilon}}{2} \quad \text{und}$$

26)
$$M = \frac{\sigma_2}{e_2} \left[r_1 F_e \cdot y_e^2 + \frac{b \, e_2^3}{3} \right] = \frac{\sigma_2}{e_2} \left[y_e \cdot \frac{b \, e_2^2}{2} + \frac{b \, e_2^3}{3} \right] = \sigma_2 \cdot \frac{J_r}{e_2}.$$

In Gleichung 25 und 26 ist der Querschnitt der Einlage mit dem Verhältnis $\frac{E_e}{E_2} = r_1$ multipliziert und dadurch gleichsam mit der Umhüllung auf die gleiche Elastizitätszahl E_2 reduziert (vergl. Fig. 165). Die Biegungsachse ist zugleich wieder Schwerpunktsachse des so reduzierten Querschnitts und die Gl. 25, sowie der Wert J_r lassen sich unmittelbar aus der Figur entnehmen.

Sind σ_2 und σ_e , oder ihr Verhältnis $\frac{\sigma_e}{\sigma_2} = \alpha_1$ vorgeschrieben, so wird $\frac{\sigma_e}{\sigma_2} = \frac{\varepsilon_e \cdot E_e}{\varepsilon_2 \cdot E_2} = \frac{y_e}{e_2} \cdot r_1 = \alpha_1$ und wenn der Abstand der Einlage von der Außenkante wieder gleich $\beta \cdot h$ angenommen wird, $y_e = h - \beta h - e_2 = h (1 - \beta) - e_2$ und

$$rac{h\left(1-eta
ight)-e_2}{e_2}=rac{lpha_1}{r_1},$$
 woraus folgt

27) ...
$$e_2 = \frac{h r_1 (1 - \beta)}{r_1 + \alpha_1}$$
 und 28) ... $y_e = \frac{h \cdot \alpha_1 (1 - \beta)}{r_1 + \alpha_1}$

Mit diesen Werten für e_2 und y_e ergibt sich aus Gl. 25

(29)
$$F_e = \frac{bh}{2} \cdot \frac{r_1}{\alpha_1} \cdot \frac{(1-\beta)}{r_1 + \alpha_1} \quad \text{und aus Gl. 26}$$

30)
$$M = \sigma_2 \cdot \frac{b h^2}{6} \frac{(1-\beta)}{(r_1+\alpha_1)^2} \cdot (3 \alpha_1 + 2 r_1).$$

Für den T-Querschnitt erhält man unter Beachtung der Gl. 21-24

31)
$$F_{e} = \frac{1}{r_{1}y_{e}} \left[bh_{1} \left(e_{2} - \frac{h_{1}}{2} \right) + b_{1} \frac{(e_{2} - h_{1})^{2}}{2} \right]$$
 und

32)
$$M = \frac{J_r}{e_2} \cdot \sigma_2 = \frac{\sigma_2}{e_3} \left[r_1 F_e \cdot y_e^2 + \frac{b e_2^3}{3} - \frac{(b-b_1)(e_2-h_1)^3}{3} \right].$$

Gleichung 31 und der Ausdrück für J_r in Gl. 32 lassen sich wieder unmittelbar aus dem reduzierten Querschnitt Fig. 167 entnehmen, wenn man den Teil des Steges unterhalb der Biegungsachse fortläfst.

Mit Hilfe der Gl. 27 u. 28 und 31 u. 32 läfst sich die Berechnung der Querschnittsabmessungen in bekannter Weise ausführen. Eine Einführung der allgemeinen Ausdrücke für e_2 und y_e in Gl. 31 u. 32 führt zu umständlichen Ausdrücken und mag daher hier unterbleiben.

Anwendungen.

Beispiel 1: Ein Eisen-Betonbalken von rechteckigem Querschnitt, 50 cm Breite und 200 cm Stützweite hat eine verteilte Belastung p = 30 kg f. d. lfd. cm zu tragen, wobei die Zugspannung σ_1 des Betons 18 at, die Druckspannung σ_2 desselben 45 at betragen soll. Die Eiseneinlage soll um $\beta h = 0, 1 \cdot h$ von der Zugkante des Betons abstehen. Welche Höhe h muß der Balken erhalten?

IVn. Biegungsspannungen in stabförmigen Verbundkörpern. 223

a) Graphische Lösung: Stellt man wieder die Dehnungen im Maßstabe 0,0001 = 1 mm, die Spannungen des Betons in $2^{\text{at}} = 1 \text{ mm}$, diejenigén der Eiseneinlage $10^{\text{at}} = 1 \text{ mm}$ und endlich die Z- und D-Ordinaten in 20 Einheiten = 1 mm dar, wie in Fig. 164 annähernd maßstäblich geschehen, und zeichnet die Seillinie mit einer Polweite H = 500, so erhält man folgendes:

Den Spannungsordinaten σ_1 und σ_2 entsprechen Dehnungsabscissen $\varepsilon_1 = 22$ und $\varepsilon_2 = 27 \text{ mm}$, also $\varepsilon_1 + \varepsilon_2 = 49$. Ferner wird $\varepsilon_e = \varepsilon_1 - \beta \cdot (\varepsilon_1 + \varepsilon_2)$ $= 22 - 0, 1 \cdot 49 = 17, 1 \text{ m}$ und demnach $\sigma_e = 342 \text{ st}$. Aus der Zeichnung erhält man D = 640, Z - 280, also $Z_e = D - Z = 360$. Ferner wird der Abschnitt $h_e h_2 = u = 43 \text{ mm}$. Nach Gl. 13 ist

$$\frac{p \iota^*}{8} = \frac{b h^* \cdot H \cdot u}{(\varepsilon_1 + \varepsilon_2)^2} \quad \text{und daraus}$$
$$h = l \cdot (\varepsilon_1 + \varepsilon_2) \cdot \sqrt{\frac{p}{b \cdot H \cdot u}} = 200 \cdot 49 \cdot \sqrt{\frac{30}{50 \cdot 500 \cdot 43}} = 18_{170} \text{ cm}.$$

Nach Gleichung 12 wird ferner

$$F_{e} = b h \cdot \frac{D - Z}{\sigma_{e} \cdot (\varepsilon_{1} + \varepsilon_{2})} = \frac{50 \cdot 18, 7 \cdot 360}{342 \cdot 49} = 20, 2 \text{ cm}^{2}.$$

Die Biegungsachse liegt im Abstande $e_1 = \frac{\varepsilon_1}{\varepsilon_1 + \varepsilon_2} \cdot h = \frac{22}{49} \cdot 18,7 = 8,35$ cm von der Aufsenkante der Zugseite.

b) Analytische Lösung: Nimmt man für die vorliegenden Stoffe $m = \frac{E_2}{E_1} = 2$ und $r = \frac{E_e}{E_1} = 25$, so wird mit $\beta = 0,1$ und $\alpha = \frac{\sigma_2}{\sigma_1} = \frac{45}{18} = 2,5$ nach GL 19 $F_e = \frac{50 \cdot h \cdot 2}{2 \cdot 25 \cdot (2 + 2,5)} \cdot \frac{2,5^2 - 2}{2 - 0,1 \cdot (2 + 2,5)} = 1,22h.$

Nach Gl. 20 wird

$$M = \frac{pl}{8} = \frac{50 \cdot h^2 \cdot 18}{3 \cdot 4, 5^2} \left\{ 2^2 + \frac{3}{2} \left(2, 5^2 - 2 \right) \left[2 - 0, 1 \left(2 + 2, 5 \right) \right] + 2, 5^3 \right\} = 435 h^3,$$

also $h = l \sqrt{\frac{p}{8 \cdot 435}} = 200 \cdot \sqrt{\frac{30}{8 \cdot 435}} = 18, 6$

und $F_e = 1,22 \cdot 18,6 = 22,5 \text{ cm}^2$. Die Biegungsachse ergibt sich im Abstande $e_1 = \frac{m \cdot h}{m + \alpha} = \frac{2 \cdot 18,6}{4,5} = 8,25 \text{ cm}$.

Beispiel 2: Bei Berechnung des in Beispiel 1 bezeichneten Balkens soll bei gleichbleibender Druckspannung $\sigma_1 = 45$ at der Zugwiderstand des Betons unberücksichtigt bleiben und die Eiseneinlage so angeordnet werden, dafs ihre Spannung $\sigma_e = 750$ at und ihr Abstand von der Aufsenkante der Zugseite gleich $\beta \cdot h = 0, 1 \cdot h$ wird. Nach der nahezu maßstäblich gezeichneten Fig. 164 entspricht diesem Spannungswert eine Dehnung $\varepsilon_e = 37,5$ mm, wodurch die verhältnismäßige Lage der Eiseneinlage im Querschnitt bestimmt ist. Aus dem Seileck ergibt sich mit H = 500 kg $u = h_2 h_e' = 70$. Für $\varepsilon_1 + \varepsilon_2$ erhält man

$$\frac{\varepsilon_2 + \varepsilon_e}{1 - \beta} = \frac{27 + 37, \delta}{1 - 0, 1} = 72$$

Damit wird

$$M = \frac{30 \cdot 200^2}{8} = \frac{b h^2}{(\varepsilon_1 + \varepsilon_2)^2} \cdot H \cdot u = \frac{50 \cdot h^2 \cdot 500 \cdot 70}{72^2} \text{ und } h = 20, \text{s cm}$$
und $F_e = \frac{b h \cdot D}{\sigma_e \cdot \varepsilon_1 + \varepsilon_1} = \frac{50 \cdot 20, \text{s} \cdot 640}{750 \cdot 72} = 12, \text{ss cm}^2.$

Die Biegungsachse liegt im Abstande $e_1 = \frac{\varepsilon_1}{\varepsilon_1 + \varepsilon_2} \cdot \hbar = \frac{45}{72} \cdot 20, s = 13 \text{ cm}$ von der konvexen Aufsenkante. Die Näherungsgleichung 30 ergibt mit

$$r_1 = \frac{r}{m} = \frac{25}{2} = 12,5$$
 und $\alpha_1 = \frac{\sigma_e}{\sigma_2} = \frac{750}{45} = 16,7$

 $M = \frac{30 \cdot 200^2}{8} = \frac{45 \cdot 50 \cdot h^2}{6} \cdot \frac{(1 - 0, 1) (3 \cdot 16, 7 + 2 \cdot 12, 5)}{(12, 5 + 16, 7)^2} \text{ und daraus } h = 22, 5 \text{ cm.}$

Für den Querschnitt der Einlage erhält man nach Gl. 29

$$F_e = \frac{50 \cdot 22.5}{2} \cdot \frac{12.5 (1 - 0.1)}{16.7 \cdot (12.5 + 16.7)} = 13.3 \text{ cm}^2.$$

Beispiel 3: Ein Eisen-Betonbalken von \neg -förmigem Querschnitt (Fig. 167) und 400 cm Stützweite hat f. d. lfd. cm eine-Last p = 30 kg zu tragen. Die Randspannung des Betons soll $\sigma_1 = 18$ at, $\sigma_2 = 45$ at betragen. Die Dicke b_1 des Steges werde zu 10 cm, die Breite des Flansches b zu 50 cm und die Höhe desselben $\hbar_1 = 0.25$ h angenommen. Die Höhe h des Balkens und der Querschnitt der Eiseneinlage sollen ermittelt werden.

Nachdem sich in Beispiel 1 u. 2 hinreichende Übereinstimmung zwischen dem analytischen Annäherungsverfahren und der genauen graphischen Methode ergeben hat, soll bei vorliegendem Beispiel nur ersteres angewandt werden.

Mit
$$m=2$$
, $\beta=0,1h$, $r=25$ und $\alpha=\frac{\sigma_2}{\sigma_1}=\frac{45}{18}=2,5$ wird
 $e_1=\frac{m}{m+\alpha}\cdot h=\frac{2}{4,5}h=0,45h$ und $y_e=e_1-0,1h=0,35h$.

Damit erhält man Gl. 21 $F_e = 1, 2h$ und nach Gl. 22 wird $M = \frac{30 \cdot 400^2}{8} = \frac{18 \cdot h^2}{3 \cdot 0, 45} \left\{ 10 \cdot 0, 45^3 + 3 \cdot 25 \cdot 1, 2 \cdot 0, 35^2 + 2 \cdot 50 \cdot 0, 55^3 - 2 \cdot 40 \cdot 0, 30^3 \right\}$ und daraus h = 41, 5 cm $F_e = 1, 2 \cdot 41, 5 = 50$ cm².

Ohne Rücksicht auf den Zugwiderstand des Betons wird nach Gl. 27, 28 u. 31 mit $\sigma = 750$ at $r_{c} = 12$ und $\sigma = 750$

$$e_{3} = h \cdot \frac{12, 5 \cdot 0, 9}{12, 5 + 16, 7} = 0,385 h, \quad y_{e} = h \cdot \frac{16, 7 \cdot 0, 9}{12, 5 + 16, 7} = 0,51 h \text{ und}$$

$$F_e = \frac{1}{12,5 \cdot 0,51h} \left[50 \cdot \frac{\pi}{4} \left(0,385h - 0,125h \right) + 10 \frac{\left(0,385h - 0,25h \right)^2}{2} \right] = 0,50h.$$

Damit erhält man nach Gl. 32

$$M = \frac{30 \cdot 400^2}{8} = \frac{45 h^2}{3 \cdot 0{}_{,385}} \left\{ 3 \cdot 12{}_{,5} \cdot 0{}_{,5} \cdot 0{}_{,51}^2 + 50 \cdot 0{}_{,385}^3 - 40 \cdot 0{}_{,185}^3 \right\} = 45 \cdot 6{}_{,6} h^2,$$

woraus $h = 45 \,\mathrm{cm}$ und $F_e = 0{}_{,50} \cdot 45 = 22{}_{,5} \,\mathrm{cm}^2.$

Va: Spannungen durch Kräfte in einer Symmetrieebene des Stabes. 225

Die Schubspannung τ_0 in der neutralen Schicht dicht neben den Endstützen wird

$$\tau_{0} = \frac{Q \cdot S_{r}}{b_{1} \cdot J_{r}} = \frac{Q \cdot y_{e} \cdot F_{e} \cdot r_{1}}{b_{1} \cdot 6_{5} \epsilon \cdot h^{2} \cdot 0_{3} 85 h} = Q \cdot \frac{0.51 h \cdot 0.50 h \cdot 12.5}{10 \cdot 6_{5} \epsilon \cdot 0_{3} 85 h^{3}} = \frac{0.326 \cdot Q}{h}$$
$$= \frac{0.126 \cdot 6000}{10 \cdot 6_{5} \epsilon \cdot 0_{5}} = 16.7 \text{ at} \qquad \text{Fig. 168.}$$

und daraus die Stoffanstrengung $s = 16.7 \cdot 1.25 = 21$ at. Letztere tritt als Zuganstrengung unter 45° gegen die neutrale Schicht nach der Trägermitte zu abwärts geneigt auf. Um sie zu vermindern, empfiehlt es sich,

auch in der bezeichneten Richtung einige Eisen einzulegen, wie in Fig. 168 angedeutet. Die rechtwinklig dazu wirkende Druckanstrengung von gleicher Größe ist ungefährlich.

V. Normal-, Bjegungs- und Schubspannungen durch beliebige Kräfte in einer Ebene mit der Stabachse.

a) Spannungen durch beliebige Kräfte in einer Symmetrieebene des Stabes.

Der Stab ABCD (Fig. 169) befinde sich unter der Wirkung der ihn angreifenden äußeren Kräfte im Gleichgewicht und die Mittel-

Fig. 169.

kraft R der Kräfte linksseits einer Schnittebene tt schließe mit der Stabachse den Winkel \u03c6 ein. Der Stabquerschnitt sei von beliebiger

Keck, Elastizitätslehre.

Form, aber symmetrisch zur Kraftebene bezw. Kraftlinie. (Vergl. S. 80.)

Zerlegen wir die Kraft R in ihrem Schnittpunkte a mit der Stabachse in zwei Seitenkräfte N normal und Q parallel zur Schnittebene tt, so ist

1)
$$N = R \cdot \cos \varphi$$
 und $Q = R \cdot \sin \varphi$.

Die Kraft N in der Stabachse wirkend, erzeugt im Querschnitt die überall gleiche Normalspannung

2) $\sigma = \frac{N}{F} = \frac{R \cdot \cos \varphi}{F} \quad (\text{vergl. Gl. 1 S. 49}),$

welche positiv oder negativ, d. h. eine Zug- oder Druckspannung ist, je nachdem $-90^{\circ} < \varphi < +90^{\circ}$ oder $90^{\circ} < \varphi < 270^{\circ}$ ist. Die Kraft Q erzeugt im Querschnitt tt Biegungs- und Schubspannungen. Erstere verteilen sich, wenn das Material des Stabes dem Hooke'schen Gesetze folgt, wie hier angenommen werden möge, nach linearem Gesetze über den Querschnitt, d. h. sie wachsen verhältnisgleich mit dem Abstande : von der Biegungsachse, sie erfüllen beiderseits derselben je einen Spannungskeil oc_1d_1 und oc_2d_2 Fig. 169. (Vergl. S. 81 Fig. 74.)

Die dem Biegungsmoment $M = Q \cdot x$ entsprechenden größten Randspannungen σ_1' und σ_2' sind nach Gl. 3 u. 3a S. 84

$$\sigma_1' = \frac{Q \cdot x}{J/e_1}$$
 und $\sigma_2' = \frac{Q \cdot x}{J/e_2}$

und die Spannung σ_z an beliebiger Stelle im Abstande : von der Biegungsachse

3)

$$\sigma_{z} = \sigma_{1}' \cdot \frac{z}{e_{1}} = \frac{\sigma_{2}' \cdot z}{e_{2}} = \frac{Q \cdot x \cdot z}{J} = \frac{M \cdot z}{J}$$

Beziehen wir den Stab auf ein dreiachsig rechtwinkliges Coordinatenkreuz, dessen X-Achse mit der Stabachse und dessen Z-Achse mit der Kraftlinie zusammenfällt und setzen dabei die positive Richtung der Z-Achse nach der (konvex gekrümmten) Zugseite gekehrt voraus, so stimmt das Vorzeichen von σ_z mit demjenigen von z überein.

Die im Querschnitt infolge der Querkraft $Q = R \cdot \sin \alpha$ auftretenden Schubspannungen lassen sich nach den Darlegungen S. 179-189 beurteilen und sollen daher hier nicht weiter untersucht werden.

Va. Spannungen durch Kräfte in einer Symmetrieebene des Stabes. 227

Aus dem Zusammenwirken der für alle Querschnittspunkte gleichen reinen Normalspannung $\frac{N}{F}$ (Gl. 2) und der reinen Biegungsspannungen (Gl. 3) erhalten wir nach dem Grundsatze von der Summierung der Wirkungen für einen Querschnittspunkt im Abstande z von der y-Achse (Schwerpunktsachse des Querschnittes) die Gesamtspannung

4)
$$\sigma = \frac{N}{F} + \frac{Q \cdot x \cdot z}{J}.$$

Nimmt man die Zerlegung der Kraft R im Schnittpunkte bmit der Querschnittsebene tt vor, so ergibt sich aus der Figur $x = \frac{z_n}{\operatorname{tg} \varphi}$ und daher

$$Q \cdot x = R \cdot \frac{\sin \varphi \cdot z_n}{\operatorname{tg} \varphi} = R \cdot \cos \varphi \cdot z_n = N \cdot z_n \quad \text{und damit nach Gl. 4}$$

$$\sigma = \frac{N}{F} + \frac{N \cdot z_n z}{J}.$$

Das Biegungsmoment $M = Q \cdot x$ erscheint in Gl. 4 a durch die Normalkraft N ausgedrückt, deren Angriff im Abstande z_n vom Querschnittsschwerpunkte S (also exzentrisch) erfolgt.

Für die entstehenden Spannungen σ ist es nun ersichtlich, einerlei ob das Biegungsmoment durch die Kraft Q rechtwinklig zur Stabachse mit dem Hebelsarm x, oder durch die Kraft N parallel derselben mit dem Hebelsarm z_n oder durch irgend ein Kräftepaar entsteht; maßgebend ist allein seine Größe M und sein Drehungssinn.

Denken wir uns z. B. irgend eine Normalkraft N zunächst in der Stabachse, also normal zum Querschnitt im Schwerpunkt Sdesselben wirkend, so erzeugt sie ausschiefslich die Normalspannung $\frac{N}{F}$. Verschiebt man sie um ein Maßs z_n parallel zu ihrer Anfangslage im Sinne der Figur nach unten oder oben, so entspricht das (Keck, Mechanik I, 3. Aufl. S. 135) der Hinzufügung eines positiven oder negativen Momentes $M = N \cdot z_n$. Die durch die ursprünglich zentrische Normalkraft N erzeugten Spannungen $\frac{N}{F}$ addieren sich zu den durch das Moment M hervorgerufenen $\frac{M \cdot z}{J}$ und wir erhalten allgemein

15*

4 b)
$$\sigma = \frac{N}{F} + \frac{M \cdot z}{J}.$$

Je nach dem Vorzeichen von N, M und z fallen die beiden Glieder der Gl. 4b positiv oder negativ, gleichsinnig oder ungleichsinnig aus. Ist, wie in der Figur angenommen, N positiv, d. h. eine Zugkraft, und z_n gleichfalls positiv, also auch M positiv, so sind für positive z beide Glieder der Gl. 5 positiv, für negative z dagegen das zweite negativ, d. h. im absoluten Sinne findet auf der Zugseite der Biegungsachse eine Addition und auf der Druckseite eine Subtraktion der Normal- und Biegungsspannungen statt. Mit N als Druckkraft würde das Verhältnis sich gerade umgekehrt gestalten. Immer aber findet nach Gl. 4 a, wenn Normal- und Biegungsspannungen ausschliefslich von einer positiven oder negativen Normalkraft N erzeugt werden, absolut genommen auf derjenigen Seite der Schwerpunktsachse des Querschnittes, auf welcher N angreift, eine Addition und auf der entgegengesetzten Seite eine Subtraktion der Spannungen statt.

Setzen wir in Gl. 4a u. 4b einmal $z = e_1$ und ein anderes Mal $z = -e_2$, so erhalten wir die Randspannungen

5)
$$\sigma_1 = \frac{N}{F} + \frac{N \cdot z_n}{J/e_2} = \frac{N}{F} + \frac{M}{J/e_1} \quad \text{und}$$

6)
$$\sigma_2 = \frac{N}{F} - \frac{N \cdot z_n}{J/e_2} = \frac{N}{F} - \frac{M}{J/e_1}.$$

Sieht man die nach Gl. 4 für die einzelnen Querschnittspunkte ausgerechneten Spannungen als Ordinaten senkrecht zur Querschnittsebene an, so erscheint die Gleichung selbst als Gleichung einer Ebene parallel der Y-Achse, der sog. "Spannungsebene". Querschnittspunkte von gleichem z, also auf einer Parallelen zur Y-Achse liegend, weisen gleiche Spannungen σ auf. In der Schnittlinie der Spannungs- und Querschnittsebene sind die Spannungen gleich Null; sie ist die Spannungsnullinie. Die Gleichung derselben erhält man aus Gl. 4 a mit $\sigma = 0$ zu

7)
$$z_0 = -\frac{J}{F \cdot z_n} = -\frac{a^2}{z_n},$$

worin a die große Halbachse der Zentralellipse des Querschnittes bezeichnet. (Vergl. S. 34.) Die Nullinie geht also in dem hier vorausgesetzten Angriff der äußern Kräfte im allgemeinen nicht durch den Querschnittsschwerpunkt, verläuft vielmehr im Abstande z_0 parallel zur Y-Achse (Schwerpunktsachse). Dieser Abstand läßt sich auch leicht geometrisch konstruieren, indem man (Fig. 169) Sg = a

Va. Spannungen durch Kräfte in einer Symmetrieebene des Stabes. 229

macht, g mit b, dem Schnittpunkte der Kraftrichtung mit der Querschnittsebene verbindet, und gn senkrecht gb zieht. Diese Konstruktion wie Gleichung 7 lassen leicht erkennen, daß die Nullinie nn und der Kraftangriffspunkt b stets auf verschiedenen Seiten des Schwerpunktes S liegen.

Bei der vorausgesetzten Symmetrie des Stabquerschnittes in Bezug auf die Kraftebene wird diese von der Spannungsebene senkrecht geschnitten, Gleichung 4 kann als Gleichung der Schnittlinie $c_1 c_2$ (Fig. 169) und diese selbst als geometrischer Ausdruck der Spannungen σ angesehen werden. Zieht man im Abstande $\frac{N}{E}$ von der Z-Achse zu derselben eine Parallele, so stellt diese die in allen Querschnittspunkten gleiche Normalspannung $rac{N}{E}$ dar, während die aus dem Biegungsmomente $N \cdot z_n = Q \cdot x = M$ sich ergebenden Spannungen durch die Keilflächen $c_1 o d_1$ und $c_2 o d_2$, letztere negativ gedacht, ausgedrückt erscheinen. Die Addition der Normal- und Biegungsspannungen auf der Seite des Kraftangriffspunktes b (in der Figur unterhalb der Stabachse) und die Subtraktion auf der Gegenseite führen zu den die Gesamtspannungen ausdrückenden Keilflächen nc_1f_1 und nc_2f_2 . Im allgemeinen erfüllen also auch in diesem Falle die Gesamtspannungen zwei Spannungskeile mit entgegengesetztem Spannungssinn. Eine Betrachtung der Fig. 169, a u. 169, b läfst indes erkennen, dafs, je nachdem die aus der Biegungsspannung sich ergebende Randspannung auf der Gegenseite des Kraftangriffspunktes $b \quad \sigma_2' \ge \frac{N}{E}$ wird, der Punkt *n* unterhalb oder oberhalb f_2 liegt, oder mit diesem Punkte zusammenfällt, bezw. die Nullinie nn innerhalb oder außerhalb des Querschnittes liegt oder denselben tangiert. In letzterem Falle (Fig. 169, a) entsteht nur ein Spannungskeil, alle Spannungen sind unter sich und mit der Normalkraft N gleichsinnig. Dasselbe gilt, wenn die Nullinie aufserhalb des Querschnittes liegt; der Spannungskörper erscheint aber dann als Differenz zweier Keile, als abgestumpfter Keil (Fig. 169, b).

Denkt man sich nun, um zu untersuchen, wie die Spannungsverhältnisse mit der Richtung der Mittelkraft R sich ändern, diese um ihren Schnittpunkt a mit der Stabachse allmählich gedreht, so daß ihr Richtungswinkel φ stetig von O bis 360° wächst, so bewegen sich die Punkte b und n auf der Z-Achse und zwar in

der positiven Richtung derselben so, dafs wechselweise *b* durch die Unendlichkeit und gleichzeitig die Nullinie durch den Schwerpunkt *S* des Querschnittes sich bewegt und umgekehrt, wenn *b* durch den Schwerpunkt *S*, die Nullinie durch die Unendlichkeit geht; für $z_n = \infty$ ist nach Gl. 7 $z_0 = 0$, für $z_n = 0$ $z_0 = \infty$.

In der Grenzlage für $\varphi = 0$ wird

 $N = \cos 0 R = R$, $Q = \sin 0 R = 0$, $z_n = x \cdot \text{tg } 0 = 0$, $z_0 = \infty$.

Der Kraftangriff erfolgt in Übereinstimmung mit dem unter I S. 49 behandelten Falle zentrisch, d. h. im Schwerpunkte S des Querschnittes; die Nullinie rückt in unendliche Ferne. In Gleichung 4 verschwindet mit Q = 0 bezw. $z_n = 0$ das dem Biegungsmomente $M = Q \cdot x = N \cdot z_n$ entsprechende zweite Glied und Gl. 4 a geht über in Gl. 1 S. 49; es entsteht nur Zugspannung.

Mit $\varphi = 90^{\circ}$ oder $= 270^{\circ}$ wird N=0, Q=R, $z_n = \infty$; $z_0=0$. Der Kraftangriff geht über in dem unter IV behandelten Falle (Kräfte senkrecht zur Stabachse); die Nullinie geht durch den Schwerpunkt S. In Gl. 4, 5 u. 6 verschwindet das erste der reinen Normalspannung entsprechende Glied; sie gehen über in Gl. 3 u. 3 a S. 84; es wird $\sigma_1 = \frac{M}{J/e_1}$, $\sigma_2 = -\frac{M}{J/e_2}$. Im Querschnitt herrscht jetzt nur Biegungs- und Schubspannung.

Der Grenzfall $\varphi = 180^{\circ}$ unterscheidet sich von dem $\varphi = 0$ nur dadurch, daßs $N = \cos 180^{\circ}R = -R$, also eine Druckkraft wird, und die jetzt im Querschnitt herrschende reine Normalspannung Druckspannung ist.

Bei einer Drehung der Kraft R um ihren Schnittpunkt b mit der Querschnittsebene wird für $\varphi = 90^{\circ}$ oder 270° N=0 und x=0, also auch $M=Q \cdot x=0$. Es verschwinden beide Glieder der Gl. 4-6. Der Kraftangriff geht über in den unter II S. 69 behandelten Fall reiner Schubspannung.

