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PREFACE.

^THIS volume contains, in addition to a further selection from my 
scientific papers, a few articles reprinted from the last edition of the 

Encyclopaedia Britannica; and an Introductory Lecture to my Ordinary 
Class, devoted mainly to the question of how Natural Philosophy ought, as 
well as how it ought not, to be taught. For permission to reprint these 
I am indebted to the courtesy of Messrs A. & C. Black, and of Messrs 
Isbister, respectively.

I have been assured by competent judges that my remarks on Science 
Teaching, as it is too commonly conducted, are not only in no sense 
exaggerated, but are even now as appropriate and as much needed as they 
seemed to me twenty years ago.

To the short article on Quaternions I was inclined to attach special 
importance, of course solely from the historical point of view; for (in 
consequence of my profound admiration for Hamilton’s genius) I had spared 
neither time nor trouble in the attempt to make it at once accurate and 
as complete as the very limited space at my disposal allowed. Yet, as 
will be seen from the short note now appended to the article, the claims 
of Hamilton to entire originality in the matter have once more been 
challenged:—on this occasion in behalf of Gauss. [It is noteworthy that 
Hamilton himself seems to have had at one time a notion that, if he had 
been anticipated, it could have been only by that very remarkable man. 
But he expresses himself as having been completely reassured on the subject, 
by a pupil of Gauss who was acquainted with the drift of his teacher’s 
unpublished researches. See Hamilton’s Life, Vol. m. pp. 311—12, 326.} 
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It is therefore with much regret that I allow this volume to be issued 
before full materials are available for the final settlement of such an 
important question in scientific history. But it is reasonable to conclude 
that the so-called anticipations had at least no very intimate connection 
with a subject at once so novel and so unique as Quaternions. For Gauss, 
though he survived their (hitherto supposed) date of birth for about twelve 
years, certainly seems to have made no (public) claim in the matter.

The arrangement of the contents is, as nearly as possible, that adopted 
in the former volume :■—all papers on one large subject, such as the 
Kinetic Theory of Gases, Impact, the Linear and Vector Function, the 
Path of a Rotating Spherical Projectile, &c., being brought into groups 
in relative sequence. I have reprinted only the later of my papers on 
the Kinetic Gas Theory. The earlier were numerous, but fragmentary, and 
a great part of their contents (often in an improved form) had been 
embodied in the later ones.

I have again to thank Drs Knott and Peddie for their valuable help 
in reading the proofs.

It is intended that a third volume shall contain some later papers 
together with a complete list (including those not re-published) and a 
general Index.

P. G. TAIT.
College, Edinburgh, 

January 15th, 1900.
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LXI.

REPORT ON SOME OF THE PHYSICAL PROPERTIES OF 
FRESH WATER AND OF SEA-WATER.

[From the “ Physics and Chemistry ” of the Voyage of H.M.S. Challenger;
Vol. if. Part iv., 1888.]

INTRODUCTION.

As I had taken advantage of the instruments employed for the determination 
of the Pressure Errors of the Challenger Thermometers'1 to make some other physical 
investigations at pressures of several hundred atmospheres, Dr Murray requested me to 
repeat on a larger scale such of these as have a bearing on the objects of the 
Challenger’s voyage. The results of the inquiry are given in the following paper. The 
circumstances of the experiments, whether favourable to accuracy or not, are detailed 
with a minuteness sufficient to show to what extent of approximation these results 
may be trusted. My object has been rather to attempt to settle large questions about 
which there exists great diversity of opinion, based upon irreconcilable experimental 
results, than to attain a very high degree of accuracy. My apparatus was thoroughly 
competent to effect the first, but could not without serious change (such as greatly 
to affect its strength) have been made available for the second purpose. The results 
of Grassi, Amaury and Descamps, Wertheim, Pagliani and Vincentini, &c., as to the 
compressibility of water at low pressures, differ 'from one another in a most distracting 
manner; and the all but universal opinion at present seems to be that, for at least 
five or six hundred atmospheres, there is little or no change in the compressibility, 
the explicit statement of Perkins notwithstanding. My experiments have all been 
made with a View ‘to direct* application in problems connected with the Challenger 
work, and therefore at pressures of at least 150 atmospheres, so that I have only 
incidentally and indirectly attacked the first of these questions; but I hope that no
doubt can now remain as to the proper answer to the second. The study of the
compressibility of various strong solutions of common salt has, I believe, been carried
out for the first time under high pressures; and the effect of pressure on the
maximum-density point of water has been approximated to by three different experi­
mental methods, one of which is direct.

1 Narr. Chait. Exp., vol. n., App. A., 1882. (Ante, No. LX.)
T. II. 1
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COMPRESSIBILITY OF WATER, GLASS, AND MERCURY.

I. General Account of the Investigation.

I will first give a general account of the subjects treated, of the mode of con­
ducting the experiments, and of the difficulties which I have more or less completely 
overcome in the course of several years’ work. The reader will then be in a position 
to follow the full details of each branch of the inquiry.

The experiments were for the most part carried on in the large Fraser gun 
fully described and figured in my previous Report'. But it was found to be im­
practicable to maintain this huge mass of metal at any steady temperature, except 
that of the air of the cellar in which it is placed. The great thickness of the 
College walls, aided by the comparative mildness of recent winters, thus limited till the 
beginning of the present year the available range of temperature for this instrument 
to that from 3° C. to about 12° C. As I did not consider this nearly sufficient, and 
as comparative experiments at the higher and lower of these temperatures could only 
be made at intervals of about six months, I procured (in May 1887) a much less 
unwieldy apparatus. It was made entirely of steel, so as to be of as small mass as 
possible, with the necessary capacity and strength: and could at pleasure be used at 
the temperature of the air, or be wholly immersed in a large bath of melting ice. 
As this apparatus was mounted, not in a cellar but, in a room sixty feet above the
ground and facing the south, it enabled me to obtain a temperature range of 0° C.
to 19° C., with which I was obliged to content myself. A great drawback to the 
use of this apparatus was found in the smallness of its capacity. Not only was I 
limited to the use of two, instead of six or seven, piezometers at a time; but the
pressure could not be got up so slowly and smoothly as with the large apparatus,
and (what was still worse) it could not be let off so slowly. In spite of these and 
other difficulties, to be detailed later, I think it will be found that the observations 
made with this apparatus are not markedly inferior in value to those made with the 
great gun.

In the piezometers I have adhered to the old and somewhat rude method of 
recording by means of indices containing a small piece of steel, and maintained in 
their positions (till the mercury reaches them and after it has left them) by means 
of attached hairs. These indices are liable to two kinds of deceptive displacement, 
upwards or downwards, by the current produced at each stroke of the pump, or by 
that produced during the expansion on relief of pressure. The first could almost 
always be avoided, even in the smaller apparatus, provided the pressure was raised

1 Pressure Errors of the Challenger Thermometers. Ante, No. LX. 
1—2
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with sufficient steadiness, and the index brought down to the mercury at starting. 
But the instantaneous reaction, partly elastic, partly due to cooling, and on rare 
occasions due to leakage of the pump or at the plug, after a rash stroke of the 
pump, sometimes left the index a little above the mercury just before the next stroke. 
If another rash stroke followed, the index might be carried still farther above the 
point reached by the mercury. Practically, however, there is little fear of my estimates 
of compression having been exaggerated by this process. They are much more likely 
to have been slightly diminished by a somewhat sudden fall of pressure which, in 
spite of every care, occasionally took place at the very commencement of the relief. 
Once or twice the experiments were entirely vitiated by this cause; but, as we had 
recorded the sudden outrush before the plug had been removed in order to take out 
the piezometers, we were fully warranted in rejecting the readings taken on such an 
occasion:—and we invariably did so, whether they agreed with the less suspicious 
results or not.

Another and very puzzling source of uncertainty in the use of these indices 
depends on the fact that the amount of pressure required to move them varies from 
one part of the tube to another, sometimes even (from day to day) in the same part 
of the tube:—and the index thus records the final position of the top of the mercury 
column in different phases of distortion on different occasions. The effect of this will 
be to make all the determinations of compression too small, and it will be more 
perceptible the smaller the compression measured. And in sea-water, and still more 
in strong salt-solutions, the surface-tension of the mercury changes (a slight deposit 
of calomel (?) being produced), while the elasticity of the hairs also is much affected. 
But, by multiplying the experiments, it has been found possible to obtain what 
appears a fairly trustworthy set of mean values by this process.

I discarded the use of the silvering process, which I had employed in my earlier 
experiments1, partly because I found that the mercury column was liable to break, 
especially when sea-water was used, partly from the great labour and loss of time 
which the constant resilvering and refilling of the piezometers would have involved. 
This process has also the special disadvantage that the substance operated on is not 
necessarily the same in successive repetitions of the experiment.

And the electrical process2 which I devised for recording the accomplishment of a 
definite amount of compression could not be employed, because it was impossible to 
lead insulated wires into either of my compression-chambers. This was much to be 
regretted, as I know of no method but this by which we can be absolutely certain 
of the temperature at which the operation is conducted.

My next difficulty was in the measurement of pressure. In my former Report I 
have pointed out the untrustworthiness of the Bourdon gauges, and the uncertainty 
of the unit of my external gauge. This gauge was amply sufficient for all the 
purposes of my investigation of the errors of the Challenger thermometers, where the 
inevitable error of a deep-sea reading formed, according to the depth, from 5 to 20 
per cent, of the pressure error; but, besides the uncertainty as to its unit, it was 
on so small a scale that an error of 1 per cent, in the reading, mainly due to

1 Proc. Roy. Soc. Edin., vol. xn. pp. 223, 224, 1883. 2 Appendix A to this Report.
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capillary effects at the surface of the mercury column, was quite possible when the 
pressure did not exceed 150 atmospheres. Fortunately I was informed of the great 
improvement made by Amagat on the principle of the old Manometre Desgoffes,—an 
improvement which has made it an instrument of precision instead of an ingenious 
scientific toy. M. Amagat was so kind as to superintend the construction of one of 
his instruments for me (it will be a surprise to very many professors of physics in 
this country to hear that the whole work was executed in his laboratory), and to 
graduate it by comparison with his well-known nitrogen gauge. My measurements of 
pressure are therefore only one remove from Amagat’s 1000 feet column of mercury.

The change of temperature produced by compression of water is one of the most 
formidable difficulties I have encountered. During the compression the contents of 
the piezometer, as well as the surrounding water, constantly change in temperature; 
and the amount of change depends not only on the initial temperature of the water, 
but also on the rapidity with which the pressure is raised. It was impossible to 
ascertain exactly what was the true temperature of the water in the piezometer at 
the instant when the pressure was greatest, and a change of even 0°'l C. involves a 
displacement of the hair index, which is quite easily detected even by comparatively 
rude measurement. Any very great nicety of measurement was thus obviously super­
fluous. My readings, therefore, were all made directly by applying to the tube of 
the piezometer a light but very accurate scale. The zero of this scale was adjusted 
to the level of the upper surface of the mercury of each piezometer the instant it 
was removed from the water-vessel, in which it was lifted from the pressure-chamber, 
and the position of the index was afterwards read at leisure. As the same scale was 
employed in the calibration of the piezometer tubes, its unit is, of course, of no 
consequence. The expansibility of water at atmospheric pressure is so small, at least 
up to 8° C., that no perceptible displacement of the mercury can have been intro­
duced before the zero of the scale was adjusted to it. The effects of the raising of 
temperature by heating are two: a direct increase of the volume (provided the tem­
perature be above the maximum-density point, and the pressure be kept constant), 
and a diminution of compressibility (provided the temperature be under the minimum 
compressibility point). These conspire to diminish the amount of compression produced 
by a given pressure. At 15° C., or so, the first of these is, in the range of my 
experiments, the more serious of the two, especially in the case of the solutions of 
common salt.

The water in the compression apparatus, even when the large one was used, 
slowly changed in temperature from one group of experiments to the next:—some­
times perceptibly during the successive stages of one group. The effect of this source 
of error was easily eliminated by means of the rough results of a plotting of the 
uncorrected experimental data. From this the effect of a small change of temperature 
on the compressibility at any assigned temperature was determined with accuracy far 
more than sufficient to enable me to calculate the requisite correction. This correction 
was therefore applied to all the experimental data of each group, for which the 
temperature differed from that at the commencement of the group. The corrected 
numbers were employed in the second and more complete graphical calculation. I
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endeavoured to raise the pressure in each experiment as nearly as possible by 1, 2, 
or 3 tons weight per square inch:—having convinced myself by many trials that this 
was the most convenient plan. The cure for any (slight) excess or defect of pressure 
was at once supplied by the graphical method employed in the reductions, in which 
the pressures were laid down as abscissae, and the corresponding average compres­
sibilities per atmosphere as ordinates.

When this work has been fully carried out, we have still only the apparent 
compressibility of the water or salt-solution. The correction for the compressibility of 
glass, which is by no means a negligible quantity,—being in fact about 5 per cent, 
of that of water at 0° C.,—involves a more formidable measurement than the other; 
but I think I have executed it, for two different temperatures, within some 2 per cent, 
or so. The resulting values of the true compressibility of water may therefore err, 
on this account, by 0T per cent. This is considerably less than the probable error of 
the determinations of apparent compressibility, so that it is far more than sufficient. 
With a view to this part of the work the piezometers, whether for water or for 
mercury, were all constructed from narrow and wide tubes of the same glass, obtained 
from one melting in Messrs Ford’s Works, Edinburgh; while solid rods of the same 
were also obtained for the application of Buchanan’s method1.

1 Trans. Hoy. Soc. Edin., vol. xxix. pp. 589-598, 1880.
2 Comptes Rendus, tom. cm., 1886, and tom. civ., 1887.

My results are not strictly comparable with any that, to my knowledge, have 
yet been published, except, of course, those which I gave in 1883 and 1884. The 
reason is that the lowest pressure which I applied (about 150 atmospheres, or nearly 
one ton weight per square inch) is far greater than the highest employed by other 
experimenters, at least for a consecutive series of pressures. I must except, however, 
the results of Perkins and some remarkable recent determinations made by Amagat2. 
Perkins’ results are entirely valueless as to the actual compressions, because his pressure 
unit is obviously very far from correct. They show, however, at one definite tem­
perature, the rate at which the compressibility diminishes as the pressure is raised. 
Amagat’s work, on the other hand, though of the highest order, is not yet completed 
by the determination of the correction for the compression of the piezometer.

The extension of my formulae to very low pressures, though it agrees in a 
remarkable manner with some of the best of accepted results, such as those of 
Buchanan and of Pagliani and Vincentini, is purely conjectural, and may therefore 
possibly involve error, but not one of the least consequence to any inquiries connected 
with the problems to which the Challenger work was directed.

The piezometers, which had been for three years employed on water and on sea­
water, were, during the end of last summer, refilled with solutions of common salt of 
very different strengths, prepared in the laboratory of Dr Crum Brown. The deter­
minations of compressibility were made at three temperatures only, those which could 
be steadily maintained, viz. 0° C., 10° C., and about 19° C., the two latter being the 
temperature of the room, the former obtained by the use of an ice-bath. Here great 
rapidity of adjustment of the scale to the mercury was requisite, even in the experi­
ments made near 0° C., for the salt solutions (especially the nearly saturated one)
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show considerable expansibility at that temperature. In these salt solutions, however, 
the hair indices behave very irregularly; so that this part of my work is much 
inferior in exactitude to the rest.

Besides the determinations briefly described above, there will be found in this 
Report a number of experimental results connected with the effect of pressure on 
the temperature of water and on the temperature of the maximum density of water. 
Though I afterwards found that the question was not a new one, I was completely 
unaware of the fact when some experiments, which I made in 1881 on the heat 
developed by compressing water, gave results which seemed to be inexplicable except 
on the hypothesis that the maximum-density point is lowered by pressure. Hence I 
have added a description of these experiments, since greatly extended by parties of 
ray students.

And I have appended other and more direct determinations of the change of the 
raaximum-density point. I also give, after Canton, but with better data than his, 
an estimate of the amount by which the depth of the sea is altered by compression. 
Also some corresponding inquiries for the more complex conditions introduced by the 
consideration of the maximum-density point, &c.

An Appendix contains all the theoretical calculations, the results of which are 
raade use of in the text; as well as some speculations, not devoid of interest, which 
have arisen in the course of the inquiry.

II. Some former Determinations.

There seems now to be no doubt that Canton (in 1762) was the first to establish 
the fact of the compressibility of water. But he did far more; he measured its 
apparent amount at each of three temperatures with remarkable accuracy, and thus 
discovered (in 1764) the curiously important additional fact that it diminishes when 
the temperature is raised. As his papers, or at all events the second of them, seem 
to have fallen entirely out of notice1, and as they are exceedingly brief and clear, 
I think it well to reproduce some passages textually from the Philosophical Trans­
actions of the dates given above.

1 Perhaps the reason may be, in part, that by a printer’s error the title of Canton’s first paper is given 
(in the Index to vol. lii. of the Phil, Trans.) as “Experiments to prove that Water is not compressible.”

“ Having procured a small glass tube of about two feet in length, with a ball 
at one end of it of an inch and a quarter in diameter; I filled the ball and part 
of the tube with mercury; and, keeping it, with a Fahrenheit’s thermometer, in 
water which was frequently stirred, it was brought exactly to the heat of 50 degrees; 
and the place where the mercury stood in the tube, which was about 6| inches 
above the ball, was carefully marked. I then raised the mercury, by heat, to the 
top of the tube, and sealed the tube hermetically; and when the mercury was 
brought to the same degree of heat as before, it stood in the tube of an inch 
higher than the mark.
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“ The same ball, and part of the tube being filled with water exhausted of air, 
instead of the mercury, and the place where the water stood in the tube when it 
came to rest in the heat of 50 degrees, being marked, which was about 6 inches 
above the ball; the water was then raised by heat till it filled the tube; which 
being sealed again, and the water brought to the heat of 50 degrees as before, it 
stood in the tube t4^j of an inch above the mark.

“Now the weight of the atmosphere (or about 73 pounds avoirdupois) pressing 
on the outside of the ball and not on the inside, will squeeze it into less compass1. 
And by this compression of the ball, the mercury and the water will be equally 
raised in the tube; but the water is found, by the experiments above related, to 
rise of an inch more than the mercury; and therefore the water must expand, 
so much, more than the mercury, by removing the weight of the atmosphere.

1 “ See an account of experiments made with glass balls by Mr Hooke (afterwards Dr Hooke) in Dr Birch’s 
History of the Royal Society, vol. i. p. 127.”

2 “ If the compressibility of the water was owing to any air that it might still be supposed to contain, 
it is evident that more air must make it more compressible; I therefore let into the ball a bubble of air 
that measured near of an inch in diameter, which the water absorbed in about four days; but I found 
upon trial that the water was not more compressed, by twice the weight of the atmosphere, than before.”

“ The compression of the glass in this experiment, by the equal and contrary forces acting within and 
without the ball, is not sensible: for the compression of water in two balls, appears to be exactly the same, 
when the glass of one is more than twice the thickness of the glass of the other. And the weight of an

“ In order to determine how much water is compressed by this, or a greater 
weight, I took a glass ball of about an inch and in diameter which was 
joined to a cylindrical tube of 4 inches and in length, and in diameter about 
of an inch; and by weighing the quantity of mercury that exactly filled the ball, 
and also the quantity that filled the whole length of the tube; I found that the
mercury in of an inch of the tube was the 100,000 part of that contained in
the ball; and with the edge of a file, I divided the tube accordingly.

“ This being done, I filled the ball and part of the tube with water exhausted 
of air; and left the tube open, that the ball, whether in rarefied or condensed air,
might always be equally pressed within and without, and therefore not altered in its
dimensions. Now by placing this ball and tube under the receiver of an air-pump, 
I could see the degree of expansion of the water, answering to any degree of rare­
faction of the air; and by putting it into a glass receiver of a condensing engine, 
I could see the degree of compression of the water, answering to any degree of 
condensation of the air. But great care must be taken, in making these experiments, 
that the heat of the glass ball be not altered, either by the coming on of moisture, 
or its going off by evaporation; which may easily be prevented by keeping the ball 
under water, or by using oil only in working the pump and condenser.

“ In this manner I have found by repeated trials, when the heat of the air has 
been about 50 degrees, and the mercury at a mean height in the barometer, that 
the water will expand and rise in the tube, by removing the weight of the atmo­
sphere, 4 divisions and or one part in 21,740; and will be as much compressed 
under the weight of an additional atmosphere. Therefore the compression of water 
by twice the weight of the atmosphere, is one part in 10,870 of its whole bulk2.
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“ The famous Florentine Experiment, which so many philosophical writers have 
mentioned as a proof of the incompressibility of water, will not, when carefully 
considered, appear sufficient for that purpose: for in forcing any part of the water 
contained in a hollow globe of gold through its pores by pressure, the figure of the 
gold must be altered; and consequently, the internal space containing the water, 
diminished; but it was impossible for the gentlemen of the Academy del Cimento 
to determine, that the water which was forced into the pores and through the gold, 
was exactly equal to the diminution of the internal space by the pressure.”

“ By similar experiments made since, it appears that water has the remarkable 
property of being more compressible in winter than in summer; which is contrary to 
what I have observed both in spirit of wine and oil of olives: these fluids are (as 
one would expect water to be) more compressible when expanded by heat, and less 
so when contracted by cold. Water and spirit of wine I have several times examined, 
both by the air-pump and condenser, in opposite seasons of the year: and, when 
Fahrenheit’s thermometer has been at 34 degrees, I have found the water to be 
compressed by the mean weight of the atmosphere 49 parts in a million of its 
whole bulk, and the spirit of wine 60 parts; but when the thermometer has been 
at 64 degrees, the same weight would compress the water no more than 44 parts 
ln a million, and the spirit of wine no less than 71 of the same parts. In making 
these experiments, the glass ball containing the fluid to be compressed must be kept 
under water, that the heat of it may not be altered during the operation.

“ The compression by the weight of the atmosphere, and the specific gravity of 
each of the following fluids, (which are all I have yet tried,) were found when the 
barometer was at 29J inches, and the thermometer at 50 degrees.

Millionth parts. Specific gravity.
Compression of Spirit of Wine, 66 846

„ Oil of Olives, 48 918
„ Rain-Water, 46 1000
„ Sea-Water, 40 1028
„ Mercury, 3 13595

1 hese fluids are not only compressible, but also elastic: for if the weight by which 
they are naturally compressed be diminished, they expand; and if that by which 
they are compressed in the condenser be removed, they take up the same room as 
at first. That this does not arise from the elasticity of any air the fluids contain, 
is evident; because their expansion, by removing the weight of the atmosphere, is 
not greater than their compression by an equal additional weight: whereas air will 
expand twice as much by removing half the weight of the atmosphere, as it will 
be compressed by adding the whole weight of the atmosphere.

“ It may also be worth observing, that the compression of these fluids, by the 
same weight are not in the inverse ratio of their densities or specific gravities, as 
might be supposed. The compression of spirit of wine, for instance, being compared

atmosphere, which I found would compress mercury in one of these balls but i part of a division of the 
tube, compresses water in the same ball 4 divisions and

T. II. 2
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with that of rain-water, is greater than in this proportion, and the compression of 
sea-water is less.”

