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PREFACE.

HIS volume contains, in addition to a further selection from my
scientific papers, a few articles reprinted from the last edition of the
Encyclopaedia Britamnica; and an Introductory Lecture to my Ordinary
Class, devoted mainly to the question of how Natural Philosophy ought, as
well as how it ought not, to be taught. For permission to reprint these
I am indebted to the courtesy of Messrs A. & C. Black, and of Messrs
Isbister, respectively.

I have been assured by competent judges that my remarks on Science
Teaching, as it is too commonly conducted, are not only in no sense
exaggerated, but are even mow as appropriate and as much needed as they
seemed to me twenty years ago.

To the short article on Quaternions I was inclined to attach special
importance, of course solely from the historical point of view; for (in
consequence of my profound admiration for Hamilton’s genius) I had spared
neither time nor trouble in the attempt to make it at once accurate and
as complete as the very limited space at my disposal allowed. Yet, as
will be seen from the short note now appended to the article, the claims
of Hamilton to entire originality in the matter have once more been
challenged :—on thus occasion in behalf of Gauss. [It is noteworthy that
Hamilton himself seems to have had at one time a notion that, if he Ahad
been anticipated, it could have been only by that very remarkable man.
But he expresses himself as having been completely reassured on the subject,
by a pupil of Gauss who was acquainted with the drift of his teacher’s
unpublished researches. See Hamilton’s Life, Vol. 1. pp. 311—12, 326.]
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It is therefore with much regret that I allow this volume to be issued
before full materials are available for the final settlement of such an
important question in scientific history. But it is reasonable to conclude
that the so-called anticipations had at least no very intimate connection
with a subject at once so novel and so unique as Quaternions. For Gauss,
though he survived their (hitherto supposed) date of birth for about twelve
years, certainly seems to have made no (public) claim in the matter.

The arrangement of the contents is, as nearly as possible, that adopted
in the former volume:—all papers on one large subject, such as the
Kinetic Theory of Gases, Impact, the Linear and Vector Function, the
Path of a Rotating Spherical Projectile, &e., being brought into groups
in relative sequence. I have reprinted only the later of my papers on
the Kinetic Gas Theory. The earlier were numerous, but fragmentary, and
a great part of their contents (often in an improved form) had been
embodied in the later ones.

I have again to thank Drs Knott and Peddie for their valuable help
in reading the proofs.

It is intended that a third volume shall contain some later papers
together with a complete list (including those not re-published) and a
general Index.

P, “PATT

CoLLEGE, EDINBURGH,
January 156th, 1900,
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LXI.

REPORT ON SOME OF THE PHYSICAL PROPERTIES OF
FRESH WATER AND OF SEA-WATER.

[#rom the  Physics and Chemistry” of the Voyage of H.M.S. Challenger ;
; > : : 2 Vol. 1. Part 1v.,, 1888.]

INTRODUCTION.

As T had taken advantage of the instruments employed for the determination
of the Pressure Errors of the Challenger Thermometers' to make some other physical
investigations at pressures of several hundred atmospheres, Dr Murray requested me to
repeat on a larger scale such of these as have a bearing on the objects of the
Challenger’s voyage. The results of the inquiry are given in the following paper. The
circumstances of the experiments, whether favourable to accuracy or not, are detailed
with a minuteness sufficient to show to what extent of approximation these results
may be trusted. My object has been rather to attempt to settle large questions about
which there exists great diversity of opinion, based upon irreconcilable experimental
results, than to attain a very high degree of accuracy. My apparatus was thoroughly
competent to effect the first, but could not without serious change (such as greatly
to affect its strength) have been made available for the second purpose. The results
of Grassi, Amaury and Descamps, Wertheim, Pagliani and Vincentini, &c., as to the
compressibility of water at low pressures, differ from one another in a most distracting
manner; and the all but universal opinion at present seems to be that, for at least
five or six hundred atmospheres, there is little or no change in the compressibility,
the explicit statement of Perkins notwithstanding. My experiments have all been
made ‘with a view ‘to direct application in problems connected with the Challenger
work, and therefore at pressures of at least 150 atmospheres, so that I have only
incidentally and indirectly attacked the first of these questions; but I hope that no
doubt can now remain as to the proper answer to the second. The study of the
compressibility of various strong solutions of common salt has, I believe, been carried
out for the first time under high pressures; and the effect of pressure on the
maximum-density point of water has been approximated to by three different experi-
mental methods, one of which is direct.

! Narr. Chall. Exp., vol. 11, App. A., 18582, (dnté, No. LX.)
f L 1
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COMPRESSIBILITY OF WATER, GLASS, AND MERCURY.

I. GENERAL ACCOUNT OF THE INVESTIGATION.

I wiLL first give a general account of the subjects treated, of the mode of con-
ducting the experiments, and of the difficulties which I have more or less completely
overcome in the course of several years’ work. The reader will then be in a position
to follow the full details of each branch of the inquiry.

The experiments were for the most part carried on in the large Fraser gun
fully described and figured in my previous Report’. But it was found to be im-
Practicable to maintain this huge mass of metal at any steady temperature, except
that of the air of the cellar in which it is placed. The great thickness of the
College walls, aided by the comparative mildness of recent winters, thus limited till the
beginning of the present year the available range of temperature for this instrument
to that from 3° C. to about 12°C. As I did not consider this nearly sufficient, and
as comparative experiments at the higher and lower of these temperatures could only
be made at intervals of about six months, I procured (in May 1887) a much less
unwieldy apparatus. It was made entirely of steel, so as to be of as small mass as
possible, with the necessary capacity and strength: and could at pleasure be used at
the temperature of the air, or be wholly immersed in a large bath of melting ice.
As this apparatus was mounted, not in a cellar but, in a room sixty feet above the
ground and facing the south, it enabled me to obtain a temperature range of 0° C.
to 19° C, with which I was obliged to content myself. A great drawback to the
use of this apparatus was found in the smallness of its capacity. Not only was I
limited to the use of fwo, instead of six or seven, piezometers at a time; but the
pressure could not be got up so slowly and smoothly as with the large apparatus,
and (what was still worse) it could not be let off so slowly. In spite of these and
other difficulties, to be detailed later, I think it will be found that the observations
made with this apparatus are not markedly inferior in value to those made with the
great gun.

In the piezometers I have adhered to the old and somewhat rude method of
recording by means of indices containing a small piece of steel, and maintained in
their positions (till the mercury reaches them and after it has left them) by means
of attached hairs. These indices are liable to two kinds of deceptive displacement,
upwards or downwards, by the current produced at each stroke of the pump, or by
that produced during the expansion on relief of pressure. The first could almost
always be avoided, even in the-smaller apparatus, provided the pressure was raised

1 Pressure Errors of the Challenger Thermometers. Anté, No. LX.
1—2
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with sufficient steadiness, and the index brought down to the mercury at starting.
But the instantaneous reaction, partly elastic, partly due to cooling, and on rare
occasions due to leakage of the pump or at the plug, after a rash stroke of the
pump, sometimes left the index a little above the mercury just before the next stroke.
If another rash stroke followed, the index might be carried still farther above the
point reached by the mercury. Practically, however, there is little fear of my estimates
of compression having been exaggerated by this process. They are much more likely
to have been slightly diminished by a somewhat sudden fall of pressure which, in
spite of every care, occasionally took place at the very commencement of the relief.
Once or twice the experiments were entirely vitiated by this cause; buf, as we had
recorded the sudden outrush before the plug had been removed in order to take out
the piezometers, we were fully warranted in rejecting the readings taken on such an
occasion :—and we invariubly did so, whether they agreed with the less suspicious
results or not.

Another and very puzzling source of uncertainty in the use of these indices
depends on the fact that the amount of pressure required to move them varies from
one part of the tube to another, sometimes even (from day to day) in the same part
of the tube:—and the index thus records the final position of the top of the mercury
colamn in different phases of distortion on different occasions. The effect of this will
be to make all the determinations of compression too small, and it will be more
perceptible the smaller the compression measured. And in sea-water, and still more
in strong salt-solutions, the surface-tension of the mercury changes (a slight deposit
of calomel (?) being produced), while the elasticity of the hairs also is much affected.
But, by multiplying the experiments, it has been found possible to obtain what
appears a fairly trustworthy set of mean values by this process.

I discarded the use of the silvering process, which I had employed in my earlier
experiments', partly because I found that the mercury column was liable to break,
especially when sea-water was used, partly from the great labour and loss of time
which the constant resilvering and refilling of the piezometers would have involved,
This process has also the special disadvantage that the substance operated on is not
necessarily the same in successive repetitions of the experiment.

And the electrical process® which I devised for recording the accomplishment of a
definite amount of compression could not be employed, because it was impossible to
lead insulated wires into either of my compression-chambers, This was much to be
regretted, as I know of no method but this by which we can be absolutely certain
of the temperature at which the operation is conducted.

My next difficulty was in the measurement of pressure. In my former Report I
have pointed out the untrustworthiness of the Bourdon gauges, and the uncertainty
of the unit of my external gauge, This gauge was amply sufficient for all the
purposes of my investigation of the errors of the Challenger thermometers, where the
inevitable error of a deep-sea reading formed, according to the depth, from 5 to 20
per cent. of the pressure error; but, besides the uncertainty as to its unit, it was
on so small a scale that an error of 1 per cent. in the reading, mainly due to

I Proc. Roy. Soc. Edin., vol. xi1, pp. 223, 224, 1883, ? Appendiz A to this Report.
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capillary effects at the surface of the mercury column, was quite possible when the
pressure did not exceed 150 atmospheres. Fortunately I was informed of the great
Improvement made by Amagat on the principle of the old Manométre Desgoffes,—an
Improvement which has made it an instrument of precision instead of an ingenious
scientific toy. M. Amagat was so kind as to superintend the construction of one of
his instruments for me (it will be a surprise to very many professors of physics in
this country to hear that the whole work was executed in his laboratory), and to
graduate it by comparison with his well-known nitrogen gauge. My measurements of
pressure are therefore only one remove from Amagat’s 1000 feet column of mercury.

The change of temperature produced by compression of water is one of the most
formidable difficulties I have encountered. During the compression the contents of
the piezometer, as well as the surrounding water, constantly change in temperature;
and the amount of change depends not only on the initial temperature of the water,
but also on the rapidity with which the pressure is raised. It was impossible to
ascertain exactly what was the true temperature of the water in the piezometer at
the instant when the pressure was greatest, and a change of even 0™1 C. involves a
displacement of the hair index, which is quite easily detected even by comparatively
rude measurement. Any very great nicety of measurement was thus obviously super-
fluous, My readings, therefore, were all made directly by applying to the tube of
the piezometer a light but very accurate scale. The zero of this scale was adjusted
to the level of the upper surface of the mercury of each piezometer the instant it
Wwas removed from the water-vessel, in which it was lifted from the pressure-chamber,
and the position of the index was afterwards read at leisure. As the same scale was
employed in the calibration of the piezometer tubes, its unit is, of course, of no
consequence. The expansibility of water at atmospheric pressure is so small, at least
up to 8° C., that no perceptible displacement of the mercury can have been intro-
duced before the zero of the scale was adjusted to it. The effects of the raising of
temperature by heating are two: a direct increase of the volume (provided the tem-
perature be above the maximum-density point, and the pressure be kept constant),
and a diminution of compressibility (provided the temperature be under the minimum
compressibility point). These conspire to diminish the amount of compression produced
by a given pressure. At 15° C, or so, the first of these is, in the range of my
experiments, the more serious of the two, especially in the case of the solutions of
common salt.

The water in the compression apparatus, even when the large one was used,
slowly changed in temperature from one group of experiments to the next:—some-
times perceptibly during the successive stages of one group. The effect of this source
of error was easily eliminated by means of the rough results of a plotting of the
uncorrected experimental data. From this the effect of a small change of temperature
on the compressibility at any assigned temperature was determined with accuracy far
more than sufficient to enable me to calculate the requisite correction. This correction
was  therefore applied to all the experimental data of each group, for which the
temperature differed from that at the commencement of the group. The corrected
numbers were employed in the second and more complete graphical calculation. I
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endeavoured to raise the pressure in each experiment as nearly as possible by 1, 2,
or 3 tons weight per square inch:—having convinced myself by many trials that this
was the most convenient plan. The cure for any (slight) excess or defect of pressure
was at once supplied by the graphical method employed in the reductions, in which
the pressures were laid down as absciss®, and the corresponding average compres-
sibilities per atmosphere as ordinates.

When this work has been fully carried out, we have still only the apparent
compressibility of the water or salt-solution. The correction for the compressibility of
glass, which is by no means a negligible quantity,—being in fact about 5 per cent.
of that of water at 0° C.,—involves a more formidable measurement than the other:
but I think I have executed it, for two different temperatures, within some 2 per cent.
or so. The resulting values of the true compressibility of water may therefore err,
on this account, by 01 per cent. This is considerably less than the probable error of
the determinations of apparent compressibility, so that it is far more than sufficient.
With a view to this part of the work the piezometers, whether for water or for
mercury, were all constructed from narrow and wide tubes of the same glass, obtained
from one melting in Messrs Ford’s Works, Edinburgh; while solid rods of the same
were also obtained for the application of Buchanan’s method".

My results are not strictly comparable with any that, to my knowledge, have
yet been published, except, of course, those which I gave in 1883 and 1884. The
reason is that the lowest pressure which I applied (about 150 atmospheres, or nearly
one ton weight per square inch) is far greater than the highest employed by other
experimenters, at least for a consecutive series of pressures. I must except, however,
the results of Perkins and some remarkable recent determinations made by Amagat®.
Perkins’ results are entirely valueless as to the actual compressions, because his pressure
unit is obviously very far from correct. They show, however, at one definite tem-
perature, the rate at which the compressibility diminishes as the pressure is raised.
Amagat’s work, on the other hand, though of the highest order, is not yet completed
by the determination of the correction for the compression of the piezometer.

The extension of my formule to very low pressures, though it agrees in a
remarkable manner with some of the best of accepted results, such as those of
Buchanan and of Pagliani and Vincentini, is purely conjectural, and may therefore
possibly involve error, but not one of the least consequence to any inquiries connected
with the problems to which the Challenger work was directed.

The piezometers, which had been for three years employed on water and on sea-
water, were, during the end of last summer, refilled with solutions of common salt of
very different strengths, prepared in the laboratory of Dr Crum Brown. The deter-
minations of compressibility were made at three temperatures only, those which could
be steadily maintained, viz. 0°C, 10° C., and about 19° C., the two latter being the
temperature of the room, the former obtained by the use of an ice-bath. Here great
rapidity of adjustment of the scale to the mercury was requisite, even in the experi-
ments made near 0° C., for the salt solutions (especially the nearly saturated one)

1 Trams. Roy. Soe. Edin., vol. xxix. pp. 589-598, 1880.
? Comptes Rendus, tom. crir., 1886, and tom, civ., 1887.
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show considerable expansibility at that temperature. In these salt solutions, however,
the hair indices behave very irregularly; so that this part of my work is much
inferior in exactitude to the rest.

Besides the determinations briefly described above, there will be found in this
Report a number of experimental results connected with the effect of pressure on
the temperature of water and on the temperature of the maximum density of water.
Though T afterwards found that the question was not a new one, I was completely
unaware of the fact when some experiments, which I made in 1881 on the heat
developed by compressing water, gave results which seemed to be inexplicable except
on the hypothesis that the maximum-density point is lowered by pressure. Hence I
have added a description of these experiments, since greatly extended by parties of
my students. '

And I have appended other and more direct determinations of the change of the
maximum-density point. I also give, after Canton, but with better data than his,
an estimate of the amount by which the depth of the sea is altered by compression.
Also some corresponding inquiries for the more complex conditions introduced by the
consideration of the maximum-density point, &e.

An Appendix contains all the theoretical calculations, the results of which are
made use of in the text; as well as some speculations, not devoid of interest, which
have arisen in the course of the inquiry.

II. SoME FORMER DETERMINATIONS.

There seems now to be no doubt that Canton (in 1762) was the first to establish
the fact of the compressibility of water. But he did far more; he measured its
apparent amount at each of three temperatures with remarkable accuracy, and thus
discovered (in 1764) the curiously important additional fact that it diminishes when
the temperature is raised. As his papers, or at all events the second of them, seem
to have fallen entirely out of notice!, and as they are exceedingly brief and clear,
1 think it well to reproduce some passages textually from the Philosophical Trans-
actions of the dates given above.

“ Having procured a small glass tube of about two feet in length, with a ball
at one end of it of an inch and a quarter in diameter; I filled the ball and part
of the tube with mercury ; and, keeping it, with a Fahrenheit’s thermometer, in
water which was frequently stirred, it was brought exactly to the heat of 50 degrees;
and the place where the mercury stood in the tube, which was about 6% inches
above the ball, was carefully marked. I then raised the mercury, by heat, to the
top of the tube, and sealed the tube hermetically; and when the mercury was
brought to the same degree of heat as before, it stood in the tube 3% of an inch
higher than the mark.

: ! Perhaps the reason may be, in part, that by a printer's error the title of Canton’s first paper is given
(in the Index to vol. Lrw. of the Phil. Trans.) as * Experiments to prove that Water is not compressible.”
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“The same ball, and part of the tube being filled with water exhausted of air,
instead of the mercury, and the place where the water stood in the tube when it
came to rest in the heat of 50 degrees, being marked, which was about 6 inches
above the ball; the water was then raised by heat till it filled the tube; which
being sealed again, and the water brought to the heat of 50 degrees as before, it
stood in the tube {3 of an inch above the mark.

“Now the weight of the atmosphere (or about 73 pounds avoirdupois) pressing
on the outside of the ball and not on the inside, will squeeze it into less compass’,
And by this compression of the ball, the mercury and the water will be equally
raised in the tube; but the water is found, by the experiments above related, to
rise {g; of an inch more than the mercury; and therefore the water must expand,
so much, more than the mercury, by removing the weight of the atmosphere.

“In order to determine how much water is compressed by this, or a greater
weight, I took a glass ball of about an inch and  in diameter which was
joined to a cylindrical tube of 4 inches and & in length, and in diameter about
of an inch; and by weighing the quantity of mercury that exactly filled the ball,
and also the quantity that filled the whole length of the tube; I found that the
mercury in &% of an inch of the tube was the 100,000 part of that contained in
the ball ; and with the edge of a file, I divided the tube accordingly.

“This being done, I filled the ball and part of the tube with water exhausted
of air; and left the tube open, that the ball, whether in rarefied or condensed air,
might always be equally pressed within and without, and therefore not altered in its
dimensions. Now by placing this ball and tube under the receiver of an air-pump,
I could see the degree of expansion of the water, answering to any degree of rare-
faction of the air; and by putting it into a glass receiver of a condensing engine,
I could see the degree of compression of the water, answering to any degree of
condensation of the air. But great care must be taken, in making these experiments,
that the heat of the glass ball be not altered, either by the coming on of moisture,
or its going off by evaporation; which may easily be prevented by keeping the ball
under water, or by using oil only in working the pump and condenser.

“In this manner I have found by repeated trials, when the heat of the air has
been about 50 degrees, and the mercury at a mean height in the barometer, that
the water will expand and rise in the tube, by removing the weight of the atmo-
sphere, 4 divisions and %; or one part in 21,740; and will be as much compressed
under the weight of an additional atmosphere. Therefore the compression of water
by twice the weight of the atmosphere, is one part in 10,870 of its whole bulk®.

! «Hee an account of experiments made with glass balls by Mr Hooke (afterwards Dr Hooke) in Dr Birch's
History of the Royal Society, vol. 1. p. 127.”

? “If the compressibility of the water was owing to any air that it might still be supposed to contain,
it is evident that more air must make it more compressible; I therefore let into the ball a bubble of air
that measured near % of an inch in diameter, which the water absorbed in about four days; but I found
upon trial that the water was not more compressed, by twice the weight of the atmosphere, than before.”

“The compression of the glass in this experiment, by the equal and contrary forces acting within and
without the ball, is not semsible: for the compression of water in two balls, appears to be exactly the same,
when the glass of one is more than twice the thickness of the glass of the other. And the weight of an
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“The famous Florentine Experiment, which so many philosophical writers have
mentioned as a proof of the incompressibility of water, will not, when -carefully
considered, appear sufficient for that purpose: for in forcing any part of the water
contained in a hollow globe of gold through its pores by pressure, the figure of the
gold must be altered; and consequently, the internal space containing the water,
diminished ; but it was impossible for the gentlemen of the Academy del Cimento
to determine, that the water which was forced into the pores and through the gold,
Was exactly equal to the diminution of the internal space by the pressure.”

“By similar experiments made since, it appears that water has the remarkable
property of being more compressible in winter than in summer; which is contrary to
what I have observed both in spirit of wine and oil of olives: these fluids are (as
one would expect water to be) more compressible when expanded by heat, and less
S0 when contracted by cold. Water and spirit of wine I have several times examined,
both by the air-pump and condenser, in opposite seasons of the year: and, when
Fahrenheit’s thermometer has been at 34 degrees, I have found the water to be
compressed by the mean weight of the atmosphere 49 parts in a million of its
whole bulk, and the spirit of wine 60 parts; but when the thermometer has been
at G4 degrees, the same weight would compress the water no more than 44 parts
- a million, and the spirit of wine no less than 71 of the same parts. In making
these experiments, the glass ball containing the fluid to be compressed must be kept
under water, that the heat of it may not be altered during the operation.

“The compression by the weight of the atmosphere, and the specific gravity of
each of the following fluids, (which are all I have yet tried,) were found when the
barometer was at 294 inches, and the thermometer at 50 degrees.

Millionth parts. Specific gravity.
Compression of Spirit of Wine, 66 846
g Oil of Olives, 48 918
= Rain-Water, 46 1000
& Sea- Water, 40 1028
» Mercury, 3 13595

These fluids are not only compressible, but also elastic: for if the weight by which
they are naturally compressed be diminished, they expand; and if that by which
they are compressed in the condenser be removed, they take up the same room as
at first. That this does not arise from the elasticity of any air the fluids contain,
15 evident; because their expansion, by removing the weight of the atmosphere, is
not greater than their compression by an equal additional weight: whereas air will
¢xpand twice as much by removing half the weight of the atmosphere, as it will
be compressed by adding the whole weight of the atmosphere.

“It may also be worth observing, that the compression of these fluids, by the
Same weight are not in the inverse ratio of their densities or specific gravities, as
might be supposed. The compression of spirit of wine, for instance, being compared

atmosphere, which I found would compress mercury in-one of these balls but } part of a division of the
tube, compresses water in the same ball 4 divisions and .%.”
2

T
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with that of rain-water, is greater than in this proportion, and the compression of
sea-water is less.”

With the exception of the mistake as to the non-effect of compressibility of glass,
and its consequences (a mistake into which Orsted and many others have fallen
long since Canton’s day), the above is almost exact. The argument from the fact
that thick and thin vessels give the same result is unfounded; but the discovery of
the fact itself shows how accurate the experiments must have been. The formula (A)
below (Section VIL), if extended to p=0, gives for the value of the apparent
compressibility of water at 10° C. (50° F.), which is what Canton really measured, the

number
0:0000461,

exactly the same as that given by him 126 years ago!

The next really great step in this inquiry was taken by Perkins in 1826. ' He
showed beyond the possibility of doubt that in water at 10° C. the compressibility
diminishes as the pressure is increased, quickly at first, afterwards more and more
slowly’. This was contested by Orsted, who found no change of compressibility up to
70 atmospheres. Many other apparently authoritative statements have since been made
to the same effect. Unfortunately Perkins' estimates of pressure are very inaccurate,
so that no numerical data of any value can be obtained from his paper.

Colladon? is sometimes referred to as an authority on the compression of liquids.
But, referring to Canton, he states that there is no difference in the compressibility
of water at 0°C. and at 10° C. His words are: “Nous avons trouvé que l'eau a la
méme compressibilité & 0° et & + 10°. Nous avons déja fait observer les causes
d’erreur qui ont dft altérer les résultats des -expériences de Canton.” There can be
no doubt whatever that there is a difference of 6 per cent., which is what Canton gives !

In Regnault’s experiments’ pressure was applied alternately to the outside and
to the inside of the piezometer, and then simultaneously to both. From the first
Appendiz to my Report on the Pressure-Errors, &c., it will be seen that the three
measurements of changed content thus obtained are not independent, the third giving
the algebraic sum of the first two; so that, unless we had an absolutely incom-
pressible liquid to deal with, we could not employ them to determine the elastic
constants of the piezometer. For the compression of the liquid contents is added to
the quantity measured, in the second and third of the experiments. Thus Regnault
had to fall back on the measurement of Young’s modulus, in order to obtain an
additional datum. In place of this, Jamin afterwards suggested the measurement of
the change of external volume of the piezometer; and this process was carried out
by Amaury and Descamps. But there are great objections to the employment of
external, or internal, pressure alone in such very delicate inquiries. For, unless the
bulbs be truly spherical, or cylindrical, and the walls of perfectly uniform thickness

! The carefully drawn plate which illustrates his paper is one of the very best early examples of the use
of the graphic method. Phil. Trans., vol. cvi. p. 541, 1826.

2 Mém. Inst. Savans Ktrang., tom. v. p. 206, 1838.

3 Mém, Acad. Sei. Paris, tom. xx1. pp. 1 et seq., 1847,
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and of perfectly uniform material, the theoretical conditions will not be fulfilled :—
and the errors may easily be of the same order as is the quantity to be measured.

Finding that he could not obtain good results with glass vessels, Regnault
employed spherical shells of brass and of copper. With these he obtained, for the
Compressibility of water, the value

0000048 per atm.
for pressures from one to ten atmospheres, The temperature, unfortunately, is not
specially stated.
Grassi', working with Regnault’s apparatus, made a number of determinations of
compressibility of different liquids, all for small ranges of pressure.

The following are some of his results for water :—

Temperature. Compressibility per atm.
0%0 C. 00000503
1%5 515
4>1 499
10°:8 480
18°0 462
25°0 456
34°5 453
53%0 441

These numbers cannot be even approximately represented by any simple formula;
nfminly in consequence of the maximum compressibility which, they appear to show,
lies somewhere about 15 C. No other experimenter seems to have found any trace
of this maximum.,
Grassi assigns, for sea-water at 17°5 C., 094 of the compressibility of pure water,
and gives
000000295

as the compressibility of mercury. He also states that the compressibility of salt
solutions increases with rise of temperature. These are not in accordance with my
results, But, as he further states that alcohol, chloroform, and ether wncrease in
Compressibility with rise of pressure (a result soon after shown by Amagat to be
completely erroneous), little confidence can be placed in any of his determinations.

A very complete series of measurements of the compressibility of water (for low
Pressures) through the whole range of temperature from 0° C. to 100° C. has been
made by Pagliani and Vincentini®, Unfortunately, in their experiments, pressure was
applied to the inside only of the piezometer, so that their indicated results have to
be diminished by from 40 to 50 per cent. The effects of heat on the elasticity of
glass are, however, carefully determined, a matter of absolute necessity when so large
& range of temperature is involved. The absolute compressibility of water at 0° C.

L dnn. de Chimie, sér. 3, tom. xxx1 p. 437, 1851.
* Sulla Compressibiliti dei Liquidi, Torino, 1884,
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is assumed from Grassi. The following are some of their results, showing a much
larger temperature effect than that obtained by Crassi:— '

Temperature. Compresgibility per atm.

02200, 0:0000503

2°4 496

15>9 ; 450
49°3 403
6170 389
66°2 389

74 398

992 409

Thus water appears to have its minimum compressibility (for low pressures) about
63° C.

My own earlier determinations' will be given more fully below (Section VI.),
I may here quote one or two, premising that they were given with a caution (not
required, as it happens), that the pressure unit of my external gauge was somewhat
uncertain. They are frue, not average, compressibilities. See Appendiz B.

At 12°0 C.
Ratio
Fresh water 000720 (1 — 0:034p) 1:0925
Sea-water 000666 (1 — 0°034p) : %
At 15°5 C.
Ratio
Fresh water 0'00698 (1 — 0'05p) 1: 0924
Sea-water 000645 (1 — 0°05p) :

In all of these the unit of pressure is one ton-weight per square inch (1528 atm.).
The diminution of compressibility with increased pressure was evident from the com-
mencement of the investigations. I assumed, throughout, for the compressibility of
glass

0000386 per ton,
which, as will be seen below, is a little too small.

By direct comparison with Amagat’s manometer, I have found that the pressure
unit of my external gauge is too small, but only by about 05 per cent. This very
slight underestimate of course does not account for the smallness of the pressure term
of the first expression above. As will be seen later, the true cause is probably to
be traced to the smallness of the piezometers which I used in my first investigations,
and to the fact that their stems were cut off “square” and dipped into mercury.
Allowing for this, it will be seen that the above estimates of compressibility agree
very fairly, in other respects, with those which I have since obtained. The sea-water
employéd in the comparison with fresh water was collected about a mile and a half
off the coast at Portobello, and was therefore somewhat less dense (and more com-
pressible) than the average of ocean-water. In my later experiments, to be detailed

! Proe, Roy. Soc. Edin. 1883 and 1884,
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below, the sea-water operated on was taken at a point outside the Firth of Forth,
considerably beyond the Isle of May.

As stated in my Report on the Pressure Errors, &ec., the unit of my external
gauge was determined by the help of Amagat’s data for the compression of air. As
the piezometer containing the air had to be enclosed in the large gun, the record
was obtained by silvering the interior of the narrow tube into which the air was
finally compressed :—and the heating of the air by compression, as well as the un-
certainty of the allowance for the curvature of the mercury, alone would easily
account for the underestimate. Besides, it is to be remembered that the reading of
the external gauge for 152 atm, is only about 22 mm.; so that a slight variation of
Surface-curvature of the mercury would of itself explain a considerable part of the
half per cent. deficit. It is, however, a matter of no consequence whatever, as regards
the conclusions of that Report.

Buchanan, in the paper already cited, gives for the compressibility of water at
2%5 C. the value 0:0000516; and at- 12°5 C., 000000483. The empirical formula, which
is one of the main results of this Report (Section VIL below), extended to p=0,
gives 0:0000511 and 00000480 respectively. The agreement is very remarkable.

Amagat’s' investigations, which were carried out by means of the electric indicator
already alluded to (which informs the experimenter of the instant at which a given
amount of compression is reached), have been extended to pressures of nearly 20 tons
weight on the square inch (3000 atm.). As a preliminary statement he gives the
average apparent compression (per atmosphere) of water at 17°6 C. as follows:—

v From 1 to: 262 atm. > § 2 : : 0:0000429,
il 26240 805 . ‘ " ’ Y ; 00000379,
s 805 to 1334 - : : ; . ; 0:0000332.

And he states that, at 3000 atmospheres, water (at this temperature) has lost about
1/10 of its original bulk. But Amagat has not yet published any determination of
the compressibility of his glass, so that the amount of compression shown by his
experiments cannot be compared with the results of this paper, The rate of diminution
of compressibility with increased pressure, however, can be (very roughly) approximated
to; and Amagat appears to make it somewhat less than I do. He operated on
distilled water, thoroughly deprived of air. My experiments were made on cistern
water, boiled for as short a time as possible. The analogies given in the present
Paper appear to show that this difference of substance operated on may perhaps
suffice completely to explain the difference between our results.

I am indebted to a footnote in the recent great work of Mohn® for a hint
which has led me to one of the most singular calculations as to the compressibility
of water which I have met with. As it is given in a volume® whose very raison d'étre
18 supposed to be the minutest attainable accuracy in physical determinations, I con-
sulted it with eagerness, The reader may imagine the disappointment with which I

! Comptes Rendus, ‘tom. crr, p. 429, 1886, and tom. crv. p. 1159, 1887,
? Den Norske Nordhavs-Exped., Nordhavets Dybder, d&w., Christiania, 1887. :
3 Travauw et Mémoires du Bureaw International des Poids et Mesures, tom. 1. p., D30, Paris, 1883.
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found that, as regards compressibility of water, its main feature is the amazing
empirical formula,—
50153 — 1:58995¢ — 0°003141113¢* !

This formula represents a parabola which is everywhere convex upwards, and thus
cannot possibly be consistent with the existence of a minimum compressibility. Instead
of representing the results of new experiments, it is based on data extracted from
the old and very dubious results of Grassi (two data being wrongly quoted), Descamps,
and Wertheim, which differ in the wildest way from one another. What method of
calculation has been employed upon this chaotic group we are not told. The result
is a smug little table (D. IX.), in which no single entry can be looked upon as
trustworthy ! Plate II. fig. 1, shows some of the materials, as well as the final
extract or quintessence derived from them.

III. TeE PiEzoMETERS—RECKONING OF L0oG. FACTORS—COMPRESSIBILITY OF
MERCURY.

The annexed sketch shows the form of piezometer employed. Six of these instru-
ments, three filled with fresh water and three with sea-water, were simultaneously
exposed to pressure. The upper end of the bulb at B was drawn out
into a very fine tube, so that the instruments could be opened and
refilled several times without appreciable change of internal volume,
They were contained in a tall copper vessel which was let down into
the pressure cylinder, and which kept them (after removal from it)
surrounded by a large quantity of the press water till they could be
taken out and measured one by one; each, after measurement, being
at once replaced in the vessel. Large supplies of water were kept in
tin vessels close to the pressure apparatus; and the temperatures of
the contents of all were observed from time to time with a Kew

Standard.

The stems, AC, of the piezometers were usually from 30 to 40 cm.
in length, and the volumes of the cylindrical bulbs, CB, were each
(roughly) adjusted to the bore of the stem, so that the whole displace-
ment of the indices in the various vessels should be nearly the same
for the same pressure. At A, on each stem, below the working portion,
the special mark of the instrument was made in dots of black enamel
(eg. .., .., i, &c.), so that it could be instantly recognised, and affixed
to the record of the index in the laboratory book. Above this enamel
mark a short millimetre scale was etched on the glass for the purpose
of recording the volume of the water contents at each temperature before
pressure was applied. The factor by which the displacement of the index
has to be multiplied, in order to find the whole compression, varies
(slightly) with the initial bulk of the water-contents. This, in its turn,
depends on the temperature at which the experiment is made. Practi-
cally, it was found that no correction of this kind need be made in experiments on

lin7

scale
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fresh water between 0° and 8° C., but for higher temperatures it rapidly came into
play. In the case of the stronger salt-solutions it was always required.

As an example of the general dimensions of the piezometers, I print here the
details of a rough preliminary measurement of one only; and employ these merely
to exhibit the nature of the calculation for the compressibility of the contents.

MEASUREMENTS FOR (:).

21/12/86. At temperature 3° C. (:) filled with Portobello sea-water gave for

413 of gauge (about 150 atm.) 1312 of displacement for index
834 > s L 256
1254 " » LT, 3736

Before pressure, mercury 20 mm. from enamel.

This experiment is selected because its data were taken for the approximate
lengths of the columns of mercury used to calibrate the stem of (:).

22/6/87.

Length of col. of mereury in stem. Weight, mercury and dish.
End 18 mm. from enamel 130'8 mm. 12:567 grm.
, 45 = 1308 Dish 9387
el s - 13009 ,,
& 0o % 130:9 1, Hg. 3180 ,
» 140 o ¢03 £
Another column of Hg.:—
End 18 mm. from enamel 261 mm, 15712 grm.
w o0 # 2611 ,, 93887
ety ,, 2611,
IS - 2611, Hg. 6325 ,,
s 94 &y 2613
Again another:—
End 18 mm. from enamel 3726 mm, 18407 grm.
L 5 3724 ,, Dish 9387 ,,
Hg. 9020 ,

Weight of dish with Hg. filling bulb and stem to
599 mm, from enamel, 51763

Weight of dish, 3769
Hg. in piezometer, less 599 of stem, 47994
Hg. in 599 of stem, 1456 ,,
Whole content to enamel, 494:50 ,

o 20 from enamel, 4940
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The calculations are as follows,—the Gauge log will be explained in Section IV,:—
the formula is given in Appendiz C, and the mantiss® only are written:—
log 494 =-69373
log 1308 = "11661

(Sum) '81034
log 3'18 = 50243

(Difference) 69209
Gauge log 43856

(Sum) ‘13065 =log factor for pressures near 150 atm.

‘69373 ‘69373
41664 57124
11037 26497
‘80106 05521
‘69069 ‘69024
43856 ; 43856
12925 for 300 atm. 12880 for 450 atm.

Hence apparent average compressibility of Portobello sea-water per atm. at 3° C. as
given by (:) on 21/12/86 is,

For: flowbi Bon.vivivissormmane ‘11793 =log 1312
61595 =log 413

50198
log factor 13065

63263 Antilog = '00004292

first two tons ............. 40824
* et [

48707
‘12925

61632 Antilog = ‘00004134

first three tons............ 57240
‘09829

47411
12880

60291 Antilog =+00004008




LXI-] FRESH WATER AND OF SEA-WATER. 17

A few larger instruments were made for very accurate comparisons of fresh water
and sea-water at about 1 ton weight per square inch, and at different temperatures.

The mercury contents of their bulbs, &c., were over 1000 grm. The content of
250 mm. of stem in mercury was about 7 grm.; and the log factor, for pressures about
150 atm., nearly =08.

For the compressibility of mercury, the annexed form of piezometer ((:s\
was employed, as in this case the recording index could not be put in .I
contact with the liquid to be compressed. The bulb 4 and stem to B ||
contain mercury, and so does the U-tube C'D. Between B and O there
18 a column of water, whose length is carefully determined. The recording "
index rests on the mercury column at (. Thus, obviously, its displacement 5
is due to B

Compression of mercury AB+ Compression of water BC — Compression ?,
of vol. of glass vessel from 4 to C.
c

The measurements of this apparatus are:—

MEeRCURY PIEZOMETER. 25/7/87.
D

LT BT SRR ) NP S AR R SN 1100 grm.

B | G LTSI < < O o T S

Weight of mercury whose compression is measured... 10623
T ) I R e 14412
L I R RN et B 9:386. .,
Weight of mercury in 210 mm. of tube BC............ 5026
Length' of water colutiny BO...co.iuiiiiiivevinnimosriossisiiss 286 mm. A

' The observations made with this apparatus were as follows, the results calculated
being added, enclosed in square brackets:—

22/6/86. Kew Standard, 12°75. 24/6/86. K. S. 12°4.
Alteration of Index, 17 mm. Index, 17
Gauge pressure, 811 Pressure, 833
[Apparent compressibility, 0°00000102] [0:00000098]
25/6/86. K. S. 12°8.
Index, 185 260 260
Pressure, 834 1252 1257
[0:00000109] [102] [101]
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28/7/87. K. 8. 1°2.

Index, 73 17°3 25
Pressure, 436 865 1264
[000000074] [94] [93]

25/7/87. K.S. 1675.
Index, 9 166 25
Pressure, 459 866 1271
[0:00000093] [92] [95]

The range of temperature is quite sufficient to allow a change of compressibility
of the water column to be noted; but the experiments unfortunately do not enable
us to assert anything as to a change in that of mercury; though, were it not for the
last set of experiments, there would appear to be a decided increase of compressibility
of mercury with rise of temperature. The experiments are only fairly consistent with
one another; but this was noted at the time as the fault of the index, which, of course,
tells more as the quantity measured is less, It may be as well to show how to
deduce the compressibility of mercury from them at once, assuming the requisite data
for water and for glass from subsequent parts of the Report.

Take, for instance, the first result of 25/6/86. 834 of gauge is about 305 atmospheres.
Also shortening of 286 mm. of water column (in glass) at 12°8 C. by 305 atm. =37 mm.
nearly :—so that the compressed mercury apparently loses about the content of 14'8 mm.
of narrow tube =bulk of 0854 grm. Hg.

Sl 0354
Apparent compressibility = 305 x 10623 = 0'00000109.
The average of all the normal experiments gives 0000001 very nearly.

Add compressibility of glass= 00000026,
Compressibility of mercury = 00000036,

It is well to remember that though Grassi, working with Regnault’s apparatus,

gave as the compressibility of mercury

000000295,
which Amaury and Descamps afterwards reduced to

0:00000187,
the master! himself had previously assigned the value

000000352,
Had Grassi’s result been correct, I should have got only about half the displacements
observed ; had that of Amaury and Descamps been correct, the apparent compressibility
would have had the opposite sign to that I obtained, so that the index would not
have been displaced. In such a case the construction of the instrument might have

been much simplified, for the index would have been placed in contact with the mercury
at B, and the bent part of the tube would have been unnecessary.

! Relation des Expériences, &e., Mém. Acad. Sci. Paris, tom. xxr1. p. 461, 1847,
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IV. AMAGATS MANOMETRE A PISTONS LIBRES.

The annexed sketch of the instrument (in which the large divisions shown on the
manometric scale correspond to decimetres), with the section given below, will enable

T mmnns:mum\m T

the reader to understand its size and construction without any detailed description
beyond what is given in the instructions for setting it up. [The window FF, whose
Position ig nearly immaterial, occupies different positions in the sketch and in the
section, ]
As already stated, the principle on which this instrument works is the same as
that of the Manomdtre Desgoffes, a sort of inverse of that of the well-known Bramah
3—2
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Press. In the British instrument pistons of very different sectional area are subjected
to the same pressure (that of one mass of liquid), and the total thrust on each is, of
course, proportional to its section. In the French instrument the pistons are subjected
to equal total thrusts, being exposed respectively to fluid pressures which are inversely
proportional to their sections. The British instrument is employed for the purpose of
overcoming great resistances by means of moderate forces; the French, for that of
measuring great pressures in terms of small and easily measurable pressures.

Amagat’s notable improvement consists in dispensing with the membrane, or sheet
of india-rubber, which was one of the main features of the old Desgoffes manometer,
and making his large, as well as his small, piston, fit all but tightly the hollow cylinders
in which they play:—a very thin layer of viscous fluid passing with extreme slowness
between each piston and its cylinder. The adjustment is very prompt, even in winter
when the viscosity of the fluids is greatest:—but it is made almost instantaneous by a
simple but ingenious device, which enables the operator to give the pistons a simul-
taneous motion of rotation. The following directions which accompanied the instrument
will enable the reader fully to understand its construction and use. I have given an
accurate wverston, not a literal translation, of them :—

“Process of setting up the Apparatus.

]

] Castor 0il
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“1. Screw in, at %, the manometer tube, and at H the regulating pump.

“2, Pour in the layer of mercury, and on it that of castor oil. Fill the pump
with glycerine, and insert its piston, taking care to exclude air-bubbles.

“8. Insert the gun-metal part K. Its bearing (at s) on the rim of the cast-iron
base-piece must not be made with leather, but with a ring of india-rubber, or of very
uniform cardboard. The fixing down of this part, by means of the (six) screws, must
be done with great exactness:—otherwise (thick as it is) it might suffer a very slight
distortion, and the piston PP would not work in it.

“4. After pouring in, if necessary, some more castor oil, insert wery cautiously
the piston PP, carefully wiped, and then anointed with castor oil. To put it in, it
18 to be held by means of A, which, for this purpose, is screwed into the middle of it.
During the insertion of the piston the hole b is left open to allow of the escape of air
and (possible) excess of castor oil. Close b by means of its screw, the piston being held
at the desired height. Take out A4, and screw B into the piston in place of it.

“5. Put on the part MM—after inserting in it the small piston pp, with its
cylinder mn—in such a way that the rod cc may pass between the two studs d on
the piston PP, opposite to the opening FF.

“6. Pour a little treacle over the small piston at aa; screw on the piece NN,
and fill it with glycerine; then adjust to NN the coupling-tube of the compression
apparatus, which should be filled with glycerine or with glycerine and water.

“ Observations.

“It is not necessary that the whole space between the mercury and the piston
PP should be filled with castor oil. A layer of glycerine and water may be placed
over the mercury, then a thin layer of the oil. In fact, the regulating pump is full
of glycerine and water.

“The rod cc is placed as shown to give a simultaneous rotation to the two pistons,
80 as to overcome stiction,

“It should be moved slowly, and in such a way as to exert no vertical force
upon the piston PP. It ought to be pushed by a vertical straight-edge, moved
horizontally. One can judge of the delicacy of the apparatus by the displacement of
the mercury column when the slightest vertical pressure is exerted on the rod.

“I will again call attention to the scrupulous care which must be bestowed on
the pistons and on the cylinders in which they work :—the slightest scratch, due to
dust, would make it necessary to retouch these surfaces; and after several retouchings
they will become too loose.

“The manometer tube, which is to be cemented into the iron piece which screws
into ), should be chosen of small enough diameter to prevent sensible change of level
of the mercury in the reservoir, and yet not so marrow as to prevent free motion of the
mercury,

“Important Remark.—During the successive operations the large piston should
always, by means of the regulating pump, be kept at such a height that the rod cc
shall not come in contact with the wall of the opening FF, and not high enough to
make the wide lower part of the small piston come against the piece M (this, of course,
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when the smaller of the two upper pistons is used:—that whose lower part is
thickened).

“There are two pistons pp for this manometer. The ratio of the section of the
larger to that of PP is 1/61'838, and the reading per atmosphere is 12:290 mm.

“For the smaller, the ratio of the sections is 1/277°75, and the reading per atmo-
sphere is 2:736 mm.

“The former serves for the measurement of lower pressures, up to the point at
which the oil passes visibly round the large piston. For higher pressures the latter
must be used.

“The treacle must be changed from time to time; first, because, after a while,
some of it passes the small piston; second, because it gradually dissolves in the glycerine,
and at last becomes hardened round the small piston, so as to make the friction too
great. The small piston and its cylinder should occasionally be cleaned with the
greatest care, and anointed with neats-foot oil.”

In all my later experiments I have used exclusively the smaller of the two small
pistons. The scale which I fitted to the manometer tube was a long strip of French
plotting paper. It had shrunk slightly, so that 7525 divisions corresponded to 750 mm.
Neglecting the difference in the values of gravity at Lyons and at Edinburgh, the
number of scale divisions per atmosphere is 2736 x 752'5/750; and its logarithm, 4.e.
the Gauge Log. above spoken of, is '43856.