Besondere Beachtung verdient der Grenzfall, wo die Nullinie oben oder unten den Querschnitt berührt, z_0 gleich e_1 oder gleich — e_2 wird. Die dafür aus Gl. 7 sich ergebenden Werte für z_n nennt man die Kernweiten des Querschnittes in Bezug auf die Y-Achse; wir wollen sie mit k_1 und k_2 bezeichnen. Man erhält

8)
$$k_1 = \frac{J}{Fe_1} = \frac{a^2}{e_1}$$
 und $k_2 = \frac{J}{F \cdot e_2} = \frac{a_2}{e_2}$ und daraus

9)
$$J/e_1 = W_1 = k_1 F$$
 und $J/e_2 = W_2 = k_2 F$,

Va. Spannungen durch Kräfte in einer Symmetrieebene des Stabes. 231

wobei, da k_1, k_2, W_1 und W_2 absolute Größen sind, Vorzeichen außer Acht bleiben. Mit den Werten für J/e_1 und J/e_2 aus Gl. 9 nehmen Gl. 5 und 6 die Form an

10)
$$\sigma_1 = \frac{N}{F} + \frac{N \cdot z_n}{F \cdot k_1} = \frac{N}{F} \left(\frac{k_1 + z_n}{k_1} \right) \quad \text{und}$$

11)
$$\sigma_2 = \frac{N}{F} + \frac{N \cdot z_n}{F \cdot k_2} = \frac{N}{F} \left(\frac{k_2 - z_n}{k_2} \right).$$

Die in Gl. 8 u. 9 bestimmten Kernweiten sind, wie ersichtlich. vom Kraftangriff unabhängige reine Querschnittsgrößen. Aus Gl. 10 erkennen wir, dass die Randspannung o, auf der Seite des Kraftangriffes stets gleichsinnig ist mit N; Gleichung 11 zeigt, daß die Spannung og auf der entgegengesetzten Seite des Kraftangriffs nur solange gleichsinnig ist mit N, als $z_n \leq k_2$. Bis zu diesem Grenzwerte k_2 von z_n sind also die beiderseitigen Randspannungen und folglich alle Spannungen σ im Querschnitt gleichsinnig mit N. Tritt der Kraftangriffspunkt b auf die andere Seite des Schwerpunktes S, wird z_n negativ, so kehren sich die Vorzeichen der zweiten Glieder in Gl. 10 u. 11 um und man erkennt leicht, daßs jetzt für $z_n \leq k_1$ alle Spannungen σ mit N gleichsinnig sind. Für alle Kraftangriffe, bei denen der Angriffspunkt b beiderseits des Schwerpunktes S innerhalb der Kernweiten verbleibt, sind die Spannungen σ gleichsinnig mit N, d. h. es erzeugt eine Druckkraft N nur Druck-, eine Zugkraft N nur Zugspannungen. Überschreitet der Kraftangriffspunkt b nach der einen oder anderen Seite die Kernweite, wird absolut genommen $z_n > k_2$ oder $z_n > k_1$, so treten entgegengesetzte Spannungen ein, deren Gebiete durch die Spannungsnullinien getrennt werden.

Ict der Querschnitt in Bezug auf die Y-Achse symmetrisch, $e_1 = e_2$, so wird auch $k_1 = k_2$ (Gl. 8) und es wird

12)
$$\sigma_{1} = \frac{N}{F} \pm \frac{N \cdot z_n}{F \cdot k} = \frac{N}{F} \left(\frac{k \pm z_n}{k}\right).$$

Fig. 170.

Die in Gl. 10-12 berechneten Randspannungen lassen sich leicht auch wie folgt geometrisch konstruieren:

Ist k_1 und k_2 nach Gl. 8 bekannt, so macht man (Fig. 170) $Sk_1 = k_1$ und $Sk_2 = k_2$, errichtet in S gegen die Kraftlinie (Y-Achse)

ok2

ein Lot $SO = \frac{N}{K}$, zieht durch k_1 u. O und k_2 u. O je eine Gerade,

welche ein in *b* gegen die Kraftlinie errichtetes Lot in h_1 und h_2 schneiden. Es ist dann $b h_1 = \sigma_1$ und $b h_2 = \sigma_2$. Der Beweis ergibt sich aus der Ähnlichkeit der entstehenden Dreiecke.

Für den rechteckigen Querschnitt wird nach Gl. 8

$$k_1 = k_2 = \frac{b \cdot h^3}{12 \cdot b \cdot h \cdot \frac{h}{2}} = \frac{h}{6}$$
 und für den kreisförmigen

$$k_1 = k_2 = \frac{\pi r^4}{4 \cdot \pi \cdot r^2 \cdot r} = \frac{r}{4}.$$

Fig. 170 läfst die Veränderlichkeit der Randspannungen σ_1 und σ_2 mit z_n besonders übersichtlich erkennen. Solange $z_n > k_2$, d. h. der Punkt b unter k_2 liegt, ist der Richtungssinn von σ_2 gegen die Z-Achse entgegengesetzt demjenigen von σ_1 . Bewegt sich b gegen den Schwerpunkt S, so tritt beim Überschreiten des Punkts k_2 σ_2 auf die linke Seite der Z-Achse, geht durch Null und ändert damit seinen Richtungssinn. Fällt b mit S zusammen, so wird $\sigma_1 = \sigma_2$, alle Spannungen im Querschnitt werden einander gleich und wenn b den Punkt k_1 überschreitet, geht σ_1 durch Null, ändert seinen Richtungssinn.

Wesentlich anders gestalten sich die Gleichgewichtsverhältnisse zwischen den äufseren und inneren Kräften, wenn durch die Festigkeitseigenschaften des Stoffes

der Ausschlufs von Zugspannungen

bedingt ist. In diesem Falle ist daher eine besondere Untersuchung der Spannungsverhältnisse erforderlich.

Das Gleichgewicht der Kräfte in der Richtung der Stabachse bedingt allgemein, daß die angreifende äußere Normalkraft N entgegengesetzt gleich sei der Mittelkraft der inneren Normalspannkraft $\int \sigma \cdot dF$ und mit dieser in eine gerade Linie falle. Im Falle der Fig. 169 bestehen die inneren Spannkräfte aus einem durch den Spannungskeil nc_1f_1 dargestellten positiven Anteil $Z = \int_{0}^{\epsilon+z_0} \sigma \cdot dF$ und einem durch den Keil nc_2f_2 ausgedrückten negativen Anteil $D = \int_{0}^{\epsilon-z_0} \sigma \cdot dF$. Es muß also sein N = Z - D und je nach dem $N \gtrsim 0$ ist $Z \gtrsim D$. Die Mittelkraft der Spannkräfte Z und D, d. h. aller im Querschnitt auftretender Spannkräfte, muß wie N durch den Punkt b gehen, den man daher den "Spannungsmittelpunkt" nennt. In allen Fällen nun, wo, wie oben angenommen, der ergriffene Körper Spannkräfte Z und D verschiedenen

Va. Spannungen durch Kräfte in einer Symmetrieebene des Stabes. 233

Richtungssinnes zu leisten vermag, kann der Angriffspunkt der Mittelkraft derselben, der Spannungsmittelpunkt, aufserhalb des Querschnittes liegen, können die Spannkräfte Z und D einer Normalkraft N mit einem ideellen Angriffspunkte b aufserhalb des Querschnittes das Gleichgewicht halten.

Gewisse Stoffe, wie namentlich Mauerwerk, können einen unter allen Umständen sicheren Zugwiderstand nicht leisten und man hat daher, wenn ein sicheres Gleichgewicht zwischen den äufseren und inneren Kräften verlangt wird, die Zugspannkräfte aus der Rechnung auszuschalten. Dann versteht es sich zunächst von selbst. daß auch die angreifende Normalkraft N.nur eine Druckkraft sein darf, dafs in Fig. 169 der Winkel a zwischen 90° und 270° liegen muß. Auch muß die angreifende Normalkraft N jetzt entgegengesetzt gleich sein der widerstehenden Druckspannkraft D und mit ihr in einer Geraden liegen, bezw. durch denselben Querschnittspunkt b gehen. In Fig. 169 verschwindet der für eine Druckkraft N den Zugwiderstand darstellende Spannungskeil nc2d2 und der jetzt verbleibende einzige Spannungskeil n c, d, ändert seine Form so. dafs sein Schwerpunkt, durch den der Druckwiderstand D gerichtet ist. auf die Richtung von N fällt, N durch den Schwerpunkt des Spannungskeiles geht.

Die Nullinie, die mit dem Verschwinden des Zugwiderstandes eine gewisse Verschiebung erfährt,

trennt jetzt den Querschnitt in einen wirksamen Teil nf_1 und einen unwirksamen nf_2 (Fig. 171). Auf ihre Bestimmung muß daher der erste Schritt bei Beurteilung der entstehenden Spannungsverhältnisse gerichtet sein.

Die Nullgleichheit der zum Querschnitt senkrechten Kräfte, der angreifenden Kraft N und der widerstehenden Normalspann-

kräfte führt zu der Gleichung $N = \int d F \cdot \sigma$ und mit $\sigma = \sigma_1' \cdot \frac{z}{e}$ wird

13)
$$N = \frac{\sigma_1'}{e} \int_0^e dF \cdot z = S \frac{\sigma_1'}{e},$$

wenn man den Integralwert, der das statische Moment der wirksamen Fläche in Bezug auf die zu ermittelnde Nullinie darstellt, mit S bezeichnet.

Ist ferner z_m der Abstand der Nullinie nn von dem bekannten Spannungsmittelpunkte b, so bedingt das Drehungsgleichgewicht aller

Kräfte in Bezug auf *nn* die Momentengleichung $N \cdot z_m - \int_0^{e} \sigma \cdot dF = 0$

und, wenn man wieder $\sigma = \sigma_1' \cdot \frac{z}{e}$ setzt, $N \cdot z_m - \frac{\sigma_1'}{e} \int_0^e Fy^2 = 0$. Bezeichnet man den Integralwert, das Trägheitsmoment des wirksamen Querschnittes, in Bezug auf nn mit J und löst die Gleichung für z_m auf, so folgt unter Beachtung der Gl. 13 und der Fig. 171

$$z_m = e - t = \frac{J}{S},$$

worin t den als bekannt anzusehenden Abstand des Spannungsmittelpunktes b von der Querschnittsaußsenkante bezeichnet.

Um mit Hilfe der Gl. 14 die Nullinie bezw. deren Abstand evon der Querschnittsaufsenkante zu bestimmen, muß man die Gröfsen J und S durch e ausdrücken, was indes analytisch nur bei einigen regelmäßig geformten Querschnitten ohne weiteres möglich ist. Ist nach Gl. 14 e und S bekannt, so erhält man nach Gl. 13 die eintretende größte Spannung

$$\sigma_1' = \frac{N \cdot e}{S}.$$

Es möge nun für einige regelmäßige Querschnittsformen die Nullinie und die eintretende größte Spannung σ_1 ' ermittelt werden.

1. Das Rechteck. (Fig. 172.)

Bei dem vorausgesetzten symmetrischen Kraftangriff ist auch der wirksame Teil desselben ein Rechteck von der Breite *b* und der zunächst unbekannten Höhe *e*; die Nullinie ist senkrecht zur Kraftlinie. Es wird $J = \frac{b e^3}{3}$, $S = \frac{b \cdot c^2}{2}$, also $\frac{J}{S} = \frac{2}{3} e$ und nach Gl. 14 Va. Spannungen durch Kräfte in einer Symmetrieebene des Stabes. 235

$$e = \frac{J}{S} + t = \frac{2}{3}e + t. \text{ Somit } e = 3t \quad S = \frac{b(3t)^2}{2} = \frac{9bt^2}{2} \text{ und nach}$$

Gl. 15 $\sigma_1' = \frac{N \cdot 3t \cdot 2}{9 \cdot bt^2} = \frac{2}{3}\frac{N}{bt}.$ Fig. 172.

n

Zu dem gleichen Ergebnis kommt man übrigens auch durch die folgende Überlegung: Da die Nullinie den wirksamen Querschnitt begrenzt, so muß nach S. 230 der Kraftangriffspunkt b in der Kernweite, d. i. $\frac{e}{6}$ vom Schwerpunkte desselben liegen, also $\frac{e}{3}$ von der Querschnittskante abstehen, d. h. es muß sein $t = -\frac{e}{2}$ und e = 3t. Der Spannungskeil hat also die Breite b, die Länge 3t und die Höhe σ_1' ; sein Inhalt, die Summe aller Druckspannkräfte $\frac{b \cdot 3t}{2} \cdot \sigma_1'$ mufs gleich N und daher wie vor $\sigma_1' = \frac{2}{3} \frac{N}{h^4}$ sein.

2. Die Parabel.

Wird der wirksame Teil der Querschnittes von einer Parabel begrenzt und ist F sein Flächeninhalt, so findet man leicht

3. Der Halbkreis.

Ist der Querschnitt des Stabes ein Kreis vom Radius r und der wirksame Teil desselben ein Halbkreis, so ist

 $J = \frac{\pi}{8}r^4 = \frac{F \cdot r^2}{4}$ und $S = \frac{4}{3}\frac{r}{\pi} \cdot F$ und es muss sein $z_m = \frac{3}{16} \cdot r \pi = 0,59 r \text{ und } t = 0,41 r,$ $\sigma_1' = 2,36 \frac{N}{E}$.

Kreisabschnitte als wirksame Flächen lassen sich, wenn ihre Pfeilhöhe nur verhältnismäßig klein ist, als Parabeln behandeln. —

Für jede beliebigen Querschnittsformen symmetrisch zur Kraftebene, bezw. Kraftlinie läfst sich die Lage der den wirksamen Teil des Querschnittes begrenzenden Nullinie und die eintretende größte Druckspannung leicht wie folgt graphisch bestimmen (vergl. Fig. 171a):

Man zeichnet mit beliebiger Polweite H zu der Querschnittsfläche eine Seillinie AB, indem man die Flächenelemente als Kräfte senkrecht zur Kraftlinie wirkend ansieht, zieht durch den Angriffspunkt b der Druckkraft N eine Gerade senkrecht zur Kraftlinie bSbis zum Schnittpunkt C mit der Tangente der Seillinie in A, ferner von C aus die Gerade CD so, daß die Fläche ACE gleich wird Fläche DEG.

Dann muß die Nullinie nn durch den Punkt D gehen. Da sie außerdem bei der vorausgesetzten Symmetrie des Kraftangriffs nur senkrecht zur Kraftlinie (Z-Achse) gerichtet sein kann, so ist sie damit festgelegt. Zum Beweise hat man nach Gl. 13 den Abstand $z_m = \frac{J}{S}$. Nach S. 25 ist ferner das Trägheitsmoment J gleich dem Produkt aus der doppelten Polweite und dem Flächeninhalt F_1 des Seilliniendreiecks AFD, also $J = 2 \cdot H \cdot F_1$. Aus der Konstruktion aber folgt $Fl \cdot AFD = Fl \cdot ACDF$ und daher auch $F_1 = \frac{u \cdot z'}{2}$, also $J = H \cdot u \cdot z'$. Ferner ist das statische Moment Sder wirksamen Fläche in Bezug auf die Nullinie $nn \ S = u \cdot H$, demnach $z_m = \frac{J}{S} = \frac{H \cdot u \cdot z'}{u \cdot H} = z'$ und daher ist die durch D senkrecht zur Kraftlinie gezogene Gerade die wirkliche Nullinie.

Die Randspannung $\sigma_1' = \frac{N \cdot e}{S} = \frac{N \cdot e}{H \cdot u}$ erhält man, indem man auf der zur Z-Achse Parallelen nf_1 ni=u macht, in *i* das Lot $ik = \frac{N}{H}$ errichtet und von *n* aus durch *k* die Gerade nc_1 zieht; dann ist $\sigma_1' = f_1c_1$, denn es ist $\sigma_1' : \frac{N}{H} = e:u$, also $\sigma_1' = \frac{N}{H} \cdot \frac{e}{u}$. Va. Spannungen durch Kräfte in einer Symmetrieebene des Stabes. 237

Anwendungen.

Beispiel 1: Ein aus zwei \Box -Eisen (Fig. 174) bestehender, an dem einen Ende bei *B* drehbar fest, am andern dreh- und wagerecht verschiebbar gelagerter Balken von 2^m Länge werde in der Mitte seiner Achse bei *C* vermittelst einer unter 30^o geneigten Zugstange von einer Kraft 18000 kg ergriffen.

Die eintretenden größten Randspannungen σ_1 und σ_2 sollen berechnet werden. Die Zerlegung der angreifenden Kraft in eine lot- und wagerechte Seitenkraft ergibt für erstere 18000 · sin 30° = 9000 kg und für letztere 18000 · cos 30°=15500 kg.

Erstere Kraft ruft in den Stützpunkten A und B senkrechte Stützkräfte von je $\frac{9000}{2} = 4500 \text{ kg}$, letztere in der festen Stütze bei B eine wagerechte Stützkraft von 15500 kg hervor. Auf den Querschnitt bei C wirkt also an der Balkenhälfte BC ein Biegungsmoment $M = 4500 \cdot 100 = 450\,000\,\text{cm/kg}$ und eine zentrische Normalkraft $N = 15500\,\text{kg}$. Das Widerstandsmoment des Balkenquerschnittes sei bekannt $W = \frac{J}{e} = 900\,\text{cm}^3$. Der Reinquerschnitt gleich $100\,\text{cm}^2$. Damit ist nach Gl. 5 u. 6 S. 228

$$\sigma_{\frac{1}{2}} = \frac{N}{F} \pm \frac{M}{J/e} = \frac{15500}{100} \pm \frac{450\,000}{900} = \frac{+\,655\,\mathrm{at}}{-\,345\,\,\mathrm{s}}.$$

Bestände der Balken aus Gufseisen, so würde die Druckspannung gegenüber gröfserer Zugspannung unvorteilhaft sein. Ordnet man in solchem Falle die feste Stütze in A an, so würde der wagerechte Widerstand jetzt hier auftreten, N negativ, eine Druckkraft werden und man erhält jetzt

 $\sigma_{\frac{1}{2}} = \frac{N}{F} \pm \frac{M}{J/e} = -\frac{15500}{100} \pm \frac{450000}{900} = \frac{+345}{-655} \text{ }_{,,}$

Beispiel 2: Wird der Balken Beispiel 1 als Krahnausleger von 4,0 ^m Länge und um 60[°] gegen die Wagerechte geneigt gedacht (Fig. 175), so erhält man für eine Last von 3000 kg N = -2600 kg Q = 1500 kg, also

$$\sigma_{_{1}} = \frac{N}{F} \pm \frac{M}{J/e} = -\frac{2600}{100} \pm \frac{1500 \cdot 400}{900} = \frac{+641}{-693} \frac{M}{N}$$

Beispiel 3: Eine 4 m hohe Mauer hat seitlich einen Winddruck von 100 kg f. d. m² auszuhalten. Welche Stärke muß die Mauer erhalten, wenn die

gröfste Zugspannung in der Grundfuge nicht mehr als $\sigma_1 = 2$ at betragen soll und die Dichte γ des Mauerwerks zu 2000 kg/m³ angenommen wird.

Bei gleichmäßiger Verteilung des Winddrucks über die Mauerhöke haben wir uns dessen Mittelkraft Q in der Mitte angreifend zu denken.

Wir betrachten ein Mauerstück von der Länge 1m. Für dieses ist

 $Q = 400 \, \text{kg}$.

Das Mauergewicht stellt eine den Querschnitt der

Grundfuge angreifende negative Normalkraft dar und beträgt für 1m Länge $N = -4 \cdot x \cdot \gamma = -8000 x.$

- Das Moment des Winddruckes in Bezug auf die Grundfuge erzeugt in der linken Hälfte (Fig. 176) Druck-, in der rechten Zug-

spannungen mit den Gröfstwerten bei A und B, die negative Normalkraft N, das Mauergewicht, überall gleiche Druckspannungen. Die

Zugspannung
$$\sigma_2$$
 bei B'ist daher nach Gl. 6
 $\sigma_2 = -\frac{N}{F} + \frac{M}{J/e} = -\frac{8000 x}{x \cdot 1} + \frac{400 \cdot 2 \cdot 6}{1 \cdot x^2} = -8000 + \frac{4800}{x^2}.$
Mit $\sigma_2 = 2$ at $= 20000$ kg/m² wird danach

$$x = \sqrt{\frac{4800}{20\,000 + 8000}} = 0,41 \,\mathrm{m}.$$

Dabei ist $F = 0,_{41} \text{ m}^2$ und $J/e = \frac{0,_{41}^2}{6} \cdot 1,_0 = 0,_{285} \text{ m}^3$ und die bei A entstehende Druckspannung berechnet sich nach Gl. 5 zu

$$\sigma_1 = \frac{0.41 \cdot 4 \cdot 2000}{0.41} + \frac{400 \cdot 2}{0.385} = 36\,000 \, \text{kg/m}^2 = 3.6 \, \text{at}.$$

Soll die Zugspannung σ_2 bei B gleich Null sein, also überhaupt solche in der Fuge nicht auftreten, so erhält man die erforderliche Mauerstärke

$$x = \sqrt{\frac{4800}{0 + 8000}} = 0,_{78} \,\mathrm{m}.$$

In letzterem Falle mufs, nach S. 230, die Mittelkraft aus Q und N die Grundfuge im Abstande gleich der Kernweite, d. i. nach S. 232 $\frac{x}{6}$ von ihrem Schwerpunkt S schneiden. Man kann daher in diesem Falle die erforderliche Mauerstärke auch aus der Ahnlichkeit der Dreiecke OSK und OCN bestimmen.

Aus der Proportion $\frac{SK}{SO} = \frac{CN}{NO}$ ergibt sich mit $KS = \frac{x}{6}$, OS = 2,0, $NO = N = 4 \cdot x : 2000 \text{ kg}$ und NC = Q = 400 kg wie oben x = 0,78 m. Die Druckspannung bei A erhalten wir jetzt am einfachsten, indem wir den Inhalt des Spannungskeiles $\frac{\sigma_1 \cdot 0,78}{2}$ gleich dem Mauergewicht $N = 0,78 \cdot 4 \cdot 2000$ setzen zu $\sigma_1 = 16\,000 \text{ kg/m}^2 = 1,6 \text{ at}$, d. i. doppelt so großs, als wenn seitlich Winddruck nicht vorhanden wäre, die Mauer nur der Wirkung ihres Gewichts unterläge.

Läfst man die unsichere Zugspannung aufser Acht und verlangt nur, dafs eine gewisse Druckspannung etwa $\sigma_1' = 4$ at nicht überschritten werde, so erhält man die dann erforderliche Mauerstärke x wie folgt: Nach Gl. 15 S. 235 ist $\sigma_1' = \frac{N \cdot e}{\sqrt{S}}$ und im besondern für das Rechteck $\sigma_1' = \frac{2}{3} \frac{N}{bt}$.

Im vorliegenden Falle ist $N = 4 \cdot x \cdot \gamma = 8000 x$, $t = AK = \frac{x}{2} - KS$, $KS = OS \cdot \frac{CN}{NO} = \frac{2 \cdot 400}{N} = \frac{2 \cdot 400}{8000 x} = \frac{1}{10 x}$, also auch $t = \frac{x}{2} - \frac{1}{10 x}$. Mit diesen Werten wird $\sigma_1' = \frac{2}{3} \cdot \frac{8000 x}{\left(\frac{x}{2} - \frac{1}{10 x}\right)b}$ und daraus für b = 1,0 m

 $\sigma_{1}' = 4 \text{ at} = 40\,000 \text{ kg/m}^{2} \quad x = 0, s_{2} \text{ m}.$ Dabei wird nach obigem $t = \frac{0, s_{2}}{2} - \frac{1}{10 \cdot 0, s_{2}} = \text{rot } 0, s_{7} \text{ m} \text{ und die Nullinie liegt } e = 3t = 0, s_{1} \text{ m} \text{ von } A,$ die wirksame Fläche Fig. 177. ist gleich rot 0, s_{0} der Gesamtgrundfläche. Bei dieser geringen 400^{l} Mauerstärke hat man dann beim Eintritt des der Rechnung zu Grunde liegenden b

zu Grunde liegenden Winddruckes mit einer Öffnung der Grundfuge bei *B*, einem Lösen des Mauerkörpers von dem Fundament zu rechnen.

Die in den einzelnen Fällen eintretende Verteilung der Spannungen in der Grundfuge ist in Fig. 176*a*, *b*, und *c* dargestellt.

Beispiel 4: Ein im Grundrifs 8 m langer und 2,0 m breiter, an den Enden halbkreisförmig abgerundeter Brückenpfeiler (Fig. 177), wird in seiner Mittel-

ebene bei b im Abstande gleich 2 m von seiner Achse von einer (infolge seitlichen Winddrucks) unter 80° geneigten Kraft R = 400t getroffen. Die Randspannungen σ_1 und σ_2 in der Grundfuge, sowie die ohne Berücksichtigung der Zugspannungen auftretende größte Druckspannung σ_1' ist zu bestimmen.

Das Trägheitsmoment des Querschnittes berechnet sich zu

$$J = \frac{2 \cdot 6^3}{12} + \frac{2 \cdot \pi \cdot 1^4}{2 \cdot 4} - \left(\frac{4}{3}\frac{1}{\pi}\right)^2 \frac{2 \cdot 1^2 \pi}{2} + \left(\frac{4}{3}\cdot\frac{1}{\pi} + 3\right)^2 \cdot \frac{\pi \cdot 1^2}{2} \cdot 2 = 73_{,60} \text{ cm}^4,$$

also
$$\frac{J}{e} = \frac{73_{,24}}{4} = 18_{,25} \text{ m}^3.$$

2m=

Die Zerlegung der Kraft R ergibt eine Normalkraft N = -394^t und eine Querkraft Q = 34,st. Die Schubspannungen bleiben hier wie in Beispiel 1-3 aufser acht.

Nach Gleichung 5 und 6 S. 228 wird mit $F = 15,14 \text{ m}^2$

$$\sigma_{\underline{i}} = \frac{N}{F} \pm \frac{N \cdot z_n}{J/e} \text{ und mit } z_n = 2^{m}, N = -394 \text{ t},$$

$$\sigma_{\underline{i}} = -\frac{394}{15_{1}4} + \frac{394 \cdot 2}{18_{2}5} = -\frac{69_{2}0}{17} \frac{\text{t}}{\text{m}^2} = -\frac{6_{2}0}{17} \frac{\text{t}}{\text{t}} = -\frac{6_{2}0}{15} \frac{\text{t}}{\text$$

Bei Aufserachtlassung von Zugspannungen nehme die alsdann eintretende Nullinie die Lage nn (Fig. 177) ein. Es ist dann in Bezug auf dieselbe

$$J = \frac{(e-1)^3 \cdot 2}{3} + \frac{\pi \cdot 1^4}{2 \cdot 4} - \left(\frac{4}{3} \cdot \frac{1}{\pi}\right)^2 \frac{1^2 \cdot \pi}{2} + \frac{\pi \cdot 1^2}{2} (e - 0_{*} s_{75})^2 \text{ und}$$

$$S = \frac{(e-1)^2 \cdot 2}{2} + \frac{\pi \cdot 1^2}{2} \cdot (e^* - 0_{*} s_{75})$$

$$e - t = e - 2 = \frac{J}{S} = \frac{\frac{(e-1)^3 \cdot 2}{3} + \frac{\pi \cdot 1^4}{2 \cdot 4} - \left(\frac{4}{3} \cdot \frac{1}{\pi}\right)^2 \frac{1^2 \cdot \pi}{2} + \frac{\pi \cdot 1^2}{2} \cdot (e - 0_{*} s_{75})^2}{\frac{(e-1)^2 \cdot 2}{2} + \frac{\pi \cdot 1^2}{2} \cdot (e - 0_{*} s_{75})}$$

Die Lösung für *e* ergibt e = 5,7 m. Damit wird $S = \frac{(5,7-1)^2 \cdot 2}{2} + \frac{\pi \cdot 1^2}{2} (5,7-0,575) = 30,1$ m³

und demnach die Randspannung

$$\sigma_1' = \frac{N \cdot e}{S} = \frac{394 \cdot 5,7}{30,1} = 74,6 \text{ t/m} = 7,46 \text{ at}.$$

b) Spannungen durch Kräfte in einer beliebigen Ebene mit der Stabachse.

Wir setzen wieder Gleichgewicht der äußeren Kräfte an dem Stabe ABCD (Fig. 178) voraus und denken uns die etwa links von der Schnittebene tt angreifenden Kräfte durch ihre Mittelkraft Rersetzt. Diese schneide die Ebene des Querschnittes in b und werde hier in ihre Seitenkraft N normal zur Querschnittsebene und Q in
Vb. Spannungen durch Kräfte in einer belieb. Ebene mit der Stabachse. 241

der Richtung derselben zerlegt. N erzeugt im Querschnitt Normal-(Zug- oder Druck-) und Biegungsspannungen (vergl. S. 227), Q Schub-Erstere sollen hier untersucht werden. spannungen.