With the exception of the mistake as to the non-effect of compressibility of glass, 
and its consequences (a mistake into which Orsted and many others have fallen 
long since Canton’s day), the above is almost exact. The argument from the fact 
that thick and thin vessels give the same result is unfounded; but the discovery of 
the fact itself shows how accurate the experiments must have been. The formula (A) 
below (Section VII.), if extended to p = 0, gives for the value of the apparent 
compressibility of water at 10° C. (50° F.), which is what Canton really measured, the 
number

0'0000461,

exactly the same as that given by him 126 years ago !
The next really great step in this inquiry was taken by Perkins in 1826. He 

showed beyond the possibility of doubt that in water at 10° C. the compressibility 
diminishes as the pressure is increased, quickly at first, afterwards more and more 
slowly1. This was contested by Orsted, who found no change of compressibility up to 
70 atmospheres. Many other apparently authoritative statements have since been made 
to the same effect. Unfortunately Perkins’ estimates of pressure are very inaccurate, 
so that no numerical data of any value can be obtained from his paper.

1 The carefully drawn plate which illustrates his paper is one of the very best early examples of the use 
of the graphic method. Phil. Trans., vol. cvi. p. 541, 1826.

2 Mem. Inst. Savans Strang., tom. v. p. 296, 1838.
3 Mem. Acad. Sci. Paris, tom. xxi. pp. 1 et seq., 1847.

Colladon2 is sometimes referred to as an authority on the compression of liquids. 
But, referring to Canton, he states that there is no difference in the compressibility 
of water at 0° C. and at 10° C. His words are: “ Nous avons trouve que 1’eau a la 
meme compressibility a 0° et a + 10°. Nous avons deja fait observer les causes 
d’erreur qui ont du alterer les resultats des experiences de Canton.” There can be 
no doubt whatever that there is a difference of 6 per cent., which is what Canton gives !

In Regnault’s experiments8 pressure was applied alternately to the outside and 
to the inside of the piezometer, and then simultaneously to both. From the first 
Appendix to my Report on the Pressure-Errors, &c., it will be seen that the three 
measurements of changed content thus obtained are not independent, the third giving 
the algebraic sum of the first two; so that, unless we had an absolutely incom­
pressible liquid to deal with, we could not employ them to determine the elastic 
constants of the piezometer. For the compression of the liquid contents is added to 
the quantity measured, in the second and third of the experiments. Thus Regnault 
had to fall back on the measurement of Young’s modulus, in order to obtain an 
additional datum. In place of this, Jamin afterwards suggested the measurement of 
the change of external volume of the piezometer; and this process was carried out 
by Amaury and Descamps. But there are great objections to the employment of 
external, or internal, pressure alone in such very delicate inquiries. For, unless the 
bulbs be truly spherical, or cylindrical, and the walls of perfectly uniform thickness 
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and of perfectly uniform material, the theoretical conditions will not be fulfilled:— 
and the errors may easily be of the same order as is the quantity to be measured.

Finding that he could not obtain good results with glass vessels, Regnault 
employed spherical shells of brass and of copper. With these he obtained, for the 
compressibility of water, the value

0’000048 per atm.
foi pressures from one to ten atmospheres. The temperature, unfortunately, is not 
specially stated.

Grassi1, working with Regnault’s apparatus, made a number of determinations of 
compressibility of different liquids, all for small ranges of pressure.

1 Ann. de Chimie, s6r. 3, tom. xxxi. p. 437, 1851.
2 Sulla Compressibility dei Liquidi, Torino, 1884.

The following are some of his results for water:—

Temperature. Compressibility per atm.
o°o c. 0'0000503
r-5 515
4°1 499

10°’8 480
18°0 462
25°-0 456
34°'5 453
53°0 441

ihese numbers cannot be even approximately represented by any simple formula; 
mainly in consequence of the maximum compressibility which, they appear to show, 
lies somewhere about lo,5 C. No other experimenter seems to have found any trace 
of this maximum.

Grassi assigns, for sea-water at 17°’5 C., 0'94 of the compressibility of pure water, 
and gives

0'00000295

as the compressibility of mercury. He also states that the compressibility of salt 
solutions increases with rise of temperature. These are not in accordance with my 
results. But, as he further states that alcohol, chloroform, and ether increase in 
compressibility with rise of pressure (a result soon after shown by Amagat to be 
completely erroneous), little confidence can be placed in any of his determinations.

A very complete series of measurements of the compressibility of water (for low 
pressures) through the whole range of temperature from 0° C. to 100° C., has been 
made by Pagliani and Vincentini2. Unfortunately, in their experiments, pressure was 
applied to the inside only of the piezometer, so that their indicated results have to 
be diminished by from 40 to 50 per cent. The effects of heat on the elasticity of 
glass are, however, carefully determined, a matter of absolute necessity when so large 
a range of temperature is involved. The absolute compressibility of water at 0° C. 
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is assumed from Grassi. The following are some of their results, showing a much 
larger temperature effect than that obtained by Grassi:—

Temperature. Compressibility per atm.
o°-o c. 0’0000503
2°’4 4.96

15°’9 450
49°’3 403
61°0 389
66°’2 389
77°’4 398
99°’2 409

Thus water appears to have its minimum compressibility (for low pressures) about
63° C.

My own earlier determinations* will be given more fully below (Section VI.).
I may here quote one or two, premising that they were given with a caution (not
required, as it happens), that the pressure unit of my external gauge was somewhat
uncertain. They are true, not average, compressibilities. See Appendix B.

At 12°0 C.
Ratio

Fresh water 
Sea-water

0’00720 (1 - 0’034p)
0’00666 (1 - 0’034p) 1 : 0’925

At 150-5 C.
Ratio

Fresh water 0’00698 (1 - 0’05/>) 1 : 0’924Sea-water 000645 (1 - 0’05t?)

In all of these the unit of pressure is one ton-weight per square inch (152’3 atm.),
The diminution of compressibility with increased pressure was evident from the com­
mencement of the investigations. I assumed, throughout, for the compressibility of 
glass

0’000386 per ton, 
which, as will be seen below, is a little too small.

By direct comparison with Amagat’s manometer, I have found that the pressure 
unit of my external gauge is too small, but only by about 0’5 per cent. This very 
slight underestimate of course does not account for the smallness of the pressure term 
of the first expression above. As will be seen later, the true cause is probably to 
be traced to the smallness of the piezometers which I used in my first investigations, 
and to the fact that their stems were cut off “ square ” and dipped into mercury. 
Allowing for this, it will be seen that the above estimates of compressibility agree 
very fairly, in other respects, with those which I have since obtained. The sea-water 
employed in the comparison with fresh water was collected about a mile and a half 
off the coast at Portobello, and was therefore somewhat less dense (and more com­
pressible) than the average of ocean-water. In my later experiments, to be detailed

1 Proc. Roy. Soc. Edin. 1883 and 1884.
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below, the sea-water operated on was taken at a point outside the Firth of Forth, 
considerably beyond the Isle of May.

As stated in my Report on the Pressure Errors, &c., the unit of my external 
gauge was determined by the help of Amagat’s data for the compression of air. As 
the piezometer containing the air had to be enclosed in the large gun, the record 
was obtained by silvering the interior of the narrow tube into which the air was 
finally compressed:—and the heating of the air by compression, as well as the un­
certainty of the allowance for the curvature of the mercury, alone would easily 
account for the underestimate. Besides, it is to be remembered that the reading of 
the external gauge for 152 atm. is only about 22 mm.; so that a slight variation of 
surface-curvature of the mercury would of itself explain a considerable part of the 
half per cent, deficit. It is, however, a matter of no consequence whatever, as regards 
the conclusions of that Report.

Buchanan, in the paper already cited, gives for the compressibility of water at 
2°'5 C. the value 0'0000516; and at 12°'5 C., 0'0000483. The empirical formula, which 
is one of the main results of this Report (Section VII. below), extended to p = 0, 
gives 0'0000511 and 0 0000480 respectively. The agreement is very remarkable.

Amagat’s1 investigations, which were carried out by means of the electric indicator 
already alluded to (which informs the experimenter of the instant at which a given 
amount of compression is reached), have been extended to pressures of nearly 20 tons 
weight on the square inch (3000 atm.). As a preliminary statement he gives the 
average apparent compression (per atmosphere) of water at 17°'6 C. as follows:—

1 Comptes Rendus, tom. cm. p. 429, 1886, and tom. civ. p. 1159, 1887.
2 Den Norske Nordhavs-Exped., Nordhavets Dybder, &c., Christiania, 1887.
3 Travaux et Memoires du Bureau International des Folds et Mesures, tom. n. p. D30, Paris, 1883.

v From 1 to 262 atm. ..... 0'0000429,
„ 262 to 805 „ ..................................... 0'0000379,
„ 805 to 1334 „ ..................................... 00000332.

And he states that, at 3000 atmospheres, water (at this temperature) has lost about 
1/10 of its original bulk. But Amagat has not yet published any determination of 
the compressibility of his glass, so that the amount of compression shown by his 
experiments cannot be compared with the results of this paper. The rate of diminution 
of compressibility with increased pressure, however, can be (very roughly) approximated 
to; and Amagat appears to make it somewhat less than I do. He operated on 
distilled water, thoroughly deprived of air. My experiments were made on cistern 
water, boiled for as short a time as possible. The analogies given in the present 
paper appear to show that this difference of substance operated on may perhaps 
suffice completely to explain the difference between our results.

I am indebted to a footnote in the recent great work of Mohn2 for a hint 
which has led me to one of the most singular calculations as to the compressibility 
of water which I have met with. As it is given in a volume8 whose very raison d'etre 
is supposed to be the minutest attainable accuracy in physical determinations, I con­
sulted it with eagerness. The reader may imagine the disappointment with which I 
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found that, as regards compressibility of water, its main feature is the amazing 
empirical formula,—

501-53 - 1-58995# - 0'003141U3#2!
This formula represents a parabola which is everywhere convex upwards, and thus 
cannot possibly be consistent with the existence of a minimum compressibility. Instead 
of representing the results of new experiments, it is based on data extracted from 
the old and very dubious results of Grassi (two data being wrongly quoted), Descamps, 
and Wertheim, which differ in the wildest way from one another. What method of 
calculation has been employed upon this chaotic group we are not told. The result 
is a smug little table (D. IX.), in which no single entry can be looked upon as 
trustworthy! Plate II. fig. 1, shows some of the materials, as well as the final 
extract or quintessence derived from them.

III. The Piezometers—Reckoning of Log. Factors—Compressibility of

Mercury. 

The annexed sketch shows the form of piezometer employed. Six of these instru­
ments, three

B

cally, it was

filled with fresh water and three with sea-water, were simultaneously 
exposed to pressure. The upper end of the bulb at B was drawn out 
into a very fine tube, so that the instruments could be opened and 
refilled several times without appreciable change of internal volume. 
They were contained in a tall copper vessel which was let down into 
the pressure cylinder, and which kept them (after removal from it) 
surrounded by a large quantity of the press water till they could be 
taken out and measured one by one; each, after measurement, being 
at once replaced in the vessel. Large supplies of water were kept in 
tin vessels close to the pressure apparatus; and the temperatures of 
the contents of all were observed from time to time with a Kew 
Standard.

The stems, AC, of the piezometers were usually from 30 to 40 cm. 
in length, and the volumes of the cylindrical bulbs, CB, were each 
(roughly) adjusted to the bore of the stem, so that the whole displace­
ment of the indices in the various vessels should be nearly the same 
for the same pressure. At A, on each stem, below the working portion, 
the special mark of the instrument was made in dots of black enamel 
(e.g. .-., .., ;, &c.), so that it could be instantly recognised, and affixed 
to the record of the index in the laboratory book. Above this enamel 
mark a short millimetre scale was etched on the glass for the purpose 
of recording the volume of the water contents at each temperature before 
pressure was applied. The factor by which the displacement of the index 
has to be multiplied, in order to find the whole compression, varies 
(slightly) with the initial bulk of the water-contents. This, in its turn, 
depends on the temperature at which the experiment is made. Practi- 

found that no correction of this kind need be made in experiments on
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fresh water between 0° and 8° C., but for higher temperatures it rapidly came into 
play. In the case of the stronger salt-solutions it was always required.

As an example of the general dimensions of the piezometers, I print here the 
details of a rough preliminary measurement of one only; and employ these merely 
to exhibit the nature of the calculation for the compressibility of the contents.

Measurements for (:).

21/12/86. At temperature 3° C. (:) filled with Portobello sea-water gave for
413 of gauge (about 150 atm.) 131'2 of displacement for index
834 „ „ 300 „ 256

1254 „ „ 450 „ 373'6
Before pressure, mercury 20 mm. from enamel.

This experiment is selected because its data were taken for the approximate 
lengths of the columns of mercury used to calibrate the stem of (:).

22/6/87.

Weight of dish with Hg. filling bulb and stem to

Length of col. of mercury in stem. Weight, mercury and dish.
End 18 mm. from enamel 130'8 mm. 12'567 grm.

„ 45 130'8 „ Dish 9'387 „
„ 72 130'9 „ —
„ 100 130'9 „ Hg. 3'180 „
„ 140 131'1 „

Another column of Hg.:—
End 18 mm. from enamel 261 mm. 15'712 grm.

„ 36 2611 „ 9'387 „
261'1 „ —

» 75 „ 261'1 „ Hg. 6'325 „
» 94 „ 261'3 „

Again another:—
End 18 mm. from enamel 372'6 mm. 18’407 grm.

» 43 „ 372'4 „ Dish 9'387 „

Hg. 9 020 „

599 mm. from enamel, 517'63 „
Weight of dish, 37'69 „

Hg. in piezometer, less 599 of stem, 479'94 „
Hg. in 599 of stem, 14'56 „

Whole content to enamel, 494'50 „
„ 20 from enamel, 494'0 „
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The calculations are as follows,—the Gauge log will be explained in Section IV.:— 
the formula is given in Appendix C, and the mantissas only are written:—

log 494 = -69373
log 130'8 = T1661

(Sum) -81034
log 3-18 = -50243

(Difference) ’69209
Gauge log -43856

(Sum) -13065 = log factor for pressures near 150 atm.

■69373 •69373
•41664 •57124

•11037 •26497
•80106 ■95521

•69069 •69024
•43856 ■43856

12925 for 300 atm. T2880 for 450 atm.

Hence apparent average compressibility of Portobello sea-water per atm. at 3° C. as 
given by (:) on 21/12/86 is,

For first ton............................ 11793 = log 131'2
•61595 = log 413

•50198
log factor '13065

•63263 Antilog = '00004292

first two tons ......... ...... -40824
• -92117

•48707
T2925

•61632 Antilog = '00004134

first three tons....... ...... -57240
•09829

•47411
•12880

•60291 Antilog = -00004008
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A few larger instruments were made for very accurate comparisons of fresh water 
and sea-water at about 1 ton weight per square inch, and at different temperatures.

The mercury contents of their bulbs, &c., were over 1000 grm. The content of 
250 mm. of stem in mercury was about 7 grm.; and the log factor, for pressures about 
150 atm., nearly =0'8.

For the compressibility of mercury, the annexed form of piezometer 
was employed, as in this case the recording index could not be put in 
contact with the liquid to be compressed. The bulb A and stem to B 
contain mercury, and so does the U-tube CD. Between B and C there 
is a column of water, whose length is carefully determined. The recording 
index rests on the mercury column at C. Thus, obviously, its displacement 
is due to

Compression of mercury AB + Compression of water BC — Compression 
of vol. of glass vessel from A to C.

The measurements of this apparatus are:—

Mercury Piezometer. 25/7/87.

Hg. and vessel.......................................................................... 1100 grm.
Vessel ....................................................................................... 377 „

Weight of mercury whose compression is measured... 1062’3 „

Hg. and dish............................................................................ 14’412 „
Dish ........................................................................................... 9’386 „

Weight of mercury in 210 mm. of tube BC................... 5’026 „
Length of water column BC................................................. 286 mm.

The observations made with this apparatus were as follows, the results calculated 
being added, enclosed in square brackets:—

T. II.

22/6/86. Kew Standard, 12°’75. 24/6/86. K. S. 12°’4.
Alteration of Index, 17 mm. Index, 17
Gauge pressure, 811 Pressure, 833
[Apparent compressibility, 0’00000102] [0’00000098]

25/6/86. K. S. 12°’3.
Index, 18’5 260 26’0
Pressure, 834 1252 1257

[0’00000109] [102] [101]
3
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23/7/87. K. S. 1°'2.
Index, 7'3 17'3 25
Pressure, 436 865 1264

[0'00000074] [94] [93]

25/7/87. K. S. 16°'5.
Index, 9 16'6 25
Pressure, 459 866 1271

[0'00000093] [92] [95]

The range of temperature is quite sufficient to allow a change of compressibility 
of the water column to be noted; but the experiments unfortunately do not enable 
us to assert anything as to a change in that of mercury; though, were it not for the 
last set of experiments, there would appear to be a decided increase of compressibility 
of mercury with rise of temperature. The experiments are only fairly consistent with 
one another; but this was noted at the time as the fault of the index, which, of course, 
tells more as the quantity measured is less. It may be as well to show how to 
deduce the compressibility of mercury from them at once, assuming the requisite data 
for water and for glass from subsequent parts of the Report.

Take, for instance, the first result of 25/6/86. 834 of gauge is about 305 atmospheres. 
Also shortening of 286 mm. of water column (in glass) at 12°'3 C. by 305 atm. =3'7 mm. 
nearly:—so that the compressed mercury apparently loses about the content of 14'8 mm. 
of narrow tube = bulk of 0'354 grm. Hg.

0'354Apparent compressibility = —— = 0'00000109.
oUo X IvvJ'o

The average of all the normal experiments gives 0 000001 very nearly.
Add compressibility of glass = 0'0000026, 
Compressibility of mercury = 0'0000036.

It is well to remember that though Grassi, working with Regnault’s apparatus, 
gave as the compressibility of mercury

000000295,
which Amaury and Descamps afterwards reduced to

000000187,
the master1 himself had previously assigned the value

0'00000352.
Had Grassi’s result been correct, I should have got only about half the displacements 
observed; had that of Amaury and Descamps been correct, the apparent compressibility 
would have had the opposite sign to that I obtained, so that the index would not 
have been displaced. In such a case the construction of the instrument might have 
been much simplified, for the index would have been placed in contact with the mercury 
at B, and the bent part of the tube would have been unnecessary.

1 Relation des Experiences, &c., Hem. Acad. Sci. Paris, tom. xxi. p. 461, 1847.
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IV. Amagat’s Manometre a Pistons libres.

The annexed sketch of the instrument (in which the large divisions shown on the 
manometric scale correspond to decimetres), with the section given below, will enable

the reader to understand its size and construction without any detailed description 
beyond what is given in the instructions for setting it up. [The window FF, whose 
position is nearly immaterial, occupies different positions in the sketch and in the 
section.]

As already stated, the principle on which this instrument works is the same as 
that of the Manometre Desgoffes, a sort of inverse of that of the well-known Bramah 

3—2
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Press. In the British instrument pistons of very different sectional area are subjected 
to the same pressure (that of one mass of liquid), and the total thrust on each is, of 
course, proportional to its section. In the French instrument the pistons are subjected 
to equal total thrusts, being exposed respectively to fluid pressures which are inversely 
proportional to their sections. The British instrument is employed for the purpose of 
overcoming great resistances by means of moderate forces; the French, for that of 
measuring great pressures in terms of small and easily measurable pressures.

Amagat’s notable improvement consists in dispensing with the membrane, or sheet 
of india-rubber, which was one of the main features of the old Desgoffes manometer, 
and making his large, as well as his small, piston, fit all but tightly the hollow cylinders 
in which they play:—a very thin layer of viscous fluid passing with extreme slowness 
between each piston and its cylinder. The adjustment is very prompt, even in winter 
when the viscosity of the fluids is greatest:—but it is made almost instantaneous by a 
simple but ingenious device, which enables the operator to give the pistons a simul­
taneous motion of rotation. The following directions which accompanied the instrument 
will enable the reader fully to understand its construction and use. I have given an 
accurate version, not a literal translation, of them:—

"Process of setting up the Apparatus.
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“ 1. Screw in, at E, the manometer tube, and at H the regulating pump.
“ 2. Pour in the layer of mercury, and on it that of castor oil. Fill the pump 

with glycerine, and insert its piston, taking care to exclude air-bubbles.
“ 3. Insert the gun-metal part K. Its bearing (at s) on the rim of the cast-iron 

base-piece must not be made with leather, but with a ring of india-rubber, or of very 
uniform cardboard. The fixing down of this part, by means of the (six) screws, must 
be done with great exactness:—otherwise (thick as it is) it might suffer a very slight 
distortion, and the piston PP would not work in it.

“ 4. After pouring in, if necessary, some more castor oil, insert very cautiously 
the piston PP, carefully wiped, and then anointed with castor oil. To put it in, it 
is to be held by means of A, which, for this purpose, is screwed into the middle of it. 
During the insertion of the piston the hole b is left open to allow of the escape of air 
and (possible) excess of castor oil. Close b by means of its screw, the piston being held 
at the desired height. Take out A, and screw B into the piston in place of it.

“ 5. Put on the part MM—after inserting in it the small piston pp, with its 
cylinder nn—in such a way that the rod cc may pass between the two studs d on 
the piston PP, opposite to the opening FF.

“ 6. Pour a little treacle over the small piston at aa; screw on the piece NN, 
and fill it with glycerine; then adjust to NN the coupling-tube of the compression 
apparatus, which should be filled with glycerine or with glycerine and water.

“ Observations.

“ It is not necessary that the whole space between the mercury and the piston 
PP should be filled with castor oil. A layer of glycerine and water may be placed 
over the mercury, then a thin layer of the oil. In fact, the regulating pump is full 
of glycerine and water.

“ The rod cc is placed as shown to give a simultaneous rotation to the two pistons, 
so as to overcome stiction.

“It should be moved slowly, and in such a way as to exert no vertical force 
upon the piston PP. It ought to be pushed by a vertical straight-edge, moved 
horizontally. One can judge of the delicacy of the apparatus by the displacement of 
the mercury column when the slightest vertical pressure is exerted on the rod.

“I will again call attention to the scrupulous care which must be bestowed on 
the pistons and on the cylinders in which they work :—the slightest scratch, due to 
dust, would make it necessary to retouch these surfaces; and after several retouchings 
they will become too loose.

“ The manometer tube, which is to be cemented into the iron piece which screws 
into E, should be chosen of small enough diameter to prevent sensible change of level 
of the mercury in the reservoir, and yet not so narrow as to prevent free motion of the 
mercury.

“Important Remark.—During the successive operations the large piston should 
always, by means of the regulating pump, be kept at such a height that the rod cc 
shall not come in contact with the wall of the opening FF, and not high enough to 
make the wide lower part of the small piston come against the piece M (this, of course, 
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when the smaller of the two upper pistons is used:—that whose lower part is 
thickened).

“There are two pistons pp for this manometer. The ratio of the section of the 
larger to that of PP is 1/61838, and the reading per atmosphere is 12'290 mm.

“For the smaller, the ratio of the sections is 1/277'75, and the reading per atmo­
sphere is 2'736 mm.

“The former serves for the measurement of lower pressures, up to the point at 
which the oil passes visibly round the large piston. For higher pressures the latter 
must be used.

“ The treacle must be changed from time to time; first, because, after a while, 
some of it passes the small piston; second, because it gradually dissolves in the glycerine, 
and at last becomes hardened round the small piston, so as to make the friction too 
great. The small piston and its cylinder should occasionally be cleaned with the 
greatest care, and anointed with neats-foot oil.”