V. CoMPRESSIBILITY OF (GLASS.

Buchanan’s process, already referred to, consists simply in measuring the fractional
change of length of a glass rod exposed to hydrostatic pressure, and trebling the linear
compressibility thus determined. The only difficulty it presents is that of directly
measuring the length of the rod while it is under pressure. I employed a couple of
reading microscopes, with screw-travelling adjustment, fixed to the ends of a massive
block of well-seasoned wood. This block was placed over the tube containing the
glass rod, but quite independently,—the two distinet parts of the apparatus being
supported separately on the asphalt floor of a large cellar. No tremors were per-
ceptible except when carriages passed rapidly along the wooden pavement of the street,
and even then they were not of much consequence.

The ends of the tube containing the rod must, of course, be made of glass, or
some other transparent material. In the first apparatus which I used, tubes of soda-
water-bottle glass were employed, their bore being about 02 inch, and the thickness
of the walls about 03 inch, The image of the small enamel bead at the end of the
glass rod was very much distorted when seen through this tube, but the definition
was greatly improved by laying on it a concavo-plane cylindrical lens (which fitted
the external curvature), with a single drop of oil between them. I found, by trial,
that, had it been necessary to correct for the internal curvature also, the employment
of winter-green (or Gaultheria) oil as the compressing liquid would have effected the
purpose completely :—the refractive index being almost exactly the same as that of
the green glass.
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As the construction and mode of support of this apparatus did not enable us
completely to get rid of air from its interior, there were occasional explosions of a
somewhat violent character when the glass tubes gave way; and the operators who
were not otherwise protected (as by the microscopes, for instance) were obliged to hold
pieces of thick plate glass before their eyes during the getting up of pressure. The
explosions not only shattered the thick glass tube into small fragments, but smashed
the ends of the experimental glass rod, so that a great deal of time was lost after
each.  Only on one occasion did we reach a pressure of 300 atm., and an explosion
occurred before the measurement was accurately made. On these accounts, after four
days experimenting (the first being merely preliminary), we gave up working with this
apparatus:—and the results obtained by means of it cannot be regarded as wholly
satisfactory, though they agreed very well with one another.

As a sudden shock might have injured the Amagat gauge, all the pressures were
measured by the old external gauge, whose unit is now determined with accuracy.
Hence the readings are in tons-weight per square inch (1523 atm.), which are below
called “tons” as in the vernacular of engineers. Three of us at least were engaged
in each experiment, one to apply and measure the pressure, and one at each micro-
scope. Pressure, in each group of experiments, was applied and let off six or seven
times in succession, readings of the two microscopes being taken before, during, and
after each application of pressure. To get rid of the possible effects of personal
equation, the observers at the microscopes changed places after each group of experi-
wents (sometimes after two groups), so that they read alternately displacements to the
right and to the left.

The values of the screw-threads were carefully verified upon one of the subdivisions
of the scale which was employed to measure the length of the experimental rod; these
subdivisions having been since tested among themselves by means of a small but very
accurate dividing-engine of Bianchi’s make.

These experiments were made in July 1887, when the day temperature of the
room was nearly 20° C. In the last two groups the compression tube was surrounded
n great part by a jacket containing water and pounded ice. We had no means of
ascertaining the average temperature of the glass rod, but it cannot have been more
than some 5 or 6 degrees above 0°C. This was done merely to ascertain whether
glass becomes less compressible or no as the temperature is lowered, not the amount
of change. The question appears to be answered in the affirmative.

Early in the present year Mr Buchanan kindly lent me his own apparatus, which
I8 in three respects superior to mine. (1) A longer glass rod can be operated on.
(2) The air can be entirely got rid of from the interior, so that when the glass
tubes give way there is no explosion. (3) The glass tubes are considerably narrower
in bore (though with equal proportionate thickness), and consequently stronger. I used
my own pump and external gauge, but the necessary coupling pieces were easily
procured ; and the reading-microscopes were fastened to a longer block of seasoned
wood than before. These experiments have been made near one temperature only,
but it is about the middle of the range of temperatures in my experiments on
water and sea-water.
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It is not necessary to print the details of the experiments in full. I give below
part of a page of the laboratory book for a single day’s work, to show how far the
experiments of one group agree with one another. I purposely choose one in which
the glass rod was somewhat displaced in the apparatus during the course of the
measurements :—

23/2/88. Kew Standard, 9°1 C.
(Length of glass rod, 7575 inches.)

External Gauge Right Microscope Left Microscope Contraction

(Lindsay). (Nagel). (Peddie). and Elongation.
in. in.
415 04570 03377 ;
63-5} 2 =lton | 413 5 00099
415 570 7
41:51 04571 0'337? 00102
635} 22 473 3 00102
415) 572 6
41:5] 04572 03376 00103
635} 22 473 2 00103
41'5[ 572 6
(Peddie.) (Nagel.)

42 04566 03380 :
o4 }22 169 " o
42 574 73
42 04575 03373 s
64 .22 475 68 8-3}82
42 574 73
42 ] 04574 0'3334 00103
64 - 22 475 70 00102
42 ) 574 73

Mean, . 00102

The mean thus obtained coincided very closely with the mean of all the experi-
ments. Hence the average linear compressibility per atmosphere for the first ton is,
at 91 C,,

00102
1523 x 75'75

whence the compressibility of glass is

= 0000000884,

000000265,

The two series of experiments agreed fairly with one another, and appeared to
show an increase of compressibility with rise of temperature, and a diminution with
rise of pressure, but these are not made certain. Considerably greater ranges, both
of pressure and of temperature, are necessary to settle such questions.

As I cannot trust to a unit or two in the last place (i.e. the seventh place of
decimals) my results for the apparent compressibility of water, and as an error of
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reading of the external gauge may easily amount to 1 per cent. of the whole ton
applied, I have taken from the above experiments the number 00000026 as expressing
with sufficient accuracy the compressibility of the glass of the piezometers throughout
the range of temperature 0° to 15° C., and of pressure from 150 to 450 atm. This
number is simply to be added to all the values of apparent compressibility. Had I
pushed the pressures farther than 450 atm., this correction would have required
reduction, as shown in Appendiz D,

VI. ResuME oF MY owN EXPERIMENTS ON CoMPRESSION OF WATER
AND OF SEA-WATER,

The following details are, where not otherwise stated, taken from my laboratory
books. I was led to make these experiments by the non-success of an attempt to
determine the exact unit of the external gauge (described in my former Report).
Not being aware of the great discovery of Canton (in fact, having always been accus-
tomed to speak of the compressibility of water as 1/20,000 per atm.), I imagined that
I could verify my gauge by comparing, on a water piezometer, the effects of a
pressure measured by the gauge with those produced by a measured depth of sea-
water, without any reference to the temperatures at which measurements were made;
provided, of course, that these were not very different. The result is described in the
following extract!:—

“To test by an independent process the accuracy of the unit of my pressure
gauge, on which the estimated corrections for the Challenger deep-sea thermometers
depend, it was arranged that H.M.S. ‘Triton’ should visit during the autumn a region
in which soundings of at least a mile and a half could be had. A set of mano-
meters, filled with pure water, and recording by the washing away of part of a very
thin film of silver, were employed. They were all previously tested, up to about 24
tons weight per square inch, in my large apparatus. As I was otherwise engaged,
Professor Chrystal and Mr Murray kindly undertook the deep-sea observations; and
I have recently begun the work of reducing them.

“The first rough reductions seemed to show that my pressure unit must be
somewhere about 20 per cent. too small, As this was the all but unanimous verdict
of fifteen separate instruments, the survivors of two dozen sent out, I immediately
repeated the test of my unit by means of Amagat’s observed values of the volume
of air at very high pressures. The result was to confirm, within 1 per cent., the
accuracy of the former estimate of the unit of my gauge. I then had the mano-
meters resilvered, and again tested in the compression apparatus. The results were
now only about 5 per cent. different from those obtained in the ‘Triton” There
could be no essential difference between the two sets of home experiments, except
that the first set was made in July, the second in November,—while the tempera-
tures at which the greatest compressions were reached in the ‘Triton’ were at least
3° C. lower than those in the latter set. Hence it seems absolutely certain that

1 Proe. Roy. Soc. Edin,, vol. x11. pp, 45, 46, 1882,
T 1L
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water becomes considerably more compressible as its temperature is lowered, at least
as far as 3°C. (the ‘Triton’ temperature). This seems to be connected with the
lowering by pressure of the maximum density point of water!, and I intend to work
it out. It is clear that in future trials of such manometers some liquid less anomalous
than water must be employed.

“ Another preliminary result, by no means so marked as the above, and possibly
to be explained away, is that by doubling (at any one temperature) a high pressure
we obtain somewhat less than double the compression. This, however, may be due
to the special construction of the manometer, which renders the exact determination
of the fiducial point almost impossible.”

In the winter of 1882 and the succeeding spring, I spent a great deal of time
in trying to get definite results from the records of the “Triton” trials, and in
making further experiments on those of the specially prepared piezometers which had
not been broken or left at the bottom of the sea. But this work led to no result
on which I could rely. 1 then directly attacked the problem of the compressibility
of water at different temperatures and pressures, having once more verified the unit
of my pressure gauge by comparison with Amagat’s data for air. Results for one
temperature were published, as below, in the Proc. Roy. Soc. Edin., vol. XL pp. 223,
224, 1883. [The mercury content of the bulbs of the new piezometers was about
200 grm., and that of 100 mm. of stem about 26 grm.]

“The apparatus employed was of a very simple character, similar to that which
was used last autumn in the ‘Triton.’

“It consisted of a narrow and a wide glass tube, forming as it were the stem
and bulb of a large air-thermometer. The stem was made of the most uniform
tube which could be procured, and was very accurately gauged; and the weight of the
content, of the bulb in mercury was determined. Thus the fraction of the whole
content, corresponding to that of one millimetre of the tube, was found.

“This apparatus had the interior of the narrow tube very carefully silvered; and
while the whole, filled with the liquid to be examined, was at the temperature of
the water in the compression apparatus, the open end was inserted into a small
vessel containing clean mercury. Four instruments of this kind were used, all made
of the same kind of glass. [They were numbered, as in the headings of the columns
below, 1, 2, 3, 4, respectively. 20/6/88.]

“The following are the calculated apparent average changes of volume per ton
weight of pressure per square inch (i.e. about 150 atmospheres):—

Fresan WATER, at 12° C,

Pressure 1 2 3 4 Mean.
1 000670 g 665 666 0-00667
2 000657 * 646 656 000653
25 000651 650 640 648 000647
3 000641 633 636 636 000636

Nore.—The first two experiments with No. 2 failed in consequence of a defect in the silvering,

! [The reason for this remark will bg seen in the second extract in Section XII. below. 20/6/88,]
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The compressibility of glass was not directly determined. It may be taken as approxi-
mately 0000386 per ton weight per square inch,

“From these data, which are fairly consistent with one another, we find the
following value of the true compressibility of water per ton, the unit for pressure (p)
being 1 ton-weight per square inch, and the temperature 12° C,,

00072 (1 — 0034 p) ;
showing a steady falling off from Hooke’s Law.

SEA-WATER, at 12° C.

Pressure : 1 2 3 4 Mean.
1 000606 611 615 627 000615
2 0°00595 607 598 601 0-00600
25 0:00600 600 594 590 000594
3 0'00588 593 586 586 0°00588

Nore.—The sea-water employed was collected about 1} miles off the coast at Portobello.

These give, with the same correction for glass as before, the expression
000666 (1 — 0°034 p).
Hence the relative compressibilities of sea and fresh water are about
0925 ;
while the rate of diminution by increase of pressure is sensibly the same (3% per

cent. per ton weight per square inch) for both.
“ With the same apparatus I examined alcohol, of sp. gr. 083 at 20° C.

AvrcoHoL, at 12° C,

Pressure 1 2 3 4 Mean.
1 001202 1193 " » 001200
25 0-01040 1052 1050 1056 001049
3 0:0104:3 1050 1043 1058 001048

These experiments were not so satisfactory as those with water. There are peculiar
difficulties with the silver film. I therefore make no definite conclusion till I have
an opportunity of repeating them.”

It will be observed that the diminution of compressibility as the pressure is
raised is here brought out unequivocally for all the three liquids examined.

In the course of another year I had managed to obtain similar results for a
range of temperature of about 9° C. They were described in Proc. Roy. Soc. Edin.,
vol. XIL pp. 757, 758, 1884, as follows :—

“I had hoped to be able, during the winter, to extend my observations to
temperatures near the freezing point, but the lowest temperature reached by the large
compression apparatus was 6”3 C.; while the highest is (at present) about 15°C.

4—2
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From so small a range nothing can be expected as to the temperature effect on the
compressibility of water, further than an approximation to its values through that
range.

“The following table gives the mean values of the average compression per ton
weight per square inch:—

Pressure in Tons 1 2 2% 3 3% 4
6°3 C. 0:00704 692 684 672
7°6 682 670 660
11°8 684 670 654
13°1 666 648 637
152 673 654 633

“These are all fairly represented by the expression
0:00743 — 0°000038¢ — 0°00015p,

where ¢ is the temperature centigrade, and p the pressure in tons weight per square
inch. This, of course, cannot be the true formula, but it is sufficient for ordinary
purposes within the limits of temperature and pressure above stated. It represents
the value of
Yy— 0
o
“With a new set of compression apparatus, very much larger and more sensitive

than those employed in the above research, I have just obtained the following mean
values for the single temperature 15°5 C.:—

Pressure in Tons 1 1% % 2 3
Fresh water : ‘ 000678 663 657 638
Sea-water 3 3 000627 618 609 593
“These are the values of v”};v , and they give, for the true compressibility
]
*
(_117 %) at any pressure, and temperature 15”5 C., the formuls,
Fresh water ; ; : : : 0:00698 (1 — 0:05p)
Sea-water . . gl o . 000645 (1 — 0:05p)

“The ratio is 0925, de. the compressibility of sea-water at the above temperature
is only 92'5 per cent. of that of fresh water.”

The new and larger piezometers referred to were made when Mr Murray requested
me to write this Report. They are those whose form and dimensions have been
detailed in Section IIL. above. The former piezometers had no capsule containing
mercury, but had the stem simply cut off flat at the end, and when filled with
water were merely dipped in mercury. I had felt that to this was probably due

* [Bee Appendiz B to this Report.]
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the fact that my experiments gave a value of the compressibility at 0° C. somewhat
smaller than that usually accepted. It will be seen that the very first data given
by the new instruments at once tended to set this matter right. For while the
formula representing the results of the smaller instruments gave the compression of
water at 155 C. as 000678 for one ton weight per square inch, that for those of
the new instruments gave 000698, #e. about 1/34th more, which is much nearer to
the result of my later experiments.

For two winters after this period the apparatus was kept in working order in
the hope that I might be enabled to employ temperatures between 6° and 0° C.
But a single day’s work at 17 C, and a few days at temperatures between 3° and
5°C. were all I got. Hence the reason for procuring the smaller compression
apparatus, as stated in Section I. But, as yet, my measurements of pressure were
not satisfactory.

In the spring of 1886 I obtained the Amagat gauge, and after a careful com-
parative trial determined to employ exclusively the lesser of the two small pistons.
Some time was spent upon a comparison of the indications of this instrument with
those of the external gauge, with the result that single indications of the latter
could not be trusted within about 1 per cent., though the mean of a number of
observations was occasionally very close to the truth. I therefore put aside all the
compression observations already made, and commenced afresh with the same piezo-
meters as before, and with the Amagat gauge exclusively.

In the summer of 1886 I obtained a long series of determinations at about
118 C,, and others at 14°2 and 15° C. In December of the same year I worked
for a long time between 3° and 3%5 C. All of these were with the large Fraser gun.

In June 1887, with the new compression apparatus, I secured numerous deter-
_minations at 0°4 C.

In July the piezometers were filled with solutions of salt of various strengths,
and examined at temperatures near 19° C. and 1° C. In November these were again
examined, this time in the large gun at about 9° C.; and the piezometers were again
filled, some with fresh water and some with sea-water.

During the winter complete series of observations in the large gun were obtained
at about 7°, 5° 8°2, 2°8, 1°1; and, finally (on March 16, 1888), at 0°5 C.

The piezometers were, once more, filled with the salt solutions, as I considered
that I had obtained sufficient data for fresh water and for sea-water; except in the
one important particular of the exact values of the ratio of their compressibilities at
one or two definite temperatures and pressures.

These were finally obtained in May and June 1888, with piezometers considerably
larger and more delicate than the former set.

VII. Fivan Resunrs AND EmpiricAL ForMULE ror FreEsH WATER.

Although my readings and calculations were throughout carried to four significant
figures, T soon found that (for reasons already sufficiently given in Section L) only three
of these could be trusted even in the average of a number of successive experiments,
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and that the third might occasionally (especially with sea-water) err by an entire
unit or two; at most 4 per cent. of the whole quantity measured. Of course, now
and then there occurred results so inconsistent with the rest as to indicate, without
any doubt, a displacement of the index by upward or (more frequently) downward
currents.

This was made obvious by comparison of the indications of any one piezometer
in successive experiments at the same temperature and pressure; but it was even
more easily seen in the relative behaviour of a number of piezometers which were
simultaneously exposed to exactly the same temperature and pressure several times in
succession. A single page of my laboratory book, taken at random, sufficiently illus-
trates this. To avoid confusion, I give the records of two of the ordinary instruments
(with fresh water) alone, leaving out the records of those with sea-water, and I insert
[in brackets] the pressures and the average apparent compressibilities calculated from
the data. The water employed was that of the ordinary supply of Edinburgh, and
was boiled, for a short time only, to expel air:—

23/7/86.

| E. G. A, G 2c. [Pressure 0983 tons]
250 8 - 1362 - [4333]
464 419 280 ve = s
250 8

K. S. (in gun) 149 C.

EE;
251 8 [0093]
470 423 280 = 1877 [4339]
251 8 .. 1225 [4342]

K. S 15°

IIL.
251 8 [1:992]
681 841 56:0 . 2690 [4218]

K. S. 15°

IV.
25°2 8 (0]
684 844 56:0 - 2698 [4216]
959 8 .. 2581 [4224]

v
252 8 [2:997]
900 1261 850 e 3987 [4092]
255 8 .. 3769 [4116]

I 815"
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VL
256 8 [3:002]
900 1263 850 - 394°4 [4093]
255 8 .. 3769 [4110]

The left-hand column gives the readings of the external gauge, the next those of
Amagat’s gauge, before, during, and after the application of pressure. The third gives
the pressure as read by one of the internal gauges described in my previous Report.
The fourth column gives the readings of the two piezometers selected ; the fifth the
pressure (in tons) for each experiment, and the compressibility calculated. The latter
numbers are multiplied by 108

Notice that, in the first experiment (..) failed to give a reading. Also in the
fifth and sixth the indications of the two instruments do not agree very closely. The
character of the results, however, points apparently to an error in gauging one or other
of the instruments. It was the unavoidable occurrence of defects of these kinds that
led me to make so many determinations at each temperature and pressure selected.
The above specimen contains less than 1 per cent. of my results for fresh water, and
I obtained at least as many reduced observations on sea-water. )

To obtain an approximate formula for the full reduction of the observations, I first
made a graphic representation, on a large scale, of the results for different pressures
at each of four temperatures, adding the compressibility of glass as given in Section VL
above. From this I easily found that the average compressibility for 2 tons pressure
(at any one temperature) is somewhat less than half the sum of those for 1 and for
3 tons. Thus the average compressibility through any range of pressure falls off more
and more slowly as that range is greater. And, within the limits of my experiments, I
found that this relation between pressure and average compressibility could be fairly
well represented by a portion of a rectangular hyperbola, with asymptotes coincident
with and perpendicular to the axis of pressure. Hence at any one temperature (within
the range I was enabled to work in), if 9, be the volume of fresh water at one atmo-
sphere, » that under an additional pressure p, we have

e oA
po,  +p
very nearly, 4 and II being quantities to be found.

I had two special reasons (besides, of course, its adaptability to the plotted curve)
for selecting this form of expression. First, it cannot increase or diminish indefinitely
for increasing positive values of p, and is therefore much to be preferred in a question
of this kind to the common mode of representation by ascending powers of the
variable, such as two or more terms of

B,+ B, p+B,p* + &,

or the absolutely indefensible expression, too often seen in inquiries connected with
this and similar questions,

Cy + O, p™ + &e.
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Second, it becomes zero when p is infinite, as it ought certainly to do in this physical
problem. It appeared also to suggest a theoretical interpretation. But I will say no
more about this for the present, as it is simply a matter of speculation. See the latter
part of Section X., below. But there is a grave objection to this form of expression,
in the fact that small percentage changes in the data involve large percentage changes
in 4 and II, though not in the ratio 4/II. This objection, however, does not apply to
the use of it in the calculations preliminary to the full reduction, as in them it is A/IT
only which is required.

Next, on calculating from my data the values of 4 and II for different temperatures,
I found that, within the recognised limits of errors of the observations, II might be
treated as sensibly constant. Thus I was enabled easily to make graphic representa-
tions of the average compressibility at each pressure, in terms of temperature. Again
I obtained curves which could, for a first trial at least, be treated as small portions
of rectangular hyperbolas, with the axis of temperature as one asymptote. Hence

B
A=—
L'+¢’
where 7' is a constant; and B also may for a time be treated as constant.
Thus I arrived at the empirical expression

S L
(I +p) (T +1)

whose simplicity is remarkable, and which lends itself very readily to caleulation. As I
required it for a temporary purpose only, I found values of the constants by a tentative
process; which led to the result
028
(36 +p) (150 + )
This gives the average compressibility per atmosphere throughout the range of additional
pressure p, the latter being measured in tons’ weight per square inch.

The following brief table shows with what approximation the (unreduced) experi-
mental results (multiplied by 107) are represented by this formula. The nearest integer
is taken in the third place:—

1 ton. 2 tons. 3 tons.
Temp. Obs.  Cale. D. Obs. Cale. D. Oks. Cale. D.
0”4 503 503 0 489 490 -1 477 477 0
3°2 492 494 =2 479 481 =2 466 469 —3
1158 467 468 -1 454 455 -1 441 444 -3
15%0 459 459 0 448 447 +1 436 435 +1

The agreement is tolerably close, so that the empirical formula may be used, without
any great error, in the hydrostatic equations, so long as the temperatures and pressures
concerned are such as commonly occur in lakes,

But the columns of differences show that the form of the formula is not suitable,
The pressure factor seems appropriate, but it is clear that, at any one pressure, the
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curve representing the compression in terms of the temperature has greater curvature
than the formula assigns. Still the formula amply suffices for the reduction of the
observations of any one group when the pressures or temperatures were not precisely the
same in all. It was, however, not much required, for the pressure could be adjusted
with considerable accuracy, and (especially when the large gun was used) the changes
of temperature were very slow.

The next step was to enter, as shown in Plate IL fig. 3, all the results obtained
from the various piezometers at each definite temperature and pressure, with the view
of selecting the most probable value. The amount of discordance was in all cases very
much the same as that shown in the plate for the series of experiments at two tons’
pressure and the one temperature 5° C. It will be observed that the extreme limits of
divergence from the mean are not more than about two units in the third significant
place. For a pressure of one ton this corresponds to about half a millimetre in the
position of the indices, so that after what has been said about their peculiarities of
behaviour it may obviously be treated as unavoidable error. Thus the ordinary process
of taking means is applicable, unless the observations themselves show some peculiarity
which forbids the use of this method.

All the results of observations made up to June 1887 (with the help of the Amagat
gauge) having been treated in this way, the following mean values of apparent average
compressibility (multiplied by 10%) were deduced from them :—

Apparvent Compressibility of Cistern Water, botled for a short time.

Temp. C. 1 ton. 2 tons. 3 tons,
04 4770 4617 4510
372 4670 4527 4402
374 4671 4521 4395

11°-8 4415 4276 4163

14°-2 4330 4220 4115

14°4 4344 4217 4105

15°0 4338 4219 4102

[I think it extremely probable that the small irregularities among the last three
numbers in each pressure column may be due to want of uniformity of temperature
throughout the column of water in the pressure chamber. The day-temperature of
the cellar is, in summer, always a good deal above that at night, so that in the
forenoon (when the experiments were made) the gun and its contents were steadily
growing warmer. Thus the column of water was not at a uniform temperature. The
assumed temperature was the mean of the readings before the vessel containing the
piezometers was inserted, and after it was taken out. While it was in the chamber,
the contents could not be properly stirred except by raising and depressing the vessel
itself.]

The points thus determined were laid down (marked with a ) as in Plate L,
and smooth curves were drawn liberd manw among them. From these curves the

T. 1L 5
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following values were taken at intervals at 5° for the sake of ease of caleulation, 260
being added to each for the compressibility of glass:—

i 5° 10° 15°
1 ton 5044 4874 4723 4594
2 tons 4898 4733 4584 4466
3 tons 4776 4608 4468 4360

The fact that water has a temperature of minimum compressibility led me to try to
represent; these numbers by a separate parabolic formula for each pressure. The follow-
ing were easily found :—

504 — 3:60¢ + 0°04¢*

490 = G801 £ QOO 5 oo ovvinsenssinrerassomnsmninsnsvaedd (A),

478 — 370t + 006

for 1, 2, and 3 tons respectively. [The terms independent of ¢ belong to the formula
520—17p+p* This will be made use of in future sections] The utmost difference
between the results of these formule® and the numbers from which they were obtained
is less than 1/10th per cent. No closer approximation could be desired, much less
expected, especially when we consider the way in which the % points (on which the
whole depends) were themselves obtained. These are represented as follows:—

04 392 11°:8 1474 15°0
Obs. Cale. Obs. Cale. Oba, Cale. Obs. Cale. Obs. Cale.
503 5025 493 493 4675 4672 4604 4605 4598 459
4877 4885 4787 479 4536 4539 4477 4478 4479 4465

477 4765 4662 4668 4423 4427 436'5 437°1 4362 436

In one instance only does the difference reach unit in the third significant place. [It
must be remembered that all these numbers commence with the fifth digit after the
deeimal point.]

In spite of some remarks above as to uncertainty about temperature, I am con-
vinced that the mode of experimenting employed is calculated to insure considerably
greater accuracy in the comparison of compressibilities at different temperatures for
any one pressure, than in that of compressibilities for different pressures at any one
temperature. The displacement of the indices by the expanding water is likely to be
more serious the higher the pressure, as the difficulty of effecting the relief quietly is
much greater. Probably all the values for the higher pressures are a little too small
for this reason.

The results given above are represented with a fair degree of accuracy by the
simple formula

_{1001863(1_&3_4_ _32_)
36+ p 400 * 10,000/’

which will amply suffice for ordinary purposes. In this form, however, some small but
highly expressive and apparently important features of the formule (A) for the separate
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pressures are, of course, lost. The statement above, as to the greater uncertainty of
the values the higher the pressure, renders it probable that, in the pressure factor in
this formula, both the constants ought to be somewhat larger. It is clear that very
small changes in the relative values of the compressions for 1, 2, and 3 tons would
make great changes in these constants. In fact, an error of 1 per cent. at 3 tons
involves an error of some twenty per cent, nearly, in each of the constants of the
pressure factor.

Again, this last formula would give, for all pressures, minimum compressibility at
about 37° C.; while the former three give 45° C. at 1 ton, 36°5 at 2, and 30°8 at
3 tons :—these minima being 423, 423'4, and 421 respectively.

If we venture to extend the formule (A) to atmospheric pressure, we are led to

520 — 3-55t + 0°03¢~.
I have already shown' that this is in close accordance with Buchanan’s results at 2°5
and 12°5 C. Buchanan’s pressure unit is thoroughly trustworthy; for it was deter-
mined by letting down the piezometer, with a Challenger thermometer attached, to a
measured depth in the ocean. It would thus appear that the extension of my formule
to low pressures is justified by the result to which it leads.

This formula gives 415 for the minimum compressibility of water at low pressures,
the corresponding temperature being about 60° C. This accords remarkably with the
determination made by Pagliani and Vincentini, who discovered it, and placed it at
63° C.

On Plate II. I have exhibited graphically a number of known determinations of
the compressibility of water for very low pressures at different temperatures. The line
marked Hypothetical is drawn from the formula above, the authors of the others are
named in the plate. It will be seen at a glance that, if Pagliani and Vincentini
had taken Grassi’s value of the compressibility of water at 1°5 C., instead of that at
0° C, as their single assumption, their curve would have coincided almost exactly with
my Hypothetical curve !

So far matters seemed to have gone smoothly enough. But when I came to reduce
the observations made since June 1887, I found that they gave a result differing,
slightly indeed but in a consistently characteristic manner, from that already given.
The processes of reduction were carried out precisely as before; and the points deter-
mined by the second series of observations are inserted in Plate I, marked with a ©.
Curves drawn through them as before are now seen to be parallel to the former curves,
but not coincident with them. And the amount of deviation steadily diminishes from
the lowest to the highest pressure. These curves, of course, are very closely represented
by the formule (A) above, provided the first terms be made 499, 488, 477, respectively,
i.e. provided 5, 2, and 1 be subtracted from the numbers for 1, 2, and 3 tons re-
spectively, Thus, while the amount of the compressibility is reduced, it is made to
depend on temperature precisely as before, but the way in which it depends on
pressure is altered. The rate of diminution of compressibility with increase of pressure

1 See p. 18, above.
Hh—2
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1s now made constant at any one temperature, instead of becoming slowly less as the
pressure is increased. This is incompatible with the results of all of the first series
of experiments. The total amount of the compressibility is likewise diminished, by
1 per cent. at 1 ton, by 04 per cent. at 2 tons, and by 02 per cent. at 3 tons.

Small as these differences are, their regularity struck me as very remarkable, and as
pointing definitely to some difference of conditions between the two sets of experiments.
Now there were undoubtedly many circumstances in which the series of experiments
differed :—

First. The observers were not the same. All the readings in the first series were
made by myself; but (in consequence of an accident which prevented me from working
in the cellar) T was unable to take part in the second series, and the readings for
it were all made by Mr Dickson. Thus there may be a difference, of personal equation,
in the mode of applying the scale to the stem of the piezometer, or in the final
adjustment of the manometer. Such an explanation is quite in accordance with the
results, as a constant difference of reading would tell most when the whole quantity
measured is least, v.e. at the lowest pressure. But a difference of a full millimetre
in the piezometer readings may be dismissed as extremely improbable.

Second. It is possible that, during the second series of experiments, less care may
have been taken than in the first series to let off the pressure with extreme slowness.
Thus the indices may have been slightly washed down, and the record of compression
rendered too small. Even with the greatest care, this undoubtedly occurred in some, at
least, of the experiments of the first series; and the screw-tap may have been altered
for the worse during the second series.

Third. It is recorded in the laboratory book that, during the second series of
observations (which were made for the most part in the exceptionally cold weather of
last spring) the oil and treacle in the manometer had become very viscous, so that
it was difficult to make the pistons rotate. As artificial cooling, of the pressure apparatus
alone, was employed in the first series, this objection does not apply to it. A constant
zero error of 4 mm. only in the gauge would fully explain the discrepancy. And there
was another cause which may have tended to produce this result, viz. the oxidation of
the mercury in the manometric column, which had soiled the interior of the lower part
of the tube, and thus made it very difficult to read the zero,

Fourth. The piezometers had been twice refilled, and of course slightly altered in
content, between the two series, and the hair-indices had necessarily been changed.
The former cause could have produced no measurable effect; but if the indices were
all somewhat stiffer to move in the second series than in the first, the discrepance
might be fully accounted for.

Fifth. Between the two series all the piezometers had, for several months, been
filled with strong salt-solutions. Imperfect washing out of these solutions may have
had the effect of rendering the second series a set of experiments on water very
slightly salt.

Sixth. To make my observations applicable to natural phenomena, I purposely
did not employ distilled water. The ordinary water supply of Edinburgh is of very
fair quality, and I took care that it should not be boiled longer than was absolutely
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necessary to prevent air-bubbles from forming in the piezometers. But it comes from
different sources, and is supplied as a mixture containing these in proportions which
vary from time to time.  From this cause also the substance operated upon may have
been slightly different in the two series of experiments.

As will be seen in next section, I have obtained direct proof that the first series of
observations is to be preferred to the second,—though I have not been able to ascertain
definitely which of the above causes may have been most efficient in producing the
discrepancy.

It will be observed that this discussion has nothing to do with the important
question, Does the compressibility of water diminish from the very first as the pressure
increases, as was asserted by Perkins? The first and rudest of my experiments sufficed
to answer this definitely in the affirmative; though the contrary opinion has been
confidently advanced, and is very generally held to this day.

The discussion deals with a much more refined and difficult question, viz. Is the
diminution of average compressibility simply proportional to the pressure for the first
few hundred atmospheres, or does the compressibility fall off more slowly than that
proportion would indicate, as the pressure is raised ?

VIII. Repuctions, RESULTS, AND FORMULE FOR SEA-WATER,

As already stated, three of the six piezometers employed were filled with fresh
water and three with sea-water, so that simultaneous observations were made on the
two substances. The accordance among the various observations made with sea-water,
at any one temperature and pressure, was not so good as it was with fresh water;
especially when the smaller compression apparatus was used. There is some curious
action of salt upon the hairs attached to the indices, which has the effect of rendering
them too loose, however stiffly they may originally have fitted the tube. Treating the
observations of the first series exactly as described in the preceding section, I obtained
the points marked # in Plate I. Drawing smooth curves through these, I obtained
parabolic formule for the apparent compressibility. These gave the following results
when compared with the data from observation:—

Apparent Compressibility of Sea- Water.

1 ton. 2 tons. 3 tons.
Obs. Cale. Obs. Cale. Obs. Cale.
0”4 435 435 420 420 410 410
30 427 427 413 413 4025 403
11°8 404 404 392 392 3835 384
14°-2 398 399 389 388 380 380

15°0 398 397 387 387 378 378
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Adding the correction for glass, the formule became, for 1, 2, and 3 tons
respectively—

4475 — 3:05¢ + 0:05¢

462 — 3:20f + 0°04¢* }
4375 — 2:95¢ + 0°05¢°

which may be compared with (A) for fresh water; and which may be approximately
expressed in the form (very nearly correct for p=2)—

000179 t &
B8+p (115t 10,0"06)’
with sufficient accuracy for most purposes of caleulation.

Of course it is easy to deduce from formule (B) the points of minimum com-
pressibility, ete., for different pressures; but the data are scarcely accurate enough to
warrant such a proceeding. We may, however, extend the formul® tentatively to the
case of very low pressures, for which we obtain

481 — 3'4¢ + 0°03¢°,
[The term independent of ¢ in the formule (B) is of the form
481 — 2125p + 2:25p°.]

The second series of observations gave, when reduced, the points marked © on
the plate. The curves which I have drawn, and which evidently suit them very
closely, are parallel respectively to the curves drawn through the » points. The
interval between them is throughout about 7 for 1 ton, 4 for 2 tons, and 3 for 3 tons,
which must be subtracted from the first terms of (B) respectively. The corresponding
intervals for the fresh water curves in the two series were 5, 2, 1. The differences
of corresponding intervals between the sets of curves are 2, 2, 2; the same for all the
groups of four curves each.

This seems to throw light on the question raised in last section, and to show
that the main cause of the discrepancy between the first and second series of obser-
vations is not due to a difference in the substance operated on. The constant
difference of the differences is due to such a cause, being at once traceable to the
fact that the sea-water put into some of the piezometers for the second series of
experiments was taken from the same Winchester quart bottle as was that with which
they had been filled two years before. During these two years the sea-water had
probably, by evaporation, become slightly stronger, and, therefore, less compressible,
The change of compressibility is less than 05 per cent. of the whole, and is there-
fore practically (as it is in the third significant figure) the same for all three pressures.
If we now look back to the suggested explanations in last section, we see that the
above remarks entirely dispose of the fifth and sixth so far as fresh water is con-
cerned, though the sixth, in a modified form, has to do in part with the discrepancy
between the two series of observations on sea-water.

To decide between the two series I made a new set of observations, employing
the two piezometers of large capacity spoken of at the end of Section III. These
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are -called M, and M,. On the first day of experimenting M, held sea-water from a
Winchester quart filled at the same time with the first, but which had remained
unopened. M, had fresh water. On the second day M, held sea-water, and M, fresh
water. The object of this was to discover, if such existed, errors in the calibration
of the piezometers, and then to eliminate them by a process akin to that of weigh-
ing with a false balance.

One of the ordinary piezometers (v.°), filled with fresh water, was associated with
the others as a check. I quote the results of one experiment only, made on the
second day :—

5/6/88 - [0:997 ton]
5 9°4 M, 3109 [4465]
422 M, 2347 [4080]
5 1260 [4463]

Thus we have the following comparison of estimates of true average compressibility
for the first additional ton : —

Fresh Water, Hea-Water,
1st Series 474 434
94 {2nd 469 427
New 473 434

A few of the experiments were not thoroughly decisive; none were in favour of
the second series. This seems (so far as the first ton is concerned) to settle the
question in favour of the first series.

The formule (A) and (B) may therefore, for one ton at least, be regarded as
approximations to the truth, probably about as close as the apparatus and the method

employed are capable of furnishing.
They show that the ratio of compressibilities of sea-water and fresh water varies

but little from
092

throughout a range of temperature from 0° to 15° C.

[The doubts as to the behaviour of the indices, which have been more than
once alluded to above, have just led me to make a series of experiments (at one
temperature but at different pressures) by the help of the silvering process. The
results with fresh water were not much more concordant than when the hair-indices
were used. When means were taken, exactly as before, it was found that the results
for 1 ton were almost identical with the former. For 2 tons the average value was
usually greater than before by a unit (and in some cases two units) in the third
place. For 3 tons it was also greater, but now by one or two (and sometimes three)
units, Hence it is probable that the hair-indices do behave as I suspected, but that
the effect is small,—not at the worst (ie. at the highest pressure) more than about
0'5 per cent. of the mean value found. With sea-water there was a complex reaction,
which made it difficult to read the indications of the silver film. The ratio of the



40 REPORT ON SOME OF THE PHYSICAL PROPERTIES OF [LX1.

true compressibilities of sea-water and fresh water was now found to be about 0925,
the value which I gave from my earliest experiments. 30/6/88.]

Dr Gibson has furnished me with the following data regarding specimens of sea-
water taken from two of the Winchester quarts filled off the Isle of May. One of
these had remained unopened: the other had been often opened, and not closed with
special care. These correspond (at least closely) to the materials used in the first
and second series of experiments respectively :—

DEenNsITY.
Percentage of Cl. 0° C. 6° C. 12° C,
18649 1027286 1026745 1025834
1:9094 1027941 1:027405 1026462

Taking the reciprocals in the last three columns, we have

VOLUME.
0° C, 6o 12°
0973439 0:973951 0974816
0:972818 0973326 0974220

Expressing these volumes as parabolic functions of the temperature, we find, for the
maximum density points, — 57 and — 4”9 respectively.

IX., CoMPRESSIBILITY, EXPANSIBILITY, ETC., OF SOLUTIONS OF
COMMON SALT.

This part of the inquiry was a natural extension of the observations on sea-water,
but it was also in part suggested by the fact that an admixture of salt with water
produces effects very similar to those of pressure. Thus it appeared to me that an
investigation of the compressibility of brines of various strengths might throw some
light on the nature of solution; and also on the question of the internal pressure
of liquids, which (in some theories of capillary forces) is regarded as a very large
quantity.

The solutions experimented on contained, roughly, 4, 9, 134, and 176 per cent.
of common salt. The piezometers used for the experiments already deseribed were
filled with these solutions in July 1887; one, for comparison, being left full of
fresh water. I obtained a large number of results at temperatures about 1° 9° and
19°C., and at 1, 2, and 3 tons weight per square inch. Unfortunately these were
still more discordant than those made with sea-water; so much so, in fact, that an
error of 1 or occasionally even 2 per cent. was not by any means uncommon. However,
by plotting all the observations exactly as described in the two last sections, I found
that they could be fuirly represented by the curves shown in Plate I. In most cases
two at least of the three points for each curve were fairly determinate; one of these
being, in all cases, within a degree or so of 10°C. For this was obtained by
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experiments in the large gun, where the difficulty of relieving the pressure without
Jerks is much less than in the smaller apparatus. Of the general accuracy of these
curves I have no doubt. Thus, for instance, it is certain that the compressibility at
any one temperature and pressure diminishes rapidly as the percentage of salt increases.
And the rate at which the compressibility (for any one range of pressure) diminishes
s temperature increases, becomes rapidly less as the solution is stronger. My obser-
vations do not enable me to settle the more delicate question of the variation of
the rate at which the compressibility (at any one temperature) falls off with increase
of pressure in the various solutions. For the limits of error in the various deter-
minations, especially with the more nearly saturated solutions, are quite sufficient to
mask an effect of this kind unless it were considerable. An attempt, however, will
be made in next Section.

There is little to be gained by putting the results of the inquiry in a tabular
form; for they can be obtained from the plate quite as accurately as is warranted
by the limits of uncertainty of the experiments. See p. 44.

I am indebted to Dr Gibson for the following determinations, which have a high
value of their own as showing the connection between the strength of a salt-solution
and its expansibility :—

Densrry.

Percentage of NaCl. 0° C. 6" C. 12° C.
38845 1:025664 1-028979 1:027935
88078 1067589 1066144 1'064485

13:3610 1:101300 1:099341 1:097244
17:6358 1:138467 1'136040 1133565

From Dr Gibson’s numbers, with the help of a table of reciprocals, we have the
following data as to volume instead of density :—

Percentage of NaCl. 0° C. 67 12°
3'88 97119 97184 97282
381 93669 ‘93796 93942
13:36 00802 90963 ‘91137
1763 ‘87837 ‘88025 88217

Next, to find the maximum density for each solution, and the corresponding
temperature, we must represent these volumes by parabolic functions of & Thus the
first three numbers are closely represented by

4 11
y = 097083 + 0N 9+ 0y

80 that the first solution has its maximum density (1'030) at —9° C., and its coeffi-
cient, of expansion is
00000093 (9 + ©).
Such formule, of course, must be taken for no more than embodiments of the data,
and any application of them considerably beyond the temperature limits 0°—12° C. is
purely hypothetical.
DTk 6
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For the second solution—

y = 093306 1 0000951

36 372+ 1),
so that (under the reservation just made) the maximum density is 10717, at — 37°2,
and the coefficient of expansion is
00000056 (37°2 + ¢t).
For the third—
y = 089884 + 00000018 (72 + ¢)~

The maximum density is 1'1125, at —72° C.; and the expansibility
0000004 (72 + t).
The numbers for the volume of the fourth solution are so nearly in arithmetical
progression that we can hardly use them to approximate, even roughly, to the position

of the maximum density point, or the corresponding density. The expansibility has
practically (from 0° to 12° C.) the constant value

0:00036.

Thus we have for the various salt solutions :—

Percentage Max. Density  Max. Density. Density at 0° C. Expansibility.
NaCl. Point.

0 40 1 099986 — 0000068 (1 4 %)
388 ~9° 1:030 1102966 + 0000084 ( i %)
881 - 37 10717 106759 000021 (1 + ;7,37)

1336 —79° 11125 110130 000029 (1 o5 7‘—2)

1763 o 1-13847 000036

As a good illustration of the analogy at the beginning of this section, let us
deal for a moment with fresh water at such a pressure that its maximum density
point is —9° C, that of the first of the salt solutions. It will be seen later that
the requisite pressure is about 4 tons. At that pressure (A) gives

468 — 375t + 0078

Hence as the unit of volume at 1 atm. and 4° C. becomes 1000186 at 1 atm. and
0° C.,, it is reduced at 4 tons and 0° C. to

609 x 468

o ) =1-00284,

(1-000136) (1 =

so that the density has become
1-0292.
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At the same temperature, and at 1 atm., the density of the salt solution, which has

the same maximum density point, is
10297,

If we assume the formule (A) to be applicable to temperatures so far as 9° below
zero (a somewhat precarious hypothesis, inasmuch as water at 4 tons has its freezing
point about —4°5 C.), the maximum densities alike of the compressed water and of
the salted water are closely represented by

1-030.

[In obtaining the first of these numbers, I assumed from Despretz that the
density of water at 1atm. and —9°C. is 09984.] Of course it would be vain to
attempt similar calculations for the stronger solutions, as the indicated maximum
density points are so widely outside the limits of my experiments. But the example
Just given seems to show that if fresh water be made, by pressure, to have its
maximum density point the same as that of a common-salt solution under atmo-
spheric pressure, the densities of the two will be nearly the same at that point, and
will remain nearly alike as temperature changes.

NOTE.

In all that precedes it has been tacitly assumed:—
1. That the pressure is the same outside and inside the piezometer.

2. That the pressure measured by the gauge is that to which the contents of
the piezometer were exposed.

3. That the pressure was uniform throughout the contents.

None of these is strictly true, so that cause must be shown for omitting any
consequent correction.

The third may be dismissed at once, as the height of the piezometer bulb is
only a few inches.

The difference of levels between the upper end of the gauge and the bulbs of
the piezometers, when in the pressure-chamber, was about three feet, so that on this
account the pressure applied was less than that in the gauge by one-tenth of an
atmosphere. But as differences of pressure alone were taken from the gauge, this
cause merely shifts (to a small extent) the range through which the compression was
measured. But the rise of mercury in the piezometer stem made a reduction of the
range of pressure as measured, which for 3 tons pressure might amount to about
05 atm. The error thus introduced was, at the utmost, of the order 01 per cent.
of the compressibility measured. Thus the second cause, also, produces only negligible
effects,

I preferred to settle the first question by experiment rather -than by calculation,
as the obtaining of the data for calculation would have required cutting up of the
piezometer bulbs. The 0'5 atm. spoken of above represented, in extreme cases, the

,6—2
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excess of external over internal pressure in the piezometers. By direct experiment
on two of the instruments themselves, it was found that their internal volume was
diminished at most 000002 of the whole by 06 atm. of external pressure. This would
involve as a correction the adding of 01 per cent. only to the results at 3 tons, so
that it also is well within the limits of error of the measurements above.

ASSOCIATED PHYSICAL QUESTIONS.