Denken wir sie uns in den einzelnen Querschnittspunkten als 22 Ordinaten senkrecht zur Schnittebene aufgetragen, so erfüllen ihre Endpunkte eine Ebene (vergl. S. 228), deren Gleichung in Bezug auf ein dreiachsiges, mit zwei Achsen X und Y in die Schnittebene fallendes Koordinatenkreuz, im allgemeinen lautet: 1)

 $\sigma = a + bx + cy.$

Darin sind a, b und c Konstanten, a und y die im allgemeinen schiefwinkligen Koordinaten irgend eines Querschnittspunktes, in welchen a die Normalspannung ausdrückt. Das Koordinatenkreuz werde so angenommen, dafs der Nullpunkt in den Schwerpunkt S des Querschnitts fällt und die Achsen X und Y einander zugeordnet sind (vergl. S. 13). Das Gleichgewicht der äufseren und inneren Kräfte am abgeschnittenen Stabteil links vom Schnitt erfordert nun, dafs die Summe aller Kräfte senkrecht zur Schnittebene, sowie die Summen ihrer Momente in Bezug auf die Achsen X und Y je gleich Null sei. Das führt bei den aus Fig. 178 ersichtlichen Bezeichnungen zu den drei Gleichungen

2) $N = \int \sigma \cdot dF = 0$.

$$N \cdot x_n - \int \sigma \cdot d F \cdot x = 0,$$

 $N \cdot y_n - \int \sigma \cdot dF \cdot y = 0.$ 4)

Keck, Elastizitätslehre.

Setzt man σ in der Form der Gl. 1 ein, so folgt

5)
$$N - \int (a+bx+cy) dF = 0,$$

ans (

6)
$$N \cdot x_n - \int (a + bx + cy) x \cdot dF = 0,$$

$$N \cdot y_n - \int (a + bx + cy) y \cdot dF = 0.$$

Bei der weiteren Entwickelung der Gl. 5-7 entstehen u. a. die Einzelintegrale $\int x \cdot dF$, $\int y \cdot dF$ und $\int xy \cdot dF$. Da der gemachten Annahme zufolge die Achsen X und Y Schwerpunktsachsen des Querschnittes und einander zugeordnet sind, so wird jeder dieser Integralwerte gleich Null. Damit erhält man aus Gl. 5

$$N = a \cdot \int dF = a \cdot F, \quad \text{d. i.} \quad a = \frac{N}{F};$$

H. 6 $N \cdot x_n = b \cdot \int x^2 dF = b \cdot L, \quad \text{also} \quad b = \frac{N \cdot x_n}{F}$

aus Gl. 7
$$N \cdot y_n = c \cdot \int y^2 dF = c \cdot J_x$$
, also $c = \frac{N \cdot y_n}{J_x}$,

worin J_x und J_y die Trägheitsmomente der Querschnittsfläche in Bezug auf die Y- und X-Achse bezeichnen (vergl. S. 9). Mit obigen Werten für a, b und c nimmt Gl. 1 die Form an

$$\sigma = \frac{N}{F} + \frac{N \cdot x_n \cdot x}{J_y} + \frac{N \cdot y_n \cdot y}{J_x}.$$

Die Einzelbeiträge zu der Spannung σ in Gl. 8 können wir uns wie folgt entstanden denken: Eine im Schwerpunkte S des Querschnitts angreifende Normalkraft N erzeugt die in allen Querschnittspunkten gleiche Spannung $\frac{N}{F}$. Läfst man eine Parallelverschiebung der Kraft in der Richtung der X-Achse um die Strecke x_n eintreten, so entspricht das dem Hinzufügen eines Momentes $N \cdot x_n$ und die dadurch in Punkten mit der Abscisse x erzeugte Biegungsspannung wird durch das zweite Glied der Gl. 8 ausgedrückt. Ebenso entsteht durch eine weitere Parallelverschiebung von N in der Richtung, bezw. parallel zur Y-Achse um die Strecke y_n das Moment $N \cdot y_n$ und in Punkten mit der Ordinaten y die durch das dritte Glied der Gl. 8 ausgedrückte Biegungsspannung.

Für die Wirkung der Momente $N \cdot x_n$ und $N \cdot y_n$ ist es wieder einerlei, ob sie durch eine Normalkraft N oder in irgend einer andern Weise entstanden sind. Lediglich ihre Größe und ihr Drehungssinn sind für ihre Wirkung bestimmend. Bezeichnet man daher

Vb. Spannungen durch Kräfte in einer belieb. Ebene mit der Stabachse. 243

 $N \cdot x_n$ drehend um die Y-Achse allgemein mit M_y , $N \cdot y_n$ drehend um die X-Achse mit M_x , so nimmt Gl. 8 die Form an

8 a)
$$\sigma = \frac{N}{F} + \frac{M_y \cdot x}{J_y} + \frac{M_x \cdot y}{J_x}.$$

Gleichung 8 u. 8a stellen das Verteilungsgesetz der Normalspannungen über den Querschnitt in allgemeinster Form dar. Sie umfassen ebensowohl mit M_x und M_y gleich Null den Fall reiner Zug- und Druckspannung, als mit N = 0 den Fall reiner Biegungsbezw. Biegungs- und Schubspannung.

Aus dem völlig gleichartigen Vorkommen der Koordinaten x_n u. x und y_n u. y in Gl. 8 erkennen wir, daß die Spannung σ , welche eine im Punkte $y_n x_n$ (b) angreifende Normalkraft N in irgend einem Punkte xy erzeugt, ebenso großs ist wie diejenige, welche durch die gleiche im Punkte xy angreifende Normalkraft im Punkte $x_n y_n$ entstehen würde.

Einen klaren Überblick über die Verteilung der Normalspannungen über den Querschnitt erhalten wir wieder durch die Kenntnis der Spannungsnullinie, deren Gleichung sich mit $\sigma = 0$ aus Gl. 8 ergibt. Es wird, wenn man noch mit N dividiert

$$0 = \frac{1}{F} + \frac{x_n \cdot x}{J_y} + \frac{y_n \cdot y}{J_x}$$

Die Lage der Nullinie ist also allein abhängig von der Lage des Angriffspunktes der Kraft N, aber völlig unabhängig von deren Größe. Wir erhalten sie am einfachsten durch Bestimmung der Stücke x_0 und y_0 , welche sie auf den Koordinatenachsen abschneidet. Nach Gl. 9 werden für

10)

y

x =

$$= 0 \begin{cases} x_0 = -\frac{J_y}{F \cdot x_n} = -\frac{a_1^2}{x_n} & \text{und für} \\ = 0 \end{cases} y_0 = -\frac{J_x}{F \cdot y_n} = -\frac{b_1^2}{y_n} \text{ (vergl. Gl. 7)}$$

a, u. b, die zugeordneten Halbachsen der Zentralellipse verstanden.

Gl. 10 drückt die schon in Gl. 7 S. 228 für einen symmetrischen Kraftangriff bekannt gewordene Beziehung zwischen dem Kraftangriffspunkte und der Nullinie allgemein für jede beliebige Richtung der Kraftebene bezw. Kraftlinie bS aus. Bewegt sich der Kraftangriffspunkt b durch die Unendlichkeit, so geht die Nullinie durch den Schwerpunkt und umgekehrt. x_0 u. x_n und y_0 u. y_n

16*

S. 228) unter

stehen in gleicher geometrischer Beziehung wie z_0 u. z_n in Fig. 169 S. 225. Die Richtungsziffer der Nullinie erhält man aus Gl. 10 zu

41)

$$\frac{y_0}{x_0} = \frac{x_n}{y_n} \cdot \frac{b_1^2}{a_1^2}.$$

Die Richtung der Nullinie steht also in ganz bestimmter Abhängigkeit von derjenigen der Kraftlinie. Ist das Achsenkreuz XY so gelegt, daß der Angriffspunkt *b* der Kraft N auf die Y-Achse fällt, so wird $x_n = 0$, und nach Gl. 11 $\frac{y_0}{x_0} = 0$, die Nullinie parallel der X-Achse. Fällt *b* auf die X-Achse, wird $y_n = 0$, so wird $\frac{y_0}{x_0} = \infty$, die Nullinie wird parallel der Y-Achse. Es ist nun immer möglich, das Achsenkreuz XY so zu wählen, daß der Kraftangriffspunkt *b* auf eine der Achsen, also die Kraftlinie mit dieser zusammenfällt. Die Nullinie ist dann also stets parallel der anderen Achse, und da die Achsen als einander zugeordnet angenommen sind, erhalten wir den Satz: Die Kraftlinie und die Nullinie weisen stets einan der zugeordnete Richtungen auf. Bei dem unter Va behandelten Falle symmetrischen Kraftangriffs kreuzen beide sich rechtwinklig und fallen mit den Querschnittshauptachsen zusammen.

Fig. 178, a gibt eine geometrische Darstellung der Spannungsverteilung und zeigt, dafs im Querschnittsschwerpunkte S, also für x = 0 und y = 0, nach Gl. 8 stets die Spannung $\frac{N}{F}$ herrscht, ein Umstand, der, wenn die Nullinie bekannt ist, ohne weiteres zur Zeichnung der Spannungskeile und zur Bestimmung der Randspannungen σ_1 und σ_2 benutzt werden kann.

Will man die Gl. 8—11 in ihrer Form unverändert auf rechtwinklige Achsen beziehen, so können dies nur die Hauptachsen des Querschnitts als einziges rechtwinkliges zugeordnetes Achsenpaar sein. In vielen Fällen, wie bei allen symmetrischen Querschnitten, wo die Hauptachsen ohne weiteres erkennbar sind, wird man sich stets mit Vorteil ihrer bedienen. Bei gewissen anderen Querschnittsformen, wie Dreiecken, Parallelogrammen u.s. w., wo schiefwinklige zugeordnete Achsen direkt erkennbar sind, kann ihre Benutzung vorteilhaft sein. Sind zugeordnete Achsen überhaupt nicht direkt erkennbar, so hat man solche nach S. 30 u. f. zu ermitteln und wird dann meistens die Benutzung der Hauptachsen vorziehen. Vb. Spannungen durch Kräfte in einer belieb. Ebene mit der Stabachse. 245

In vielen Fällen ist es zweckmäßig, das Achsenkreuz so zu wählen, daß eine der Achsen, z. B. die Y-Achse, mit der Kraftlinie zusammenfällt (Fig. 179). In Gleichung 8 wird dann $x_n = 0$ und sie geht über in

12)
$$\sigma = \frac{N}{F} + \frac{N \cdot y_n \cdot y}{J_x} \quad \text{bezw.}$$
12 a)
$$\sigma = \frac{N}{F} + \frac{M_x \cdot y}{J_x}.$$

Die Gleichungen 12 stimmen der Form nach genau mit Gl. 4 S. 227 überein und alle bezüglich der Lage der Nullinie und der Fig. 179.

Verteilung der Normalspannungen im Querschnitt aus diesen gezogenen Schlüsse (vergl. S. 228 u. 229) lassen sich auch aus Gl. 12 ziehen. Für die Nullinie erhalten wir die Gleichung

13)
$$y_0 = -\frac{J_x}{F \cdot y_n} = -\frac{a_1^2}{y_n},$$

worin a_1 zugeordnete Halbachse der Zentralellipse ist. Die Nulllinie ist also, wie weiter oben bereits erwähnt, eine Parallele zur X-Achse und besitzt demnach eine der Kraftlinie (Y-Achse) zugeordnete Richtung. Für N=0 also $y_n = \infty$ (reine Biegung) wird $y_0 = 0$; die Nullinie geht durch den Schwerpunkt; sie ist eine der Kraftlinie zugeordnete Schwerpunktsachse (vergl. S. 81) und ihr Begriff ist damit für beliebige, auch nicht symmetrische Querschnittsformen verallgemeinert.

Für die äufsersten Faserabstände $y = e_1$ und $y = -e_2$ erhalten wir die Randspannungen 14) $\begin{cases}
\sigma_1 = \frac{N}{F} + \frac{N \cdot y_n}{J_x/e_1} = \frac{N}{F} + \frac{M_x}{J_x/e_1} & \text{und} \\
\sigma_2 = \frac{N}{F} - \frac{N \cdot y_n}{J_x/e_2} = \frac{N}{F} - \frac{M_x}{J_x/e_2}.
\end{cases}$

In den bisherigen Betrachtungen sind die Koordinaten x und yaller Querschnittspunkte bezw. x_n und y_n des Angriffspunktes der Normalkraft N als in der Richtung parallel zu den Achsen gemessen angenommen; in den Gl. 3 u. 4 u. s. w. erscheinen in den Momenten $N \cdot x_n$, $\sigma \cdot d F \cdot x$ u. s. w. die Hebelsarme im allgemeinen schiefwinklig zu den Momentenachsen X und Y. Man überzeugt sich indes leicht, daß das Ergebnis durch eine schief- oder rechtwinklige Richtung derselben nicht beeinflufst wird.

Wird es z. B. in einem gegebenen Falle für zweckmäßiger gehalten, sie rechtwinklig zu den etwa schiefwinkligen Achsen zu messen, so kann man jederzeit in den Gl. 8—14 x mit $\frac{x_r}{\sin\beta}$ und y mit $\frac{y_r}{\sin\beta}$, J_x mit $\frac{J_{x_r}}{\sin^2\beta}$ u. s. w. vertauschen (vergl. S. 14 u. f.), wenn β den Koordinateuwinkel bezeichnet.

Multipliziert man beispielsweise das zweite Glied der Gl. 12 im Zähler und Nenner mit $\sin^2\beta$, so erhält man

$$\sigma = \frac{N}{F} + \frac{N \cdot y_n \cdot \sin \beta \cdot y \cdot \sin \beta}{J_x \cdot \sin^2 \beta}, \text{ d. i.}$$
(15)
$$\sigma = \frac{N}{F} + \frac{N \cdot y_n \cdot y_r}{J_{x_r}} \quad (\text{vergl. Fig. 179 } a), \text{ bezw.}$$

15a) $\sigma = \frac{N}{F} + \frac{M_{x_r} \cdot y_r}{J_{x_r}}, \text{ wobei zu bemerken ist, daß}$

das Moment $M_{x_r} = M_x \sin \beta$, rechtwinklig zur X-Achse drehend, als eines der Seitenmomente anzusehen ist, welche entstehen, wenn man das Moment M_x in der Richtung der X-Achse und senkrecht dazu in Einzelmomente zerlegt. (Vergl. Keck, Mech. I, 3. Aufl., S. 134.)

Mit $y_r = e_{1_r}$ und $y_r = -e_{2_r}$ erhält man

16)
$$\begin{cases} \sigma_1 = \frac{N}{F} - \frac{N \cdot y_{n_r}}{J_{x_r/e_{1r}}} = \frac{N}{F} + \frac{M_{x_r}}{J_{x_r/e_{1r}}}, \\ \sigma_2 = \frac{N}{F} - \frac{N \cdot y_{n_r}}{J_{x_r/e_{2r}}} = \frac{N}{F} - \frac{M_{x_r}}{J_{x_r/e_{2r}}}, \end{cases}$$

. Vb. Spannungen durch Kräfte in einer belieb. Ebene mit der Stabachse. 247

Verschwindet in Gl. 14-16 die Normalkraft N, indem sie in • unendliche Ferne rückt, also den Wert eines Kräftepaares von dem Moment M_x annimmt, so bleibt nur die dem zweiten Gliede entsprechende Biegungsspannung über. Die Nullinie geht nach Gl. 13 mit $y_n = \infty$ und $y_0 = 0$ durch den Schwerpunkt des Querschnittes.

Anwendungen.

Beispiel 1: Der Brückenpfeiler Beispiel 4 S. 239 wird, etwa durch das Zusammenwirken einer Bremskraft in der Längsrichtung der Brücke und einer Windkraft quer zu derselben mit dem Gewichte des Pfeilers und dem von ihm aufzunehmenden Brückengewicht, von einer Mittelkraft R getroffen, welche die Grundfuge im Punkt b mit den Koordinaten $x_n = 0,_{20}$ m und $y_n = 2,_{0}$ m schneidet (Fig. 180). Die Zerlegung derselben in eine Tangential- und eine

Normalkraft möge letztere zu N = -394t ergeben. Der Pfeilerquerschnitt ist F = 15, 14 m³, $J_x = 73,00$ m⁴, $J_y = 4,8$ m⁴. Damit wird nach Gl. 8 $\sigma = (-26 - 10,76 y - 16,4 \cdot x)$ t/m²

und die Nullinie schneidet auf der X-Achse

$$x_o = -\frac{26,0}{16,4} = -1,58$$
 m

und auf der Y-Achse $y_o = -\frac{26,0}{10,76} = -2,42 \text{ m}$ ab. Die Randspannungen in den der Nullinie entferntest gelegenen Punkten E_1 und E_2 mit den Koordinaten $x = \pm 0,55$, $y = \pm 3,55 \text{ m}$ berechnen sich somit zu

$$\sigma_{1} = -26, 0 \mp 10, 76 \cdot 3, 85 \mp 16, 4 \cdot 0, 85 = \begin{pmatrix} -78, 13 \\ +26, 13 \end{pmatrix} t/m^{9} = -7, 81 \text{ at} +2, 8 \quad \text{,}$$

Beispiel 2: Der in Beispiel 1 S.237 behandelte, im Querschnitt JE-förmige Stab werde aufser von der dort bezeichneten Kraft von 18000 kg, die in der

Stabmitte angreift und unter 30° gegen die wagerechte Stabachse geneigt ist, an gleicher Stelle noch von einer wagerechten Kraft senkrecht zur Stabachse in

einer Gröfse von 2000 kg ergriffen (Fig. 181). Das in Beispiel 1 S. 237 berechnete Biegungsmoment von $450\,000\,\mathrm{cm/kg}$ hat jetzt im Sinne der Gl. 8a die Bedeutung \dot{M}_x . Dazu kommt noch infolge der hinzutretenden wagerechten Kraft von 2000 kg ein Moment

 $M_y = \frac{2000 \cdot 200}{4} = 100\,000 \,\,\mathrm{cm/kg}\,.$

Die Normalkraft ist wie dort N = +15500 kg.

Die Trägheitsmomente in Bezug auf die beiden Symmetrieachsen des Querschnittes seien ermittelt zu

 $\begin{aligned} J_x = J_I = 12550 \text{ cm}^4, \\ J_y = J_{II} = 2525 \text{ cm}^3, \end{aligned}$

ebenso die Querschnittsfläche zu $F = 100 \text{ cm}^3$. Damit ist nach Gleichung 8a

$$\sigma = \left(\frac{15500}{100} + \frac{450000 \cdot y}{12550} + \frac{100000 \cdot x}{2525}\right) \text{ at und für}$$

$$x = \pm 11 \text{ cm}, \ y = \pm 14 \text{ cm}, \ \sigma_1 = 155 \pm 500 \pm 435 = \frac{+1090 \text{ at}}{-780},$$

Die Gleichung der Nullinie nn wird mit $\sigma = 0, 0 = 155 + 36 y + 39, 6 x$ und daraus $y_o = 4, 31$ cm, $x_o = 3, 92$ cm.

Beispiel 3: Ein im Querschnitt $\int -6$ förmiger Balken von den in Beispiel 5 S. 45 bezeichneten Abmessungen ruhe mit einer Stützweite von l = 2 m = 200 cman den Enden frei auf und trage eine verteilte Last q = 300 kg f. d. m = 3 kgf. d. cm. In vorliegendem Falle ist also N = 0, und es entstehen deshalb nach Gleichung 8 nur Biegungsspannungen. Nach Gl. 4 S. 101 ist das gröfste Biegungsmoment in der Kraftebene $M = \frac{3 \cdot 200^2}{8} = 15000 \text{ cm/kg}$. Wir beziehen den Querschnitt zunächst auf seine Hauptachsen, welche nach Beispiel 5 S. 45 mit der lotrecht gedachten Kraftlinie (Y-Achse Fig. 44 S. 46) Winkel α von 66° 13' bezw. 23° 47' einschließen. Die Hauptträgheitsmomente sind dort zu $J_1 = 281 \text{ cm}^4$ und $J_2 = 22_{3^5} \text{ cm}^4$ berechnet. Um Gleichung 8a anzuwenden, zerlegen wir das in der Kraftebene wirkende Biegungsmoment M nach den Richtungen der Hauptachse in Seitenmomente (vergl. Fig. 182)

$$\begin{split} M_I = & M_{x_1} = M \cdot \sin \, 66^{\,0} \, 13' = 15\,000 \cdot 0_{,92} = 13\,800 \, \mathrm{cm/kg} \quad \mathrm{und} \\ M_{II} = & M_{y_1} = M \cdot \cos \, 66^{\,0} \, 13' = 15\,000 \cdot 0_{,40} = 6000 \, \mathrm{cm/kg} \end{split}$$

und erhalten nach Gleichung 8a mit N=0

$$\sigma = \frac{M_I \cdot y_1}{J_1} + \frac{M_{II} \cdot x_1}{J_2} = \frac{13\,800 \cdot y_1}{281} + \frac{6000 \cdot x_1}{22,5}$$

Vb. Spannungen durch Kräfte in einer belieb. Ebene mit der Stabachse. 249

Man überzeugt sich leicht, dafs in den Querschnittspunkten E_1 und E_2 mit den auf die Hauptachsen bezogenen Koordinaten $x_1 = \pm 2.36$ cm und $y_1 = \pm 4.42$ cm die gröfsten Spannungen σ_1 und σ_2 auftreten. Diese werden

$$\sigma_1 = \pm \frac{13809 \cdot 4,42}{281} \pm \frac{6000 \cdot 2,36}{22,5} = \pm 215 \pm 630 = \pm 845 \text{ at}$$

Wenn die Hauptachsen und Hauptträgheitsmomente noch nicht bekannt sind, kann es zweckmäßiger sein, den Querschnitt auf ein zugeordnetes Achsenkreuz zu beziehen.

Wir benutzen nun Gleichung 15a mit rechtwinklig zur X_2 -Achse (Biegungsachse nn) gemessenen Ordinaten y_r und bezeichnen das Biegungsmoment in Bezug auf die Biegungsachse nn mit M_n , das Trägheitsmoment mit J_n .

Nach Gleichung 1 S. 32 erhält man mit $\alpha = \alpha_2 = 34^{\circ}30'$ $J_n = \cos^2 34^{\circ}20' \cdot J_y + \sin^2 34^{\circ}20' \cdot J_x - \sin 2 \cdot 34^{\circ}20' \cdot C_{xy}$ $= 0_{,856^2} \cdot 65 + 0_{,564^2} \cdot 238 - 0_{,931} \cdot 95 = 32 \text{ cm}^4.$

Das senkrecht zur Biegungsachse (Nullinie) *nn* drehende Moment erhalten wir zu $M_n = M \cdot \sin \alpha_2 = 15000 \cdot 0{,}_{564} = 8460 \text{ cm/kg}$ und daher σ für einen Querschnittspunkt mit der Ordinate y_r nach Gleichung 15 a mit N = 0 $\sigma = \frac{8460 \cdot y_r}{32}$. Für die der Nullinie fernstgelegenen Punkte E_1 und E_2 ist

 $y_r = \pm 3,_{15}$ cm und daher $\sigma_1 = \frac{8460 \cdot 3,_{15}}{32} = 835$ at, fast genau wie oben. Die Bestimmung der Biegungsachse *nn* und des Trägheitsmomentes J_n kann in bequemer Weise auch mit Hilfe des Mohr'schen Kreises (Fig. 36 bis 39) geschehen. Die Biegungsachse erhält die Richtung ST (Fig. 182) und das Trägheitsmoment J_n in Bezug auf dieselbe wird gleich dem Lote Tu auf die Tangente uv in v (Fig. 182).

c) Kern eines Querschnittes.

1. Allgemeine Begriffserklärung.

Das Gesetz für die Verteilung der Normalspannungen im Querschnitte eines von beliebigen äußeren Kräften ergriffenen Stabes ist S. 242 in Form der Gleichung $\sigma = \frac{N}{F} + \frac{N \cdot x_n \cdot x}{J_y} + \frac{N \cdot y_n \cdot y}{J_z}$, bezogen auf ein in der Querschnittsebene gelegenes zugeordnetes Achsenkreuz XY, ermittelt, worin N die im Querschnitt tätige Normalkraft der äußeren Kräfte bezeichnet. Wurde das zugeordnete Achsenkreuz so gewählt, dafs eine seiner Achsen, etwa die X-Achse, mit der Kraftlinie zusammen fiel, $x_n = 0$ wurde, so verschwand das zweite Glied und man erhielt die Gleichung $\sigma = \frac{N}{F} + \frac{N \cdot y_n \cdot y}{J_n}$, die in der Form genau mit Gl. 4 S. 227 für symmetrischen Kraftangriff übereinstimmt. Für die Spannungsnullinie ergab sich in Übereinstimmung mit Gl.7 S. 228 mit $\sigma=0$ $y_o=-\frac{J_x}{F\cdot y_n}=-\frac{a_1^2}{y_n}$. yn Denjenigen Wert k von z_n , für welchen nach Gl. 8 S. 230 $z_o = e$ (bezw. $=e_1$ oder $=e_2$) wurde, nannten wir die Kernweite. Wir wollen jetzt, wie dort für symmetrische Querschnittsform und Kraftangriff, allgemein diejenige Entfernung y_n des Kraftangriffspunktes b vom Schwerpunkte S des Querschnittes, für welche die Nullinie den Querschnitt berührt, $y_o = e$ wird (Fig. 183), die Kernweite nennen und mit k bezeichnen, während dem Kraftangriffspunkte b in dieser Lage als Kernpunkt die Bezeichnung K zukommen soll. Danach ist allgemein $k = \frac{J}{e \cdot F} = \frac{a_1^2}{e}$, unter J das Trägheitsmoment des Querschnitts in Bezug auf die der Kraftlinie KS zugeordnete Schwerachse $n_x n_x$ für im allgemeinen schiefwinklige Koordinaten, und unter a, die zugeordnete Halbachse der Zentralellipse verstanden. Lassen wir jetzt die Nullinie nn (Fig. 183) im Sinne des Pfeiles 1

Vc. Kern eines Querschnittes.

den Querschnitt umrollen, so entspricht jeder Lage derselben eine zugeordnete Richtung SK und auf derselben eine bestimmte Lage des Punktes K, der im Sinne des Pfeiles 2 fortschreitend eine Linie, die sogen. "Kernlinie", beschreibt. Einer ganzen Umrollung

des Querschnittes durch die Nullinie nn entspricht ein ganzer Umlauf des Kernpunktes K der geschlossenen Kernlinie. Den von der Kernlinie umschlossenen Teil des Querschnittes nennen wir den "Kern" desselben. Konkav gekrümmte Teile des Querschnittsumfanges oder gerade Seiten an einspringenden Winkel werden beim Umrollen der Nullinie nicht tangiert. Vergl. Fig. 183 die Linie $n_1 n_1$.

Liegt danach der Angriffspunkt einer Normalkraft N an irgend einer Stelle auf der Kernlinie, dem Kernumfange des Querschnitts, so berührt die Nullinie den Querschnitt und überall innerhalb desselben herrscht mit der Normalkraft N gleichsinnige Spannung, welche verhältnisgleich mit der Entfernung von der Nullinie zunimmt und in ihrer Gesamtheit einen Spannungskeil bildet (vergl. Fig. 169a). Bewegt sich der Kraftangriffspunkt b vom Kernumfange nach dem Schwerpunkte des Querschnittes, so rückt die Nullinie

vom Querschnittsumfange ab in die unendliche Ferne, die Spannungen bleiben durchweg gleichsinnig mit der Normalkraft N, erfüllen in ihrer Gesamtheit einen abgestumpften Keil (vergl. Fig. 169,b), dessen Keilflächen mehr und mehr, und in dem Augenblicke völlig parallel werden (gleichmäßige Spannungsverteilung), wo der Kraftangriffspunkt b mit dem Schwerpunkt S zusammenfällt. Tritt der Kraftangriffspunkt b aus dem Kern heraus, so schneidet die Nullinie den Querschnitt, beiderseits derselben entstehen zueinander ungleichsinnige Normalspannungen, je in ihrer Gesamtheit einen Spannungskeil bildend (vergl. Fig. 169 und 178), wobei die Spannungen auf der Seite der Normalkraft dieser gleichsinnig sind.

2. Bestimmung des Kernes durch Zeichnung.

Für eine zeichnerische Bestimmung des Kernes bieten die Gl. 10 S. 243 $y_o = -\frac{a_1^2}{y_n}$ und $x_o = -\frac{b_1^2}{x_n}$ den erforderlichen Anhalt. Die dem zu Grunde gelegten zugeordneten Achsenpaare entsprechenden Halbachsen der Zentralellipse erhalten wir zu $a_1 \left(= \sqrt{\frac{J_x}{E}}\right)$ und $b_1\left(=\sqrt{\frac{J_\nu}{E}}\right)$ (vergl. S. 36) als mittlere Proportionalen zwischen den Koordinaten y_n bezw. x_n des Kraftangriffspunktes b und dem Abschnitte y_o bezw. x_o , welche die Nullinie auf den Koordinatenachsen abschneidet (vergl. Fig. 178). Danach läßt sich bei gegebener Nullinie der zugehörige Kraftangriffspunkt leicht bestimmen und Man kann dabei den Querschnitt auf ein beliebiges umgekehrt. zugeordnetes Achsenpaar beziehen; hier möge er, wie meist üblich, auf seine Schwerpunktshauptachsen I, II (Fig. 184) bezogen werden. Die Zentralellipse des Querschnitts habe die aus der Figur ersichtliche Lage. nn sei die gegebene Nullinie, zu welcher der Kraftangriffs- bezw. Kernpunkt K zu bestimmen ist. Wir machen AS = a senkrecht zur Hauptachse II und BS = b senkrecht zur Hauptachse I, verbinden A mit C und B mit D und ziehen $AC_1 \perp AC$ und $BD_1 \perp BD$. Dann sind $C_1S = y_k$ und $D_1S = x_k$ die Koordinaten des Kraftangriffspunktes K, der damit gefunden ist. Die für die Zeichnung des Kernes wichtigen Punkte A und B wollen wir als "Festpunkte" bezeichnen. Berührt die Nullinie nn den Querschnitt, so ist K ein Kernpunkt. In gleicher Weise läßt sich eine beliebige Anzahl von Punkten der Kernlinie und damit also diese selbst bestimmen. Durch das umgekehrte Verfahren läfst sich ohne weiteres auch zu gegebenen Kraftangriffspunkten K die zugehörige Nullinie und damit die Umhüllungslinie des Kernes bestimmen.