In all my later experiments I have used exclusively the smaller of the two small 
pistons. The scale which I fitted to the manometer tube was a long strip of French 
plotting paper. It had shrunk slightly, so that 752'5 divisions corresponded to 750 mm. 
Neglecting the difference in the values of gravity at Lyons and at Edinburgh, the 
number of scale divisions per atmosphere is 2'736 x 752'5/750; and its logarithm, i.e. 
the Gauge Log. above spoken of, is '43856.

V. Compressibility of Glass.

Buchanan’s process, already referred to, consists simply in measuring the fractional 
change of length of a glass rod exposed to hydrostatic pressure, and trebling the linear 
compressibility thus determined. The only difficulty it presents is that of directly 
measuring the length of the rod while it is under pressure. I employed a couple of 
reading microscopes, with screw-travelling adjustment, fixed to the ends of a massive 
block of well-seasoned wood. This block was placed over the tube containing the 
glass rod, but quite independently,—the two distinct parts of the apparatus being 
supported separately on the asphalt floor of a large cellar. No tremors were per­
ceptible except when carriages passed rapidly along the wooden pavement of the street, 
and even then they were not of much consequence.

The ends of the tube containing the rod must, of course, be made of glass, or 
some other transparent material. In the first apparatus which I used, tubes of soda­
water-bottle glass were employed, their bore being about 0'2 inch, and the thickness 
of the walls about 0'3 inch. The image of the small enamel bead at the end of the 
glass rod was very much distorted when seen through this tube, but the definition 
was greatly improved by laying on it a concavo-plane cylindrical lens (which fitted 
the external curvature), with a single drop of oil between them. I found, by trial, 
that, had it been necessary to correct for the internal curvature also, the employment 
of winter-green (or Gaultheria') oil as the compressing liquid would have effected the 
purpose completely:—the refractive index being almost exactly the same as that of 
the green glass.
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As the construction and mode of support of this apparatus did not enable us 
completely to get rid of air from its interior, there were occasional explosions of a 
somewhat violent character when the glass tubes gave way; and the operators who 
were not otherwise protected (as by the microscopes, for instance) were obliged to hold 
pieces of thick plate glass before their eyes during the getting up of pressure. The 
explosions not only shattered the thick glass tube into small fragments, but smashed 
the ends of the experimental glass rod, so that a great deal of time was lost after 
each. Only on one occasion did we reach a pressure of 300 atm., and an explosion 
occurred before the measurement was accurately made. On these accounts, after four 
days experimenting (the first being merely preliminary), we gave up working with this 
apparatus:—and the results obtained by means of it cannot be regarded as wholly 
satisfactory, though they agreed very well with one another.

As a sudden shock might have injured the Amagat gauge, all the pressures were 
measured by the old external gauge, whose unit is now determined with accuracy. 
Hence the readings are in tons-weight per square inch (152’3 atm.), which are below 
called “tons” as in the vernacular of engineers. Three of us at least were engaged 
in each experiment, one to apply and measure the pressure, and one at each micro­
scope. Pressure, in each group of experiments, was applied and let off six or seven 
times in succession, readings of the two microscopes being taken before, during, and 
after each application of pressure. To get rid of the possible effects of personal 
equation, the observers at the microscopes changed places after each group of experi­
ments (sometimes after two groups), so that they read alternately displacements to the 
right and to the left.

The values of the screw-threads were carefully verified upon one of the subdivisions 
of the scale which was employed to measure the length of the experimental rod; these 
subdivisions having been since tested among themselves by means of a small but very 
accurate dividing-engine of Bianchi's make.

These experiments were made in July 1887, when the day temperature of the 
room was nearly 20° C. In the last two groups the compression tube was surrounded 
in great part by a jacket containing water and pounded ice. We had no means of 
ascertaining the average temperature of the glass rod, but it cannot have been more 
than some 5 or 6 degrees above 0° C. This was done merely to ascertain whether 
glass becomes less compressible or no as the temperature is lowered, not the amount 
of change. The question appears to be answered in the affirmative.

Early in the present year Mr Buchanan kindly lent me his own apparatus, which 
is in three respects superior to mine. (1) A longer glass rod can be operated on. 
(2) The air can be entirely got rid of from the interior, so that when the glass 
tubes give way there is no explosion. (3) The glass tubes are considerably narrower 
in bore (though with equal proportionate thickness), and consequently stronger. I used 
my own pump and external gauge, but the necessary coupling pieces were easily 
procured; and the reading-microscopes were fastened to a longer block of seasoned 
wood than before. These experiments have been made near one temperature only, 
but it is about the middle of the range of temperatures in my experiments on 
water and sea-water.
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It is not necessary to print the details of the experiments in full. I give below 
part of a page of the laboratory book for a single day’s work, to show how far the 
experiments of one group agree with one another. I purposely choose one in which 
the glass rod was somewhat displaced in the apparatus during the course of the 
measurements:—

Mean, . 0'0102

23/2/88. Kew Standard, 9°'l C.

(Length of glass rod, 75'75 inches.)
External Gauge Right Microscope Left Microscope Contraction

(Lindsay). (Nagel). (Peddie). and Elongation
in. in.

41'5
63'5
41'5

- 22 = 1 ton
0'4570

475
570

0'3377
3
7

0'0099
00099

41'5 0'4571 0'3377 0'010263'5 - 22 473 3
41'5 572 6 0'0102

41'5
63'5 ■ 22

0'4572
473

0'3376
2 00103

41'5 572 6 00103

(Peddie.) (Nagel.)
42
64
42

22
0'4566

469
574

0'3380
77
73

00100
0'0101

42
64 -•2-2

0'4575
475

0'3373
68 00105

42 574 73 00104

42 )
64 22

0'4574
475

0'3374
70 0'0103

42 574 73 00102

The mean 
ments. Hence 
at 9°'l C„

thus obtained coincided very closely with the mean of all the 
the average linear compressibility per atmosphere for the first

experi- 
ton is,

00102
152'3 x 75'75

= 0000000884,

whence the compressibility of glass is
0'00000265.

The two series of experiments agreed fairly with one another, and appeared to 
show an increase of compressibility with rise of temperature, and a diminution with 
rise of pressure, but these are not made certain. Considerably greater ranges, both 
of pressure and of temperature, are necessary to settle such questions.

As I cannot trust to a unit or two in the last place (i.e. the seventh place of 
decimals) my results for the apparent compressibility of water, and as an error of
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reading of the external gauge may easily amount to 1 per cent, of the whole ton 
applied, I have taken from the above experiments the number 0'0000026 as expressing 
with sufficient accuracy the compressibility of the glass of the piezometers throughout 
the range of temperature 0° to 15° C., and of pressure from 150 to 450 atm. This 
number is simply to be added to all the values of apparent compressibility. Had I 
pushed the pressures farther than 450 atm., this correction would have required 
reduction, as shown in Appendix D.

VI. R^sum^ of my own Experiments on Compression of Water

and of Sea-Water.

The following details are, where not otherwise stated, taken from my laboratory 
books. I was led to make these experiments by the non-success of an attempt to 
determine the exact unit of the external gauge (described in my former Report). 
Not being aware of the great discovery of Canton (in fact, having always been accus­
tomed to speak of the compressibility of water as 1/20,000 per atm.), I imagined that 
I could verify my gauge by comparing, on a water piezometer, the effects of a 
pressure measured by the gauge with those produced by a measured depth of sea­
water, without any reference to the temperatures at which measurements were made; 
provided, of course, that these were not very different. The result is described in the 
following extract1:—

“To test by an independent process the accuracy of the unit of my pressure 
gauge, on which the estimated corrections for the Challenger deep-sea thermometers 
depend, it was arranged that H.M.S. ‘Triton’ should visit during the autumn a region 
m which soundings of at least a mile and a half could be had. A set of mano­
meters, filled with pure water, and recording by the washing away of part of a very 
thin film of silver, were employed. They were all previously tested, up to about 2| 
tons weight per square inch, in my large apparatus. As I was otherwise engaged, 
Professor Chrystal and Mr Murray kindly undertook the deep-sea observations; and 
I have recently begun the work of reducing them.

“ The first rough reductions seemed to show that my pressure unit must be 
somewhere about 20 per cent, too small. As this was the all but unanimous verdict 
of fifteen separate instruments, the survivors of two dozen sent out, I immediately 
repeated the test of my unit by means of Amagat’s observed values of the volume 
of air at very high pressures. The result was to confirm, within 1 per cent., the 
accuracy of the former estimate of the unit of my gauge. I then had the mano­
meters resilvered, and again tested in the compression apparatus. The results were 
now only about 5 per cent, different from those obtained in the ‘ Triton.’ There 
could be no essential difference between the two sets of home experiments, except 
that the first set was made in July, the second in November,—while the tempera­
tures at which the greatest compressions were reached in the ‘ Triton ’ were at least 
3° C. lower than those in the latter set. Hence it seems absolutely certain that

1 Proc. Roy. Soc. Edin., vol. xn. pp. 45, 46, 1882.

T. II. 4
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water becomes considerably more compressible as its temperature is lowered, at least 
as far as 3° C. (the ‘ Triton ’ temperature). This seems to be connected with the 
lowering by pressure of the maximum density point of water1, and I intend to work 
it out. It is clear that in future trials of such manometers some liquid less anomalous 
than water must be employed.

“Another preliminary result, by no means so marked as the above, and possibly 
to be explained away, is that by doubling (at any one temperature) a high pressure 
we obtain somewhat less than double the compression. This, however, may be due 
to the special construction of the manometer, which renders the exact determination 
of the fiducial point almost impossible.”

In the winter of 1882 and the succeeding spring, I spent a great deal of time 
in trying to get definite results from the records of the “ Triton ” trials, and in 
making further experiments on those of the specially prepared piezometers which had 
not been broken or left at the bottom of the sea. But this work led to no result 
on which I could rely. I then directly attacked the problem of the compressibility 
of water at different temperatures and pressures, having once more verified the unit 
of my pressure gauge by comparison with Amagat’s data for air. Results for one 
temperature were published, as below, in the Proc. Roy. Soc. Edin., vol. xh. pp. 223, 
224, 1883. [The mercury content of the bulbs of the new piezometers was about 
200 grm., and that of 100 mm. of stem about 2'6 grm.]

“The apparatus employed was of a very simple character, similar to that which 
was used last autumn in the ‘ Triton.’

“ It consisted of a narrow and a wide glass tube, forming as it were the stem 
and bulb of a large air-thermometer. The stem was made of the most uniform 
tube which could be procured, and was very accurately gauged; and the weight of the 
content of the bulb in mercury was determined. Thus the fraction of the whole 
content, corresponding to that of one millimetre of the tube, was found.

“ This apparatus had the interior of the narrow tube very carefully silvered; and 
while the whole, filled with the liquid to be examined, was at the temperature of 
the water in the compression apparatus, the open end was inserted into a small 
vessel containing clean mercury. Four instruments of this kind were used, all made 
of the same kind of glass. [They were numbered, as in the headings of the columns 
below, 1, 2, 3, 4, respectively. 20/6/88.]

1 [The reason for this remark will seen in the second extract in Section XII. below. 20/6/88.]

“ The following are the ■calculated apparent average changes of volume per ton
weight of pressure per square inch (i.e. about 150 atmospheres) 

Fresh Water, at 12° C.

.—

Pressure 1 2 3 4 Mean.
1 OOO67O * 665 666 0-00667
2 0'00657 * 646 656 0-00653
2-5 0-00651 650 640 648 0-00647
3 000641 633 636 636 0-00636

Note.—The first two experiments with No. 2 failed in iconsequence of a defect in the silvering.
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The compressibility of glass was not directly determined. It may be taken as approxi­
mately 0'000386 per ton weight per square inch.

“ From these data, which are fairly consistent with one another, we find the 
following value of the true compressibility of water per ton, the unit for pressure (p) 
being 1 ton-weight per square inch, and the temperature 12° C.,

0'0072 (1 — 0'034p);
showing a steady falling off from Hooke’s Law.

Sea-Water, at 12° C.

Note.—The sea-water employed was collected about 1J miles off the coast at Portobello.

Pressure 1 2 3 4 Mean.
1 0'00606 611 615 627 0'00615
2 0'00595 607 598 601 0'00600
2'5 000600 600 594 590 0'00594
3 000588 593 586 586 0'00588

These give, with the same correction for glass as before, the expression

0 00666 (1 - 0'034 p).
Hence the relative compressibilities of sea and fresh water are about

0'925;
while the rate of diminution by increase of pressure is sensibly the same (3| per 
cent, per ton weight per square inch) for both.

“ With the same apparatus I examined alcohol, of sp. gr. 0'83 at 20° C.

Alcohol, at 12° C.

Pressure 1 2 3 4 Mean.
1 0'01202 1193 * * 001200
2'5 001040 1052 1050 1056 0'01049
3 0'01043 1050 1043 1058 0'01048

These experiments were not so satisfactory as those with water. There are peculiar
difficulties with the silver film. I therefore make no definite conclusion till I have
an opportunity of repeating them.”

It will be observed that the diminution of compressibility as the pressure is 
raised is here brought out unequivocally for all the three liquids examined.

In the course of another year I had managed to obtain similar results for a 
range of temperature of about 9° C. They were described in Proc. Roy. Soc. Edin., 
vol. xii. pp. 757, 758, 1884, as follows

“ I had hoped to be able, during the winter, to extend my observations to 
temperatures near the freezing point, but the lowest temperature reached by the large 
compression apparatus was 6°'3 C.; while the highest is (at present) about 15° C.

4—2
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From so small a range nothing can be expected as to the temperature effect on the 
compressibility of water, further than an approximation to its values through that 
range.

“ The following table gives the mean values of the average compression per ton 
weight per square inch:—

Pressure in Tons 1 2 24 3 34 4
6°'3 C. 0'00704 692 684 672 . -. . ..
7°-6 682 ... 670 660

ir-3 684 670 654 ...
13°1 666 ... 648 ... 637
15°'2 673 654 633 ...

“ These are all fairly represented by the expression
0 00743 - 0000038t - 000015j>,

where t is the temperature centigrade, and p the pressure in tons weight per square 
inch. This, of course, cannot be the true formula, but it is sufficient for ordinary 
purposes within the limits of temperature and pressure above stated. It represents 
the value of

v0-v 
pv0

With a new set of compression apparatus, very much larger and more sensitive
than those employed in the above research, I have just obtained the following mean
values for the single temperature 15O,5 C.:—

Pressure in Tons 1 14 2 3
Fresh water 0-00678 663 657 638
Sea-water 0'00627 618 609 593

“ These are the values of V^L and they give, for the true compressibility

- at any pressure, and temperature 15°'5 C., the formulae, 

Fresh water.............. 0’00698 (1 - 0'05p)
Sea-water.............................................. 0'00645 (1 - 0'05p)

“The ratio is 0'925, i.e. the compressibility of sea-water at the above temperature 
is only 92'5 per cent, of that of fresh water.”

The new and larger piezometers referred to were made when Mr Murray requested 
me to write this Report. They are those whose form and dimensions have been 
detailed in Section III. above. The former piezometers had no capsule containing 
mercury, but had the stem simply cut off flat at the end, and when filled with 
water were merely dipped in mercury. I had felt that to this was probably due

[See Appendix B to this Report.] 
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the fact that my experiments gave a value of the compressibility at 0° C. somewhat 
smaller than that usually accepted. It will be seen that the very first data given 
by the new instruments at once tended to set this matter right. For while the 
formula representing the results of the smaller instruments gave the compression of 
water at 15°’5 C. as 0’00678 for one ton weight per square inch, that for those of 
the new instruments gave 000698, i.e. about l/34th more, which is much nearer to 
the result of my later experiments.

For two winters after this period the apparatus was kept in working order in 
the hope that I might be enabled to employ temperatures between 6° and 0° C. 
But a single day’s work at lo,7 C., and a few days at temperatures between 3° and 
5° C. were all I got. Hence the reason for procuring the smaller compression 
apparatus, as stated in Section I. But, as yet, my measurements of pressure were 
not satisfactory.

In the spring of 1886 I obtained the Amagat gauge, and after a careful com­
parative trial determined to employ exclusively the lesser of the two small pistons. 
Some time was spent upon a comparison of the indications of this instrument with 
those of the external gauge, with the result that single indications of the latter 
could not be trusted within about 1 per cent., though the mean of a number of 
observations was occasionally very close to the truth. I therefore put aside all the 
compression observations already made, and commenced afresh with the same piezo­
meters as before, and with the Amagat gauge exclusively.

In the summer of 1886 I obtained a long series of determinations at about 
11°’8 C., and others at 14O,2 and 15° C. In December of the same year I worked 
for a long time between 3° and 3°’5 C. All of these were with the large Fraser gun.

In June 1887, with the new compression apparatus, I secured numerous deter­
minations at 0°’4 0.

In July the piezometers were filled with solutions of salt of various strengths, 
and examined at temperatures near 19° C. and 1° C. In November these were again 
examined, this time in the large gun at about 9° C.; and the piezometers were again 
filled, some with fresh water and some with sea-water.

During the winter complete series of observations in the large gun were obtained 
at about 7°, 5°, 3°’2, 2°’3, 1°1; and, finally (on March 16, 1888), at 0°’5 C.

The piezometers were, once more, filled with the salt solutions, as I considered 
that I had obtained sufficient data for fresh water and for sea-water; except in the 
one important particular of the exact values of the ratio of their compressibilities at 
one or two definite temperatures and pressures.

These were finally obtained in May and June 1888, with piezometers considerably 
larger and more delicate than the former set.

VII. Final Results and Empirical Formula for Fresh Water.

Although my readings and calculations were throughout carried to four significant 
figures, I soon found that (for reasons already sufficiently given in Section I.) only three 
of these could be trusted even in the average of a number of successive experiments,
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and that the third might occasionally (especially with sea-water) err by an entire 
unit or two; at most f per cent, of the whole quantity measured. Of course, now 
and then there occurred results so inconsistent with the rest as to indicate, without 
any doubt, a displacement of the index by upward or (more frequently) downward 
currents.

This was made obvious by comparison of the indications of any one piezometer 
in successive experiments at the same temperature and pressure; but it was even 
more easily seen in the relative behaviour of a number of piezometers which were 
simultaneously exposed to exactly the same temperature and pressure several times in 
succession. A single page of my laboratory book, taken at random, sufficiently illus­
trates this. To avoid confusion, I give the records of two of the ordinary instruments 
(with fresh water) alone, leaving out the records of those with sea-water, and I insert
[in brackets] the pressures and the average apparent compressibilities calculated from
the data, 
was boiled,

The water employed was that of the ordinary supply of Edinburgh, and 
for a short time only, to expel air:—

23/7/86.

I. E. G. A. G. 2 c. [Pressure 0 983 tons]
25-0 8 .-. 136-2 [4333]
46’4 419 28-0 — —
25-0 8

K. S. (in gun) 14°-9 0.

II.
251 8 [0-993]
47'0 423 28'0 .-. 137-7 [4339]
25-1 8 .. 122-5 [4342]

K. S. 15°

III.
25-1 8 [1-992]
681 841 56-0 .-. 269-0 [4218]
251 8 .. 256-6 [4214]

K. S. 15°

IV.
25-2 8 [20]
68'4 844 56'0 .-. 269-8 [4216]
25-2 8 ,. 258-1 [4224]

V.
25-2 8 [2-997]
90'0 1261 85-0 393-7 [4092]
25-5 8 . 376-9 [4116]

K. S. 15°
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VI.
25'6 8 [3-002]
90 0 1263 85-0 /. 394-4 [4093]
25-5 8 .. 376'9 [4110]

The left-hand column gives the readings of the external gauge, the next those of 
Amagat’s gauge, before, during, and after the application of pressure. The third gives 
the pressure as read by one of the internal gauges described in my previous Report. 
The fourth column gives the readings of the two piezometers selected; the fifth the 
pressure (in tons) for each experiment, and the compressibility calculated. The latter 
numbers are multiplied by 108.

Notice that, in the first experiment (..) failed to give a reading. Also in the 
fifth and sixth the indications of the two instruments do not agree very closely. The 
character of the results, however, points apparently to an error in gauging one or other 
of the instruments. It was the unavoidable occurrence of defects of these kinds that 
led me to make so many determinations at each temperature and pressure selected. 
The above specimen contains less than 1 per cent, of my results for fresh water, and 
I obtained at least as many reduced observations on sea-water.

To obtain an approximate formula for the full reduction of the observations, I first 
made a graphic representation, on a large scale, of the results for different pressures 
at each of four temperatures, adding the compressibility of glass as given in Section VI. 
above. From this I easily found that the average compressibility for 2 tons pressure 
(at any one temperature) is somewhat less than half the sum of those for 1 and for 
3 tons. Thus the average compressibility through any range of pressure falls off more 
and more slowly as that range is greater. And, within the limits of my experiments, I 
found that this relation between pressure and average compressibility could be fairly 
well represented by a portion of a rectangular hyperbola, with asymptotes coincident 
with and perpendicular to the axis of pressure. Hence at any one temperature (within 
the range I was enabled to work in), if be the volume of fresh water at one atmo­
sphere, v that under an additional pressure p, we have

v0 — v _ A 
pva ~ 11 + p

very nearly, A and n being quantities to be found.
I had two special reasons (besides, of course, its adaptability to the plotted curve) 

for selecting this form of expression. First, it cannot increase or diminish indefinitely 
for increasing positive values of p, and is therefore much to be preferred in a question 
of this kind to the common mode of representation by ascending powers of the 
variable, such as two or more terms of

Bo + B,p -f- B^p2 + &c., 

or the absolutely indefensible expression, too often seen in inquiries connected with 
this and similar questions,

Bl
Go + C1pn + &c.
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Second, it becomes zero when p is infinite, as it ought certainly to do in this physical 
problem. It appeared also to suggest a theoretical interpretation. But I will say no 
more about this for the present, as it is simply a matter of speculation. See the latter 
part of Section X., below. But there is a grave objection to this form of expression, 
in the fact that small percentage changes in the data involve large percentage changes 
in A and II, though not in the ratio A/H. This objection, however, does not apply to 
the use of it in the calculations preliminary to the full reduction, as in them it is A/II 
only which is required.

Next, on calculating from my data the values of A and II for different temperatures, 
I found that, within the recognised limits of errors of the observations, II might be 
treated as sensibly constant. Thus I was enabled easily to make graphic representa­
tions of the average compressibility at each pressure, in terms of temperature. Again 
I obtained curves which could, for a first trial at least, be treated as small portions 
of rectangular hyperbolas, with the axis of temperature as one asymptote. Hence 

where T is a constant; and B also may for a time be treated as constant.
Thus I arrived at the empirical expression

B
(n+p)(T + o

whose simplicity is remarkable, and which lends itself very readily to calculation. As I 
required it for a temporary purpose only, I found values of the constants by a tentative 
process; which led to the result

0'28
(36 +p) (150 + t)'

This gives the average compressibility per atmosphere throughout the range of additional 
pressure p, the latter being measured in tons’ weight per square inch.

The following brief table shows with what approximation the (unreduced) experi­
mental results (multiplied by 107) are represented by this formula. The nearest integer

taken in the third place:—

1 ton. 2 tons. 3 tons.
Temp. Obs. Calc. D. Obs. Calc. D. Obs. Calc. D.