X. THEORETICAL SPECULATIONS,

If instead of the percentage of NaCl in the solutions we tabulate the amount of
NaCl to 100 of water, and along with it the compressibility at zero, we have—

s=amount of Average compressibility at 0° C. x 107,
NaCl to 100 of water. For first ton. First 2 tons. First 3 tons.
00 503 490 477
40 449 438 428
96 396 386 378
154 354 345 338
214 321 313 306
The relation between these numbers is very fairly represented by the formula—
e 000186
Average compressibility for first p tonsv-é-mé.
It is remarkable that if we put ¢=0 in the formula of Section VII., we have—
Average compressibility of fresh water for first p +s tons = 3%(_)3;8_?8

which presents an exceedingly striking resemblance to that last written.

Though these formulae are only approximate, we may assume the true constants
to be at least nearly the same in both, and make the following statement as a sort
of memoria technica in this subject :—

At 0° C. the average compressibility, for p tons, of a solution of s Ibs. of common
salt in 100 lbs. of water, is nearly equal to the average compressibility of fresh water
for the first p+ s tons of additional pressure. :

The numerical coincidence above is, of course, accidental; because the formuls
are taken for the special temperature 0° C., and the special unit of pressure 1 ton
weight per square inch.

But a coincidence of a much more striking character, and one which does not
depend upon special choice of units, is suggested by the common jform of the
expressions compared.

It appears from the Kinetic Theory of Gases, in which the particles are treated
as hard spheres, whose coefficient of restitution is 1, and which exert no action on
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one another except at impact, that the pressure and volume of the group at any
one temperature are connected by a relation approximately of the form

P (v — a) = constant.

The quantity a obviously denotes the ultimate volume, i.e. that to which the
group would be reduced if the pressure were infinite.

I have pointed out' that this expression coincides almost exactly with the results
of Amagat’s experiments on the compression of hydrogen. The introduction of an
attractive force between the particles, sensible only when they are at a mutual
distance of the order of their diameters, merely alters the constants in this expression.
Let us see what interpretation it will bear if, for a moment, we suppose it roughly
to represent the state of things in water.

The average compressibility of such a group of particles, between the pressures
= and = + p, viz,

i

P

where v, is the volume at @, and v that at = + p, is easily shown to be

Compare this with the empirical expression above for the compressibility of water
say at 0° C. (per ton weight on the square inch)—

152:3 x 000186 _ 0283
36+p ~ 36+p

and we see that they agree exactly in form. If, then, the results of the kinetic
theory be even roughly applicable to the case of a liquid, we may look upon the
36 in this expression as the number of tons weight per square inch by which the
internal pressure of water exceeds the external pressure. And the -corresponding
empirical expression for the compressibility of a solution of common salt may be
interpreted as showing that the addition of salt to water increases the internal
pressure by an amount simply proportional to the quantity of salt added.

That liquids have very great internal pressure has been conjectured from the
results of Laplace’s and other theories of capillarity, in which the results are derived
statically from the hypothesis of molecular forces exerted intensely between contiguous
portions of the liquid, but insensibly between portions at sensible distances apart. A
very interesting partial verification of this proposition was given by Berthelot? in 1850.
By an ingenious process he subjected water to external fension, and found that it
could support at least fifty atmospheres. The calculation was made on the hypothesis
that a moderate negative pressure increases the volume of water as much as an equal
positive pressure diminishes it.

1 Tyans. Roy. Soc. Edin,, vol. xxxmr, p. 90, 1886. * dnn. de Chimie, tom. xxx. p. 232.
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I was led to the conclusion that the internal pressure of a liquid must be greatly
superior to the external, as a consequence of the remarkable results of Andrews’
experiments on carbonic acid, and of the comments made on them by J. Thomson
and Clerk-Maxwell’. It was Prof. E. Wiedemann who, while making an abstract of
my paper (Appendiz E) for the Beiblitter zu den Ann. d. Physik, first called my
attention to Berthelot’s experiment.

In Appendiz ¥ a short account of Laplace’s calculations is given, and it is shown
that the work required to carry unit volume of water, from the interior to a dmtance
from the surface greater than the range of molecular forces, is

2K x 1 cub. inch,

where K 1s the internal molecular pressure per square inch. The speculation above

would make this work
72 inch-tons.

But, in work units, the heat 1'equired to vaporize 1 cub. inch of water at 0° C. is

-------- 606 x 1390 foot-pounds,
o 163 inch-tons.

The two quantities are at least of the same order of magnitude, and it is to be
remembered that what has been taken out in the one case is very small particles
of water; in the other, particles of wvapour. This raises another extremely difficult
question, viz,—What fraction of the whole latent heat is required to convert water,
in excessively small drops, into vapour?

The comparison above, if it be well founded would seem to show that the utmost
reduction of volume which water at 0°C. can suffer by increase of pressure is 0:283;
ue. that water can be compressed to somewhat less than 3/4ths of its original bulk,
but not further.

Of course the whole of this speculation is of the roughest character, for two
reasons. The kinetic gas formula has been proved only for cases in which the whole
volume of the particles is small compared with the space they occupy. The com-
pression formula is only an approximation, and was obtained for the range of pressures
from 150 to 450 atmospheres; while we have extended its application to much higher
pressures.

XI. EquiriBrium oF A VERTICAL COLUMN OF WATER.

In Canton’s second paper we have the following interesting statement :—

“The weight of 32} feet of sea-water is equal to the mean weight of the atmo-
sphere: and, as far as trial has yet been made, every additional weight equal to
that of the atmosphere, compresses a quantity of sea-water 40 millionth parts; now
if this constantly holds, the sea, where it is two miles deep, is compressed by its
own weight 69 feet 2 inches; and the water at the bottom is compressed 13 parts

in 1000.”
1 Theory of Heat, chap. vi., London, 1871,
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Either Canton overestimated the density of sea-water or he underestimated the
amount of an atmosphere, for undoubtedly 33 feet is a much closer approximation to
the column of sea-water which produces 1 atmosphere of pressure. He does not give
his process of calculation, but it was probably something like this:—The pressure
increases uniformly from the top to the bottom (neglecting the small effect due to
change of density produced by compression), and everywhere produces a contraction
proportional to its own value. Hence the whole contraction is equal to that which
would have been produced if the pressure had, at all depths, its mean value, e
that due to half the whole depth. This process, with Canton’s numbers, gives nearly
his numerical results.

If, then, @ be the depth, and p, the original density, gp,a/2 is the mean pressure.
If e be the compressibility, the whole contraction of a column, originally of length a,
is egp,e*/2. Now, a mile of sea-water gives nearly 160 atmospheres of pressure, so
that the loss of depth of a mile of sea (supposed at 10° C. throughout) is

160 % 0000045 x 5280/2 =19 feet, nearly.

For other depths it varies as the square of the depth; so that for two miles it is
76 feet, and for six miles 684 feet nearly. :

This, however, is an overestimate, because we have not taken account of Perkins’
discovery of the diminution of compressibility as the pressure increases. The investi-
gation for this case is given in Appendiz G, where the change of depth is shown to be

: 20  w?
39;)0“'3/2 (1 -— m + 2—1—1*;!‘—...) 3

@ being the pressure at the bottom in tons weight per square inch, and II (by
Section VIIL) being 38 in the same units.
For six miles of sea this is, in feet—
684 (1—%+810—-&c.)=620 nearly.

In the Appendiz referred to I have given a specimen of the hydrostatic problems
to which this investigation leads. Any assigned temperature distribution, if not
essentially unstable, can be approximately treated. But the up- or down-rushes which
result from instability are hopelessly beyond the powers of mathematics.

One remark of a curious character may be added, viz. that in a very tall column
of water (salt or fresh), at the same temperature throughout, the equilibrium might
be rendered unstable in consequence of the heat developed by a sudden large increase
of pressure. For, as will be seen later, the expansibility of water is notably increased
by pressure; and thus the lower parts of the column will become hotter, and less
compressible, than the upper. This effect is not produced in a tall column of air,
for the expansibility is practically unaltered by pressure. And the opposite effect is
produced in bodies like alcohol, &c., where the compressibility steadily increases with
rise of temperature.
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XII. CHANGE OF TEMPERATURE PRODUCED BY COMPRESSION,

The thermal effects of a sudden increase or relaxation of pressure formed an
important element in my examination of the Challenger thermometers, and were
practically the origin of this inquiry; one of the most unexpected of the results I
obtained being the very considerable compression-change of temperature of the vulcanite
slabs on which the thermometers are mounted. Thomson’s formula for this heating
effect, in terms of the pressure applied, and of the specific heat and expansibility of
the body compressed, is given in Appendizc C to my former Report. My first direct
experiment on the subject was described as follows':—

“When...the bulb of one of the thermometers was surrounded by a shell of lard
upwards of half an inch thick, the total effect produced by a pressure of 3% tons
weight was 5° F.; while for the same pressure, without the lard, the effect was only
1”8 F. The temperature of the water in the compression apparatus was 43° F., so
that the temperature effect due to the compression of water was less than 02 F.”

On May 16 of the same year I read a second note on the subject, from which
I extract the following®:—

“I have examined for a number of substances the rise of temperature produced
by a sudden application of great pressure, and the corresponding fall of temperature
when the pressure was very suddenly relaxed. The copper-iron circuit is, however, too
little sensitive for very accurate measurements; as, from the nature of the apparatus,
the wires must be so thin as to have considerable resistance, and the thermo-electric
power of the combination is not large...I content myself, for the present, with a
general statement of the results for cork and for vulcanized india-rubber, which are
apparently typical of two classes of solids quite distinet from one another in their
behaviour.

“In the case of india-rubber the rise of temperature was found to be about
13 F. for each ton-weight of pressure per square inch; and the fall in relaxation
was almost exactly the same.

“With cork each additional ton of pressure gave less rise of temperature than
the preceding ton; and the fall on relaxation of pressure was, for one or two tons,
only about half the rise. For higher pressures its ratio to the rise became greater.
Two tons gave a rise of about 1°6 F., and a fall of 0°9 F,

“With the same arrangement, the fall of temperature in water suddenly relieved
from pressure at a temperature of 60° F. was found to be for

One ton-weight per square inch . " ; ; , 0°25 F.
Two y o : 3 ; ; ; 0756 ,,
Three - - ; : : : : 0R98 .,
Four ot i : - ‘ - ; 1°35 ,,

“These numbers give the averages of groups of fairly concordant results, I
employed cooling exclusively in these experiments, because one of the valves of my

! Proe. Roy. Soc. Edin., vol. x1. p. 51, 1881. 2 Proc. Roy. Soc. Edin., vol. x1. pp. 217, 218, 1881.
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pump was out of order, and the pressure could not be raised at a uniform rate.
The effects obtained for successive tons of pressure are thus, roughly, 0°25, 0°:31, 0*:37,
and 0742 F.

“If these results may be trusted, they probably indicate a lowering of the maximum-
density point of water by pressurel.”

In the next extract it will be seen that I deduced from these data a lowering
of the maximum-density point amounting to about 3° C. per ton.

The experiments on water were carried further in the following year by Professors
Marshall and Michie Smith, and Mr Omond%. The second of their papers contains

the annexed graphic representation of the results, which is alluded to in the following
extract. The final result of these experiments, as assigned by the authors, was a
probable lowering of the maximum-density point of water by 5° C. for one ton pressure.
To this paper I added the following note (Le. p. 813):—

“If we assume the lowering of the temperature of maximum-density to be pro-
portional to the pressure, which is the simplest and most natural hypothesis, we may
write

ty =t — Bp,
where p is in tons weight per square inch.
“Now Thomson’s thermo-dynamic result is of the form

dt=A(t—t)dp.
“This becomes, with our assumption,
St=A (t—t,+ Bp)dp.
“As the left-hand member is always very small, no sensible error will result from
integrating on the assumption that ¢ is constant on the right (except when the
1 [See footnote to p. 26.] 2 Proc. Roy. Soc. Edin., vol. x1. pp. 626 and 809, 1882.

s 2 T
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quantity in brackets is very small, and then the error is of no consequence). Inte-
grating, therefore, on the approximate hypothesis that 4 and B may be treated as
constants, we have for the whole change of temperature produced by a finite pressure p—

At=A (t—t,)p+§ABp

“I have found that all the four lines in the diagram given [from Messrs Marshall,
Smith, and Omond, on last page, where y is the heating effect of p tons at temperature
t] can be represented, with a fair approach to accuracy, by the formula

y = 00095 (t — 4) p + 00177,

where p has the values 1, 2, 3, 4 respectively. Hence, comparing with the theoretical

formula, we have the values
4 =00095, B=23%6C.

“B expresses the lowering of the maximum-density point for each ton weight of
pressure per square inch.

“It seems, however, that all the observations give considerably too small a change
of temperature; for the part due to the first power of the pressure is from 30 to
40 per cent. less than that assigned by Thomson’s formula and his numerical data.
One obvious cause of this is the small quantity of water in the compression apparatus,
compared with the large mass of metal in contact with it. This would tend to
diminish all the results, whether heating or cooling; and the more so the more
deliberately the experiments were performed. Another cause is the heating (by com-
pression) of the esternal mercury in the pressure gauge. Thus the pressures are
always overestimated; the more so the more rapidly the experiments are conducted.
A third cause, which may also have some effect, is the time required by the thermo-
electric junction to assume the exact temperature of the surrounding liquid.

“Be this, however, as it may, the following table shows the nature of the agree-
ment between the results of my original experiments [ante, p. 48] and the data
derived from the present investigations. The gauge and the compression apparatus
were the same as in my experiments of last year; the galvanometer, the thermo-
electric junctions, and the observers were all different. The column MSO gives the
whole heating or cooling effect at 155 C., calculated for different pressures from the
results of the investigation by Professor Marshall and his coadjutors. The column T
contains the results of my direct experiments at that temperature:—

p (tons) MSO0 T Thomson.
1 0131 C. 0139 C. 0177 C.
2 0294 0311 0355
3 0465 0516 0533
+ 0665 0750 0711

“It will be noticed that there is, again, a fair agreement; though the results are,
as a rule, lower than those calculated from Thomson’s formula. My own agree most
nearly with Thomson’s formula, probably because they were very rapidly conducted.
As they stand, they give about 3 C. for the effect of 1 ton on the maximum-density
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point. It is to be observed that if we could get the requisite corrections for con-
duction and for compression of mercury, their introduction would increase (as in fact
is necessary) the constant 4 above, but would have comparatively little effect on the
value of B, which is the quantity really sought.”

The experiments on other substances were carried out for me by Messrs Creelman
and Crocket, from whose important paper! I extract the following results, which have
some connection with the subjects of this and of my former Report:—

Cork, at 15° C. “Challenger” Vulcanite, at 16° C.
Pressure. Rise per ton. Fall per ton. Pressure, Rise per ton.  Fall per ton.
1 0°75 0”51 1 0°-33 0°-33
2 0°-65 0745 2 0°:31 0°-33
3 0°-59 0742 3 0°-28 0°-32

Glass, at 15° C. India-rubber, at 15° C.
1 012 0°12 1 0°74 0°79
2 013 0°14 2 0°70 079
3 013 0”14 3 0°70 0°:80
Gutta Percha, at 16° C. Beeswax, at 15° C.
1 0765 067 1] 0°-83 0°83
2 0°60 064 2 0°79 0°-86
3 0°58 0°63 3 0°-78 0°:89
Solid Paraffin, at 14° C. Marine Glue, at 15>5 C.
1 0756 0°57 1 0°91 0798
2 0°56 059 2 0°:85 0°90
3 0°54 0°61 3 0°-82 0°91
Chloroform, at 17° C., Sulphurie Ether, at 21° C.
1 1°44 1°45 1 18 1°9
2 1°-34 1°45 2 1°74 18
3 1°:81 1°47 3 i : kel

As was to be expected from the fact that the getting up of pressure requires a
short time, while the relief is practically instantaneous, the heating effect is generally
a little smaller than the cooling effect for the same change of pressure.

These experimenters thus completely confirmed my statements as to the curiously
exceptional behaviour of cork, but they found no other substance, in the long list of
those which they examined, which behaves in a similar manner.

It is to be remarked that as, in all the experiments described or cited in this
section, the temperature-changes were measured by a thermo-electric junction which
was itself exposed to the high pressures employed, there may be error due to the
compression of the materials forming the junction. The wires were, for several reasons,

I Proc. Roy. Soc. Edin., vol. xmr. p. 311, 1885.
¥
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very thin; so that the error, if any, is not due to changes of temperature in them,
but to (possible) change of relative thermo-electric position, due to pressure. This is
a very insidious source of error, and it is not easy to see how to avoid it.

XIII. ErrFEcT OF PRESSURE ON THE MAXIMUM-DENSITY POINT.

Though the lowering of the maximum-density point of water by pressure is an

 immediate consequence of Canton’s discovery, that the compressibility diminishes as

the temperature is raised, it seems to have been first pointed out, so lately as 1875,

by Puschll, I was quite unaware of his work, and of that of Van der Waals?, when

{as shown in Section XIL above) I was led to the same conclusion by the differences

between theory and experiment, as to the heat

developed by compression of water.

This can very easily be shown as follows.

“. Let the (vertical) ordinates of the curve ABC

b represent the volume of water at 1 atm., the

abscissze the corresponding temperatures, B the

maximum-density point. Let the dotted curve

abc represent the same for a greater pressure,

say two atmospheres. Then, by Canton’s result,

the vertical distance between these curves (the

7 ¢ difference between corresponding ordinates) di-

minishes continuously from 4 to C'; so long, at

least, as the temperature at (' is under that of minimum compressibility. Hence

the inclination of abe to the axis of temperatures is everywhere greater than that

of the corresponding part of ABC. Thus the minimum, b, of the dotted curve

(where its tangent is horizontal) must correspond to a point, B, in the full curve
where the inclination is negative—i.e. a point at a lower temperature than B.

To calculate the amount of this lowering, by the process indicated, we must
know the form of the curve abec. This, in its turn, can be calculated from a know-
ledge of the form of ABC, and of the relation between compressibility and temperature.
Both of the authors named took their data as to the latter matter from the experi-
ments of Grassi; and, as was therefore to be expected, gave results wide of the
truth. Puschl calculates a lowering of 1°C. by 87'6 atm., which is certainly too
small; Van der Waals, 0°78 C. by 105 atm., as certainly much too large.

To obtain a good estimate in this way is by no means easy, for authorities are
not quite agreed as to the form of the curve ABC. If we calculate from the datum
of Despretz, which has been verified by Rossetti’, namely,—

vol. a 0° C.
vol. at 4° C.

L 17 c

t

= 1000136,

! Sitzungsb. d. math.-naturw. CL. d. k. Akad. d. Wiss. Wien, Bd. uxx, p. 283, 1875,
* Arehives Néerl., tom. xir, p. 457, Haarlem, 1877.
* Pogg. Ann., Ergiinzungsband, v. p. 260, 1871.
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we obtain for the volume of water at 1 atm., in terms of temperature,
i C R T A S e i S o (1).

[This refers only to the part AB of the curve, which is what we want. There seems
general agreement that the curve is not symmetrical about the ordinate at B.] Now,
by (A), the factor for reduction of volume by 1 ton of additional pressure is

1 — 0°007676 + 0000055 — 0-00000061£. .........ccverrveneerennes (2).

The product of these factors, (1) and (2), is a minimum when
0000017 (£ — 4) = — 0°000055 + 0:00000122¢;

501
158
Thus, according to these data, the maximum-density point is lowered by 3”17 C.
per ton of pressure. It will be observed that this is not much less than the result
I calculated from the data of Professor Marshall and his comrades, but it agrees
almost exactly with that which I derived from my own.

The following description of the results of my earlier attempts to solve this
question directly, is taken from the Proc. Roy. Soc. Edin., vol. XL pp. 226-228, 1883 :—

“I determined to try a direct process analogous to that of Hope, for the purpose
of ascertaining the maximum-density point at different pressures. The experiments
presented great difficulties, because (for Hope's method) the vessel containing the
water must have a considerable cross section; and thus I could not use my smaller
compression apparatus, which was constructed expressly to admit of measurements of
temperature by thermo-electric processes. I had therefore to work with the huge
Fraser gun employed for the Challenger work, and to use the protected thermometers
(which are very sluggish) for the measurement of temperatures. It was also necessary
to work with the gun at the temperature of the air—it would be almost impossible
to keep it steadily at a much lower temperature,—so that I had to work in water
at about 12° C.

“The process employed was very simple. A tall cylindrical jar full of water had
two Challenger thermometers (stripped of their vulcanite mounting) at the bottom,
and was more than half-filled with fragments of table-ice floating on the water, and
confined by wire-gauze at the top. This was lowered into the water of the gun, and
pressure was applied.

“It is evident that if there were no conduction of heat through the walls of the
cylinder, and if the ice lasted long enough under the steadily maintained pressure,
the thermometers would ultimately show, by their recording minimum indices, the
maximum-density point corresponding to the pressure employed :—always provided that
that temperature is not lower than the melting point of ice at the given pressure.

“Unfortunately, all the more suitable bad conductors of heat are either bodies
like wood (which is crushed out of shape at once under the pressures employed) or
like tallow, &ec. (which become notably raised in temperature by compression). I was
therefore obliged to use glass. The experiments were made on successive days, three

or t=4 =4 —317.
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each day, with three different cylindrical jars. These had all the same height and the
same internal diameter. The first was of tinned iron; the second of glass about } inch
thick ; the third, of glass nearly an inch thick, was procured specially for this work.
“With the external temperature 12°-2 C., the following were the results of 1% tons
pressure per square inch, continued in each case for 20 minutes (some unmelted ice
remaining on each occasion). The indications are those of two different Challenger
thermometers, corrected for index-error by direct comparison with a Kew standard:—

Tin Cylinder. Thin Glass Thick Glass.
4° C. 2567 0°-83
4° 2°61 0”83

The coincidence of the first numbers with the ordinary maximum-density point of
water is, of course, mere chance. When no pressure was applied, but everything else
was the same, the result was—

Tin. Thin. Thick.
57 G 5° 4°

It is clear that the former set of numbers points to a temperature of maximum density,
somewhere about 0° C., under 1} tons pressure per square inch. But still the mode
of working is very imperfect.

“I then thought of trying a double cylindrical jar, the thin one above mentioned
being enclosed in a larger one which surrounded it all round, and below, at the
distance of about % inch. Both vessels were filled with water, with broken ice floating
on it, and had Challenger thermometers at the bottom. By this arrangement I hoped
to get over the difficulty due to the temperature of the gun, by having the inner
vessel enclosed in water which would be lowered in temperature to about 8° C. by
the application of pressure. The device proved quite successful. The result of 1} tons
pressure per square inch maintained for 20 minutes, some ice being still left in each
vessel, was from a number of closely concordant trials—

Temperature in outer vessel . 2 . b A

Temperature in inner vessel . . .  0°8C.

The direct pressure correction for the thermometers is only about — 0”1 C, and has
therefore been neglected.

“The close agreement of this result with that obtained (under similar pressure
conditions) in the thick glass vessel leaves no doubt that the lowering of the maximum-
density point is somewhat under 4° C. for 1% tons, or 27 C, for 1 ton per square
inch. It is curious how closely this agrees with the result of my indirect experiments.”

Further work of the same kind led me to the conclusion that even the double
vessel had not sufficiently protected the contents from conducted heat, and to state in
my Heat (p. 95, 1884) that “a pressure of 50 atmospheres lowers the maximum-density
point by 1° C.”
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During the next two years I made several repetitions of these experiments, with
the help of thermometers protected on the Challenger plan, but very much more
sensitive. These experiments were not so satisfactory as those just described. The new
thermometers caused a great deal of trouble by the uncertainty of their indications,
which I finally traced to the fact that the paraffin oil which they contained passed,
in small quantities, from one end of the mercury column to the other. I was occupied
with an attempt to obtain more suitable instruments, when the arrival of the Amagat
gauge turned my attention to other matters.

So far as I can judge from the results of the three different methods which I
have employed, the lowering of the maximum-density point of water by 1 ton of
pressure is very nearly, though perhaps a little in excess of, 3° C.

It is peculiarly interesting to find that Amagat, by yet another process,—viz.
finding two temperatures not far apart at which water, at a given pressure, has the
same volume,—has lately obtained a closely coinciding result. He says: “A 200 atm,
(chiffres ronds) le maximum de densité de l'eau a rétrogradé vers zéro et l'a presque
atteint; il parait situé entre zéro et 0”5 (un demi-degré).” This makes the effect
of 1 ton slightly less than 3° C.

As the freezing point is lowered, according to J. Thomson’s discovery, by about
113 only per ton of additional pressure,—and has a start of but 4°,—the maximum-
density point will overtake it at about — 2°4, under a pressure of 2:14 tons.

The diagram 2 of Plate Il shows the consequences of the pressure-shifting of
the maximum-density point in a very clear manner—especially in its bearing on the
expansibility of water at any one temperature but at different pressures. The curves
in the diagram are for atmospheric pressure, and for additional pressures of 1, 2 and
3 tons respectively. They are traced roughly by the help of Despretz’s tables of
expansibility at atmospheric pressure, and the compression data of the present Report.
The quantity of water taken in each case is that which, at 0° and under the
particular pressure, has unit volume. Thus all the curves pass through the same
point on the axis of volumes. How, in consequence of the gradual lowering of the
maximum-density point, the expansibility at zero, which is negative at atmospheric
pressure, and even at 1 ton of additional pressure, becomes positive and then rapidly
greater as the pressure is raised, is seen at a glance.

I have to state, in conclusion, that my chief coadjutors in the experimental work
have been Mr H. N. Dickson and my mechanical assistant Mr T. Lindsay. Mr Dickson
also reduced all the observations, about half of them having been done in duplicate
by myself.

In the compression of glass I had the assistance of Mr A. Nagel, and occasionally
of Dr Peddie.

Mr A. C. Mitchell assisted me in the graphic work, and checked the caleulations
in the text.

L Comptes Rendus, tom. crv, p. 1160, 1887,
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I have already acknowledged the density determinations and analyses of sea-water
and salt solutions made by Dr Gibson.
And I have again been greatly indebted to the very skilful glass-working of

Mr Kemp.

[7/9/88.—The following analysis of the glass of my piezometers is given by Mr T.
F. Barbour, working in Dr Crum Brown’s Laboratory :—

Si0, = 6120
PbO = 2004
ALO, + Fe,0, = 082
a0 = 220
MgO = 026
KO = 198
Na,0 = 1172

ADDENDUM (8/8/88).

Toe reader has already seen that I have, more than once in the course of the inquiry,
found myself reproducing the results of others. A few days ago I showed the proof-sheets
of this Report to Dr H. du Bois, who happened to visit my laboratory, and was informed
by him that one of Van der Waals’ papers (he did not know which, but thought it was a
recent, one) containg an elaborate study of the molecular pressure in liquids. I had been under
the impression, strongly forced on me by the reception which my speculations (Appendix E.,
below) met with both at home and abroad, that ILaplace’s views had gone entirely out of
fashion ;—having made, perhaps, their final appearance in Miller's Hydrostatics, where I first
became acquainted with them about 1850. In Van der Waals’ memoir “On the Continuity
of the (laseous and Liquid States,” which I have just rapidly perused in a German trans-
lation, the author expresses himself somewhat to the following effect : TIf I here give values
of K for some bodies, T do it not from the conviction that they are satisfactory, but because
I think it important to make a commencement in a matter where our ignorance is so
complete that not even a single opinion, based on probable grounds, has yet been expressed
about it,

Van der Waals gives, as the value of A in water, 10,500 atmospheres; and, in a sub-
sequent paper, 10,700 atm.; while the value given in the text above is about half, viz.
5480 atm. So far as I can see, he does mot state how these values were obtained, though
he gives the data and the calculations for other liquids. It is to be presumed, however,
that his result for water was obtained, like those for ether and alcohol, from Cagniard
de la Tour’s data as to any two of the critical temperature, volume, and pressure. Van
der Waals forms, by a very ingenious process, a general equation of the isothermals of a
fluid, in which there are but two disposable constants. This is a cubic in w, whose three
roots are real and equal at the critical point. Thus the critical temperature, volume, and
pressure can all be expressed in terms of the two constants, so that one relation exists
among them. Two being given, the equation of the isothermals can be formed, and from it
K can be at once found.
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My process, as explained above, was very different. I formed the equation of the iso-
thermal of water at 0° C. from the empirical formula for the average compressibility under
large additional pressures; and by comparing this, and the corresponding equation for various
salt solutions, with an elementary formula of the Kinetic theory of gases, I was led to
interpret, as the internal pressure, a numerical quantity which appears in the equations.

I have left the passages, in the text and Appendix alike, which refer to this subject
in the form in which they stood before I became acquainted with Van der Waals' work.
I have not sufficiently studied his memoir to be able as yet to form a definite opinion
whether the difficulty (connected with the non-hydrostatic nature of the pressure in surface
films) which is raised in Appendix E. can, or cannot, be satisfactorily met by Van der Waals’
methods. Anyhow, the isothermals spoken of in that Appendix are totally different from those
given by Van der Waals’ equation, inasmuch as the whole pressure, and not merely the external
pressure, is introduced graphically in my proposed construction.

SUMMARY OF RESULTS.

It is explained in the preceding pages that the pressures employed in the experi-
ments ranged from 150 to 450 atm., so that results given below for higher or lower
pressures [and enclosed in square brackets] are extrapolated. A similar remark applies
to temperature, the range experimentally treated for water and for sea-water being
only 0° to 15° C. Also it has been stated that the recording indices are liable to
be washed down the tube, to a small extent, during the relief of pressure, so that

the results given are probably a little too small.

Compressibility of Mercury, per atmosphere, . - : 0:0000036
5 ,  Olass, . ; ; " : : 0:0000026
Average compressibility of fresh water:—
[At low pressures 520.1077 = 855.107° + 3. 10~%]
For 1 ton=1523 atm. 504 360 4
2 , =3046 ,, 490 365 5
3 , =4569 , 478 370 6

The term independent of ¢ (the compressibility at 0° C.) is of the form
1077 (520 — 17p + p*),
where the unit of p is 1523 atm. (one ton-weight per sq. in.). This must not be

extended in application much beyond p=3, for there is no warrant, experimental or
other, for the minimum which it would give at p=845.

The point of minimum compressibility of fresh water is probably about 60° C. at
atmospheric pressure, but is lowered by increase of pressure.

As an approxzimation through the whole range of the experiments we have the

formula :—
0'001_86( _ﬁ_'_ t )
36 +p 400 * 10,000/’
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while the following formula exactly represents the average of all the experimental
results at each temperature and pressure:—
1077(520 — 17p + p*) — 107 (355 + 5p) t + 10~ (3 + p) £

Average compressibility of sea-water (about 092 of that of fresh water):—

[At low pressures 481.1077—340.10"%+ 3.10~%]
For 1 ton 462 320 4
S 4475 305 5
. S 4375 295 5

Term independent of ¢:—
107 (481 — 21:25p + 2:25p2),
Approzimate formula :—
0:00179 i t?
5+ p (1~ 150 T0000)°

Minimum compressibility point, probably about 56° C. at atmospheric pressure, is
lowered by increase of pressure.
Average compressibility of solutions of NaCl for the first p tons of additional

pressure, at 0° C.:—
000186

36+p+s
where s of NaCl is dissolved in 100 of water.

Note the remarkable resemblance between this and the formula for the average
compressibility of fresh water at 0° C. and p+s tons of additional pressure.

[Various parts of the investigation seem to favour Laplace’s view that there is a
large molecular pressure in liquids. In the text it has been suggested, in accordance
with a formula of the Kinetic Theory of Gases, that in water this may amount to
about 36 tons-weight on the square inch. In a similar way it would appear that
the molecular pressure in salt solutions is greater than that in water by an amount
directly proportional to the quantity of salt added.]

Six miles of sea, at 10° C. throughout, are reduced in depth 620 feet by com-
pression. At 0° C. the amount would be about 663 feet, or a furlong. (This quantity
varies nearly as the square of the depth.) Hence the pressure at a depth of 6 miles
is nearly 1000 atmospheres, ;

The wmaximum-density point of water is lowered about 8° C. by 150 atm. of
additional pressure.

From the heat developed by compression of water I obtained a lowering of 3° C,
per ton-weight per square inch,

From the ratio of the volumes of water (under atmospheric pressure) at 0° C.
and 4° C, given by Despretz, combined with my results as to the compressibility, I
found 317 C.:—and by direct experiment (a modified form of that of Hope) 2°7 C.
The circumstances of this experiment make it certain that the last result is too small.

Thus, at ordinary temperatures, the expansibility of water is increased by the
application of pressure.
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In consequence, the heat developed by sudden compression of water at temperatures
above 4° C. increases in a higher ratio than the pressure applied; and water under
4° C. may be heated by the sudden application of sufficient pressure.

The maximum density coincides with the freezing-point at —2%4 C, under a
pressure of 214 tons.

APPENDIX A.

ON AN IMPROVED METHOD OF MEASURING COMPRESSIBILITY .

“WueN the compressibility of a liquid or gas is measured at very high pressures, the
compression vessel has to be enclosed in a strong cylinder of metal, and thus it must be
made, in some way, self-registering. I first used indices, prevented from slipping by means
of hairs. Sir W. Thomson’s devices for sounding, at small depths, by the compression of
air, in which he used various physical and chemical processes for recording purposes, led me
to devise and employ a thin silver film which was washed off by a column of mercury.
Much of my work connected with the Challenger Thermometers was done by the help of
this process. Till quite recently I was unaware that it had been devised and employed by
Cailletet in 1873, only that his films were of gold.

“But the use of all these methods is very laborious, for the whole apparatus has to
be opened for each individual reading. Hence it struck me that, instead of measuring the
compression produced by a given pressure, we should try to measure the pressure required
to produce a given compression. I saw that this could be at once eflfected by the simplest
electric methods ; provided that glass, wnto which a fine platinum wire is fused, were capable
of resisting very high pressures without cracking or leaking at the junctions. This, on trial, was
found to be the case.

“We have, therefore, only to fuse a number of platinum wires, at intervals, into the
compression tube, and very carefully calibrate it with a column of mercury which is brought
into contact with each of the wires successively. Then if thin wires, each resisting say about
an ohm, be interposed between the pairs of successive platinum wires, we have a series whose
resistance is diminished by one ohm each time the mercury, forced in by the pump, comes in
contact with another of the wires, Connect the mercury with one pole of a cell, the highest
of the platinum wires with the other, leading the wires out between two stout leather washers ;
interpose a galvanometer in the circuit, and the arrangement is complete. The observer
himself works the pump, keeping an eye on the pressure gauge, and on the spot of light
reflected by the mirror of the galvanometer. The moment he sees a change of deflection he
reads the gauge. It is convenient that the external apparatus should be made to leak slightly ;
for thus a series of measures may be made, in a minute or two, for the contact with each of
the platinum wires. Then we pass to the next in succession.”

M. Amagat® remarks on the use of this method as follows:—“Te liquide du piézométre,
et le liquide transmettant la pression dans lequel il est plongé (glycérine), s'échauffent con-
sidérablement par la pression; cette circonstance rend les expériences trés longues: il faut

1 Proc. Roy. Soc. Edin., vol. xm1. pp. 2, 3, 1884, 2 Comptes Rendus, tom. cir p. 431, 1886.
8—2
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un temps considérable pour équilibrer la masse qui est peu conductrice; il faut répéter les
lectures jusqu’a ce que lindication du manometre devienne constante au moment du contact.
Les séries faites par pressions décroissantes produisent le méme effet en sens inverse; on
prend la moyenne des résultats, dont la concordance montre que l'ensemble de la méthode
ne laisse réellement presque rien a désirer.

“On voit par la quelles grossiéres erreurs ont pu étre commises avec les autres artifices
employés jusqu’ici pour la mesure des volumes dans des conditions analogues.”

It must be remembered that M. Amagat is speaking of experiments in which pressures
rising to 3000 atmospheres were employed,

APPENDIX B.

RELATION BETWEEN TRUE AND AVERAGE COMPRESSIBILITY.

Tue average compressibility per ton for the first p tons of additional pressure is
V=0
o
where », is the initial volume, and » is the volume at p additional tons.
The true compressibility at p additional tons is

dw

o
Hence, if one of these quantities is given as a function of p, it may be desirable to find
the corresponding expression for the other. The simplest example, that on p. 28, will suffice
to show the principle of the calculation. Let

Vo=V

_p;.-=e(1 it IR T R e o s e e (1);

0

where ¢ is, in general, a much smaller quantity than /. We have

21 — ep +efph,

Uy

_dv _e(1-%p)
vdp — 1-ep +efp*

where the expansion may be easily carried further if required.
If the terms in the second and higher powers of p are to be neglected, (1) and (2)
as written show at once how to convert from true to average compressibility, or wvice versd.

whence

=0 {l = (2 =P+ ..} | cvvrensivremmisnnnies (2),
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APPENDIX C.
CarcuratioN oF Loa. FACTORS.

Ler W be the weight of mercury which would take the place of the liquid in the piezo-
meter, w that of the mercury which fills a length ¢ of the stem. Then a compression read as
2 on the stem is
w
W

=~ =

This assumes the stem to be uniform; in general it must be corrected from the results of
the calibration :—unless, as in the example given on p. 15 of the text, / be chosen very nearly
equal to ®, as found by trial for each value of the pressure.

Also if y be the reading of the gauge, and if @ on the gauge correspond to an atmosphere,
the pressure is

Yy

= atm.
23

Hence the averagé apparent compressibility per atmosphere is

@ wa
y W
Its logarithm is log & —log y + (log w—log W —log!) + log a.

The last four terms, of which loga is the “gauge log,” form the log factor as given
in the text.

APPENDIX D.
NoreE oN THE CORRECTION FOR THE COMPRESSIBILITY OF THE PIEZOMETER.

Tue usual correction neglects the fact that when the compressibility of the liquid is
different from that of the walls, the liquid under pressure does not occupy the same part

of the vessel as before pressure,
Let V be the volume of the part of the vessel occupied by liquid; @ that of the tube

between the two positions of the index, both measured at 1 atmosphere; e, ¢ the average
absolute compressibility of liquid and vessel per ton for the first p additional tons. Kquate
to one another the volume of the liquid, and the volume of the part of the vessel into which

it is forced, both at additional pressure p. We have thus—
V(1-ep)=(V-a)(l-ep),

h - _f‘;) LA
whence e e(l v +PV
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As % is usually small, this equation is treated as equivalent to

a
=€+ ﬁ}‘
i.e. the absolute compressibility of the liquid is equal to its apparent compressibility, added
to the absolute compressibility of the envelop.

One curious consequence of the exact equation is that, if the compressibilities were both
constant, or were known to change in a given ratio by pressure, it would be possible
(theoretically at least) to measure absolute compressibilities by piezometer experiments alone,
without employing a substance whose absolute compressibility is determined by an independent
process. For the additional term in the exact equation makes the coeflicients of ¢ and e
numerically different ; whereas in the approximate equation they are equal, but with opposite
signs, and therefore can give e — e only.

In my experiments described above, a/V rarely exceeds 0:02, so that this correction
amounts to (002 x 26 in 500, or) 5 units in the fourth significant place; and thus just
escapes having to be taken account of. When 4 places are sought at lower pressures than
3 tons, or 3 places at pressures of 4 tons and upwards, it must be taken account of,

APPENDIX E.
Ox THE RELATIONS BETWEEN LIQUID AND VAPOUR.

In connection with the present research a number of side issues have presented them-
selves, some of which come fairly within the scope of the Report. I commence by reprinting
two Notes, read on January 19 and February 2, 1885, to the Royal Society of Edinburgh':—

ON THE NECESSITY FOR A CONDENSATION-NUCLEUS.

“The magnificent researches of Andrews on the isothermals of carbonic acid formed, as
it were, a nucleus in a supersaturated solution, round which an immediate crystallization
started, and has since been rapidly increasing.

“They gave the clue to the explanation of the paradoxical result of Regnault, that
hydrogen is less compressible and other gases more compressible, under moderate pressure,
than Boyle’s Law indicates; and to that of the companion result of Natterer that, at very
high pressures, all gases are less compressible than that law requires, Thus they furnished
the materials for an immense step in connection with the behaviour of fluids above their
critical points.

“But they threw at least an equal amount of light on the liquid-vapour question, i.e. the
behaviour of fluids at temperatures wnder their critical points. In Andrews' experiments
there was a commencement, and a completion, of liquefaction; each at a common definite
pressure, but of course at very different volumes, for each particular temperature.

“In 1871 Professor J. Thomson communicated to the Royal Society a remarkable paper
on the abrupt change from vapour to liquid, or the opposite, indicated by these experiments.
He called special attention to the necessity for a ‘start, as it were, in order that these

! Proc. Roy. Soc. Edin., vol. xmr. pp. 78 and 91, 1885.
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changes might be effected. [It is to this point that the present Note is mainly directed,
but T go on with a brief analysis of Thomson’s work.] He pointed out that there were
numerous experiments proving that water could be heated, under certain conditions, far above
its boiling point without evaporating; and that, probably, steam might be condensed iso-
thermally to supersaturation without condensing. Hence he was led to suggest an isothermal
of continued curvature, instead of the broken line given by Andrews, as representing the
continuous passage of a fluid from the state of vapour to that of liquid; the whole mass
being supposed to be, at each stage of the process, in the same molecular state.

“In Clerk-Maxwell’s 7veatise on Heat, this idea of J. Thomson’s was developed, in con-
nection with a remarkable speculation of W. Thomson', on the pressure of vapour as depending
on the curvature of the liquid surface in contact with it. This completely accounts for the
deposition of vapour when a proper nucleus is present. Maxwell showed that it could also
account for the ‘singing’ of a kettle, and for the growth of the larger drops in a cloud
at the expense of the smaller ones.

“The main objection to J. Thomson’s suggested isothermal curve of transition is that,
as Maxwell points out, it contains a region in which pressure and volume increase or diminish
simultaneously. This necessarily involves instability, inasmuch as, for definite values of pressure
at constant temperature within a certain range in which vapour and liquid can be in equi-
librium, Thomson’s hypothesis leads to three different values of volume: two of which are
stable; but the intermediate one essentially unstable. According to Maxwell, the extremities
of this triple region correspond to pressures, at which, regarded from the view of steady
increase or diminution of pressures, either the vapour condénses suddenly into liquid, or the
liquid suddenly bursts into vapour.

“Tf this were the case, no nucleus would be absolutely requisite for the formation either
of liquid from vapour or of vapour from liquid. All that would be required, in either case,
would be the proper increase or diminution of pressure ;—temperature being kept unaltered.
The latent heat of vapour, which we know to become less as the critical point is gradually
arrived at, would thus be given off in the explosive passage from vapour to liquid. It is
difficult to see, on this theory, how it can be explosively taken in on the sudden passage
from liquid to vapour.

“Aitken’s experiments tend to show, what J. Thomson only speculatively announced, that
possibly vapour may mnot be condensed (in the absence of a nucleus), when compressed
isothermally, even at ranges far beyond the mawximum of pressure indicated in Thomson’s
figures. Hence it would appear that the range of instability is much less than that given
by Thomson’s figures, and may (perhaps) be looked on as a vanishing quantity; the corre-
sponding part of the isothermal being a finite line parallel to the axis of pressures, corre-
sponding to the sudden absorption or giving out of latent heat.”

ON EVAPORATION AND CONDENSATION.

“While T was communicating my Note on the Necessity for a Condensation Nuclews
at the last meeting of the Society, an idea occurred to me which germinated (on my way
home) to such an extent that I sent it off by letter to Professor J, Thomson that same
night,

“J. Thomson’s idea, which I had been discussing, was to preserve, if possible, physical
(as well as geometrical) continuity in the isothermal of the liquid-vapour state, by keeping

1 Proc. Roy. Soc. Edin., vol. vz, p. 63, 1870,
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the whole mass of fluid in one state throughout. He secured geometrical, but not physical,
continuity. For, as Clerk-Maxwell showed, one part of his curve makes pressure and volume
increase simultaneously, a condition essentially unstable, The idea which occurred to me was,
while preserving geometrical continuity, to get rid of the region of physical instability, not
(as I had suggested in my former Note) by retaining Thomson’s proposed finite maximum
and minimum of pressure in the isothermal, while bringing them infinitely close together so
far as volume is concerned, and thus restricting the unstable part of the isothermal to a
finite line parallel to the pressure axis; but, by making both the maximum and minimum infinite.
Geometrical continuity, of course, exists across an asymptote parallel to the axis of pressures ;
so that, from this point of view, there is nothing to object to. On the other hand, there
is essentially physical discontinuity, in the form of an impassable barrier between the
vaporous and liquid states, so long at least as the substance is considered as homogeneous
throughout.

“It appeared to me that here lies the true solution of the difficulty. As we are dealing
with a fluid mass essentially homogeneous throughout, it is clear that we are not concerned
with cases in which there is a molecular surface-film.

“Suppose, then, a fluid mass, somehow maintained at a constant temperature (lower than
its critical point), and so extensive that its boundaries may be regarded as everywhere infinitely
distant, what will be the form of its isothermal in terms of pressure and volume?

“Two prominent experimental facts help us to an answer.

“First. We know that the interior of a mass of liquid mercury can be subjected to
hydrostatic tension of considerable amount without rupture. The isothermal must, in this
case, cross the line of volumes; and the limit of the tension would, in ordinary language,
be called the cohesion of the liquid. T am not aware that this result has been obtained
with water free from air; but possibly the experiment has not been satisfactorily made.
The common experiment in which a rough measure is obtained of the force necessary to
tear a glass plate from the surface of water is vitiated by the instability of the concave
molecular film formed.

“Second. Aitken has asserted, as a conclusion from the results of direct experiment,
that even immensely supersaturated aqueous vapour will not condense without the presence
of a nucleus. This may be a solid body of finite size, a drop of water, or fine dust particles.

“Both of these facts fit perfectly in to the hypothesis, that the isothermal in question
has an asymptote parallel to the axis of pressure; the vapour requiring (in the absence of
a nucleus) practically infinite pressure to reduce if, without change of state or of temperature,
to a certain finite volume; while the liquid, also without change of state or temperature,
may by sufficient hydrostatic tension be made to expand almost to the same limit of volume.

“This limiting volume depends, of course, on the temperature of the isothermal; rising
with it up to the critical point.

“The physical, not geometrical, discontinuity is of course to be attributed to the latent
heat of vaporisation. The study of the adiabatics, as modified by this hypothesis, gives rise
to some curious results.