Da jede in K angreifende Kraft in allen Punkten K_1 der Geraden nn die Spannung Null erzeugt, so bringt nach dem

auf S. 243 ausgesprochenen Satze auch jede in irgend einem Punkte K_1 der Geraden nn angreifende Normalkraft in K die Spannung Null hervor. Die dem Punkte K_1 als Kraftangriffspunkt entsprechende Nullinie muß also durch K gehen. Bewegt sich K_1 auf der Geraden nn, so entspricht jeder Lage desselben bezw. jeder Richtung der Kraftlinie K_1S eine bestimmte Richtung der Nullinie, diese schwingt dann also gleichzeitig um den Punkt K, beschreibt einen Strahlenbüschel mit dem Mittelpunkt K. Umgekehrt, ist n_1n_1 die einem bestimmten Punkte K_1 der Linie nn

zukommende Nullinie, so bringt jede in irgend einem Punkte K der Geraden n_1n_1 angreifende Kraft in K_1 die Normalspannung Null hervor, bewegt K als Angriffspunkt sich auf der Geraden n_1n_1 , so schwingt die Nullinié nn um den Punkt K_1 . Ist daher K_1 etwa Eckpunkt eines vieleckigen Querschnitts, so ist n_1n_1 die demselben entsprechende Kernseite; ist die Nullinie nn zugleich Seite des Querschnitts, so ist der zugehörige Angriffspunkt K Eckpunkt des Kernes. Jedem Eckpunkte eines vieleckigen Querschnitts entspricht also eine geradlinige Begrenzung des Kerns, eine Kernseite und jeder Seite des Querschnitts ein Eckpunkt des Kerns. Schwingt die Nulllinie um die Eckpunkte 1, 2, 3... (Fig. 186-188) eines Querschnitts, so beschreibt der ihr entsprechende Angriffspunkt K die zugehörigen Kernseiten I', II', III'...

Umgekehrt, jedem Eck- oder Umfangspunkte des Querschnitts als Kraftangriffspunkt entspricht eine den Kern berührende Gerade bezw. eine Kernseite als Nullinie. Bewegt sich der Angriffspunkt K_1 auf einer Seite des Querschnitts, bezw. auf seinem etwa gekrümmten Umfange, so schwingt die Nullinie um den ihr entsprechenden Eckpunkt des Kerns bezw. sie umrollt den Kern des Querschnitts.

Daraus ergeben sich zwei in ihrer Anwendung von einander unabhängige Regeln zur Bestimmung des Kerns, nämlich

- 1. Man bestimmt nach Anleitung der Fig. 184 für eine hinreichende Anzahl von den Querschnitt
- berührenden Nullinien, bei geradlinig begrenzten Querschnitten für jede Querschnittsseite (ausschliefslich jedoch der an etwa einspringenden Winkeln gelegenen) je den zugehörigen Kraftangriffspunkt oder
- 2. man bestimmt durch Umkehrung des Verfahrens Fig. 184 für eine hinreichende Zahl von Umfangspunkten des Querschnittes, bei geradlinig begrenzten Querschnitten für jeden Eckpunkt (ausschliefslich der Scheitelpunkte etwa einspringender Winkel) als Kraftangriffspunkt die zugehörige Nullinie.

Vc. Kern eines Querschnittes.

Fallen bei Anwendung der zuerst genannten Regel für irgend eine Lage der Nullinie die Schnittpunkte C und D der Nullinie nnmit den Achsen nicht auf die Zeichenfläche, so kann man sich die Nullinie auf einen Bruchteil etwa $\frac{1}{n}$ ihrer Entfernung vom Schwerpunkte S parallel an diesen herangerückt denken, so dafs auch die Schnittpunkte C und D in die Entfernung $\frac{CS}{n}$ und $\frac{DS}{n}$ von Srücken. Die entsprechenden Abschnitte C_1S und D_1S auf der Gegenseite der Achsen fallen dann n mal so groß aus und sind daher gleich den nfachen Koordinaten des der wirklichen Nullinie entsprechenden Kernpunktes K; man erhält somit diese selbst zu

$$y_k = \frac{C_1 S}{n}$$
 und $x_k = \frac{D_1 S}{n}$.

Indem die Nullinie n_1n_1 (Fig. 184) von der Lage $n_1'n_1'$ in die Lage $n_1''n_1''$ schwingt, beschreibt der zugehörige Angriffspunkt K_1 das begrenzte Stück CD der dem Punkte K entsprechenden Nullinie; macht n_1n_1 eine ganze Umdrehung um K, so beschreibt K_1 die unbegrenzte Gerade nn als Nullinie. Schwingt n_1n_1 durch die Richtung KS, so durchschreitet K_1 die Unendlichkeit. Ebenso verhält es sich mit der Bewegung des Punktes K auf der Geraden n_1n_1 , wenn die Nullinie nn sich um K dreht.

3. Bestimmung des Kernes durch Rechnung.

Die Anwendung des zuvor erläuterten Verfahrens zur zeichnerischen Bestimmung des Kernes setzt die vorherige Ermittelung eines zugeordneten Achsenpaares, etwa der Hauptachsen, und der darauf bezogenen Trägheitsmomente, bezw. der entsprechenden Halbachsen a und b der Zentralellipse voraus. In nachstehendem wollen wir, von einem beliebigen bequem gelegenen rechtwinkligen Achsenkreuz ausgehend, ein rechnerisches Verfahren zur Bestimmung des Kernes herleiten.

In Fig. 185 sei K ein der Nullinie nn entsprechender Kernpunkt. Dann ist bei den aus der Fig. ersichtlichen Bezeichnungen nach S. 250

$$k = \frac{J_n}{F \cdot e},$$

1)

wenn unter J_n das auf die der Nullinie nn parallele Schwerachse

255

n,n, bezogene Trägheitsmoment des Querschnittes für schiefwinklig

(parallel der Kraftlinie kk) gemessene Koordinaten verstanden wird. Ist nun XY irgend ein rechtwinkliges Achsenkreuz und schliefsen die einander zugeordneten Schwerachsen kk und nana mit der X-Achse die Winkel α_k und α_n ein, so ist nach Gl. 1 S. 32 das Trägheitsmoment $J_{n_{\star}}$ in Bezug auf die n.n. für rechtwinklig gemessene Abstände

4)

5)

$J_{n_x} = \cos^2 \alpha_n \cdot J_x + \sin^2 \alpha_n \cdot J_y - 2 C \cdot \sin \alpha_n \cos \alpha_n,$

worin J_x , J_y und C die Flächenmomente zweiter Ordnung des Querschnittes in Bezug auf das Achsenkreuz XY sind. Das Trägheitsmoment J_n für schiefwinklige Koordinaten im Achsenkreuz $n_s n_s$, kk erhält man nach S. 14 zu

3)
$$J_n = \frac{J_{n_r}}{\sin^2 \beta} = \frac{\cos^2 \alpha_n \cdot J_x + \sin^2 \alpha_n \cdot J_y - 2C\sin \alpha_n \cos \alpha_n}{\sin^2 (\alpha_k - \alpha_n)}$$
$$= \frac{\cos \alpha_n (J_x \cdot \cos \alpha_n - C\sin \alpha_n) - \sin \alpha_n (C\cos \alpha_n - J_y \sin \alpha_n)}{\sin^2 (\alpha_k - \alpha_n)}.$$

Zwischen den Neigungswinkeln α_k und α_n des zugeordneten Achsenpaares $n_k n_s$ und k k besteht nach Gl. 3 S. 43, wenn man α_1 mit α_n , α_2 mit α_k vertauscht, die Beziehung

$$\operatorname{tg} \cdot \alpha_k = \frac{\sin \alpha_k}{\cos \alpha_k} = \frac{J_x - \operatorname{tg} \alpha_n C}{C - J_y \operatorname{tg} \alpha_n} = \frac{J_x \cdot \cos \alpha_n - C \cdot \sin \alpha_n}{C \cos \alpha_n - J_y \cdot \sin \alpha_n}$$

Unter Beachtung der Gl. 4 läßt sich Gl. 3 in die Form bringen

$$J_n \stackrel{*}{=} \frac{J_x \cos \alpha_n - C \cdot \sin \alpha_n}{\sin (\alpha_k - \alpha_n) \sin \alpha_k} \cdot$$

Sind nun x_k und y_k die rechtwinkligen Koordinaten des Kernpunktes K, x und y diejenigen irgend eines Punktes P der Nulllinie, so erhält man aus der Figur leicht

6)
$$\begin{cases} y_k = -k \cdot \sin \alpha_k & \text{und} \\ x_k = -k \cdot \cos \alpha_k; \end{cases}$$

ferner $y = e \sin \alpha_k + x \cdot tg \alpha_n - e \cos \alpha_k \cdot tg \alpha_n$ und daher

7)
$$e = \frac{y \cdot \cos \alpha_n - x \sin \alpha_n}{\sin (\alpha_k - \alpha_n)}$$

Aus Gleichung 1, 5, 6 und 7 ergibt sich

8)
$$y_k = -\frac{1}{F} \cdot \frac{J_x - C \operatorname{tg} \alpha_n}{y - x \cdot \operatorname{tg} \alpha_n}; \quad x_k = -\frac{1}{F} \cdot \frac{C - J_y \cdot \operatorname{tg} \alpha_n}{y - x \cdot \operatorname{tg} \alpha_n}.$$

Für Winkel $\alpha_n = 90^{0}$ erscheinen die Koordinaten y_k und x_k in der unbestimmten Form \mathfrak{B} . Für diesen Fall bringt man Gl. 8 durch Division im Zähler und Nenner mit tg α_n auf die Form

8a)
$$y_k = -\frac{1}{F} \cdot \frac{J_x \cdot \cot g \, \alpha_n - C}{y \cdot \cot g \, \alpha_n - x}, \quad x_k = -\frac{1}{F} \cdot \frac{C \cot g \, \alpha_n - J_y}{y \cot g \, \alpha_n - x}.$$

Die Gleichungen 8 ermöglichen für eine beliebige durch ihren Richtungswinkel α_n und die Koordinaten eines ihrer Punkte gegebene Nullinie den zugehörigen Kernpunkt zu bestimmen. In den Grenzfällen $\alpha_n = 0$ und $\alpha_n = 90^{\circ}$ werden $y_k = -\frac{J_x}{F \cdot y}$ und $w_k = -\frac{C}{F \cdot y}$, bezw. $y_k = -\frac{C}{F \cdot x}$ und $w_k = -\frac{J_y}{F \cdot x}$.

Um für einen gegebenen Punkt K_1 des Querschnittsumfanges die zugehörige Kernseite n_1n_1 zu bestimmen, sehen wir diese als zum Kraftangriffspunkt K_1 gehörige Nullinie an und berechnen die Abschnitte x_o und y_o , welche sie auf den Achsen X und Y abschneidet. Vertauscht man in den Gl. 8 die Koordinaten y_k und x_k mit den gegebenen Koordinaten y_{k_1} und x_{k_1} des Umfangspunktes K_1 und α_n mit α_{n_1} , so erscheinen x und y als laufende Koordinaten der zugehörigen Kernseite. Für x = 0 erhält man aus der ersten Gl. 8

9)
$$\begin{cases} y_o = -\frac{1}{F} \cdot \frac{J_x - C \operatorname{tg} \alpha_{n_1}}{y_{k_1}} & \text{und für } y = 0 \text{ aus der zweiten Gl.} \\ x_o = -\frac{1}{F} \cdot \frac{J_y \operatorname{tg} \alpha_{n_1} - C}{x_{k_1} \operatorname{tg} \alpha_{n_1}} \end{cases}$$

Keck, Elastizitätslehre.

257

.. 17

Nun ist nach Gl. 3 S. 47, wenn man α_2 mit α_{n_1} und α_1 mit α_{k_1} vertauscht, tg $\alpha_{n_1} = \frac{J_x - C \cdot \text{tg } \alpha_{k_1}}{C - J_y \cdot \text{tg } \alpha_{k_1}}$ und da tg $\alpha_{k_1} = \frac{J_{k_1}}{x_{k_1}}$, tg $\alpha_{n_1} = \frac{J_x \cdot x_{k_1} - C_{k_1}}{C \cdot x_{k_1} - J_y \cdot y_{k_1}}$. Damit nehmen die Gl. 9 die Form an 10) $\begin{cases}
y_o = -\frac{1}{F} \frac{C^2 - J_x \cdot J_y}{C \cdot x_{k_1} - J_y \cdot y_{k_1}}, \\
x_o = -\frac{1}{F} \frac{C^2 - J_x \cdot J_y}{C \cdot y_{k_1} - J_x \cdot x_{k_1}}
\end{cases}$

4. Kerne häufiger vorkommender einfacher Querschnitte.

Der Kreis: Je zwei sich rechtwinklig schneidende Mittelpunktsachsen sind Hauptachsen. Nach S. 255 Gl. 1 ist $k = \frac{J}{F \cdot e}$. Für alle Achsrichtungen ist $J = \frac{\pi \cdot r^4}{4}$, $F = \pi \cdot r^2$, e = r. Der Kern ist also ein Kreis von Radius $k = \frac{r}{4}$.

Der Kreisring: Es sei der äufsere Radius R, der innere r. Dann ist für alle Achsrichtungen

Für r=0 (Vollkreis) wird wie vor $k=\frac{R}{4}$. Mit wachsendem r wächst auch k und erreicht seinen Größtwert für r=R (unendlich dünner Ring); es wird dann $k=\frac{R}{2}$. Für den Kreisring ist also

$$\frac{R}{4} \leq k \leq \frac{R}{2}.$$

Fig. 186.

Das Rechteck (Fig. 186): Die den Seiten als Nullinien entsprechenden 4 Kernpunkte K_1, K_2 u. s. w. liegen auf den rechtwinklig zu den Seiten gerichteten Schwerachsen, welche Hauptachsen sind. Der Kern ist ein Parallelogramm. Die Kernweiten in beiden Richtungen sind $k_h = \frac{J}{F \cdot e} = \frac{dh^3}{12 \cdot d \cdot h \cdot h/2} = \frac{h}{6}$ und $k_d = \frac{h d^3}{12 \cdot dh \cdot d/2} = \frac{d}{6}$. Die Richtungsziffer der Kernseiten ist gleich $k_h: k_d = \frac{h}{6}: 6 = h: d;$ sie sind also parallel den Diagonalen.

Das Dreieck (Fig. 187): Jede Verbindungslinie (CD) eines Eckpunktes mit der Mitte der gegenüberliegenden Seite (AB) bildet mit der dieser Seite parallelen Schwerpunktsachse ein zugeordnetes Achsenpaar. Der der Seite AB als Nullinie entsprechende Kernpunkt K_1 muß also auf der CD liegen. Den Abstand desselben vom Schwerpunkte S, die Kernweite R_1 , erhalten wir zu $k_1 = \frac{J}{F \cdot e}$, worin J das Trägheitsmoment in Bezug auf die zur AB parallelen Schwerpunktsachse, nach S. 21 $J = J_x = \frac{Fl^2}{13}$, l = CD und $e = \frac{1}{3}l$ ist. Daraus folgt $k_1 = \frac{l}{6}$. Da somit $DK_i = e + k_1 = \frac{1}{3}l + \frac{l}{6} = \frac{l}{2}$ ist, so liegt K_1 in der Mitte von CD. In gleicher Weise erhält man die den Seiten BC und AC entsprechenden Kernpunkte K_2 und K_3 .

I-Querschnitt (Fig. 188): Die den Querschnitt umrollende Nullinie schwingt um die vier äufseren Eckpunkte; jedem derselben entspricht eine Kernseite; der Kern ist ein symmetrisches Viereck, ein Parallelogramm und die Kernweiten sind

$$k_h = \frac{J_F}{F \cdot h/2}$$
 und $k_d = \frac{J_H}{F \cdot d/2}$.

Mit $h = 30^{\text{ cm}}$, $d = 14^{\text{ cm}}$, $J_I = 12500^{\text{ cm}^4}$, $J_{II} = 917^{\text{ cm}^4}$ und $F = 82^{\text{ cm}^2}$ wird $k_k = 10,2^{\text{ cm}}$ und $k_d = 1,6^{\text{ cm}}$.

Pfeilerquerschnitt (Fig. 189): Die Nullinie dreht sich um die Eckpunkte 1-8; jedem derselben entspricht eine Kernseite. Der Kern ist ein symmetrisches Achteck. Die Symmetrieachsen sind Hauptachsen. Es ist $J_x = J_I = \frac{1 \cdot 4^3}{12} + \frac{2 \cdot 0.5 \cdot 2^3}{12} = 6^{m^4}$ und $J_y = J_{II} = \frac{2 \cdot 2^3}{12} + \frac{2 \cdot 1^3}{12} = 1.5^{m^4}, F = 6^{m^2}.$

Die den Querschnittsseiten I und V sowie III und IV als Nullinien entsprechenden Kernpunkte 1' und 5' bezw. 3' und 7'

17*

liegen auf den Hauptachsen. Für erstere erhält man aus Gl. 8 mit C=0, $\alpha_n=0$, $tg \alpha_n=0$ und $y = \pm 2,0$ die Ordinate $y_k = \pm \frac{1}{6} \cdot \frac{6}{2} = \pm 0,50^{\text{m}}$ und für letztere Fig. 189. aus Gl. 8a mit $\alpha_n = 90^\circ$, cotg $\alpha_n = 0$, $x = \pm 1,0^{\text{m}}$, die Abscisse VШ $x_k = \pm \frac{1}{6} \cdot \frac{1,5}{1} = \pm 0,25 \text{ m}.$ Für den der Nullinie II entsprechenden Kernpunkt 2' erhalten wir aus Gl. 8 Ш mit tg $\alpha_n = \frac{2}{1} = 2$ und (für Punkt 1) VII9m $y = 2^{m}, x = -0.5^{m}$ die Koordinaten 0.5% 101 05 $y_h = -\frac{1}{6} \cdot \frac{6}{2 - (-0.5 \cdot 2)} = -0.33^{\text{m}}$

$$x_k = -\frac{1}{6} \left(\frac{-1.5 \cdot 2}{2 - (-0.5 \cdot 2)} \right) = +0.166^{\text{m}}$$

In gleicher Weise erhält man für die Nullinien IV, VI und VIII die Kernpunkte 4', 6' und 8' mit den absolut genommen gleichen Koordinaten. Für die dem Eckpunkte 1 mit den Koordinaten $y=2^{m}$ und $x=-0.5^{m}$ entsprechende Kernseite I' erhält man nach Gl. 10 die Abschnitte auf den Koordinatenachsen

$$y_{o} = -\frac{1}{F} \left(\frac{0 - J_{x} \cdot J_{y}}{0 - J_{y} \cdot y_{k_{1}}} = -\frac{1}{6} \cdot \frac{-6}{-2} = -0.5^{\text{m}} \text{ und} \right)$$

$$x_{o} = -\frac{1}{F} \left(\frac{0 - J_{x} \cdot J_{y}}{0 - J_{x} \cdot x_{k_{1}}} = -\frac{1}{6} \cdot \frac{-1.5}{0.5} = +0.5^{\text{m}}.$$

_ Querschnitt (Fig. 190): Die Nullinie schwingt um die Eckpunkte 1, 2, 3, 4, 5 und 6; der Kern ist ein unregelmäßiges Sechseck.

In Bezug ein rechtwinkliges Achsenkreuz XY ist in Beispiel 5 S. 45 für den dort angenommenen Querschnitt ermittelt $J_x = 238$ cm⁴. $J_{\nu} = 65^{\text{ cm}^4}, \ C = 95^4, \ F = 16,4^{\text{ cm}^2}.$

Für die Seite I als Nullinie ist $\alpha_n = 0$, tg $\alpha_n = 0$. Mit $\dot{x} = 0$ und y = 5 cm folgt aus Gl. 8

$$y_{k} = -\frac{1}{16,4} \frac{238 - 0}{5} = -2,9 \text{ cm},$$
$$x_{k} = -\frac{1}{16,4} \frac{95}{5} = -1,16 \text{ cm}.$$

Für die Seite II ist tg $\alpha_n = \frac{9}{4.2} = 2,15$ und demnach mit y = 5 cm, x = -0.4 cm die Koordinaten des zugehörigen Kernpunktes $y_{k} = -\frac{1}{16,4} \cdot \frac{238 - 95 \cdot 2,15}{5 - (-0,4 \cdot 2,15)} = -0,354 \text{ cm},$ $x_{k} = -\frac{1}{16,4} \cdot \frac{95 - 65 \cdot 2,15}{5 - (-0,4 \cdot 2,15)} = +0,47 \text{ cm}.$ Fig. 190. ++ 5cm Tem 8cm +X icm Л 3 >08th 4 4,2

Für die Seite III ist $\alpha_n = 90^{\circ}$, cotg $\alpha_n = 0$ und nach Gl. 8 a mit $y = -5^{\circ m}$, $x = -4.6^{\circ m}$

$$y_{k} = -\frac{1}{16,4} \cdot \frac{-95}{4,6} = +1,26 \text{ cm}$$
$$x_{k} = -\frac{1}{16,4} \cdot \frac{-65}{4,6} = +0,86 \text{ cm}.$$

Für die den Seiten IV - VI entsprechenden Kernpunkte ergeben sich absolut gleiche Koordinaten mit entgegengesetzten Vorzeichen.

Es mögen hier noch die Abschnitte y_o und x_o berechnet werden, welche die dem Eckpunkte 1 entsprechende Kernseite auf den Koordinatenachsen abschneidet.

Mit
$$y_{k_1} = 5$$
 cm und $x_{k_1} = -0.4$ cm wird nach Gl. 10
 $y_o = -\frac{1}{16.4} \cdot \frac{95^2 - 238 \cdot 65}{-95 \cdot 0.4 - 65 \cdot 5} = -1.08$ cm und
 $x_o = -\frac{1}{16.4} \cdot \frac{95^2 - 238 \cdot 65}{95 \cdot 5 + 238 \cdot 0.4} = 0.69$ cm.

Unsymmetrischer Pfeilerquerschnitt (Fig. 191): Die Schwerpunktshauptachsen des Querschnitts und die halben Achsen a und b der Zentralellipse seien nach dem im ersten Abschnitt S. 30-38 entwickelten Regeln bereits ermittelt.

Die Bestimmung des Kernes soll durch Zeichnung geschehen. Wir machen AS=a und BS=b und bestimmen nach Anleitung der Fig. 184 (Regel 1 S. 254) für die Seiten I und III die Kernpunkte 1' und 3', ebenso für die Seiten II und V die Kernpunkte 2' und 5'. Da hierbei die Schnittpunkte der Seiten II und V mit der Hauptachse I nicht auf das Zeichenblatt fallen, so sind die Seiten in die halbe Entfernung von S parallel verschoben und in dieser Lage mit $\frac{II}{2}$ und $\frac{V}{2}$ bezeichnet (vergl. S. 255 n=2).

Da dies Verfahren bei der mit der Hauptachse II fast parallelen Seite IV nicht wohl anwendbar ist, so bestimmt man zweckmäßig nach der Regel 2 S. 254 zu den Querschnittseckpunkten 3 und 4 die Kernseiten III' und IV'. Diese bestimmen dann den Kernpunkt 4' und müssen, wenn die Zeichnung genau ausgefallen ist, durch die schon bestimmten Kernpunkte 3' und 5' gehen.

5. Benutzung des Kernes zur Bestimmung der Normalspannungen.

Nach Gl. 12 S. 255 ist die durch eine in einem Querschnittspunkte *b* angreifende Normalkraft *N* in irgend einem Querschnittspunkte erzeugte Normalspannung $\sigma = \frac{N}{F} + \frac{N \cdot y_n \ y}{J_x}$, darin bedeutet y_n die Ordinate des Kraftangriffspunktes *b*, *y* diejenige des Punktes, in welchem die Spannung σ auftritt, bezogen auf ein zugeordnetes Achsenkreuz, dessen *Y*-Achse mit der Kraftlinie *b S* zusammenfällt, und J_x das Trägheitsmoment des Querschnittes in Bezug auf die *X* Achse für parallel den Achsen gemessene Koordinaten.

263

Für
$$y = e_1$$
 und $y = -e_2$ ergeben sich die Randspannungen
 $\sigma_1 = \frac{N}{F} + \frac{N \cdot y_n}{J_{x/e_1}} \quad \sigma_2 = \frac{N}{F} - \frac{N \cdot y_n}{J_{x/e_2}}.$

Nach den Ausführungen auf S. 230 und S. 250 besteht nun zwischen den Kernweiten in der Richtung der Kraftlinie (Y-Achse), den äufsersten Faserabständen e_1 und e_2 , dem Trägheitsmoment J_x und der Querschnittsfläche F die Beziehung

$$k_1 \cdot F = \frac{J_x}{e_1}$$
 und $k_2 \cdot F \Rightarrow \frac{J_x}{e_2}$ (vergl. Fig. 192).

Die Widerstandsmomente in der Richtung der Kraftlinie sind also $W_1 = k_1 F$ und $W_2 = k_2 F$. Damit erhält man die Randspannungen zu

11)

 $\begin{cases} \sigma_1 = \frac{N}{F} + \frac{N \cdot y_n}{W_1} = \frac{N}{F} \left(\frac{k_1 + y_n}{k_1} \right) \quad \text{und} \\ \sigma_2 = \frac{N}{F} - \frac{N \cdot y_n}{W_2} = \frac{N}{F} \left(\frac{k_2 - y_n}{k_2} \right). \end{cases}$

Wie in Fig. 170 für symmetrischen Querschnitt und Kraftangriff, so lassen sich hier die Randspannungen σ_1 und σ_2 für beliebige Querschnittsform und Kraftangriff durch Zeichnung ermitteln, indem man wie dort $SO = \frac{N}{F}$ und \bot der Kraftlinie bSmacht, von den Kernpunkten 1 und 2 in der Richtung der Kraftlinie aus durch O gerade Linien zieht, welche eine in b zur Kraftlinie bS Senkrechte in h_1 und h_2 schneiden. In $bh_1 = \sigma_1$ und $bh_2 = \sigma_2$ (Fig. 192) erhält man die Randspannungen. Für die Ausführung dieser Spannungsermittelung ist ersichtlich nur die Kenntnis des Kerns und die Lage des Kraftangriffspunktes b erforderlich.

Die Produkte $N \cdot (k_1 + y_n)$ und $N \cdot (k_2 - y_n)$ nennt man die "Kernmomente" der äußeren Kräfte in Bezug auf den Querschnitt. Bezeichnet man sie mit M_{k_1} und M_{k_2} , so schreibt sich Gl.

12)
$$\begin{cases} \sigma_1 = \frac{M_{k_1}}{F \cdot k_1} = \frac{M_{k_1}}{W_1} \\ \sigma_2 = \frac{M_{k_2}}{F \cdot k_2} = \frac{M_{k_2}}{W_2}, \end{cases}$$

worin, je nachdem $y_n \leq k_2$ $M_{k_2} \geq 0$ ist und die Randspannungen σ_1 und σ_2 gleichsinnig oder ungleichsinnig sind. Mit $y_n = -k_1$ und mit $y_n = k_2$ wird σ_1 bezw. σ_2 gleich Null, die Spannung im ganzen Querschnitt gleichsinnig.

Bezeichnet man das in der Kraftebene wirkende Moment $N \cdot y_n$ der äußeren Kräfte mit M, so nimmt Gl. 12 die Form an

(13)
$$\begin{cases} \sigma_1 = \frac{N}{F} + \frac{M}{W_1} = \frac{N}{F} + \frac{M}{F \cdot k_1} \\ \sigma_2 = \frac{N}{F} + \frac{M}{W_2} = \frac{N}{F} + \frac{M}{F \cdot k_2}. \end{cases}$$

Mit N=0 entsteht reine Biegung und wird

$$\begin{cases} \sigma_1 = \frac{M}{W_1} = \frac{M}{F \cdot k_1} \\ \sigma_2 = \frac{M}{W_2} = \frac{M}{F \cdot k_2}. \end{cases}$$

Die Form $F \cdot k$, in welcher das Widerstandsmoment des Stabquerschnittes hier auftritt, läßt die Abhängigkeit desselben von der Kernweite und damit von der Richtung der Kraftlinie erkennen und man könnte aus der Kernlinie durch einfache Multiplikation der verschiedenen Kernweiten (Fahrstrahlen der verschiedenen Kernpunkte) mit der Querschnittsfläche leicht eine W-Linie oder W-Fläche ableiten. Wir wollen indes hier nur vermerken, daß der Kern die Ermittelung des Widerstandsmomentes und damit des Biegungswiderstandes in der Richtung einer beliebigen Kraftlinie, bzw. für eine beliebige Angriffsebene der äußeren Kräfte in der

14)

Form $F \cdot k$ in bequemster Weise ermöglicht und daß der Biegungswiderstand für diejenige Richtung der Kraftlinie seinen Größt- und Kleinstwert annimmt, für welche die Kernweite k zu einem Maximum oder Minimum wird.