0°‘4 503 503 0 489 490 - 1 477 477 0
3°'2 492 494 -2 479 481 -2 466 469 -3

ll°-8 467 468 - 1 454 455 - 1 441 444 -3
15°-0 459 459 0 448 447 + 1 436 435 + 1

The agreement is tolerably close, so that the empirical formula may be used, without 
any great error, in the hydrostatic equations, so long as the temperatures and pressures 
concerned are such as commonly occur in lakes.

But the columns of differences show that the form of the formula is not suitable. 
The pressure factor seems appropriate, but it is clear that, at any one pressure, the 
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curve representing the compression in terms of the temperature has greater curvature 
than the formula assigns. Still the formula amply suffices for the reduction of the 
observations of any one group when the pressures or temperatures were not precisely the 
same in all. It was, however, not much required, for the pressure could be adjusted 
with considerable accuracy, and (especially when the large gun was used) the changes 
of temperature were very slow.

The next step was to enter, as shown in Plate II. fig. 3, all the results obtained 
from the various piezometers at each definite temperature and pressure, with the view 
of selecting the most probable value. The amount of discordance was in all cases very 
much the same as that shown in the plate for the series of experiments at two tons’ 
pressure and the one temperature 5° C. It will be observed that the extreme limits of 
divergence from the mean are not more than about two units in the third significant 
place. For a pressure of one ton this corresponds to about half a millimetre in the 
position of the indices, so that after what has been said about their peculiarities of 
behaviour it may obviously be treated as unavoidable error. Thus the ordinary process 
of taking means is applicable, unless the observations themselves show some peculiarity 
which forbids the use of this method.

All the results of observations made up to June 1887 (with the help of the Amagat 
gauge) having been treated in this way, the following mean values of apparent average 
compressibility (multiplied by 108) were deduced from them:—

Apparent Compressibility of Cistern Water, boiled for a short time.

Temp. C. 1 ton. 2 tons. 3 tons.
0°'4 4770 4617 4510
3°2 4670 4527 4402
3°4 4671 4521 4395

ll°-8 4415 4276 4163
14°-2 4330 4220 4115
14°-4 4344 4217 4105
15°0 4338 4219 4102

[I think it extremely probable that the small irregularities among the last three 
numbers in each pressure column may be due to want of uniformity of temperature 
throughout the column of water in the pressure chamber. The day-temperature of 
the cellar is, in summer, always a good deal above that at night, so that in the 
forenoon (when the experiments were made) the gun and its contents were steadily 
growing warmer. Thus the column of water was not at a uniform temperature. The 
assumed temperature was the mean of the readings before the vessel containing the 
piezometers was inserted, and after it was taken out. ^Vhile it was m the chamber, 
the contents could not be properly stirred except by raising and depressing the vessel 
itself.]

The points thus determined were laid down (marked with a *) as in Plate I., 
and smooth curves were drawn libera manu among them. From these curves the

T. II. 5 
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following values were taken at intervals at 5° for the sake of ease of calculation, 260 
being added to each for the compressibility of glass:—

0° 5° 10° 15°

1 ton 5044 4874 4723 4594
2 tons 4898 4733 4584 4466
3 tons 4776 4608 4468 4360

The fact that water has a temperature of minimum compressibility led me to try to 
represent these numbers by a separate parabolic formula for each pressure. The follow­
ing were easily found :—

504 - 3•60^ + 0'04i2
490 - 3'65i + OO522
478 - 3-70f + 006f2

...................................................(A),

for 1, 2, and 3 tons respectively. [The terms independent of t belong to the formula 
520 —17p+_p2. This will be made use of in future sections.] The utmost difference 
between the results of these formulae and the numbers from which they were obtained 
is less than l/10th per cent. No closer approximation could be desired, much less 
expected, especially when we consider the way in which the * points (on which the 
whole depends) were themselves obtained. These are represented as follows:—

0o,4 3°-2 ll°-8 14°'4 15°0
Obs. Calc. Obs. Calc. Obs. Calc. Obs. Calc. Obs. Calc.

503 502-5 493 493 467-5 467-2 460-4 460'5 459-8 459
487-7 488-5 478-7 479 453-6 453-9 447-7 447-8 447'9 446'5
477 476-5 466-2 466-8 442-3 442-7 436-5 437'1 436-2 436

In one instance only does the difference reach unit in the third significant place. [It 
must be remembered that all these numbers commence with the fifth digit after the 
decimal point.]

In spite of some remarks above as to uncertainty about temperature, I am con­
vinced that the mode of experimenting employed is calculated to insure considerably 
greater accuracy in the comparison of compressibilities at different temperatures for 
any one pressure, than in that of compressibilities for different pressures at any one 
temperature. The displacement of the indices by the expanding water is likely to be 
more serious the higher the pressure, as the difficulty of effecting the relief quietly is 
much greater. Probably all the values for the higher pressures are a little too small 
for this reason.

The results given above are represented with a fair degree of accuracy by the 
simple formula

0'001863^ 3f i2
36 +p V 400 + 10,000/’

which will amply suffice for ordinary purposes. In this form, however, some small but 
highly expressive and apparently important features of the formulas (A) for the separate 
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pressures are, of course, lost. The statement above, as to the greater uncertainty of 
the values the higher the pressure, renders it probable that, in the pressure factor in 
this formula, both the constants ought to be somewhat larger. It is clear that very 
small changes in the relative values of the compressions for 1, 2, and 3 tons would 
make great changes in these constants. In fact, an error of 1 per cent, at 3 tons 
involves an error of some twenty per cent., nearly, in each of the constants of the 
pressure factor.

Again, this last formula would give, for all pressures, minimum compressibility at 
about 37° C.; while the former three give 45° C. at 1 ton, 36°'5 at 2, and 30o,8 at 
3 tonsthese minima being 423, 423'4, and 421 respectively.

If we venture to extend the formulae (A) to atmospheric pressure, we are led to

520-3'55t + 0'03t2.
I have already shown1 that this is in close accordance with Buchanan’s results at 2°'5 
and 12°'5 C. Buchanan’s pressure unit is thoroughly trustworthy; for it was deter­
mined by letting down the piezometer, with a Challenger thermometer attached, to a 
measured depth in the ocean. It would thus appear that the extension of my formulae 
to low pressures is justified by the result to which it leads.

This formula gives 415 for the minimum compressibility of water at low pressures, 
the corresponding temperature being about 60° C. This accords remarkably with the 
determination made by Pagliani and Vincentini, who discovered it, and placed it at 
63° C.

On Plate II. I have exhibited graphically a number of known determinations of 
the compressibility of water for very low pressures at different temperatures. The line 
marked Hypothetical is drawn from the formula above, the authors of the others are 
named in the plate. It will be seen at a glance that, if Pagliani and Vincentini 
had taken Grassi’s value of the compressibility of water at lo-5 C., instead of that at 
0° C., as their single assumption, their curve would have coincided almost exactly with 
my Hypothetical curve !

So far matters seemed to have gone smoothly enough. But when I came to reduce 
the observations made since June 1887, I found that they gave a result differing, 
slightly indeed but in a consistently characteristic manner, from that already given. 
The processes of reduction were carried out precisely as before; and the points deter­
mined by the second series of observations are inserted in Plate I., marked with a 0. 
Curves drawn through them as before are now seen to be parallel to the former curves, 
but not coincident with them. And the amount of deviation steadily diminishes from 
the lowest to the highest pressure. These curves, of course, are very closely represented 
by the formulae (A) above, provided the first terms be made 499, 488, 477, respectively, 
i.e. provided 5, 2, and 1 be subtracted from the numbers for 1, 2, and 3 tons re­
spectively. Thus, while the amount of the compressibility is reduced, it is made to 
depend on temperature precisely as before, but the way in which it depends on 
pressure is altered. The rate of diminution of compressibility with increase of pressure 

1 See p. 13, above.
5—2
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is now made constant at any one temperature, instead of becoming slowly less as the 
pressure is increased. This is incompatible with the results of all of the first series 
of experiments. The total amount of the compressibility is likewise diminished, by 
1 per cent, at 1 ton, by 0'4 per cent, at 2 tons, and by 0'2 per cent, at 3 tons.

Small as these differences are, their regularity struck me as very remarkable, and as 
pointing definitely to some difference of conditions between the two sets of experiments. 
Now there were undoubtedly many circumstances in which the series of experiments 
differed:—

First. The observers were not the same. All the readings in the first series were 
made by myself; but (in consequence of an accident which prevented me from working
in the cellar) I was unable to take part in the second series, and the readings for
it were all made by Mr Dickson. Thus there may be a difference, of personal equation,
in the mode of applying the scale to the stem of the piezometer, or in the final
adjustment of the manometer. Such an explanation is quite in accordance with the 
results, as a constant difference of reading would tell most when the whole quantity 
measured is least, i.e. at the lowest pressure. But a difference of a full millimetre 
in the piezometer readings may be dismissed as extremely improbable.

Second. It is possible that, during the second series of experiments, less care may 
have been taken than in the first series to let off the pressure with extreme slowness. 
Thus the indices may have been slightly washed down, and the record of compression 
rendered too small. Even with the greatest care, this undoubtedly occurred in some, at 
least, of the experiments of the first series; and the screw-tap may have been altered 
for the worse during the second series.

Third. It is recorded in the laboratory book that, during the second series of 
observations (which were made for the most part in the exceptionally cold weather of 
last spring) the oil and treacle in the manometer had become very viscous, so that 
it was difficult to make the pistons rotate. As artificial cooling, of the pressure apparatus 
alone, was employed in the first series, this objection does not apply to it. A constant 
zero error of 4 mm. only in the gauge would fully explain the discrepancy. And there 
was another cause which may have tended to produce this result, viz. the oxidation of 
the mercury in the manometric column, which had soiled the interior of the lower part 
of the tube, and thus made it very difficult to read the zero.

Fourth. The piezometers had been twice refilled, and of course slightly altered in 
content, between the two series, and the hair-indices had necessarily been changed. 
The former cause could have produced no measurable effect; but if the indices were 
all somewhat stiffer to move in the second series than in the first, the discrepance 
might be fully accounted for.

Fifth. Between the two series all the piezometers had, for several months, been 
filled with strong salt-solutions. Imperfect washing out of these solutions may have 
had the effect of rendering the second series a set of experiments on water very 
slightly salt.

Sixth. To make my observations applicable to natural phenomena, I purposely 
did not employ distilled water. The ordinary water supply of Edinburgh is of very 
fair quality, and I took care that it should not be boiled longer than was absolutely 
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necessary to prevent air-bubbles from forming in the piezometers. But it comes from 
different sources, and is supplied as a mixture containing these in proportions which 
vary from time to time. From this cause also the substance operated upon may have 
been slightly different in the two series of experiments.

As will be seen in next section, I have obtained direct proof that the first series of 
observations is to be preferred to the second,—though I have not been able to ascertain 
definitely which of the above causes may have been most efficient in producing the 
discrepancy.

It will be observed that this discussion has nothing to do with the important 
question, Does the compressibility of water diminish from the very first as the pressure 
increases, as was asserted by Perkins ? The first and rudest of my experiments sufficed 
to answer this definitely in the affirmative; though the contrary opinion has been 
confidently advanced, and is very generally held to this day.

The discussion deals with a much more refined and difficult question, viz. Is the 
diminution of average compressibility simply proportional to the pressure for the first 
few hundred atmospheres, or does the compressibility fall off more slowly than that 
proportion would indicate, as the pressure is raised ?

VIII. Reductions, Results, and Formulae for Sea-Water.

As already stated, three of the six piezometers employed were filled with fresh 
water and three with sea-water, so that simultaneous observations were made on the 
two substances. The accordance among the various observations made with sea-water, 
at any one temperature and pressure, was not so good as it was with fresh water; 
especially when the smaller compression apparatus was used. There is some curious 
action of salt upon the hairs attached to the indices, which has the effect of rendering 
them too loose, however stiffly they may originally have fitted the tube. Treating the 
observations of the first series exactly as described in the preceding section, I obtained 
the points marked * in Plate I. Drawing smooth curves through these, I obtained 
parabolic formulse for the apparent compressibility. These gave the following results 
when compared with the data from observation:—

Apparent Compressibility op Sea-Water.

i ton. 2 tons. 3 >tons.
Obs. Calc. Obs. Calc. Obs. Calc.

0°4 435 435 420 420 410 410
3°’O 427 427 413 413 402-5 403

ll°-8 404 404 392 392 383'5 384
14°-2 398 399 389 388 380 380
15°-0 398 397 387 387 378 378
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Adding the correction for glass, the formulae became, for 1, 2, and 3 tons 
respectively—

462 - 3-20^ + 0-04t2)
447-5 - 305t + 0'05t2 ..............................................(B),
437-5 - 2-95i + 0-05i2 |

which may be compared with (A) for fresh water; and which may be approximately 
expressed in the form (very nearly correct for p = 2)—

0-00179 / t it \ 
38 +p V1 150+ 10,000/

with sufficient accuracy for most purposes of calculation.
Of course it is easy to deduce from formulae (B) the points of minimum com­

pressibility, etc., for different pressures: but the data are scarcely accurate enough to 
warrant such a proceeding. We may, however, extend the formulae tentatively to the 
case of very low pressures, for which we obtain

481 - 3-4« + 0 03i2.

[The term independent of t in the formulae (B) is of the form

481-21-25p+2-25p2.]

The second series of observations gave, when reduced, the points marked 0 on 
the plate. The curves which I have drawn, and which evidently suit them very 
closely, are parallel respectively to the curves drawn through the * points. The 
interval between them is throughout about 7 for 1 ton, 4 for 2 tons, and 3 for 3 tons, 
which must be subtracted from the first terms of (B) respectively. The corresponding 
intervals for the fresh water curves in the two series were 5, 2, 1. The differences 
of corresponding intervals between the sets of curves are 2, 2, 2; the same for all the 
groups of four curves each.

This seems to throw light on the question raised in last section, and to show 
that the main cause of the discrepancy between the first and second series of obser­
vations is not due to a difference in the substance operated on. The constant 
difference of the differences is due to such a cause, being at once traceable to the 
fact that the sea-water put into some of the piezometers for the second series of 
experiments was taken from the same Winchester quart bottle as was that with which 
they had been filled two years before. During these two years the sea-water had 
probably, by evaporation, become slightly stronger, and, therefore, less compressible. 
The change of compressibility is less than 0'5 per cent, of the whole, and is there­
fore practically (as it is in the third significant figure) the same for all three pressures. 
If we now look back to the suggested explanations in last section, we see that the 
above remarks entirely dispose of the fifth and sixth so far as fresh water is con­
cerned, though the sixth, in a modified form, has to do in part with the discrepancy
between the two series of observations on sea-water.

To decide between the two series I made a new set of observations, employing
the two piezometers of large capacity spoken of at the end of Section III. These 
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are called Mi and M2. On the first day of experimenting Mx held sea-water from a 
Winchester quart filled at the same time with the first, but which had remained 
unopened. M2 had fresh water. On the second day M2 held sea-water, and Mt fresh 
water. The object of this was to discover, if such existed, errors in the calibration 
of the piezometers, and then to eliminate them by a process akin to that of weigh­
ing with a false balance.

One of the ordinary piezometers (-.-), filled with fresh water, was associated with 
the others as a check. I quote the results of one experiment only, made on the 
second day :—

5/6/88 [0-997 ton]
5 9°-4 Mi 310-9 [4465]

422 m2 234-7 [4080]
5 • • 126-0 [4463]

Thus we have the following comparison of
for the first additional ton :—

estimates of true average compressibility

Fresh Water. Sea-Water.
'1st Series 474 434

9°-4 2nd „ 469 427
New „ 473 434

A few of the experiments were not thoroughly decisive; none were in favour of 
the second series. This seems (so far as the first ton is concerned) to settle the 
question in favour of the first series.

The formulae (A) and (B) may therefore, for one ton at least, be regarded as 
approximations to the truth, probably about as close as the apparatus and the method 
employed are capable of furnishing.

They show that the ratio of compressibilities of sea-water and fresh water varies 
but little from

0’92

throughout a range of temperature from 0° to 15° C.
[The doubts as to the behaviour of the indices, which have been more than 

once alluded to above, have just led me to make a series of experiments (at one 
temperature but at different pressures) by the help of the silvering process. The 
results with fresh water were not much more concordant than when the hair-indices 
were used. When means were taken, exactly as before, it was found that the results 
for 1 ton were almost identical with the former. For 2 tons the average value was 
usually greater than before by a unit (and in some cases two units) in the third 
place. For 3 tons it was also greater, but now by one or two (and sometimes three) 
units. Hence it is probable that the hair-indices do behave as I suspected, but that 
the effect is small,—not at the worst (i.e. at the highest pressure) more than about 
0-5 per cent, of the mean value found. With sea-water there was a complex reaction, 
which made it difficult to read the indications of the silver film. The ratio of the 
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true compressibilities of sea-water and fresh water was now found to be about 0'925, 
the value which I gave from my earliest experiments. 30/6/88.]

Dr Gibson has furnished me with the following data regarding specimens of sea­
water taken from two of the Winchester quarts filled off the Isle of May. One of 
these had remained unopened; the other had been often opened, and not closed with 
special care. These correspond (at least closely) to the materials used in the first 
and second series of experiments respectively:—

Density.
Percentage of Cl. 0° C. 6° c. 12° C.

1-8649 1-027286 1'026745 1'025834
1'9094 1-027941 1'027405 1'026462

Taking the reciprocals in the last three columns, we have

Volume.
0° c.

0'973439
0'972818

6°
0'973951
0'973326

12° 
0'974816 
0'974220

Expressing these volumes as parabolic 
maximum density points, — 5°'7 and —

functions of the 
4°'9 respectively.

temperature, we find, for the

IX, Compressibility, Expansibility, etc., of Solutions of

Common Salt.

This part of the inquiry was a natural extension of the observations on sea-water, 
but it was also in part suggested by the fact that an admixture of salt with water 
produces effects very similar to those of pressure. Thus it appeared to me that an 
investigation of the compressibility of brines of various strengths might throw some 
light on the nature of solution; and also on the question of the internal pressure 
of liquids, which (in some theories of capillary forces) is regarded as a very large 
quantity.

The solutions experimented on contained, roughly, 4, 9, 13'4, and 17'6 per cent, 
of common salt. The piezometers used for the experiments already described were 
filled with these solutions in July 1887; one, for comparison, being left full of 
fresh w’ater. I obtained a large number of results at temperatures about 1°, 9°, and 
19° C., and at 1, 2, and 3 tons weight per square inch. Unfortunately these were 
still more discordant than those made with sea-water; so much so, in fact, that an 
error of 1 or occasionally even 2 per cent, was not by any means uncommon. However, 
by plotting all the observations exactly as described in the two last sections, I found 
that they could be fairly represented by the curves shown in Plate I. In most cases 
two at least of the three points for each curve were fairly determinate; one of these 
being, in all cases, within a degree or so of 10° C. For this was obtained by 
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experiments in the large gun, where the difficulty of relieving the pressure without 
jerks is much less than in the smaller apparatus. Of the general accuracy of these 
curves I have no doubt. Thus, for instance, it is certain that the compressibility at 
any one temperature and pressure diminishes rapidly as the percentage of salt increases. 
And the rate at which the compressibility (for any one range of pressure) diminishes 
as temperature increases, becomes rapidly less as the solution is stronger. My obser­
vations do not enable me to settle the more delicate question of the variation of 
the rate at which the compressibility (at any one temperature) falls off with increase 
of pressure in the various solutions. For the limits of error in the various deter­
minations, especially with the more nearly saturated solutions, are quite sufficient to 
mask an effect of this kind unless it were considerable. An attempt, however, will 
be made in next Section.

There is little to be gained by putting the results of the inquiry in a tabular 
form; for they can be obtained from the plate quite as accurately as is warranted 
by the limits of uncertainty of the experiments. See p. 44.

I am indebted to Dr Gibson for the following determinations, which have a high 
value of their own as showing the connection between the strength of a salt-solution 
and its expansibility:—

Density.
Percentage of NaCl. 0° c. 6° C. 12° C.

3’8845 1’029664 1’028979 1’027935
8’8078 1’067589 1’066144 1’064485

13’3610 1’101300 1099341 1-097244
17’6358 1T38467 1’136040 1 133565

From Dr Gibson’s numbers, with the help of a table of reciprocals, we have the 
following data as to volume instead of density:—

Percentage of NaCl. 0° c. 6° 12°
3’88 •97119 ■97184 •97282
8’81 •93669 •93796 ■93942

13’36 ■90802 •90963 •91137
17’63 •87837 •88025 •88217

Next, to find the maximum density for each solution, and the corresponding 
temperature, we must represent these volumes by parabolic functions of t. Thus the 
first three numbers are closely represented by

y = 0-97083+ ^^(9 + ^,

80 that the first solution has its maximum density (1’030) at — 9° C., and its coeffi­
cient of expansion is

0’0000093 (9 +t).
Such formula, of course, must be taken for no more than embodiments of the data, 
and any application of them considerably beyond the temperature limits 0°—12° C. is 
purely hypothetical.

T. II. 6
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For the second solution—

y = 0-93306 + (37’2 +

so that (under the reservation just made) the maximum density is 1 ‘0717, at - 37°-2, 
and the coefficient of expansion is

0-0000056 (37-2 +t\
For the third—

y = 0'89884 + 0'0000018 (72 +tj.

The maximum density is 1-1125, at —72° C.; and the expansibility

0'000004(72 + 0.

The numbers for the volume of the fourth solution are so nearly in arithmetical 
progression that we can hardly use them to approximate, even roughly, to the position 
of the maximum density point, or the corresponding density. The expansibility has 
practically (from 0° to 12° C.) the constant value

0-00036.

Thus we have for the various salt solutions:—

Percentage Max. Density Max. Density. Density at 0° C. Expansibility.
NaCl.

0
Point.

+ 4° 1 0'99986 -0-000068 fl -
\ 4/

3-88 -9° 1-030 1-02966 + 0-000084 fl + X

8-81 -37° 1-0717 1-06759 0-00021 (1 +

13-36 - 72° 11125 1T0130 0-00029 fl + ^
\ 7 2/

17-63 ... . . - 113847 0-00036

As a good illustration of the analogy at the beginning of this section, let us 
deal for a moment with fresh water at such a pressure that its maximum density 
point is — 9° C., that of the first of the salt solutions. It will be seen later that 
the requisite pressure is about 4 tons. At that pressure (A) gives

468 - 3'75t + 0’0712.

Hence as the unit of volume at 1 atm. and 4° C. becomes 1'000136 at 1 atm. and 
0° C., it is reduced at 4 tons and 0° C. to

(1'000136) (1 - = 1 -0'0284,

so that the density has become
1-0292.
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At the same temperature, and at 1 atm., the density of the salt solution, which has 
the same maximum density point, is

1-0297.
If we assume the formula) (A) to be applicable to temperatures so far as 9° below 

zero (a somewhat precarious hypothesis, inasmuch as water at 4 tons has its freezing 
point about — 4O,5 C.), the maximum densities alike of the compressed water and of 
the salted water are closely represented by

1-030.
[In obtaining the first of these numbers, I assumed from Despretz that the 

density of water at 1 atm. and - 9° C. is 0'9984.] Of course it would be vain to 
attempt similar calculations for the stronger solutions, as the indicated maximum 
density points are so widely outside the limits of my experiments. But the example 
just given seems to show that if fresh water be made, by pressure, to have its 
maximum density point the same as that of a common-salt solution under atmo­
spheric pressure, the densities of the two will be nearly the same at that point, and 
will remain nearly alike as temperature changes.