“It is clear that the experimental realisation of the parts of the here suggested curve
near to the asymptote, on either side, will be a matter of great difficulty for any substance.
But valuable information may perhaps be obtained from the indications of a sensitive thermo-
electric junction immersed in mercury at the top of a column which does not descend in
a barometer tube of considerably more than 30 inches long, when the tube is suddenly
placed at a large angle with the vertical; or from those of a similar junction immersed
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in water, when it has a concave surface of great curvature from which the atmospheric
pressure is removed.

“Nothing of what is said above will necessarily apply when we have vapour and liquid in
presence of one another, or when we consider a small portion of either in the immediate
neighbourhood of another body. For then we are dealing with a state of stress which cannot,
like hydrostatic pressure or tension, be characterized (so far as we know) by a single number.
The stress in these molecular films is probably one of tension in all directions parallel to
the film, and of pressure in a direction perpendicular to it. Thus it is impossible to represent
such a state properly on the ordinary indicator diagram. This question is still further com-
plicated by the possibility that the difference between the internal pressures, in a liquid and
its vapour in thermal equilibrium, may be a very large quantity.”

As soon as I heard of Berthelot’s experiment, I had it successfully repeated in my
laboratory ; and I considered that it afforded very strong confirmation of the hypothesis
advanced in the last preceding extract.

But since I have been led to believe that there is probably truth in Laplace’s state-
ment as to the very great molecular pressure in liquids, I have still further modified the
speculation. I now propose to take away the new asymptote, and make the two branches
of the isothermal join one another by what is practically a part of that asymptote :—thus
making the liquid and the vaporous stages continuous with one another by means of a
portion very nearly straight and parallel to the pressure axis. Somewhere on this will bhe
found one of the points of inflection of the isothermal, the other being at a somewhat
smaller volume, and at a pressure which is moderate for temperatures close to, but under, the
“critical point,” but commences to increase with immense rapidity as the temperature of the
isothermal is lowered. All the isothermals will now present the same general features,
dependent on the existence of two asymptotes and two points of inflection, whether they be
above or below the critical point; but their form will be modified in different senses above
and below it. The portion of the curve which is convex upwards will be nearly horizontal
at the critical point, and will become steeper both above and below it; but pressure and
volume will nowhere increase together. This suggestion, of course, like that in the second
extract above, is essentially confined to the case of a fluid mass which is supposed to have
no boundaries; for their introduction at once raises the complex difficulties connected with
the surface-skin. Thus it will be seen that the conviction that water has large molecular
pressure has led me back to what is very nearly the first of the two hypotheses I proposed.

A practical application of some of the principles just discussed is described in the following
little paper :—

ON AN APPLICATION OF THE ATMOMETER'.

“The Atmometer is merely a hollow ball of unglazed clay, to which a glass tube is
luted. The whole is filled with boiled water, and inverted so that the open end of the
tube stands in a dish of mercury. The water evaporates from the outer surface of the
clay (at a rate depending partly on the temperature, partly on the dryness of the air), and
in consequence the mercury rises in the tube. In recent experiments this rise of mercury
has been carried to nearly 25 inches during dry weather. But it can be carried much
farther by artificially drying the air round the bulb. The curvature of the capillary surfaces

1 Proc. Roy. Soc. Edin., vol. x1ir. pp. 116, 117, 1885.
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in the pores of the clay, which supports such a column of mercury, must be somewhere
about 14,000 (the unit being an inch). These surfaces are therefore, according to the curious
result of Sir W. Thomson (Proc. Roy. Soc. Edin., p. 63, 1870), specially fitted to absorb
moisture. And I found, by inverting over the bulb of the instrument a large beaker lined
with moist filter-paper, that the arrangement can be made extremely sensitive, The mercury
surface is seen to become flattened the moment the beaker is applied, and a few minutes
suffice to give a large descent, provided the section of the tube be small, compared with the
surface of the ball.

“T propose to employ the instrument in this peculiarly sensitive state for the purpose of
estimating the amount of moisture in the air, when there is considerable humidity; but in
its old form when the air is very dry. For this purpose the end of the tube of the
atmometer is to be connected, by a flexible tube, with a ecylindrical glass vessel, both con-
taining mercury. When a determination is to be made in moist air, the cylindrical vessel
is to be lowered till the difference of levels of the mercury amounts to (say) 25 inches, and
the diminution of this difference in a definite time is to be carefully measured, the atmo-
spheric temperature being observed. On the other hand, if the air be dry, the difference
of levels is to be made nil, or even negative, at starting, in order to promote evaporation.
From these data, along with the constant of the instrument (which must be determined for
each clay ball by special experiments), the amount of vapour in the air is readily calculated.
Other modes of observation with this instrument readily suggest themselves, and trials, such

as it is proposed to make at the Ben Nevis Observatory during summer, can alone decide
which should be preferred.”

APPENDIX F.
THE MoLECULAR PRESSURE IN A LiQuib.

LarLace’s result, so far as concerns the question raised in the text, may be stated thus.
If MM'$(r) be the molecular force between masses M, M’ of the liquid, at distance », the
whole attraction on unit mass, at a distance 2 within the surface, is

XL o L = j; o

where p is the density of the liquid. The density is supposed constant, even in the surface-
skin. As we are not concerned with what are commonly called capillary forces, the surface
is supposed to be plane.

The pressure, p, is found from the ordinary hydrostatic equation

dp
= =nX.

Hence the pressure in the interior of the liquid is

Ky f" Xda,
0

where @ is the limit at which the molecular force ceases to be sensible.
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But the expression for X is numerically the work required to carry unit volume of the
liquid from the interior, through the skin, to the surface. It is easy to see that the further
work, required to carry it wholly out of the range of the molecular forces, has precisely the
same value. Thus the whole work required to carry, particle by particle, a cubic inch of
the liquid from the interior to a finite distance from its surface is

2K x 1 cub. in.

This investigation assumes p to be constant throughout the liquid, and thus ignores the
(almost certain) changes of density in the various layers of the surface-skin; so that its
conclusions, even when the question is regarded as a purely statical one, are necessarily
subject to serious modification. With our present knowledge of the nature of heat, we cannot
regard this mode of treatment as in any sense satisfactory.

APPENDIX G.
EquiLiBR1IUM OoF A CoLUMN oF WATER.

Firsr, suppose the temperature to be the same throughout. Let @ be the whole depth,
po the density, on the supposition that gravity does not act. Then, if p be the density at
the distance ¢ from the bottom, when gravity acts, we have by the hydrostatic equation

dp i
g5 Q’Pn]

?

L4y
II+p

if we adopt the rough formula of Section VII. for the compressibility. The integral is
p (1 —4)+ A1 log (I + p) = C —gp,¢.
Now the conditions are—
(1) £=¢& (the altered depth), p=0;
(2) £=0, p=gpa=w suppose.

0 + gpoc
So that E..:a(l—A)«rf;—H log%‘

Po
—a(l-d)+ % log (1)

Since, even in the deepest sea, w/Il is not greater than 1/6, we may expand the logarithm
in ascending powers of this fraction. We thus obtain

O/fw =@ =
fi=a—ad {1—5 (ﬁ —gﬁ,“‘ 3]]1‘“‘ .)}
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The second term is the diminution of depth required. We may write it, with change
of sign, as

A4 ‘ 2= o
11 IPo% (lwﬁ 4 ST ™ &c.).

As the factor A/IT stands for what is called e in the text, the first term is the result
given in the text; and the others show how it is modified by taking account of the diminished
compressibility at the higher pressures,

Of course we might have employed the more exact formulwe, (A) or (B) as the case may
be, but for all practical applications the rough formula suffices.

It might be interesting to study the effect on the mean level of a lake due to the
indirect as well as the direct results of change of temperature. Heating of the water throughout,
if there be a case of the kind, would increase the depth not only in consequence of expansion
(provided the temperature were nowhere under the maximum-density point), but also in con-
sequence of the diminution of compressibility which it produces. Thus there would be an
efficient cause of variation of depth with the seasons, altogether independent of the ordinary
questions of supply from various sources and loss by evaporation.

If the temperature be not constant for all depths, p,, p, and 4 are functions of ¢ Sub-
stituting their values in the hydrostatic equation, we must integrate it and determine the
constant by the same conditions as before.

The condition for stable equilibrium is merely that dp/d¢ shall not be anywhere positive.
Until some definite problem is proposed, no more can be done with the equation.

[29/10/88.—At Dr Murray’s request I have calculated, from the data given in his paper:
“On the Height of the Land, and the Depth of the Ocean” (Scottish Geographical Magazine,
vol. v, pp. 1—41, 1888), that the whole depression of the ocean level, due to compression, is about

116 feet only.

If water ceased to be compressible, the effect would be to submerge some 2,000,000 square miles
of land, about 4 per cent. of the whole.]
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LXII.

OPTICAL NOTES.

[Proceedings of the Royal Society of Edinburgh, 16 January, 1881.]

1. On a Singular Phenomenon produced by some old Window-Panes.

A FIGURE, illustrating the action of a cylindrical lens, which was inserted in a
recent page of these Proceedings, has reminded me of my explanation of a phenomenon
which I have repeatedly seen for more than twenty years in the College. When
sunlight enters my apparatus-room through a vertical chink between the edge of the
blind and the window-frame, the line of light formed on the wall or floor shows a
well-marked Kink. Similar phenomena, though not usually so well marked, are often
gseen in old houses, when the sun shines through the chinks of a Venetian blind.
They are obviously due to inequalities (bull's-eyes) in the glass which was used more
than a generation ago for window-panes. It 1is evident that the focal length of
successive annuli of such a piece of glass, treated as a lens, increases from the central
portion to the circumference, where it becomes infinite. For an approximate study of
its behaviour we may assume that the focal length of an annulus of radius » is
b*/(a — ), where a is the extreme radius, at which the sides of the pane become
parallel. Suppose sunlight, passing through a narrow slit, to fall on such a lens at
a distance e from its centre, and to be received on a screen at a distance ¢ from
the lens. It is easy to see that the polar equation of the illuminated curve on the

screen is (the pole being in the axis of the lens)

p=—g%§g~9(ac—b‘-—cesec€).
This curve can be readily traced by points for various values of the constants. In
fact, if » be the radius vector of a straight line, the vector of any one of these
curves (drawn in the same direction) is proportional to »(4 —r), and the curve can
therefore be constructed from a straight line and a circle. Here the value of 4 is
(ac —b%/c; e, it is a fourth proportional to ¢, @, and the distance of the screen
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from the focus of the central portion of the lens. When 4 is small compared with
the least value of », the curve has a point resembling a cusp, but as A increases
the kink appears. This is easily observed by gradually increasing the distance of the
screen from the lens; and the traced curves present forms which are precisely of the
general character of those observed.

2. On the Nature of the Vibrations wn Common Light.

One of the few really unsatisfactory passages in Airy’s well-known “Tract” on
the Undulatory Theory of Optics is that which discusses the nature of common light.
To explain the production of Newton’s rings in homogeneous light to the number of
several thousands, it is necessary that at least several thousand successive waves
should be almost exactly similar to one another. On the other hand, we cannot
suppose the vibrations (which will in general be elliptic) to be similar to one another
for more than a small fraction of a second; if they were so, we should see colour
phenomena in doubly refracting plates by the aid of an analysing Nicol only.

And, moreover, the nature of the vibration can have no periodic changes of a
kind whose period amounts to a moderate fraction of a second. Nor can it have a
slow progressive change. Either of these would lead to its resolution into rays of
different wave-lengths,  Airy suggests, as consistent with observation, some thousand
waves polarized in one plane followed by a similar number polarized in a plane at
right angles to the first. But no physical reason can be assigned for such an hypothesis.

The difficulty, however, disappears if we consider the question from the modern
statistical point of view, as it is applied for instance in the kinetic theory of gases.
We may consider first a space average taken for the result due to each separate
vibrating particle near the surface of a luminous body. When we remember that,
for homogeneous light, of mean wave-length, a million vibrations occupy only about
one five hundred millionth of a second; it is easy to see that the resultant vibration
at any point may not sensibly vary for a million or so of successive waves, though
the contributions from individual particles may very greatly change. But when we
consider the time average of about a hundred millions of groups of a million waves
each, all entering the eye so as to be simultaneously perceptible,—in consequence of
the duration of visual impressions,—we see that the chances in favour of a deviation
from apparently absolute uniformity are so large that, though possible, such uniformity
is not to be expected for more than a very small fraction of a second. The im-
probability of its occurrence for a single second is of the same nature as that of
the possible, but never realised, momentary occurrence of a cubic inch of the air in
a room filled with oxygen or with nitrogen alone.

[Added; May 1, 1882.—I am indebted to Professor Stokes for a reference to his
paper “On the Composition and Resolution of Streams of Polarized Light from
Different Sources” (Camb. Phil. Trams, 1852), in which the nature of common light
is very fully investigated. I find I was not singular in my ignorance of the contents
of this paper, as the subject has quite recently been proposed as a Prize Question
by a foreign Society.]
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LXIIL

ON A METHOD OF INVESTIGATING EXPERIMENTALLY THE
ABSORPTION OF RADIANT HEAT BY GASES.

(Read by Ser W. Thomson at the B. A. Meeting at Southampton.)

[Nature, October 26, 1882.]

THERE are grave objections, which have been only partially overcome, to almost
all the processes hitherto employed for testing the diathermancy of vapours. These
arise chiefly from condensation on some part of the apparatus. Thus when rock-salt
is used, an absorbent surface-layer may be formed; and, when the pile is used with-
out a plate of salt, the effect of radiant heat may be to cool it (the pile) by the
evaporation of such a surface film. The use of intermittent radiation is liable to
the same objection.

Some time ago it occurred to me that this part of the difficulty might be got
rid of by dispensing with the pile, and measuring the amount of absorption by its
continued effects on the volume and pressure of the gas or vapour itself.

Only preliminary trials have, as yet, been made. They were carried out for me
by Prof. MacGregor and Mr Lindsay. Their object was first to find whether the

H31lVM 470D

method would work well, second (when this was satisfactorily proved) to find the best
form and dimensions for the apparatus.
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The rough apparatus is merely a double cylinder, placed vertically. Cold water
circulates in the jacket, and steam can be blown into the double top. The changes
in the pressure of the gas are shown by a manometer U tube at the bottom, which
contains a liquid which will not absorb the contents, This apparatus was 4 feet long,
with 2 inches internal radius. The results of a number of experiments show that
it should be shorter and much wider. The former idea I was not quite prepared for,
the latter is obvious,

The effects on the manometer are due to five chief causes:—

1. Heating of the upper layer of gas by contact with lid.
2. Cooling ? 3 ) x 2 sides,
3. Heating of more or less of the column by absorption.

4. Cooling of do. by radiation.

5. - £ contact.

(1) and (2) only are present in a perfectly diathermanous gas, and in a perfectly
adiathermanous gas or vapour.

All five are present in a partially diathermanous gas or vapour.

The preliminary experiments show that the manometer effect is only wery slightly
less for dry olefiant gas than for dry air, while moist air shows a markedly smaller
effect than either of the others.

This is conclusive as to the absorption of low radiant heat by aqueous vapour,
but it shows also that the absorption is so small as to take place throughout the
whole column.

Even with the present rude apparatus I hope soon to get a very accurate
determination of the absorbing power of aqueous vapour, by finding in what pro-
portions olefiant gas must be mixed with air to form an absorbing medium equivalent
to saturated air at different temperatures.

I have to acknowledge valuable hints from Prof. Stokes, who, before I told him
the results I had obtained (thus knowing merely the nafure of the experiments)
made something much higher than a guess, though somewhat short of a prediction,
of the truth.

In these preliminary trials no precaution was taken to exclude dust. The results,
therefore, are still liable to a certain amount of doubt, as Mr Aitken’s beautiful
experiments have shown.

The point of the method is that there can be no question of surface-layers.

[Since the above was written, Messrs MacGregor and Lindsay have made an
extended series of experiments with dry and moist air, and with mixtures of dry air
and olefiant gas in different proportions. The cylinder employed was 9 inches in
radius, The results will soon be communicated to the Royal Society of Edinburgh,]



LX1V.] 73

LXIV.

1. ON THE LAWS OF MOTION. PART L

[Proceedings of the Royal Society of Kdinburgh, December 13, 1882.]

THE substance of part at least of this paper was given in 1876 as an evening
lecture to the British Association at its Glasgow meeting. [Anté, No. XXXVIL]

While engaged in writing the article “Mechanics” for the Hncy. Brit, I had to
consider carefully what basis to adopt, and decided that the time had not yet come
in which (at least in a semi-popular article) Newton’s laws of motion could be
modified. The article was therefore based entirely on these laws, with a mere hint
towards the end that in all probability they would soon require essential modification.
It is well, however, that the question of modification should now be considered; and
this should be done, not in a popular essay but, before a scientific society.

The one objection to which, in modern times, that wonderfully complete and
compact system is liable, is that it is expressly founded on the conception of what
is now called “force” as an agent which “compels” a change of the state of rest
or motion of a body. This is part of the first law, and the second law is merely a
definite statement of the amount of change produced by a given force.

(Next comes a digression as to what was Newton’s expression for what we now
mean by the word force, when it is used in the correct sigmification above.)

There can be no doubt that the proper use of the term jforce in modern science
is that which is implied in the statement—Force is whatever changes a body’s state
of rest or motion. This is part of the first law of motion. Thus we see that force
is the English equivalent of Newton's term wvis wmpressa. But it is also manifest
that, on many occasions, but only where his meaning admitted of no doubt, Newton
omitted the word ¢mpressa and used wis alone, in the proper sense of force. In
other cases he omitted the word impressa, as being implied in some other adjective
such as centripeta, gravitans, &c., which he employed to qualify the word wvis. Thus
(Lemma X.) he says:—Spatia, que corpus urgente qudcunque vi finitd describit, &c.

T. 1L 10
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It is needless to multiply examples. But that this is the true state of the case is
made absolutely certain by the following :—

Definitio IV. Vis vmpressa est actio in corpus exercita, ad mutandum ejus statum
vel quiescends wel movendi wniformater in directum.

Contrast this with the various senses in which the word wis is used in the
comment which immediately follows, viz.:—

Constitit h®e vis in actione sold, neque post actionem permanet in corpore.
Perseverat enim corpus in statu omni novo per solam vim inertize. Est autem vis
impressa diversarum originum, ut ex ictu, ex pressione, ex vi centripetd.

These passages are translated by Motte as below :—

“Definition IV. An impressed force is an action ewerted upon a body, in order
to change its state, either of rest, or of moving uniformly forward in a right line.”

“This force consists in the action only, and remains no longer in the body when
the action is over. For a body maintains every new state it acquires, by its wis
wertice only. Impressed forces are of different origins; as from percussion, from
pressure, from centripetal force.”

The difficulty which Motte here makes for himself, and which he escapes from
only by leaving part of the passage in the original Latin, is introduced solely by
his use of the word force as the equivalent of the Latin wis.

If we paraphrase the passage as follows, with attention to Newton's obvious
meaning, this difficulty disappears, or rather does not occur :—

“This kind of vis consists in,” &c. For the “body continues . . . . by the vis
of inertia,” &c. However, we may quote two other passages of Newton bearing
definitely on this point.

Defimatio I11.  Materice vis insita est potentia resistendi, qud corpus unumquodque,
quantum n se est, perseverat in statu suo vel quiescendi vel movendi wniformiter in
directum.

It is perfectly clear that, in this passage, the phrase wis insita is one idea, not
two, and that vis cannot here be translated by force. Yet Motte has

“The ws wnsita, or innate force of matter, is,” &e.

Definitio V. Vis centripeta est, qud corpora versus punctum aliquod, tanquam ad
centrum, undique trahuntur, tmpelluntur, vel utcumque tendunt.

It is obvious that the qualifying term centripeta here includes the idea suggested
by wmpressa, defining in fact the direction of the wis, and therefore implying that its
origin is outside the body.

After what has just been said, no farther comment need be added to show the
absurdity of the terms accelerating force, innate force, impressed force, &e. All of
these have arisen simply from mistranslation. Vis, by itself, is often used for force ;
but wis acceleratriz, vis impressa, wvis insita, and other phrases of the kind, must be
taken as wholes; and, in them, vis does not mean force.

The absurdity of translating the word wis by force comes out still more clearly
when we think of the term wis wva, or living force as it is sometimes called; a
name for kinetic energy, which depends on the unit of length in a different way
from force. It must be looked upon as one of the most extraordinary instances of
Newton's clearness of insight that, at a time when the very terminology of science
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was only as it were shaping itself, he laid down with such wonderful precision a
system absolutely self-consistent.

From the passages just quoted, taken in conjunction with the second law of
motion, we see that (as above stated) in Newton's view—

Force s whatever causes (but not, or tends to cause) a change i a body's state
of rest or motion.

Newton gives no sanction to the so-called statical ideas of force. Every force,
in his view, produces its effect. The effects may be such as to balance or compensate
one another; but there is no balancing of forces.

(Next comes a discussion as to the objectivity or subjectivity of force. An
abstract of this is given in § 288—296 of the article above referred to, and therefore
need not be reproduced here.)

But, just as there can be no doubt that force has no objective existence, so
there can be no doubt that the introduction of this conception enabled Newton to
put his Aaiomata in their exceedingly simple form. And there would be, even now,
no really valid objection to Newton’s system (with all its exquisite simplicity and
convenience) could we only substitute for the words “force” and “action,” &ec., in the
statement of his laws, words which (like rate or gradient, &c.) do not imply objectivity
or causation in the idea expressed. It is not easy to see how such words could be
introduced ; but assuredly they will be required if Newton’s system is to be maintained.
The word stress might, even yet, be introduced for this purpose; though, like force,
it has come to be regarded as something objective. Were this possible, we might
avoid the necessity for any very serious change in the form of Newton’s system. I
intend, on another occasion, to consider this question. How complete Newton's
statement is, is most easily seen by considering the so-called “additions” which have
been made to it.

The second and third laws, together with the scholium to the latter, expressly
include the whole system of “effective forces,” &c. for which I’Alembert even now
receives in many quarters such extraordinarily exaggerated credit. The ¢ reversed
effective force” on a particle revolving uniformly in a circle is nothing but an old
friend—* centrifugal force”” And even this phantom is still of use, wn skilled hands,
in forming the equations for certain cases of motion.

The chief arguments for and against a modern modification of the laws of motion
are therefore as follows-—where we must remember that they refer exclusively to the
elementary teaching of the subject, and have no application to the case of those
who have sufficient knowledge to enable them to avoid the possible dangers of
Newton’s method :—

I. For. Is it wise to teach a student by means of the conception of force, and
then as it were to kick down the scaffolding by telling him there is no such thing?

II. Acainst. Is it wise to give up the use of a system, due to such an
altogether exceptional genius as that of Newton, and one which amply suffices for
all practical purposes, merely because it owes part of its simplicity and compactness
to the introduction of a conception which, though strongly impressed on us by our

muscular sense, corresponds to nothing objective ?
10—2
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Everyone must answer these questions for himself, and his answer will probably
be determined quite as much by his notions of the usefulness of the study of
natural philosophy as by his own idiosyncrasies of thought. To some men physics is
an abomination, to others it is something too trivial for the human intellect to waste
its energies on. With these we do not reason. To others again all its principles
are subjects of intuitive perception. They could have foreseen the nature of the
physical world, and they know that it could not have been otherwise than they
suppose it to be. Many minds find delight in the contemplation of the three kinds
of lever; others in the ingeniously disguised assumptions in Duchayla’s “proof” of
the parallelogram of forces; some, perhaps, even in the wonderful pages of Vis
Inertice Victa! The case of these men is only not more hopeless than that of the
former classes because it is impossible that it could be so.

But those who desire that their scientific code should be, as far as possible,
representative of our real knowledge of objective things, would undoubtedly prefer to
that of Newton a system in which there is not an attempt, however successful, to
gain simplicity by the introduction of subjective impressions and the corresponding
conceptions,

In the present paper simplicity of principle, only, is sought for; and the mathe-
matical methods employed are those which appeared (independent altogether of the
question of their fitness for a beginner) the shortest and most direct. A second part
will be devoted to simplicity of method for elementary teaching.

(1) So far as our modern knowledge goes there are but two objective things
in the physical world—matter and energy. Energy cannot exist except as associated
with matter, and it can be perceived and measured by us only when it is being
transferred, by a “dynamical transaction,” from one portion of matter to another, In
such transferences it is often “transformed”; but no process has ever been devised
or observed by which the quantity, either of matter or energy, has been altered.

(2) Hence the true bases of our subject, so far as we yet know, are—
1. Conservation of matter.
2. Conservation of energy.

3. That property (those properties?) of matter, in virtue of which it is the
necessary vehicle, or as the case may be, the storehouse, of energy.

(3) The third of these alone presents any difficulty. So long as energy is
obviously kinetic, this property is merely our old friend snertia. But the mutual
potential energy of two gravitating masses, two electrified bodies, two currents, or two
magnets, is certainly associated (at least in part, and in some as yet unknown way)
with matter, of a kind not yet subjected to chemical scrutiny, which occupies the
region in which these masses, &c., are situated. And, even when the potential
energy obviously depends on the strain of a portion of ordinary matter, as in
compressed air, a bent spring, a deformed elastic solid, &ec., we can, even now, only
describe 1t as due to “molecular action,” depending on mechanism of a kind as yet
unknown to us, though, in some cases, at least partially guessed at.
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(4) The necessity for the explicit assumption of the third principle, and a hint
at least of the limits within which it must be extended, appear when we consider
the very simplest case of motion, viz, that of a lone particle moving in a region
in which its potential energy is the same at every point. For the conservation of
energy tells us merely that its speed is unaltered. We know, however, that this is
only part of the truth: the welocity is constant. It will be seen later that this has
most important dynamical consequences in various directions.

(The remarkable discussion of this point by Clerk-Maxwell is then referred to, in
which it is virtually shown that, were things otherwise, it would be possible for a
human mind to have knowledge of absolute position and of absolute velocity.)

(5) But Maxwell's reasoning is easily seen to apply equally to any component
of the velocity. Hence, when we come to the case in which the potential energy
depends on the position, the only change in the particle’s motion at any instant is
a change of the speed in the normal to the equipotential surface on which the
particle is at that instant situated. The conservation of energy assigns the amount
of this change, and thus the motion is completely determined. In fact, if 2 be
perpendicular to the equipotential surface, the equation

tm (@ + 4 + 2) + V = const.
av

gives mE = — p ol
for 7 and 7 are independent of 2. Generally, in the more expressive language of
quaternions,

mp=—VV.

In fact, this problem is precisely the same as was that of the motion of a luminous
corpuscle in a non-homogeneous medium, the speed of passing through any point of
the medium being assigned.

(6) It is next shown that the above inertia-condition (that the velocity parallel
to the equipotential surface is the same for two successive elements of the path) at
once leads to a “stationary” value of the sum of the quantities vds for each two
successive elements, and therefore for any finite are, of the path. This is, for a
single particle, ‘the Principle of Least Action, which is thus seen to be a direct
consequence of inertia.

(It is then shown that the results above can be easily extended to a particle
which has two degrees of freedom only.)

But it is necessary to remember that, in these cases, we take a partial view of
the circumstances; for a lone particle cannot strictly be said to have potential
energy, nor can we conceive of a constraint which does not depend upon matter
other than that which is constrained. Hence the true statement of such cases
requires further investigation.

(7) To pass to the case of a system of free particles we require some quasi-
kinematical preliminaries. These are summed up in the following self-evident
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proposition :—If with each particle of a system we associate two vectors, eg., ®,, ®,,
with the mass m,, &ec., we have

SmOD = = (m). O,D, + Zmbe,

where O=0,+0,
(D — q)o + ¢’
and Em@® = 3 (m).0,,

Sm® =2 (m) . D,

so that ®, and @, are the values of ® and ® for the whole mass collected at its
centre of inertia; and 6, ¢, those of the separate particles relative to that centre.

(8) Thus, if ®=P=P,+p be the vector of m, P=O=P=P, + p, its velocity,
we have
ZmPP = = (m). PP, + Zmpp,

the scalar of which is, in a differentiated form, a well-known property of the centre
of inertia. The vector part shows that the sum of the moments of momentum
about any axis is equal to that of the whole mass collected at its centre of inertia,
together with those of the several particles about a parallel axis through the centre
of inertia.

If O=b=P,
we have SmP? =3 (m). P + Smp?,

i.e., the kinetic energy, referred to any point, is equal to that of the mass collected
at its centre of inertia, together with that of the separate particles relative to the

centre of inertia.
If we integrate this expression, multiplied by df, between any limits, we obtain

a similar theorem with regard to the Action of the system.
Such theorems may be multiplied indefinitely.

(9) From those just given, however, if we take them along with 3 above, we
see at once that, provided the particles of the system be all free, while the energy
of each is purely kinetic and independent alike of the configuration of the system

and of its position in space,
1. The centre of inertia has constant velocity.
2. The vector moment of momentum about it is constant.
3. So is that of the system relative to any uniformly moving point.
4. X [muds is obviously a minimum.
(10) The result of (7) points to an independence between two parts of the

motion of a system, e, that relative to the centre of inertia, and that of the
whole mass supposed concentrated at the centre of inertia. Maxwell's reasoning is
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applicable directly to the latter, if the system be self-contained, ie., if it do not
receive energy from, or part with it to, external bodies. Hence we may extend the
axiom 3 to the centre of inertia of any such self-contained system, and, as will
presently be shown, also to the motion of the system relative to its centre of inertia.
This, though not JSormally identical with Newton’s Lex IIL, leads, as we shall see,
to exactly the same consequences.

(11) If, for a moment, we confine our attention to a free system consisting of
two particles only, we have

My + Mopy = (M, + m,) a,
or T T g e O e ey (1).

This must be consistent with the conservation of energy, which gives

FOmp M) =F (T (P =) veverrrerrrerrerreenenn @)

since the potential energy must depend (so far as position goes) on the distance
between the particles only. Comparing (1) and (2) we see that we may treat (2)
by partial differentiation, so far as the coordinates of m, and m, are separately
concerned. For we thus obtain

mpy=V,, . f=f" U(p — py),
mopy =V, f=—f". U(py = po).

Each of these, again, is separately consistent with the equation in § 5 for a
lone particle. Hence, again, the integral [(mw,ds, + mq.ds,) has a stationary value.

Hence also, whatever be the origin, provided its velocity be constant,

EmVpp = 0.

Thus, even when there is a transformation of the energy of the system, the
results of § 9 still hold good. And it is to be observed that if one of the masses,
say m,, is enormously greater than the other, the equation

map; + map, =0

shows that g, is excessively small, and the visible change of motion is confined to
the smaller mass. Carrying this to the limit, we have the case of motion about a
(so-called) “fixed centre.” In such a case it is clear that though the momenta of the
two masses relative to their centre of inertia are equal and opposite, the kinetic
energy of the greater mass vanishes in comparison with that of the smaller.

These results are then extended to any self-contained system of free particles,
and the principle of Varying Action follows at once. It is thus seen to be a general
expression of the three propositions of § 2 above.

(12) So far as we have yet gone, nothing has been said as to how the mutual
potential energy of two particles depends on their distance apart. If we suppose it
to be enormously increased by a very small increase of distance, we have practically



80 ON THE LAWS OF MOTION. [LxTV.

the case of two particles connected by an inextensible string—as a chain-shot. But
from this point of view such cases, like those of connection by an extensible string,
fall under the previous categories.

The case of impact of two particles falls under the same rules, so far as motion
of the centre of inertia, and moment of momentum about that centre, are concerned.
The conservation of energy, in such cases, requires the consideration of the energy
spent in permanently disfiguring the impinging bodies, setting them into internal
vibration, or heating them. But the first and third of these, at least, are beyond the
scope of abstract dynamics.

(13) The same may be said of constraint by a curve or surface, and of loss of
energy by friction or resistance of a medium. Thus a constraining curve or surface
must be looked upon (like all physical bodies) as deformable, but, if necessary, such
that a very small deformation corresponds to a very great expenditure of energy.

(14) To deal with communications of energy from bodies outside the system, all
we need do is to include them in the system. Treat as before the whole system
thus increased, and then consider only the motion of the original parts of the
system. This method applies with perfect generality whether the external masses be
themselves free, constrained, or resisted.

(15) Another method of applying the same principles is then given. Starting
from the definition dA =ZmSpdp, the kinematical properties of A are developed. Then,
by the help of § 2, these are exhibited in their physical translations.

(16) The paper concludes with a brief comparison of the fundamental principles
of the science as they have been introduced by Newton, Lagrange, Hamilton, Peirce,
Kirchhoff, and Clerk-Maxwell, respectively; and also as they appear in the unique
Vortex-system of Thomson.
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LXYV.

JOHANN BENEDICT LISTING.

[Nature, February 1, 1883.]

ONE of the few remaining links that still continued to connect our time with
that in which Gauss had made Gottingen one of the chief intellectual centres of the
civilised world has just been broken by the death of Listing.

If a man's services to science were to be judged by the mere number of his
published papers, Listing would not stand very high. He published little, and (it
would seem) was even indebted to another for the publication of the discovery by
which he is most widely known. This is what is called, in Physiological Optics,
Listing's Law. Stripped of mere technicalities, the law asserts that if a person whose
head remains fixed turns his eyes from an object situated directly in front of the
face to another, the final position of each eye-ball is such as would have been pro-
duced by rotation round an axis perpendicular alike to the ray by which the first
object was seen and to that by which the second is seen. “Let us call that line
in the retina, upon which the visible horizon is portrayed when we look, with upright
head, straight at the visible horizon, the horizon of the retina. Now any ordinary
person would naturally suppose that if we, keeping our head in an upright position,
turn our eyes so as to look, say, up and to the right, the horizon of the retina
would remain parallel to the real horizon. This is, however, not so. If we turn our
eyes straight up or straight down, straight to the right or straight to the left, it
is so, but not if we look up or down, and also to the right or to the left. In
these cases there is a certain amount of what Helmholtz calls ‘wheel-turning’ (Rad-
drehung) of the eye, by which the horizon of the retina is tilted so as to make
an angle with the real horizon. The relation of this ‘wheel-turning’ to the above-
described motion of the optic axis is expressed by Listing’s law, in a perfectly simple
way, a way so simple that it is only by going back to what we might have thought

T. 1L, 11
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nature should have done, and from that point of view, looking at what the eye really
does, and considering the complexity of the problem, that we see the ingenuity of
Listing’s law, which is simple in the extreme, and seems to agree with fact quite
exactly, except in the case of very short-sighted eyes.” The physiologists of the time,
unable to make out these things for themselves, welcomed the assistance of the
mathematician. And so it has always been in Germany. Few are entirely ignorant
of the immense accessions which physical science owes to Helmholtz. Yet few are
aware that he became a mathematician in order that he might be able to carry out
properly his physiological researches. What a pregnant comment on the conduct of
those “British geologists” who, not many years ago, treated with outspoken contempt
Thomson’s thermodynamic investigations into the admissible lengths of geological periods!

Passing over about a dozen short notes on various subjects (published chiefly in
the Gottingen Nachrichten), we come to the two masterpieces, on which (unless, as
we hope may prove to be the case, he have left much unpublished matter) Listing’s
fame must chiefly rest. They seem scarcely to have been noticed in this country,
until attention was called to their contents by Clerk-Maxwell.

The first of these appeared in 1847, with the fitle Vorstudien zur Topologie. 1t
formed part of a series, which unfortunately extended to only two volumes, called
Gittinger Studien. The term Topology was introduced by Listing to distinguish what
may be called qualitative geometry from the ordinary geometry in which quantitative
relations chiefly are treated. The subject of knots furnishes a typical example of these
merely qualitative relations. For, once a knot is made on a cord, and the free ends
tied together, its nature remains unchangeable, so long as the continuity of the string
is maintained, and is therefore totally independent of the actual or relative dimensions
and form of any of its parts. Similarly when two endless cords are linked together.
It seems not unlikely, though we can find no proof of it, that Listing was led to
such researches by the advice or example of Gauss himself; for Gauss, so long ago
as 1833, pointed out their connection with his favourite electromagnetic inquiries.

After a short introductory historical notice, which shows that next to nothing
had then been done in his subject, Listing takes up the very interesting questions
of Inversion (Umkehrung) and Perversion (Verkehrung) of a geometrical figure, with
specially valuable applications to images as formed by various optical instruments.
We cannot enter into details, but we paraphrase one of his examples, which is par-
ticularly instructive:—

“A man on the opposite bank of a quiet lake appears in the watery mirror perverted,
while in an astronomical telescope he appears inverted.  Although both images show the
head down and the feet up, it is the dioptric one only which:—if we could examine it:—
would, like the original, show the heart on the left side; for the catoptric image would
show it on the right side. In type there is a difference between inverted letters and
perverted ones. Thus the Roman V becomes, by inversion, the Greek A; the Roman R
perverted becomes the Russian §[; the Roman L, perverted and inverted, becomes the
Greek I'. Compositors read perverted type without difficulty :—many newspaper readers in
England can read inverted type. * * * The numerals on the scale of Gauss’ Magnetometer
must, in order to appear to the observer in their natural position, be both perverted and
inverted, in consequence of the perversion by reflection and the inversion by the telescope.”
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Listing next takes up helices of various kinds, and discusses the question as to
which kind of serews should be called right-handed. His examples are chiefly taken
from vegetable spirals, such as those of the tendrils of the convolvulus, the hop, the
vine, &c., some from fir-cones, some from snail-shells, others from the “snail” in clock-
work. He points out in great detail the confusion which has been introdueced in
botanical works by the want of a common nomenclature, and finally proposes to
found such a nomenclature on the forms of the Greek & and A.

The consideration of double-threaded screws, twisted bundles of fibres, &c., leads
to the general theory of paradromic winding. From this follow the properties of a
large class of knots which form “clear coils” A special example of these, given by
Listing for threads, is the well-known juggler's trick of slitting a ring-formed band up
the middle, through its whole length, so that instead of separating into two parts, it
remains in a continuous ring. For this purpose it is only necessary to give a strip
of paper one half-twist before pasting the ends together. If three half-twists be given,
the paper still remains a continuous band after slitting, but it cannot be opened into
a ring, it is in fact a trefoil knot. This remark of Listing’s forms the sole basis of
a work which recently had a large sale in Vienna:—showing how, in emulation of
the celebrated Slade, to tie an irreducible knot on an endless string !

Listing next gives a few examples of the application of his method to knots.
It is greatly to be regretted that this part of his paper is so very brief; and that
the opportunity to which he deferred farther development seems never to have arrived.
The methods he has given are, as is expressly stated by himself, only of limited
application. There seems to be little doubt, however, that he was the first o make
any really successful attempt to overcome even the preliminary difficulties of this
unique and exceedingly perplexing subject.

The paper next gives examples of the curious problem:—Given a figure consisting
of lines, what is the smallest number of continuous strokes of the pen by which it
can be described, no part of a line being gone over more than once? Thus, for
instance, the lines bounding the 64 squares of a chess-board can be drawn at 14
separate pen strokes. The solution of all such questions depends at once on the
enumeration of the points of the complex figure at which an odd number of lines
meet.

Then we have the question of the “area” of the projection of a knofted curve
on a plane; that of the number of interlinkings of the orbits of the asteroids; and
finally some remarks on hemihedry in crystals. This paper, which is throughout
elementary, deserves careful translation into English very much more than do many
German writings on which that distinction has been conferred.

We have left little space to notice Listing's greatest work, Der Census rduwmlicher
Complese (Gottingen Abhandlungen, 1861). This is the less to be regretted, because,
as a whole, it is far too profound to be made popular; and, besides, a fair idea of
the nature of its contents can be obtained from the introductory Chapter of Maxwell’s
great work on Electricity. For there the importance of Listing’s Cyclosis, Periphractic
Regions, &c., is fully recognised.

One point, however, which Maxwell did not require, we may briefly mention.

In most works on Trigonometry there is given what is called Huler's: Theorem

11—2
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about polyhedra :—viz. that if S be the number of solid angles of a polyhedron (not
self-cutting), F' the number of its faces, and £ the number of its edges, then

S+F=FE+2.

The puzzle with us, when we were beginning mathematics, used to be “What is this
mysterious 2, and how came it into the formula?” Listing shows that this is a mere
case of a much more general theorem in which corners, edges, faces, and regions of
space, have a homogeneous numerical relation. Thus the mysterious 2, in Euler's
formula, belongs to the two regions of space:—the one enclosed by the polyhedron,
the other (the Amplezwm, as Listing calls it) being the rest of infinite space. The
reader, who wishes to have an elementary notion of the higher forms of problems
treated by Listing, is advised to investigate the modification which Euler’s formula
would undergo if the polyhedron were (on the whole) ring-shaped:—as, for instance,
an anchor-ring, or a plane slice of a thick cylindrical tube.
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LXVI.

LISTING'S TOPOLOGIE.

INTRODUCTORY ADDRESS TO THE EDINBURGH MATHEMATICAL SOCIETY,
Novemser 9, 1883,

[Philosophical Magazine, January, 1884.]

SoME of you may have been puzzled by the advertised title of this Address. But
certainly not more puzzled than I was while seeking a title for it.

I intend to speak (necessarily from a very elementary point of view) of those
space-relations which are independent of measure, though not always of number, and
of which perhaps the very best instance is afforded by the various convolutions of a
knot on an endless string or wire. For, once we have tied a knot, of whatever com-
plexity, on a string and have joined the free ends of the string together, we have an
arrangement which, however its apparent form may be altered (as by teazing out,
tightening, twisting, or flyping of individual parts), retains, until the string is again cut,
certain perfectly definite and characteristic properties altogether independent of the
relative lengths of its various convolutions.

Another excellent example is supplied by Crum Brown’s chemical Graphic Formule.
These, of course, do not pretend to represent the actual positions of the constituents of
a compound molecule, but merely their relative connection.

From this point of view all figures, however distorted by projection &c., are con-
sidered to be unchanged. We deal with grouping (as in a quincunz), with motion by
starts (as in the chess-knight's move), with the necessary relation among numbers of
intersections, of areas, and of bounding lines in a plane figure; or among the numbers
of corners, edges, faces, and volumes of a complex solid figure, &ec.

For this branch of science there is at present no definitely recognized title except
that suggested by Listing, which I have therefore been obliged to adopt. Geometrie
der Lage has now come, like the G'éométrie de Position of Carnot, to mean something
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very different from our present subject; and the Geometria sitids of Leibnitz, though
intended (as Listing shows) to have specially designated it, turned out, in its inventor's
hands, to be almost unconnected with it. The subject is one of very great importance,
and has been recognized as such by many of the greatest investigators, including Gauss
and others; but each, before and after Listing’s time, has made his separate contri-
butions to it without any attempt at establishing a connected account of it as an
independent branch of science.

It is time that a distinctive and unobjectionable name were found for it; and
once that is secured, there will soon be a crop of Treatises. What is wanted is an
erudite, not necessarily a very original, mathematician. The materials already to hand
are very numerous. But it is not easy (in English at all events) to find a name
for it without coining some altogether new word from Latin or Greek roots. Topology
has a perfectly definite meaning of its own, altogether unconnected with our subject.
Position, with our mathematicians at least, has come to imply measure. Situation is
not as yet so definitely associated with measure; for we can speak of a situation to
right or left of an object without inquiring how far off. So that till a better term
is devised, we may call our subject, in our own language, the Science (not the Geometry,
for that implies measure) of Situation.

Listing, to whom we owe the first rapid and elementary, though highly suggestive,
sketch of this science, as well as a developed investigation of one important branch
of i, was In many respects a remarkable man. It is to be hoped that much may
be recovered from his posthumous papers; for there can be little doubt that in con-
sequence of his disinclination to publish (a disinclination so strong that his best-known
discovery was actually published for him by another), what we know of his work is
a mere fragment of the results of his long and active life.

In what follows I shall not confine my illustrations to those given by Listing,
though 1 shall use them freely; but I shall also introduce such as have more
prominently forced themselves on my own mind in connection mainly with pure physical
subjects. It is nearly a quarter of a century since I ceased to be a Professor of
Mathematics; and the branches of that great science which I have since cultivated
are especially those which have immediate bearing on Physics. But the subject before
us is so extensive that, even with this restriction, there would be ample material, in
my own reading, for a whole series of strictly elementary lectures.

I ought not to omit to say, before proceeding to our business, that it is by no
means creditable to British science to find that Listing’s papers on this subject—the
Vorstudien zur Topologie (Giittinger Studien, 1847), and Der Census rdumlicher Complexe
(Gottingen Abhandlungen, 1861)—have not yet been rescued from their most undeserved
obscurity, and published in an English dress, especially when so much that is com-
paratively worthless, or at least not so worthy, has already secured these honours. I was
altogether ignorant of the existence of the Vorstudien till it was pointed out to me
by Clerk-Maxwell, after I had sent him one of my earlier papers on Knots; and
I had to seek, in the Cambridge University Library, what was perhaps the only then
accessible copy.

(1) Down and Up are at once given us by gravity. They are defined as the
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direction in which a stone falls, or in which a plummet hangs, and its reverse. Kven
below-decks, when the vessel is lying over under a steady breeze, and we “have our
sea-legs on,” we instinctively keep our bodies vertical, without any thought of setting
ourselves perpendicular to the cabin-floor. And this definition holds in every region
of space where the earth’s attraction is the paramount force. In an imaginary cavity
at the earth’s centre the terms would cease to have any meaning.

East, in the sense of “Orient” is the quarter in which the sun rises; and this
distinction is correct all over the earth except at the poles, where it has no meaning.
But if we were to define South as the region in which the sun is seen at midday,
our definition would be always wrong if we were placed beyond the tropic of Capricorn,
and at particular seasons even if we were merely beyond that of Cancer. Still there
is a certain consensus of opinion which enables all to understand what is meant by South
without the need of any formal definition.

But the distinction between Right and Left is still more difficult to define. We
must employ some such artifice as “A man’s right side is that which is turned east-
wards, when he lies on his face with his head to the north.” For, in the lapse of
ages of development, one may perhaps be right in saying, with Molitre’s physician,
“Nous avons changé tout cela”; and men’s hearts may have migrated by degrees to the
other side of their bodies, as does one of the eyes of a growing flounder. Or some hitherto
unsuspected superiority of left-handed men may lead to their sole survival; and then
the definition of the right hand, as that which the majority of men habitually employ
most often, would be false.