Man erkennt daraus z. B. leicht, daß ein rechteckiger Stabquerschnitt in der Richtung rechtwinklig zu seinen Diagonalen den kleinsten und in der Richtung seiner Höhe den größten Biegungswiderstand zu leisten vermag.

In Beispiel 3 S. 248 war für einen im Querschnitt ______-förmigen Balken auf zwei Stützen von 200 cm Weite das Biegungsmoment in der Mittelebene des Steges für eine gleichmäßige Belastung von 3 kg f. d. cm zu 15000 cm/kg berechnet. Für die dort angenommenen Querschnittsabmessungen wurde auf S. 262 die Kernweite in der Richtung des Biegungsmomentes zu 1,08 cm ermittelt, während die Querschnittsfläche F = 16.4 cm² betrug. Dem entspricht ein Widerstandsmoment $W = 16.4 \cdot 1.08 = 17.7$ cm³. Daraus ergibt sich bei fast völliger Übereinstimmung mit Beispiel 3 S. 248 eine Randspannung

$$q_{\rm w} = \frac{M}{W} = \frac{15\,000}{17,7} = 850 \, {\rm at} \, .$$

d) Wirkung von Druckkräften aufserhalb des Kernes bei stabförmigen Körpern ohne Zugfestigkeit.

Wie auf S. 231 u. S. 252 dargelegt, ruft jede aufserhalb des Kernes angreifende Normal- oder Längskraft in einem Querschnitte nicht nur Spannungen in ihrem Sinne, sondern auch im entgegengesetzten Richtungssinne wach; eine Druckkraft erzeugt also auch Zugspannungen. Kann der Körper solche nicht aufnehmen, so wird ein Teil des Querschnitts unwirksam; wirksamer und unwirksamer Teil desselben werden durch eine Nullinie getrennt, deren Lage die Bedingung erfüllen mufs, dafs die Mittelkraft der entstehenden Druckspannkräfte in die Richtungslinie der angreifenden Kraft fällt, diese durch den Schwerpunkt des Druckspannungskeiles geht, dessen Schneide die Nullinie bildet.

Bei symmetrischem Stabquerschnitt und symmetrischem Kraftangriff ist die Richtung der Nullinie, weil senkrecht zur Kraftlinie, bekannt und ihre Lage, sowie die eintretenden Spannungen lassen sich nach den Darlegungen S. 233 beurteilen. Sind Querschnittsform und Kraftangriff nicht symmetrisch sondern beliebig, so ge-

Vd. Druckkräfte mit Ausschlufs von Zugsp. aufserhalb des Kernes. 267

staltet sich die Ermittelung der Nullinie und der Spannungsverteilung im wirksamen Teil des Querschnittes wie folgt:

1. Analytisches Verfahren. -

A N (Fig. 193) sei die gegebene oder versuchsweise angenommene Nullinie, und der wirksame Teil des Querschnittes, bezw.

der Spannungskeil, liege rechts derselben. Wir beziehen die Kräfte auf ein beliebiges Koordinatenkreuz in der Querschnittsebene, dessen Y-Achse mit der Nullinie zusammenfällt. Die Mittelkraft N aller Spannkräfte mußs gleich der angreifenden Kraft sein; das ergibt die Gleichung

1) $N = \int \sigma \cdot dF.$

Sind ferner x_m und y_m die Koordinaten des durch die Nullinie festgelegten Spannungsmittelpunktes b, dann müssen in Bezug auf die beiden Koordinatenachsen die Momentengleichungen bestehen

2)
$$\begin{cases} N \cdot x_m = \int \sigma \cdot dF \cdot x \\ N \cdot y_m = \int \sigma \cdot dF \cdot y. \end{cases}$$

Ist σ_1' die Randspannung im größsten Abstande e von der Nulllinie, so ist die Spannung σ in einem Abstande x von derselben $\sigma = \frac{\sigma_1'}{x} \cdot x$, und daher nach Gl. 1 u. 2

3)
$$N = \frac{\sigma_1'}{e} \cdot \int x \cdot dF = \frac{\sigma_1'}{e} \cdot S,$$

4)
$$N \cdot x_m = \frac{\sigma_1'}{c} \cdot \int dF \cdot x^2 = \frac{\sigma_1'}{c} \cdot J,$$

5)
$$N \cdot y_m = \frac{\sigma_1'}{e} \cdot \int dF \cdot x \cdot y = \frac{\sigma_1'}{e} \cdot C_{xy}$$

worin S das stat. Moment, J das Trägheitsmoment des wirksamen Querschnittes in Bezug auf die Nullinie sind und C_{xy} das Zentrifugalmoment desselben in Bezug auf das gewählte Achsenkreuz ist. Aus Gl. 3, 4 u. 5 folgt nun

6) $\sigma_1' = \frac{e \cdot N}{S},$ 7) $x_m = \frac{\sigma_1' \cdot J}{e \cdot N} = \frac{J}{S},$

8)
$$y_m = \frac{\sigma_1' \cdot C_{xy}}{e \cdot N} = \frac{C_{xy}}{S}$$

Fällt der nun durch seine Koordinaten x_m und y_m bekannt gewordene Spannungsmittelpunkt b_1 mit dem Angriffspunkte b der Kraft zusammen, so ist die versuchsweise angenommene Nullinie die wirklich eintretende und die Randspannung σ_1 ' kann nach Gl. 6 berechnet werden.

Findet eine solche Übereinstimmung nicht statt, so muß eine veränderte Annahme für die Nullinie gemacht und die Untersuchung wiederholt werden.

Analytisch gestaltet sich danach die Ermittelung der wirklichen Nullinie und der größten Randspannung σ_1' , wenn Querschnitt und Kraftangriff unsymmetrisch sind, im allgemeinen umständlich. Nur in dem Falle, wo bei einem vieleckigen Querschnitte die Nullinie NN_1 (Fig. 194) ein Dreieck BNN_1 abschneidet, kommt man einfacher zum Ziele. Der Spannungsmittelpunkt ist stets als der der Nullinie entsprechende Kernpunkt des wirksamen Querschnittes anzusehen. In Fig. 194 muß daher b auf der Mitte der Schwerlinie AB des Dreiecks liegen und daher, wie leicht ersichtlich, $u = \frac{BN_1}{4}$ und

 $t = \frac{BN}{4}$ sein. Man kann daher aus der gegebenen

Lage des Kraftangriffspunktes *b* die Lage der Nullinie leicht bestimmen, indem man $BN_1 = 4u$ u. BN = 4t macht. Der Spannungskeil hat jetzt die Form einer dreiseitigen Pyramide von der Grundfläche NBN_1 und der in *B* stattfindenden Randspannung σ_1' als Höhe. Ist daher *F* die Fläche des Dreiecks, so mufs sein $N = \frac{F \cdot \sigma_1'}{3}$ und daraus $\sigma_1' = \frac{3N}{F}$. Ist rig. 195. α der Winkel NBN_1 , so wird $F = \frac{4u \cdot 4t \cdot \sin \alpha}{2} = 8 \cdot u \cdot t \cdot \sin \alpha$ und somit $\sigma_1' = \frac{3}{8} \cdot \frac{N}{u \cdot t \cdot \sin \alpha}$. Mit $\alpha = 90^{\circ}$ (Fig. 195) wird $\sigma_1' = \frac{3}{8} \cdot \frac{N}{u \cdot t}$. Vd. Druckkräfte mit Ausschlufs von Zugsp. aufserhalb des Kernes. 269

2. Graphisches Verfahren (Fig. 196).

In allen Fällen, wo die rechnerische Bestimmung der Nullinie und der Spannungen zu einer aufserhalb des Kernes angreifenden Druckkraft Schwierigkeiten macht, führt das auf S. 236 für symmetrischen Querschnitt und Kraftangriff erläuterte graphische Verfahren nach einer entsprechenden Verallgemeinerung auch für beliebige Querschnittsformen und Kraftangriffe bequemer zum Ziele.

Bei symmetrischem Kraftangriff war die Richtung der Nulllinie als senkrecht zur Symmetrieachse des Querschnittes von vornherein sicher erkennbar, bei unsymmetrischem Kraftangriff ist dies im allgemeinen nicht der Fall, man hat vielmehr zunächst eine Richtung n'n' der Nullinie versuchsweise anzunehmen und danach deren Lage zu bestimmen. Dies kann dann genau wie in Fig. 171 S. 236 geschehen, indem man zu dem Querschnitt in solcher Ausdehnung eine Seillinie, bezw. ein Seileck AGB zeichnet, daß der voraussichtlich wirksame Teil desselben sicher einbegriffen ist. Zu diesem Zwecke zerlegt man den Querschnitt in kleine, der angenommenen Nullinienrichtung n'n' parallele Flächenstreifen ΔF_1 , ΔF_2 und sieht diese als Kräfte parallel der n'n' wirkend an. 1-2-3....10-11 ist das entsprechende Krafteck, O der Pol, H die Polweite. Zieht man nun durch den gegebenen Kraftangriffspunkt b. der zugleich Spannungsmittelpunkt sein muß, eine Parallele zur angenommenen Nullinienrichtung n'n' bis zum Schnittpunkte C mit der ersten Seilecksseite I, bezw. mit der Tangente an die Seillinie in A und von C aus eine Gerade CD so, dafs Fl. ACE = Fl: DEG wird, so muß die Nullinie nn durch D gehen und ist damit gefunden, vorausgesetzt jedoch, daß die angenommene Richtung n'n' derselben richtig war. Zum Beweise für die dann auch richtige Lage der gefundenen Nullinie nn haben wir bei den aus der Fig. ersichtlichen Bezeichnungen, das Trägheitsmoment des wirksamen Querschnittes in Bezug auf nn nach S. 24

 $J = 2 H \cdot \text{Fl.} A E G D F = 2 H \cdot \text{Fl.} C D F = 2 H \cdot \frac{u \cdot x'_m}{2} = H \cdot u \cdot x'_m$ und das statische Moment $S = H \cdot u$. Danach ist gemäß Gl. 7 $x_m = \frac{J}{2} = \frac{H \cdot u \cdot x'_m}{2} = x'_m$.

$$x_m = \frac{1}{S} = \frac{1}{H \cdot u} = x_n$$

Die durch die Zeichnung gefundene Entfernung x_1 der Nullinie nn vom gegebenen Spannungsmittelpunkte b und damit die Lage derselben ist also für die angenommene Richtung zutreffend.

Es bleibt nun noch zu untersuchen, ob diese Richtung selbst richtig gegriffen war. Zutreffenden Falls muß der der gefundenen Nullinie entsprechende Spannungsmittelpunkt b_1 mit dem gegebenen wirklichen Spannungsmittelpunkte b, welche nach obigem beide auf der Geraden Cb liegen, genau zusammenfallen, die Mittelkraft N aller Spannkräfte durch b gehen. Die auf die Flächenteile ΔF_1 , ΔF_2 u. s. w. wirkenden Spannkräfte berechnen sich zu $\Delta N_1 = \sigma_1' \cdot \frac{x_1}{a} \cdot \Delta F_1$, $\Delta N_2 = \sigma_1' \cdot \frac{x_2}{c} \cdot \Delta F_2$ u.s.w. Verlängert man die Seiten des Seilecks I, II, III IX bis zum Schnitt mit der Nullinie nn, so entstehen auf derselben die Abschnitte 1'-2', 2'-3'....8'-9' und es ist ersichtlich das statische Moment $x_1 \cdot \Delta F_1 = 1' - 2' \cdot H$, $x_2 \cdot \Delta F_2 = 2' \cdot 3' \cdot H$ u. s. w. Danach ist $\Delta N_1 = \sigma_1' \cdot \frac{H}{c} \cdot 1' \cdot 2'$, $\Delta N_2 = \sigma_1' \cdot \frac{H}{a} \cdot 2' - 3'$ u. s. w. Die Spannkräfte $\Delta N_1, \Delta N_2 \dots \Delta N_8$ werden also aus den Abschnitten 1'-2', 2'-3' u. s. w. erhalten durch Multiplikation mit derselben Konstanten $\sigma_1' \cdot \frac{H}{a}$. Sehen wir diese Konstante als Krafteinheit an, so erscheinen die Kräfte ΔN_1 , ΔN_2 u. s. w. je durch einen der Abschnitte 1'-2', 2'-3' 8'-9' ausgedrückt und man kann den Streckenzug 1'-2'-5' 9' als ein den Kräften entsprechendes Krafteck ansehen. Denkt man sich nun die einander parallelen Kräfte ΔN_1 , ΔN_2 um ihre Angriffspunkte S_1 , S_2 u. s. w. (Schwerpunkte der Fl. ΔF_1 , ΔF_2) einmal parallel der Nullinie nn und ein anderes unter irgend einen geeigneten Winkel α (etwa 45°) gegen dieselbe gedreht und in beiden Lagen ein Seileck zu den Kräften gezeichnet, so erhält man dadurch in bekannter Weise den Angriffspunkt b, ihrer Mittelkraft, den der Nullinie nn entsprechenden Spannungsmittelpunkt. Da indes die Gerade bC als geometrischer Ort des Punktes b_1 durch Zeichnung der Seillinie AGD schon bekannt geworden ist, so hat man nur noch nötig, das zweite der vorgenannten Seilecke I', II², III' zu zeichnen.

Das geschieht am bequemsten, indem man nach Wahl eines beliebigen Poles O' die den Polstrahlen I', II', III' entsprechenden Seilecksseiten I', II', III' um den gleichen Winkel α (siehe Fig.) gegen die Polstrahlen dreht, als die Kräfte

Vd. Druckkräfte mit Ausschlufs von Zugsp. aufserhalb des Kernes. 271

 $\Delta N_1, \Delta N_2 \dots$ gegen die Richtung der Nullinie nn gedreht wurden. Eine Parallele zu dieser zweiten Kraftrichtung durch den Schnittpunkt L der äufseren Seilecksseiten I' und IX' schneidet die Gerade b'C in b_1 , dem der angenommenen Nullinie entsprechenden Spannungsmittelpunkte. Fällt dieser wie in der Figur mit dem wirklichen Spannungsmittelpunkte (Kraftangriffspunkte) b zusammen, so ist auch die angenommene Nullinienrichtung n'n' richtig und die durch Zeichnung erhaltene Nullinie nn die wirkliche. Weicht b_1 in seiner Lage auf der Geraden bC wesentlich von b ab, so hat man eine etwas veränderte Nullinienrichtung anzunehmen und die Konstruktion zu wiederholen, bis ein befriedigendes Zusammenfallen von b_1 mit b erreicht ist. Eine geringe Abweichung hat auf die Bestimmung der Randspannung σ_1' keinen wesentlichen Einfluß und kann meist in Kauf genommen werden. Wählt man, wie es meist ratsam, die Richtung der Nullinie zunächst in Übereinstimmung mit derjenigen Nullinie $n_1'n_1'$, wie sie unter Annahme von Zugspannungen der Kraftlinie bS entspricht, so kommt man der wirklichen Richtung meist ziemlich nahe. In welchem Sinne bei erforderlich werdender Korrektur die Drehung der zuerst angenommenen Richtung der Nullinie zu erfolgen hat, erkennt man leicht aus der vorhandenen Abweichung der Punkte b_1 und b_2 . Ein Verfahren, die erforderliche Korrektur der Richtung von vornherein schärfer auszuführen, enthält Müller-Breslau, Graph. Statik I 3. Aufl. S. 90.

Ist die wirkliche Nullinie so mit befriedigender Genauigkeit gefunden, so bestimmt sich die Randspannung σ_1' in genau gleicher Weise wie in Fig. 171. Man macht ni=u, dazu senkrecht $ik=\frac{N}{H}$ und zieht durch n und k die Gerade nc bis zum Schnitt mit der in f Senkrechten zur nf; dann ist $fc = \sigma_1'$.

Fig. 196 stellt den Pfeilerquerschnitt aus Beispiel 1 S. 247 dar; $n_1' n_1'$ ist die dem dort gegebenen Lastangriffspunkte *b* beim Vorhandensein von Zugspannungen entsprechenden Nullinie.

Die zunächstige Benutzung dieser Richtung führte zu der Nullinie $n_1 n_1$ und zu dem ihr entsprechenden Spannungsmittelpunkt b_1' . Eine Änderung der anfänglichen Richtung von $n_1' n_1'$ in n'n' ergibt die Nullinie nn und den mit b so gut wie genau zusammenfallenden Spannungsmittelpunkt b_p .

Im Krafteck sind die Flächenteile ΔF auf eine gemeinsame Basis von 2^{m} reduziert und die Polweite H ist zu 5^{m9} angenommen. Die maßstäbliche

Aufzeichnung ergibt u = 3,1^m und e = 3,55^m. Der Normalkraft N = 394t entspricht ein $\frac{N}{H} = \frac{394}{5} = 78,8$ kg/m² = 7,58 at und man erhält eine größste Druckspannung

 $\sigma_1' = \frac{N}{H} \cdot \frac{e}{u} = \frac{7,88 \cdot 3,85}{3,1} = \operatorname{rot} 9,8 \text{ at}.$

e) Einfluß der Formänderungen auf die Normalspannung.

Bei Ableitung der Regeln zur Bestimmung der Normal-. spannungen σ aus der sie erzeugenden Normal- oder Längskraft N der äufsern Kräfte (Gl. 8 S. 242 u. Gl. 12 S. 245) ist der Einflufs der durch die letztern hervorgerufenen Formänderungen auf die Spannungen o nicht berücksichtigt, Lage und Richtung der angreifenden Kräfte als unveränderlich angenommen. Tatsächlich findet mit dem Eintritt der Spannungen eine elastische Formanderung und damit eine gewisse Verschiebung und Richtungsänderung der angreifenden Kräfte in Bezug auf die Stabquerschnitte, in welchen die Spannungen bestimmt werden sollen, statt und es bleibt noch zu untersuchen, welchen Einfluß diese Vorgänge auf die Normalspannungen haben. Vorweg mag bemerkt werden, dafs der Einfluß bei im Vergleich zu ihren Querschnittsabmessungen verhältnismäßig kurzen Stäben in vielen Fällen der Anwendung als unerheblich aufser Acht bleiben kann, bei längeren Stäben aber unter Umständen Berücksichtigung fordert.

Die eintretenden Formänderungen bestehen im allgemeinen

- 1. in einer Gleitung (Parallelverschiebung der Querschnitte) infolge der wirkenden Querkraft ($Q = R \cdot \sin \varphi$ S. 226),
- 2. in einer Dehnung infolge der wirkenden Normal- oder Längskraft ($N = R \cdot \cos \varphi$ S. 242) und
- 3. in einer Biegung infolge des Biegungsmomentes (M, bezw. $N \cdot y_n$ und $N \cdot x_n$ S. 242).

Der Einfluß der unter 1 und 2 genannten Formänderungen ist in den meist vorkommenden Fällen der Anwendung unerheblich, verschwindend und soll hier daher nicht weiter verfolgt, die Untersuchung vielmehr allein auf den Einfluß der Biegung infolge einer

Ve. Einfluß der Formänderungen auf die Normalspannung. 273

der Stabachse parallelen und in irgend einem Abstande von derselben • wirkenden äufsern Normal- oder Längskraft beschränkt werden.*)

Wir setzen hier demnach als einzige äußere Kräfte zwei entgegengesetzt gleiche, etwa in den Endquerschnitten des Stabes in irgend einem Abstande c von seiner Achse angreifende Normaloder Längskräfte N voraus. Der Stabquerschnitt werde zunächst symmetrisch zur Kraftlinie und zu seinen Hauptachsen angenommen (Fig. 197).

Die Stabachse nimmt infolge des herrschenden Momentes bei den gemachten Annahmen eine ebene Krümmung an und die Biegungslinie soll auf ein in ihrer Ebene gelegenes rechtwinkliges Achsenkreuz XZ bezogen werden, das die aus der Figur ersichtliche Lage hat.

Der Hebelsarm der Kraft Nin Bezug auf die Schwerpunkte der einzelnen Stabquerschnitte ist gleich der veränderlichen Ordinate z_n der Biegungslinie. Ist diese also bekannt, so lassen sich die Spannungverhältnisse in den einzelnen Stabquerschnitten nach den Ausführungen unter a, b und c leicht ermittelp. Nach G. 4a S. 227 ist in einem beliebigen Querschnittspunkte

$$\sigma = \frac{N}{F} + \frac{N \cdot z_n \cdot z}{J}$$

• und für $z = \pm e$ die Randspannungen

$$\sigma_1 = \frac{N}{F} \pm \frac{N \cdot z_n}{J/e}.$$

Ist N positiv, eine Zugkraft (Fig. 197*a*), so nehmen die Ordinaten z_n von den Stabenden nach der Mitte hin ab und damit bei prismatischer Stabform auch die Randspannungen. Der an den

*) Die Biegung infolge einer zur Stabachse senkrechten Kraft ist in den meisten Fällen der Anwendung (kleine Durchbiegung) auf die Berechnung der Spannungen ohne wesentlichen Einfluß (vergl. S. 81).

Keck, Elastizitätslehre.

18

Stabenden auftretende Größtwert der letztern ist also eben so groß als er ohne Berücksichtigung der Biegung in allen Stabquerschnitten sein würde. Dieser Belastungsfall durch eine exzentrische Zugkraft erfordert daher für die Anwendung eine weitere Untersuchung nicht und wollen wir ihn deshalb hier ausscheiden.

Ist N dagegen negativ, eine Druckkraft (Fig. 197*b*), so nimmt z_n nach der Stabmitte hin zu; die Randspannungen σ_1 und σ_2 stimmen nur in den Endquerschnitten mit den ohne Berücksichtigung der Biegung sich ergebenden überein, werden aber nach der Stabmitte hin mehr oder weniger erheblich größer als diese und die Kenntnis der in der Stabmitte auftretenden Größtwerte ist daher von Wichtigkeit.

Für die Biegungslinie gilt, abgesehen von der eintretenden geringen Verkürzung des Stabes, die S. 87 abgeleitete Grundgleichung $\frac{d^2 z_n}{d x^2} = \frac{M}{JE}$.

Mit $M = -N \cdot z_n$ wird, wenn man $\frac{N}{JE} = \frac{1}{r^2}$ setzt, $\frac{d^2 z_n}{d r^2} = -\frac{z_n}{r^2}$

oder, beiderseits mit dz_n multipliziert,

$$\frac{d\,z_n}{d\,x} \cdot \frac{d^2 z_n}{d\,x} = -\frac{z_n d\,z_n}{r^2}$$

und daraus durch Integration

1)

$$\left(\frac{d\,z_n}{d\,x}\right)^2 = -\frac{z_n^2}{r^2} + C.$$

Für $\frac{d z_n}{d x} = 0$, d. i. in der Stabmitte, nimmt z_n seinen Größstwert an. Bezeichnen wir diesen mit a, so wird $C = \frac{a^2}{r^2}$ und wir erhalten nach Einsetzung dieses Wertes und entsprechender Ordnung

2) $\frac{d z_n}{\sqrt{a^2 - z_n^2}} = \frac{d x}{r}$. Die weitere Integration liefert

3)
$$\arcsin \frac{z_n}{a} = \frac{x}{r} + C_1$$
 oder

4)
$$\frac{z_n}{a} = \sin\left(\frac{x}{r} + C_1\right) = \sin\frac{x}{r} \cdot \cos C_1 + \cos\frac{x}{r} \cdot \sin C_1.$$

Ve. Einfluss der Formänderungen auf die Normalspannung. 275

Für x=0 wird $\sin \frac{x}{r}=0$, $\cos \frac{x}{r}=1$ und z_n nimmt seinen Kleinstwert c an; es wird $\frac{c}{a}=\sin C_1$. Für x=l wird gleichfalls $z_n=c$ und daher nach Gl. 4

$$\cos C_1 = \frac{\frac{c}{a} \left(1 - \cos \frac{l}{r}\right)}{\sin \frac{l}{r}} = \frac{c}{a} \cdot \operatorname{tg} \cdot \frac{2l}{r}$$

Die Gleichung der Biegungslinie lautet daher

5)
$$z_n = \sin \frac{x}{r} \cdot c \cdot \operatorname{tg} \frac{l}{2r} + \cos \frac{x}{r} \cdot c.$$

Daraus folgt für die Stabmitte mit $x = \frac{l}{2}$ die größste Ausbiegung

6)
$$a = c \cdot \sin \frac{l}{2r} \cdot \operatorname{tg} \frac{l}{2r} + c \cdot \cos \cdot \frac{l}{2r}$$
 und mit $\frac{1}{r} = \sqrt{\frac{N}{JE}}$
7) $a = \frac{c}{\cos \left(\frac{l}{2} \cdot \sqrt{\frac{N}{JE}}\right)}$.

Bei der Ausrechnung des Wertes für α kann man mit genügender Annäherung den cos-Wert des Nenners durch die ersten beiden Glieder der cos-Reihe ersetzen, so dafs

8)
$$\cos \frac{l}{2r} = 1 - \frac{1}{2} \cdot \left(\frac{l}{2} \cdot \sqrt{\frac{N}{JE}}\right)^2 = 1 - \frac{l^2}{8} \cdot \frac{N}{JE}$$
 wird.

Die größsten Randspannungen in der Stabmitte ergeben sich zu

9)
$$\sigma_1 = \frac{N}{F} \pm \frac{N \cdot c}{J/e}$$

Eine hölzerne Säule von quadratischem Querschnitt 25/25 cm und einer Länge l = 500 cm, wird in ihren Endquerschnitten je von einer Druckkraft N = -10000 kg so ergriffen, daß c = 10 cm wird.

Damit wird

$$a = \frac{c}{\cos 250 \cdot \sqrt[7]{\frac{N}{JE}}} = \frac{10}{\cos 250 \cdot \sqrt[7]{\frac{10\,000}{120\,000 \cdot 25^4}}} = \frac{10}{\cos 0,4} = \frac{10}{0,921} = 10,85 \text{ cm} \text{ und}$$

$$\sigma_1 = -\left(\frac{10\,000}{25^2} \pm \frac{10,85 \cdot 10\,000}{25^3}\right) = -57,5 \text{ at}$$
Für $l = 10 \text{ m} = 1000 \text{ cm}$ wird $a = 12,5 \text{ cm}$ und
$$\sigma_1 = -\left(\frac{10\,000}{25^2} \pm \frac{12,5 \cdot 10\,000}{25^3}\right) = -64 \text{ at}$$

$$= -\left(\frac{10\,000}{25^2} \pm \frac{12,5 \cdot 10\,000}{25^3}\right) = -64 \text{ at}$$

$$= -64 \text{ at}$$

$$= -\left(\frac{10\,000}{25^2} \pm \frac{12,5 \cdot 10\,000}{25^3}\right) = -64 \text{ at}$$

$$= -64 \text{ at}$$
Ohne Berücksichtigung der Biegung in beiden Fällen $\sigma_1 = -\left(\frac{10000}{25^2} \pm \frac{10 \cdot 10000}{25^3}\right) = \frac{-54_{,4}}{+22_{,2}} \frac{\mathrm{at}}{\mathrm{at}}.$

Es mag hier noch bemerkt werden, dafs bei kleinen Exzentritäten c für den Kraftangriff und bei langen Stäben die Beurteilung der Tragsicherheit eines Stabes vielfach zutreffender nach den weiter unten abzuleitenden Regeln für die Zerknickung beurteilt wird als nach Gl. 9. Eine Vergleichsrechnung hat gegebenen Falls zu entscheiden (vergl. Beispiel 2 S. 277 u. 289).

Ist der Stabquerschnitt nicht symmetrisch in Bezug auf die Kraftebene (Fig. 198), so ist nach den Ausführungen unter b (S. 245)

auch die Spannungsnullinie oder die Biegungsachse der einzelnen Querschnitte nicht senkrecht zur Kraftlinie, die Ausbiegung erfolgt nicht in der Kraftebene, sondern die Ebene der Biegungslinie ist senkrecht zur Nullinie gerichtet, welche letztere eine der Kraftlinie zugeordnete Richtung aufweist. z_n ist senkrecht zu der der Nullinie parallelen Schwerachse $n_s n_s$ zu messen und auf diese auch das Trägheitsmoment Jzu beziehen, so daß in Gl. 9 J mit J_{n_x} zu vertauschen ist.

Für die Randspannungen σ_1 und σ_2 hat man jetzt aufserdem im allgemeinen zwei verschiedene Abstände e_1 und e_2 zu unterscheiden, beide gleichfalls senkrecht zur $n_s n_s$ gemessen.