NOTE.

In all that precedes it has been tacitly assumed:—
1. That the pressure is the same outside and inside the piezometer.
2. That the pressure measured by the gauge is that to which the contents of 

the piezometer were exposed.
3. That the pressure was uniform throughout the contents.

None of these is strictly true, so that cause must be shown for omitting any 
consequent correction.

The third may be dismissed at once, as the height of the piezometer bulb is 
only a few inches.

The difference of levels between the upper end of the gauge and the bulbs of 
the piezometers, when in the pressure-chamber, was about three feet, so that on this 
account the pressure applied was less than that in the gauge by one-tenth of an 
atmosphere. But as differences of pressure alone were taken from the gauge, this 
cause merely shifts (to a small extent) the range through which the compression was 
measured. But the rise of mercury in the piezometer stem made a reduction of the 
range of pressure as measured, which for 3 tons pressure might amount to about 
0’5 atm. The error thus introduced was, at the utmost, of the order 0’1 per cent, 
of the compressibility measured. Thus the second cause, also, produces only negligible 
effects.

I preferred to settle the first question by experiment rather • than by calculation, 
as the obtaining of the data for calculation would have required cutting up of the 
piezometer bulbs. The 0-5 atm. spoken of above represented, in extreme cases, the

6—2 



44 REPORT ON SOME OF THE PHYSICAL PROPERTIES OF

excess of external over internal pressure in the piezometers. By direct experiment 
on two of the instruments themselves, it was found that their internal volume was 
diminished at most 0’00002 of the whole by 0’6 atm. of external pressure. This would 
involve as a correction the adding of 0T per cent, only to the results at 3 tons, so 
that it also is well within the limits of error of the measurements above.

ASSOCIATED PHYSICAL QUESTIONS.

X. Theoretical Speculations.

If instead of the percentage of NaCl in the solutions we tabulate the amount of 
NaCl to 100 of water, and along with it the compressibility at zero, we have—

s = amount of Average compressibility at 0° C. x I07.
NaCl to 100 of water. For first ton. First 2 tons. First 3 tons.

0’0 503 490 477
4’0 449 438 428
9’6 396 386 378

15’4 354 345 338
21’4 321 313 306

The relation between these numbers is very fairly represented by the formula—

Average compressibility p „ 0’001861U1 lULSL U UU11S — •' 36+p + s

It is remarkable that if we put t = 0 in the formula of Section VII., we have— 

compressibility of fresh water for first p + s tons = ——

which presents an exceedingly striking resemblance to that last written.
Though these formulae are only approximate, we may assume the true constants 

to be at least nearly the same in both, and make the following statement as a sort 
of memoria technica in this subject:—

At 0° C. the average compressibility, for p tons, of a solution of s lbs. of common 
salt in 100 lbs. of water, is nearly equal to the average compressibility of fresh water 
for the first p + s tons of additional pressure.

The numerical coincidence above is, of course, accidental; because the formuke 
are taken for the special temperature 0° C., and the special unit of pressure 1 ton 
weight per square inch.

But a coincidence of a much more striking character, and one which does not 
depend upon special choice of units, is suggested by the common form of the 
expressions compared.

It appears from the Kinetic Theory of Gases, in which the particles are treated 
as hard spheres, whose coefficient of restitution is 1, and which exert no action on
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one another except at impact, that the pressure and volume of the group at any 
one temperature are connected by a relation approximately of the form

p (v — a) = constant.

The quantity a obviously denotes the ultimate volume, i.e. that to which the 
group would be reduced if the pressure were infinite.

I have pointed out1 that this expression coincides almost exactly with the results 
of Amagat’s experiments on the compression of hydrogen. The introduction of an 
attractive force between the particles, sensible only when they are at a mutual 
distance of the order of their diameters, merely alters the constants in this expression. 
Let us see what interpretation it will bear if, for a moment, we suppose it roughly 
to represent the state of things in water.

The average compressibility of such a group of particles, between the pressures 
ct and ss + p, viz.,

Vp- v
PVo

where v0 is the volume at ct, and v that at ^+p, is easily shown to be

ct + p'

Compare this with the empirical expression above for the compressibility of water 
say at 0° C. (per ton weight on the square inch)—

1523 x 0-00186 _ Q-283 
36+p 36+p

and we see that they agree exactly in form. If, then, the results of the kinetic 
theory be even roughly applicable to the case of a liquid, we may look upon the 
36 in this expression as the number of tons weight per square inch by which the 
internal pressure of water exceeds the external pressure. And the corresponding 
empirical expression for the compressibility of a solution of common salt may be 
interpreted as showing that the addition of salt to water increases the internal 
pressure by an amount simply proportional to the quantity of salt added.

That liquids have very great internal pressure has been conjectured from the 
results of Laplace’s and other theories of capillarity, in which the results are derived 
statically from the hypothesis of molecular forces exerted intensely between contiguous 
portions of the liquid, but insensibly between portions at sensible distances apart. A 
very interesting partial verification of this proposition was given by Berthelot2 in 1850. 
By an ingenious process he subjected water to external tension, and found that it 
could support at least fifty atmospheres. The calculation was made on the hypothesis 
that a moderate negative pressure increases the volume of water as much as an equal 
positive pressure diminishes it.

Trass. Roy. Soc. Edin., vol. xxxni. p. 90, 1886. 2 Ann. de Chimie, tom. xxx. p. 232.
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I was led to the conclusion that the internal pressure of a liquid must be greatly 
superior to the external, as a consequence of the remarkable results of Andrews’ 
experiments on carbonic acid, and of the comments made on them by J. Thomson 
and Clerk-Maxwell1. It was Prof. E. Wiedemann who, while making an abstract of 
my paper (Appendix E) for the Beiblatter zu den Ann. d. Physik, first called my 
attention to Berthelot’s experiment.

In Appendix F a short account of Laplace’s calculations is given, and it is shown 
that the work required to carry unit volume of water, from the interior to a distance 
from the surface greater than the range of molecular forces, is

2K x 1 cub. inch,
where K is the internal molecular pressure per square inch. The speculation above 
would make this work

72 inch-tons.
But, in work units, the heat required to vaporize 1 cub. inch of water at 0° C. is

625
h. 606 x 1390 foot-pounds,

11 Zo
or 163 inch-tons.
The two quantities are at least of the same order of magnitude, and it is to be 
remembered that what has been taken out in the one case is very small particles 
of water-, in the other, particles of vapour. This raises another extremely difficult 
question, viz.,—What fraction of the whole latent heat is required to convert water, 
in excessively small drops, into vapour?

The comparison above, if it be well founded, would seem to show that the utmost 
reduction of volume which water at 0° C. can suffer by increase of pressure is 0’283; 
i.e. that water can be compressed to somewhat less than 3/4ths of its original bulk, 
but not further.

Of course the whole of this speculation is of the roughest character, for two 
reasons. The kinetic gas formula has been proved only for cases in which the whole 
volume of the particles is small compared with the space they occupy. The com­
pression formula is only an approximation, and was obtained for the range of pressures 
from 150 to 450 atmospheres; while we have extended its application to much higher 
pressures.

XI. Equilibrium of a Vertical Column of Water.

In Canton’s second paper we have the following interesting statement:—
“ The weight of 32| feet of sea-water is equal to the mean weight of the atmo­

sphere : and, as far as trial has yet been made, every additional weight equal to 
that of the atmosphere, compresses a quantity of sea-water 40 millionth parts; now 
if this constantly holds, the sea, where it is two miles deep, is compressed by its 
own weight 69 feet 2 inches; and the water at the bottom is compressed 13 parts 
in 1000.”

Theory of Heat, chap, VI., London, 1871.
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Either Canton overestimated the density of sea-water or he underestimated the 
amount of an atmosphere, for undoubtedly 33 feet is a much closer approximation to 
the column of sea-water which produces 1 atmosphere of pressure. He does not give 
his process of calculation, but it was probably something like this:—The pressure 
increases uniformly from the top to the bottom (neglecting the small effect due to 
change of density produced by compression), and everywhere produces a contraction 
proportional to its own value. Hence the whole contraction is equal to that which 
would have been produced if the pressure had, at all depths, its mean value, i.e.
that due to half the whole depth. This process, with Canton’s numbers, gives nearly
his numerical results.

If, then, a be the depth, and p0 the original density, gp^a/^ is the mean pressure.
If e be the compressibility, the whole contraction of a column, originally of length a,
is egpoO?^. Now, a mile of sea-water gives nearly 160 atmospheres of pressure, so 
that the loss of depth of a mile of sea (supposed at 10° C. throughout) is

160 x 0'000045 x 5280/2 = 19 feet, nearly.

For other depths it varies as the square of the depth; so that for two miles it is 
76 feet, and for six miles 684 feet nearly.

This, however, is an overestimate, because we have not taken account of Perkins’ 
discovery of the diminution of compressibility as the pressure increases. The investi­
gation for this case is given in Appendix G, where the change of depth is shown to be 

egpgAjZ (1 2ct CT2
311 + 2H2

ct being the pressure at the bottom in tons weight per square inch, and H (by 
Section VIII.) being 38 in the same units.

For six miles of sea this is, in feet—

684 fl—+ — 620 nearly.
\ 19 80 / J

In the Appendix referred to I have given a specimen of the hydrostatic problems 
to which this investigation leads. Any assigned temperature distribution, if not 
essentially unstable, can be approximately treated. But the up- or down-rushes which 
result from instability are hopelessly beyond the powers of mathematics.

One remark of a curious character may be added, viz. that in a very tall column 
of water (salt or fresh), at the same temperature throughout, the equilibrium might 
be rendered unstable in consequence of the heat developed by a sudden large increase 
of pressure. For, as will be seen later, the expansibility of water is notably increased 
by pressure; and thus the lower parts of the column will become hotter, and less 
compressible, than the upper. This effect is not produced in a tall column of air, 
for the expansibility is practically unaltered by pressure. And the opposite effect is 
produced in bodies like alcohol, &c., where the compressibility steadily increases with 
rise of temperature.
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XII. Change of Temperature produced by Compression.

The thermal effects of a sudden increase or relaxation of pressure formed an 
important element in my examination of the Challenger thermometers, and were 
practically the origin of this inquiry; one of the most unexpected of the results I 
obtained being the very considerable compression-change of temperature of the vulcanite 
slabs on which the thermometers are mounted. Thomson’s formula for this heating 
effect, in terms of the pressure applied, and of the specific heat and expansibility of 
the body compressed, is given in Appendix C to my former Report. My first direct 
experiment on the subject was described as follows1:—

“When...the bulb of one of the thermometers was surrounded by a shell of lard 
upwards of half an inch thick, the total effect produced by a pressure of 3^ tons 
weight was 5° F.; while for the same pressure, without the lard, the effect was only 
l°-8 F. The temperature of the water in the compression apparatus was 43° F., so 
that the temperature effect due to the compression of water was less than 0°'2 F.”

On May 16 of the same year I read a second note on the subject, from which 
I extract the following2:—

2 Proc. Roy. Soc. Edin., vol. xi. pp. 217, 218, 1881.

“ I have examined for a number of substances the rise of temperature produced 
by a sudden application of great pressure, and the corresponding fall of temperature 
when the pressure was very suddenly relaxed. The copper-iron circuit is, however, too 
little sensitive for very accurate measurements; as, from the nature of the apparatus, 
the wires must be so thin as to have considerable resistance, and the thermo-electric 
power of the combination is not large....I content myself, for the present, with a 
general statement of the results for cork and for vulcanized india-rubber, which are 
apparently typical of two classes of solids quite distinct from one another in their 
behaviour.

“ In the case of india-rubber the rise of temperature was found to be about 
1°'3F. for each ton-weight of pressure per square inch; and the fall in relaxation 
was almost exactly the same.

“ With cork each additional ton of pressure gave less rise of temperature than 
the preceding ton; and the fall on relaxation of pressure was, for one or two tons, 
only about half the rise. For higher pressures its ratio to the rise became greater. 
Two tons gave a rise of about lo-6 F., and a fall of 0°9 F.

“ With the same arrangement, the fall of temperature in water suddenly relieved 
from pressure at a temperature of 60° F. was found to be for

One ton-weight per square inch ..... 0°'25 F.
Two „ „  0°‘56 „
Three „ „  0°'93 „
Four „ „  l°-35 „

“ These numbers give the averages of groups of fairly concordant results. I 
employed cooling exclusively in these experiments, because one of the valves of my 

Proc. Roy. Soc. Edin., vol. xi. p. 51, 1881.
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pump was out of order, and the pressure could not be raised at a uniform rate. 
The effects obtained for successive tons of pressure are thus, roughly, 0°-25, 0°'31, 0°’37, 
and 0o-42 F.

“If these results may be trusted, they probably indicate a lowering of the maximum- 
density point of water by pressure1.”

In the next extract it will be seen that I deduced from these data a lowering 
of the maximum-density point amounting to about 3° C. per ton.

The experiments on water were carried further in the following year by Professors 
Marshall and Michie Smith, and Mr Omond2. The second of their papers contains

the annexed graphic representation of the results, which is alluded to in the following 
extract. The final result of these experiments, as assigned by the authors, was a 
probable lowering of the maximum-density point of water by 5° 0. for one ton pressure. 
To this paper I added the following note (l.c. p. 813):—

“If we assume the lowering of the temperature of maximum-density to be pro­
portional to the pressure, which is the simplest and most natural hypothesis, we may 
write

<0 = ^0 Bp, 
where p is in tons weight per square inch.

“ Now Thomson’s thermo-dynamic result is of the form
Si = A (t - ioz) Sp.

“This becomes, with our assumption,
Si = A (i - i0 + Bp) Sp.

“ As the left-hand member is always very small, no sensible error will result from 
integrating on the assumption that i is constant on the right (except when the

1 [See footnote to p. 26.] 2 Proc. Roy. Soc. Edin., vol. xi. pp. 626 and 809, 1882.
T. II. 7



50 REPORT ON SOME OF THE PHYSICAL PROPERTIES OF [LXI.

quantity in brackets is very small, and then the error is of no consequence). Inte­
grating, therefore, on the approximate hypothesis that A and B may be treated as 
constants, we have for the whole change of temperature produced by a finite pressure p— 

At = A (t — t^p + ^ABp2.

“I have found that all the four lines in the diagram given [from Messrs Marshall, 
Smith, and Omond, on last page, where y is the heating effect of p tons at temperature 
t] can be represented, with a fair approach to accuracy, by the formula

y = 0-0095 (i - typ + 0'017p",

where p has the values 1, 2, 3, 4 respectively. Hence, comparing with the theoretical 
formula, we have the values

A = 0 0095, B = 3°-6 C.

“B expresses the lowering of the maximum-density point for each ton weight of 
pressure per square inch.

“It seems, however, that all the observations give considerably too small a change 
of temperature; for the part due to the first power of the pressure is from 30 to 
40 per cent, less than that assigned by Thomson’s formula and his numerical data. 
One obvious cause of this is the small quantity of water in the compression apparatus,
compared with the large mass of metal in contact with it. This would tend to
diminish all the results, whether heating or cooling; and the more so the more
deliberately the experiments were performed. Another cause is the heating (by com­
pression) of the external mercury in the pressure gauge. Thus the pressures are
always overestimated; the more so the more rapidly the experiments are conducted. 
A third cause, which may also have some effect, is the time required by the thermo­
electric junction to assume the exact temperature of the surrounding liquid.

“Be this, however, as it may, the following table shows the nature of the agree­
ment between the results of my original experiments [ante, p. 48] and the data 
derived from the present investigations. The gauge and the compression apparatus 
were the same as in my experiments of last year; the galvanometer, the thermo­
electric junctions, and the observers were all different. The column MSO gives the 
whole heating or cooling effect at 15°-5 C., calculated for different pressures from the 
results of the investigation by Professor Marshall and his coadjutors. The column T 
•contains the results of my direct experiments at that temperature:—

p (tons) MSO T Thomson.

1 0131 C. 0-139 C. 0-177 C.
2 0-294 0-311 0-355
3 0'465 0'516 0-533
4 0665 0-750 0-711

“It will be noticed that there is, again, a fair agreement; though the results are, 
as a rule, lower than those calculated from Thomson’s formula. My own agree most 
nearly with Thomson’s formula, probably because they were very rapidly conducted. 
As they stand, they give about 3° C. for the effect of 1 ton on the maximum-density
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point. It is to be observed that if we could get the requisite corrections for con­
duction and for compression of mercury, their introduction would increase (as in fact 
is necessary) the constant A above, but would have comparatively little effect on the 
value of B, which is the quantity really sought.”

The experiments on other substances were carried out for me by Messrs Creelman 
and Crocket, from whose important paper1 I extract the following results, which have 
some connection with the subjects of this and of my former Report:—

Cork, at 15° C. “Challenger” Vulcanite, at 16° C.
Pressure. Rise per ton. Fall per ton. Pressure. Rise per ton. Fall per ton.

1 0°'75 0°51 1 0°-33 0°'33
2 0°'65 0°-45 2 0°31 0°'33
3 0°’59 0°'42 3 0°-28 0°-32

Glass, at 15° C. India-rubber, at 15° C.
1 0°T2 0°T2 1 0°'74 O°'79
2 0°-13 0°T4 2 0°'70 0°-79
3 0°13 0°'14 3 O°’7O 0°-80

Gutta Percha, at 16° C. Beeswax, at 15“ C.
1 0°-65 O°'67 1 0°-83 0°-83
2 0°-60 0°-64 2 0°'79 0°-86
3 0o,58 0°-63 3 0°'78 0°’89

Solid Paraffin, at 14c’ C. Marine Glue, at 15°' 5 C.
1 0°-56 O°-57 1 0o,91 0°-98
2 0°-56 0°'59 2 0°-85 0°90
3 0°-54 0°61 3 0°-82 0°91

Chloroform, at 17° C. Sulphuric Ether, at 21° C.
1 r-44 r-45 1 l°-8 l°-9
2 l°-34 r-45 2 l°-74 l°-8
3 1°31 l°-47 3 10.7 l°-7

As was to be expected from the fact that the getting up of pressure requires a
short time, while the relief is practically instantaneous, the heating effect is generally 
a little smaller than the cooling effect for the same change of pressure.

These experimenters thus completely confirmed my statements as to the curiously 
exceptional behaviour of cork, but they found no other substance, in the long list of 
those which they examined, which behaves in a similar manner.

It is to be remarked that as, in all the experiments described or cited in this 
section, the temperature-changes were measured by a thermo-electric junction which 
was itself exposed to the high pressures employed, there may be error due to the 
compression of the materials forming the junction. The wires were, for several reasons,

1 Proc. Roy. Soc. Edin., vol. xm. p. 311, 1885.
7—2
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very thin; so that the error, if any, is not due to changes of temperature in them, 
but to (possible) change of relative thermo-electric position, due to pressure. This is 
a very insidious source of error, and it is not easy to see how to avoid it.

XIII. Effect of Pressure on the Maximum-Density Point.

Though the lowering of the maximum-density point of water by pressure is an 
immediate consequence of Canton’s discovery, that the compressibility diminishes as 
the temperature is raised, it seems to have been first pointed out, so lately as 1875,
by 
(as

Puschl1. I 
shown in

was quite unaware 
Section XII. above)

of his work, and of that of Van der Waals2, when
I

least, as the temperature at C is 
the inclination of abc to the axis

was led to the same conclusion by the differences 
between theory and experiment, as to the heat 
developed by compression of water.

This can very easily be shown as follows. 
Let the (vertical) ordinates of the curve ABC 
represent the volume of water at 1 atm., the 
abscissas the corresponding temperatures, B the 
maximum-density point. Let the dotted curve 
abc represent the same for a greater pressure, 
say two atmospheres. Then, by Canton’s result, 
the vertical distance between these curves (the 
difference between corresponding ordinates) di­
minishes continuously from A to (7; so long, at 
under that of minimum compressibility. Hence 
of temperatures is everywhere greater than that

of the corresponding part of ABC. Thus the minimum, b, of the dotted 
(where its tangent is horizontal) must correspond to a point, /3, in the full 
where the inclination is negative—i.e. a point at a lower temperature than B.

To calculate the amount of this lowering, by the process indicated, we 
know the form of the curve abc. This, in its turn, can be calculated from a

curve 
curve,

must 
know-

ledge of the form of ABC, and of the relation between compressibility and temperature. 
Both of the authors named took their data as to the latter matter from the experi­
ments of Grassi; and, as was therefore to be expected, gave results wide of the 
truth. Puschl calculates a lowering of 1° C. by 87’6 atm., which is certainly too 
small; Van der Waals, 0o,78 C. by 10'5 atm., as certainly much too large.

To obtain a good estimate in this way is by no means easy, for authorities are 
not quite agreed as to the form of the curve ABC. If we calculate from the datum 
-of Despretz, which has been verified by Rossetti3, namely,—

vol. at yC. = 
vol. at 4° C.

1 Sitzungsb. d. math.-naturw. Cl. d. 1c. Akad. d. Wiss. Wien, Bd. lxxii. p. 283, 1875.
2 Archives Neerl., tom. xn. p. 457, Haarlem, 1877.
3 Pogg- Ann., ErgUnzungsband, v. p. 260, 1871.
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we obtain for the volume of water at 1 atm., in terms of temperature, 

1 + 0 0000085 (t - 4)2..................................................... (1).

[This refers only to the part AB of the curve, which is what we want. There seems 
general agreement that the curve is not symmetrical about the ordinate at 7?.] Now, 
by (A), the factor for reduction of volume by 1 ton of additional pressure is

1 - 0-007676 + 0'000055£ - 0'00000061t2....................................(2).

The product of these factors, (1) and (2), is a minimum when 

0-000017 (t - 4) = - 0-000055 + 0-00000122i;

or «=4-^ = 4-317.
loo

Thus, according to these data, the maximum-density point is lowered by 3O-17 C. 
per ton of pressure. It will be observed that this is not much less than the result 
I calculated from the data of Professor Marshall and his comrades, but it agrees 
almost exactly with that which I derived from my own.

The following description of the results of my earlier attempts to solve this 
question directly, is taken from the Proc. Roy. Soc. Edin., vol. xn. pp. 226-228, 1883:—

“I determined to try a direct process analogous to that of Hope, for the purpose 
of ascertaining the maximum-density point at different pressures. The experiments 
presented great difficulties, because (for Hope’s method) the vessel containing the 
water must have a considerable cross section; and thus I could not use my smaller 
compression apparatus, which was constructed expressly to admit of measurements of 
temperature by thermo-electric processes. I had therefore to work with the huge 
Fraser gun employed for the Challenger work, and to use the protected thermometers 
(which are very sluggish) for the measurement of temperatures. It was also necessary 
to work with the gun at the temperature of the air,—it would be almost impossible 
to keep it steadily at a much lower temperature,—so that I had to work in water 
at about 12° C.

“The process employed was very simple. A tall cylindrical jar full of water had 
two Challenger thermometers (stripped of their vulcanite mounting) at the bottom, 
and was more than half-filled with fragments of table-ice floating on the water, and 
confined by wire-gauze at the top. This was lowered into the water of the gun, and 
pressure was applied.