I will not speak further of these things, which I have introduced merely to show
how difficult it sometimes is to formulate precisely in words what every one in his
senses knows perfectly well; and thus to prepare you to expect difficulties of a higher
order, even in the very elements of matters not much more recondite.

(2) But there is a very simple method of turning a man’s right hand into his
left, and wice versd, and of shifting his heart to the right-hand side, without waiting
for the (problematical) results of untold ages of development or evolution. We have
only to look at him with the assistance of a plane mirror or looking-glass, and these
extraordinary transformations are instantly effected. Behind the looking-glass the world
and every object in it are perverted (verkehrt, as Listing calls it). Seen through an
astronomical telescope, everything is tnverted merely (ungekehrt). Particular cases of this
distinetion, which is of very considerable importance, were of course known to the old
geometers, For two halves of a circle are congruent; one semicircle has only to be
made to rotate through two right angles in its own plane to be superposable on the
other. But how about the halves of an isosceles triangle formed by the bisector of
the angle between the equal sides? They are equal in every respect except congruency ;
one has to be twrned over before it can be exactly superposed on the other.

Listing gives many examples of this distinction, of which the following is the
simplest :—

Inversion :—(English) V and (Greek) A.
Perversion :—(English) R and (Russian) i.
Inversion and perversion:—(English) L and (Greek) T
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He also gives an elaborate discussion of the different relative situations of two
dice whose edges are parallel, taking account of the points on the various sides.

When we flype a glove (as in taking it off when very wet, or as we skin a hare),
we perform an operation which (not describable in English by any shorter phrase than
“turning outside in”) changes its character from a right-hand glove to a left. A
pair of trousers or a so-called reversible water-proof coat is, after this operation has
been performed, still a pair of trousers or a coat, but the legs or arms are inter-
changed ; unless the garments, like those of “Paddius & Corko,” are buttoned behind®.

(3) The germ of the whole of this part of the subject lies in the two ways in
which we can choose the three rectangular axes of @, y, z; and is intimately con-
nected with the kinematical theory of rotation of a solid.

Thus we can make the body rotate through two right angles about one axis, so
that each of the other two is inverted. Such an operation does mof change their relative
situation.

But to invert one only, or all three, of the axes requires that the body should
(as it were) be pulled through itself, a process perfectly conceivable from the
kinematical, but not from the physical, point of view. By this process the relative
situation of the axes is changed.

When we think of the rotation about the axis of @ which shall bring Oy where
Oz was, we see that it must be of opposite character in these two cases. And it
is a mere matter of convention which of the two systems we shall choose as our
normal or positive one.

That which seems of late to have become the more usual is that in which a
quadrantal rotation about # (which may be any ome of the three) shall change Oy
mto the former Oz (ie. in the cyclical order @, y, z), when it is applied in the
sense in which the earth turns about the northern end of its polar axis. Thus we
may represent the three axes, in cyclical order, by a northward, an upward, and an
eastward line. So that we change any one into its cyclical successor by seizing the
positive end of the third, and, as it were, unscrewing through a quadrant®.

The hands of a watch, looked at from the side on which the face is situated,
thus move round in the negative direction; but if we could see through the watch,
they would” appear to move round in the positive direction. This universally employed
construction arises probably from watch-dials having been originally made to behave
as much as possible like sun-dials, on which the hours follow the apparent daily
course of the sun, te. the opposite direction to that of the earth’s rotation about
its axis.

(4) This leads us into another very important elementary branch of our subject,

! When a Treatise comes to be written (in English) on this science, great care will have to be taken
in exactly defining the senses in which such words as inversion, reversion, perversion, &e. are to be employed.
There is much danger of confusion unless authoritative definitions be given once for all, and not too late.

? These relations, and many which follow, were illustrated by models, not by diagrams; and the reader
who wishes fully to comprehend them will find no reason to grudge the little trouble involved in constructing
such models for himself.
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one in which Listing (it is to be feared) introduced complication rather than
simplification, by his endeavours to extricate the botanists from the frightful chaos
in which they had involved themselves by their irreconcilable descriptions of vegetable
spirals. [He devotes a good many pages to showing how great was this confusion.]

When we compare the tendrils of a hop with those of a vine, we see that
while they both grow upwards, as in coiling themselves round a vertical pole, the
end of the hop tendril goes round with the sun (secundum solem), that of the vine
tendril against the sun (contra solem).

Thus the vine tendril forms an ordinary or (as we call it) right-handed screw,
the hop tendril a left-handed screw.

Now, if a point move in a circle in the plane of yz in the positive direction,
and if the circle itself move in the direction of @ positive, the resultant path of
the point will be a vine-, or right-handed screw. But if the circle’s motion as a
whole, or the motion of the point in the circle, be reversed, we have a left-handed
screw ; while if both be reversed, it remains right-handed. Every one knows the
combination of the rotatory and translatory motions involved in the use of an
ordinary corkscrew; but there are comparatively few who know that a screw is the
same at either end—that it has, in fact, what is called dipolar symmetry.

With a view to assist the botanists, Listing introduced a fancied resemblance
between the threads of the two kinds of (double-threaded) screws and the Greek
letters A and &, for the latter of which he also proposed the long [ used as a sign
of integration; thus AMAN and 8888, or [[f[.

The first, which is our vine- or right-handed screw, he calls from his point of
view (which is taken in the axis of the screw) laeotrop, the other dexiotrop. He
also proposes to describe them as lumbda- or delta-Windungen. But it is clear that
all this “makes confusion worse confounded.” Every one knows an ordinary screw.
It is right-handed or positive. Hence he can name, at a glance, any vegetable or
other helix.

(5) A symmetrical solid of revolution, an ellipsoid for instance (whether prolate
or oblate), has, if at rest, dipolar symmetry. But if it rotate about its axis, we can at
once distinguish one end of the axis from the other, and there is dipolar asymmetry.

This distinction is dynamical as well as kinematical, as every one knows who is
conversant with gyroscopes or gyrostats.

A flat spiral spring, such as a watch- or clock-spring, or the gong of an
American clock, if the inner coils be pulled out to one side, becomes a right-handed
screw ; if to the other, a left-handed screw. In either case it retains the dipolar
symmetry which it had at first, while plane.

But when we pass an electric current round a circle of wire, we at once give
1t dipolar asymmetry. The current appears, from the one side, to be going round
in the positive direction; from the other, in the negative. This is, in fact, the point
of Amptre’s explanation of magnetism.

A straight wire heated at one end has dipolar asymmetry, not only because of
the different temperatures of its ends, but because of the differences of their electric
potential (due to the “Thomson effect ”).

i 8 12
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The same is generally true of every vector (or directed) quantity, such as a
velocity, a force, a flux, an axis of rotation, &c.

(6) An excellent example of our science is furnished by the Quincunw, which is
the basis of the subject of Phyllotaxis in botany, as well as of the arrangement of
scales on a fish.

A quincunx (from the scientific point of view) is merely the system of points
of intersection of two series of equidistant parallel lines in the same plane. By
a simple shear parallel to one of the two series of lines, combined (if necessary)
with mere uniform extensions or contractions along either or both series, any one
quincunx can be changed into any other. Hence the problems connected with the
elements of the subject are very simple; for it follows from the above statements
that any quincunx can be reduced to square order. The botanist who studies the
arrangement of buds or leaf-stalks on a stem, or of the scales on a fir-cone, seeks
the fundamental spiral, as he calls it, that on which all the buds or scales lie. And
he then fully characterizes each particular arrangement by specifying whether this
spiral is a right- or left-handed screw, and what is its divergence. The divergence
is the angle (taken as never greater than =) of rotation about the axis of the
fundamental spiral from one bud or scale to the next.

(7) It is clear that if the stem or cone (supposed cylindrical) were inked and
rolled on a sheet of paper, a quincunx (Plate IIL fig. 1) would be traced, consisting
of continuously repeated (but, of course, perverted) impressions of the whole surface.
Hence if A, A,, be successive prints of the same scale, B a scale which can be
reached from 4 by a right-handed spiral, AB, of m steps, or by a left-handed
spiral, A,B, of n steps, these two spirals being so chosen that all the scales lie on
n spirals parallel to AB and also on m spirals parallel to 4,B, we shall find a
scale of the fundamental spiral by seeking the scale nearest to AA, within the
space ABA,.

Here continued fractions perforce come in. Let u/v be the last convergent to
mfn. Then, if it be greater than m/n, count u leaves or scales from A along AB,
and thence » leaves or scales parallel to BA,, and we arrive at the required leaf or
scale. If the last convergent be less than m/n, count » leaves along A,B, and
thence p parallel to BA. If the leaf, @, so found in either case, be nearer to A
than to 4,, the fundamental spiral (as printed, ie. perverted) is right-handed ; and
vice versd. Thus the first criterion is settled.

To find the divergence, take the case of w/v greater than m/n; and a, so found,
nearer to A than to 4,. Draw ac perpendicular to 44,, and let the spirals through
a, parallel to B4 and BA, respectively, cut A4, in d and e. Then the divergence
is 2wdc/AA,. This is obviously greater than 27wAd/AA, (ie. 27mv/n), and less than
2mAe[AA, (ie. 2mu/m); and can be altered by shearing the diagram parallel to A4,,
or (what comes to the same thing) twisting the stem or cone. To find its exact
value, draw through B a line perpendicular to A4, (ie. parallel to the axis of the
stem or cone), and let O, the first leaf or scale it meets, be reached from B by r
steps along BA, followed by s steps parallel to BA4,. Then the divergence is easily
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seen to be 2w (us +wr)/(ms+nr); and we have the complete description of the object,
so far as our. science goes.

In the figure, which is taken from an ordinary cone of Pinus pinaster, we have
m=5, n=8; whence u=2 »=3  Also r=38, s=2; and the fundamental spiral
(perverted) is therefore right-handed, with divergence 2713/34.

Should m and n have a common divisor p, it is easily seen that the leaves
are arranged in whorls; and, instead of one fundamental spiral, there is a group of
p such spirals, forming a multiple-threaded screw. Each is to be treated by a process
similar to that above.

(8) The last statement hints at a subject treated by Listing, which he calls
paradromic winding. Some of his results are very curious and instructive.

Take a long narrow tape or strip of paper. Give it any number, m, of half-
twists, then bend it round and paste its ends together.

If m be zero, or any other even number, the two-sided surface thus formed has
two edges, which are paradromic. If the strip be now slit up midway between the
edges, it will be split into two. These have each m/2 full twists, like the original,
and (except when there is no twist, when of course the two can be separated) are
m(2 times linked together.

But if m be odd, there is but one surface and one edge; so that we may draw
a line on the paper from any point of the original front of the strip to any point
of the back, without crossing the edge. Hence, when the strip is slit up midway, it
remains one, but with m jfull twists, and (if m > 1) it is knotted. It becomes, in
fact, as its single edge was before slitting, a paradromic knot, a double clear coil
with m crossings.

[This simple result of Listing’s was the sole basis of an elaborate pamphlet
which a few years ago had an extensive sale in Vienna; its object being to show
how to perform (without the usual conjuror’s or spiritualist’s deception) the celebrated
trick of tying a knot on an endless cord.]

The study of the one-sided autotomic surface which is generated by increasing
indefinitely the breadth of the paper band, in cases where m is odd, is highly
interesting and instructive. But we must get on.

(9) I may merely mention, in passing, as instances of our subject, the whole
question of the Integral Curvature of a closed plane curve; with allied questions such
as “In an assigned walk through the streets of Edinburgh, how often has one
rotated relatively to some prominent object, such as St Giles’ (supposed within the
path) or Arthur's Seat (supposed external to it)?” We may vary the question by
supposing that he walks so as always to turn his face to a particular object, and
then inquire how often he has turned about his own axis. But here we tread on
Jellinger Symonds’ ground, the non-rotation of the moon about her axis!

But the subject of the area of an autotomic plane curve is interesting. It is one
of Listing’s examples. De Morgan, W. Thomson, and others in this country have also
developed it as a supposed new subject. But its main principles (as Muir has shown
in Phil. Mag. June, 1873) were given by Meister 113 years ago. It is now so well
known that T need not dilate upon it.

12—2
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(10) A curious problem, which my colleague Chrystal recently mentioned to me,
appears to be capable of adaptation as a good example of our subject. It was to
this effect :—

Draw the circle of least area which includes four given points in one plane.

In this form it is a question of ordinary geometry. But we may modify it as
follows :—

Given three points in a plane; divide the whole surfuce into regions such that
wherever in any one of those regions a fourth point be chosen, the rule for construct-
wng the least circle surrounding the four shall be the same.

There are two distinct cases (with a transition case which may be referred to
either), according as the given points A4, B, O (suppose) form an acute- or an
obtuse-angled triangle.

() When ABC is acute-angled (fig. 2). Draw from the ends of each side
perpendiculars towards the quarter where the triangle lies, and produce each of them
indefinitely from the point in which it again intersects the circumsecribing ecircle.

The circle ABC is itself the required one, so long as D (the fourth point) lies
within it.

If D lie between perpendiculars drawn (as above) from the ends of a side, as
AB, then ABD is the required circle.

If it lie in any other region, the required circle has D for one extremity of a
diameter, and the most distant of 4, B, C for the other.

(8) When there is an obtuse angle, at C say (fig. 3). Make the same con-
struction as before, but, in addition, deseribe the circle whose diameter is AB. All
is as before, except that AB is the circle required, if D lie within it; and that if
D lie within the middle portion of the larger of the two lunes formed the required
circle is ABD.

[In figs. 2, 3, 4, which refer to these two cases in order, and to the intermediate
case in which the triangle is right-angled at €, each region is denoted by three or
by two letters. When there are three, the meaning is that the required circle passes
through the corresponding points; when there are but two, these are the ends of
a diameter. The separate regions are, throughout, bounded by full lines; the dotted
lines merely indicate constructions.]

(11) A very celebrated question, directly connected with our subject, is to make
a Knight (at chess) move to each square on the board once only till it returns to
its original position. From the time of Kuler onwards numerous solutions have been
given. To these I need not refer further.

A much simpler question is the motion of a Rook, and to this the lately
popular American “15-puzzle” is easily reduced. TFor any closed path of a rook
contains an even number of squares, since it must pass from white to black alternately.
[This furnishes a good instance of the extreme simplicity which often characterizes
the solutions of questions in our subject which, at first sight, appear formidable.]
And in the American puzzle every piece necessarily moves like a rook. Hence if an

R L
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even. number of interchanges of pieces will give the required result, the puzzle can
be solved; if not, the arrangement is irreducible.

(12) A few weeks ago, in a railway-train, I saw the following problem proposed :—
Place four sovereigns and four shillings in close alternate order in a line. Required,
in four moves, each of two contiguous pieces (without altering the relative position
of the two), to form a continuous line of four sovereigns followed by four shillings.
Let sovereigns be represented by the letter B, shillings by A.

One solution is as follows :—

Before starting:— . A B A BABAB

1st move ......... B4 4B 54, B
o oA A 4 A4BE
- Lo R T S B4 44 4588
o SRR e BBBBAAAA

If we suppose the pieces to be originally arranged in circular order, with two
contiguous blank spaces, the law of this process is obvious. Operate always with the
penultimate and antepenultimate, the gap being looked on as the end for the time
being. With this hint it is easy to generalize, so as to get the nature of the
solution of the corresponding problem in any particular case, whatever be the number
of coins. It is also interesting to vary the problem by making it a condition that
the two coins to be moved at any instant shall first be made to change places.

(13) Another illustration, commented on by Listing, but since developed from a
different point of view in a quite unexpected direction, was originated by a very
simple question propounded by Clausen in the Astronomische Nachrichten (No. 494).
In its gemeral form it is merely the question, “What is the smallest number of
pen-strokes with which a given figure, consisting of lines only, can be traced?” No
line is to be gone over twice, and every time the pen has to be lifted counts one.

The obvious solution is:—Count the number of points in the figure at each of
which an odd number of lines meet. There must always be an even number of such
(zero included). Half of this number is the number of necessary separate strokes
(except in the zero case, when the number of course must be unity). Thus the
boundaries of the squares of a chess-board can be traced at 14 separate pen-strokes;
the usual figure for Euclid 1. 47 at 4 pen-strokes; and fig. 5 at one.

(14) But, if 2n points in a plane be joined by 8n lines, no two of which
intersect, (i.e. so that every point is a terminal of 3 different lines), the figure requires
n separate pen-strokes. It has been shown that in this case (unless the points be
divided into two groups, between which there is but one connecting line, fig. 7) the
3n lines may be divided into 3 groups of n each, such that one of each group ends
at each of the 2n points. See fig. 6, in which the lines are distinguished as a, B,
or . Also note that aBaB &c., and ayxy &c, form entire cycles passing through all
the trivia, while ByBy &c. breaks up into detached subeycles,

Thus, if a Labyrinth or Maze be made, such that every intersection ot roads is
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a Trivium, it may always be arranged so that the several roads meeting at each
intersection may be one a grass-path, one gravel, and the other pavement. To make
sure of getting out of such a Labyrinth (if it be possible), we must select two kinds
of road to be taken alternately at each successive trivium. Thus we may elect to
take grass, gravel, grass, gravel, &c., in which case we must either come to the exit
point or (without reaching it) return to our starting-point, to try a new combination.
For it is obvious that, if we follow our rule, we cannot possibly pass through the
same trivium twice before returning to our starting-point.

(15) This leads to a very simple solution of the problem of Map-colouring with
four colours, originally proposed by Guthrie, and since treated by Cayley, Kempe,
and others. .

The boundaries of the counties in a map generally meet in threes. But if four,
or more, meet at certain points, let a small county be inserted surrounding each
such point; and there will then be trivia of boundaries only. These various boundaries
may, by our last result, be divided (usually in many different ways) into three
categories, a,. 3, v suppose, such that each trivium is formed by the meeting of one
from each category. Now take four colours, 4, B, €, D, and apply them, according to
rule, as follows; so that

a separates A and B or C and D,
B ” A and C , B and D,
oy 4 A and D ,, B and C,

and the thing is dome. For the small counties, which were introduced for the sake
of the construction, may now be made to contract without limit till the boundaries
become as they were at first.

The connection between these two theorems gives an excellent illustration of the
principle involved in the reduction of a biquadratic equation to a cubic.

Kempe has pointed out that four colours do not in general suffice for a map
drawn upon a multiply-connected surface, such as that of a fore or anchor-ring.
This you can easily prove for yourselves by establishing one simple instance. (This
is an example of a case of Listing’s Census.)

(16) From the very nature of our science, the systems of trivia, as we described
them in § 14, may be regarded as mere distorted plane projections of polyhedra which
have trihedral swmmits only. There are two obvious classes of exceptions, which will
be at once understood from the simple figures 7 and 8. Their characteristic is that
parts of the figure containing closed circuits (i.e. faces of the polyhedron) are connected
to the rest by ome or by two lines (edges) only. The lines are always 3n in number,
and, exeluding only the first class of exceptions, can be marked in 8 groups a, B, v,
one of each group ending at each point (trikedral angle).

: Now in every ome of the great variety of cases which I have tried (where the
figure was, like fig. 6, a projection .of a true polyhedron) I have found that a
complete circuit of edges, .alternately of two of these groups (such as aBafB &c.) can
be found, usually in many ways, so as to exhaust both groups and pass once through
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each of the angles. That is, in another form, every such polyhedron may be projected
in a figure of the type shown in fig. 9, where the dotted lines are supposed to lie
below the full lines. But, in the words of the extraordinary mathematician Kirkman,
whom I consulted on the subject, “the theorem...... has this provoking interest, that
it mocks alike at doubt and proofl.” Probably the proof of this curious proposition
has (§ 11) hitherto escaped detection from its sheer simplicity. Habitual stargazers
are apt to miss the beauties of the more humble terrestrial objects.

(17) Kirkman himself was the first to show, so long ago as 1858, that a “clear
circle of edges” of a unique type passes through all the summits of a pentagonal
dodecahedron. Then Hamilton pounced on the result and made it the foundation of
his Tcosian Game, and also of a new caleulus of a very singular kind. See figures
9, 10, 11, which are all equivalent projections of a pentagonal dodecahedron.

At every trivium you must go either to right or to left. Denote these operations
by » and [ respectively. In the pentagonal dodecahedron, start where you will, either
r® or I brings you back to whence you started. Thus, in this case, » and ! are to
be regarded as operational symbols—each (in a sense) a fifth root of +1. In this
notation Kirkman’s Theorem is formulated by the expression

rlrlrrrlllvlelbrrelll = 1 ;

or, as we may write it more compactly,
[(rD2l =1, or [(ir)rt]=1.

It may be put in a great many apparently different, but really equivalent, forms; for,
so long as the order of the operations is unchanged. we may begin the cycle where
we please. Also we may, of course, interchange » and ! throughout, in consequence
of the symmetry of the figure.

It is curious to study, in such a case as this, where it can easily be done, the
essential nature of the various kinds of necessarily abortive attempts to get out of
such a labyrinth. Thus if we go according to such routes as (#l)%rl’, or r*lr* (sequences
which do not occur in the general cycle), the next step, whatever it be, brings us
to a point already passed through. We thus obtain other relations between the symbols
r and l. We can make special partial circuits of this kind, including any number of
operations from 7 up to 19.

All of these remarks will be obvious from any one of the three (equivalent) diagrams
Y. 10, 0r 11.

(18) As I have already said, the subject of knots affords one of the most typical
applications of our science. I had been working at it for some time, in consequence
of Thomson’s admirable idea of Vortex-atoms, before Clerk-Maxwell referred me to
Listing’s Essay; and I had made out for myself, though by methods entirely different
from those of Listing, all but one of his published results. Listing’s remarks on this
fascinating branch of the subject are, unfortunately, very brief; and it is here especially,
I hope, that we shall learn much from his posthumous papers. In the Vorstudien he

1 ‘Reprint of Math. Papers from the Ed. Times,’ 1881, p. 113,
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looks upon knots simply from the point of view of screwing or winding; and he
designates the angles at a crossing of two laps of the cord by the use of his A and
8 notation (§ 4). Fig. 12 will show the nature of such crossings. Figs. 13, 14, and
15 show what he calls reducible and reduced knots. In a reducible knot the angles
in some compartments at least are not all A or all & (the converse is not necessarily
true). In a reduced knot, each compartment is all A or all 8.

(19) My first object was to classify the simpler forms of knots, so as to find to
what degree of complexity of knotting we should have to go to obfain a special form
of knotted vortex for each of the known elements. Hence it was necessary to devise
a mode of mnotation, by means of which any knot could be so fully described that
it might, from the description alone, be distinguished from all others, and (if requisite)
constructed in cord or wire. .

This I obtained, in a manner equally simple and sufficient, from the theorem which
follows, one which (to judge from sculptured stones, engraved arabesques, &c.) must have
been at least practically known for very many centuries.

Any closed plane curve, which has double points only, may be looked upon as
the projection of a knot in which each portion of the cord passes alternately under
and over the successive laps it meets. [The same is easily seen to hold for any number
of self-intersecting, and mutually intersecting, closed plane curves, in which cases we
have in general both lnking and locking in addition to knotting.]

The proof is excessively simple (§ 11). If both ends of one continuous line lie
on the same side of a second line, there must be an even number of crossings.

(20) To apply it, go continuously round the projection of a knot (fig. 16), putting
A, B, O, &c. at the first, third, fifth, &c. crossing you pass, until you have put letters
to all. Then go round again, writing down the name of each crossing in the order
in which you reach it. The list will consist of each letter employed, taken twice over.
4, B, €, &c. will occupy, in order, the first, third, fifth, &c. places; but the way in
which these letters occur in the even places fully characterizes the drawing of the pro-
jected knot. It may therefore be described by the order of the letters in the even
places alone; and it does not seem possible that any briefer description could be
given.

To prove that this description is complete, so far as the projection is concerned,
all that is required is to show that from it we can at once construct the diagram.
Thus let it be, as in fig. 16, £F BACD. Then the full statement is

AEBFCBDAECFDIA &e.

(21) To draw from such a statement, choose in it two apparitions of the same
letter, between which no other letter appears twice. Thus 4 ECFD/A (at the end of
the statement) forms such a group. It must form a loop of the curve. Draw such
a loop, putting A at the point where the ends cross, and the other letters in order
(either way) round the loop. Proceed to fill in the rest of the cyele in the same
way. The figures thus obtained may present very different appearances; but they are
all projections of the same definite knot. The only further information we require for
its full construction is which branch passes over the other at each particular crossing.
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This can be at once supplied by a 4+ or — sign attached to each letter where it occurs
in the statement of the order in the even places.

(22) Furnished with this process, we find that it becomes a mere question of
gkilled labour to draw all the possible knots having any assigned number of crossings.
The requisite labour increases with extreme rapidity as the number of crossings is
increased. For we must take every possible arrangement of the letters in the even
places, and try whether it is compatible with the properties of a self-intersecting plane
curve. Simple rules for rejecting useless or impracticable combinations are easily formed.
But then we have again to go through the list of survivors, and reject all but one of
each of the numerous groups of different distortions of one and the same species of knot.

I have not been able to find time to carry out this process further than the
knots with seven crossings. But it is very remarkable that, so far as I have gone,
the number of knots of each class belongs to the series of powers of 2. Thus:

Number of crossings ......... B, 5,06, T,
Number of distinet forms... 1, 1, 2, 4, 8,

It is greatly to be desired that some one, with the requisite leisure, should try to
extend this list, if possible up to 11, as the next prime number. The labour, great
as it would be, would not bear comparison with that of the calculation of = to
600 places, and it would certainly be much more useful. [But see Nos. XL, XLI, which
are of later date than this Address. 1899.]

Besides, it is probable that modern methods of analysis may enable us (by a single
“happy thought” as it were) to avoid the larger part of the labour. It is in matters
like this that we have the true “raison d’étre” of mathematicians.

(23) There is one very curious point about knots which, so far as I know, has
as yet no analogue elsewhere. In general the perversion of a knot (ie ifs image in
a plane mirror) is non-congruent with the knot itself. Thus, as in fact Listing points
out, it is impossible to change even the simple form (fig. 14) into its image (fig. 15).
But I have shown that there is at least one form, for every even number of crossings,
which is congruent with its own perversion. The unique form with four crossings gave
me the first hint of this curious fact. Take one of the larger laps of fig. 17, and
turn it over the rest of the knot, fig. 18 (which is the perversion) will be produced.

We see its nature better from the following process (one of an infinite number)
for forming Amphicheiral knots. Knot a cord as in fig. 19, the number of complete
figures of “eight” being at pleasure. Turn the figure upside down, and it is seen to
be merely its own image. Hence, when the ends are joined, it forms a knot which 1s
congruent with its own perversion. :

(24) The general treatment of links is, unless the separate cords be also knotted,
much simpler than that of knots—i.e. the measurement of belinkedness is far easier
than that of beknottedness.

I believe the explanation of this curious result to lie mainly in the fact that it is
possible to interweave three or more continuous cords, so that they cannot be separated,
and yet no one shall be knotted, nor any two linked together.

1 13
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This is obvious at once from the simplest possible case, shown in fig. 20. Here the
three rings are not linked but locked together.

Now mere linkings and mere lockings are very easy to study. But the various
loops of a knot may be linked or locked with one another. Thus the full study of a
knot requires in general the consideration of linking and locking also.

(25) But it is time to close, in spite of the special interest of this part of the
subject. And I have left myself barely time to mention the very interesting portion
of the Topologie which Listing worked out in detail. You will find a brief synopsis
of a part of it prefixed to Clerk-Maxwell's Electricity and Magnetism, and Cayley has
contributed an elementary statement of its contents to the Messenger of Mathematics
for 1873; but there can be no doubt that so important a paper as the Census rdum-
licher Complexe ought to be translated into English.

To give an exceedingly simple notion of its contents I may merely say that Listing
explains and generalizes the so-called Theorem of Euler about Polyhedra (which all of
us, whose reading dates some twenty years back or more, remember in Snowball’s or
Hymers' Trigonometry), viz. that “if S be the number of solid angles of a polyhedron,
F the number of its faces, and £ the number of its edges, then

S+F=FE+2”

The mysterious 2 in this formula is shown by Listing to be the number of spaces
involved; 4. the content of the polyhedron, and the Amplexum, the rest of infinite
space.

And he establishes a perfectly general relation of the form

V—-S+L-P=0,

where V is the number of spaces, S of surfaces, L of lines, and P of points in any
complex ; these numbers having previously been purged in accordance with the amount
of Cyclosis in the arrangement studied. But to make even the elements of this
intelligible I should require to devote at least one whole lecture to them.

Meanwhile I hope I have succeeded in showing to you how very important is
our subject, loose and intangible as it may have at first appeared to you; and in
proving, if only by special examples, that there are profound difficulties (of a kind
different altogether from those usually attacked) which are to be met with even on the
very threshold of the Science of Situation.
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LXVIL

ON RADIATION.

[Proceedings of the Royal Society of Edinburgh, February 18, 1884.]

THE first part of this communication was devoted to a recapitulation of the
advances in the Theory of KEachanges made by Stewart in 1858, and published in
the Tramsactions of the Society for that year. Such a recapitulation it will be seen
is mecessary; as Stewart’s papers seem either to have fallen into oblivion or to be
deemed unworthy of notice. It was pointed out that Stewart showed in these papers
that the radiation within an impervious enclosure containing no source of heat must
ultimately become, like the pressure of a mnon-gravitating fluid at rest, the same at
all points and in all directions; but that this sameness is not, like that of fluid
pressure, one of mere total amount; it extends to the quantity and quality of every
one of the infinite series of wave-lengths involved. For, as one or more of the bodies
may be black, the radiation is simply that of a black body at the temperature of
the enclosure. Any new body, at the proper temperature, may be inserted in the
enclosure without altering this state of things; and must therefore emit precisely the
amount and quality which it absorbs. This remark contains all that is yet known
on the subject. For we have only to assume for the purpose of reasoning, the
existence of a substance partially, or wholly, opaque to one definite wave-length, and
perfectly transparent to all others; or with any other limited properties we choose;
and suppose it to be put (at the proper temperature) into the enclosure. If we next
assume that its temperature when put in differs from that of the enclosure, the
experimental fact that, in time, equilibrium of temperature is arrived at, shows that
the radiation of any particular wave-length by a body increases with rise of temperature.
And so forth.

Yet in the latest authoritative work on the subject, Lehrbuch der Spektralanalyse,
von Dr H. Kayser (Berlin, 1883), though historical details are freely given, the name
of Stewart does not occur even once! There are in the same work other instances of

13—2
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historical error nearly as grave. Thus the physical analogy, by which Stokes in 1852
first explained the basis of spectrum analysis, is given in Dr Kayser's work; but it
is introduced by the very peculiar phrase “...... wollen wir versuchen, eine mechanische
Evrklirung der Erscheinungen zu geben, welche auf unsere Anschauungen iiber das
Leuchten begriindet ist...... ”; and the name of Stokes is not even mentioned in con-
nection with it!

The second part of the paper deals with the question of the limits of accuracy
of the reasoning which led Stewart, and those who have followed him, to results of
such vast importance. Dr Kayser, indeed, announces his intention “in aller Strenge
mathematisch zu beweisen” the equality of emissive and absorptive powers. But the
mere fact that phosphorescent bodies, such as luminous paint, give out visible radiations
while at ordinary temperatures, shows at once that there are grave exceptions even
to the fundamental statement that the utmost radiation, both as to quantity and as
to quality, at any one temperature, is that of a black body:—and very simple con-
siderations show that all the reasoning which has been applied to the subject is
ultimately based on the Second Law of Thermodynamics (or Carnot’s principle), and
is therefore true only in the sense in which that law is true, d.e. in the statistical
sense. The assumed ultimate uniformity of temperature in an enclosure, which is
practically the basis of every demonstration of the extended law of exchanges, is
merely an expression for the average of irregularities which are in the majority of
cases too regularly spread, and on a scale too minute, to be detected by our senses,
even when these are aided by the most delicate instruments. The kinetic theory of
gases here furnishes us with something much closer than a mere analogy. For the
very essence of what appears to us uniform temperature in a gas is the regularity
of distribution of the irregularities of speed of the various particles. And, just as in
every mass of gas there are a few particles moving with speed far greater than
that of mean square, so it is at least probable that a black body at ordinary
temperatures emits (though, of course, excessively feebly) radiations of wave-lengths
corresponding to those of visible light. Effects apparently or at least conceivably
due to this cause have been obtained by various experimenters.

If we could realise a dynamical system, analogous to that of a gas on the kinetic
theory, but such that none of the particles could have any but one of a certain
limited number of definite speeds, and if there were still a tendency to the nearest
statistical average, we should have something capable of explaining phosphorescence at
ordinary temperatures.
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ON AN EQUATION IN QUATERNION DIFFERENCES.

[Proceedings of the Royal Society of Edinburgh, February 18, 1884.]

WaEN the sides of a closed polygon are bisected, and the points of bisection joined
in order, a new polygon is formed. It has the same number of sides, and the same
mean point of its corners, as the original polygon. In what cases is it similar to the
original polygon? In what cases will two, three, or more successive operations of this
kind produce (for the first time) a polygon similar to the original one?

Take the mean point as origin, and let h, ol oo Gt be the n corners. Here
a is any vector, which, if the polygon be plane, may be taken in that plane; and
¢is --- qu are quaternions, which in the special case just mentioned are powers of one
quaternion in the same plane. We obviously have, if Dg,=gq,,,, for the plane polygon
two conditions :—the first,

(L4 D+ D2+ oo + DY) ga =0,

depending on our choice of origin; and the second
1
o (14 Dy'g.2= QD'g,a,

depending on the similarity of the mth derived polygon to the original. In this last
equation, @ is a scalar multiple of an unknown power of the quaternion of which the
¢'s are powers, expressing how the original polygon must be turned in its own plane,
and how its linear dimensions must be altered, so that it may be superposed on the
mth derived polygon. Also s is an unknown integer, but it has (like @) a definite
value or values when the problem admits of solution. » has any value from 1 to =
inclusive, as may be seen at once by operating by any integral power of D, and
remembering that we have necessarily

D, = qy.

The solution of this case is easily effected, and gives the well-known results:—the
general solution involving all equilateral and equiangular polygons, where m may have
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any integral value. Besides this, there are special solutions for the triangle, and for the
quadrilateral reduced at one operation to a parallelogram. In the former of these m
may have any value; in the latter (unless the figure be a square) m must be even.

But, when the polygon is gauche, the second of the above conditions becomes

1
gn (1 + Dy*qra = QDq,aQ~",

and the solution is somewhat more difficult. Its interest consists in its leading to a new
and curious question in quaternions.

APPENDIX.

THEOREM RELATING TO THE SUM OF SELECTED BINOMIAL-THEOREM COEFFICIENTS.

[Messenger of Mathematics, February, 1884.]

Ler equal masses be placed, two and two together,.at the corners of an m-sided polygon.
Slide one from each end of a side till they meet at its middle point. They now form a
new, and smaller, m-sided polygon, but their centre of inertia has not been disturbed. Repeat
the process indefinitely, and the masses will ultimately be collected in the centre of inertia.

Now if the distances of the corners of the original polygon from a fixed plane be

Uypy Ugy ey Uy,

those of the first derived polygon will be

3w +u)y F(uatum) ooy § (Ut w)
These are all included in the expression
(1 +D)yu,
with the proviso that D™y, = .

Similarly, the first corner of the nth derived polygon is
2-0(1 + D) uy.

Now let N, where r is not greater than m, be the sum of the rth, (» +m)th, (r+ 2m)th,
&c. coefficients of the binomial (1 +)"; the above expression becomes

27" (N, + Ny g+ oo + Ny Uy + oo+ Nyu,),

But, when = is infinite, its ultimate value is (as above)
1
E(ul Uy + s Uy
1
Hence Ly, (2-"N,™) = =;

and it seems remarkable that the limit is independent of ».



LXIX.

ON VORTEX MOTION,.

[Proceedings of the Royal Society of Edinburgh, February 18, 1884.]

Ta1s paper contained a discussion of the consequences of the assumption of continuity
of motion throughout a perfect fluid; one of the bases of von Helmholtz’s grand in-
vestigation, on which W. Thomson founded his theory of vortex-atoms. It is entirely on
the assumed absence of finite slip that von Helmholtz deduces the action of a rotating
element on any other element of the fluid, and that Thomson calculates the action of
one vortex-atom or part of such an atom on another atom, or on the remainder of itself.
The creation of a single vortex-atom, in the sense in which it is defined by Thomson,
involves action applied simultaneously to all parts of the fluid mass, not to the
rotating portion alone.
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LXX.

NOTE ON REFERENCE FRAMES.

[Proceedings of the Royal Society of Edinburgh, July 7, 1884.]

As I understand Prof. J. Thomson’s problem (Proc. R. 8. K. x1m. p. 568) it is equi-
valent to the following :—

A set of points move, (alilei-wise, with reference to a system of co-ordinate axes;
which may, itself, have any motion whatever. From observations of the relative positions
of the points, merely, to find such co-ordinate axes.

It is obvious that there is an infinitely infinite number of possible solutions;
because, if one origin moves Galilei-wise with respect to another, and the axes drawn
from the two origins have no relative rotation, any point moving Galilei-wise with
respect to either set of axes will necessarily move Galilei-wise with respect to the
other. Hence any one solution suffices, for all the others can be deduced from it by
the above consideration.

Referred to any one set of axes which satisfy the conditions, the positions of the
points are, at time ¢, given by the vectors

a, + Bt for A, a,+ Bt for B, &c.,, &e.

But it is clear, from what is stated above, that we may look on the pair of vectors
for any one of the points, say a, and B, for 4, as being absolutely arbitrary:—though,
of course, constant. We will, therefore, make each of them vanish. This amounts to
taking A as the origin of the co-ordinate system. The other expressions, above, will
then represent the relative positions of B, C, &c., with regard to 4.

The observer on A is supposed to be able to measure, at any moment, the lengths
AB, AC, AD, &c.; the angles BAC, BAD, CAD, &c.; and also to be able to recognise
whether a triangle, such as BCD, is gone round positively or negatively when its corners
are passed through in the order named. What this leaves undetermined, at any particular
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instant, is merely the absolute direction of any one line (as AB), and the aspect of
any one plane (as ABC) passing through that line. These being assumed at random,
the simultaneous positions of all the points can be constructed from the permissible
observations. But it is interesting to inquire how many observations are necessary;
and how the B's depend on the o's.

Thus, at time ¢, whatever be the mode of measurement of time, we have equations
such as follow :—
—a = a4+ 28,3, . t + B2t
—b = Sy, + 8 (08; + Bas) . t + SBB; . B2,
— ¢ =a’ + 28a,0; . t + 8.,

.........................

For any one value of ¢ we have n equations of each of the 1st and 3rd of these
types, and n(n—1)/2 of the 2nd, n+1 being the whole number of points. In all,
n(n+1)/2 equations.

The scalar unknowns involved in these equations are (1) the values of ¢; (2) a?, ay,
&c.; (3) B2 B &e; (4) Saos, &c.; (5) 8B.B;, &ec.; (6) SayB., SayB,, &c.; and
(7) S (aBs + Bux), &e. Their numbers are, for (2), (3), (6), n each; for (4), (5), (7),
n(n—1)/2 each; in all 3n(n+1)2. Suppose that observations are made on m sue-
cessive occasions. Since our origin, and our unit, of time are alike arbitrary, we may
put =0 for the first observation, and merge the value of ¢ at the second observation
in the tensors of B,, B,, &. This amounts to taking the interval between the first
two sets of observations as unit of time. Thus the unknowns of the form (1) are
m — 2 in number. There are therefore

mn (n+ 1)/2 equations and 3n (n +1)/2 + m — 2 unknowns.
Thus m =3 gives an insufficient amount of information, but m =4 gives a superfluity.

In particular, if there be three points only, which is in general sufficient, 3 complete
observations give
9 equations with 10 unknowns;

while 4 complete observations give

12 equations with 11 unknowns.

Thus we need take only two of the three possible measurements, at the fourth instant
of observation.

The solution of the equations, supposed to be effected, gives us among other things,
a’, o, and Sa,a,. Any direction may be assumed for a,, and any plane as that of
o and @, From these assumptions, and the three numerical quantities just named,
the co-ordinate system can be at once deduced.

This solution fails if (Sae,)* = aa?, or I'Vau, =0 for then the three points 4, B, C,
are in one line at starting. But this, and similar cases of failure (when they are
really cases of failure) are due to an improper selection of three of the points. We
need not further discuss them.

T 3L , 14
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But it is interesting to consider how the vectors 8 can be found when one position
of the reference frame has been obtained. Keeping, for simplicity, to the system of
three points, we have by the solution of the equations above the following data:—

SeB;=¢, SaBs=¢', S(a,8;+ But))=f, TB.=g, TBi=g, SBBs=h;

where e, ¢, f, g, ¢, h are known numbers; which, as the equations from which they
were derived were not linear, have in general more than one system of values. The
second, third, and sixth of these equations give

BsS. o0tsf3: = h Ve, + (f" SBuas) Ve, + ¢ Vi.a,.

Provided B, is not coplanar with a,, @, this equation gives, by the help of the fifth
above, a surface of the 4th order of which B8, is a vector. But B, is also a vector
of the plane Sa8,=e¢, and of the sphere 78,=g¢. Hence it is determined by the
intersections of those three surfaces.

But if S. a,a,8, vanishes, the equation above gives (by operating with S. Vaya,)
0="h(Vaa) — (f— SB) 8. BV . Voo, + €S . B,V . a, Ve,

which gives a surface of the second order (a hyperbolic cylinder) in place of the surface
of the fourth order above mentioned. This may, however, be dispensed with :—for 8,
is in this case determined by the planes Sa,8,=e and S. a3, =0, together with the
sphere T8, =g.
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LXXI.

ON VARIOUS SUGGESTIONS AS TO THE SOURCE OF
ATMOSPHERIC ELECTRICITY".

[Nature, March 27, 1884.]

WE have seen that, taking for granted the electrification of clouds, all the
ordinary phenomena of a thunderstorm (except globe lightning) admit of easy and
direct explanation by the knmown laws of statical electricity. Thus far we are on
comparatively sure ground.

But the case is very different when we attempt to look a little farther into the
matter, and to seek the source of atmospheric electricity. One cause of the difficulty
is easily seen. It is the scale on which meteorological phenomena usually occur; so
enormously greater than that of any possible laboratory arrangement that -effects,
which may pass wholly unnoticed by the most acute experimenter, may in nature
rise to paramount importance. 1 shall content myself with one simple but striking
instance,

Few people think of the immense transformations of energy which accompany an
ordinary shower. But a very easy calculation leads us to startling results. To raise
a single pound of water, in the form of vapour, from the sea or from moist ground,
requires an amount of work equal to that of a horse for about half an hour! This
~ is given out again, in the form of heat, by the vapour when it condenses; and the
pound of water, falling as rain, would cover a square foot of ground to the depth of
rather less than one-fifth of an inch. Thus a fifth of an inch of rain represents a
horse-power for half an hour on every square foot, or, on a square mile, about a million
horse-power for fourteen hours! A million horses would barely have standing room on
a square mile. Considerations like this show that we can account for the most violent
hurricanes by the energy set free by the mere condensation of vapour required for the
concomitant rain.

! Read at the meeting of the Scottish Meteorological Society on March 17, and communicated by the Society.
14—2
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Now the modern kinetic theory of gases shows that the particles of water-
vapour are so small that there are somewhere about three hundred millions of millions
of millions of them in a single cubic inch of saturated steam at ordinary atmo-
spheric pressure. This corresponds to i or so of a cubic inch of water, v.e to
about an average raindrop. But if each of the vapour particles had been by any
cause electrified to one and the same potential, and all could be made to unite,
the potential of the raindrop formed from them would be fifty million million times
greater.

Thus it appears that if there be any cause which would give each particle of
vapour an electric potential, even if that potential were far smaller than any that
can be indicated by our most delicate electrometers, the aggregation of these particles
into raindrops would easily explain the charge of the most formidable thundercloud.
Many years ago it occurred to me that the mere confact of the particles of vapour
with those of air, as they interdiffuse according to the kinetic theory of gases,
would suffice to produce the excessively small potential requisite. Thus the source
of atmospheric electricity would be the same as that of Volta’s electrification of dry
metals by contact. My experiments were all made on a small scale, with ordinary
laboratory apparatus. Their general object was, by various processes, to precipitate
vapour from damp air, and to study either (1) the electrification produced in the
body on which the vapour was precipitated; or (2) to find on which of two parallel,
polished plates, oppositely electrified and artificially cooled, the more rapid deposition
of moisture would take place. After many trials, some resultless, others of a more
promising character, I saw that experiments on a comparatively large scale would be
absolutely necessary in order that a definite answer might be obtained. I commu-
nicated my views to the Royal Society of Edinburgh in 1875, in order that some
one with the requisite facilities might be induced to take up the inquiry, but I am
not aware that this has been done.

I may briefly mention some of the more prominent attempts which have been made
to solve this curious and important problem. Some of them are ludicrous enough,
but their diversity well illustrates the nature and amount of the difficulty.

The oldest notion seems to have been that the source of atmospheric electricity
is aérial friction., Unfortunately for this theory, it is not usually in windy weather
that the greatest development of electricity takes place.

In the earlier years of this century Pouillet claimed to have established by
experiment that in all cases of combustion or oxidation, in the growth of plants,
and in evaporation of salt water, electricity was invariably developed. But more
recent experiments have thrown doubt on the first two coneclusions, and have shown
that the third is true only when the salt water is boiling, and that the electricity
then produced is due to friction, not to evaporation. Thus Faraday traced the action
of Armstrong’s hydro-electric machine to friction of the steam against the orifice by
which it escaped.

Saussure and others attributed the production of atmospheric electricity to the
condensation of vapour, the reverse of one of Pouillet’s hypotheses. This, however,
is a much less plausible guess than that of Pouillet; for we could understand a
particle of vapour carrying positive electricity with it, and leaving an equal charge
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of negative electricity in the water from which it escaped. But to account for the
separation of the two electricities when two particles of vapour unite is a much less
promising task.