Es wird dann für die Stabmitte

10)
$$z_{n} = a = \frac{c \sin \alpha_{n}}{\cos \frac{l}{2} \cdot \sqrt{\frac{N}{J_{n_{r}} \cdot E}}} \quad \text{und}$$

$$\begin{cases} \sigma_{1} = \frac{N}{F} + \frac{a \cdot N}{J_{n_{r}} \cdot e_{1}}, \\ \sigma_{2} = \frac{N}{F} - \frac{a \cdot N}{J_{n_{r}}/e_{1}}. \end{cases}$$

Ein 2,00 m langes ungleichschenkliges Winkeleisen $10 \times 15 \times 1.5$ cm stark (Fig. 198) wird im Punkte *b* im Abstande c = 5 cm von seinem Schwerpunkte, parallel dem längeren Schenkel gemessen, von einer Normalkraft N = -5000 kg (Druckkraft) ergriffen; welche gröfsten Spannungen σ_1 und σ_2 treten ein? Die Rechnung ergibt $J_x = 890$ cm⁴, $J_y = 295$ cm⁴, $C_{xy} = 275$ cm⁴, F = 35.25 cn⁴ und für die Richtung der der Y-Achse als Kraftlinie zugeordneten Schwerachse $n_s n_s$ tg $\alpha_n = \frac{J_y}{C} = \frac{295}{275} = 1.073$, $\alpha_n = 47^{\circ}$. Nach Gl. 1 S. 32 wird $J_{n_x} = 335$ cm⁴. Aus Gl. 10 folgt

$$a = \frac{5 \cdot \sin 47^{\circ}}{\cos \cdot \frac{200}{2} \cdot \sqrt{\frac{5000}{335 \cdot 2000\,000}}} = \frac{5 \cdot 0, 73}{\cos \cdot 0, 77} = \frac{5 \cdot 0, 73}{\cos 15^{\circ} 30'} = 3, 5 \text{ cm}.$$

Ferner ist $e_1 = 6,7$ cm, $e_2 = 5,3$ cm, also

 $\sigma_1 = -\left(\frac{5000}{35,25} + \frac{3,8 \cdot 5000}{335/6,7}\right) = -537 \text{ at und } \sigma_2 = -\left(\frac{5000}{35,25} - \frac{3,8 \cdot 5000}{335/5,3}\right) = +143 \text{ at}.$ Die Sicherheit des Winkeleisens gegen Zerdrücken ist also bei einer Festigkeit des Stoffes von 3500 at eine $\frac{3500}{537} = 6^{1/2}$ fache. Bestände der Stab aus Gufseisen mit einer Druckfestigkeit von 7000 at und einer Zugfestigkeit von 1300 at, so würde die Sicherheit gegen Zerdrücken eine $\frac{7000}{537} = 13$ fache und gegen Zerreißen nur eine $\frac{1300}{143} = \text{rund 9}$ fache sein; trotzdem der Stab von einer Druckkraft ergriffen ist, würde seine Zerstörung durch Zerreißen er-

folgen. In Wirklichkeit ist wegen der eintretenden Knickwirkung die Sicherheit gegen Bruch erheblich geringer (vergl. Beispiel 4 S. 289).

f) Zentrische Druckbelastung; Knickung.

Wird bei der unter e behandelten Angriffsart eines Stabes durch eine negative Längskraft (Druckkraft) parallel der Achse desselben im Abstande c von dieser c = 0, so geht der Kraftangriff in einen zentrischen über (Fig. 199). In Gl. 7 S. 275 wird, solange der Nenner des Bruches auf der rechten Seite größer als Null ist, mit c auch a gleich Null. Theoretisch liegt demnach ein Anlaß zum Ausbiegen des Stabes nicht vor und man müßte erwarten, daß bei hinreichender Steigerung der achsialen Druckkraft eine Zerstörung durch Zerdrücken erfolgen würde. Infolge unvermeidlicher Ungenauigkeiten im Kraftangriff, oder geringer Ungleichmäßigkeit des Stoffes, aus dem der Stab besteht, tritt indes erfahrungsgemäß, wenn seine Länge im Vergleich zu seinen Querschnittsabmessungen ein gewisses Maß überschreitet, bei hinreichender

Größe der Kraft N seitliche Ausbiegung, Knickung ein (vgl. S. 51), die sich auch theoretisch wie folgt erklärt: Erreicht nämlich die Druckkraft N ein solches Mafs, dafs in Gl. 6 u. 7

$$\cos\frac{l}{2r} = \cos\frac{l}{2} \cdot \sqrt{\frac{N}{JE}} = 0$$

wird, so vermag sie dem Stabe jede Ausbiegung a beizubringen, denn mit c = 0 wird nach Gl. 7 $0 \cdot a = 0$, was der Forderung der Gleichung genügt. Einer solchen Kraft gegenüber befindet sich der Stab auch bei völlig gleichmäßigem Stoff und genau zentrischem Kraftangriff bezüglich der Aufhebung der äufsern und innern Kräfte im unsichern, labilen Gleichgewicht und jede noch so kleine Abweichung von dem gedachten genauen Zustande führt zu einer mehr oder weniger plötzlichen Ausbiegung. Die Kenntnis der kleinsten Druckkraft N, welche solche herbeizuführen vermag, erhält man aus der Bedingung $\cos \frac{l}{2r} = 0$, d. i. $\cos \frac{l}{r} = 1$, der zufolge $\begin{cases} \frac{l}{r} = \pi \text{ oder} \\ \frac{l}{r} = n\pi \text{ sein mufs.} \end{cases}$

Fig. 199. N l N

1)

Setzt man $\frac{1}{r} = \sqrt{\frac{N}{IE}}$ (vergl. S. 274) in Gl. 1 ein und löst für N auf, so folgt $N = \frac{n^2 \cdot \pi^2 \cdot JE}{I^2}.$ I)

Eine solche Achsialkraft N, und natürlich auch jede größere, vermag danach dem Stabe jede beliebige Ausbiegung a beizubringen, ihn also auch zu brechen, zu zerknicken.

Über die Bedeutung der Zahl n gibt die Biegungslinie, bezw. deren Gleichung Auskunft, die wir aus Gl. 4 S. 274 mit c = 0 wie folgt erhalten: Für x = 0 wird $z_n = c = 0$, $\sin \frac{x}{r} = 0$, $\cos \frac{x}{r} = 1$; daher $\sin C_1 = 0$, $C_1 = 0$ und $\cos C_1 = 1$. Als Gleichung der Biegungslinie für achsialen Kraftangriff ergibt sich somit unter Beachtung der Gl. 1

2)
$$z_n = a \cdot \sin \frac{x}{r} = a \cdot \sin \frac{x \cdot n\pi}{l}$$
,

deren geometrischer Ausdruck im allgemeinen eine Wellenlinie ist; / denn alle Punkte derselben, für welche $\frac{x}{2}$ sich um 2π bezw. $2n\pi$, also die Abscisse x um 2rπ bezw. 2nrπ unterscheidet, Fig. 200. weisen gleiche Ordinaten zn und gleiche Richtung der Biegungslinie auf. Das Mass $2 r \pi$ bezeichnet also die Länge einer ganzen und $r\pi\lambda$ dasjenige einer halben Welle (Fig. 200).

Weil nun nach Gl 1 $l = nr \cdot \pi = n \cdot \lambda$, so ist n die Zahl der halben Wellen, welche in der Biegungs- oder Knicklinie vorkommen. Sie ist, wie leicht ersichtlich, abhängig von der Art, wie der Stab eingebaut oder fest-

gehalten ist (Fig. 201). Er wird immer so knicken, daß die kleinstmögliche Zahl von halben Wellen entsteht, denn je kleiner n, um so kleiner ist nach Gl. I der Knickwider-

stand, d. h. der äufserste Widerstand, welchen der Stab seiner Knickung entgegen zu setzen vermag.

Ist der Stab daher nur an seinen Enden drehbar festgehalten, so wird er in einer halben Welle knicken; es ist n = 1

$$N = E J \frac{\pi^2}{l^2}.$$

Ist er auch in seiner Mitte bei C drehbar festgehalten, so knickt er nach zwei halben Wellen; es ist n=2

$$N=4\cdot\frac{EJ\pi^2}{7^2}.$$

In vier gleich weit voneinander entfernten Punkten festgehalten, entstehen drei halbe Wellen; es wird n = 3 und

$$N = \frac{9 E J \pi^2}{r^2}.$$

Der Knickwiderstand eines Stabes in einer bestimmten Richtung ist nach Gl. I verhältnisgleich dem Trägheitsmoment des Querschnittes in Bezug auf eine Achse senkrecht zu dieser Richtung. Er ist also wie dieses im allgemeinen mit der Richtung der betr. Querschnittsachse veränderlich und am kleinsten in der Richtung rechtwinklig zur Hauptachse II, für welche das kleinste Hauptträgheitsmoment J2 in Frage kommt. Dieses ist daher bei Anwendung der Gl. I zu benutzen. Ist die Zentralellipse des Stab-

$$\begin{array}{c} P \\ n=1 \\ P \\ p \\ \end{array} \begin{array}{c} P \\ P \\ P \\ \end{array}$$

Fig. 201.

$$\begin{array}{c}
P \\
n=1 \\
C \\
P \\
P \\
n=3 \\
P_1 \\
D_1 \\
D_n
\end{array}$$

querschnittes ein Kreis, so ist der Knickwiderstand nach allen Richtungen derselbe.

Das Ergebnis der vorstehenden Untersuchung, wonach eine Kraft $N < JE\pi^2$ noch keine, eine solche $N = \frac{JE\pi^2}{l^2}$ aber plötzlich jede beliebige Ausbiegung a herbeizuführen, also den Stab auch zu knicken vermag, stimmt mit ausgeführten Versuchen nicht ganz überein. Eine schärfere Untersuchung der Biegungslinie, bei welcher man statt der Annäherungsgleichung der Biegungslinie $\frac{d^2y}{dx^2} = \pm \frac{M}{JE}$ die genauere Gl. $\frac{1}{\rho} = \pm \frac{M}{JE}$ verwendet (siehe Grashof, Theorie der Elastizität und Festigkeit) führt denn auch nach einer umständlicheren Rechnung zu der etwas befriedigenderen Lösung, dafs, sobald die Druckkraft den Wert $\frac{JE\cdot\pi^2}{l^2}$ erreicht hat, die Ausbiegung noch nicht jede beliebige Gröfse annehmen kann, sondern zunächst noch Null bleibt und erst mit einer gewissen kleinen Überschreitung des Wertes $\frac{J E \pi^2}{l^2}$ eine und zwar dann ganz bestimmte Größe a erreicht. Wendet man aber die schärfere Gleichung auf bestimmte Fälle an, so ergibt sich, daß die Vergrößerung von N bei Stäben von verhältnismäßig großer Länge nur sehr gering zu sein braucht, um eine unzulässig große Durchbiegung hervorzubringen. $N = JE \frac{\pi^2}{l^2}$ ist daher auch nach der schärferen Rechnung wenigstens annäherungsweise als die zerknickende Kraft, der Knickwiderstand zu bezeichnen. Die genauere Untersuchung in diesem Sinne führt danach für die Anwendung zu keiner wesentlich besseren Lösung, als die hier gegebene Entwicklung und ist aus diesem Grunde hier nicht mitgeteilt.

Die Gleichung für den Knickwiderstand mit n = 1

$$\mathbf{I}_{1}) \qquad \qquad \mathbf{N}_{1} = \frac{\pi^{2} \cdot JE}{l^{2}} = EF \cdot \pi^{2} \cdot \frac{i^{2}}{l^{2}}$$

wurde von Euler entwickelt und wird nach ihm als die Euler'sche Formel bezeichnet. Darin ist i der kleinste Trägheitshalbmesser des Querschnittes.

Aus dem Knickwiderstande N (Gl. I_1) erhält man die Knickfestigkeit, d. h. die im Augenblicke der Zerstörung im Bruchquerschnitte herrschende mittlere Druckspannung

3)
$$D_k = \frac{N_1}{F} = \pi^2 \cdot E \cdot \left(\frac{i}{l}\right)^2.$$

Wie weit man sich mit der Belastung eines Stabes durch eine Achsialkraft dem äußersten Knickwiderstande, bezw. mit der eintretenden mittleren Knickspannung der Knickfestigkeit nähern darf, hängt von der Wichtigkeit des zu erfüllenden Zweckes, von der

Art des Bauverbandes, in welchen der Stab eingebaut ist u. s. w. ab und ist im wesentlichen Sache der Erfahrung. Bei ruhenden Bauverbänden pflegt man bei Verwendung von Schmiedeisen etwa ¹/₅, bei Gufseisen ¹/₆ und bei Holz ¹/₁₀ des äufsersten Knickwiderstandes als zulässige Belastung zu wählen.

Je kleiner die freie Länge l des Stabes von bestimmtem Querschnitt ist, desto größer berechnet sich nach Gl. I₁ sein Knickwiderstand. Für einen gewissen Grenzwert der Länge l wird dieser gleich dem einfachen Druckwiderstande bei angenommener gleichmäßiger Verteilung der Druckspannungen über den Stabquerschnitt. Jener Grenzwert der Länge müßte also als die äußerste Grenze der Anwendbarkeit der Euler'schen Formel angesehen werden, denn für kleinere Längen würde der Knickwiderstand den Druckwiderstand übersteigen und dieser letztere daher für die Beurteilung der Tragsicherheit des Stabes maßgebend werden müssen.

Der genannte Grenzwert der Länge *l* ergibt sich aus der Gleichsetzung des Druck- und des Knickwiderstandes, bezw. eines gleichen, dem verlangten Sicherheitsgrade entsprechenden Bruchteiles von beiden.

Man erhält $F \cdot D = \frac{\pi^2 \cdot JE}{l^2} = \pi^2 \cdot EF \cdot \frac{i^2}{l^2}$, worin *D* die Druckfestigkeit des Stoffes bezeichnet (vergl. S. 55). Die Lösung für *l* ergibt

$$l = \pi \cdot i \cdot \sqrt{\frac{E}{D}}$$
 oder $\frac{l}{i} = \pi \cdot \sqrt{\frac{E}{D}}$.

Für Schmiedeisen mit D = 3500 at und E = 2000000 at wird beispielsweise

$$\frac{l}{i} = 3,14 \sqrt{\frac{2000000}{3500}} = 75;$$

für Holz mit D = 500 at und E = 120000 at

$$\frac{l}{i} = \pi \cdot \sqrt{\frac{120000}{500}} = 49.$$

Je nachdem für Schmiedeisen $\frac{l}{i} \gtrsim 75$ und für Holz $\frac{l}{i} \gtrsim 49$ ist, würde danach die Tragfähigkeit des Stabes in achsialer Richtung nach der Euler'schen Formel oder nach den Regeln der

Druckfestigkeit zu beurteilen sein. Es erscheint nun aber ausgeschlossen, dafs eben innerhalb jener Längengrenze schon eine gleichmäßige Verteilung der Druckspannungen über den Querschnitt stattfindet und eben außerhalb derselben bereits eine Verteilung nach dem reinen Biegungsgesetz unter völliger Vernachlässigung der reinen Druckspannungen vorausgesetzt werden kann. Vielmehr muß für ein gewisses Übergangsgebiet beiderseits der oben ermittelten Grenze für das Verhältnis $\frac{l}{i}$ ein Zusammenwirken der Biegungs- und Druckspannkräfte im Gleichgewicht zwischen der Achsialkraft N und den inneren Spannkräften vorausgesetzt werden, d. h. im Augenblick der Zerstörung werden die größten Spannungen im Bruchquerschnitt durch die Gleichung

4)
$$\sigma = \frac{N}{F} + \frac{N \cdot a \cdot e}{J}$$
 bestimmt.

Je weiter das Längenverhältnis $\frac{l}{i}$ sich nach unten von obigem Grenzwerte entfernt, je mehr wird der Anteil des ersten Gliedes, je weiter es denselben nach oben überschreitet, der Anteil des zweiten Gliedes zur Entstehung der Spannung σ und zum Bruch beitragen.

Von diesen Erwägungen ausgehend, ist unter Benutzung der Euler'schen Formel die Formel von Schwarz und Rankine entstanden. Nach der Euler'schen Formel ist der Knickwiderstand $N = \frac{EJ\pi^2}{l^2}$ und nach Gl. 4 $\sigma_1 = \frac{N}{F} + \frac{N \cdot a \cdot e_1}{J}$. Vernachlässigt man hierin zunächst das Glied $\frac{N}{F}$, so wird $N = \frac{\sigma_1 J}{e_1 a}$. Beide Werte für N werden gleichbedeutend, wenn man unter σ_1 die Druckfestigkeit D versteht. Die Gleichsetzung ergibt

$$a \cdot e_1 = \frac{D}{E\pi^2} \cdot l^2.$$

Diesen Ausdruck für $a e_1$ könnte man an betreffender Stelle in Gl. 4 einführen. Da indes die Gl. 4 sowohl als die Euler'sche Formel auf Grund des nur innerhalb der Proportionalitätsgrenze gültigen Hooke'schen Gesetzes abgeleitet ist, bleiben sie für den der Bruchgrenze entsprechenden Wert D (Gl. 5) nicht ohne weiteres mehr gültig. Wir setzen daher $\frac{D}{E\pi^2} = \alpha$ und erhalten $a e_1 = \alpha \cdot l^2$, worin nun α eine durch besondere Versuche zu ermittelnde

Erfahrungszahl ist. Damit wird nach Gl. 4 die durch die achsiale Druckkraft N erzeugte Druckspannung

II)
$$\sigma_1 = \frac{N}{F} + \frac{N \cdot \alpha \cdot l^2}{J} = \frac{N}{F} \left(1 + \frac{\alpha \cdot l^2}{i^2} \right).$$

Im Augenblicke des Bruches wird σ_1 gleich der einfachen Druckfestigkeit D des Stoffes und man erhält die Knickfestigkeit (vergl. S. 280) zu

6)

$$D_k = \frac{N}{F} = \frac{D}{1 + \alpha \left(\frac{l}{i}\right)^2}.$$

Für Schmiedeisen kann $\alpha = \frac{1}{10000}$,

für Gufseisen und Holz $\alpha = \frac{1}{5000}$ gesetzt werden.

Prof. Schwarz (in Hannover und Berlin) und Prof. Rankine (in Glasgow) haben unabhängig von einander Gl. II aufgestellt. Nach den Darlegungen auf S. 282 bietet Gl. II in dem Grenzgebiet, wo die Gefahr des Zerknickens mit wachsendem $\frac{l}{i}$ allmählich größer wird, als die des Zerdrückens, gewisse Vorteile, namentlich den, daß die Biegungs- und Druckspannungen in einer dem Wesen der Spannungsvorgänge im allgemeinen wohl entsprechenden Weise nebeneinander berücksichtigt werden.

Neuere Versuche, namentlich von Bauschinger, C. Bach und v. Tetmajer haben indes ergeben, daß das in Gl. II gegebene Gesetz der Abhängigkeit zwischen den Spannungen σ und dem Längenverhältnis $\frac{l}{i}$, insbesondere für große Werte des letztern, mit der Wirklichkeit nicht befriedigend übereinstimmt. Die Ableitung der Gl. II befriedigt auch insofern nicht, als sie von der Annahme ausgeht, daß die Zerstörung stets durch die mit N gleichsinnige Spannung σ_1 , also eine Druckspannung erfolgt, was bei großen Werten von $\frac{l}{i}$, wenn es sich um Stoffe von erheblich geringerer Zug- als Druckfestigkeit handelt, wie Gußseisen, nicht zutrifft.

Die Versuche von v. Tetmajer haben gezeigt, daß die Euler'sche Formel für folgende Werte von $\frac{l}{i}$ einen mit der Wirklichkeit befriedigend übereinstimmenden Knickwiderstand ergibt.

1.	Für	Schweißeisen	$\frac{l}{i} > 112.$
2.	n	Fluíseisen	$\frac{l}{i} > 105.$
3.	n	Guíseisen	$\frac{l}{i}$ > 80.
4.	n	lufttrocknes Holz	$\frac{l}{i} > 100.$

Für unterhalb dieser Grenzwerte gelegene Längenverhältnisse hat v. Tetmajer aus seinen Versuchen für die Knickfestigkeit obiger Stoffe folgende empirische Formeln abgeleitet:

1. Für Schweifseisen bei
$$\frac{l}{i} = 10 - 112$$

 $D_{k} = (3030 - 12.9 \frac{l}{i})^{\text{at}}$.
2. Für Flufseisen bei $\frac{l}{i} = 10 - 105$
 $D_{k} = (3100 - 11.4 \frac{l}{i})^{\text{at}}$.
3. Für Gufseisen bei $\frac{l}{i} = 5 - 80$
 $D_{k} = (7760 - 120 \frac{l}{i} + 0.53 (\frac{l}{i})^{2})^{\text{at}}$.
4. Für lufttrockenes Holz bei $\frac{l}{i} = 1.8 - 100$
 $D_{k} = (293 - 1.94 \frac{l}{i})^{\text{at}}$.

Der Knickwiderstand, bezw. die Tragkraft N ist in allen Fällen $N = F \cdot D_k$. Bei Ermittelung der Querschnittsabmessungen ist die zulässige mittlere Spannung gleich $\frac{D_k}{m}$ zu wählen, worin der Sicherheitsziffer m für die einzelnen Stoffe die weiter oben genannten Zahlwerte beizulegen sind. Der erforderliche Querschnitt ist dann $F = \frac{N \cdot m}{D_k}$.

Rechnet man nach den Gleichungen I, II und III z. B. für Schweißseisen und Gußeisen für verschiedene Werte von $\frac{l}{i}$ die Knickfestigkeit D_k in ^{at} aus, so erhält man die aus folgender

Tabelle ersichtlichen Festigkeitszahlen, wobei der Gl. II eine einfache Druckfestigkeit für Schweißeisen D = 3500 ^{at}, für Gußeisen D = 7000 ^{at} zu Grunde gelegt ist.

1	Knickfestigkeit D_k in at				
ī	Nach Euler	Nach Schwarz	Nach v. Tetmajer		
	at	at	at		
A. Für Schweißseisen.					
10	-	3460	2900		
20	-	8365	2772		
50		2800	2385		
80	3100	2125	1988		
90	2170	1940	1870		
100	1980	1750	1740		
112	1580	1550	1585		
150	880	1080	-		
200	495	700	-		
B. Für Gufseisen.					
5	-	6975	7174		
20	_	6481	5572		
50		4667	3085		
80	1547	3070	1552		
100	990	2334			
150	400_	1270	-		
200	248	778	-		

Danach stimmen die Ergebnisse der Schwarz-Rankine'schen Formel II bei Schweißseisen für mittlere Längenverhältnisse $\frac{l}{i}$ einigermaßen mit denjenigen nach der Euler'schen Gl. I und mit den neueren Versuchsergebnissen überein, weichen aber für Gußseisen von beiden sehr erheblich ab, was seinen Grund darin haben dürfte, daß für mittlere und größere Werte von $\frac{l}{i}$ bei Gußseisen die Zerstörung durch zunächstige Überwindung der Zugfestigkeit, nicht aber, wie die Schwarze'sche Gl. voraussetzt, der Druckfestigkeit erfolgt.

Verschiedene Fälle der Inansprachnahme auf Zerknicken. In den vorstehenden Entwickelungen wurde vorausgesetzt, daß die Druckkräfte N genau in den Schwerpunkten der Endflächen

angriffen, so dafs an diesen Stellen das Moment Null war. In der Wirklichkeit wird dies nur dann annähernd zutreffen, wenn die Übertragung der Druckkräfte auf den Stab mit Hülfe von Spitzen, Gelenken oder wenigstens abgerundeten Endflächen erfolgt, die dem Stabe eine bestimmte Richtung seiner Enden nicht aufzwingen.

Ein solcher Stab (Fig. 202) wird in seiner Mitte zu der ursprünglichen Achsenrichtung parallel bleiben, sich also in seiner

einen (oberen) Hälfte ebenso verhalten wie ein an dem einen (unteren) Ende fest eingespannter oder mit breiter Fläche unterstützter Stab, der am anderen (oberen) freien Ende belastet ist. Bei einem Stabe letzterer Art von der freien Länge l_1 darf mithin zur Berechnung der Tragfähigkeit nicht diese Länge l_1 für l in die Formeln I bis III eingeführt werden, sondern es ist in jenen

Fig. 202.

Gleichungen $l=2l_1$ zu setzen, so daß beispielsweise nach Euler die zerknickende Kraft $N=\frac{EJ\pi^2}{4l_1^n}$ sein würde, zu welchem Ergebnis man auch gelangt, wenn man in Gl. I die Zahl *n* der halben Wellen gleich 1/2 setzt.

Ist der Stab von der Länge l_1 aber an beiden Enden fest eingespannt oder mit breiten Flächen aufgelagert (Fig. 203), so ist eine seitliche Ausbiegung nur mittels zweier

Wendepunkte D und E in der Biegungslinie möglich. Das Mittelstück DE zwischen den Wendepunkten entspricht einer halben Wellenlänge, während AD und BE je ein Viertel Wellenlänge darstellen. Da nun die Gl. I, II und III sich auf den Grundfall beziehen, wo der Stab sich nach einer halben Welle biegt, so ist $l = \frac{1}{2} l_1$ in die Formeln einzusetzen. Die zerknickende

Kraft würde mit n=2 nach Gl. I $N=4EJ\frac{\pi^2}{l^2}$ sein; dieser Fall ist daher günstiger als der Grundfall.

Ist der Stab an dem einen (unteren) Ende eingespannt, an dem anderen aber so gehalten, daß er hier eine beliebige Neigung annehmen, sich aber nicht aus der ursprünglichen Achse entfernen kann (Fig. 204), so ist zu dieser Führung eine besondere seitliche

Kraft erforderlich. Die Biegung bedingt einen Wendepunkt C. Man kann diesen Fall in ähnlicher Weise besonders entwickeln wie den Grundfall (s. Grashof, Theorie der Elastizität und Festigkeit, 2. Aufl., S. 166; Winkler, Lehre von der Elastizität und Festigkeit, S. 181), doch wollen wir uns hier darauf beschränken, das Ergebnis anzuführen, daß die zerknickende Kraft etwa

$$N = 2EJ\frac{\pi^2}{l_1^2}$$

wird. Man kann hiernach auch auf diesen Fall die Grundformeln I, II und III anwenden, nur muß als Grundlänge l die Strecke $BC = \frac{l_1}{\sqrt{2}} = 0,707 l_1$ eingeführt werden. (Der Wendepunkt C liegt etwas tiefer als der untere Drittelpunkt.) Die Tragfähigkeit ist in diesem Falle doppelt so groß wie in dem Grundfalle.

Häufig passen die gegebenen Umstände eines gedrückten Stabes auf keinen der besprochenen Fälle mit genügender Genauigkeit. Stützt sich z. B. ein Stab von der Länge l_1 mit eben bearbeiteten Enden gegen feste Flächen, so sind die Enden weder ganz frei, noch auch als unwandelbar eingespannt zu betrachten. Es wird also die Grundlänge zwischen den beiden Wendepunkten $l > \frac{1}{2} l_1$, aber auch $l < l_1$ sein. In solchen und anderen nicht ganz sicheren Fällen ist es ratsam, mit der ungünstigeren Annahme $l = l_1$ zu rechnen und die (vielleicht) günstige Wirkung der ebenen Endflächen lieber zu vernachlässigen.

Ist ein Stab nach allen Richtungen in gleichem Maße frei oder in gleichem Maße fest eingespannt, so kommt nur das kleinste Trägheitsmoment des Querschnittes für die Widerstandsfähigkeit gegen Zerknicken in Frage (vergl. S. 279). In solchen Fällen sind diejenigen Querschnittsformen vorteilhaft, für welche die Zentralellipse ein Kreis wird; es ist dann nach allen Richtungen gleiche Steifigkeit vorhanden; eine Vergrößerung der Steifigkeit nach nur einer Richtung wäre offenbar unzweckmäßig. Kreis, Quadrat, Kreisring, hohles Quadrat, kreuzförmiger Querschnitt u. dgl. ergeben sich hiernach als geeignete Querschnittsformen.

Anwendungen.

Beispiel 1: Eine gufseiserne Säule von 5,0m Höhe soll mit 60 000 kg achsial belastet werden. Der Querschnitt sei ein Kreisring. Die Säule soll unten mit ebener Fläche aufruhen, oben drehbar, aber durch das Gebälk in ihrer Achsrichtung geführt sein. Man würde demnach hier als Grundlänge nur $l = \frac{500}{1/2}$ zu rechnen brauchen, doch soll auf diesen günstigen, aber nicht hinreichend sichern Einfluß keine Rücksicht genommen, vielmehr 1=500 cm gesetzt werden. Die Sicherheitsziffer möge gleich 6 genommen werden.

Sind D und d der äufsere und innere Durchmesser, so ist

$$J = (D^4 - d^4) \frac{\pi}{64}; \quad F = (D^2 - d^2) \frac{\pi}{4}; \quad i^2 = \frac{J}{F} = \frac{D^2 + d^2}{16}.$$

Benutzen wir zunächst die Euler'sche Formel und nehmen nach S. 284 6 fache Sicherheit an, so ist als zerknickende Kraft $N = 6.60\,000$ zu nehmen, und man erhält $6 \cdot 60\ 000 = 1\ 000\ 000\ \cdot \frac{(D^4 - d^4)\pi}{64} \frac{\pi^2}{500^2}$. Mittels dieser Gleichung kann selbstverständlich nur eine Unbekannte bestimmt werden. Wir nehmen daher willkürlich etwa $D = \frac{1}{20} l = 25$ cm an und lösen die Gleichung nach d auf, was d=21,s cm ergibt. Daraus erhält man den Querschnitt F = 135 gcm und mittlere Knickspannung $\frac{N}{E} = \frac{60\ 000}{135} = 444$ at.

Rechnen wir nun zum Vergleiche mit der Schwarz-Rankine'schen Formel, mit der zulässigen Druckspannung $\sigma_1 = \frac{7000}{6} = 1167 \, \text{at}$, so wird $1167 = \frac{60\ 000}{(D^2 - d^2)\frac{\pi}{4}} \left(\frac{1}{5000}\frac{500^2 \cdot 16}{(D^2 + d^2)} + 1\right).$ Legt man auch hier $D = 25\ \text{cm}$

zu Grunde, so liefert die Gleichung d = 22.6 cm und die mittlere Druckspannung (Knickspannung) wird $\frac{N}{F} = \frac{60\ 000}{88.5} = 680\ \text{at}$.