“It is evident that if there were no conduction of heat through the walls of the 
cylinder, and if the ice lasted long enough under the steadily maintained pressure, 
the thermometers would ultimately show, by their recording minimum indices, the 
maximum-density point corresponding to the pressure employed:—always provided that 
that temperature is not lower than the melting point of ice at the given pressure.

“Unfortunately, all the more suitable bad conductors of heat are either bodies 
like wood (which is crushed out of shape at once under the pressures employed) or 
like tallow, &c. (which become notably raised in temperature by compression). I was 
therefore obliged to use glass. The experiments were made on successive days, three 
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each day, with three different cylindrical jars. These had all the same height and the 
same internal diameter. The first was of tinned iron; the second of glass about | inch 
thick; the third, of glass nearly an inch thick, was procured specially for this work.

“With the external temperature 120-2 C., the following were the results of 1| tons 
pressure per square inch, continued in each case for 20 minutes (some unmelted ice 
remaining on each occasion). The indications are those of two different Challenger 
thermometers, corrected for index-error by direct comparison with a Kew standard:—

Tin Cylinder.

4° C.
4°

Thin Glass Thick Glass.

2°-67 0°-83
2°-61 0°-83

The coincidence of the first numbers with the ordinary 
water is, of course, mere chance. When no pressure was 
was the same, the result was—

maximum-density point of 
applied, but everything else

Tin.

5°'7 C.
Thin.

5°
Thick.

4°

It is clear that the former set of numbers points to a temperature of maximum density, 
somewhere about 0° C., under 1| tons pressure per square inch. But still the mode 
of working is very imperfect.

“I then thought of trying a double cylindrical jar, the thin one above mentioned 
being enclosed in a larger one which surrounded it all round, and below, at the 
distance of about J inch. Both vessels were filled with water, with broken ice floating 
on it, and had Challenger thermometers at the bottom. By this arrangement I hoped 
to get over the difficulty due to the temperature of the gun, by having the inner 
vessel enclosed in water which would be lowered in temperature to about 3° C. by 
the application of pressure. The device proved quite successful. The result of 1^- tons 
pressure per square inch maintained for 20 minutes, some ice being still left in each 
vessel, was from a number of closely concordant trials—

Temperature in outer vessel . . . l0-7 C.
Temperature in inner vessel . . . 0°'3 C.

The direct pressure correction for the thermometers is only about — 0°T C., and has
therefore been neglected.

“The close agreement of this result with that obtained (under similar pressure 
conditions) in the thick glass vessel leaves no doubt that the lowering of the maximum­
density point is somewhat under 4° C. for tons, or 2o-7 C. for 1 ton per square 
inch. It is curious how closely this agrees with the result of my indirect experiments.”

Further work of the same kind led me to the conclusion that even the double 
vessel had not sufficiently protected the contents from conducted heat, and to state in 
my Heat (p. 95, 1884) that “a pressure of 50 atmospheres lowers the maximum-density 
point by 1° C.”
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During the next two years I made several repetitions of these experiments, with 
the help of thermometers protected on the Challenger plan, but very much more 
sensitive. These experiments were not so satisfactory as those just described. The new 
thermometers caused a great deal of trouble by the uncertainty of their indications, 
which I finally traced to the fact that the paraffin oil which they contained passed, 
in small quantities, from one end of the mercury column to the other. I was occupied 
with an attempt to obtain more suitable instruments, when the arrival of the Amagat 
gauge turned my attention to other matters.

So far as I can judge from the results of the three different methods which I 
have employed, the lowering of the maximum-density point of water by 1 ton of 
pressure is very nearly, though perhaps a little in excess of, 3° C.

It is peculiarly interesting to find that Amagat, by yet another process,—viz. 
finding two temperatures not far apart at which water, at a given pressure, has the 
same volume,—has lately obtained a closely coinciding result. He says: “A 200 atm. 
(chiffres ronds) le maximum de density de 1’eau a retrograde vers zero et l'a presque 
atteint; il parait situe entre zero et 0°'5 (un demi-degre)1.” This makes the effect 
of 1 ton slightly less than 3° C.

1 Comptes Rendus, tom. civ. p. 1160, 1887.

As the freezing point is lowered, according to J. Thomson’s discovery, by about 
1°T3 only per ton of additional pressure,—and has a start of but 4°,—the maximnm- 
density point will overtake it at about — 20-4, under a pressure of 2T4 tons.

The diagram 2 of Plate II. shows the consequences of the pressure-shifting of 
the maximum-density point in a very clear manner,—especially in its bearing on the 
expansibility of water at any one temperature but at different pressures. The curves 
in the diagram are for atmospheric pressure, and for additional pressures of 1, 2 and 
3 tons respectively. They are traced roughly by the help of Despretz’s tables of 
expansibility at atmospheric pressure, and the compression data of the present Report. 
The quantity of water taken in each case is that which, at 0° and under the 
particular pressure, has unit volume. Thus all the curves pass through the same 
point on the axis of volumes. How, in consequence of the gradual lowering of the 
maximum-density point, the expansibility at zero, which is negative at atmospheric 
pressure, and even at 1 ton of additional pressure, becomes positive and then rapidly 
greater as the pressure is raised, is seen at a glance.

I have to state, in conclusion, that my chief coadjutors in the experimental work 
have been Mr H. N. Dickson and my mechanical assistant Mr T. Lindsay. Mr Dickson 
also reduced all the observations, about half of them having been done in duplicate 
by myself.

In the compression of glass I had the assistance of Mr A. Nagel, and occasionally 
of Dr Peddie.

Mr A. C. Mitchell assisted me in the graphic work, and checked the calculations 
in the text.
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I have already acknowledged the density determinations and analyses of sea-water 
and salt solutions made by Dr Gibson.

And I have again been greatly indebted to the very skilful glass-working of 
Mr Kemp.

[7/9/88.—The following analysis of the glass of my piezometers is given by Mr T. 
F. Barbour, working in Dr Crum Brown’s Laboratory:—

SiO2 = 61'20
PbO = 20-94

A12O3 + Fe2O3 = 0-82
CaO = 2-20
MgO = 0'26
K2O = 1'93
Na2O = 11-72.]

ADDENDUM (8/8/88).

The reader has already seen that I have, more than once in the course of the inquiry, 
found myself reproducing the results of others. A few days ago I showed the proof-sheets 
of this Report to Dr H. du Bois, who happened to visit my laboratory, and was informed 
by him that one of Van der Waals’ papers (he did not know which, but thought it was a 
recent one) contains an elaborate study of the molecular pressure in liquids. I had been under 
the impression, strongly forced on me by the reception which my speculations (Appendix E., 
below) met with both at home and abroad, that Laplace’s views had gone entirely out of 
fashion;—having made, perhaps, their final appearance in Miller’s Hydrostatics, where I first 
became acquainted with them about 1850. In Van der Waals’ memoir “On the Continuity 
of the Gaseous and Liquid States,” which I have just rapidly perused in a German trans­
lation, the author expresses himself somewhat to the following effect: If I here give values 
of K for some bodies, I do it not from the conviction that they are satisfactory, but because 
I think it important to make a commencement in a matter where our ignorance is so 
complete that not even a single opinion, based on probable grounds, has yet been expressed 
about it.

Van der Waals gives, as the value of K in water, 10,500 atmospheres; and, in a sub­
sequent paper, 10,700 atm.; while the value given in the text above is about half, viz. 
5480 atm. So far as I can see, he does not state how these values were obtained, though 
he gives the data and the calculations for other liquids. It is to be presumed, however 
that his result for water was obtained, like those for ether and alcohol, from Cagniard 
de la Tour’s data as to any two of the critical temperature, volume, and pressure. Van 
der Waals forms, by a very ingenious process, a general equation of the isothermals of a 
fluid, in which there are but two disposable constants. This is a cubic in v, whose three 
roots are real and equal at the critical point. Thus the critical temperature, volume, and 
pressure can all be expressed in terms of the two constants, so that one relation exists 
among them. Two being given, the equation of the isothermals can be formed, and from it 
K can be at once found.
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My process, as explained above, was very different. I formed the equation of the iso­
thermal of water at 0° C. from the empirical formula for the average compressibility under 
large additional pressures; and by comparing this, and the corresponding equation for various 
salt solutions, with an elementary formula of the Kinetic theory of gases, I was led to 
interpret, as the internal pressure, a numerical quantity which appears in the equations.

I have left the passages, in the text and Appendix alike, which refer to this subject 
in the form in which they stood before I became acquainted with Van der Waals’ work. 
I have not sufficiently studied his memoir to be able as yet to form a definite opinion 
whether the difficulty (connected with the non-hydrostatic nature of the pressure in surface 
films) which is raised in Appendix E. can, or cannot, be satisfactorily met by Van der Waals’ 
methods. Anyhow, the isothermals spoken of in that Appendix are totally different from those 
given by Van der Waals’ equation, inasmuch as the whole pressure, and not merely the external 
pressure, is introduced graphically in my proposed construction.

SUMMARY OF RESULTS.

It is explained in the preceding pages that the pressures employed in the experi­
ments ranged from 150 to 450 atm., so that results given below for higher or lower 
pressures [and enclosed in square brackets] are extrapolated. A similar remark applies 
to temperature, the range experimentally treated for water and for sea-water being 
only 0° to 15° C. Also it has been stated that the recording indices are liable to 
be washed down the tube, to a small extent, during the relief of pressure, so that 
the results given are probably a little too small.

Compressibility of Mercury, per atmosphere, . . . 0'0000036
„ „ Glass,.............................................. 0'0000026

Average compressibility of fresh water:—
[At low pressures 520.10“7 - 355.10~’i + 3.10~9£2]

For 1 ton = 152'3 atm. 504 360 4
2 „ =304'6 „ 490 365 5
3 „ = 456'9 „ 478 370 6

The term independent of t (the compressibility at 0° C.) is of the form 
10~7(520 - 17p + p2), 

where the unit of p is 152'3 atm. (one ton-weight per sq. in.). This must not be 
extended in application much beyond p = 3, for there is no warrant, experimental or 
other, for the minimum which it would give at p = 8'5.

The point of minimum compressibility of fresh water is probably about 60° C. at 
atmospheric pressure, but is lowered by increase of pressure.

As an approximation through the whole range of the experiments we have the 
formula:—

0'00186 / 3t t2 \ 
36+p U 400 + 10,000/’

T. II. 8
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while the following formula exactly represents the average of all the experimental 
results at each temperature and pressure:—

10-7 (520 - 1 Ip + p^ - 10-9 (355 + bp) t + 10-9 (3 + p) t\

compressibility of sea-water (about 0'92 of that of fresh water):—

[At low pressures 481.10~7 — 340.10~9£ + 3.10-9i2]
For 1 ton 462 320 4

2 „ 447-5 305 5
3 „ 437-5 295 5

Term independent of t:—

Approximate formula:—
10"7(481 - 21-25p + 2-25^).

0-00179 / t t* \
38 +p V 150 10)000/

Minimum compressibility point, probably about 56° C. at atmospheric pressure, is 
lowered by increase of pressure.

Average compressibility of solutions of NaCl for the first p tons of additional 
pressure, at 0° C.:—

000186
36 +p + s

where s of NaCl is dissolved in 100 of water.
Note the remarkable resemblance between this and the formula for the average 

compressibility of fresh water at 0° C. and p + s tons of additional pressure.
[Various parts of the investigation seem to favour Laplace’s view that there is a 

large molecular pressure in liquids. In the text it has been suggested, in accordance 
with a formula of the Kinetic Theory of Gases, that in water this may amount to 
about 36 tons-weight on the square inch. In a similar way it would appear that 
the molecular pressure in salt solutions is greater than that in water by an amount 
directly proportional to the quantity of salt added.]

Six miles of sea, at 10° C. throughout, are reduced in depth 620 feet by com­
pression. At 0° C. the amount would be about 663 feet, or a furlong. (This quantity 
varies nearly as the square of the depth.) Hence the pressure at a depth of 6 miles 
is nearly 1000 atmospheres.

The maximum-density point of water is lowered about 3° C. by 150 atm. of 
additional pressure.

From the heat developed by compression of water I obtained a lowering of 3° C. 
per ton-weight per square inch.

From the ratio of the volumes of water (under atmospheric pressure) at 0° C. 
and 4° C., given by Despretz, combined with my results as to the compressibility, I 
found 3°T7 C.:—and by direct experiment (a modified form of that of Hope) 2°-7 C. 
The circumstances of this experiment make it certain that the last result is too small.

Thus, at ordinary temperatures, the expansibility of water is increased by the 
application of pressure.
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In consequence, the heat developed by sudden compression of water at temperatures 
above 4° C. increases in a higher ratio than the pressure applied; and water under 
4° 0. may be heated by the sudden application of sufficient pressure.

The maximum density coincides with the freezing-point at — 20-4 C., under a 
pressure of 2'14 tons.

APPENDIX A.

On an Improved Method of Measuring Compressibility1.

“When the compressibility of a liquid or gas is measured at very high pressures, the 
compression vessel has to be enclosed in a strong cylinder of metal, and thus it must be 
made, in some way, self-registering. I first used indices, prevented from slipping by means 
of hairs. Sir W. Thomson’s devices for sounding, at small depths, by the compression of 
air, in which he used various physical and chemical processes for recording purposes, led me 
to devise and employ a thin silver film which was washed off by a column of mercury. 
Much of my work connected with the Challenger Thermometers was done by the help of 
this process. Till quite recently I was unaware that it had been devised and employed by 
Cailletet in 1873, only that his films were of gold.

“ But the use of all these methods is very laborious, for the whole apparatus has to 
be opened for each individual reading. Hence it struck me that, instead of measuring the 
compression produced by a given pressure, we should try to measure the pressure required 
to produce a given compression. I saw that this could be at once effected by the simplest 
electric methods; provided that glass, into which a fine platinum wire is fused, were capable 
of resisting very high pressures without cracking or leaking at the junctions. This, on trial, was 
found to be the case.

“We have, therefore, only to fuse a number of platinum wires, at intervals, into the 
compression tube, and very carefully calibrate it with a column of mercury which is brought 
into contact with each of the wires successively. Then if thin wires, each resisting say about 
an ohm, be interposed between the pairs of successive platinum wires, we have a series whose 
resistance is diminished by one ohm each time the mercury, forced in by the pump, comes in 
contact with another of the wires. Connect the mercury with one pole of a cell, the highest 
of the platinum wires with the other, leading the wires out between two stout leather washers; 
interpose a galvanometer in the circuit, and the arrangement is complete. The observer 
himself works the pump, keeping an eye on the pressure gauge, and on the spot of light 
reflected by the mirror of the galvanometer. The moment he sees a change of deflection he 
reads the gauge. It is convenient that the external apparatus should be made to leak slightly; 
for thus a series of measures may be made, in a minute or two, for the contact with each of 
the platinum wires. Then we pass to the next in succession.”

M. Amagat3 remarks on the use of this method as follows:—“Le liquide du piezometre, 
et le liquide transmettant la pression dans lequel il est plonge (glycerine), s’fichauffent con- 
sid^rablement par la pression; cette circonstance rend les experiences tres longues: il faut

1 Proc. Roy. Soc. Edin., vol. sin. pp. 2, 3, 1884. 2 Comptes Rendus, tom. cm. p. 431, 1886.
8—2 



60 REPORT ON SOME OF THE PHYSICAL PROPERTIES OF [lxi.

un temps considerable pour equilibrer la masse qui est peu conductrice; il faut r^p^ter les 
lectures jusqu’a ce que 1’indication du manometre devienne constante au moment du contact. 
Les series faites par pressions decroissantes produisent le meme effet en sens inverse; on 
prend la moyenne des resultats, dont la concordance montre que 1’ensemble de la methode 
ne laisse reellement presque rien a desirer.

“ On voit par la. quelles grossieres erreurs ont pu etre commises avec les autres artifices 
employes jusqu’ici pour la mesure des volumes dans des conditions analogues.”

It must be remembered that M. Amagat is speaking of experiments in which pressures 
rising to 3000 atmospheres were employed.

APPENDIX B.

Relation between True and Average Compressibility.

The average compressibility per ton for the first p tons of additional pressure is

Pq-». 
py* ’ 

where is the initial volume, and v is the volume at p additional tons. 
The true compressibility at p additional tons is 

dv 
vdp

Hence, if one of these quantities is given as a function of p, it may be desirable to find 
the corresponding expression for the other. The simplest example, that on p. 28, will suffice 
to show the principle of the calculation. Let 

.............................................................

where e is, in general, a much smaller quantity than f We have

— = 1 - ep + efp2, 
®o

whence —^^ = e{l-(2/-e)p+...} .................................(2),
vdp 1-ep + efp2 '

where the expansion may be easily carried further if required.
If the terms in the second and higher powers of p are to be neglected, (1) and (2) 

as written show at once how to convert from true to average compressibility, or vice versa.
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APPENDIX C.

Calculation of Log. Factors.

Let W be the weight of mercury which would take the place of the liquid in the piezo­
meter, w that of the mercury which fills a length I of the stem. Then a compression read as 
x on the stem is

x w
1 T

This assumes the stem to be uniform; in general it must be corrected from the results of 
the calibration:—unless, as in the example given on p. 15 of the text, I be chosen very nearly 
equal to x, as found by trial for each value of the pressure.

Also if y be the reading of the gauge, and if a on the gauge correspond to an atmosphere, 
the pressure is

V- atm. a

Hence the average apparent compressibility per atmosphere is 
x wa 
y ' IW'

Its logarithm is log x — log y + (log w — log IK — log I) + log a.

The last four terms, of which log a is the “ gauge log,” form the log factor as given 
in the text.

APPENDIX D.

Note on the Correction for the Compressibility of the Piezometer.

The usual correction neglects the fact that when the compressibility of the liquid is 
different from that of the walls, the liquid under pressure does not occupy the same part 
of the vessel as before pressure.

Let V be the volume of the part of the vessel occupied by liquid; a that of the tube
between the two positions of the index, both measured at 1 atmosphere; e, e, the average
absolute compressibility of liquid and vessel per ton for the first p additional tons. Equate
to one another the volume of the liquid, and the volume of the part of the vessel into which
it is forced, both at additional pressure p. We have thus—

K(l-^) = (K-a)(l-€p),

whence e=£6 “\+ «
\ V) pv
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As X is usually small, this equation is treated as equivalent to

a 
e = « + —=, p V

i .e. the absolute compressibility of the liquid is equal to its apparent compressibility, added 
to the absolute compressibility of the envelop.

One curious consequence of the exact equation is that, if the compressibilities were both 
constant, or were known to change in a given ratio by pressure, it would be possible 
(theoretically at least) to measure absolute compressibilities by piezometer experiments alone, 
without employing a substance whose absolute compressibility is determined by an independent 
process. For the additional term in the exact equation makes the coefficients of e and e 
numerically different; whereas in the approximate equation they are equal, but with opposite 
signs, and therefore can give e — e only.

In my experiments described above, a/V rarely exceeds 0’02, so that this correction 
amounts to (0'02 x 26 in 500, or) 5 units in the fourth significant place; and thus just 
escapes having to be taken account of. When 4 places are sought at lower pressures than 
3 tons, or 3 places at pressures of 4 tons and upwards, it must be taken account of.

APPENDIX E.

On the Relations between Liquid and Vapour.

In connection with the present research a number of side issues have presented them­
selves, some of which come fairly within the scope of the Report. I commence by reprinting 
two Notes, read on January 19 and February 2, 1885, to the Royal Society of Edinburgh1:__

1 Proc. Roy. Soc. Edin., vol. xm. pp. 78 and 91, 1885.

ON THE NECESSITY FOR A CONDENSATION-NUCLEUS.

“ The magnificent researches of Andrews on the isothermals of carbonic acid formed as 
it were, a nucleus in a supersaturated solution, round which an immediate crystallization 
started, and has since been rapidly increasing.

“They gave the clue to the explanation of the paradoxical result of Regnault, that 
hydrogen is less compressible and other gases more compressible, under moderate pressure, 
than Boyle’s Law indicates; and to that of the companion result of Natterer that, at very 
high pressures, all gases are less compressible than that law requires. Thus they furnished 
the materials for an immense step in connection with the behaviour of fluids above their 
critical points.

“ But they threw at least an equal amount of light on the liquid-vapour question, i.e. the 
behaviour of fluids at temperatures under their critical points. In Andrews’ experiments 
there was a commencement, and a completion, of liquefaction; each at a common definite 
pressure, but of course at very different volumes, for each particular temperature.

“In 1871 Professor J. Thomson communicated to the Royal Society a remarkable paper 
on the abrupt change from vapour to liquid, or the opposite, indicated by these experiments. 
He called special attention to the necessity for a ‘start,’ as it were, in order that these 
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changes might be effected. [It is to this point that the present Note is mainly directed, 
but I go on with a brief analysis of Thomson’s work.] He pointed out that there were 
numerous experiments proving that water could be heated, under certain conditions, far above 
its boiling point without evaporating; and that, probably, steam might be condensed iso- 
thermally to supersaturation without condensing. Hence he was led to suggest an isothermal 
of continued curvature, instead of the broken line given by Andrews, as representing the 
continuous passage of a fluid from the state of vapour to that of liquid; the whole mass 
being supposed to be, at each stage of the process, in the same molecular state.

“In Olerk-Maxwell’s Treatise on Heat, this idea of J. Thomson’s was developed, in con­
nection with a remarkable speculation of W. Thomson1, on the pressure of vapour as depending 
on the curvature of the liquid surface in contact with it. This completely accounts for the 
deposition of vapour when a proper nucleus is present. Maxwell showed that it could also 
account for the ‘ singing ’ of a kettle, and for the growth of the larger drops in a cloud 
at the expense of the smaller ones.

1 Proc. Roy. Soc. Edin., vol. vn. p. 63, 1870.

“The main objection to J. Thomson’s suggested isothermal curve of transition is that, 
as Maxwell points out, it contains a region in which pressure and volume increase or diminish 
simultaneously. This necessarily involves instability, inasmuch as, for definite values of pressure 
at constant temperature within a certain range in which vapour and liquid can be in equi­
librium, Thomson’s hypothesis leads to three different values of volume: two of which are 
stable; but the intermediate one essentially unstable. According to Maxwell, the extremities 
of this triple region correspond to pressures, at which, regarded from the view of steady 
increase or diminution of pressures, either the vapour condenses suddenly into liquid, or the 
liquid suddenly bursts into vapour.

“ If this were the case, no nucleus would be absolutely requisite for the formation either 
of liquid from vapour or of vapour from liquid. All that would be required, in either case, 
would be the proper increase or diminution of pressure;—temperature being kept unaltered. 
The latent heat of vapour, which we know to become less as the critical point is gradually 
arrived at, would thus be given off in the explosive passage from vapour to liquid. It is 
difficult to see, on this theory, how it can be explosively taken in on the sudden passage 
from liquid to vapour.

“Aitken’s experiments tend to show, what J. Thomson only speculatively announced, that 
possibly vapour may not be condensed (in the absence of a nucleus), when compressed 
isothermally, even at ranges far beyond the maximum of pressure indicated in Thomson’s 
figures. Hence it would appear that the range of instability is much less than that given 
by Thomson’s figures, and may (perhaps) be looked on as a vanishing quantity; the corre­
sponding part of the isothermal being a finite line parallel to the axis of pressures, corre­
sponding to the sudden absorption or giving out of latent heat.”

ON EVAPORATION AND CONDENSATION.

“ While I was communicating my Note on the Necessity for a Condensation Nucleus 
at the last meeting of the Society, an idea occurred to me which germinated (on my way 
home) to such an extent that I sent it off by letter to Professor J. Thomson that same 
night.