Peltier (followed by Lamont) assumed that the earth itself has a permanent
charge of negative electricity whose distribution varies from time to time, and from
place to place. Air, according to this hypothesis, can neither hold nor conduct elec-
tricity, but a cloud can do both; and the cloud is electrified by conduction if it
touch the earth, by induction if it do not. But here the difficulty is only thrown
back one step. How are we to account for the earth’s permanent charge?

Sir W. Thomson starts from the experimental fact that the layer of air near
the ground is often found to be strongly electrified, and accounts for atmospheric
electricity by the carrying up of this layer by convection currents. But this process
also only shifts the difficulty.

A wild theory has in recent times been proposed by Becquerel. Corpuscles of
some kind, electrified by the outbursts of glowing hydrogen, travel from the sun to
the upper strata of the earth’s atmosphere.

Miihry traces the source of electricity to a direct effect of solar radiation falling
on the earth’s surface.

Liiddens has recently attributed it to the friction of aqueous vapour against dry
air. Some still more recent assumptions attribute it to capillary surface-tension of
water, to the production of hail, &ec.

Blake, Kalischer, &ec., have lately endeavoured to show by experiment that it is
not due to evaporation, or to condensation of water. Their experiments, however,
have all been made on too small a scale to insure certain results, What I have
just said about the extraordinary number of vapour particles in a single raindrop,
shows that the whole charge in a few cubic feet of moist air may altogether escape
detection.

And so the matter will probably stand, until means are found of making these
delicate experiments in the only way in which success is likely to be obtained, viz
on a scale far larger than is at the command of any ordinary private purse. It is
a question of real importance, not only for pure science but for the people, and ought
to be thoroughly sifted by means which only a wealthy nation can provide.
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LXXIL

NOTE ON A SINGULAR PASSAGE IN THE PRINCIPIA.

[Proceedings of the Royal Society of Edinburgh, January 19, 1885,]

IN the remarkable Scholium, appended to his chapter on the Laws of Motion,
where Newton is showing what Wren, Wallis, and Huygens had done in connection
with the impact of bodies, he uses the following very peculiar language:—

“Sed et veritas comprobata est a D. Wrenno coram Regid Societate per experimentum
Pendulorum, quod etiam Clarissimus Mariottus Libro integro exponere mox dignatus est.”

The last clause of this sentence, which I had occasion to consult a few days ago,
appeared to me to be so sarcastic, and so unlike in tone to all the context, that I was
anxious to discover its full intention.

Not one of the Commentators, to whose works I had access, makes any remark on
the passage. The Translators differ widely.

Thus Motte softens the clause down into the trivial remark “which Mr Mariotte
soon after thought fit to explain in a treatise entirely on that subject.”

The Marquise du Chastellet (1756) renders it thus:—

o mais ce fut Wrenn qui les confirma par des Expériences faites avec des
Pendules devant la Société Royale: lesquelles le célébre Mariotte a rapportées depuis dans
un Traité qu’il a composé exprés sur cette matiere.”

Thorp’s translation (1777) runs:—

“which the very eminent Mr Mariotte soon after thought fit to explain in a treatise
entirely upon that subject.”

Finally, Wolfers (1872) renders it thus:—

“der zweite zeigte der Societiit die Richtigkeit seiner Erfindung an einem Pendel-
versuche, den der beriihmte Mariotte in seinem eigenen Werke aus einander zu setzen,
fiir wiirdig erachtete.”

Not one of these seems to have remarked anything singular in the language
employed. But when we consult the “entire book” in which Mariotte is said by
Newton to have “expounded” the result of Wren, and which is entitled Traité de la
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Percussion ouw Choe des Corps, we find that the name of Wren is not once mentioned in
its pages! From the beginning to the end there is nothing calculated even to hint to
the reader that the treatise is not wholly original.

This gives a clue to the reason for Newton’s sarcastic language; whose intensity
is heightened by the contrast between the Clarissimus which is carefully prefixed to
the name of Mariotte, and the simple D. prefixed, not only to the names of Englishmen
like Wren and Wallis, but even to that of a specially distinguished foreigner like
Huygens.

Newton must, of course, like all the scientific men of the time (Mariotte included),
have been fully cognizant of Boyle’s celebrated controversy with Linus, which led to
the publication, in 1662, of the Defence of the Doctrine touching the Spring and Weight
of the Air. In that tract, Part 11. Chap. 5, the result called in Britain Boyle’s Law is
established (by a very remarkable series of experiments) for pressures less than, as well
as for pressures greater than, an atmosphere; and it is established by means of the very
form of apparatus still employed for the purpose in lecture demonstrations. Boyle, at
least, claimed originality, for he says in connection with the difficulties met with in

the breaking of his glass tube:—

SR an accurate Experiment of this nature would be of great importance to the
Doctrine of the Spring of the Air, and has not yet been made (that I know) by
DY man. et

In Mariotte’s Discours de la Nature de U'Air, published FOURTEEN years later than
this work of Boyle, we find no mention whatever of Boyle, though the identical form
of apparatus used by Boyle is described. The whole work proceeds, as does that on
Percussion, with a calm ignoration of the labours of the majority of contemporary
philosophers.

This also must, of course, have been perfectly well known to Newton:—and we
can now see full reason for the markedly peculiar language which he permits himself
to employ with reference to Mariotte.

What was thought of this matter by a very distinguished foreign contemporary,
appears from the treatise of James Bernoulli, De Gravitate Aitheris, Amsterdam, 1683,
p- 92

“Veritas utriusque hujus regule manifesta fit duobus curiosis experimentis ab
Illustr. Dn. Boylio hanc in rem factis, qua videsis in Tractatu ejus contrd Linwm,
Cap. V., cui duas Auctor subjunxit Tabulas pro diversis Condensationis et Rarefactionis
gradibus.”

In order to satisfy myself that Newton’s language, taken in its obvious meaning,
really has the intention which I could not avoid attaching to it, I requested my colleague
Prof. Butcher to state the impression which it produced on him. I copied for him the
passage above quoted, putting A for the word Wrenno, and B for Mariottus; and I
expressly avoided stating who was the writer. Here is his reply :—

“I imagine the point of the passage to be something of this kind (speaking without
farther context or acquaintance with the Latinity of the learned author):—

“A established the truth by means of a (simple) experiment, before the Royal
Society; later, B thought it worth his while to write a whole book to prove the
same point,
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“I should take the tone to be highly sarcastic at B's expense. It seems to suggest
that B was not only clumsy but dishonest. The latter inference is not certain, but
at any rate we have a hint that B took no notice of A’s discovery, and spent a deal
of useless labour.” :

This conclusion, it will be seen, agrees exactly with the complete ignoration of
Wren by Mariotte.

When I afterwards referred Prof. Butcher to the whole context, in my copy of
the first edition of the Principia, and asked him whether the use of Clarissimus was
sarcastic or not, he wrote—

“I certainly think so. Indeed, even apart from the context, I thought the
Clarissimus was ironical, but there can be no doubt of it when it corresponds to
D. Wren.”

In explanation of this I must mention that, when I first sent the passage to
Prof. Butcher, I had copied it from Horsley’s sumptuous edition; in which the D’s
are omitted, while the Clarisstmus is retained.

Alike in France and in Germany, to this day, the Law in question goes by the
name of Mariotte. The following extracts, from two of the most recent high-class text-
books, have now a peculiar interest. I have put a word or two of each in Italics. These
should be compared with the dates given.

“Diese Frage ist schon frithzeitig untersucht und zwar jfast gleichzeitig von dem
franzisischen Physiker Mariotte (1679) und dem englischen Physiker Boyle (1662).”
Wiillner, Lehrbuch der Experimentalphysik, 1882, § 98.

“La loi qui régit la compressibilité des gaz & température constante a été trouvée
presque simultanément par Boyle (1662) en Angleterre et par Mariotte (1676) en France;
toutefois, si Boyle a publié le premier ses expériences, il ne sut pas en tirer I'énoncé
clair que donna le physicien frangais. C’est donc avec quelque raison que le nom de loi
de Mariotte a passé dans I'usage.” Violle, Cours de Physique, 1884, § 283.

On this I need make no remark further than quoting one sentence from Boyle,
where he compares the actual pressure, employed in producing a certain compression in
air, with “what the pressure should be according to the Hypothesis, that supposes the
pressures and expansions to be ih reciprocal proportion.” M. Violle has probably been
misled by the archaic use of “expansion” for volume.

It must be said, in justice to Mariotte, that he does not appear to have claimed
the discovery of any new facts in connection either with collision or with the effect of
pressure on air, He rather appears to write with the conscious infallibility of a man for
whom nature has no secrets. And he transcribes, or adapts, into his writings (without
any attempt at acknowledgment) whatever suits him in those of other people. He seems
to have been a splendidly successful and very early example of the highest class of what
we now call the Paper-Scientists. Witness the following extracts from Boyle, with a
parallel citation from Mariotte of fourteen years’ later date at least. The comparison
of the sponges had struck me so much, in Mariotte’s work, that I was induced to search
for it in Boyle, where I felt convinced that I should find it.

“This Notion may perhaps be somewhat further explain’d, by conceiveing the Air
near the Earth to be such a heap of little Bodies, lying one upon another, as may be
resembled to a Fleece of Wooll. For this (to omit other likenesses betwixt them)
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consists of many slender and flexible Hairs; each of which, may indeed, like a little
Spring, be easily bent or rouled up; but will also, like a Spring, be still endeavouring
to stretch itself out again. For though both these Haires, and the Zreal Corpuscles to
which we liken them, do easily yield to externall pressures; yet each of them (by virtue
of its structure) is endow'd with a Power or Principle of Selfe-Dilatation; by virtue
whereof, though the hairs may by a Mans hand be bent and crouded closer together,
and into a narrower room then suits best with the Nature of the Body, yet, whils't the
compression lasts, there is in the fleece they composeth an endeavour outwards, whereby
it continually thrusts against the hand that opposeth its Expansion. And upon the
removall of the external pressure, by opening the hand more or less, the compressed
Wooll doth, as it were, spontaneously expand or display it self towards the recovery
of its former more loose and free condition till the Fleece hath either regain’d its
former Dimensions, or at least, approached them as neare as the compressing hand,
(perchance not quite open'd) will permit. The power of Selfe-Dilatation is somewhat
more conspicuous in a dry Spunge compress'd, then in a Fleece of Wooll. But yet we
rather chose to employ the latter, on this occasion, because it is not like a Spunge,
an intire Body; but a number of slender and flexible Bodies, loosely complicated, as the
Air itself seems to be.”

And, a few pages later, he adds:—

R a Column of Air, of many miles in height, leaning upon some springy
Corpuscles of Air here below, may have weight enough to bend their little springs,
and keep them bent: As, (to resume our former comparison,) if there were fleeces of
Wooll pil'd up to a mountainous height, upon one another, the hairs that compose the
lowermost Locks which support the rest, would, by the weight of all the Wool above
them, be as well strongly compress'd as if a Man should squeeze them together in his
hands, or imploy any such other moderate force to compress them. So that we need not
wonder, that upon the taking off the incumbent Air from any parcel of the Atmosphere
here below, the Corpuscles, whereof that undermost Air consists, should display them-
selves, and take up more room than before.”

Mariotte (p. 151). “On peut comprendre & peu pres cette différence de condensation
de I'Air, par l'exemple de plusieurs éponges qu'on auroit entassées les unes sur les
autres. Car il est évident, que celles qui seroient tout au haut, auroient leur entendué
naturelle: que celles qui seroient immédiatement au dessous, seroient un peu moins
dilatées; et que celles qui seroient au dessous de toutes les autres, seroient trés-serrdes
et condensées. Il est encore manifeste, que si on Otoit toutes celles du dessus, celles du
dessous reprendroient leur étendué naturelle par la vertu de ressort quelles ont, et
que si on en Ofoit seulement une partie, elles ne reprendroient qu'une partie de leur
dilatation.”

Those curious in such antiquarian details will probably find a rich reward by making
a careful comparison of these two works; and in tracing the connection between the
Liber integer, and its fons et origo, the paper of Sir Christopher Wren.

Condorcet, in his Kloge de Mariotte, says:—Les lois du choc des corps avaient été
trouvées par une métaphysique et par une application d’analyse, nouvelles 'une et I'autre,
et si subtiles, que les démonstrations de ces lois ne pouvaient satisfaire que les grands
mathématiciens. Mariotte chercha & les rendre, pour ainsi dire, populaires, en les

™ 1% 15
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appuyant sur des expériences, &c.” i.e., precisely what Wren had thoroughly done before
him,

“Le discours de Mariotte sur la nature de l'air renferme encore une suite d’expéri-
ences intéressantes, et qui étaient absolument neuves.” This, as we have seen, is
entirely incorrect.

But Condorcet shows an easy way out of all questions of this kind, however delicate,
in the words:—“On ne doit aux morts que ce qui peut étre utile aux vivants, la vérité
et la justice. Cependant, lorsquil reste encore des amis et des enfants que la vérité peut
affliger, les égards deviennent un devoir; mais au bout d'un sitcle, la vanité peut seule
étre blessée de la justice rendue aux morts.”

Thus it is seen that even the turn of one of Newton’s phrases serves, when rightly
viewed, to dissipate a widespread delusion:—and that while Boyle, though perhaps he
can scarcely be said to have. been “born great,” certainly “achieved greatness”; the
assumed parent of La Lot de Mariotte (otherwise Mariotte’'sches (fesetz) has as certainly
had “greatness thrust upon” him.
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LXXIII.

NOTE ON A PLANE STRAIN.

[Proceedings of the Edinburgh Mathematical Society, February 13, 1885. Vol. 111L]

THE object of this note is to point out, by a few remarks on a single case, how
well worth the attention of younger mathematicians is the full study of certain
problems, suggested by physics, but limited (so far as that science is concerned) by
properties of matter.

In de St Venant’s beautiful investigations of the flexure of prisms, there occurs
a plane strain involving the displacements
o Sl ol
E_ Fik n oD

Physically, this is applicable to de St Venant’s problem only when « and y are each

small compared with D. But it is interesting to consider the results of extending
it to all values of the coordinates. This I shall do, but very briefly.

1. The altered coordinates of any point are given, in terms of the original co-
ordinates, by

a:’=m(1+%), y=ytss

Hence 8m’=8m(1+%)+8y%,

8y’=-8w%+8y (1+ %).
15—2
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From these we see at once that, so far as an indefinitely small area is concerned,
the strain is a mere extension in all directions in the ratio

y\*, @
\/(1+D)+D,.1,

combined with a rotation through an angle whose tangent is

&

D+y’

2. Hence elementary squares remain squares; and any two series of lines, dividing
the plane into little squares, will continue to do so after the strain.

One simple case is furnished by sets of lines parallel to the axes. Thus y=¥5
becomes the parabola
: 2(D+0b¥/ , b?
xz = - (—D_ (y oo b et zﬁ) lllllllllllllllllllllllllllllllll (1)’

and @ =a becomes a parabola

These groups of parabolas, (1) and (2), must evidently be orthogonal, and if the
simultaneous small increments of ¢ and b be equal, must divide the plane into
little squares. But, as it is clear from (2) that the sign of @ is immaterial, the
two lines

are both deformed into the same parabola. Hence it appears that every part of the
area becomes duplez. This will be examined by another and more suitable method
later,

Having thus obtained another set of lines which divide the plane into squares,
we may begin again with it and obtain a third set, &c.

3. A line, y = ma, passing through the origin, becomes the parabola

s 9 2
(mﬂz lm’—my’) =Dm;1(mx’—y’).

The orthogonal trajectories of all such parabolas are the curves into which the circles
b + ys = c?

are deformed. Their equation may be put in the form

o?

where y” is written instead of y + 5D
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These curves have the property that, at every point, the sum (or difference) of the
distance from a given point, and of a multiple of the square root of the distance from
a gwen line, is constant.

4. But, if we express the new rectangular coordinates of a point in terms of its
original polar coordinates, we have

9:’=rcosl9+2l:;cos (29—%—),

Jisks o s L a
y =rsin 9+2Dsm (26—2).

Thus the deformed circles, above spoken of, are seen to be epicycloids of the cardioid
series. Their orthogonal trajectories are the parabolas just mentioned.

5. Another curious set of questions is, as it were, the reverse of these:—i.e., what
were the curves, in the unstrained plate, which became the system

w=a, y=b,
or the other (also orthogonal) system
y=ma, &+ y=c?

6. But a different transformation is still more explicit in the information it gives.

Shift the origin to (0, — D), and we have

) _ oy Y-+ D
ANl T S X Ew

If we put @ =psin¢, y=pcos ¢, these give

S i
w’=2—ﬁ})s1n2¢, Yy —§=2£Dcos2¢.

Hence a circle, of radius p, surrounding the new origin, becomes a circle of radius
2

% surrounding the point (0, —%)) half-way between the new and old origins. The

¢ of any point in the circle becomes 2¢.

Hence the whole surface is opened up like a fan round the new origin, every
radius through this origin having its inclination to the axis of y doubled. Thus the
parts of a diameter, on opposite sides of the centre, are brought to coincide; and an
infinitely extended line, through the centre, becomes limited at the centre. Thus what
was a single sheet becomes duplex, as was said above.

7. It suffices to have indicated, by a partial examination of some of the curious
features of a single case, the stores of novelties which are thus easily reached. See
especially, for additional materials of the same kind, the investigation in §§ 706-7 of
Thomson and Tait’s Natural Philosophy.
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LXXIV.

SUMMATION OF CERTAIN SERIES.

[Proceedings of the Edinburgh Mathematical Society, June 12, 1885, Vol. 111]

[Abstract’.]

THE attempt to enumerate the possible distinct forms of knots of any order,
though unsuccessful as yet, has led me to a number of curious results, some of which
may perhaps be new. The general character of the methods employed will be obvious
from an inspection of a few simple cases, and any one who has some practice in
algebra may extend the results indefinitely.

Take, for instance, the series

= o
5 (r+ 2s)m —

pm _‘n(? + S)m +

where the coefficients are the terms of (1 —1)", and the other factors are the mth
powers of the terms of an arithmetical series:—m being a positive integer. The
well-known properties of exponential series give us an easy method of summing all
expressions of this form. For we have

goa—4 eln—am+)a _ gre,

(ijr. S eqw)n = W% — pe—IPHA® L

.

which may be written in the form

((p g)w+p2qw”+ 3qx“+&c)

=5 (np —n(np +q— P)”"+ (ﬂp+2q p)™— )m’“

1 This abstract is part of the paper read in June, entitled “On the detection of amphicheiral knots, with
special reference to the mathematical processes involved.” I have unfortunately mislaid the MS.—P. G. T.
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Make np=1r, ¢—p=s; and p and ¢ are known.
The required sum is then the coefficient of ™ in the expansion of

m! ((p—g)m+p22_!q&mﬁ+ )“

It vanishes therefore, so long as m < n; and for m =n its value is
m!l(p—q)=(=)"m!sm
When the coefficients in the given series are the alternate terms of (1—1)* we
have only to treat, as above, the expression
(epm + EQ‘:B)‘H i_. (Epz A eqx)n_
Such results may be varied ad libitum, by introducing two or more quantities in

place of @, and comparing coefficients of like terms:—e.g., as in finding, by the two
methods of expansion, the term in a"y* of the quantity

(eP® — emvyn,

But it suffices to have called attention to processes which can give endless varieties
of results, some of which may have useful applications.
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LXXYV.

ON CERTAIN INTEGRALS.

[Proceedings of the Edinburgh Mathematical Society, December 11, 1885, Vol. 1v.]

THIS paper was based mainly on the results of an investigation which will appear
in full in the ZTramsactions of the Royal Society of Edinburgh. Incidentally, however,
it led to a discussion of the question:—Find the law of density of a planet's atmo-
sphere, supposing Boyle's law to be true for all pressures, and the temperature to be
uniform throughout.

Boyle’s law gives p=/kp, where p is the density at distance r from the planet’s
centre.

The Hydrostatic condition is g§=— pR, where R is the attraction on unit of
mass.
d M+ f i dmrripdr
Hence kd—£=-—p—""?ﬂ——, where 7, is the radius, and M the mass of the
planet.
Write this as
‘?i"fd_P=_.M—f darrp drr
P dr 7y

and differentiate; and we obtain the curious equation

d (mdp\_ 4w
- (; 3;) RE Ty G il ol st 8! e (1),
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A special value of p (compatible with the absence of a solid nucleus) is

A i
P=7 omps’

but this cannot be generalised.

The finding of the integral of (1) in a form convergent for all values of »
greater than 7, presents novel and grave difficulties; but it is clear from the physical
question on which the whole is based that such a solution exists.

If we change the independent variable to s, where 7s =1, (1) becomes

d*logp __dmp
T " ST X o
or, if log p=1u, 4%=e,
d*u 8 .
a;’=—.;"€.

This seems to be the simplest form into which the equation can be transformed.

[See a paper by Sir W. Thomson, “On the Equiltbrium of a Gas under its own
Gravity only.” Proc. R.S. E. Feb. 21, 1887 ; or Phil. Mag. 1887, 1, 287. 1899.]

¢ JE8) 16
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LXXVIL

HOOKE'S ANTICIPATION OF THE KINETIC THEORY, AND OF
SYNCHRONISM.

[Proceedings of the Royal Society of Edinburgh, March 16, 1885.]

WHILE collecting materials for a Text-book of the Properties of Matter, the
author had occasion to consult the very curious pamphlet by Robert Hooke, entitled
Lectures de Potentia Restitutiva, or of Spring (London, 1678).

In this work there is a clear statement of the principle of Synchronism, which
was applied by Stokes to the explanation of the basis of Spectrum Analysis. There
is also a very remarkable statement of the elementary principles of the modern
Kinetic Theory of Gases, the first mention of which is usually fixed sixty years later,
and ascribed to D. Bernoulli in his Hydrodynamica (Argentorati, 1738),

[Here is the chief passage referred to:—

“In the next place for fluid bodies, amongst which the greatest instance we have is
air, though the same be in some proportion in all other fluid bodies.

“The Air then is a body consisting of particles so small as to be almost equal to the
particles of the Heterogeneous fluid medium incompassing the earth. It is bounded but on
one side, namely, towards the earth, and is indefinitely extended upward, being only hindred
from flying away that way by its own gravity, (the cause of which I shall some other time
explain.) Tt consists of the same particles single and separated, of which water and other
fluids do, conjoyned and compounded, and being made of particles exceeding small, its motion
(to make its ballance with the rest of the earthy bodies) is exceeding swift, and its Vibrative
Spaces exceeding large, comparative to the Vibrative Spaces of other terrestrial bodies. I
suppose that of the Air next the Earth in its natural state may be 8000 times greater
than that of Steel, and above a thousand times greater than that of common water, and pro-
portionably I suppose that its motion must be eight thousand times swifter than the former,
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and above a thousand times swifter than the latter. If therefore a quantity of this body
be inclosed by a solid body, and that be so contrived as to compress it into less room,
the motion thereof (supposing the heat the same) will continue the same, and consequently
the Vibrations and Occursions will be increased in reciprocal proportion, that is, if it be
Condensed into half the space the Vibrations and Occursions will be double in number: If
into a quarter the Vibrations and Occursions will be quadruple, dec.

“Again, If the conteining Vessel be so contrived as to leave it more space, the length
of the Vibrations will be proportionably inlarged, and the number of Vibrations and Occur-
sions will be reciprocally diminished, that is, if it be suffered to extend to twice its former
dimensions, its Vibrations will be twice as long, and the number of its Vibrations and
Occursions will be fewer by half, and consequently its indeavours outward will be also weaker
by half.

“These Explanations will serve mutatis mutandis for explaining the Spring of any other
Body whatsoever.” 1898.]

16—2
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LXXVII

ON THE FOUNDATIONS OF THE KINETIC THEORY OF GASES.

[Transactions of the Royal Society of Edinburgh, May 14, 1886, Vol. XXXIIL]

INDEX TO CONTENTS.
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Energy per Particle in two Mixed g s SRR et A e e I\ b i 1T

Systems, §§ 23,24 . . . 140

THE attempt to account for the behaviour of gases by attributing their apparently
continuous pressure to exceedingly numerous, but nearly infinitesimal, impacts on the
containing vessel is probably very old. It certainly occurs, with some little develop-
ment, in Hooke’s tract of 1678, Lectures de potentid restitutivd, or of Spring; and,
somewhat more fully developed, in the Hydrodynamica of D. Bernoulli, 1738, Traces
of it are to be found in the writings of Le Sage and Prévost some 80 or 90 years
ago. It was recalled to notice in 1847 by Herapath in his Mathematical Physics,
and applied, in 1848, by Joule to the calculation of the average speed of the particles
in a mass of hydrogen at various temperatures. Joule expressly states* that his results
are independent of the number of the particles, and of their directions of motion, as
also of their mutual collisions.

* The paper is reprinted Phil. Mag. 1857, II. See especially p. 215,
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In and after 1857 Clausius greatly improved the treatment of the problem by
taking account not only of the mutual impacts of the particles but also of the
rotations and internal vibrations which they communicate to one another, with the
bearing of this on the values of the specific heats; at the same time introducing
(though only to a limited extent) the statistical method. In this series of papers
we find the first hint of the length of the mean free path of a particle, and the
explanation of the comparative slowness of the process of diffusion of one gas into
another. But throughout it is assumed, so far as the calculations are concerned, that
the particles of a gas are all moving with equal speeds. Of the Virial, which Clausius
introduced in 1870, we shall have to speak later.

In the Philosophical Magazine for 1860 Clerk-Maxwell published his papers on
the “Collisions of Elastic Spheres,” which had been read to the British Association
in the previous year. In this very remarkable investigation we have the first attempts
at a numerical determination of the length of the mean free path. These are
founded on the observed rate of diffusion of gases into one another; and on the
viscosity of gases, which here first received a physical explanation. The statistical
method is allowed free play, and consequently the law of distribution of speed among
the impinging particles is investigated, whether these be all of one kind or a mixture
of two or more kinds. One of his propositions (that relating to the ultimate partition
of energy among two groups of colliding spheres), which is certainly fundamental, is
proved in a manner open to very grave objections:—not only on account of the
singular and unexpected ease with which the proof is arrived at, but also on account
of the extraordinary rapidity with which (it seems to show) any forced deviation
from its conclusions will be repaired by the natural operation of the collisions,
especially if the mass of a particle be nearly the same in each system. As this
proposition, in the extended form given to it by Boltzmann and others, seemed to
render the kinetic theory incapable of explaining certain well-known experimental facts,
I was induced to devote some time to a careful examination of Maxwell's proof
(mainly because it appears to me to be the only one which does not seem to evade
rather than boldly encounter the real difficulties of the question®), with the view of
improving it, or of disproving the theorem, as the case might be. Hence the present
investigation, which has incidentally branched off into a study of other but closely
connected questions. The variety of the traps and pit-falls which are met with even
in the elements of this subject, into some of which I have occasionally fallen, and
into which I think others also have fallen, is so great that I have purposely gone
into very minute detail in order that no step taken, however slight, might have the
chance of escaping criticism, or might have the appearance of an attempt to gloss
over a real difficulty.

* Compare another investigation, also by Clerk-Maxwell but based on Boltzmann’s processes, which is given
in Nature, vir. 587 (Oct. 23, 1873). Bome remarks on this will be made at the end of the paper. Meanwhile
it ie sufficient to point out that this, like the (less elaborate) investigations of Meyer and Watson, merely
attempts to show that a certain state, once attained, is permanent. It gives no indication of the rate at
which it would be restored if disturbed. As will be seen later, I think that this “rate” is an element of
very great importance on account of the reasons for confidence (in the general results of the investigation)
which it go strikingly furnishes,
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The greater part of the following investigation is concerned only with the most
elementary parts of the kinetic theory of gases, where the particles are regarded as
hard smooth spheres whose coefficient of restitution is unity. The influence of external
forces, such as gravity, is neglected; and so is that of internal (molecular) forces.
The number of spheres is regarded as extremely great (say of the order 10* per
cubic inch): but the sum of their volumes is regarded as very small in comparison
with the space through which they are free to move; as, for instance, of the order
10-% or 10~% It will be seen that several of the fundamental assumptions, on which
the whole investigation rests, are justified only by reference to numbers of such
enormous magnitude, or such extreme minuteness, as the case may be. The walls of
the containing vessel are supposed simply to reverse the normal velocity of every sphere
impinging on them.

I. One set of Equal Spheres.

1. Very slight consideration is required to convince us that, unless we suppose
the spheres to collide with one another, it would be impossible to apply any species
of finite reasoning to the ascertaining of their distribution at each instant, or the
distribution of velocity among those of them which are for the time in any particular
region of the containing vessel. But, when the idea of mutual collisions is intro-
duced, we have at once, in place of the hopelessly complex question of the behaviour
of innumerable absolutely isolated individuals, the comparatively simple statistical
question of the average behaviour of the various groups of a community, This dis-
tinction is forcibly impressed even on the non-mathematical, by the extraordinary
steadiness with which the numbers of such totally unpredictable, though not uncommon,
phenomena as suicides, twin or triple births, dead letters, &c., in any populous country,
are maintained year after year.

On those who are acquainted with the higher developments of the mathematical
Theory of Probabilities the impression is still more forcible. Every ome, therefore,
who considers the subject from either of these points of view, must come to the
conclusion that continuous collisions among our set of elastic spheres will, provided
they are all equal, produce a state of things in which the percentage of the whole
which have, at each moment, any distinctive property must (after many collisions)
tend towards a definite numerical value; from which it will never afterwards markedly
depart.

This principle is of the utmost value, when legitimately applied; but the present
investigation was undertaken in the belief that, occasionally at least, its powers have
been to some extent abused. This appears to me to have arisen from the difficulty
of deciding, in any one case, what amount of completeness or generality is secured
when the process of averaging is applied in successive steps from the commencement
to the end of an investigation, instead of being reserved (as it ought to be) for a
single comprehensive step at the very end.

Some of the immediate consequences of this principle are obvious without caleu-
lation : such as
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() Even distribution, at any moment, of all the particles throughout the space
in which they move.

(b) Even distribution of direction of motion among all particles having any one
speed, and therefore among all the particles.

(¢) Definite percentage of the whole for speed lying between definite limits.

These apply, not only to the whole group of particles but, to those in any portion
of space sufficiently large to contain a very great number of particles.

(d) When there are two or more sets of mutually colliding spheres, no one
of which 1is overwhelmingly more nwmerous than another, nor in a hopeless minority as
regards the sum of the others, similar assertions may be made as to each set
separately.

2. But calculation is required in order to determine the law of grouping as to
speeds, in (c) above. It is quite clear that the spheres, even if they once had equal
speed, could not possibly maintain such a state. (I except, of course, such merely
artificial distributions as those in which the spheres are supposed to move in groups
in various non-intersecting sets of parallel lines, and to have none but direct impacts.
For such distributions are thoroughly unstable; the very slightest transverse impact,
on any one sphere, would at once upset the arrangement.) For, when equal smooth
spheres impinge, they ezchange their velocities along the line of centres at impact,
the other components being unchanged; so that, only when that line is equally
inclined to their original directions of motion, do their speeds, if originally equal,
remain equal after the completion of the impact. And, as an extreme case, when
two spheres impinge so that the velocity of one is wholly in the line of centres at
impact, and that of the other wholly perpendicular to it, the first is brought to rest
and the second takes the whole kinetic energy of the pair.  Still, whatever be the
final distribution of speeds, it is obvious that it must be independent of any special
system of axes which we may use for its computation. This consideration, taken
along with (b) above, suffices to enable us to find this final distribution.

3. For we may imagine a space-diagram to be constructed, in which lines are
laid off from an origin so as to represent the simultaneous velocities of all the spheres
in a portion of space large enough to contain a very great number of them. Then
(b) shows that these lines are to be drawn evenly in all directions in space, and
(¢) that their ends are evenly distributed throughout the space between any two
nearly equal concentric spheres, whose centres are at the common origin. The density
of distribution of the ends (z.e, the number in unit volume of the space-diagram) is
therefore a function of », that is, of W/a"+y'+ 2. But the argument above shows,
further, that this density must be expressible in the form

S @) f©)f )

Whatever rectangular axes be chosen, passing through the origin. These joint conditions
give only two admissible results: viz, either

Jf@)=A4, or f(x)=Be%,
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The first is incompatible with the physical problem, as it would make the per-
centage of the whole particles, which have one definite speed, increase indefinitely with
that speed. The same consideration shows & fortior: that, in the second form of
solution, which s the only ome left, C must be negative. Hence the density of the
distribution of “ends” already spoken of is

Behr?,
If n be the whole number of particles, 7.e., of “ends,” we must obviously have

n

4 B f e i dp = n.
0

: ¢ 1 T
The value of the integral is ; \/ %

so that the number of spheres whose speed is between » and »+ dr is

This distribution will hereafter be spoken of as the “special” state.

The mean speed is therefore

h’f”’ 2
4 e —hr¥ 'sd _—— ;
\/'ﬂ' 0 o Varh

while the mean-square speed is

e —hr? pd _E__
4‘/\/;]0 L '?d?'--zk.

This shows the meaning of the constant A (Several of the results we have just
arrived at find full confirmation in the investigations (regarding mixed systems) which
follow, if we only put in these P for @ passim:—ie., pass back from the case of a
mixture of spheres of two different groups to that of a single group.)

4, Meanwhile, we can trace the general nature of the process by which the
“gspecial ” arrangement of speed expressed by (1) is brought about from any initial
distribution of speed, however irregular. For impacts on the containing vessel do not
alter », but merely shift the particular “end” in question to a different position on
its spherical locus. Similarly, impact of equal particles does not alter the distribution
of velocity along the line of centres, nor along any line perpendicular to it. But it
does, in general, produce alterations in the distribution parallel to any line other
than these.

Hence impacts, in all of which the line of centres is parallel to one common
line, produce no change in the arrangement of velocity-components along that line,
nor along any line at right angles to it.  But there will be, in general, changes
along every other line. It is these which lead gradually (though very rapidly) to
the final result, in which the distribution of velocity-components is the same for all
directions,
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When this is arrived at, collisions will not, in the long run, tend to alter it.
For then the uniformity of distribution of the spheres in space, and the symmetry
of distribution of velocity among them, enable us (by the principle of averages) to
dispense with the only limitation above imposed; viz, the parallelism of the lines of
centres in the collisions considered.

5. In what precedes nothing whatever has been said as to the ratio of the
diameter of one sphere to the average distance between two proximate spheres, except
what is implied in the preliminary assumption that the sum of the volumes of the
spheres is only a very small fraction of the space in which they are free to move.
It is probable, though not (so far as I know) thoroughly proved, that if this fraction
be exceedingly small the same results will ultimately obtain, but only after the lapse
of a proportionately long time; while, if it be infinitely small, there will be no law,
as there will be practically no collisions.  On the other hand, if the fraction be a
large one (ie, as in the case of a highly compressed gas), it seems possible that
these results may be true, at first, only as a very brief tume-average of the condition of
the spheres in any region large enough to contain a great number:—that, in fact, the
distribution of particles and speeds in such a region will be for some time subject to
considerable but extremely rapid fluctuations. Reasons for these opinions will be seen
in the next section of the paper. But it must also be noticed that when the particles
fill the greater part of the space in which they move, simultaneous impacts of three
or more will no longer be of rare occurrence; and thus a novel and difficult feature
forces itself into the question.

Of course with infinitely hard spheres the probability of such multiple collisions
would be infinitely small. It must be remembered, however, that the investigation is
meant to apply to physical particles, and not to mere mathematical fictions; so that
we must, in the case of a highly compressed gas, take account of the possibility of
complex impacts, because the duration of an impact, though excessively short, is
essentially finite.

II. Mean Free Path among Equal Spheres.

6. Consider a layer, of thickness &z, in which quiescent spheres of diameter s
are evenly distributed, at the rate of =, per unit volume. If the spheres were opaque,
such a layer would allow to pass only the fraction

1 — nyrs?duz/4

of light falling perpendicularly on it. But if, instead of light, we have a group of
spheres, also of diameter s, falling perpendicularly on the layer, the fraction of these
which (whatever their common speed) pass without collision will obviously be only

1 — nymrsda;

for two spheres must collide if the least distance between their centres is not greater

than the sum of their radii, It is, of course, tacitly understood when we make such

a statement that the spheres in the very thin layer are so scattered that mno one
T, IL 17
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prevents another from doing its full duty in arrvesting those which attempt to pass.
Thus the fraction above written must be considered as differing very little from
unity. In fact, if it differ much from unity, this consideration shows that the estimate
of the number arrested will necessarily be exaggerated. Another consideration, which
should also be taken into account is that, in consequence of the finite (though very
small) diameter of the spheres, those whose centres are not in the layer, but
within one diameter of it, act as if they were, in part, in the layer. But the
corrections due to these considerations can be introduced at a later stage of the
investigation.

7. If the spheres impinge obliquely on the layer, we must substitute for 8z the
thickness of the layer in the direction of their motion.

If the particles in the layer be all moving with a common velocity parallel to
the layer, we must substitute for 82 the thickness of the layer in the direction of the
relative velocity.

If the particles in the layer be moving with a common velocity inclined to the
plane of the layer, and the others impinge perpendicularly to the layer, the result will
be the same as if the thickness of the layer were reduced in the ratio of the
relative to the actual speed of the impinging particles, and it were turned so as to
be perpendicular to the direction of the relative velocity.

8. Now suppose the particles in the layer to be moving with common speed
7, but in directions uniformly distributed in space. Those whose directions of motion
are inclined at angles between B and B+dB to that of the impinging particles are,
in number, :

n sin BdB/2 ;

and, by what has just been said, if v be the common speed of the impinging
particles, the virtual thickness of the layer (so far as these particles are concerned) is

v, 02/,

where v, = N + 0. — 200, cos B
is the relative speed, a quantity to be treated as essentially positive.

Thus the fraction of the impinging particles which traverses this set without
collision is

1 — mmrs®dav, sin BdB3/2v.

To find the fraction of the impinging particles which pass without collision
through the layer, we must multiply together all such expressions (each, of course,
infinitely nearly equal to unity) between the limits 0 and = of B The logarithm
of the product is

sl e F V® 4 v, — 20, cos 8. sin Bdp.
v 0
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Making v, the variable instead of 8, this becomes

ny s
= 1;;% ffdv.,.

If » be greater than v, the limits of integration are w—v,, and v+v, and the
expression becomes

— mymrsidw (1 + 3@7)

but, if v be less than v, the limits are »,—v and », +9, and the value is

— n, s dm (;11 tl‘)

These give, as they should, the common value

— 4m,ms* S/
when » =w,.

9. Finally, suppose the particles in the layer to be in the “special” state. If
there be n in unit volume, we have for the number whose speed is between the

limits v, and o, + dv,
]
m= %ﬂlgdvz ,\/f—r E_Iw‘s.

Hence the logarithm of the fraction of the whole number of impinging particles, whose
speed is v and which traverse the layer without collision, is

_4,m3=\/h { "’“’l *u+ )d@l F -"”l‘(%‘-+i;—ls)dv,}.

The value of the factor in brackets is easily seen to be
ay =Y ¥ (%{_‘_ 1) Ao

~dh 32 i ) €
| S 1 1
* i b L
where V= ue—""’d'u,

0

and thus it may readily be tabulated by the help of tables of the error-function.

When v is very large, the ultimate value of the expression is

1 /o,
N B

which shows that, in this case, the “special” state of the particles in the layer does
not affect its permeability.
17—2
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10. Write, for a moment, — edxw

as the logarithm of the fraction of the particles with speed v which traverse the
layer unchecked. Then it is clear that

E—w

represents the fraction of the whole which penetrate unchecked to a distance # into
a group in the “special” state. Hence the mean distance to which particles with
speed v can penetrate without collision is

f e ydax
0

F ey
0

This is, of course, a function of w; and the remarks above show that it increases
continuously with » to the maximum value (when v is infinite)

1
nirs?

(b'] e

2

1.e, the mean path for a particle moving with infinite speed is the same as if the
particles of the medium traversed had been at rest.

11. Hence, to find the Mean Free Path among a set of spheres all of which
are in the special state, the natural course would appear to be to multiply the
average path for each speed by the probability of that speed, and take the sum of the
products. Since the probability of speed v to v +dv is

3
4 ,\/ h ey,
m

the above definition gives for the length of the mean free path,

h?
+ \/ - f e "y’dule,
m™Jo

or, by the expression for e above,
1 e "yidy

Esﬂf fﬂ Dty (v2+v—1‘) o +f'5 etoa (Y 07 o
A ue g 1 4 3 +—1,;) N

This may without trouble (see § 9) be transformed into the simpler expression
ke datede
2 & ’
?'WT&'JO me—dﬂ e (2&"“4— l)f &‘-mdm
0

which admits of easy numerical approximation. The numerical work would be
simplified by dividing above and below by e, but we prefer to keep the present
form on account of its direct applicability to the case of mixed systems. And it is
curious to note that 4e—# is the third differential coefficient of the denominator.
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The value of the definite integral (as will be shown by direct computation in
an Appendiz to the paper) is about

0677 ;

and this is the ratio in which the mean path is diminished in consequence of the
motion of the particles of the medium. For it is obvious, from what precedes, that
the mean path (at any speed) if the particles were quiescent would be

1
nrs®
[The factor by which the mean path is reduced in consequence of the *special”
state is usually given, after Clerk-Maxwell, as 1/y/2 or 0-707.

But this appears to be based on an erroneous definition. For if u, be the
fraction of the whole particles which have speed », p, their free path; we have
taken the mean free path as

2 (nupy),

according to the usual definition of a “mean.”

Clerk-Maxwell, however, takes it as

= (n,v)
2 (nov/po)’

i.e, the quotient of the average speed by the average number of collisions per
particle per second. But those who adopt this divergence from the ordinary usage
must, I think, face the question “Why not deviate in a different direction, and
define the mean path as the product of the average speed into the average time of
describing a free path?” This would give the expression

3 (ng0) « 2 (NgofV).

The latter factor involves a definite integral which differs from that above
solely by the factor w/A/z in the numerator, so that its numerical determination is
easy from the calculations already made. It appears thus that the reducing factor
would be about

2

G x 0650, =0734 nearly;

i, considerably more in excess of the above value than is that of Clerk-Maxwell.
Until this comparatively grave point is settled, it would be idle to discuss the small
effect, on the length of the mean free path, of the diameters of the impinging
spheres.]
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III. Number of Collisions per Particle per Second.

12. Here again we may have a diversity of definitions, leading of course to
different numerical results. Thus, with the notation of § 11, we may give the mean
number of collisions per particle per second as

2 (ng/py).

This is the definition given by Clerk-Maxwell and adopted by Meyer; and here the
usual definition of a “mean” is employed. The numerical value, by what precedes, is

.l ot vYy s
a1 —hd, - 9.4 ™ —hv,® 1 ey
16ns%h f:e v"dfv{fne (1;1 +3v"‘) dv, + 'u i (—3 + 'v) d*vl}.

Meyer evaluates this by expanding in an infinite series, integrating, and summing.
But this circuitous process is unnecessary; for it is obvious that the two parts of
the expression must, from their meaning, be equal; while the second part is integrable
directly.

13. On account of its bearing (though somewhat indirectly) upon the treatment
_of other expressions which will presently occur, it may be well to note that a mere
inversion of the order of integration, in either part of the above double integral,
changes it into the other part.

Otherwise :—we may reduce the whole to an immediately integrable form by the
use of polar co-ordinates; putting
v=rcosd, v =rsind,
and noting that the limits of » are 0 to o in both parts, while those of 8 are 0
to w/4 in the first part, and =/4 to =/2 in the second. [7%s transformation,

however, is not well adapted to the integrals which follow, with reference to two
sets of spheres, because b has not the same value in each set.]

14. Whatever method we adopt, the value of the expression is found to be

V/%F.1w“=2)\/;r2hm”;
.

and, as the mean speed is (§ 3) ’\_/?rfa,’
we obtain Clerk-Maxwell’s value of the mean path, above referred to, viz.,

g A
narst/2 "
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But (in illustration of the remarks at the end of § 11) we might have defined

the mean number of collisions per particle per second as

= () Ratey
2 (‘»%Pu)’ g 2_(;103%/?’)’ -

The first, which expresses the ratio of the mean speed to the mean free path, gives

e., &e.

L2 mad

Noh " 06777
and the second, which is the reciprocal of the mean value of the time of describing
a free path, gives

= T

vh 0650 °

The three values which we have adduced as examples bear to one another the

reciprocals of the ratios of the above-mentioned determinations of the mean free path.

IV. Clerk-Mazwell’'s Theorem.

15. In the ardour of his research of 1859%*, Maxwell here and there contented
himself with very incomplete proofs (we can scarcely call them more than illustrations)
of some of the most important of his results. This is specially the case with the
investigation of the law of ultimate partition of energy in a mixture of smooth
spherical particles of two different kinds. He obtained, in accordance with the so-
called Law of Awogadro, the result that the average energy of translation is the
same per particle in each system; and he extended this in a Corollary to a mixture
of any number of different systems. This proposition, if true, is of fundamental
importance. It was extended by Maxwell himself to the case of rigid particles of
any form, where rotations perforce come in. And it appears that in such a case
the whole energy is ultimately divided equally among the various degrees of freedom.
It has since been extended by Boltzmann and others to cases in which the individual
particles are no longer supposed to be rigid, but are regarded as complex -systems
having great numbers of degrees of freedom. And it is stated, as the result of a
process which, from the number and variety of the assumptions made at almost every
stage, is rather of the nature of playing with symbols than of reasoning by consecutive
steps, that in such groups of systems the ultimate state will be a partition of the
whole energy in equal shares among the classes of degrees of freedom which the
individual particle-systems possess. This, if accepted as true, at once raises a formidable
objection to the Kkinetic theory. For there can be no doubt that each individual
particle of a gas has a very great number of degrees of freedom besides the six
which it would have if it were rigid:—the examination of its spectrum while
incandescent proves this at once. But if all these degrees of freedom are to share
the whole energy (on the average) equally among them, the results of theory will no
longer be consistent with our experimental knowledge of the two specific heats of a
gas, and the relations between them,

* Phil. Mag., 1860.
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16. Hence it is desirable that Clerk-Maxwell's proof of his fundamental Theorem
should be critically examined, and improved where it may be found defective. If it
be shown in this process that certain preliminary conditions are absolutely necessary
to the proof even of Clerk-Maxwell’s Theorem, and if these cannot be granted in the
more general case treated by Boltzmann, it is clear that Boltzmann’s Theorem must
be abandoned.