Nach der v. Tetmajer'schen Formel Gl. III3 erhält man bei sechsfacher Sicherheit $\frac{D_k}{6} \cdot \frac{\pi}{4} \cdot (D^2 - d^2) = 60\ 000$, d. i.

$$\left(7760 - 120 \cdot \frac{500 \cdot 4}{\sqrt{D^2 + d^2}} + 0{}_{,53} \cdot \frac{500^2 \cdot 16}{D^2 + d^2}\right) \frac{1}{6} \cdot \frac{\pi}{4} \left(D^2 - d^2\right) = 60\ 000$$

und daraus mit D = 25 cm d = 20.8 cm. Die mittlere Druckspannung wird $\frac{60\ 000}{150} = 400\ \mathrm{at}.$

Die Ergebnisse nach Euler und v. Tetmajer stimmen noch befriedigend überein, dasjenige nach Schwarz weicht jedoch in unzulässigem Mafse ab.

Beispiel 2: Ein 2,5 cm langer Winkeleisenstab aus Flufseisen vom Querschnitt $10 \times 10 \times 1.2$ cm ist an seinen Enden drehbar festgehalten. Die zulässige achsiale Belastung desselben bei fünffacher Sicherheit soll berechnet werden.

Das kleinste Trägheitsmoment ist

In

$$J_2 = 86,2 \text{ cm}^4, \quad F = 22,7 \text{ cm}^2, \quad i = \sqrt{\frac{J_2}{F}} = 1,95 \text{ cm}.$$

$$\frac{1}{\pi^2} \cdot JE = 1 \quad \pi^2 \cdot 86.2 \cdot 2$$

$$N = \frac{1}{6} \cdot \frac{1}{l^2} = \frac{1}{6} \cdot \frac{1}{250^2} = \frac{1}{250^2} = 4550 \text{ kg}.$$

000 000

Die mittlere Druckspannung wird $\frac{4550}{22,7} = 200 \text{ kg}$. Da $\frac{l}{i} = \frac{250}{1.95} = 128$, so erhält man nach Gl. II mit $\sigma_1 = \frac{3500}{c}$

$$N = \frac{3500 \cdot 22,7}{6\left(1 + \frac{128^2}{10\ 000}\right)} = 5000 \text{ kg}.$$

Da $\frac{l}{i} > 105$, liegt der Fall aufserhalb des Anwendungsgebietes der v. Tetmajer'schen Formeln und es kann daher eine vergleichsweise Rechnung nach diesen nicht in Frage kommen.

Beispiel 3: Das ungleichschenklige Winkeleisen S. 276 hat ein kleinstes Trägheitsmoment $J_2 = 30 \text{ cm}^4$ und bei der Länge l = 200 cm einer angreifenden Achsialkraft gegenüber nach Euler einen Knickwiderstand $N = \frac{\pi^2 \cdot 30 \cdot 2\ 000\ 000}{200^2} = 14\ 800\ \text{kg}.$

Die S. 277 angenommene Druckkraft von 5000 kg würde danach selbst bei achsialem Angriff nur mit einer rot 3 fachen und bei Gufseisen nur mit einer rot 11/2 fachen Sicherheit aufgenommen werden können. Man erkennt daraus, dafs bei kleinen Exzentrizitäten c für den Kraftangriff die Tragsicherheit eines Stabes vielfach zutreffender nach den Regeln für die Zerknickung beurteilt wird. (Vergl. S. 277.)

Beispiel 4: Die achsiale Tragfähigkeit eines hölzernen Pfostens von 6,0 m Länge und quadratischem Querschnitt von 25 cm Seite soll mit zehn-

facher Sicherheit berechnet werden. Es ist $i^2 = \frac{J}{F} = \frac{25^2}{12} = 52$, also i = 7, i cm und $\frac{l}{i} = \frac{600}{7, i} = 83$. Danach berechnet sich mit $E = 120\,000\,\mathrm{at}$ und der einfachen Druckfestigkeit D = 500die Knickfestigkeit

1. Nach Euler
$$D_k = \frac{\pi^x \cdot 120\,000}{83^2} = 170 \text{ at}.$$

2. "Schwarz $D_k = \frac{500}{\left(1 + \frac{83^2}{5000}\right)} = 210 \text{ at}.$

3. " v. Tetmajer D₄=293-1,9483 · 83=131 at. Daraus folgt die zulässige Belastung

1. Nach Euler
$$N = 25 \cdot 25 \cdot \frac{170}{10} = 10\,600$$
 kg.

2. ,, Schwarz
$$N = 25 \cdot 25 \cdot \frac{210}{10} = 13\,100$$
 kg.

3. " v. Tetmajer
$$N = 25 \cdot 25 \cdot \frac{131}{10} = 8200 \text{ kg}$$

Keck, Elastizitätslehre,

289

Dabei ist zu bemerken, dafs das Längenverhältnis $\frac{l}{i} = 83$ bereits aufserhalb, d. h. unter der durch die v. Tetmajer'schen Versuche ermittelten Grenze für die Gültigkeit der Euler'schen Formel $\frac{l}{i} = 100$ liegt, und die Anwendung dieser Formel danach also hier zu grosse Werte liefert. Ersichtlich zu hoch erscheint das Rechnungsergebnis nach der Schwarz'schen Formel.

VI. Drehungsspannungen, Drehungen.

a) Reine Drehungsspannungen.

Ein gerader Stab befinde sich unter der Wirkung äufserer Kräfte im Gleichgewicht und die beiderseits einer Schnittebene tt angreifenden Kräfte bilden je ein Kräftepaar, dessen Drehungsebene rechtwinklig zur Stabachse also parallel der Querschnittsebene gerichtet ist (vergl. Fig. 8 S. 7). Das Gleichgewicht jedes der beiden durch den Schnitt getrennten Stabteile fordert dann, daß die in der Schnittebene auftretenden Spannkräfte in ihrer Gesamtheit gleichfalls ein dem angreifenden äufseren entgegengesetzt gleiches, also in der Schnittebene liegendes Kräftepaar bilden. Ein solches kann nur durch Tangential- oder Schubspannkräfte entstehen, nur solche können also durch den bezeichneten Angriff der äufseren Kräfte in der Schnittebene hervorgerufen werden. Mit denselben tritt eine elastische Gleitung der Teilchen beiderseits unmittelbar neben der Schnittebene gegeneinander, eine gegenseitige Drehung oder Verdrehung benachbarter Querschnittsebenen und damit ,eine Verdrehung oder Torsion des ganzen Stabes ein, soweit er der bezeichneten Wirkung unterliegt. Die auftretenden Schubspannungen werden daher in diesem Falle Drehungs- oder Torsionsspannungen genannt.

1. Stab von kreisförmigem oder kreisringförmigem Querschnitt.

Der Stab habe überall gleichen Querschnitt, also zylindrische Form und das um die Stabachse drehende Kräftepaar greife am Ende des Stabes an (Fig. 205). Durch Versuche ist festgestellt, daß Halbmesser eines Querschnittes auch nach eingetretener Drehung noch geradlinig sind. Daraus folgt, daß die Gleitung in der

VIa, Reine Drehungsspannungen.

Achse bei O (Fig. 206) Null ist und verhältnisgleich mit dem Abstande g von O nach aufsen zunimmt. Da nun nach Gl. 2 S. 70

1)
$$\gamma = \frac{\tau}{G}$$
,

d. h. die Gleitung verhältnisgleich mit der Schubspannung ist, so mufs auch die Schubspannung mit o verhältnisgleich sein. Bezeichnet man daher diejenige am

äufseren Umfange im Abstande R mit τ und die im Abstande ϱ eintretende mit τ_{ρ} , so ist Fig. 206.

3)

$$\rho = \frac{\tau}{R} \cdot \varrho \,.$$

Für eine dünne Ringfläche von der Dicke $d\varrho$, dem Halbmesser ϱ und der Fläche dF, in welcher durchweg die gleiche Schubspannung τ_{ρ}

herrscht, ist daher unter Beachtung der Gl. 2 die Schubspannkraft, der Schubwiderstand

$$dT = dF \cdot \tau_{\rho} = dF \cdot \frac{\tau}{R} \cdot \varrho$$
.

Dem entspricht ein widerstehendes Spannungsmoment

$$dM_w = \frac{\tau}{R} dF \cdot \varrho^2.$$

Durch Integration erhält man das insgesamt widerstehende Spannungsmoment, und die Gleichheit desselben mit dem Moment M des angreifenden äußeren Kräftepaares führt zu der Gleichung

$$M = \frac{\tau}{R} \cdot \int_{o}^{R} dF \varrho^{2}.$$

Darin ist der Integralwert das polare Trägheitsmoment J_p -(vergl. S. 10) und es wird

$$M = \frac{\tau}{R} \cdot J_p$$

Nach Gl. 28 S. 22 ist für den kreisförmigen Querschnitt $J_p = \frac{\pi}{2} R^4$ und daher für den vollzylindrischen Stab

$$M=\tau\cdot\frac{\pi\cdot R^3}{2}.$$

19*

Für den kreisringförmigen Querschnitt ist nach Gl. 30 S. 22 $J_p = \frac{\pi}{2} \cdot (R^4 - r^4)$, also für den hohlzylindrischen Stab

3 b)
$$M = \frac{\tau \cdot \pi}{2} \cdot \frac{R^4 - r^4}{R}.$$

Der Winkel ϑ , um welchen sich ein Querschnitt gegen einen um l davon entfernten verdreht, heißt der Verdrehungswinkel. Die Berechnung desselben ergibt sich wie folgt: Infolge der Verdrehung nimmt eine ursprünglich gerade Zylinderseite AB (Fig. 205) die Form AC einer sehr steilen Schraubenlinie an. Der Winkel γ , welchen diese mit der Geraden AB einschließt, ist die der Schubspannung τ der äußeren Mantelfläche entsprechende Gleitung; daher wird der Drehungsbogen $BC = \gamma l$. Weil aber auch $BC = R \cdot \vartheta$, so wird $\gamma \cdot l = R \cdot \vartheta$, also unter Beachtung der Gl. 1 u. 3

4)
$$\vartheta = \frac{\gamma \cdot l}{R} = \frac{\tau \cdot l}{G \cdot R} = \frac{M \cdot l}{G \cdot J_p}$$

Für den vollzylindrischen Stab wird

4 a)
$$\vartheta = \frac{2 M l}{G \pi \cdot R^4}$$
 und für hohlzylindrische

4b)
$$\vartheta = \frac{2 M \cdot l}{G \pi \cdot (R^4 - r^4)}.$$

Die Gleichungen 3 lassen sich nach Belieben zur Berechnung des Drehungsmomentes M, das von einem Stabe bei gegebener zulässiger Schubspannung τ aufgenommen werden kann, oder zur Bestimmung der durch irgend ein Drehungsmoment erzeugten Schubspannung τ , oder endlich zur Berechnung der Querschnittsabmessungen benutzen, welche der Stab bei gegebenem Drehungsmoment M und gegebener zulässigen Schubspannung τ erhalten muß.

2. Stab mit rechteckigem Querschnitt.

So einfach die Ableitung der durch die Gleichungen 3 u. 4 ausgedrückten analytischen Beziehungen zwischen dem Drehungsmoment M, der größten Schubspannung τ und dem Verdrehungswinkel ϑ für einen voll- oder hohlzylindrischen Stab sich gestaltete, so verwickelt fallen die bezüglichen Entwicklungen bei Stäben von anderen Querschnittsformen aus. Ergab sich beim kreis- oder kreisringförmigen Querschnitt, daß die durch ein Drehungsmoment in einem solchen hervorgerufenen Schubspannungen für jedes Flächenteilchen rechtwinklig zum Mittelpunktsfahrstrahl desselben gerichtet waren, so weisen die Schubspannungen in Stäben mit rechteckigem Querschnitt im allgemeinen davon abweichende Richtungen auf.

In irgend einem Punkte P eines rechteckigen Querschnitts mit den Koordinaten x und y herrscht im allgemeinen eine Schubspannung, deren Richtung von vornherein nicht ohne weiteres bestimmt zu übersehen ist, die sich aber stets in zwei Seitenspannungen τ_x und τ_y rechtwinklig zu den Seiten des Querschnittes, bezw. zu den Achsen eines rechtwinkligen Koordinatenkreuzes XY zerlegen lassen (Fig. 207). Mit der Lage von P ändert sich auch die Größe dieser Seitenschubspannungen τ_x und τ_y , und aus dem auf S. 72 nachgewiesenen

Satze, wonach die an irgend einer Stelle innerhalb eines Körpers in zwei zueinander senkrechten Ebenen normal zu deren Durchschnittslinien auftretenden Schubspannungen einander gleich sind und gegen jene Durchschnittslinie gleichen Richtungssinn haben, folgt, daß τ_y für alle auf den Seiten ADund BC liegenden Querschnittspunkte, und τ_x für alle auf AB und DCliegenden Punkte Null sein muß, weil in den die Querschnittsbene in AB,

Fig. 207. $T_{T_{1}}$ T_{1} T_{2} T_{2} T

BC, *CD* und *DA* rechtwinklig schneidenden Aufsenflächen des Stabes Schubspannungen nicht herrschen können. Daraus folgt das auf den ersten Blick überraschende Ergebnis, daß in den Eckpunkten *A*, *B*, *C* und *D* des Querschnitts sowohl τ_x als auch τ_y gleich Null und in ihnen daher keinerlei Schubspannung vorhanden ist.

Von der tatsächlichen Richtigkeit dieses Schlusses kann man sich leicht auch durch einen einfachen Versuch überzeugen. Versieht, man die Oberfläche des Stabes vor der Verdrehung mit einem Netz von Quadraten, so zeigt sich, daß diese bei der Verdrehung sich im allgemeinen in Rhomben verwandeln und daß sie nur an den Kanten A, B, C und D ihre ursprüngliche Form beibehalten haben. Die Abweichung der Rhomben von den Quadraten, bezw. die eingetretene Winkeländerung oder Gleitung ermöglicht auch einen Schluß auf die Veränderlichkeit der Größe der Spannungen τ_x in

der Richtung der Seiten A D und CB, bezw. τ_y in der Richtung der Seiten A B und CD, denn Gleitungen und Schubspannungen sind verhältnisgleich.

Ausgeführte bezügliche Versuche haben ergeben, daß die Gleitungen und Schubspannungen in den Punkten E und G des Querschnittsumfangs am größten sind, welche der Stabachse am nächsten liegen, in den Mittelpunkten F und H der kurzen Seiten also weniger stark ausfallen. Die Schubspannungen τ in den Mitten E und G der langen Seiten stehen zu denjenigen τ_1 in den Mitten F und H der kurzen Seiten in folgender Beziehung

$$\frac{\tau}{\tau_1} = \frac{h}{d}.$$

Das Gesetz der Zunahme der Spannungen τ_x und τ_y in den Seiten A D und BC bezw. A B und C D von den Eckpunkten A, B, C und Dnach den Mitten kann nach den vorliegenden Versuchen, insbesondere von C. Bach, und in Übereinstimmung mit den Ausführungen auf S. 182 u. f. über Verteilung der Schubspannungen als ein parabolisches angenommen werden.

Durch Versuche ist ferner festgestellt, daß die Hauptachsen (X und Y) des Querschnittes während der Verdrehung gerade und zueinander rechtwinklig bleiben. Die erstere Tatsache gestattet den Schluß, daß die Gleitungen und Schußpannungen in Punkten der Hauptachsen senkrecht zu diesen von innen nach außen verhältnisgleich mit dem Abstande vom Schwerpunkte zunehmen.

Macht man die hiernach wahrscheirliche Annahme, dafs

- 1. die Spannung τ_x verhältnisgleich ist mit x und ebenso τ_y verhältnisgleich mit y,
- 2. die Spannung τ_x in parabolischer Abhängigkeit von y und τ_y in parabolischer Abhängigkeit von x steht,

so erhält man zwischen den größten Spannungen τ und τ_1 in den Punkten E und H bezw. G und F und den Spannungen τ_x und τ_y in einem beliebigen Punkte P(xy) folgende Beziehungen:

Für die Spannung τ' eines Punktes der Seite AD mit der Ordinate y wird $y^2:\left(\frac{h}{2}\right)^2 = \tau - \tau': \tau$ und daraus

2)
$$\tau' = \tau \left(1 - \frac{4y^2}{h^2} \right)$$

und ebenso für einen Punkt der Seite CD mit der Abszisse x unter Beachtung der Gl. 1

3)
$$\tau_1' = \tau_1 \left(1 - \frac{4x^2}{d^2} \right) = \tau \cdot \frac{d}{h} \left(1 - \frac{4x^2}{d^2} \right).$$

Ferner wird $\tau_x:\tau'=x:d/2$ und

 $\tau_y: \tau_1' = y: h/2$ oder unter Beachtung der Gl. 2 u. 3

 $\tau_x = \tau' \cdot \frac{2x}{d} = \tau \cdot \frac{2x}{d} \left(1 - \frac{4y^2}{b^2}\right)$ 4) $\tau_{y} = \tau_{1}' \cdot \frac{2y}{h} = \tau \cdot \frac{2y \cdot d}{h^{2}} \left(1 - \frac{4x^{2}}{d^{2}} \right).$

5)

Auf ein Flächenteilchen dF bei P wirken nun die Schubspannkräfte $\tau_x \cdot dF$ bezw. $\tau_y \cdot dF$ und diese liefern zu dem inneren widerstehenden Spannungsmomente in Bezug auf die Achse O einen Beitrag $dM_w = (\tau_x \cdot x + \tau_y \cdot y) dF.$

Das Drehungsgleichgewicht der inneren und äußeren Kräfte bedingt danach die Gleichung

$$M = \int (\tau_x \cdot x + \tau_y \cdot y) \, dF$$

oder unter Beachtung der Gl. 4 und 5

$$\begin{split} M &= 2 \tau \cdot \int \left\{ \frac{1}{d} x^2 \left(1 - \frac{4y^2}{h^2} \right) + \frac{d}{h^2} y^2 \left(1 - \frac{4x^2}{d^2} \right) \right\} dF \\ &= 2 \tau \cdot \left\{ \frac{1}{d} \int dF x^2 - \frac{4}{h^2 d} \cdot \int x^2 y^2 dF + \frac{d}{h^2} \int dF y^2 - \frac{4}{h^2 \cdot d} \int x^2 y^2 \cdot dF \right\}. \end{split}$$

 $\int x^2 dF = J_2$, $\int y^2 dF = J_1$ sind die Hauptträgheitsmomente des Querschnitts und es ist

$$\frac{d}{h^2} \cdot \int dF \cdot y^2 = \frac{d}{h^2} J_1 = \frac{d}{h^2} \cdot \frac{dh^3}{12} = \frac{1}{d} \cdot \frac{hd^3}{12} = \frac{J_2}{d}.$$

Endlich ist noch zu lösen

$$\int dF \cdot x^2 \cdot y^2 = \int dx \cdot x^2 \cdot dy \cdot y^2.$$

Ein wagerechter Flächenstreifen von der konstanten Breite dy liefert zu dem Integralwerte den Beitrag

$$\frac{dy \cdot y^2}{dy \cdot y^2} \cdot \int_{-\frac{d}{2}}^{+\frac{a}{2}} x^2 dx = dy \cdot y^2 \cdot \frac{d^3}{12}$$

und die ganze Fläche ergibt

$$\frac{d^3}{12} \int_{-\frac{h}{2}}^{+\frac{h}{2}} y^2 dy = \frac{d^3 \cdot h^3}{12 \cdot 12}.$$

Danach wird

$$M = \tau \left\{ 4 \frac{J_2}{d} - \frac{16 \cdot d^3 \cdot h^3}{h^2 d \cdot 12 \cdot 12} \right\} = \tau \left\{ 4 \frac{J_2}{d} - \frac{4}{3} \frac{J_2}{d} \right\}, \text{ d. i.}$$

6) $M = \frac{8}{3} \cdot \tau \cdot \frac{J_2}{d} = \frac{4}{3} \cdot \tau \cdot \frac{J_2}{\frac{1}{2} d}$ und ebenso $M = \frac{4}{3} \tau_1 \cdot \frac{J_1}{\frac{1}{2} h}, \text{ oder}$
7) $\tau = \frac{3}{8} \cdot \frac{M \cdot d}{J_2}; \quad \tau_1 = \frac{3}{8} \cdot \frac{M \cdot h}{J_1}.$

Da $J_1 > J_2$, so ist $\tau > \tau_1$. Die durch ein Drehungsmoment in einem Stabe von rechteckigem Querschnitt hervorgerufene Drehungsspannung ist also in den Punkten am größten, welche der Stabachse am nächsten liegen, nämlich im Abstande $\frac{d}{2}$. Für die Drehungsfestigkeit ist nicht wie beim zylindrischen Stabe das polare Trägheitsmoment, sondern das kleinste Hauptträgheitsmoment maßgebend.

Der Verdrehungswinkel ϑ eines Stabes von rechteckigem Querschnitte wäre nach der im Querschnittspunkte E (Fig. 207) herrschenden Spannung τ und der daraus folgenden Gleitung $\gamma = \tau: G$ zu $\frac{\tau}{G} \frac{l}{\frac{1}{2}d}$, d. h. mittels Gl. 13, S. 69, zu $\frac{3}{4} \frac{Ml}{GJ_2}$ zu erwarten, nach der im Punkte H herrschenden Spannung $\tau_1 = \tau \frac{d}{h}$ aber zu

$$\frac{\tau_1}{G}\frac{l}{\frac{1}{2}h} = \frac{3}{4}\frac{Ml}{GJ_1}.$$

In Wirklichkeit verdrehen sich die beiden Symmetrieachsen des Querschnitts annähernd um das arithmetische Mittel dieser beiden Werte, d. h. es ist ungefähr

8)
$$\vartheta = \frac{3}{8} \frac{Ml}{G} \left(\frac{1}{J_2} + \frac{1}{J_1} \right).$$

Die beiden Symmetrieachsen bleiben zueinander rechtwinklig; die übrigen vom Mittelpunkte aus gezogenen Radien verdrehen sich um verschiedene Winkel und treten aus der ursprünglichen Querschnittsebene heraus, so daß diese in eine krumme Fläche übergeht. Bessere Übereinstimmung mit Bauschinger's Versuchen (Civilingenieur 1881, S. 115 u. f.) ergibt sich noch, wenn man $^{3}/8 = 0.375$ mit 0.3 vertauscht, also setzt:

$$\vartheta = 0,3 \frac{M}{G} \left(\frac{1}{J_2} + \frac{1}{J_1} \right) l.$$

VIa. Reine Drehungsspannungen.

Nach Einführung von $M = \frac{8}{3} \tau \frac{J_2}{d}$ (Gl. 13) wird hieraus

$$\vartheta = 0.8 \frac{\tau}{G} \frac{l}{d} \left(1 + \frac{J_2}{J_1}\right) = 0.8 \frac{\tau}{G} \frac{l}{d} \left(1 + \frac{d^2}{h^2}\right).$$

Für Stäbe mit aus Rechtecken zusammengesetzten Querschnitten ist die theoretische Entwickelung von Regeln zur Berechnung der Schubspannungen aus dem Drehungsmoment in für die Anwendung brauchbarer Form bislang nicht gelungen. C. Bach hat indes aus vom ihm angestellten eingehenden Versuchen Formeln hergeleitet und in seinem Werke Elastizität und Festigkeit mitgeteilt, worauf hier verwiesen werden möge.

Anwendungen.

Beispiel 1: Auf einer Maschinenwelle (Fig. 208) befinden sich zwei Zahnräder im Abstande l = 250 cm voneinander. Am Umfange des rechtsseitigen

vom Halbmesser = 40 cmwirke eine Kraft K= 1000 kg. Dadurch entsteht ein Drehmoment M = 40 000 cmkg, welches durch ein gleiches Widerstandsmoment am anderen Zahnrade aufgehoben werden möge. Die zulässige

9

Schubspannung möge mit Rüchsicht auf mögliche Unregelmäßsigkeiten der Bewegung nur zu $\tau=200\,{\rm at}$ angenommen werden, dann gilt für den erforderlichen Wellenhalbmesser r

$$200 \cdot \frac{1}{2} r^3 \pi = 40\,000$$
 oder $r = 5 \,\mathrm{cm}$.

Die elastische Verdrehung der beiden Zahnräder gegen einander beträgt (Gl. 4)

$$\vartheta = \frac{200}{800\ 000} \frac{250}{5} = \frac{1}{80},$$

oder in Graden 0º 43'.

Beispiel 2: Bei einem Quadrate von der Seite d als Querschnitt ist

$$M = \frac{8}{3} \tau \frac{Fd}{12} = \frac{2}{9} Fd \tau = 0,222 d^3\tau;$$

beim Kreise vom Durchmesser d:

$$M = \frac{Fr}{2} \tau = \frac{1}{4} Fd \tau = \frac{1}{16} d^3 \pi \tau = 0, 2 d^3 \tau.$$

Bei gleichem Querschnitt F ist also der Kreis, bei gleicher Breite (Durchmesser = Quadratseite) das Quadrat gegen M widerstandsfähiger.

b) Dreh- und Biegungsspannungen.

In vielen Fällen der Anwendung treten neben den reinen Drehungsspannungen gleichzeitig Biegungsspannnungen auf, und aus dem Zusammenwirken beider, die ihrem Wesen nach Schub- und Normalspannungen sind, ergeben sich nach S. 194 Gl. 5 und 6 die Hauptspannungen und Materialanstrengungen.

1. Stab von kreisförmigem und kreisringförmigem Querschnitt.

Ist für irgend einen Stabquerschnitt M_b das Biegung-, M_d das Drehungsmoment, so ist nach Gl. 3 S 84 die entstehende größte Biegungsspannung (Randspannung) $\sigma = \frac{M_b}{J/e} = \frac{M_b \cdot R}{J}$ und nach Gl. 3 S. 291 die größte Drehungsspannung $\tau = \frac{M_d \cdot R}{J_p}$. Da nach S. 22 Gl. 27 $J_p = 2J$, so erhalten wir nach S. 194 Gl. 5a die entstehenden Hauptspannungen

$$\sigma_{1} = \frac{\sigma}{2} \pm \sqrt{\left(\frac{\sigma}{2}\right)^{2} + \tau^{2}} = \frac{M_{b}R}{2J} \pm \sqrt{\left(\frac{M_{b}R}{2J}\right)^{2} + \left(\frac{M_{d}R}{2J}\right)^{2}}, \text{ d. i.}$$
$$\sigma_{1} = \frac{R}{2J} \left\{ M_{b} \pm \sqrt{M_{b}^{2} + M_{d}^{2}} \right\}.$$

Nach Gl. 6 a S. 194 ergibt sich daraus die größste Materialanstrengung

2)
$$s = \sigma_1 - \frac{\sigma_2}{4} = \frac{R}{2J} \left\{ \frac{3}{4} M_b + \frac{5}{4} \cdot \sqrt{M_b^2 + M_d^2} \right\},$$

1)

worin für den Vollzylinder $J = \frac{\pi \cdot R^4}{4}$ und für den Hohlzylinder $J = \frac{\pi (R^4 - r^4)}{4}$ zu setzen ist.

2. Stab mit rechteckigem Querschnitt.

Hier ist zu beachten, daß die größte Biegungsspannung davon abhängt, gegen welche Querschnittsachse rechtwinklig das gegebene Biegungsmoment wirkt. Wir wollen uns hier zunächst auf die beiden in der Anwendung meist vorliegenden Hauptfälle beschränken, wo das Biegungsmoment in den Richtungen der Hauptachsen des Querschnitts wirkt. Am ungünstigsten wird der Stab beansprucht, am größten fallen die Stoffanstrengungen aus, wenn das Biegungsmoment in der Richtung der Hauptachse *II* wirkt, weil dann sowohl für die größten Biegungs- als Drehungsspannungen das kleinste Trägheitsmoment in Frage kommt.