“J. Thomson’s idea, which I had been discussing, was to preserve, if possible, physical 
(as well as geometrical) continuity in the isothermal of the liquid-vapour state, by keeping
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the whole mass of fluid in one state throughout. He secured geometrical, but not physical, 
continuity. For, as Clerk-Maxwell showed, one part of his curve makes pressure and volume 
increase simultaneously, a condition essentially unstable. The idea which occurred to me was, 
while preserving geometrical continuity, to get rid of the region of physical instability, not 
(as I had suggested in my former Note) by retaining Thomson’s proposed finite maximum 
and minimum of pressure in the isothermal, while bringing them infinitely close together so 
far as volume is concerned, and thus restricting the unstable part of the isothermal to a 
finite line parallel to the pressure axis; but, by making both the maximum and minimum infinite. 
Geometrical continuity, of course, exists across an asymptote parallel to the axis of pressures ; 
so that, from this point of view, there is nothing to object to. On the other hand, there 
is essentially physical discontinuity, in the form of an impassable barrier between the 
vaporous and liquid states, so long at least as the substance is considered as homogeneous 
throughout.

“ It appeared to me that here lies the true solution of the difficulty. As we are dealing 
with a fluid mass essentially homogeneous throughout, it is clear that we are not concerned 
with cases in which there is a molecular surface-film.

“ Suppose, then, a fluid mass, somehow maintained at a constant temperature (lower than 
its critical point), and so extensive that its boundaries may be regarded as everywhere infinitely 
distant, what will be the form of its isothermal in terms of pressure and volume?

“ Two prominent experimental facts help us to an answer.
“ First. We know that the interior of a mass of liquid mercury can be subjected to 

hydrostatic tension of considerable amount without rupture. The isothermal must, in this 
case, cross the line of volumes; and the limit of the tension would, in ordinary language, 
be called the cohesion of the liquid. I am not aware that this result has been obtained 
with water free from air; but possibly the experiment has not been satisfactorily made. 
The common experiment in which a rough measure is obtained of the force necessary to 
tear a glass plate from the surface of water is vitiated by the instability of the concave 
molecular film formed.

“Second. Aitken has asserted, as a conclusion from the results of direct experiment, 
that even immensely supersaturated aqueous vapour will not condense without the presence 
of a nucleus. This may be a solid body of finite size, a drop of water, or fine dust particles.

“ Both of these facts fit perfectly in to the hypothesis, that the isothermal in question 
has an asymptote parallel to the axis of pressure; the vapour requiring (in the absence of 
a nucleus) practically infinite pressure to reduce it, without change of state or of temperature, 
to a certain finite volume; while the liquid, also without change of state or temperature, 
may by sufficient hydrostatic tension be made to expand almost to the same limit of volume.

“ This limiting volume depends, of course, on the temperature of the isothermal; rising 
with it up to the critical point.

“ The physical, not geometrical, discontinuity is of course to be attributed to the latent 
heat of vaporisation. The study of the adiabatics, as modified by this hypothesis, gives rise 
to some curious results.

“ It is clear that the experimental realisation of the parts of the here suggested curve 
near to the asymptote, on either side, will be a matter of great difficulty for any substance. 
But valuable information may perhaps be obtained from the indications of a sensitive thermo­
electric junction immersed in mercury at the top of a column which does not descend in 
a barometer tube of considerably more than 30 inches long, when the tube is suddenly 
placed at a large angle with the vertical; or from those of a similar junction immersed 
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in water, when it has a concave surface of great curvature from which the atmospheric 
pressure is removed.

“Nothing of what is said above will necessarily apply when we have vapour and liquid in 
presence of one another, or when we consider a small portion of either in the immediate 
neighbourhood of another body. For then we are dealing with a state of stress which cannot, 
like hydrostatic pressure or tension, be characterized (so far as we know) by a single number. 
The stress in these molecular films is probably one of tension in all directions parallel to 
the film, and of pressure in a direction perpendicular to it. Thus it is impossible to represent 
such a state properly on the ordinary indicator diagram. This question is still further com­
plicated by the possibility that the difference between the internal pressures, in a liquid and 
its vapour in thermal equilibrium, may be a very large quantity.”

As soon as I heard of Berthelot’s experiment, I had it successfully repeated in my 
laboratory; and I considered that it afforded very strong confirmation of the hypothesis 
advanced in the last preceding extract.

But since I have been led to believe that there is probably truth in Laplace’s state­
ment as to the very great molecular pressure in liquids, I have still further modified the 
speculation. I now propose to take away the new asymptote, and make the two branches 
of the isothermal join one another by what is practically a part of that asymptote:—thus 
making the liquid and the vaporous stages continuous with one another by means of a 
portion very nearly straight and parallel to the pressure axis. Somewhere on this will be 
found one of the points of inflection of the isothermal, the other being at a somewhat 
smaller volume, and at a pressure which is moderate for temperatures close to, but under, the 
“ critical point,” but commences to increase with immense rapidity as the temperature of the 
isothermal is lowered. All the isothermals will now present the same general features, 
dependent on the existence of two asymptotes and two points of inflection, whether they be 
above or below the critical point; but their form will be modified in different senses above 
and below it. The portion of the curve which is convex upwards will be nearly horizontal 
at the critical point, and will become steeper both above and below it; but pressure and 
volume will nowhere increase together. This suggestion, of course, like that in the second 
extract above, is essentially confined to the case of a fluid mass which is supposed to have 
no boundaries; for their introduction at once raises the complex difficulties connected with 
the surface-skin. Thus it will be seen that the conviction that water has large molecular 
pressure has led me back to what is very nearly the first of the two hypotheses I proposed.

A practical application of some of the principles just discussed is described in the following- 
little paper:—

ON AN APPLICATION OF THE ATMOMETER1.

1 Proc. Roy. Soc. Edin., vol. xin. pp. 116, 117, 1885.
T. II. 9

“The Atmometer is merely a hollow ball of unglazed clay, to which a glass tube is 
luted. The whole is filled with boiled water, and inverted so that the open end of the 
tube stands in a dish of mercury. The water evaporates from the outer surface of the 
clay (at a rate depending partly on the temperature, partly on the dryness of the air), and 
in consequence the mercury rises in the tube. In recent experiments this rise of mercury 
has been carried to nearly 25 inches during dry weather. But it can be carried much 
farther by artificially drying the air round the bulb. The curvature of the capillary surfaces 
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in the pores of the clay, which supports such a column of mercury, must be somewhere 
about 14,000 (the unit being an inch). These surfaces are therefore, according to the curious 
result of Sir W. Thomson (Proc. Roy. Soc. Edin., p. 63, 1870), specially fitted to absorb 
moisture. And I found, by inverting over the bulb of the instrument a large beaker lined 
with moist filter-paper, that the arrangement can be made extremely sensitive. The mercury 
surface is seen to become flattened the moment the beaker is applied, and a few minutes 
suffice to give a large descent, provided the section of the tube be small, compared with the 
surface of the ball.

“I propose to employ the instrument in this peculiarly sensitive state for the purpose of 
estimating the amount of moisture in the air, when there is considerable humidity; but in 
its old form when the air is very dry. For this purpose the end of the tube of the 
atmometer is to be connected, by a flexible tube, with a cylindrical glass vessel, both con­
taining mercury. When a determination is to be made in moist air, the cylindrical vessel 
is to be lowered till the difference of levels of the mercury amounts to (say) 25 inches, and 
the diminution of this difference in a definite time is to be carefully measured, the atmo­
spheric temperature being observed. On the other hand, if the air be dry, the difference 
of levels is to be made nil, or even negative, at starting, in order to promote evaporation. 
From these data, along with the constant of the instrument (which must be determined for 
each clay ball by special experiments), the amount of vapour in the air is readily calculated. 
Other modes of observation with this instrument readily suggest themselves, and trials, such 
as it is proposed to make at the Ben Nevis Observatory during summer, can alone decide 
which should be preferred.”

APPENDIX F.

The Molecular Pressure in a Liquid.

Laplace’s result, so far as concerns the question raised in the text, may be stated thus. 
If (r) be the molecular force between masses M, M' of the liquid, at distance r, the 
whole attraction on unit mass, at a distance x within the surface, is

-QO /.00
2irp I rdr </> (r) dr, 

Jx Jr

where p is the density of the liquid. The density is supposed constant, even in the surface­
skin. As we are not concerned with what are commonly called capillary forces, the surface 
is supposed to be plane.

The pressure, p, is found from

Hence the pressure in the interior

where a is the limit at which the

the ordinary hydrostatic equation

ax 

of the liquid is

K— p I Xdx, 
Jo

molecular force ceases to be sensible.
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But the expression for K is numerically the work required to carry unit volume of the 
liquid from the interior, through the skin, to the surface. It is easy to see that the further 
work, required to carry it wholly out of the range of the molecular forces, has precisely the 
same value. Thus the whole work required to carry, particle by particle, a cubic inch of 
the liquid from the interior to a finite distance from its surface is -

2 A x 1 cub. in.

This investigation assumes p to be constant throughout the liquid, and thus ignores the 
(almost certain) changes of density in the various layers of the surface-skin; so that its 
conclusions, even when the question is regarded as a purely statical one, are necessarily 
subject to serious modification. With our present knowledge of the nature of heat, we cannot 
regard this mode of treatment as in any sense satisfactory.

APPENDIX G.

Equilibrium of a Column of Water.

First, suppose the temperature to be the same throughout. Let a be the whole depth, 
p„ the density, on the supposition that gravity does not act. Then, if p be the density at 
the distance £ from the bottom, when gravity acts, we have by the hydrostatic equation

dp 1
dr~gp=~^'~ 

n +p

if we adopt the rough formula of Section VII. for the compressibility. The integral is 

p(l — A) +AH log(n +p)= C-gp^.

Now the conditions are—
(1) £ = £0 (the altered depth), p=0;

(2) £=0, p = gp<)a = m suppose.

„ ,, . .. AH , n + gpoaSo that A = a (1 — A) + — log---- —----
Wo n

,, AHa. / ar\= «(1-^) + —iOg(i + n/

Since, even in the deepest sea, w/n is not greater than 1/6, we may expand the logarithm 
in ascending powers of this fraction. We thus obtain

= a — aA ' sr w“
211 " 3IF +

9—2
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The second term is the diminution of depth required. We may write it, with change 
of sign, as

A ( 2w ot2 \
2H 9p<>a V 3H + 2H2 &C7'

As the factor A/Tl stands for what is called e in the text, the first term is the result 
given in the text; and the others show how it is modified by taking account of the diminished 
compressibility at the higher pressures.

Of course we might have employed the more exact formulae, (A) or (B) as the case may 
be, but for all practical applications the rough formula suffices.

It might be interesting to study the effect on the mean level of a lake due to the 
indirect as well as the direct results of change of temperature. Heating of the water throughout, 
if there be a case of the kind, would increase the depth not only in consequence of expansion 
(provided the temperature were nowhere under the maximum-density point), but also in con­
sequence of the diminution of compressibility which it produces. Thus there would be an 
efficient cause of variation of depth with the seasons, altogether independent of the ordinary 
questions of supply from various sources and loss by evaporation.

If the temperature be not constant for all depths, p0, p, and A are functions of £ Sub­
stituting their values in the hydrostatic equation, we must integrate it and determine the 
constant by the same conditions as before.

The condition for stable equilibrium is merely that dpIdA shall not be anywhere positive. 
Until some definite problem is proposed, no more can be done with the equation.

[29/10/88.—At Dr Murray’s request I have calculated, from the data given in his paper: 
“ On the Height of the Land, and the Depth of the Ocean ” (Scottish Geographical Magazine, 
vol. iv. pp. 1—41, 1888), that the whole depression of the ocean level, due to compression, is about

116 feet only.

If water ceased to be compressible, the effect would be to submerge some 2,000,000 square miles 
of land, about 4 per cent, of the whole.]
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LXIL

OPTICAL NOTES.

[Proceedings of the Royal Society of Edinburgh, 16 January, 1881.]

1. On a Singular Phenomenon produced by some old Window-Panes.

A figure, illustrating the action of a cylindrical lens, which was inserted in a 
recent page of these Proceedings, has reminded me of my explanation of a phenomenon 
which I have repeatedly seen for more than twenty years in the College. When 
sunlight enters my apparatus-room through a vertical chink between the edge of the 
blind and the window-frame, the line of light formed on the wall or floor shows a 
well-marked kink. Similar phenomena, though not usually so well marked, are often 
seen in old houses, when the sun shines through the chinks of a Venetian blind. 
They are obviously due to inequalities (bull’s-eyes) in the glass which was used more 
than a generation ago for window-panes. It is evident that the focal length of 
successive annuli of such a piece of glass, treated as a lens, increases from the central 
portion to the circumference, where it becomes infinite. For an approximate study of 
its behaviour we may assume that the focal length of an annulus of radius r is 
b2fa — r), where a is the extreme radius, at which the sides of the pane become 
parallel. Suppose sunlight, passing through a narrow slit, to fall on such a lens at 
a distance e from its centre, and to be received on a screen at a distance c from 
the lens. It is easy to see that the polar equation of the illuminated curve on the 
screen is (the pole being in the axis of the lens)

e sec d . 7 n zi\p —----- --— (ac — o2 — ce sec v).

This curve can be readily traced by points for various values of the constants. In 
fact, if r be the radius vector of a straight line, the vector of any one of these 
curves (drawn in the same direction) is proportional to r(A — r), and the curve can 
therefore be constructed from a straight line and a circle. Here the value of A is 
(ac — bfjc; i.e., it is a fourth proportional to c, a, and the distance of the screen
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from the focus of the central portion of the lens. When A is small compared with
the least value of r, the curve has a point resembling a cusp, but as A increases
the kink appears. This is easily observed by gradually increasing the distance of the
screen from the lens; and the traced curves present forms which are precisely of the
general character of those observed.

2. On the Nature of the Vibrations in Common Light.

One of the few really unsatisfactory passages in Airy’s well-known “Tract” on 
the Undulatory Theory of Optics is that which discusses the nature of common light. 
To explain the production of Newton’s rings in homogeneous light to the number of 
several thousands, it is necessary that at least several thousand successive waves
should be almost exactly similar to one another. On the other hand, we cannot
suppose the vibrations (which will in general be elliptic) to be similar to one another
for more than a small fraction of a second; if they were so, we should see colour
phenomena in doubly refracting plates by the aid of an analysing Nicol only.

And, moreover, the nature of the vibration can have no periodic changes of a 
kind whose period amounts to a moderate fraction of a second. Nor can it have a 
slow progressive change. Either of these would lead to its resolution into rays of 
different wave-lengths. Airy suggests, as consistent with observation, some thousand
waves polarized in one plane followed by a similar number polarized in a plane at
right angles to the first. But no physical reason can be assigned for such an hypothesis.

The difficulty, however, disappears if we consider the question from the modern
statistical point of view, as it is applied for instance in the kinetic theory of gases.
We may consider first a space average taken for the result due to each separate 
vibrating particle near the surface of a luminous body. When we remember that, 
for homogeneous light, of mean wave-length, a million vibrations occupy only about 
one five hundred millionth of a second; it is easy to see that the resultant vibration 
at any point may not sensibly vary for a million or so of successive waves, though 
the contributions from individual particles may very greatly change. But when we 
consider the time average of about a hundred millions of groups of a million waves 
each, all entering the eye so as to be simultaneously perceptible,—in consequence of 
the duration of visual impressions,—we see that the chances in favour of a deviation 
from apparently absolute uniformity are so large that, though possible, such uniformity 
is not to be expected for more than a very small fraction of a second. The im­
probability of its occurrence for a single second is of the same nature as that of 
the possible, but never realised, momentary occurrence of a cubic inch of the air in 
a room filled with oxygen or with nitrogen alone.

[Added; May 1, 1882.—I am indebted to Professor Stokes for a reference to his 
paper “ On the Composition and Resolution of Streams of Polarized Light from 
Different Sources” (Camb. Phil. Trans., 1852), in which the nature of common light 
is very fully investigated. I find I was not singular in my ignorance of the contents 
of this paper, as the subject has quite recently been proposed as a Prize Question 
by a foreign Society.]
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LXIII.

ON A METHOD OF INVESTIGATING EXPERIMENTALLY THE 
ABSORPTION OF RADIANT HEAT BY GASES.

(Read by Sir W. Thomson at the B. A. Meeting at Southampton.) 

[Nature, October 26, 1882.]

There are grave objections, which have been only partially overcome, to almost 
all the processes hitherto employed for testing the diathermancy of vapours. These 
arise chiefly from condensation on some part of the apparatus. Thus when rock-salt 
is used, an absorbent surface-layer may be formed; and, when the pile is used with­
out a plate of salt, the effect of radiant heat may be to cool it (the pile) by the 
evaporation of such a surface film. The use of intermittent radiation is liable to 
the same objection.

Some time ago it occurred to me that this part of the difficulty might be got 
rid of by dispensing with the pile, and measuring the amount of absorption by its 
continued effects on the volume and pressure of the gas or vapour itself.

Only preliminary trials have, as yet, been made. They were carried out for me 
by Prof. MacGregor and Mr Lindsay. Their object was first to find whether the

STEAM

method would work well, second (when this was satisfactorily proved) to find the best 
form and dimensions for the apparatus.
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The rough apparatus is merely a double cylinder, placed vertically. Cold water 
circulates in the jacket, and steam can be blown into the double top. The changes 
in the pressure of the gas are shown by a manometer U tube at the bottom, which 
contains a liquid which will not absorb the contents. This apparatus was 4 feet long, 
with 2 inches internal radius. The results of a number of experiments show that 
it should be shorter and much wider. The former idea I was not quite prepared for, 
the latter is obvious.

The effects on the manometer are due to five chief causes:—
1. Heating of the upper layer of gas by contact with lid.
2. Cooling „ „ „ „ „ sides.
3. Heating of more or less of the column by absorption.
4. Cooling of do. by radiation.
5. „ „ contact.
(1) and (2) only are present in a perfectly diathermanous gas, and in a perfectly 

adiathermanous gas or vapour.
All five are present in a partially diathermanous gas or vapour.
The preliminary experiments show that the manometer effect is only very slightly 

less for dry olefiant gas than for dry air, while moist air shows a markedly smaller 
effect than either of the others.

This is conclusive as to the absorption of low radiant heat by aqueous vapour, 
but it shows also that the absorption is so small as to take place throughout the 
whole column.

Even with the present rude apparatus I hope soon to get a very accurate 
determination of the absorbing power of aqueous vapour, by finding in what pro­
portions olefiant gas must be mixed with air to form an absorbing medium equivalent 
to saturated air at different temperatures.

I have to acknowledge valuable hints from Prof. Stokes, who, before I told him 
the results I had obtained (thus knowing merely the nature of the experiments) 
made something much higher than a guess, though somewhat short of a prediction, 
of the truth.

In these preliminary trials no precaution was taken to exclude dust. The results, 
therefore, are still liable to a certain amount of doubt, as Mr Aitken’s beautiful 
experiments have shown.

The paint of the method is that there can be no question of surface-layers.

[Since the above was written, Messrs MacGregor and Lindsay have made an 
extended series of experiments with dry and moist air, and with mixtures of dry air 
and olefiant gas in different proportions. The cylinder employed was 9 inches in 
radius. The results will soon be communicated to the Royal Society of Edinburgh.]
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LXIV.

1. ON THE LAWS OF MOTION. PART I.

[Proceedings of the Royal Society of Edinburgh, December 13, 1882.]

The substance of part at least of this paper was given in 1876 as an evening 
lecture to the British Association at its Glasgow meeting. [Ante', No. XXXVII.]

While engaged in writing the article “ Mechanics ” for the Ency. Brit., I had to 
consider carefully what basis to adopt, and decided that the time had not yet come 
in which (at least in a semi-popular article) Newton’s laws of motion could be 
modified. The article was therefore based entirely on these laws, with a mere hint 
towards the end that in all probability they would soon require essential modification. 
It is well, however, that the question of modification should now be considered; and 
this should be done, not in a popular essay but, before a scientific society.

The one objection to which, in modern times, that wonderfully complete and 
compact system is liable, is that it is expressly founded on the conception of what 
is now called “ force ” as an agent which “ compels ” a change of the state of rest 
or motion of a body. This is part of the first law, and the second law is merely a 
definite statement of the amount of change produced by a given force.

(Next comes a digression as to what was Newton’s expression for what we now 
mean by the word force, when it is used in the correct signification above.)

There can be no doubt that the proper use of the term force in modern science 
is that which is implied in the statement—Force is whatever changes a body’s state 
of rest or motion. This is part of the first law of motion. Thus we see that force 
is the English equivalent of Newton’s term vis impressa. But it is also manifest 
that, on many occasions, but only where his meaning admitted of no doubt, Newton 
omitted the word impressa and used vis alone, in the proper sense of force. In 
other cases he omitted the word impressa, as being implied in some other adjective 
such as centripeta, gravitans, &c., which he employed to qualify the word vis. Thus 
(Lemma X.) he says:—Spatia, quat corpus urgente qudcunque vi finitd describit, &c.

T. II. 10
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It is needless to multiply examples. But that this is the true state of the case is 
made absolutely certain by the following:—

Definitio IV. Vis impressa est actio in corpus exercita, ad mutandum ejus statum 
vel quiescendi vel movendi uniformiter in directum.

Contrast this with the various senses in which the word vis is used in the 
comment which immediately follows, viz.:—

Constitit hsec vis in actione sola, neque post actionem permanet in corpore. 
Perseverat enim corpus in statu omni novo per solam vim inertias. Est autem vis 
impressa diversarum originum, ut ex ictu, ex pressione, ex vi centripeta.

These passages are translated by Motte as below:—
“Definition IV. An impressed force is an action exerted upon a body, in order 

to change its state, either of rest, or of moving uniformly forward in a right line."
“This force consists in the action only, and remains no longer in the body when 

the action is over. For a body maintains every new state it acquires, by its vis 
inertiat only. Impressed forces are of different origins; as from percussion, from 
pressure, from centripetal force.”

The difficulty which Motte here makes for himself, and which he escapes from 
only by leaving part of the passage in the original Latin, is introduced solely by 
his use of the word force as the equivalent of the Latin vis.

If we paraphrase the passage as follows, with attention to Newton’s obvious 
meaning, this difficulty disappears, or rather does not occur:—

“ This kind of vis consists in,” &c. For the “ body continues .... by the vis 
of inertia,” &c. However, we may quote two other passages of Newton bearing 
definitely on this point.

Definitio III. Material vis insita est potentia resistendi, qud corpus unumquodque, 
quantum in se est, perseverat in statu suo vel quiescendi vel movendi uniformiter in 
directum.

It is perfectly clear that, in this passage, the phrase vis insita is one idea, not 
two, and that vis cannot here be translated by force. Yet Motte has

“ The vis insita, or innate force of matter, is,” &c.
Definitio V. Vis centripeta est, qud corpora versus punctum aliquod, tanquam ad 

centrum, undique trahuntur, impelluntur, vel utcumque tendunt.
It is obvious that the qualifying term centripeta here includes the idea suggested 

by impressa, defining in fact the direction of the vis, and therefore implying that its 
origin is outside the body.