17. The chief feature in respect of which Maxwell's investigation is to be
commended is its courageous recognition of the difficulties of the question. In this
respect it far transcends all other attempts which I have seen. Those features, besides
too great conciseness, in respect of which it seems objectionable, are:—

(a) He assumes that the transference of energy from one system to the other
can be calculated from the results of a single impact between particles, one from
each system, each having the average translational energy of its system.

Thus (so far as this step is concerned) the distribution of energy in each
system may be any whatever.

(b) In this typical impact the velocities of the impinging spheres are taken as
at right angles to one another, so that the relative speed may be that of mean
square as between the particles of the two systems. The result obtained is fallacious,
because in general the directions of motion after impact are found not to be at
right angles to one another, as they would certainly be (on account of the perfect
reversibility of the motions) were this really a typical impact.

(¢) Clerk-Maxwell proceeds as if every particle of one system impinged upon
one of the other system at each stage of the process—i.e, he calculates the trans-
ference of energy as if each pair of particles, one from each system, had simultaneously
a typical impact. This neglect of the immensely greater number of particles which
either had no impact, or impinged on others of their own group, makes the calculated
rate of equalisation far too rapid.

(d) Attention is not called to the fact that impacts between particles are
numerous in proportion to their relative speed, nor is this consideration introduced in
the calculations.

(e) Throughout the investigation each step of the process of averaging is
performed (as a rule) before the expressions are ripe for it.

18. In seeking for a proof of Maxwell's Theorem it seems to be absolutely
essential to the application of the statistical method to premise :—

(A) That the particles of the two systems are thoroughly mixed.

(B) That in any region containing a very large number of particles, the particles
of each kind separately acquire and maintain the error-law distribution of speeds—
e, each set will ultimately be in the “special” state. The disturbances of this
arrangement produced in either system by impacts on members of the other are
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regarded as being promptly repaired by means of the internal collisions in the system
itself. This is the sole task assigned to these internal collisions. We assume that
they accomplish it, so we need not further allude to them.

[The warrant for these assumptions is to be sought as in §4; and in the fact
that only a small fraction of the whole particles are at any instant in collision;
te, that each particle advances, on the average, through a considerable multiple of
its diameter before it encounters another.]

(C) That there is perfectly free access for collision between each pair of particles,
whether of the same or of different systems; and that, in the mixture, the number
of particles of one kind is not overwhelmingly greater than that of the other kind.

[This is one of the essential points which seem to be wholly ignored by Boltzmann
and his commentators. There is no proof given by them that one system, while
regulating by its internal collisions the distribution of energy among its own members,
can also by impacts regulate the distribution of energy among the members of
another system, when these are not free to collide with one another. In fact, if (to
take an extreme case) the particles of one system were so small, in comparison with
the average distance between any two contiguous ones, that they practically had no
mutual collisions, they would behave towards the particles of another system much as
Le Sage supposed his ultra-mundane corpuscles to behave towards particles of gross
matter. Thus they would merely alter the apparent amount of the molecular forces
between the particles of a gas. And it is specially to be noted that this is a
question of effective diameters merely, and not of masses:—so that those particles
which are virtually free from the self-regulating power of mutual collisions, and
therefore form a disturbing element, may be much more massive than the others.]

19. With these assumptions we may proceed as follows:—Let P and  be the
masses of particles from the two systems respectively; and when they impinge, let
u, v be their velocity-components measured towards the same parts along the line
of centres at impact. If these velocities become, after impact, u’, v/ respectively, we
have at once

P(u’—u)=—-;—?_;_4%(11-—-\?):—Q(v'—v);

an immediate consequence of which is

4'P Q a | P_ i i

- s (P = Qv = (P = Q) uv} = Qv v,

Hence, denoting by a bar the average value of a quantity, we see that transference of
energy between the systems must cease when

P Qi =(P=Q) 07 =0 ..iienenrunniieeeieseersarsanse (1),
and the question is reduced to finding these averages.

P(u*—u)=

[I thought at first that uv might be assumed to vanish, and that w and v*
might each be taken as one-third of the mean square speed in its system, This set
of suppositions would lead to Maxwell’s Theorem at once. But it is clear that, when
two particles have each a given speed, they are more likely to collide when they

T. II 18
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are moving towards opposite parts than when towards the same parts. Hence uv
must be an essentially negative quantity, and therefore Pu® necessarily less than Qv?,
if P be greater than . Thus it seemed as if the greater masses would have on
the average less energy than the smaller. These are two of the pitfalls to which
I have alluded. Another will be met with presently.]

20. But these first impressions are entirely dissipated when we proceed to
calculate the average values. For it is found that if we write (1) in the form

Pur—uv — Qv —uv =0,

the terms on the left are equal multiples of the average emergy of a P and of a
Q respectively. Thus Maxwell’s Theorem is rigorously true, though in a most unexpected
manner. There must surely be some extremely simple and direct mode of showing
that u®—uv is independent of the mean-square speed of the system of @s. Mean-
while, in default of anything more simple, I give the investigation by which I arrived
at the result just stated,

21. Suppose a particle to move, with constant speed v, among a system of
other particles in the “special” state; the fraction of the whole of its encounters
which takes place with particles, whose speed is from # to #+dy, and whose
directions of motion are inclined to its own at angles from B to B+ dB, is § 8)
proportional to

e *uy3dvw, sin BdB,
or as we may write it for brevity
v, sin Bdp.
This is easily seen by remarking that, by § 8, while the particle advances through
a space &z, it virtually passes through a layer of particles (such as those specified)
of thickness vdz/v. Here (§ 3) 3/2k is the mean-square speed of the particles of the
system,

Let the impinging particle belong to another group, also in the special state.
Then the number of particles of that group which have speeds between » and v+ dv
is proportional to

e yidy = p,
as we will, for the present, write it.

Now let V, V;, V,, in the figure, be the projections of v, », v, on the unit
sphere whose centre is O; C that of the line of
centres at impact. Then VOV,=8. Let V,0V=a,
VQOV1=5‘1: V000=fy, and VV,0C= 95 The limits of v
are 0 and 7/2; those of ¢ are 0 and 2. Also the
chance that (' lies within the spherical surface-
element sinqdydé, is proportional to the area of
the projection of that element on a plane perpen-
dicular to the direction of wv,, %e, it is propor-
tional to

cos y sin ydydé.
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But by definition we have
u=v cos VOC =v (cos a cosry + sin a sin vy cos ¢),

v =1, cos V,0C =, (cos &, cos ry + sin g, sin y cos ¢);

and by the Kinematics of the question, as shown by the dotted triangle in the figure,

we have
¥ COS & — , COS o = Uy,

v sin ot — 2, Sin &, = 0.
Thus, as indeed is obvious from much simpler considerations,

U—V=12,C08r,

fwlvn sin BdBu (u — v) cos y sin ydryde

so that u—uv=

fwl v, sin Bd cos « sin ydydd

fwlw., sin BdBv (cos a cos y + sin a sin  cos ¢) v, cos?y sin ydrydep

fwl‘ug sin Bdf3 cos v sin ydryde
where each of the integrals is quintuple.

The term in cos ¢ vanishes when we integrate with respect to ¢:—and, when
further integrate with respect to vy, we have for the value of the expression

1 :
= |vv,vy8in BdB vy, cos a

2
J'W‘ v, sin BdS
where the integrals are triple.
Now Quv, cos o= + vt — 0%,
and v, sin BdB = v,dv,,

so that the expression becomes
1 v,? d,
. f vy -—nwl (Vv - v?)

j' v,? dv,
vy,

o

It will be shown below (Part VI.), that we have, generally,
-1
fvv ”umd"fu_ Lo _J__Wny(h"'k) :
S TSR g ) (e

we

and that it is lawful to differentiate such expressions with regard to & or to k. Hence

d d ,
is _11,15-(3};-&)1./3_1
b T./3 = %

Thus Clerk-Maxwell's Theorem is proved.
18—2
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22. The investigation of the separate values of the parts of this expression is
a little more troublesome, as the numerators now involve second partial differential

coefficients of I,; but it is easy to see that we have

(d d) ;o (3 i—d%) I,,/3+I;,/5

_ 1 G dh b2
=16 RS 41 T 2h(h+k)’
§ ay. Ty
a__l(dh ) b2 (@t ap) By
=16 1L./s  2(h+k)’

and, from these, the above result again follows.

[Tt is clear, from the investigation just given, that the expression for the value of
w’—uv would be the same (to a numerical factor prés) whatever law we assumed for the
probability of the line of centres having a definite position, and thus that Maxwell’s
Theorem would be true, provided only that the law were a function of ¢ alone, and
not of ¢ (ie, that the possible positions of the line of centres were symmetrically
distributed round the direction of relative motion of the impinging particles). In my
first non-approximate investigation (read to the Society on Jan. 18, and of which an
Abstract appeared in Nature, Jan. 21, 1886) I had inadvertently assumed that the possible
positions of C' were equally distributed over the surface of the hemisphere of which V, is
the pole, instead of over the surface of its diametral plane. The forms, however, of
u? and of uv separately, suffer more profound modifications when such assumptions are
made. ]

V. Rate of Equalisation of Average Energy per particle in two
Mized Systems.

23. To obtain an idea of the rate at which a mixture of two systems approaches
the Maxwell final condition, suppose the mixture to be complete, and the systems
each in the special state, but the average energy per particle to be different in the two.
As an exact solution is not sought, it will be sufficient to adopt, throughout, roughly
approximate expressions for the various quantities involved. We shall choose such as

lend themselves most readily to calculation.

It is easy to see, by making the requisite slight modifications in the formula of
§ 12, that, if m be the number of P’s and n that of @'s in unit volume, the number of
collisions per second between a P and a @ is

Bk \/'ﬂ'(fr +fﬂ),

where 8 now stands for the sum of the radii of a P and of a @. For if, in the formula
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referred to, we put (hk)** for A% and also put %k for h in the exponentials where the
integration is with respect to v, it becomes

8ns? (hk) I,/3,

according to the notation of § 21. This is the average number of impacts per second
which a P has with @’s.

Hence, if & be the whole energy of the P’s, p that of the @'s, per unit volume, the
equations of § 19 become

é’:

16 PQ 5 (b + k) P
3(_P+Q)a /\/ Wk (nw — mp) = — p,

from which we obtain, on the supposition (approximate enough for our purpose) that
we may treat 1/h+1/k as constant,

nw —mp = Ce~ U7,

116 B h+k
where 773 (P+QQ);SE(m+ ),\/T( X )
The quantity nw — mp=mn (=/m —p/n)

is mn times the difference of the average energies of a P and a , and (since
€'®=100 nearly) we see that it is reduced to one per cent. of its amount in the time

Bl T
hedbl e ey PO \/w(mk)se“"“d*"

24. For a mixture, in equal volumes, of two gases in which the masses of the
particles are not very different, say oxygen and nitrogen, we may assume as near enough
for the purposes of a rough approximation

m=n=g x 107,

whence m +n (per cubic inch) is double of this,

3
2h = 2%

g=3x 10~*® inch,

_(12 x 1600 inch sec.),

N ik i 13'8 x 10" x 4 \/__ e =
1= 16x9x 3 x 10% x 12 x 1600/ 4o~ 3 x 100 “0C0N0S nearly;

and the difference has fallen to 1 per cent. of its original amount in this period,
ue., after each P has had, on the average, about four collisions with @’s. This calculation
has no pretensions to accuracy, but it is excessively useful as showing the nature of the
warrant which we have for some of the necessary assumptions made above. For if
the rapidity of equalisation of average energy in two systems is of this extreme order




142 ON THE FOUNDATIONS OF THE KINETIC THEORY OF GASES. [LXXVIL

of magnitude, we are entitled to suppose that the restoration of the special state in any
one system is a phenomenon taking place at a rate of at least the same if not a

higher order of magnitude.

Clerk-Maxwell’s result as regards the present question is that, at every typical
impact between a P and a @, the difference of their energies is reduced in the ratio

(#53)

so that, if the masses were equal, the equalisation would be instantaneous.

VI. On some Definite Integrals.

25. It is clear that expressions of the forms
fe"“’w'dwfxe"’”’y’dy and f e""’x’dxf e~ My dy,
0 0 0 ®

where 7 and s are essentially positive integers, may lawfully be differentiated under the
integral sign with regard to A4 or to & In fact they, and their differential coefficients,
which are of the same form, are all essentially finite.

As, in what immediately follows, we shall require to treat of the first of these forms
only when » is odd and s even, and of the second only when » is even and s odd,
it follows that their values can all be obtained by differentiation from one or other

of the integrals

o % Jr
—ha? _k:d T
fn B xdxfo S hNh+F
o ® '\/'a'r
d f ~hat f~ky’d=—__.
g Mot ol Bl b oo e

These values may be obtained at once by noticing that the second form is integrable
directly; while, by merely inverting the order of integration, it becomes the first with
h and & interchanged.

26. In §§ 21, 22 we had to deal with a number of integrals, all of one form, of
which we take as a simple example

_ I,/3=fvv1:’7:7dvo

3f Briy {[ ot ool Al it G 59')’)+f eHydy (y +a) — (y - w)’)}
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From the remarks above it is clear that this can be expressed as

2\/7‘- d’ dx 1 dﬁ da 1
:gﬁf%( k+ 3h 3+ h )
3 4 2 fi-“(h+k)3 1 (h + k)t
_ VT (& + 3k°h) + (3kh* + )
- !

PR (B + fcﬁ
N (h+ k)t
4 (hky

The peculiar feature here shown is the making up of the complete cube of k+h
in the numerator by the supply of the first half of its terms from the first part of the
integral, and of the remainder from the second*. On trial I found that the same thing
holds for 7, and I, so that I was led to conjecture that, generally, as in § 21

-1

Im:[—l ‘\/ﬂ'n (k+k) 2_
2n+1" 4 : (M)ﬂ"'l ;

After the preliminary work we have just given, it is easy to prove this as follows.
We have always
(@ +yy*" = (@—yy™) (@ +y) + (# —y)?)

=(@+ )" = (@ =y + (¢ = y) (@ + )™ = (@ — yy).
Operate on this by fwe““””mda;fze—mydy ( ) :
U] 0

and on the same expression, with # and y interchanged (when, of course, it remains

true), by
f:e-“’mdwf:e"‘-'ﬂ’ydy ( )

and add the results. This gives at once

d  d AR o
"'2(%'1' ﬂ) Im+1=Ien+s+(ﬁ—'@) Lo ;
which is found on trial to be satisfied by the general value given above,

* Prof. Cayley has ealled my attention, in connection with this, to the following expression from a Trinity
(Cambridge) Examination Paper:—
(a+b)™=(a+b)" (a™+ b")
+(a+b)"! (na™b + nab™)

afnnt+l g nontl
+(a+4b)™ '3(-—1—2-aﬂb+ 1.9 a*bn

+(a+b) i ;’@.'LW} (@ hi=14 qn=1pn),
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27. Partly as a matter of curiosity, but also because we shall require a case of
it, it may be well to mention here that similar processes (in which it is no longer
necessary to break the y integration into two parts) lead to the companion formula

% =f‘ e~ pdy fo e Wydy (2 + y)" — (@ — y)™)/2n

1.3.5...(20 —1) (h+ k)™
n 22 ML
(hk) *
And we see, by Wallis’ Theorem, that (when » is increased without limit) 7,, is
ultimately the geometric mean between I, , and I,,,,.

I
k!

VII. Mean Path wn « Mixture of two Systems.

28. If we refer to § 10, we see that, instead of what was there written as — edw,
we must now write —(e+e,)dxz; where ¢, which is due to stoppage of a particle of
the first system by particles of the second, differs from e in three respects only. Instead
of the factor 4s*, which appears in e, we must now write (s+s,)*; where s is the
diameter of a particle of the second system. Instead of & and n we must write X,
and n, respectively.

Hence the mean free path of a particle of the first system is
h? f v2dv i~
ete
which, when the values of e and e, are introduced, and a simplification analogous to those
in § 9, 11, is applied, becomes

X , Sl
; s+ 8 b0 B TR
fre ’ me‘”’+(1+2w’)f P d 4 m,h( 23’) (wle e +2w1)fo e+ da)
in which W= h‘

Thus the values tabulated at the end of the paper for the case of a single system
enable us to calculate the value of this expression also.

VIII. Pressure wn a System of Colliding Particles.

29. There are many ways in which we may obtam by very elementary processes,
the pressure in a system of colliding particles.

(¢) It is the rate at which momentum passes across a plane unit area; or the
whole momentum which so passes per second. [It is to be noted that a loss of
negative momentum by the matter ai either side of the plane is to be treated as a gain
of positive.]
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In this, and the other investigations which follow, we deal with planes supposed
perpendicular to the axis of #; or with a thin layer bounded by two such planes.

The average number of particles at every instant per square unit of a layer, whose
thickness is dx, is ndx. Of these the fraction

v=4 ,\/}f e~ pidy
o™

have speeds from » to v+ dv. And of these the fraction
sin BdB/2

are moving in directions inclined from B to B+dB to the axis of @z Each of them,
therefore, remains in the layer for a time

dafv cos 3,

and carries with it momentum PuycosB
parallel to z. Now from 8=0 to ,6‘=:;—- we have positive momentum passing towards

positive. From S .—_-g to 8=m we have an equal amount of negative momentum leaving

@ positive. Hence the whole momentum which passes per second through a plane unit
perpendicular to @ is

=l

2 x £ Pn f »? [ cos? Bsin BdB = lP-na”-,
2 -~ 3

0

where the bar indicates mean value. That is

Pressure = p=§ (Kinetic Energy in Unit Volume).

() Or we might proceed as follows, taking account of the position of each particle
when it was last in collision.

Consider the particles whose speeds are from v to v+dv, and which are contained
in a layer of thickness 8z, at a distance « from the plane of yz. Each has (§ 10) on
the average ev collisions per second. Thus, by the perfect reversibility of the motions,
from each unit area of the layer there start, per second,

nvevdx

such particles, which have just had a collision. These move in directions uniformly
distributed in space; so that
sin BdB/2

of them are moving in directions inclined B to B+dB to the axis of 2. Of these

the fraction
g—exsech

i 1 19
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(where « is to be regarded as signless) reach the plane of yz, and each brings
momentum

Pyecos B

perpendicular to that plane. Hence the whole momentum which reaches unit area
of the plane is

&
2
)

85 % nPf vo® | cos Bsin ﬁdﬁf edze—evsech
0 ( 0
00 g
=nP j vt f cos® B sin Bdp,
0 0

the same expression as before.

(¢) Clausius’ method of the virial, as usually applied, also gives the same result.

30. But this result is approximate only, for a reason pointed out in § 6 above. To
obtain a more exact result, let us take the virial expression itself. It is, in this case, if
N be the number of particles in volume V,

1] — 3 1
Q PN‘EJ!=§PV+§E(R?"),

where B is the mutual action between two particles whose centres are » apart, and is
positive when the action is a stress tending to bring them nearer to one another. Hence,
omitting the last term, we have approximately

1N
P=37v

which we may employ for the purpose of interpreting the value of the term omitted.

P,

[It is commonly stated (see, for instance, Clerk-Maxwell's Lecture to the Chemical
Society*) that, when the term }=(Rr) is negative, the action between the particles is in
the main repulsive:—“a repulsion so great that no attainable force can reduce the
distance of the particles to zero” There are grave objections to the assumption of
molecular repulsion; and therefore it is well to inquire whether the mere impacts, which
must exist if the kinetic theory be true, are not of themselves sufficient to explain the
experimental results which have been attributed to such repulsion. The experiments
of Regnault on hydrogen first showed a deviation from Boyle’s Law in the direction of
less compression than that Law indicates. But Andrews showed that the same thing
holds for all gases at temperatures and pressures over those corresponding to their
critical points. And Amagat has experimentally proved that in gaseous hydrogen, which
has not as yet been found to exhibit any traces of molecular attraction between its
particles, the graphic representation of pV in terms of p (at least for pressures above an
atmosphere, and for common temperatures) consists of a series of parallel straight lines.
If this can be accounted for, without the assumption of molecular repulsion but simply

* Chem. Soc. Jour., xu1, (1875), p. 498.
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by the impacts of the particles, a real difficulty will be overcome. And it is certain that,
at least in dealing with hard colliding spheres if not in all cases, we have no right to
extract from the virial, as the pressure term, that part only which depends upon impacts
on the containing vessel; while leaving unextracted the part depending on the mutual
impacts of the particles. The investigation which follows shows (so far as its assumptions
remain valid when the particles are not widely scattered) that no pressure, however great,
can bring a group of colliding spheres to a volume less than four times the sum of
their volumes. If they were motionless they could be packed into a space exceeding the
sum of their volumes in the ratio 6 : 74/2, or about 135 : 1, only.]

In the case of hard spheres we have obviously »=s; and, with the notation of
§ 19, remembering that @ =P, k=h, we have

R=—P(u-v).
Hence we must find, by the method of that section, the mean value of the latter
expression. It is easily seen to be

_ pJvve sin BdB cos’y sinydyddp 2P [vwwddy/ve,
Jovw,sin BdB cosysinydydd 3 fuwwtdy, /o,

__2_.?!;/4___ P ™
R '\/ﬁ

But, § 14, the average number of collisions, per particle per second, is
& Ao

T VT

Hence, for any one particle, the sum of the values of R (distributed, on the
average, uniformly over its surface) is, in one second,

2NP 4N

oud ol iy 5 sl

Thus it would appear that we may regard each particle as being subjected to the
general pressure of the system; but as having its own diameter doubled. It is treated,

in fact, just as it would then be if all the others were reduced to massive points.

Pvims = — P . dars.

The value of the term in the virial is
? N
Znsz (R)

because, though every particle suffers the above average number of collisions, it takes
two particles to produce a collision. This is equal to
—npms* = — 6p (sum of volumes of spheres);

so that the virial equation becomes
nPv?/2 = gp {V —4 (sum of volumes of spheres)},

which, in form at least, agrees exactly with Amagat’s* experimental results for hydrogen.

* Annales de Chimie, xxir. 1881,
19—2
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These results are closely represented at 18° C. by
p(V—26)=2731;
and at 100° C. by p(V —27)=3518.

The quantity subtracted from the volume is sensibly the same at both temperatures.
The right-hand members are nearly in proportion to the absolute temperatures. The
pressure is measured in metres of mercury. Hence the volume of the gas, at 18° C.
and one atmosphere, is (to the unit employed)

26 + 2731/0°76 = 3596 nearly.

Thus, by the above interpretation of Amagat’s results, we have at 18° C.
nwrs® = 3'9/3596.

Clerk-Maxwell; in his Bradford Lecture*, ranks the various numerical data as to
gases according to “the completeness of our knowledge of them.” The mean free path
appears in the second rank only, the numbers in which are regarded as rough ap-
proximations. In the third rank we have two quantities involved in the expression
for the mean free path, viz., the absolute diameter of a particle, and the number of
particles per unit volume (s and n of the preceding pages).

To determine the values of s and n separately, a second condition is required.
It has usually been assumed, for this purpose, that the volume of a gas, “when
reduced to the liquid form, is not much greater than the combined volume of the
molecules.” Maxwell justifies this assumption by reference to the small compressibility of
liquids.

But, if the above argument be, even in part, admitted, we are not led to any
such conclusion, and we can obtain ns® (as above) as a quantity of the second rank,
We have already seen that ns* is inversely proportional to the mean free path, and
is thus also of the second rank. From these data we may considerably improve our
approximations to the values of n and of s.

Taking Maxwell's estimate of the mean free path in hydrogen, we have (to an
inch as unit of length)

0677 r
o =380.10-

From these values of ns® and ns® we have, approximately, for 0° C. and 1 atmosphere,
n=16.10° s=6.10"

The values usually given are
n=38.10% 8=23.107%

It must be recollected that the above estimate rests on two assumptions, neither

* Phil, Mag., 1873, 1. 458, See also Nature, vir1. 298.
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of which is more than an approximation, (@) that the particles of hydrogen behave
like hard spheres, (b) that they exert no mutual molecular forces. If there were molecular
attraction the value of ns® would be greater than that assumed above, while ns* would
be unaltered. Thus the particles would be larger and less numerous than the estimate
shows,

[Of course, after what has been said, it is easy to see that ¥ should be di-
minished further by a quantity proportional to the surface of the containing vessel
and to the radius of a sphere. But though this correction will become of constantly
greater importance as the bulk occupied by a given quantity of gas is made smaller,
it is probably too minute to be detected by experiment.]

IX. Effect of Euxternal Potential. (Added June 15, 1886.)

31. Another of Maxwell's most remarkable contributions to the Kinetic Theory
consists in the Theorem that a vertical column of gas, when it is in equilibrium
under gravity, has the same temperature throughout. He states, however, that an
erroneous argument on the subject, when it occurred to him in 1866, “nearly upset
[his] belief in calculation”* He has given various investigations of the action of
external forces on the distribution of colliding spheres, but all of them are complex.
The process of Boltzmann, alluded to in a foot-note to the introduction (anté, p. 125),
and which Clerk-Maxwell ultimately preferred to his own methods, involves a step of
the following nature.

An expression, analogous to the f of §3, but in which B and €' are undeter-
mined functions of the coordinates @, 7, 2z of a point, is formed for the number of
particles per unit volume, at that point, whose component speeds, parallel to the
axes, lie between given narrow limits. I do not at present undertake to discuss the
validity or the sufficient generality of the process by which this expression is obtained,
though the same process is (substantially) adopted by Watson and others who have
written on the subject. However obtained, the expression is correct. It can be
established at once by reasoning such as that in §2, 3, 4. To determine the forms
of the aforesaid functions, however, a most peculiar method is adopted by Boltzmann
and Maxwell. The number of the particles per unit volume at @, y, ¢ whose cor-
responding “ends” occupy unit volume at w, v, w in the velocity space-diagram (§ 3),
is expressed in terms of these functions, and of w*+ 9+ w® The variation of the
logarithm of this number of particles is then taken, on the assumption that

Sz =udt, &ec., Su=-— c_t{fg&' &e.,
£

where U is the external potential; and it is equated to zero, because the number of

* Nature, vir., May 29, 1873. Maxwell’'s name does not occur in the Index to this volume, though he has
made at least five contributions to it, most of which bear on the present subject:—viz. at pp. 85, 298, 361,
527, 53T.



150 ON THE FOUNDATIONS OF THE KINETIC THEORY OF GASES. [LXXVIL

particles s unchangeable. As this equation must hold good for all values of u, v, w,
it furnishes sufficient conditions for the determination of B and €. The reasons for
this remarkable procedure are not explained, but they seem to be as below. The
particles are, as it were, followed in thought into the new positions which they would
have reached, and the new speeds they would have acquired, in the interval 8¢, had
no two of them collided or had there been mo others to collide with them. But this
is not stated, much less justified, and I cannot regard the argument (in the form
in which it is given) as other than an exceedingly dangerous one; almost certain to
mislead a student.

What seems to underlie the whole, though it is not enunciated, is a postulate
of some such form as this:—

When a system of colliding particles has reached its final state, we may assume
that (on the average) for every particle which enters, and wundergoes collision in, a
thin layer, another goes out from the other side of the layer precisely as the first
would have done had it escaped collision.

32. If we make this assumption, which will probably be allowed, it is not
difficult to obtain the results sought, without having recourse to a questionable
process of variation. For this purpose we must calculate the changes which take
place in the momentum, and in the number of particles, in a layer; or, rather, we
must inquire into the nature of the processes which, by balancing one anothers
effects, leave these quantities unchanged.

Recur to §29, and suppose the particles to be subject to a potential, U, which
depends on 2 only, Then the whole momentum passing per unit of time perpen-
dicularly across unit surface of any plane parallel to yz is

il R
§P11f0 =5,

where n (the number of particles per cubic unit), and % (which involves the mean-
square speed), are functions of a.
At a parallel plane, distant a from the first in the direction of # positive, the
corresponding value is
1 d\n

But the difference must be sufficient to neutralise, in the layer between these planes,
the momentum which is due to the external potential, 7.e.,

dU
— Pna T
s 8 alu
Hence —Q-Pa - R Pna -

dU 1ldn 1 dh
or —2h da._-_ﬁdw_ﬁa& .................................... (1)
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Again, the number of particles which, in unit of time, leave the plane unit
towards the side @ positive is

. oiis %
Laf wf cosBsianﬁ=1n[ v,
2" Jo 0 4 Jo

Hence those which leave the corresponding area at distance a are, in number,

L (1eed) o))

But, by our postulate of last section, they can also be numbered as

1 -]
ang vy (1 = &v%),
where =2n %T-

This expression is obtained by noting that none of those leaving the first plane
can pass the second plane unless they have

v* cos?B > 2a %g

All of the integrals contained in these expressions are ewact, and can therefore give
no trouble. The two reckonings of the number of particles, when compared, give
atlivel dn - d. 4k
—2kdw——a&é—2—h% .................................... (2)-

From (1) and (2) together we find, first

which is the condition of uniform temperature; and again
n = nye= U=,

which is the usual relation between density and potential.

[In obtaining (2) above it was assumed that, with sufficient accuracy,
e =1 —ht
To justify this:—note that in oxygen, at ordinary temperatures and under gravity,
3

o= 1550? in foot-second units,

dU
-

so that, even if a=1 inch, we have approximately

adl 1
A = 2 = 300,000

It is easy to see that exactly similar reasoning may be applied when U is a function
of @, y, z; so that we have, generally,
.nzﬂae-?.ﬁ(l}'-vo}’

32 /] ” »
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where & is an absolute constant. And it is obvious that similar results may be
obtained for each separate set of spheres in a mixture, with the additional proviso
from Maxwell’s Theorem (§§ 20, 21) that P/h has the same value in each of the sets.

APPENDIX.

The following little table has been calculated for the purposes of §§ 11, 28, by Mr J. B, Clark,
Neil-Arnott Scholar in the University of Edinburgh, who used six-place logarithms :—

g1 T X, XX, X, XX
Wil [ !
000099 200665 | 00049 + 000990 | 00493 +
001537 405312 | 00379 + 007686 | 01896 +
| -007420 617838 | 01198 + 024676 | 03994 —
021814 841997 | 02591 - 054537 | 06477 +
048675 1081321 | 04501 + 097350 | 09003 —
1090418 1:339068 | 06752+ ‘150698 | 11254 —
‘147091 | 1:618194 | -09089 210130 | 12985+
215978 1921318 | 11241 - 269973 | ‘14051 +
291870 2250723 | ‘12968 + 324301 | -14409 -
367879 2:608351 | ‘14104 - 367879 | 14104 -

436590 2:995825 14572 + 396900 13249 -
491380 3414479 14388 + 409409 11990 +
527004 3865384 ‘13633 + 405388 10488 —
541119 4-349386 ‘12441 + 386514 ‘08887 —

533581 4867132 +10962 + 365721 ‘07309 -
506619 5419114 ‘09348 — 316637 ‘05843 -
464174 6005696 ‘07729 — 273044 04546 +
409127 6627149 06203 + 228404 03447 —
3525643 7-283658 ‘04840 — 185549 025647 +

293040 7-975359 ‘03674 + ‘146520 ‘01837 +
236390 8:702340 02715 + 112567 01294 —
185224 9464667 01956 — ‘084193 00889
‘141065 10262360 01373 + ‘061333 ‘00598 —
‘104541 11095474 ‘00941 + 043559 ‘00393 ~
075390 11-964016 00630 + ‘030156 ‘00252 +
‘052962 12-867980 00411 — 020370 00158 +
036242 ‘ 13-807388 00262 + 013423 00097 +
‘0241556 | 14-782249 ‘00162 + 008627 00058 +
015700 { 15:792549 00099 + 005414 ‘00034 +
|

CODRNSNADBNHODRTRT R WL O D -1 Ui o bd

WNMNMMML@M[@LOD—'HP:‘HHHH#HH

009963 16-838302 00057 + 003321 00019 +

w0
Here X,=a'e* and X;=a'¢«", while X,=2¢* + (22 + l)f e “da.
o

The sum of the numbers in the fourth column is 1:69268, so that the approximate value
of the integral in § 11, which is 0'4 of this, is 0-67707.

The sum of the numbers in the sixth column is 162601, so that the value of the integral
in [the addition to] § 11 is about 0-6504.
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IN the present communication I have applied the results of my first paper to
the question of the transference of momentum, of energy, and of matter, in a gas
or gaseous mixture; still, however, on the hypothesis of hard spherical particles,
exerting no mutual forces except those of impact. The conclusions of §§ 23, 24 of
that paper form the indispensable preliminary to the majority of the following in-
vestigations. For, except in extreme cases, in which the causes tending to disturb the
“special” state are at least nearly as rapid and persistent in their action as is the
process of recovery, we are entitled to assume, from the result of § 24, that in every
part of a gas or gaseous mixture a local special state is maintained. And it is to
be observed that this may be accompanied by a common translatory motion of the
particles (or of each separate class of particles) in that region; a motion which, at
each instant, may vary continuously in rate and direction from region to region;
and which, in any one region, may vary continuously with time. This is a sort of

T. II. 20
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generalisation of the special state, and all that follows is based on the assumption
that such is the most general kind of motion which the parts of the system can
have, at least in any of the questions here treated. Of course this translational
speed is not the same for all particles in any small part of the system. It is merely
an average, which is maintained in the same roughly approximate manner as is the
“special state,” and can like it be assumed to hold with sufficient accuracy to be
made the basis of calculation. The mere fact that a “steady” state, say of diffusion,
can be realized experimentally is a sufficient warrant for this assumption; and there
seems to be mno reason for supposing that the irregularities of distribution of the
translatory velocity among the particles of a group should be more serious for the
higher than for the lower speeds, or wice versd. For each particle is sometimes a
quick, sometimes a slow, moving one:—and exchanges these states many thousand
times per second. All that is really required by considerations of this kind is allowed
for by our way of looking at the mean free paths for different speeds.

I may take this opportunity of answering an objection which has been raised
in correspondence by Professor Newcomb, and by Messrs Watson and Burbury, to a
passage in § 3 of the First Part of this paper®*. The words objected to are put in
Italics :—

“But the argument above shows, further, that this density must be expressible in

the form
S (@) f)f(2),

whatever rectangular axes be chosen, passing through the origin.”

The statement itself is not objected to, but it is alleged that it does not follow
from the premises assumed.

This part of my paper was introduced when I revised it for press, some months
after it was read; the date of revision, not of reading, being put at the head. It
was written mainly for the purpose of stringing together what had been a set of
detached fragments, and was in consequence not so fully detailed as they were.
I made some general statements as to the complete verification of these preliminary
propositions which was to be obtained from the more complex investigations to which
they led; thus showing that I attached comparatively little weight to such intro-
ductory matters. If necessary, a detailed proof can be given on the lines of § 21
of the paper. The “argument” in question, however, may be given as below. It is
really involved in the italicised words of the following passage of § 1:—“in place of
the hopeless question of the behaviour of innumerable absolutely isolated individuals,
the comparatively simple statistical question of the average behaviour of the wvarious
groups of a community.”

Suppose two ideal planes, parallel to #=0, to move with common speed, z,
through the gas. The portion of gas between them will consist of two quite distinet

* In the Phil. Mag., for April 1887, the same objection is raised by Prof. Boltzmann; who has appended
it to the English translation of his paper presently to be referred to. But he goes farther than the other
objectors, and accuses me of reasoning in a circle.
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classes of particles:—the greatly more numerous class being mere fleeting occupants.
the minority being (relatively) as it were permanent lodgers. These are those whose
speed perpendicular to the planes is very nearly that of the planes themselves. The
wndividuals of each class are perpetually changing, those of the majority with extra-
ordinary rapidity compared with those of the minority; but each class, as such, forms
a definite “group of the community.” The method of averages obviously applies to
each of these classes separately; and it shows that the minority will behave, so far
as y and z motions are concerned, as if they alome had been enclosed between two
material planes, and as if their lines of centres at impact were always parallel to
these. The instant that this ceases to be true of any one of them, that one ceases
to belong to the group;—and another takes its place. Their behaviour under these
circumstances (though not their number) must obviously be independent of the speed
of the planes. Hence the law of distribution of components in the velocity space-
diagram must be of the form

f@ . F(y, 2);
and symmetry at once gives the result above.

[(Znserted March 5th, 1887.) Another objection, but of a diametrically opposite
character, raised by Mr Burbury* and supported by Professor Boltzmann+t, is to the
effect that in my first paper I have unduly multiplied the number of preliminary
assumptions necessary for the proof of Maxwell's Theorem concerning the distribution
of energy in a muature of two gases. In jform, perhaps, I may inadvertently have done
so, but certainly not in substance.

The assumptions which (in addition to that made at the commencement of the
paper (§ 5) for provision against simultaneous impacts of three or more particles,
which was introduced expressly for the purpose of making the results applicable to
real gases, not merely to imaginary hard spheres,) I found it necessary to make, are
(§ 18) as follows; briefly stated.

(A) That the particles of the two systems are thoroughly mixed.

(B) That the particles of each kind, separately, acquire and maintain the “special
state.”

(C) That there is free access for collision between each pair of particles, whether

* The Foundations of the Kinetie Theory of Gases. Phil. Mag. 1886, I, p. 481.

+ Uber die zum theoretischen Beweise des Avogadro'-schen Gesetzes erforderlichen Voraussetzungen, Sitzb.
der kais. Akad., xciv., 1886, Oct. 7. In this article Prof. Boltzmann states that I have nowhere expressly
pointed out that my results are applicable only to the case of hard spheres. I might plead that the article he
refers to is a brief Abstract only of my paper; but it contains the following statements, which are surely
explicit enough as to the object I had in view:—

“This is specially the case with his [Maxwell’s] investigation of the law of ultimate partition of energy
in a mixture of smooth spherical particles of two different kinds.”

“It has since been extended by Boltzmann and others to cases in which the particles are no longer
supposed to be hard smooth spheres.”

“Hence it is desirable that Maxwell's proof of his fundamental Theorem should be ecritically examined.”
Then I proceed to examine it, not Professor Boltzmann’s extension of it. In my paper itself this limitation is
most expressly insisted on.

20—2
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of the same kind or of different systems; and that the number of particles of one
kind is not overwhelmingly greater than that of the other.

Of these, (A) and (B), though enunciated separately, are regarded as consequences
of (0), which is thus my sole assumption for the proof of Clerk-Maxwell's Theorem.
Professor Boltzmann states that the only necessary assumptions are:—that the particles
of each kind be uniformly distributed in space, that they behave on the average
alike in respect of all directions, and that (for any one particle?) the duration of
an impact is short compared with the interval between two impacts. His words are
as follows:—“Die einzigen Voraussetzungen sind, dass sowohl die Molekiile erster als
auch die zweiter Gattung gleichférmig im ganzen Raume vertheilt sind, sich durch-
schnittlich nach allen Richtungen gleich verhalten und dass die Dauer eines Zusam-
menstosses kurz ist gegen die Zeit, welche zwischen zwei Zusammenstossen vergeht.”

He farther states that neither system need have internal impacts; and that
Mr Burbury is correct in maintaining that a system of particles, which are so small
that they practically do not collide with one another, will ultimately be thrown into the
“special” state by the presence of a single particle with which they can collide.

Assuming the usual data as to the number of particles in a cubic inch of air,
and the number of collisions per particle per second, it is easy to show (by the help
of Laplace’s remarkable expression* for the value of A"0™/n™ when m and n are very
large numbers) that somewhere about 40,000 years must elapse before it would be
so much as even betting that Mr Burbury’s single particle (taken to have twice the
diameter of a particle of air) had encountered, once at least, each of the 3.10% very
minute particles in a single cubic inch. He has not stated what is the average
number of collisions necessary for each of the minute particles, before it can be knocked
into its destined phase of the special state; but it must be at least considerable.
Hence, even were the proposition true, w®ons would be required to bring about the
result. As a result, it would be very interesting; but it would certainly be of no
importance to the kinetic theory of gases in its practical applications.

I think it will be allowed that Professor Boltzmann’s assumptions, which (it is
easy to see) practically beg the whole question, are themselves inadmissible except
as consequences of the mutual impacts of the particles in each of the two systems
separately. Professor Boltzmann himself, indirectly and without any justification (such
as I have at least attempted to give), assumes almost all that he objects to as redundant
in my assumptions, with a good deal more besides. But he says nothing as to the
relative numbers of the two kinds of particles. Thus I need not, as yet, take up
the question of the validity of Professor Boltzmann’s method of investigation (though,
as hinted in § 31 of my first paper, I intend eventually to do so); and this for the
simple reason that, in the present case, I cannot admit his premises.

* Théorie Analytique des Probabilités, Livre 1. chap. 1. 4. [In using this formula, we must make sure that
the ratio m/n is sufficiently large to justify the approximation on which it is founded. It is found to be
s0 in the present case, At my request Professor Cayley has kindly investigated the correct formula for the
case in which m and n are of the same order of large quantities. His paper will be found in Proc. R.S. E.,
April 4, 1887.]
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Mr Burbury assumes the non-colliding particles to be in the “special state,” and
proceeds to prove that the single additional particle will not disturb it. But, sup-
posing for a moment this to be true, it does not prove that the solitary particle
would (even after the lapse of ages) reduce any non-colliding system, with positions
at any instant, speeds, and lines of motion, distributed absolutely at random (for here
there cannot be so much as plausible grounds for the introduction of Professor
Boltzmann’s assumptions) to the “special state” If it could do so, the perfect re-
versibility of the motions, practically limited in this case to the reversal of the motion
of the single particle alone, shows that the single particle would (for untold ages)
continue to throw a system of non-colliding particles further and further out of the
“special” state; thus expressly contradicting the previous proposition. In this conse-
quence of reversal we see the reason for postulating a very great number of particles
of each kind. If Mr Burbury’s sole particle possessed the extraordinary powers
attributed to it, it would (except under ecircumstances of the most exact adjustment)
not only be capable of producing, but would produce, absolute confusion among non-
colliding particles already in the special state. Considering what is said above, I do
not yet see any reason to doubt that the assumption of collisions among the particles
of each kind, separately, is quite as essential to a valid proof of Maxwell's Theorem
as is that of collisions between any two particles, one from each system. I have
not yet seen any attempt to prove that two sets of particles, which have no internal
collisions, will by their mutual collisions tend to the state assumed by Professor
Boltzmann. Nor can I see any ground for dispensing with my farther assumption
that the number of particles of one kind must not be overwhelmingly greater than
that of the other. A small minority of one kind must (on any admissible assumption)
have an average energy which will fluctuate, sometimes quickly sometimes very slowly,
within very wide and constantly varying limits.

De Morgan* made an extremely important remark, which is thoroughly applicable
to many investigations connected with the present question. It is to the effect
that -“no primary considerations connected with the subject of Probability can be,
or ought to be, received if they depend upon the results of a complicated mathe-
matical analysis” To this may be added the obvious remark, that the purely
mathematical part of an investigation, however elegant and powerful it may be, is
of no value whatever in physics unless it be based upon admissible assum ptions.
In many of the investigations, connected with the present subject, alike by British
and by foreign authors, the above remark of De Morgan has certainly met with scant
attention. ]

In my first paper I spoke of the errors in the treatment of this subject which
have been introduced by the taking of means before the expressions were ripe for
such a process. In the present paper I have endeavoured throughout to keep this
danger in view; and I hope that the results mow to be given will be found, even
where they are most imperfect, at least more approximately accurate than those which
have been obtained with the neglect of such precautions.

* Encye. Metropolitana. Art. Theory of Probabilities.
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The nature of Clerk-Maxwell’s earlier investigations on the Kinetic theory, in
which this precaution is often neglected, still gives them a peculiar value; as it is
at once obvious, from the forms of some of his results, that he must have thought
them out before endeavouring to obtain them, or even to'express them, by analysis.
One most notable example of this is to be seen in his Lemma (Phil. Mag. 1860, II.
p- 23) to the effect that

f _riUm"‘dac= m% gé(Ur”“*");
where U and » are functions of #, not vanishing with #, and varying but slightly
between the limits —» and 7 of #;—and where the signs in the integrand depend
upon the character of m as an even or odd integer. This forms the starting point
of his investigations in Diffusion and Conductivity. It is clear from the context why
this curious proposition was introduced, but its accuracy, and even its exact meaning,
seem doubtful.

In all the more important questions now to be treated, the mean free path of
a particle plays a prominent part, and integrals involving the quantities e, or e+e,
(as defined in § 9, 10, 28) occur throughout. We commence, therefore, with such a
brief discussion of them as will serve to remove this merely numerical complication from
the properly physical part of the reasoning.

X. On the Definite Integrals,

f"" 70 f‘” 7
— and .
0 3 0 el+zeg

33. In the following investigations I employ, throughout, the definition of the
mean free path for each speed as given in § 11. Thus all my results necessarily differ,
at least slightly, from those obtained by any other investigator.

By § 11 we see at once that
e~ Mryrt2dy

f aE L REAR (o
S v P
ik ik [ f s (72 + 'Ul‘/ 30%) duv, + f Cogly (Wlf 3+ 'U'l"/ v) dv,
0J0 ]

BerE dor e do

e o &

2 J'Uxe"""+(2w"+1)f e~ dg
0

c,
nrs® /b

., suppose.

The finding of C, is of course a matter of quadratures, as in the Appendiz to
the First Part of this paper, where the values calculated are, in this notation, Gy

and Cy; and Mr Clark has again kindly assisted me by computing the values of
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Gy, Oy, Oy, which are those required when we are dealing with Viscosity and with
Heat-Conduction in a single gas. The value of (), has also been found, with a view
to the study of the general expression for (.. These will be given in an Appendiz to
the present paper.

34. When we come to deal with Diffusion, except in the special case of equality
of density in the gases, this numerical part of the work becomes extremely serious,
even when the assumption of a “steady” state is permissible. As will be seen in § 28
of my first paper, we should have in general to deal with tables of double entry, for
the expressions to be tabulated are of the form—

S = :
0 6+ ze n'rrs’«/k fome_#+(2ws+ ].)f e"'dx+z(wle‘¢-'+(2x,=+ 1) “.1: E—Z’dw)
0 Jo

Cy
=0, = mr.ls“ i Suppose.