Es wird dann nach Gl. 3 S. 84 erstere $\sigma = \frac{M_b}{J_2/e} = \frac{M_b \cdot d}{2J_2}$ und nach Gl. 7 S. 296 $\tau = \frac{3}{8} \frac{M_d \cdot d}{J_2}$. Nach Gl. 5 a S. 194 erhalten wir die Hauptspannungen zu

$$\begin{split} \sigma_{\frac{1}{2}} &= \frac{M_b \cdot d}{2 \cdot 2 \cdot J_2} \pm \sqrt[]{\left(\frac{M_b \cdot d}{2 \cdot 2 \cdot J_2}\right)^2 + \left(\frac{3}{8}\frac{M_d \cdot d}{J_2}\right)^2}, \text{ d. i.} \\ \sigma_{\frac{1}{2}} &= \frac{d}{4J_2} \left\{ M_b \pm \sqrt[]{M_b^2 + (1,5M_d)^2} \right\} \end{split}$$

3)

4)

und daraus die größte Stoffanstrengung in der Mitte der langen Querschnittsseiten

$$s = rac{d}{4J_2} \Big\{ rac{3}{4} \cdot M_b + rac{5}{4} \sqrt{M_b^2 + (1,5M_d)^2} \Big\}.$$

Wirkt das Biegungsmoment in der Richtung der Hauptachse I, so erhält man die Hauptspannung und größte Stoffanstrengung in der Mitte der kurzen Querschnittsseiten, indem man in Gl. 3 u. 4 J_2 mit J_1 und die Querschnittsbreite d mit der Höhe h vertauscht. Es ist indes nicht in allen Fällen sicher, daß bei dieser Richtung des Biegungsmomentes in der Mitte der kurzen Querschnittsseite die überhaupt größte Anstrengung auftritt. Jedenfalls aber ist der Punkt, in welchem diese herrscht, auf dem Querschnittsumfange zu suchen. Umschreiten wir diesen, so treffen wir im allgemeinen sechs Punkte, in denen die Stoffanstrengung zu einem relativen Maximum wird. Zwei derselben erkennt man leicht als in der Mitte der kurzen Seiten liegend, während die vier andern sich in symmetrische Lage auf den langen Seiten befinden. In welchen von diesen Punkten der absolute Gröfstwert der Anstrengungen entsteht, hängt von dem Verhältnis der Breite des Querschnittes zu seiner Höhe und von dem Verhältnis des Biegungs- zum Drehungs-

moment ab. In irgend einem Punkte der langen Seite mit der Ordinate y herrscht nämlich die Biegungsspannung

$$\sigma_y = \frac{\sigma \cdot y}{h/2} = \frac{M_b \cdot y}{J_1}$$

und nach Gl. 2 die Schubspannung

$$\tau' = \tau \left(1 - \frac{4y^2}{h^2} \right) = \frac{3}{8} \cdot \frac{M_d \cdot d}{J_2} \left(1 - \frac{4y^2}{h^2} \right).$$

Daraus erhält man die Hauptspannungen

$$\sigma_{1} = \frac{\sigma_{y}}{2} \pm \sqrt{\left(\frac{\sigma_{y}}{2}\right)^{2} + \tau^{\prime 2}}$$

und die größte Stoffanstrengung

$$s = \frac{3}{8} \cdot \sigma_y + \frac{5}{4} \cdot \sqrt{\left(\frac{\sigma_y}{2}\right)^2 + \tau'^2};$$

oder, wenn man die obigen Werte für σ_{ν} und τ' einsctzt

5)
$$s = \frac{3}{8} \frac{M_b \cdot y}{J_1} + \frac{5}{4} \sqrt{\left(\frac{M_b \cdot y}{2J_1}\right)^2 + \left(\frac{3}{8} \frac{M_d \cdot d}{J_2}\right)^2 \left(1 - \frac{4y^2}{h^2}\right)^2}.$$

Hierin erscheint also s als Funktion von y und wird für zwei Werte von y zu einem Maximum. Die Bestimmung desselben mit Hilfe der Gleichung $\frac{ds}{dy} = 0$ fällt indes sehr umständlich aus und führt zu einer für die Anwendung, etwa zur Berechnung der Querschnittsabmessungen brauchbaren allgemeinen Gleichung nicht. Man hat daher gegebenenfalls Querschnittsabmessungen versuchsweise anzunehmen oder unter vorläufiger Benutzung der Gl. 4 zu berechnen und dann rückwärts nach Gl. 5 für verschiedene Werte von y die eintretenden größten Anstrengungen s zu berechnen und danach deren Zulässigkeit zu beurteilen, bezw. eine entsprechende Querschnittsvergrößerung vorzunehmen.

Wirkt das Biegungsmoment in beliebiger von den Querschnittshauptachsen abweichender Richtung so Jäfst sich für jeden Punkt eines Querschnitts nach Gl. 8 S. 242 u. f. die dort herrschende Normalspannung und nach Gl. 2 u. 3 S. 294 u. 295 die Schubspannung und aus beiden die Anstrengung bestimmen. Es soll darauf indes hier nicht näher eingegangen werden.

Anwendungen.

Der Zapfen A der Kurbelwelle Fig. 209 wird rechtwinklig zur Achse des im Querschnitt rechteckigen Kurbelschaftes durch eine Kraft $K=10\,000$ kg ergriffen. Dabei entstehen im Kurbelschaft Dreh- und Biegungsspannungen. Das Verdrehungsmoment M_d ist für alle Querschnitte des Schaftes konstant und bei den aus der Fig. ersichtlichen Längenmaßen

 $M_d = 13 \cdot 10\,000 = 130\,000 \,\,\mathrm{cm/kg}$.

Das Biegungsmoment ist im Querschnitt tt gleich Null und wächst verhältnisgleich mit dem Abstande von tt. Der Schaft soll eine annähernde

Form von gleichem Widerstande erhalten und muß daher in seinen Querschnittsabmessungen vom Schnitt tt bis t''''t'''' allmählich anwachsen. Die gröfste Stoffanstrengung soll 800 at nicht überschreiten. Wir wählen die Dicke d durchweg konstant gleich 8 cm und wollen die veränderliche Höhe bestimmen. Denken wir uns den Querschnitt nach dem Gesetz seiner Höhenzubezw. Abnahme bis zu den Schnitten tt und t''''t'''' einfach rechteckig fortgesetzt, so ergibt sich für den ideellen Querschnitt t''''t'''' das Biegungsmoment $M_b = 10\,000 \cdot 50 = 500\,000 \,\mathrm{cm/kg}$. Setzen wir aufserdem in Gl. 4 S. 299 $s = 800, d = 8 \,\mathrm{cm}$ und, da das Biegungsmoment in der Richtung der Hauptachse I wirkt, $J_2 = J_1 = \frac{8 \cdot \hbar^3}{12}$ und vertauschen d mit h, so erhalten wir durch Auflösung der Gl. 4 für h

$$h = \sqrt{\frac{3}{8 \cdot 800} \left\{ \frac{3}{4} \cdot 500\ 000 + \frac{5}{4} \cdot \sqrt{500\ 000^2 + (1, 5 \cdot 130\ 000)^2} \right\}} = 22\ \mathrm{cm}.$$

Für den Querschnitt im Abstande gleich 40 cm von tt wird $M = 40 \cdot 10\,000$ und also

$$h = \sqrt{\frac{3}{8 \cdot 800} \left\{ \frac{3}{4} \cdot 400\ 000 + \frac{5}{4} \cdot \sqrt{400\ 000^2 + (1, 5 \cdot 130\ 000)^2} \right\}} = 20\ \mathrm{cm}\,.$$

Für den Mittelquerschnitt $M_b = 25 \cdot 10000$ also

$$h = \sqrt{\frac{3}{8 \cdot 800}} \left\{ \frac{3}{4} \cdot 250\ 000 + \frac{5}{4} \cdot \sqrt{250\ 000^2 + (1, 5 \cdot 130\ 000)^2} \right\} = 16, \text{s}^{\text{cm}}.$$

Im Abstande gleich 10 cm von $tt M_b = 10 \cdot 10000$ und

$$h = \sqrt{\frac{3}{8 \cdot 800} \left\{ \frac{3}{4} \cdot 100\ 000 + \frac{5}{4}, \ \sqrt{100\ 000^2 + (1, 5 \cdot 130\ 000)^2} \right\}} = 12, \mathfrak{g}\,\mathrm{cm}.$$

In dem ideellen Schaftquerschnitt tt ist $M_b = 0$, hier kommt also nur das Verdrehungsmoment in Frage. Die stärkste Schubspannung tritt in der längern Querschnittsseite auf. In Gl. 4 verschwindet M_b und es ist $J_2 = \frac{h \cdot d^3}{12} = \frac{8^3 \cdot h}{12}$. Damit wird

$$h = \frac{3}{8^2 \cdot 800} \frac{5}{4} \cdot 1, 5 \cdot 130\,000 = 14, 5 \text{ cm}.$$

Es bleibt noch festzustellen, ob die vorläufig stillschweigend gemachte Annahme, dafs die absolut stärkste Anstrengung in den Mitte der kurzen Querschnittsseite liegen würde, tatsächlich zutrifft. Wir erkennen, dafs dies in dem Querschnitt t't' sicher nicht der Fall ist; denn hier ergibt Gl. 5 für die Mitte der längern Seite (h = 12, s) mit y = 0 (Biegungsspannung Null)

$$s = \frac{5}{4} \cdot \frac{3}{8} \cdot \frac{M_d \cdot d}{J_q} = \frac{5}{4} \cdot \frac{3}{8} \cdot \frac{130\ 000 \cdot 8 \cdot 12}{12, s \cdot 8^3} = 915 \text{ at}.$$

In einiger Entfernung von der Mitte der läugern Seite für kleine Werte von y würde Gl. 5 noch größere Anstrengungen ergeben. Eine Vermehrung der Querschnittshöhe ist im Querschnitt t't' also erforderlich.

Wir wollen jetzt mit Hülfe der Gl. 5 die Anstrengung in den längern Seiten des Querschnittes t"t" von der errechneten Höhe h = 16,5 cm näher untersuchen. Mit $J_2 = \frac{16,5 \cdot 8^3}{12} = 700$ cm⁴ u. $J_1 = \frac{8 \cdot 16,5^3}{12} = 3000$ cm⁴, $M_b = 25 \cdot 10\,000$, $M_d = 130\,000$ erhalten wir

$$\begin{array}{l} y = 0 \ \mathrm{cm} & s = 694 \ \mathrm{at}, \\ y = 1 \ \mathrm{cm} & s = 720 \ \mathrm{at}, \\ y = 2 \ \mathrm{cm} & s = 725 \ \mathrm{at}, \\ y = 3 \ \mathrm{cm} & s = 707 \ \mathrm{at}. \end{array}$$

Das relative Maximum der Anstrengung in der längern Seite liegt danach etwa bei y = 2 cm, ist aber mit s = 725 at kleiner, als die der Berechnung der Querschnittshöhe zu Grunde gelegte Anstrengung s = 800 at in der Mitte der kurzen Seite. Die hier errechnete Höhe ist also hinreichend, und dasselbe ergibt sich für die in den Querschnitten t''' t''' und t'''' t'''' errechnete Höhen.

VIb. Dreh- und Biegungsspannungen.

Die Auftragung der errechneten Höhen ergibt eine von der Geraden nur wenig abweichende Linie. Hält man daher die in den Schnitten tt und t'''' t'''' errechneten Höhen fest und wählt eine gerade Verbindung der entsprechenden Punkte, so ergibt sich für die zwischenliegenden Querschnitte eine geringe Verstärkung, die auch für den Schnitt t't' genügen dürfte. Mit Hülfe der Gl. 5 ist dies leicht zu kontrollieren.

Es soll noch der Durchmesser der Welle im Schnitt $t^0 t^0$ berechnet werden. Für diesen ist $M_b = 29 \cdot 10\,000$ und $M_d = 50 \cdot 10\,000$ cm/kg. Daher nach Gl. 2 S. 298 mit $J = \frac{\pi \cdot R^4}{4}$ und s = 800 at

 $R = \sqrt[3]{\frac{2}{\pi \cdot 800} \left\{ \frac{3}{4} \cdot 290\ 000 + \frac{5}{4} \cdot \sqrt{290\ 000^2 + 500\ 000^2} \right\}} = 9\ ^{\text{cm}}.$ d. i. der Durchmesser $D = 18\ \text{cm}.$

Alphabetisches Verzeichnis und Bedeutung der in den Formeln benutzten Buchstaben unter Hinweis auf die erklärenden Stellen des Buches.

- A Stütz- oder Auflagerdruck des linken Endauflagers (S. 93).
- B desgl. des rechten Endauflagers (S. 93).
- C Auflagerdruck einer Mittelstütze (S. 126).
- C_{xy} Centrifugalmoment einer Fläche in Bezug auf ein Achsenkreuz xy(S. 10).
- $C_{\#y_r}$ Centrifugalmoment einer Fläche für rechtwinklig gemessene Abstände x und y in Bezug auf ein schiefwinkliges Achsenkreuz (S. 14).
 - D Druckfestigkeit eines Stoffes (S. 52 u. 55).
 - D Mittelkraft aller Druckspannkräfte in einem Querschnitte (S. 232).
- D_k Knickfestigkeit eines Stabes (S. 280).
- E Elastizitätszahl eines Stoffes (S.50).
- F Querschnittsfläche eines Stabes oder Balkens (S. 49 u. 226).
- F_x , F_y , F_{xy} Flächeninhalte der Seilliniendreiecke bei der zeichnerischen Bestimmung der Flächenmomente zweiter Ordnung nach Mohr (S. 28).
- F_M Momentenfläche (S. 115).
 - G Gleitzahl (S. 70).

- H Polweite in einem Krafteck für die Zeichnung eines Seilecks (S. 94, 95).
- J, J_x, J_y Achsiale Trägheitsmomente einer Fläche (S. 9).
- J_{x_r} , J_{y_r} Trägheitsmomente einer Fläche für rechtwinklig gemessene Abstände x und y in Bezug auf ein schiefwinkliges Achsenkreuz (S. 14).
- J₁ u. J₂ Hauptträgheitsmomente einer Fläche (S. 32).
 - J_p Polares Trägheitsmoment einer Fläche (S. 10).
 - K Kraft (S. 49).
 - K Kernpunkt (S. 252).
 - L Gesamte Trägerlänge (S. 176).
 - M Angriffs- oder Biegungsmoment (S. 84):
- $M_1 M_2 \ldots M_n$ Stützmomente (S. 145).
 - N Längskraft, Normalkraft für einen Querschnitt (S. 226, 241).
 - P Einzellast eines Balkens (S. 94).
 - Q Querkraft in Bezug auf einen Staboder Balkenquerschnitt (S. 226, 241).
- SS_x statisches Moment eines Querschnittsteiles auf der einen Seite der Nullinie in Bezug auf diese (S. 180).

- T Tangential- oder Schubwiderstand in einem Querschnitte (S. 90).
- W Widerstandsmoment eines Querschnittes (S. 84).
- Z Mittelkraft aller Zugspannkräfte in einem Querschnitte (S. 232).
- a große Halbachse der Trägheitsund Centralellipse Hauptträgheitshalbmesser (S. 34).
- a₁ zugeordneter Halbmesser der Centralellipse (S. 35).
- a Abstand einer Last vom linken Endauflager (S. 93, 96).
- a Stück eines Gerberträgers (S. 169).
- a gröfste Ordinate der Biegungslinie eines von einer Längskraft N ergriffenen Stabes in Bezug auf die Richtungslinie der Kraft als Abscissenachse (S.273).
- b kleine Halbachse der Trägheitsund Centralellipse (S. 34).
- b₁ zugeordnete Halbachse derCentralellipse (S. 35).
- b Abstand einer Last vom rechten Endauflager (S. 93, 96).
- b Stück eines Gerberträgers (S. 169).
- b Breite eines rechteckigen oder aus Rechtecken gebildeten Querschnitts (S. 15, 16, 85).
- c Senkung der Mittelstütze eines dreifach gestützten Balkens (S. 126).
- c Exzentrizität einer Längskraft N (S. 273).
- d Stück eines Gerberträgers (S. 169).
- d Elastizitätsgrenze für Druck (8.52).
- d Breite eines Rechtecks (S. 258).
- e Abstand der am stärksten gespannten Stelle im Querschnitt eines gebegenen Stabes von der Biegungsachse (S. 83).
- e Breite des wirksamen Teiles eines Querschnittes (S. 233).
- f Durchbiegung eines Balkens (S. 117).

- g ständige Belastung für die Längeneinheit (S. 161).
- h Höhe eines rechteckigen oder aus Rechtecken gebildeten Stabquerschnittes (S. 85, 258).
- i Trägheitshalbmesser (S. 10).
- k Kernweite (S. 230, 250).
- mE Querelastizitätszahl (S. 61).
 - m Verhältnis der mittleren Elastizitätszahlen für Zug und Druck eines dem Hooke'schen Gesetz nicht folgenden Stoffes (S. 207).
 - n Verhältnis verschiedener Breiten eines Querschnitts (S. 203).
 - n Sicherheitsmaß gegen Bruch (S. 56).
 - n Zahl der halben Wellen bei einem knickenden Stabe (Euler'sche Formel) (S. 279)Q
 - p Belastung der Längeneinheit eines Balkens, inbesondere bewegliche Belastung (S. 93 u. 157).
 - q volle Belastung der Längeneinheit eines Balkens (S. 170).
 - r Hülfsgröße (Knickfestigkeit) (S. 274, 278).
 - s Anstrengung (S. 60, 62, 194).
 - s Stärke der Kopfplatte eines Blechbalkens (S. 20).
 - s Stärke der Einlage bei Verbundbalken (S. 214).
 - t Abstand einer Druckkraft N von der Kante R eines Stabquerschnittes (S. 233).
 - u veränderliche lotrechte Höhe einer graphischermittelten Momentenfläche (S. 94, 96).
 - µ Abstand einer Last vom linken Auflager (S. 131).
 - x Abscisse eines beliebigen Querschnittspunktes (S. 9, 11, 241)
- x_n Abscisse des Angriffspunktes einer Normalkraft in einen Stabquerschnitt (S. 241).

306 Alphabetisches Verzeichnis und Bedeutung der Buchstaben.

- y Ordinate eines beliebigen Querschnittspunktes (S. 9, 11, 241).
- y_n Ordinate des Angriffspunktes einer Normalkraft in einem Stabquerschnitt (S. 241).
 - z Abstand eines beliebigen Querschnittspunktes von der Schwerachse (S. 180, 225).
- z Elastizitätsgrenze für Zug (S. 51).
- z_n . Abstand des Angriffspunktes einer Normalkraft von der Schwerachse eines symmetrischen Stabquerschnittes (S. 225).
 - a Biegungswinkel (S. 114).
- α Knickziffer (S. 283).
- α Verhältnis der Randspannungen in einem Verbundbalken (S. 220).
- α_n Neigungswinkel der Nullinie (S. 256).
- α_k Neigungswinkel der Kraftlinie (S. 256).
- β Verhältdiszahl für die Entfernung der Einlage in einem Verbundbalken von dessen Aufsenkante (S. 220).

- β Neigungswinkel der Verbindungsgraden benachbarten Stützpunkte eines Balkens (S. 145).
- γ Gleitung (S. 70).
- γ Dichtigkeit des Mauerwerks (S. 237).
- ε Dehnung (S. 50).
- η Einflufsordinate (S. 156).
- λ Länge eines Trägerfeldes bei mittelbarer Belastung (S. 158).
- μ Multiplikator einer Einflufsfläche (S. 156).
- ξ Abscisse des Schwerpunktes der Momentenfläche F_M (S. 140, 142).
- ρ Krümmungsradius der Biegungslinie (S. 86).
- σ Normalspannung (Zug-oder Druckspannung) (S. 49, 51, 225 u. 241).
- $\sigma_1 \sigma_2$ Hauptspannungen (S. 192).
- $\sigma_1 \sigma_2$ Randspannungen (S. 82, 84 u. 86). τ Schubspannung (S. 69, 179).
 - τ_0 wagerechte und lotrechte Schubspannung in der Achse eines Balkens (S. 181).

Verzeichnis und Bedeutung der in den Formeln benutzten Buchstaben — im Band 2 dieses Werkes.

- A Auflagerdruck des linken Endauflagers (S. 209);
- " lotrechter Kämpferdruck am linksseitigen Auflager eines Bogenträgers (S. 71);
- B Auflagerdruck des rechten Endauflagers (S. 209);
- " lotrechter Kämpferdruck am rechten Auflager eines Bogenträgers (S.71);
- C Centrifugalmoment einer Bogenlinie (S. 139);
- D Spannkraft in einer Strebe (Diagonalen) eines Fachwerks (S. 231);
- " aktiver Erddruck gegen eine Wand (S. 380);
- D_1 passiver Erddruck oder Erdwiderstand (S. 383);
- D Gesamtdruck in einer Fuge eines Gewölbes (S. 193);
- F Querschnittsfläche eines Stabes oder Bogenträgers (S. 37, 70);
- F_1 Querschnitt des Bandes eines Bogens (S. 105);
- $F(u) = \frac{1}{2} (e^{u} + e^{-u})$ (zur Kettenlinie) (S. 171);
 - G Gleitziffer (S. 17);
 - " ständige Knotenpunktslast"(S. 297);
 - " Gewicht einer Stützmauer (S. 403);
 - H wagerechte Seitenkraft in einem Trägergurt (S. 211);
 - " Horizontalschub eines Bogenträgers oder Gewölbes (S. 72, 98, 136, 184);
 - . wagerechte Spannkraft im Scheitel einer Ketten- oder Drucklinie (S. 166);
 - M Biegungsmoment (S. 14);
 - Mm Scheitelmoment eines Bogenträgers oder Gewölbes (S. 154, 195);
 - M_a und M_b Einspannungsmomente eines Bogenträgers oder Gewölbes (S. 136, 195);
 - M_k Kernmoment (S. 70);
 - N Längskraft, Normalkraft für einen Querschnitt (S. 35);
 - O Spannkraft im Obergurt eines Trägers (S. 207, 218);
 - P* Einzellast (S. 67) besonders auch bewegliche Einzellast (S. 82, 98);
 - P_n Bezeichnung einer Gruppe von Kräften P_n , P_{n_2} usw. (S. 339);
 - Q Querkraft in einem Schnitte (S. 16, 70);
 - S Spannkraft eines Stabes bezw. einer Ketten- oder Drucklinie an beliebiger Stelle (S. 166, 224);
 - S' Spannkraft eines Fachwerkstabes infolge einer Last Eins in bestimmter Richtung (S. 341);
 - S_0 Spannkraft eines Stabes in einem statisch unbestimmten Fachwerk, das durch Beseitigung überzähliger Stützwiderstände oder Stäbe statisch bestimmt gemacht ist (S. 364);

- U Spannkraft im Untergurt eines Trägers (S. 207, 218);
- V Spannkraft in einem Ständer (einer Vertikalen) eines Fachwerks (S. 218);
 - W_a und W_b Widerlager- (Kämpfer-) Drücke eines Bogenträgers oder Gewölbes (S. 67, 72, 99);
 - X wagerechte Spannkraft an beliebiger Stelle einer Drucklinie für Erdbelastung (S. 201);
 - " statisch unbestimmte Größe (S. 364).
 - Y Wandscheerkraft eines Trägers (S. 208);
 - Ai und Aa innere und äufsere Formänderungsarbeit (S. 11);
 - \mathfrak{A}_i^V und \mathfrak{A}_a^V innere und äufsere Verschiebungsarbeit (S. 11);
 - a diejenige Strecke der linken Auflager-Lotrechten eines Trägers, welche zwischen den Gurtrichtungen einer Schnittstelle liegt (S. 208, 258, 286);
 - b diejenige Strecke der rechten Auflagerlotrechten eines Trägers, welche zwischen den Gurtrichtungen einer Schnittstelle liegt (S. 208, 258, 286);
 - c Höhe des Spannungsmittelpunktes der Scheitelfuge eines Bogenträgers oder Gewölbes über der Mitte der Fuge (S. 155, 196);
 - " Scherfestigkeit (Kohäsion) eines Erdkörpers (S. 155, 196);
 - d Länge einer Fachwerkstrebe (S. 285, 295);
 - " untere Stärke einer Stützmauer (S. 403);
 - " Gewölbestärke an beliebiger Stelle (S. 193);
 - d_0 Gewölbestärke im Scheitel (S. 192);
 - d_1 Gewölbestärke am Kämpfer (S. 194) bezw. an derjenigen Stelle eines Erddruckgewölbes, wo die Mittellinie lotrecht steht (S. 205);
 - ds Bogenteilchen einer Kurve (Mittellinie eines Stabes oder Bogenträgers) (S. 51, 100);
 - $d\varphi$ Kontingenz- oder Zentriwinkel eines Bogenteilchens ds (S. 51, 100);
 - e Abstand der am stärksten gespannten Stelle eines Querschnittes von der Biegungsachse (S. 69);
 - " Höhe des Angriffspunktes des Erddrucks über der Unterkante der Wand (S. 382, 393);
 - f Pfeilhöhe eines Bogens oder Gewölbes (S. 72, 192);
 - g ständige Belastung der Längeneinheit (S. 85);
 - h Trägerhöhe an irgend einer Stelle (S. 208, 257);
 - " Höhe einer Stützwand (S. 380);
 - h_0 freie lotrechte Standhöhe eines Erdkörpers (S. 385);
 - h, Überhöhung eines Erdkörpers (S. 390);
 - h_m Trägerhöhe in der Mitte einer Spannweite (S. 211, 283, 289);
 - $k = 2D: h^2$ beim Erddruck (S. 382, 392);
 - k vom Querschnitt abhängige Zahl bei Berechnung der Normalspannungen in krummen Stäben (S. 37);
 - 1 Spannweite eines Bogenträgers oder Gewölbes (S. 72, 97, 192);
 - n Anzahl der Knotenpunkte eines Fachwerks (S. 220);
 - p Belastung der Längeneinheit besonders bewegliche Belastung (S. 81);
 - pau. pi äufserer und innerer Druck auf eine Gefäfswand (S. 59);
 - p Erddruck auf die Höheneinheit einer Wand (S. 382);

- q Belastung eines Erdkörpers für die Flächeneinheit des Grundrisses (S. 402);
- , Gewicht der Bogeneinheit einer Kette (S. 168);
- r Krümmungshalbmesser im Scheitel einer Ketten- oder Druckhnie (S. 167);
- s Anzahl der Stäbe eines Fachwerks (S. 220);
- " Länge eines Fachwerkstabes (S. 333);
- t Temperaturzunahme eines Bogens (S. 104);
- t_a und t_b Tiefe des an den Kämpfern wirkenden Seitenschubes H eines Bogenträgers oder Gewölbes unter den Mitten der Kämpferfugen (S. 145, 195):
- u = x: r Hülfsgröße (Kettenlinie) (S. 171);
- w Abstand des Schnittpunktes der Gurtrichtungen (an einer Schnittstelle eines Trägers) von der linken Auflager-Lotrechten (S. 208, 258);
 veränderliche Breite eines Querschnittes (S. 14);
- " verandernene Dieles Quersenneues (5. 14);
- y_0 Belastungshöhe im Scheitel (bei wagerechter Belastungslinie) (S. 176);
- z Ordinate der Kämpferdrucklinie eines Bogenträgers (S. 120, 148);
- " Belastungshöhe einer Ketten- oder Drucklinie (S. 166);
- z_0 Belastungshöhe im Scheitel einer Ketten- oder Drucklinie (S. 167);
- ∆ds Vergrößerung des Bogenteilchens ds (S. 19);
- Δdφ Vergrößerung des Kontingenz- oder Centriwinkels eines Bogenteilchens (S. 19);
 - 4h Einfluß der Belastung eines Erdkörpers auf den Erddruck (S. 402);
 - 41 Vergrößerung der Spannweite 1 eines Bogenträgers (S. 100);
 - Δs Verlängerung eines Stabes von der Länge s (S. 333);
 - α Neigungswinkel eines Bogens oder einer Drucklinie am Kämpfer (S. 118, 194);
 - " Neigungswinkel der Stützwand eines Erdkörpers (S. 390);
 - γ Dichtigkeit (Gewicht von 1 cbm) eines Erdkörpers (S. 380);
 - r1 Dichtigkeit des Mauerwerks (S. 192, 403);
 - & Neigungswinkel einer Strebe D eines Fachwerks (S. 235);
 - w unbestimmte Abweichung des Erddruckes D von der Normalen zur Wand (S. 397);
 - elastische Verschiebung eines Punktes eines von Kräften ergriffenen Körpers oder eines ebenen Fachwerkes (S. 13, 20, 334);
 - ∂_{aa} elastische Verschiebung eines Punktes *a* infolge einer in ihm angreifenden äufsern Kraft Eins in der Richtung derselben (S. 337);
 - $\mathcal{J}_{a\,b}$ elastische Verschiebung eines Punktes a in der Richtung einer in ihm angreifenden Kraft infolge einer in einem Punkte b angreifenden Kraft Eins (S. 337);
 - ε Dehnung (S. 36);
 - " Wärmedehnung (S. 104);
 - $\varepsilon = \alpha + 2\varphi$ Hülfsgröße (Erddruck) (S. 390);
 - kleine Verhältniszahl, welche die Einwirkung der Verkürzung der Mittellinie eines Bogens oder Gewölbes, sowie der Verlängerung der Spannstange eines Bogens darstellt (S. 117, 144, 185, 193);

- η Einflufs-Ordinate (S. 106, 146, 257);
- & Neigungswinkel eines kreisförmigen Bogens an einer Laststelle (S.118);
- " Neigungswinkel einer Ketten- oder Drucklinie an beliebiger Stelle (S. 166);
- " Neigungswinkel der Gleitebene eines Erdkörpers (S. 380);
- Neigungswinkel zweier benachbarter Stäbe eines Stabzuges gegeneinander (S. 350);
- λ Länge eines Faches im Fachwerke (S. 239);
- v Neigungswinkel des Untergurts eines Trägers (S. 206, 218);
- ρ Krümmungshalbmesser eines einfach gekrümmten Stabes (S. 35);
- " Krümmungshalbmesser einer Ketten- oder Drucklinie an beliebiger Stelle (S. 167);
- σ_r , σ_t , σ_a Radial-, Tangential- und Achsialspannungen in Gefäßswänden.
 - φ Richtungswinkel (S. 50);
 - " Natürlicher Böschungswinkel eines Erdkörpers (S. 378);
 - ψ Anderung des Richtungswinkels der Stäbe eines Stabzuges (S. 350).
 - w Neigungswinkel des Obergurts eines Trägers (S. 206, 228).