For the second gas the corresponding quantity will be written as ,&,. Here

@, = & N hy/h,
_mh (st
and z_nfa,( 25 )’

so that they are numerical quantities, of which the first depends on the relative
masses of particles of the two gases, while the second involves, in addition, not
only their relative size but also their relative number. It is this last condition which
introduces the real difficulty of the question, for we have to express the value of the
integral as a function of z before we can proceed with the further details of the
solution, and then the equation for Diffusion ceases to resemble that of Fourier for Heat-
Conduction.

The difficulty, however, disappears entirely when we confine ourselves to the study
of the “steady state” (and is likewise much diminished in the study of a variable
state) in the special case when the mass of a particle is the same in each of the
two gaseous systems, whether the diameters be equal or no. For, in that case, we
have ly=h and @ ==, so that the factor 1/(1+2) can be taken outside the integral
sign. Thus, instead of ,&,, we have only to calculate C, of the previous section.

XI. Pressure in a Mizture of Two Sets of Spheres.

35. Suppose there be n, spheres of diameter s, and mass P,, and n, with s,, P.,
per cubic unit. Let s=(s+8,)/2.

Then the average number of collisions of each P, with Ps is, per second,

2 ,\/ i_'rr M8
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The impulse is, on the average (as in § 30),

m™
P/ g

Similarly, each P, encounters, in each second (§ 23), the average number

+
2n, \/1‘? (h’;hg hﬂ)
of P,s, and the average impact is

P1P2 73'(}?/1+k'z)
_P1+P2/\/ ahg :

Thus the average sum of impacts on a P, is, per second,

—2P1%n13,’, due to P;s;

PPy, I+ hy

and _2P+P, T mhes®, due to Pgs.

In the Virial expression 43 (Rr), {§ 30}, » must be taken as s, for the first of
these portions, and as s for the second. Hence we have

P, P, (h, + h,) P, }

~E<R)———{,; w0+ 2 TG e Do

i gfp {ﬂlssla + 2n,.n,8° + nn"‘saa} 5

P,_P,_P+P,_1mP mP)_%
;4 o ¥t e 15
where =N + N

In the special case s, =s,=s, this becomes, as in § 30,
15 (8 = — mpne

To obtain an idea as to how the “ultimate volume,” spoken of in that section,
is affected by the difference of size of the particles, suppose m,=n,. The values of
the above quantities are

o "}n p {8+ 28+ 8%} and — mwnps’;
so that (as we might have expected) disparity of size, with the same mean of
diameters, increases the quantity in question.
Thus, if R e e S R

the ratio of the expressions above is 11:8., The utmost value it can have (when
$,/s; is infinite, or is evanescent) is 5 : 2,
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XII. Viscosity.

36. Suppose the motion of the gas, as @ whole, to be of the nature of a simple
shear; such that, relatively to the particles in the plane of yz, those in the plane
« have a common speed

V =B
parallel to y. V, even when « is (say) a few inches, is supposed small compared
with the speed of mean square. We have to determine the amount of momentum
parallel to y which passes, per second, across unit area of the plane of yz.

In the stratum between # and «+ 8z there are, per second per unmit surface, nvevda
collisions discharging particles with speed v to v+dv (distributed uniformly in all
directions) combined, of course, with the speed of translation of the stratum. The
number of these particles which cross the plane of yz at angles @ to 6+d@ with
the axis of @ is

€@ secd gin 0d0)2.
[Strictly speaking, the exponent should have had an additional term of the order
eBa*/v; but this is insensible compared with that retained until « is a very large
multiple of the mean free path. See the remarks in §39 below.] Each takes with it
(besides its normal contribution, which need not be considered) the abnormal momentum

PBz,
relatively to yz and parallel to y.

Hence the whole momentum so transferred from z positive is

™

a0 2 o
'—{)&f w | sin@dd f €@ sect gy
2 0 0 0

J.gcos“f? sin 9d6=}ﬁ it
0 6 0 €

Doubling this, to get the full differential effect across the plane of yz, it becomes (§ 33)

PBnC, _ PBn0838
3mnstNh Bmns*yh

or

P.an”im
2 Jo €

The multiplier of B, e of dV/da, is the coefficient of Viscosity. Its numerical
value, in terms of density and mean path, is

P 0412
i ose

Clerk-Maxwell, in 1860, gave the value

oy,

‘\/}&0376,

which (because [=T707A/677, as in §11) differs from this in the ratio 20:21. In
SR 21
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this case the short cuts employed have obviously entailed little numerical error.
Since pA is constant for any one gas, the Viscosity (as Maxwell pointed out) is
independent of the density.

37. Both expressions are proportional to the square-root of the absolute tem-
perature. We may see at once that, on the hypothesis we have adopted, such must
be the case. For, if we suppose the speed of every sphere to be suddenly increased
m fold, the operations will go on precisely as before, only m times faster. But the
absolute temperature will be increased as m*:1. Similar anticipations may be made
in the cases of Diffusion and of Thermal Conductivity.

Maxwell was led by his experimental measures of Viscosity, which seemed to

show* that it increases mnearly in proportion to the first power of the absolute
temperature, to discard the notion of hard spheres, and to introduce the hypothesis of
particles repelling one another with force inversely as the fifth power of the distance.
I have already stated that there are very grave objections to the introduction of
repulsion into this subject, except of course in the form of elastic restitution. That
the particles of a gas have this property is plain from their capability of vibrating,
so that they must lose energy of translation by impact; and I intend, in the next
instalment of this investigation, so far to modify the fundamental assumption hitherto
made as to deduce the effects corresponding to a coefficient of restitution less than
unity; and also to take account of molecular aftraction, specially limited in its range
to distances not much greater than the diameter of a sphere.

XIIL Thermal Conductivity.

38. We must content ourselves with the comparatively simple case of the steady
flow of heat in one direction; say parallel to the axis of #. This will be assumed
to be vertical, the temperature in the gas increasing upwards, so as to prevent
convection currents. No attention need, otherwise, be paid to the effects of gravity.

Hence the following conditions must be satisfied :—

(2) Each horizontal layer of the gas is in the special state, compounded with
a definite translation vertically.

(b) The pressure is constant throughout the gas.

(¢) There is, on the whole, no passage of gas across any horizontal plane.

(d) Equal amounts of energy are, on the whole, transferred (in the same direction
q 8y
across unit area of all such planes.

39. Let n be the number of particles per unit volume in the layer between
@ and @+dz; v the fraction of them whose speed, relatively to the neighbours as a
whole, lies between v and v+dv; « the speed of translation of the layer.

* Cf., however, Stokes, Phil. Trans., 1886, vol, cLxxvir. p. 786.

&l
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The number of particles which pass, per unit area per second, from z positive
through the plane #=0, is the sum of those escaping, after collision, from all the
layers for positive #, and not arrested on their way —viz.,

= g @ —eanel? i Rk
S| [ etk in gag 50— 2 g,
2)o Jolo v cos 0

Here a, though in any ordinary case it need not be more than a very small
fraction of an inch, is a quantity large compared with the mean free path of a
particle. Its value will be more exactly indicated when the reason for its introduction
is pointed out.

The last _factor of the integrand depends on the fact that the particles are
emitted from moving layers:—involving the so-called Dippler, properly the Romer,
principle.

We neglect, however, as insensible the difference between the absorption due to
slowly moving layers and that due to the same when stationary.

Because a, the range of @, is small we may write with sufficient approximation
n=mn,+n,z, &ec., &ec.

Introducing this notation, the expression above becomes

m

@ #D en ik ’ # SRlE : =
1[ [ f NgVVe, {1+(n—“‘+p—"+g—°)m+...ls e 9-[" * sin QdG&cﬂg—udw.
2/ Jo o \Ny Yy & | v cos @

Now, to the degree of approximation adopted,
Fedm: et + &y a2,
0

The second term of this must always be very small in comparison with the first,
even for an exceptionally long free path. But, if we were to make

&*r= 280/8;;,

the second term would become egual to the first. Hence a, the upper limit of the
« integration, must be made much smaller than this quantity. Thus we may write

esec0f eds _ -amsect (1 — g/a?seC 0/2 + ...).

We said, above, that e.,a=u/ .3

€
is a large number, say of the order 10% It appears then at once that terms in
€40 = ¢~ = 10—* nearly

may be neglected. Such terms occur at the upper limit in the integration with
regard to @ above, and what we have said shows, first why @ had to be introduced,

second why it disappears from the result.
21—2



164 ON THE FOUNDATIONS OF THE KINETIC THEORY OF GASES. [LXXVIII.

Writing now only those factors of the above expression which are concerned in
the integration with respect to z, we have

f“{l it (”i+_”1+ﬁ)w+ } (1 —e/a?sec 8/2 4 ...) et secody
Mg W 6

0
(E‘—‘- + 1—’"—) cos? 6} i

0 Yy

or : {cos 0 +1
€ €
The terms in e/ are found to have cancelled one another, a result which greatly

simplifies the investigation.

Had we complicated matters by introducing a,+ a2 in place of a, the term in
a, (which, if it exist at all, is at least very small) would have been divided on
integration twice by e,, a quantity whose value is, on the average, of the order 5.10¢
(to an inch as unit of length).

The expression now becomes

® 9 i ’
1f fm 1+(E+‘l) I
2 0o Jo n v e
We have omitted the zero suffixes, as no longer required; and, as the plane =0 is
arbitrary, the expression is quite general.

Omitting the product of the two small terms, and integrating with respect to 6,
we have

1 : w v
2/, nv{v/2~u+(;+y—)v/3e}.

The corresponding expression for the number of particles which pass through the
plane from the negative side is, of course, to be obtained by simply changing the
signs of the two last terms. Thus, by (¢) of § 38, we have

f ny {u— (E-i-i) U/3G}=0,
0 n v
oo nﬂ' v’
% “=fu ’ (?T+;)v/3e ....................................... ().

40. The pressure at the plane #=0, taken as the whole momentum (parallel to
«) which crosses it per unit area per second, is to be found by introducing into our
first integrand the additional factor

P (v cos 6 — a),

where P is the mass of a particle. There results

Pl n
3 fo nv {v“/S — o + (E + ;) 1?2/49} '
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We must take the sum of this, and of the same with the signs of the two last
terms changed; so that the pressure (which is constant throughout, by (b) of § 38) is

Pl e it
p= 3 fo nvy* = é—h .................................... (2).
Thus n/k is constant throughout the gas.

[If a very small, thin, disc were placed in the gas, with its plane parallel to
yz, and the steady state not thereby altered, the difference of pressures on its sides
would be

wa {2 Z g a-}
e R (n-i-v)'u/.le,
R 5 5
or (see § 42 below) Poem i {m (301—03)—4;02-{-0‘}.

For ordinary pressures, and a temperature gradient 10°C. per inch, this is of the
order 10~" atmosphere only.]

41. For the energy which passes per second per unit of area across =0, we
must introduce into the first integrand of § 39 the additional factor

‘—g (v* — 2va cos 6);

and the result of operations similar to those for the number of particles is

E=- gf:nu-u’ {(:’+ %’)/6 - 5&/@} ........................... (3).

This expresses the excess of the energy passing from the negative to the positive
side of #=0, over that passing from positive to negative; and, by (d) of § 38, must
be constant.

42. To put (1) and (3) in a more convenient and more easily intelligible form,
note that because

we have :—= 5= v
But, by (2), %z%
Thus, by (1), a= % f:w (g —1v?) [3e,
= 3}5};8 i;T.ﬂ G S 0’)
J"h Gp}; = (g ok 03) .................................... 1)
Similarly (3) becomes E= %;—; 3% (24'—5 0, - 50, + O,) ........................... 3)
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43. The only variable factor (A'/h') in these expressions for &, and for %, is the

same in both. Hence, as B does not vary with @, A/A' is constant, and so also is
a. Thus since, if T be absolute temperature, we have

hr = constant ;
we find at once, = A + Bu.

Thus the distribution of temperature, and therefore that of density, is determined
when the terminal conditions are given. The formula just given agrees with the
result first obtained by Clausius in an extremely elaborate investigation®, in which
he showed that Maxwell’s earliest theory of Heat-Conduction by gases is defective.

The general nature of the motion of the gas is now seen to be analogous to
that of liquid mud when a scavenger tries to sweep it into a heap. The broom
produces a translatory motion of the mud, which is counteracted by gravitation-sliding
due to the surface gradient:—just as the displacement (by translation) of the whole
gas, from hot to cold, is counteracted by the greater number of particles discharged
(after collisions) from a colder and denser layer, than from an adjoining warmer and
less dense layer.

44. The results of calculation of values of €, given in the Appendiz enable us
to put the expressions (1’) and (8’) into the more convenient forms

}6’ l . #
=75 i AR N D SATITRIETT R 17,
B e ,%a? L T L e R e L SR S (3",

where it is to be remarked that the product pA is independent of the temperature
of the gas.

The Conduectivity, k, is defined by the equation

dr g
b=k
T, PN

'TE ‘V(hos 045’

and thus its value is k=

where 7,, h, are simultaneous values of = and A.

At 0°C. (ie. v=274) this is, for air, nearly 3,10~ in thermal units on the
pound-foot-minute-Centigrade system:—i.e. about 1/28,000 of the conductivity of iron,
or 1/3600 of that of lead+. Of course, with our assumption of hard spherical particles,
we have not reckoned the part of the conducted energy which, in real gases, is due
to rotation or to vibration of individual particles.

* Pogy. Ann., cxv. 1862; Phil. Mag., 1862, 1.
+ Trans. R.S. FE., 1878, p. 717.
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XIV. Diffusion.

45. The complete treatment of this subject presents difficulties of a very formidable
kind, several of which will be apparent even in the comparatively simple case which
is treated below. We take the case of a uniform vertical tube, of unit area in
section, connecting two vessels originally filled with different gases, or (better) mixtures
of the same two gases in different proportions, both, however, maintained at the same
temperature; and we confine ourselves to the investigation of the motion when it
can be treated as approximately steady. We neglect the effect of gravity (the denser
gas or mixture being the lower), and we suppose the speeds of the group-motions to
be very small in comparison with the speed of mean square in either gas. [In some
of the investigations which follow, there are (small) parts of the diffusion-tube in
which one of the gases is in a hopeless minority as regards the other. Though one
of the initial postulates (d of §1) is violated, I have not thought it necessary to
suppress the calculations which are liable to this objection; for it is obvious that
the conditions, under which alone it could arise, are unattainable in practice.]

Clerk-Maxwell's Theorem (§ 15), taken in connection with our preliminary assump-
tion, shows that at every part of the tube the number of spheres per cubic unit,
and their average energy, are the same. Hence, if n,, n,, be the numbers of the
two kinds of spheres, per cubic unit, at a section @ of the tube

Ty N %8 S QOMSEAIY (oo osvinsnnitihsatoiinnshnastathod (1).

Also, if P,, P,, be the masses of the spheres in the two systems respectively, A,
and h, the measures (§ 3) of their mean square speeds, we have

P\fly = Pofhy = (0 Pyfly + o Pyfho)fn = 2p[n ...c..o.vvvevivvevnnann, (2),

where p is the constant pressure.

Strictly speaking, the fact that there is a translational speed of each layer of
particles must affect this expression, but only by terms of the first order of small
quantities.

46. The number’ of particles of the P, kind which pass, on the whole, towards
positive @ through the section of the tube is (as in § 39)

- -]
o — nlffﬂ 1’1'!'-’/391;

where @ is the (common) translational speed of the Pys, and 1/e, the mean free
path of a P, whose speed is ». We obtain this by remarking that, in the present
problem, %, is regarded as constant, so that ‘there is no term in /.

Hence, if G, be the mass of the first gas on the negative side of the section,
divided by the area of the section, we have

dGl

5= RN B T8l vesinan s s vabeniin et (3).
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If @, be the corresponding mass of the second gas, we have (noting that, by (1),
I??1’4"-*?";:0)
da,

> i 0P R R L T S (4).

From the definitions of the quantities (,, ,, we have also

a6, &G,

da = Pl”‘l! d-.x" = Pﬂ%l’
da. der ’ bR eneas on el e sesen b el (5)
_(_ia; = Pg’ﬂg, d‘q}" = — Pg‘n}

47. We have now to form the equations of motion for the layers of the two
gases contained in the section of the tube between # and @+ 8z The increase of
momentum of the P, layer is due to the difference of pressures, behind and before,
caused by P/s; minus the resistance due to that portion of the impacts of some
of the P/s against Pps in the section itself, which depends upon the relative speeds
of the two systems, each as a whole. This is a small quantity of the order the
whole pressure on the surfaces of the particles multiplied by the ratio of the speed
of translation to that of mean square. The remaining portion (relatively very great)
of the impacts in the section is employed, as we have seen, in maintaining or
restoring the “special state” in each gas, as well as the Maxwell condition of
partition of energy between the two gases. If R be the resistance in question, the
equations of motion are

(P Syt (I';l"l) B~ |

where ¢ represents fofal differentiation.

48. To calculate the value of R, note that, in consequence of the assumed
smallness of a,, a,, relatively to the speeds of mean square of the particles, the
number of collisions of a P, with a P, and the circumstances of each, may be
treated as practically the same as if a and a, were each zero:—except in so far that
there will be, in the expression for the relative speed in the direction of the line of
centres at impact, an additional term

(2, — o) COS Y,

where 4 is the inclination of the line of centres to the axis of 2 Thus to the
impulse, whose expression is of the form

2L
o ITQQ (11 o V)l
as in § 19 of the First Part of the paper, there must be added the term we seek, viz.,

2B L,

g (o, — @) cos .
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This must be resolved again parallel to @, for which we must multiply by
cosyr. Also, as the line of centres may have with equal probability all directions,
we must multiply further by sin+rdyr/2, and integrate from 0 to =. The result
will be the average transmission, per collision, per P,, of translatory momentum of
the layer parallel to . Taking account of the number of impacts of a P, on a P,
as in § 23, we obtain finally

+ by + k) PP,
R:gﬂ,m,?s \/W(;}l’:' )P‘ P ( : ag) ........................ (7),

where s is the semi-sum of the diameters of a P, and a P,.

49. To put this in a more convenient form, note that (2), in the notation of
(5), gives us the relation

Ld6,, 1d6,_,
Iy ot by, de
whence Gy /b, + Gylhy = s LR Rl s s IR LR TR (8).

We have not added an arbitrary constant, for no origin has been specified for a.
Nor have we added an arbitrary function of ¢, because (as will be seen at once
from (3)) this could only be necessary in cases where the left-hand members of (6)
are quantities comparable with the other terms in these equations. They are, however,
of the order of

@,  dG,

T dedt ™ Yo

and cannot rise into importance except in the case of motions much more violent
than those we are considering.

d@,

dG,
s et /hg DR teom add g K 9),

From (8) we obtain P

which signifies that equal volumes of the two gases pass, in the same fime, in opposite
directions through each section of the tube. This gives a general description of the
nature of the cases to which our investigations apply.

But, by (3) and (4), we have for the value of

P,.Pamn, (o, — ay)

; \ d& 1
the expression — P, (ddC;' - .}—; P/ &, )+ P 1?1-1( i Pml'g@l);
or, by (9), (2), and (5)
d*G
-2 }lg (dGl 31 P .,l(ﬂn@l'l‘nl n®1))
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Substituting this for the corresponding factors of R in the first of equations (6),
and neglecting the left-hand side, we have finally

__ 1 a6 8 '\/'rr(hl-%ff»a) phy  (dG, 1 &G,
b 7 P,+ P, dt  3n da* (““@"*“”m:‘)}
G, /s 3 P, + P, 1 ) d*G,
R 1 sh 1 T
5 a@t (168’«fvr(h,+h)hhg P 3n i (i Gs+ .8 da*
or, somewhat more elegantly,
aG 3 by + hy d*G
= (S-m, 2 :m 5 (0@, 1, gqr,l)) i SRR (10).

50. This equation resembles that of Fourier for the linear motion of heat; but,
as already stated in § 34, the quantities &, which occur in it render it in general
intractable. The first part of what is usually called the diffusion-coefficient (the mul-
tiplier of d'G/da* above) is constant; but the second, as is obvious from (5) and (8),
is, except in the special case to which we proceed, a function of dG,/da; i.e. of the
percentage composition of the gaseous mixture.

51. In the special case of equality, both of mass and of diameter, between the
particles of the two systems, the diffusion-coefficient becomes

3 2 (63
D=Sﬁ'\/ﬁ+ 3nws® /b’

3 fm OY A A
= D=(74/3+% )0677¢h D

where A is the mean free path in the system. Hence the diffusion-coefficient among
equal particles is directly as the mean free path, and as the square root of the

absolute temperature. Fourier's solutions of (10) are of course applicable in this
special case.

If we now suppose that our arrangement is a tube of length ! and section 8,
connecting two infinite vessels filled with the two gases respectively; and, farther,
assume that the diffusion has become steady, the equation (10) becomes

d@, d*,
T

where the left-hand member is constant. Also, it is clear that, since d@,/dz must thus
be a linear function of x#, we have

d@, &
Ew‘—-P‘nl P‘ﬂ(l—i’),
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so that the mass of either gas which passes, per second, across any section of the
tube is
SDp/l,

where p is the common density of the two gases.

For comparison with the corresponding formul® in the other cases treated below,
we may now write our result as
dG, i

S v Sk

Also, to justify our assumption as to the order of the translatory speed, we find
by (3)
1'38n
=
(I —2a)Vh

Hence, except where ! —a is of the order of one-thousandth of an inch or less, this

is very small compared with A% And it may safely be taken as impossible that u,
can (experimentally) be kept at 0 at the section =1

If the vessels be of finite size, and if we suppose the contents of each to be
always thoroughly mixed, we can approximate to the law of mixture as follows. On
looking back at the last result, we see that for p we must now substitute the
difference of densities of the first gas at the ends of the connecting tube. Let 95 g
be the quantities of the two gases which originally filled the vessels respectively;
and neglect, in comparison with them, the quantity of either gas which would fill
the tube. Then, obviously,

dG, _ _SDp (Gl gy == G—l) ’

dt I \g A
i _SDp g1t gy
whence S {2‘ +e T om ‘}
G+ ge (G2

This shows the steps by which the initial state (g, 0) tends asymptotically to the

o G-
final state (91 T [ HEn

vessels are equal this takes the simple form

gl), in which the gases are completely mixed. When the

52. In the case just treated there is no transmission of energy, so that the
fundamental hypotheses are fully admissible. In general, however, it is not so. The
result of § 41, properly modified to apply to the present question, shows that the
energy which, on the whole, passes positively across the section z is, per unit area
per second,

5 (Pynoy P, ;s
4 ( h, R Ta_) O gnl (P & — PM@J_

22—2
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This, of course, in general differs from section to section, and thus a disturbance of
temperature takes place. In such a case we can no longer assume that h, and A,
are absolute constants; and thus terms in &; would come in; just as a term in O
appeared in the expression for energy conducted (§ 42). Thus, in order that our
investigation may be admissible, the process must be conducted at constant tempera-
ture. This, in general, presupposes conditions external to the apparatus.

53. Though it appears hopeless to attempt a general solution of equation (10),
we can obtain from it (at least approximately) the conditions for a steady state of
motion such as must, we presume, finally set in between two infinite vessels filled
with different gases at the same temperature and pressure. For the left-hand member
is then an (unknown) constant, a second constant is introduced by integrating once
with respect to #; and these, which determine the complete solution, are to be found
at once by the terminal conditions

1 dG,__ _ (nfor =0
=" {0 | SR —— (11).

»

And, by a slight but obvious modification of the latter part of §51 above, we can
easily extend the process to the case in which the vessels are of finite size :—
always, however, on the assumption that their contents may be regarded as promptly
assuming a state of uniform mixture. The consideration of § 52, however, shows that
the whole of the contents must be kept at constant temperature, in order that this
result may be strictly applicable.

54. Recurring to the special case of § 51, let us now suppose that, while the
masses of the particles remain equal, their diameters are different in the two gases.
Thus, suppose 8 >s,. Then it is clear that

§2— s, and §*— 82

are both positive. In this case, infinite terminal vessels being supposed, (10) gives for
the steady state

P T O n, n, dm, :
4=t 432\/ P | S . a2);
whose integral, between limits as in (11) above, is
it P 3n ™ Oﬂ 2 | 1 28,3 28,2
e “anh {ﬁ 2 * 3 (3-2,_ 8 §i— & (s’ si) Og s = sy log = )}

Here A is the rate of passage of the first gas, in mass per second per unit area
of the section of the tube.

If now we put s=8+0, =8—a,
then, when ¢ is small compared with s, the multiplier of Cn/3 is

(1 + 0%/3s%)/s% nearly.
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When o is nearly equal to s, i.e. one of the sets of particles exceedingly small
compared with the other, it is nearly

1-283/s%
Thus it appears that a difference in size, the mean of the diameters being unchanged,
favours diffusion.

Suppose, for instance, U N B B
and we have A= -.-risljn\/k{:a -.-r+2;7 (]5+g§lgg+glgl)]’,
s mwk {3,\/ S 1085 } z§4k1'24
—-—m18'3

Compare this with the result for equal particles (§ 51), remembering that A
now stands for the mean free path of a particle of either gas in a space filled with
the other:—and we see that (so long at least as the masses are equal) diffusion
depends mainly upon the mean of the diameters, being but little affected by even
a considerable disparity in size between the particles of the two gases. Thus it
appears that the viscosity and (if the experimental part of the inquiry could be
properly carried out) conductivity give us much more definite information as to the relative
sizes of particles of different gases than we can obtain from the results of diffusion.

Equation (12) shows how the gradient of density of either gas varies, in the
stationary state, with its percentage in the mixture. For the multiplier of ﬁ—:—l is

obviously a maximum when
1 Y 1
#+ysd S48y’

in which y =mn/n,, is so. This condition gives
n:/ns = 32/31'

Hence the gradient is least steep at the section in which the proportion of the two
gases is inversely as the ratio of the diameters of their particles; and it increases
either way from this section to the ends of the tube, at each of which it has the
same (greatest) amount. This consideration will be of use to the full understanding
of the more complex case (below) in which the masses, as well as the diameters, of
the particles differ in the two gases.

55. Let us now suppose the mass per particle to be different in the two gases.
The last terms of the right-hand side of (10), viz,

3n (“91@'! +m HQI‘I) 2 Gl
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may be written in the form

4o {f“_-_?.h)ie 5 L&) dy
3mn dx ‘\/h; ¢ ﬂ;ﬁ-_-sfp(y) 5 (ﬂ = nl) h]st (y N/}if)
1 f f@dy |
A %
o (n=my) sl F (y) + nhs*F (y,\/m)}

where the meanings of f and F are as in § 34.

If we confine ourselves to the steady state, we may integrate (10) directly with
respect to @, since dGy/dt is constant. In thus operating on the part just written,
the integration with regard to « (with the limiting conditions as in (11)) can be
carried out under the sign of integration with respect to y:—and then the y inte-
gration can be effected by quadratures.

The form of the « integral is the same in each of the terms. For

0 (n—-nl)_c{r_;l _J‘ﬂ nydn, = o {1 b A I g

adn, +B(n—mn) J,A(n—n)+Bn, A-B 7. g Rl i
This expression is necessarily negative, as 4 and B are always positive. When 4
and B are nearly equal, so that B=(1+¢) 4, its value is

so that, even when 4 and B are equal, there is no infinite term.

It is easy to see, from the forms of F(y), and of its first two differential

coefficients, that the equation s
kst ()= F (y /)

can hold for, at most, one finite positive value of y.

56. As a particular, and very instructive case, let us suppose
¥ e s e R e
the case of oxygen and hydrogen.

(a) First, assume the diameters to be equal. Then the integral of (10), with
limits as in (11), taken on the supposition that the flow is constant, is

C (o= (Y
dy 7
. \F(y)-16F (E)

P/ -16F(4)7(5)  16F(})

{F (y)— 16F (%)} ETY

BByl g Lo
a“——"m ng'?'?r—

s
3

-+
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As remarked above, the definite integral is essentially negative. For so is every

{'N]JI'L‘HHiHJ’] of the form

=il Aa — h';";] b
A-BY @ -BF*84

provided A, B, a, and b be all positive. When 4 and B ar equal 1ts value 18

1
5 (a + b).

[ bhave made a rough attempt at evaluation of the integral, partly by calculation
partly by a graphic method. My result is, at best, an approximation, for the
various instalments of the quadrature appear as the relatively small differences of two
considerable qil:llll-il-ive—;, Thus the three decimal places, to which, from want of
leisure, I was obliged to confine myself, are not sufficient to give a very exact
value. The graphical representations of my numbers were, however, so fairly smooth
that there seems to be little risk of large error. The Jull curve in the sketch

below shows (on a ten-fold scale) the wvalues of the integrand (with their [signs

changed), as ordinates, to the values of y as abscisse. The area is about — 2°165.
Hence we have
oy P o
e e R
it mE A Yy
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(b) Suppose next that the diameter of a P, is three times that of a P,, but
the semi-sum of the diameters is s as before. The definite integral takes the form

dy RAK)) = lﬁf(g)
%F(y) g 16F(%) F(y)—4F (g)

0

iFwsw wr()) o (()
0 FR ]
Tro-1er(@f ° TO  Trgy-ar(Y)]

The corresponding curve is exhibited by the dashed line in the sketch, and its area
is about — 3157, Hence, in this case,

d%__ 2
dt —  ws*h/h,

o %)

Og—ﬁm .

+

l 3793

(¢) Still keeping the sum of the semidiameters the same, let the diameter of a
P, be three times that of a P,. The integral is

mdy L) 5 lﬁf(%)
: i-ﬁ'(y)_lep(%) F(y)-36F ()
s o) ser) ) ser(l)

B - log — 0F = |-
T N ° Py = g)}” F(y)
{; F(y) - 16F (;)[ {F(:’/) 36F (4
The curve is the dotted line in the cut, and its area is about —1713. Hence we have

40, L A e

E __‘?1‘8""\”1'1: X
If we compare these values, obtained on such widely different assumptions as to the
relative diameters of the particles, we see at once how exceedingly difficult would
be the determination of diameters from observed results as to diffusion. (Compare § 54.)

But we see also how diffusion varies with the relative size of the particles, the
sum of the diameters being constant. For the smaller, relatively, are the particles
of smaller mass (those which have the greater mean-square speed) the more rapid is
the diffusion,

And further, by comparison with the results of §§ 51, 54, we see how much more
quickly a gas diffuses into another of different specific gravity than into another of
the same specific gravity.
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When the less massive particles are indefinitely small in comparison with the
others, the diameter of these is s; and for their rate of diffusion we have
dG 'Pl_

3&? =_'}r3£-\/k_l 4"2().
When it is the more massive particles which are evanescent in size, the numerical
factor seems to be about 348, Hence it would appear that, even in the case of
masses so different, there is a manimum value of the diffusion-coefficient, which 1is

reached before the more massive particles are infinitesimal compared with the others.

[At one time I thought of expressing the results of this section in a form
similar to that adopted in the expression for D in §51. It is easy to see that the
quantity corresponding to A would now be what may be called the mean free path
of a single particle of one gas in a space filled with another. Its value would be
easily calculated by the introduction of %, for A in the factor » of the integral

J’v
0e

yvhile keeping e in terms of A. This involves multiplication of each number in the

fourth column of the Appendiz to Part I. by the new factor e~®—ma", /5!  But, on
reflection, I do not see that much would be gained by this.]
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APPENDIX.

The notation is the same as in the Appendix to Part I.

[LXXVIIL

& mXI}XB Q#XII{(XS m“'xl )‘IIXB mﬂxl I’XS
01 000049 000005 000001 ‘000000
2 000758 000152 -000030 000001
3 ‘003594 001078 000323 000029
4 ‘010364 004146 001658 ‘000265
D 022505 ‘011252 005626 001407
6 040512 024307 ‘014584 005250
7 063623 ‘044536 031175 015276
8 ‘089928 071942 ‘0575564 036834
‘9 ‘116712 105041 094537 ‘076575
10 141040 ‘141040 141040 141040
1-1 160292 176321 193953 234683
12 172656 207187 ‘248624 *358019
13 177229 230398 299517 506184
1-4 174174 243844 341382 669108
15 164430 246645 369968 832427
16 149568 *239309 382894 080209
I 5rd ‘131393 223368 379726 1-097407
1-8 ‘111654 200977 361758 1-172098
19 ‘091960 174724 331976 1198432
2:0 ‘073480 146960 -293920 1:175680
2-1 ‘057015 119731 251435 1-108829
2:2 ‘043032 094670 208274 1-:008046
2-3 031579 072632 167054 883714
24 022584 ‘054202 130085 749288
2:5 ‘015750 ‘039375 ‘098438 615234
2:6 010686 ‘027784 072238 488332
27 ‘007074 019099 051567 375926
28 ‘004536 012701 035563 -278812
29 ‘002871 008326 024145 203063
30 001710 005130 015390 138510
31 001071 003320 010294 ‘098925
3-2 000629 002014 006445 ‘065997
33 ‘000361 001192 ‘003935 042852
34 000211 000689 ‘002544 027098
35 ‘000111 000389 001361 ‘016671
36 000066 000240 ‘000865 ‘010004
37 000037 ‘000136 000505 005839
38 000229 003307
39 ‘000118 001798
40 000062 ‘000985
2:095244 2954862 4:630593 14624154

Thus the values of C, C,, C,, and C, are respectively 0'838, 1-182, 1:852, and 5849,
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ON THE FOUNDATIONS OF THE KINETIC THEORY OF GASES. III.
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I HAVE explained at some length, in my “Reply to Prof. Boltzmann*” the
circumstances under which the present inquiry originated and has been pursued. Of
these I need now only mention two:—first, the very limited time which I can spare
for such work; second, the very meagre acquaintance I possessed of what had been
already done with regard to the subject. My object has been to give an easily
intelligible investigation of the Foundations of the Kinetic Theory; and I have, in
consequence, abstained from reading the details of any investigation (be its author who
he may) which seemed to me to be unnecessarily complex. Such a course has,
inevitably, certain disadvantages, but its manifest advantages far outweigh them.

In August 1888, however, I was led in the course of another inquiry+ to peruse
rapidly the work of Van der Waals, Die Continuitit des gasformigen und Siissigen

* Proc. R. S. E., January 1888; Phil. Mag., March 1888.
+ ““Report on some of the Physical Properties of Water,” Phys. Chem. Chall. Exp., Part IV. [LXI. above, p. 56.]

23—2
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Zustandes. This shows me that Lorenz had anticipated me in making nearly the same
correction of the Virial equation as that given in the earlier part of § 30 of my first
paper. His employment of the result is a totally different one from mine; he uses
it to find a correction for the number of impacts. The desire to make, at some time,
this investigation arose with me when I was writing my book on Heat, as will be
seen in the last paragraphs of § 427 of that book. [First edition, 1884.] It was caused
by my unwillingness to contemplate the existence of molecular repulsion in any form,
and my conviction that the effects ascribed to it could be explained by the mere
resilience involved in the conception of impacts.

The present paper consists of instalments read to the Society at intervals during
the years 1887-8. The first of these, which is also the earliest in point of date, deals
with a special case of molecular attraction, on which, of course, depends the ecritical
temperature, and the distinction between gases and vapours. Here the particles which,
at any time, are under molecular force have a greater average kinetic energy than the
rest. Mathematical, or rather numerical, difficulties of a somewhat formidable nature
interfered with the exact development of these inquiries. I found, for instance, that
in spite of the extreme simplicity of the special assumption made as to the molecular
force, the investigation of the average time between the encounter of two particles and
their final disengagement from one another involves a quadrature of a very laborious
kind. Thus the correction of the number of impacts could not easily be made except
by some graphic process.

One reason for the postponement of publication of the present part was the hope
that I might be enabled to append tables of the numerical values of the chief integrals
which it involves, especially the peculiarly interesting one

y=ea& J‘zezgdw.
0

Want of time, however, forced me to substitute for complete tables mere graphical
representations of the corresponding curves, drawn from a few carefully calculated values.
These are not fitted for publication, though they were quite sufficient to give a general
notion of the numerical values of the various results of the investigation; and enabled
me to take the next step:—viz the approximate determination of the form of the Virial
equation when molecular attraction is taken account of. Part IV. of this investigation,
containing this application, was read to the Society on Jan. 21, 1889, and an Abstract
has appeared in the Proceedings. 1t appears that the difference of average kinetic
energy between a free, and an entangled, particle is of special importance in the physical
interpretation of the Virial Equation.

An Appendix is devoted to the consideration of the modification which the previous
results undergo when the coefficient of restitution is supposed to be less than 1. This
extension of the investigation was intended as an approximation to the case of radiation
from the particles of a gas, and the consequent loss of energy. But, so far as I have
developed it, no results of any consequence were obtained. I met with difficulties of
a very formidable order, arising mainly from the fact that the particles after impact



LXXIX.] ON THE FOUNDATIONS OF THE KINETIC THEORY OF GASES. 181

do not always separate from one another. The full treatment of the impact of a single
particle with a double one is very tedious; and the conditions of impact of two
double particles are so complex as to be totally unfit for an elementary investigation
like the present.

The remainder of the Appendix is devoted to two points, raised by Professors
Newcomb and Boltzmann, respectively :—the first being the problem of distribution of
speed in the “special” state;—the other involving a second approximation to the
estimates of Viscosity and Thermal Conductivity already given in Part IL

XV. Special Assumption as to Molecular Force.

57. To simplify the treatment of the molecular attraction between two particles,
let us make the assumption that the kinetic energy of their relative motion changes
by a constant (finite) amount at the instant when their centres are at a distance @
apart. This will be called an Encounter. There will be a refraction of the direction
of their relative path, exactly analogous to that of the path of a refracted particle
on the corpuscular theory of light. To calculate the term of the virial (§ 30) which
corresponds to this, we must find

(@) The probability that the relative speed before encounter lies between » and
u + du,

(b) The probability that its direction is inclined from € to 8 + d@ to the line of
centres at encounter.

(¢) The magnitude of the encounter under these conditions, and its average value.

Next, to find the (altered) circumstances of impact, we must calculate

(d) The probability that an encounter, defined as above, shall be followed by
an impact.

(¢) The circumstances of the impact.
(/) The magnitude of the impact, and its average value per encounter.

In addition to these, we should also calculate the number of encounters per
second, and the average duration of the period from encounter to final disentangle-
ment, in order to obtain (from the actual speeds before encounter) the correction for
the length of the free path of each. This, however, is not easy. But it is to be
observed that, in all probability, this correction is not so serious as in the case when
no molecular force is assumed. For, in that case the free path is always shortened ;
whereas, in the present case it depends upon circumstances whether it be shortened
or lengthened. Thus, if the diameters of the particles be nearly equal to the en-
counter distance, there will in general be shortening of the paths, and consequent
diminution of the time between successive impacts:—if the diameters be small in
comparison with the encounter distance, the whole of the paths will be lengthened
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and the interval between two encounters may be lengthened or shortened. Thus if
we assume an intermediate relation of magnitude, there will be (on the average) but
little change in the intervals between successive impacts. Hence also the time during
which a particle is wholly free will be nearly that calculated as in § 14, with the substi-
tution, of course, of a for s.

XVI. Average Values of Encounter and of Impact.
58. The number of encounters of a w, with a #, in directions making an angle
B with one another, is by § 21 proportional to
v, 8in Bdp3,
where v2 = 0% + ;% — 20w, cos B,

Hence the number of encounters for which the relative speed is from w to u+ du
is proportional to

The limits of », are v»+w, or u+v, according as vZwu, and those of » are 0 to o, so
that the integral is

’-wyf?ﬂ-u y]_'.-—J‘w v (e—"‘(""‘)'—e_"‘(”+“)’)

o ¥o-uwtn Jo 2hv

—hulf2 r* u)* o u)?
£ - . J.O vdy (6—2.':.(9—5) oo S&(v-i-:) )

The first term of this integral may be written as

[ s e

2

and the second as - f 5 (w = ;—") da e=2h*,

2

o o
Together, these amount to f * sdwe ™ 4u f da e~ %,
u 0

The first term vanishes, and the second is

u\/z
2 2h°

Thus the value of (1) is %’Ee"‘“’ﬂ \/E— ....................................... (2).
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But, on the same scale, the whole number of encounters in the same time is

J.W:'ﬂoﬂi“ Bdﬁ:f%l’ondl’a:%:%w %T:r
1

Thus the fraction of the whole encounters, which takes place with relative speed u to
u + du, 1s

I
Sy e-hud2.
g U du e~z
whose integral, from 0 to o, is 1 as it ought to be.

59. Now these relative motions are before encounter distributed equally in all
directions. Let us deal therefore only with those which are parallel to a given line.
The final result will be of the same character relative to all such lines; and there-
fore the encounters will not disturb the even distribution of directions of motion.

Refer the motion to the centre, O, of one of the encountering particles. Let
4 be the point midway between the particles at encounter, B that of impact, the

encountering particle coming parallel to CO. Let OA=a/2, OB (as before)=s/2. Let
6, ¢ be the angles of incidence and refraction at encounter, ¥ that of incidence at
impact, # and w the relative speeds before and after the encounter. Then

wsin @ =wsin ¢ ;
and, if Pe¢* represent double the work done in the encounter by the molecular forces,
u® cos? 6 + ¢* = w* cos® ¢,
so that w + 0* = wh

Also it is obvious from the diagram that

§ 8in 4 = @ sin ¢=%}—sm 6.
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Hence the encounter will not be followed by an impact if

i sw
gin 8 >—,
an

60. We must next find the average value of an encounter, and also of an
impact; in the latter case taking account of all the encounters whether or not they

involve an impact.

The numerical value of the encounter-impulse in the above figure is evidently
P (w cos ¢ — u cos 0)/2,

which must be doubled to include the repetition on separation; and the average value,
when the relative speed is u, is

2Pfsinecosa(weos¢-ucos 0) o
0

i g_i: o T SRR ).

The value of the subsequent impact is
— Pw cos r,

and the average value

u 2owcos€sin9,\/1 - %sin’ﬂdﬁ.

When sw > au, the limits are 0 and g, and the value is

9 shw? a2y i
—gP‘?.Urw{l—(l—s%i)} ................................. (4!).

a )
But when sw < au, the limits are 0 and sin™ ! and the value is

2 s'w?
—_— § Pwﬁ .......................................... (5)

By (2) and (3) we find as the average value of the encounter, taking account of all
possible relative speeds,

s gkgf udue—hu’,’-z {(G’*-I-‘ uﬁ)i ey, uil},
]

{E\TI::(\/‘Z 4"”] ”Wy)'"_3\/2hs}’
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or, if we write for simplicity, &= he'/2,

3%{ (\/E“sz -v‘y‘dy) 2 /26 — 3\/2}
w.»,{\/z (= 1)+ey2— «/2&[ -v’dy}

‘M_{«/?E" fﬂ e Vdy +en2 - ,\/2} ....................................... (6).

The expression obviously vanishes, as it ought to do, when e=0. And it is
always positive, for its differential coefficient with respect to e is

i A
Wb 2386'8 f, G_ﬂady.

In a similar way (4) and (5) give, with (2), as the average impact per encounter,

“ 2 i o
R__I_)ﬂ {f‘/ Furuduemor (1 (1- &) )+f uﬂudue-m}
__ %o

S*?
A/ a*— g2
s
Sk s’ﬁ BTG b map (1 _ @\
= w“udu € wudue 1
shu® 7 p

The first integral we have already had as part of the encounter. To simplify the
second, let s/a = cosa, and it becomes

o cotia s : 8§
f wdue= 2 (u" + ¢ — u? sec’u) 5
0

which, with ¢ — u? tan’a = 2%,
i i +B i ) cotta
gives cot’af Zdze 2
0
& L E coba
or (%) tan? e~ e cot'af2 f Vi dwe”,
“ [}

The whole is now

P eheti2 - h/ 9.8 .J cota
e T 2 R " cut’n
R= 3 h? cos? a {‘\/hB ( \/2 4~/2fu yidye ) (h) tan® ae 2 fn a,“dme””!

2 ] @ a
=_PGOS Cf & 7_1: + »\/28—'\/26‘92 e—Vdy + «/Eetanﬂa— ,\{26‘—.9!00!;% tan® o cot i
2 0 4

'\»Uf. < 0

. e ecot e
= —% cos? o {e”" ,\/g + 4/2e sec? o — \/26”[06‘9’(33; — y/2e—ecotta pora g [ 7 e‘"dw} <

0

7 H. 24
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which, when e=0 and cosa=1, becomes
i
P \/,21

It would at first sight appear that the value of the impact is finite (=-—Pe ,\/ %)

as in § 30.

# . m §
when there is no nucleus (1.3. g= 5). But, in such a case, we must remember that

the second part of the first expression for R above has no existence. In fact the value
of the second of the two integrals is 4/2tana.ecot @, when ecot z is small; and this
destroys the apparently non-vanishing term.

XVIIL. Effect of Encounters on the Free Path.

61. If two particles of equal diameters impinge on one another, the relative path
must obviously be shortened on the average by

m

‘g
J 27 sin @ cos? 0d0 9
0 8
8 = —_5 .

js2w gin @ cos 8d@
0

But if o, », be their speeds, and v, their relative speed, the paths are shortened
respectively by the fractions /v, and v,/v, of this. The average values must be equal,
so that we need calculate one only.

Now the average value of v/v, is obviously
f wyvsin BdfS
f Vv, v, 81N ﬁdB :
where B is the angle between the directions of motion, so that

v, sin BdS3 = v,dv,.

Hence the average above is
vy v, dv, A 3
_[—__vl _?fwlv_ 4 h 3
[PRed ™ L Jor "R

v, 4
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Hence the mean of the free paths during a given period becomes

Skl e,
A 2nmrs? 3
that is, it is shortened in the ratio
2
1~—§':r't-;-rers =
or 1 —4 (sum of vols. of spheres in unit vol.) : 1 =1 -«% : 1 say.

Hence the number of collisions per second, already calculated, is too small in the same
ratio.
Thus the value of % (R) in § 30 must be increased in the ratio 1 : 1 — %, and the

virial equation there given becomes

npéi/2=§p(v- g a).
sl

It this were true in the limit, the ultimate volume would be double of that before
calculated, 7.e. 8 times the whole volume of the particles.

62. Another