After what has just been said, no farther comment need be added to show the 
absurdity of the terms accelerating force, innate force, impressed force, &c. All of 
these have arisen simply from mistranslation. Vis, by itself, is often used for force • 
but vis acceleratrix, vis impressa, vis insita, and other phrases of the kind, must be 
taken as wholes; and, in them, vis does not mean force.

The absurdity of translating the word vis by force comes out still more clearly 
when we think of the term vis viva, or living force as it is sometimes called; a 
name for kinetic energy, which depends on the unit of length in a different way 
from force. It must be looked upon as one of the most extraordinary instances of 
Newton s clearness of insight that, at a time when the very terminology of science 
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was only as it were shaping itself, he laid down with such wonderful precision a 
system absolutely self-consistent.

From the passages just quoted, taken in conjunction with the second law of 
motion, we see that (as above stated) in Newton’s view—

Force is whatever causes (but not, or tends to cause) a change in a body’s state 
of rest or motion.

Newton gives no sanction to the so-called statical ideas of force. Every force, 
in his view, produces its effect. The effects may be such as to balance or compensate 
one another; but there is no balancing of forces.

(Next comes a discussion as to the objectivity or subjectivity of force. An 
abstract of this is given in §§ 288—296 of the article above referred to, and therefore 
need not be reproduced here.)

But, just as there can be no doubt that force has no objective existence, so 
there can be no doubt that the introduction of this conception enabled Newton to 
put his Amomata in their exceedingly simple form. And there would be, even now, 
no really valid objection to Newton’s system (with all its exquisite simplicity and 
convenience) could we only substitute for the words “ force ” and “ action,” &c., in the 
statement of his laws, words which (like rate or gradient, &c.) do not imply objectivity 
or causation in the idea expressed. It is not easy to see how such words could be 
introduced; but assuredly they will be required if Newton’s system is to be maintained. 
The word stress might, even yet, be introduced for this purpose; though, like force, 
it has come to be regarded as something objective. Were this possible, we might 
avoid the necessity for any very serious change in the form of Newton’s system. I 
intend, on another occasion, to consider this question. How complete Newton’s 
statement is, is most easily seen by considering the so-called “ additions ” which have 
been made to it.

The second and third laws, together with the scholium to the latter, expressly 
include the whole system of “ effective forces,” &c. for which D’Alembert even now 
receives in many quarters such extraordinarily exaggerated credit. The “ reversed 
effective force ” on a particle revolving uniformly in a circle is nothing but an old 
friend—“centrifugal force.” And even this phantom is still of use, in skilled hands, 
in forming the equations for certain cases of motion.

The chief arguments for and against a modern modification of the laws of motion 
are therefore as follows—where we must remember that they refer exclusively to the 
elementary teaching of the subject, and have no application to the case of those 
who have sufficient knowledge to enable them to avoid the possible dangers of 
Newton’s method :—

I. For. Is it wise to teach a student by means of the conception of force, and 
then as it were to kick down the scaffolding by telling him there is no such thing ?

II. Against. Is it wise to give up the use of a system, due to such an 
altogether exceptional genius as that of Newton, and one which amply suffices for 
all practical purposes, merely because it owes part of its simplicity and compactness 
to the introduction of a conception which, though strongly impressed on us by our 
muscular sense, corresponds to nothing objective ?

10—2
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Everyone must answer these questions for himself, and his answer will probably 
be determined quite as much by his notions of the usefulness of the study of 
natural philosophy as by his own idiosyncrasies of thought. To some men physics is 
an abomination, to others it is something too trivial for the human intellect to waste 
its energies on. With these we do not reason. To others again all its principles 
are subjects of intuitive perception. They could have foreseen the nature of the 
physical world, and they know that it could not have been otherwise than they 
suppose it to be. Many minds find delight in the contemplation of the three kinds 
of lever; others in the ingeniously disguised assumptions in Duchayla’s “proof” of 
the parallelogram of forces; some, perhaps, even in the wonderful pages of Vis 
Inertice Vieta! The case of these men is only not more hopeless than that of the 
former classes because it is impossible that it could be so.

But those who desire that their scientific code should be, as far as possible, 
representative of our real knowledge of objective things, would undoubtedly prefer to 
that of Newton a system in which there is not an attempt, however successful, to 
gain simplicity by the introduction of subjective impressions and the corresponding 
conceptions.

In the present paper simplicity of principle, only, is sought for; and the mathe­
matical methods employed are those which appeared (independent altogether of the 
question of their fitness for a beginner) the shortest and most direct. A second part 
will be devoted to simplicity of method for elementary teaching.

(1) So far as our modern knowledge goes there are but two objective things 
in the physical world—matter and energy. Energy cannot exist except as associated 
with matter, and it can be perceived and measured by us only when it is being 
transferred, by a “ dynamical transaction,” from one portion of matter to another. In 
such transferences it is often “ transformed ”; but no process has ever been devised 
or observed by which the quantity, either of matter or energy, has been altered.

(2) Hence the true bases of our subject, so far as we yet know, are—
1. Conservation of matter.
2. Conservation of energy.
3. That property (those properties ?) of matter, in virtue of which it is the 

necessary vehicle, or as the case may be, the storehouse, of energy.

(3) The third of these alone presents any difficulty. So long as energy is 
obviously kinetic, this property is merely our old friend inertia. But the mutual 
potential energy of two gravitating masses, two electrified bodies, two currents, or two 
magnets, is certainly associated (at least in part, and in some as yet unknown way) 
with matter, of a kind not yet subjected to chemical scrutiny, which occupies the 
region in which these masses, &c., are situated. And, even when the potential 
energy obviously depends on the strain of a portion of ordinary matter, as in 
compressed air, a bent spring, a deformed elastic solid, &c., we can, even now, only 
describe it as due to “molecular action,” depending on mechanism of a kind as yet 
unknown to us, though, in some cases, at least partially guessed at.
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(4) The necessity for the explicit assumption of the third principle, and a hint 
at least of the limits within which it must be extended, appear when we consider 
the very simplest case of motion, viz., that of a lone particle moving in a region 
in which its potential energy is the same at every point. For the conservation of 
energy tells us merely that its speed is unaltered. We know, however, that this is 
only part of the truth: the velocity is constant. It will be seen later that this has 
most important dynamical consequences in various directions.

(The remarkable discussion of this point by Clerk-Maxwell is then referred to, in 
which it is virtually shown that, were things otherwise, it would be possible for a 
human mind to have knowledge of absolute position and of absolute velocity.)

(5) But Maxwell’s reasoning is easily seen to apply equally to any component 
of the velocity. Hence, when we come to the case in which the potential energy 
depends on the position, the only change in the particle’s motion at any instant is 
a change of the speed in the normal to the equipotential surface on which the 
particle is at that instant situated. The conservation of energy assigns the amount 
of this change, and thus the motion is completely determined. In fact, if x be 
perpendicular to the equipotential surface, the equation

(®2 + y2 + i2) + V = const.

dV gives mx = —5— ,dx

for y and z are independent of x. Generally, in the more expressive language of 
quaternions,

mp = — V V.

In fact, this problem is precisely the same as was that of the motion of a luminous 
corpuscle in a non-homogeneous medium, the speed of passing through any point of 
the medium being assigned.

(6) It is next shown that the above inertia-condition (that the velocity parallel 
to the equipotential surface is the same for two successive elements of the path) at 
once leads to a “stationary” value of the sum of the quantities vds for each two 
successive elements, and therefore for any finite arc, of the path. This is, for a 
single particle, the Principle of Least Action, which is thus seen to be a direct 
consequence of inertia.

(It is then shown that the results above can be easily extended to a particle 
which has two degrees of freedom only.)

But it is necessary to remember that, m these cases, we take a partial view of 
the circumstances; for a lone particle cannot strictly be said to have potential 
energy, nor can we conceive of a constraint which does not depend upon matter 
other than that which is constrained. Hence the true statement of such cases 
requires further investigation.

(7) To pass to the case of a system of free particles we require some quasi- 
kinematical preliminaries. These are summed up in the following self-evident 
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proposition:—If with each particle of a system we associate two vectors, e.g., ®1; 01( 
with the mass m,, &c., we have

2»n®4> = 2 (m). + ^.m0<f>,

where ® = ®0 + 0,

4> = 4>0 + </>,

and 2wi® = 2 (m) . ®0,

2 mid? = 2 (mi). <1%,

so that ®0 and are the values of ® and d’ for the whole mass collected at its 
centre of inertia; and 0, $>, those of the separate particles relative to that centre.

(8) Thus, if ® = P = Po + p be the vector of m, 4> = ® = P = Po + p, its velocity, 
we have

2mPP = 2 (wi). P0P0 + Zmpp,

the scalar of which is, in a differentiated form, a well-known property of the centre 
of inertia. The vector part shows that the sum of the moments of momentum 
about any axis is equal to that of the whole mass collected at its centre of inertia, 
together with those of the several particles about a parallel axis through the centre 
of inertia.

If ® = 0 = P,

we have 2mP2 = 2 (m). P? + Snip2,

i.e., the kinetic energy, referred to any point, is equal to that of the mass collected 
at its centre of inertia, together with that of the separate particles relative to the 
centre of inertia.

If we integrate this expression, multiplied by dt, between any limits, we obtain 
a similar theorem with regard to the Action of the system.

Such theorems may be multiplied indefinitely.

(9) From those just given, however, if we take them along with 3 above, we 
see at once that, provided the particles of the system be all free, while the energy 
of each is purely kinetic and independent alike of the configuration of the system 
and of its position in space,

1. The centre of inertia has constant velocity.
2. The vector moment of momentum about it is constant.
3. So is that of the system relative to any uniformly moving point.
4. 2 / mvds is obviously a minimum.

(10) The result of (7) points to an independence between two parts of the 
motion of a system, i.e., that relative to the centre of inertia, and that of the 
whole mass supposed concentrated at the centre of inertia. Maxwell’s reasoning is 
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applicable directly to the latter, if the system be self-contained, i.e., if it do not 
receive energy from, or part with it to, external bodies. Hence we may extend the 
axiom 3 to the centre of inertia of any such self-contained system, and, as will 
presently be shown, also to the motion of the system relative to its centre of inertia. 
This, though not formally identical with Newton’s Lex III., leads, as we shall see, 
to exactly the same consequences.

(11) If, for a moment, we confine our attention to a free system consisting of 
two particles only, we have

m^f + m2p2 = + mf a,

or m1p1 + m2p2 = 0...................................................................(1).

This must be consistent with the conservation of energy, which gives

40M + m2pl)=f(T(P1-p.^) ......................................... (2),

since the potential energy must depend (so far as position goes) on the distance 
between the particles only. Comparing (1) and (2) we see that we may treat (2)
by partial differentiation, so far as the coordinates of and m2 are separately 
concerned. For we thus obtain

W) = VPl ./=/'. U (P1 - pf

m2p2 = -f= -f -U{P1- p2).

Each of these, again, is separately consistent with the equation in § 5 for a 
lone particle. Hence, again, the integral /(m^A + m^ds^ has a stationary value.

Hence also, whatever be the origin, provided its velocity be constant,

'SmVpp = 0.

Thus, even when there is a transformation of the energy of the system, the 
results of § 9 still hold good. And it is to be observed that if one of the masses, 
say m2, is enormously greater than the other, the equation

= 0

shows that p2 is excessively small, and the visible change of motion is confined to 
the smaller mass. Carrying this to the limit, we have the case of motion about a 
(so-called) “ fixed centre.” In such a case it is clear that though the momenta of the 
two masses relative to their centre of inertia are equal and opposite, the kinetic 
energy of the greater mass vanishes in comparison with that of the smaller.

These results are then extended to any self-contained system of free particles, 
and the principle of Varying Action follows at once. It is thus seen to be a general 
expression of the three propositions of § 2 above.

(12) So far as we have yet gone, nothing has been said as to how the mutual 
potential energy of two particles depends on their distance apart. If we suppose it 
to be enormously increased by a very small increase of distance, we have practically 
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the case of two particles connected by an inextensible string—as a chain-shot. But 
from this point of view such cases, like those of connection by an extensible string, 
fall under the previous categories.

The case of impact of two particles falls under the same rules, so far as motion 
of the centre of inertia, and moment of momentum about that centre, are concerned. 
The conservation of energy, in such cases, requires the consideration of the energy 
spent in permanently disfiguring the impinging bodies, setting them into internal 
vibration, or heating them. But the first and third of these, at least, are beyond the 
scope of abstract dynamics.

(13) The same may be said of constraint by a curve or surface, and of loss of 
energy by friction or resistance of a medium. Thus a constraining curve or surface 
must be looked upon (like all physical bodies) as deformable, but, if necessary, such 
that a very small deformation corresponds to a very great expenditure of energy.

(14) To deal with communications of energy from bodies outside the system, all 
we need do is to include them in the system. Treat as before the whole system 
thus increased, and then consider only the motion of the original parts of the 
system. This method applies with perfect generality whether the external masses be 
themselves free, constrained, or resisted.

(15) Another method of applying the same principles is then given. Starting 
from the definition dA = IhnSpdp, the kinematical properties of A are developed. Then, 
by the help of § 2, these are exhibited in their physical translations.

(16) The paper concludes with a brief comparison of the fundamental principles 
of the science as they have been introduced by Newton, Lagrange, Hamilton, Peirce, 
Kirchhoff, and Clerk-Maxwell, respectively; and also as they appear in the unique 
Vortex-system of Thomson.
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LXV

JOHANN BENEDICT LISTING.

[Nature, February 1, 1883.]

One of the few remaining links that still continued to connect our time with 
that in which Gauss had made Gottingen one of the chief intellectual centres of the 
civilised world has just been broken by the death of Listing.

If a man’s services to science were to be judged by the mere number of his 
published papers, Listing would not stand very high. He published little, and (it 
would seem) was even indebted to another for the publication of the discovery by 
which he is most widely known. This is what is called, in Physiological Optics, 
Listing’s Law. Stripped of mere technicalities, the law asserts that if a person whose 
head remains fixed turns his eyes from an object situated directly in front of the 
face to another, the final position of each eye-ball is such as would have been pro­
duced by rotation round an axis perpendicular alike to the ray by which the first 
object was seen and to that by which the second is seen. “ Let us call that line 
in the retina, upon which the visible horizon is portrayed when we look, with upright 
head, straight at the visible horizon, the horizon of the retina. Now any ordinary 
person would naturally suppose that if we, keeping our head in an upright position, 
turn our eyes so as to look, say, up and to the right, the horizon of the retina 
would remain parallel to the real horizon. This is, however, not so. If we turn our 
eyes straight up or straight down, straight to the right or straight to the left, it 
is so, but not if we look up or down, and also to the right or to the left. In 
these cases there is a certain amount of what Helmholtz calls ‘wheel-turning’ [Rad- 
drehung') of the eye, by which the horizon of the retina is tilted so as to make 
an angle with the real horizon. The relation of this ‘wheel-turning’ to the above­
described motion of the optic axis is expressed by Listing’s law, in a perfectly simple 
way, a way so simple that it is only by going back to what we might have thought

T. II. 11 
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nature should have done, and from that point of view, looking at what the eye really 
does, and considering the complexity of the problem, that we see the ingenuity of 
Listing’s law, which is simple in the extreme, and seems to agree with fact quite 
exactly, except in the case of very short-sighted eyes.” The physiologists of the time, 
unable to make out these things for themselves, welcomed the assistance of the 
mathematician. And so it has always been in Germany. Few are entirely ignorant 
of the immense accessions which physical science owes to Helmholtz. Yet few are 
aware that he became a mathematician in order that he might be able to carry out 
properly his physiological researches. What a pregnant comment on the conduct of 
those “British geologists” who, not many years ago, treated with outspoken contempt 
Thomson’s thermodynamic investigations into the admissible lengths of geological periods!

Passing over about a dozen short notes on various subjects (published chiefly in 
the Gottingen Nachrichten), we come to the two masterpieces, on which (unless, as 
we hope may prove to be the case, he have left much unpublished matter) Listing’s 
fame must chiefly rest. They seem scarcely to have been noticed in this country, 
until attention was called to their contents by Clerk-Maxwell.

The first of these appeared in 1847, with the title Vorstudien zur Topologie. It 
formed part of a series, which unfortunately extended to only two volumes, called 
Gottinger Studien. The term Topology was introduced by Listing to distinguish what 
may be called qualitative geometry from the ordinary geometry in which quantitative 
relations chiefly are treated. The subject of knots furnishes a typical- example of these 
merely qualitative relations. For, once a knot is made on a cord, and the free ends 
tied together, its nature remains unchangeable, so long as the continuity of the string 
is maintained, and is therefore totally independent of the actual or relative dimensions 
and form of any of its parts. Similarly when two endless cords are linked together. 
It seems not unlikely, though we can find no proof of it, that Listing was led to 
such researches by the advice or example of Gauss himself; for Gauss, so long ago 
as 1833, pointed out their connection with his favourite electromagnetic inquiries.

After a short introductory historical notice, which shows that next to nothing 
had then been done in his subject, Listing takes up the very interesting questions 
of Inversion (JJmkehrung) and Perversion (Verlcehrung) of a geometrical figure, with 
specially valuable applications to images as formed by various optical instruments. 
We cannot enter into details, but we paraphrase one of his examples, which is par­
ticularly instructive:—

“ A man on the opposite bank of a quiet lake appears in the watery mirror perverted, 
while in an astronomical telescope he appears inverted. Although both images show the 
head down and the feet up, it is the dioptric one only which:—if we could examine it:— 
would, like the original, show the heart on the left side; for the catoptric image would 
show it on the right side. In type there is a difference between inverted letters and 
perverted ones. Thus the Roman V becomes, by inversion, the Greek A; the Roman R 
perverted becomes the Russian II; the Roman L, perverted and inverted, becomes the 
Greek T. Compositors read perverted type without difficulty:—many newspaper readers in 
England can read inverted type. * * * The numerals on the scale of Gauss’ Magnetometer 
must, in order to appear to the observer in their natural position, be both perverted and 
inverted, in consequence of the perversion by reflection and the inversion by the telescope.”
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Listing next takes up helices of various kinds, and discusses the question as to 
which kind of screws should be called right-handed. His examples are chiefly taken 
from vegetable spirals, such as those of the tendrils of the convolvulus, the hop, the 
vine, &c., some from fir-cones, some from snail-shells, others from the “snail” in clock­
work. He points out in great detail the confusion which has been introduced in 
botanical works by the want of a common nomenclature, and finally proposes to 
found such a nomenclature on the forms of the Greek 8 and X.

The consideration of double-threaded screws, twisted bundles of fibres, &c., leads 
to the general theory of paradromic winding. From this follow the properties of a 
large class of knots which form “clear coils.” A special example of these, given by 
Listing for threads, is the well-known juggler’s trick of slitting a ring-formed band up 
the middle, through its whole length, so that instead of separating into two parts, it 
remains in a continuous ring. For this purpose it is only necessary to give a strip 
of paper one AaZ/-twist before pasting the ends together. If three half-twists be given, 
the paper still remains a continuous band after slitting, but it cannot be opened into 
a ring, it is in fact a trefoil knot. This remark of Listing’s forms the sole basis of 
a work which recently had a large sale in Vienna:—showing how, in emulation of 
the celebrated Slade, to tie an irreducible knot on an endless string!

Listing next gives a few examples of the application of his method to knots. 
It is greatly to be regretted that this part of his paper is so very brief; and that 
the opportunity to which he deferred farther development seems never to have arrived. 
The methods he has given are, as is expressly stated by himself, only of limited 
application. There seems to be little doubt, however, that he was the first to make 
any really successful attempt to overcome even the preliminary difficulties of this 
unique and exceedingly perplexing subject.

The paper next gives examples of the curious problem:—Given a figure consisting 
of lines, what is the smallest number of continuous strokes of the pen by which it 
can be described, no part of a line being gone over more than once? Thus, for 
instance, the lines bounding the 64 squares of a chess-board can be drawn at 14 
separate pen strokes. The solution of all such questions depends at once on the 
enumeration of the points of the complex figure at which an odd number of lines 
meet.

Then we have the question of the “ area ” of the projection of a knotted curve 
on a plane; that of the number of interlinkings of the orbits of the asteroids; and 
finally some remarks on hemihedry in crystals. This paper, which is throughout 
elementary, deserves careful translation into English very much more than do many 
German writings on which that distinction has been conferred.

We have left little space to notice Listing’s greatest work, Der Census rdumlicher 
Complexe (Gottingen Abhandlungen, 1861). This is the less to be regretted, because, 
as a whole, it is far too profound to be made popular; and, besides, a fair idea of 
the nature of its contents can be obtained from the introductory Chapter of Maxwell’s 
great work on Electricity. For there the importance of Listing’s Cyclosis, Periphractic 
Regions, &c., is fully recognised.

One point, however, which Maxwell did not require, we may briefly mention.
In most works on Trigonometry there is given what is called Euler s- Theorem

11—2
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about polyhedra:—viz. that if 6’ be the number of solid angles of a polyhedron (not 
self-cutting), F the number of its faces, and E the number of its edges, then

8 + F = E + 2.

The puzzle with us, when we were beginning mathematics, used to be “What is this 
mysterious 2, and how came it into the formula ? ” Listing shows that this is a mere 
case of a much more general theorem in which corners, edges, faces, and regions of 
space, have a homogeneous numerical relation. Thus the mysterious 2, in Euler’s 
formula, belongs to the two regions of space:—the one enclosed by the polyhedron, 
the other (the Amplexum, as Listing calls it) being the rest of infinite space. The 
reader, who wishes to have an elementary notion of the higher forms of problems 
treated by Listing, is advised to investigate the modification which Euler’s formula 
would undergo if the polyhedron were (on the whole) ring-shaped:—as, for instance, 
an anchor-ring, or a plane slice of a thick cylindrical tube.
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LXVI.

LISTING’S TOPOLOGIE.

INTRODUCTORY ADDRESS TO THE EDINBURGH MATHEMATICAL SOCIETY, 
November 9, 1883.

[Philosophical Magazine, January, 1884.]

Some of you may have been puzzled by the advertised title of this Address. But 
certainly not more puzzled than I was while seeking a title for it.

I intend to speak (necessarily from a very elementary point of view) of those 
space-relations which are independent of measure, though not always of number, and 
of which perhaps the very best instance is afforded by the various convolutions of a 
knot on an endless string or wire. For, once we have tied a knot, of whatever com­
plexity, on a string and have joined the free ends of the string together, we have an 
arrangement which, however its apparent form may be altered (as by teazing out, 
tightening, twisting, or flyping of individual parts), retains, until the string is again cut, 
certain perfectly definite and characteristic properties altogether independent of the 
relative lengths of its various convolutions.

Another excellent example is supplied by Crum Brown’s chemical Graphic Formula. 
These, of course, do not pretend to represent the actual positions of the constituents of 
a compound molecule, but merely their relative connection.

From this point of view all figures, however distorted by projection &c., are con­
sidered to be unchanged. We deal with grouping (as in a quincunx'), with motion by 
starts (as in the chess-knight’s move), with the necessary relation among numbers of 
intersections, of areas, and of bounding lines in a plane figure; or among the numbers 
of corners, edges, faces, and volumes of a complex solid figure, &c.

For this branch of science there is at present no definitely recognized title except 
that suggested by Listing, which I have therefore been obliged to adopt. Geometric 
der Lage has now come, like the Geometric de Position of Carnot, to mean something 
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very different from our present subject; and the Geometria sMls of Leibnitz, though 
intended (as Listing shows) to have specially designated it, turned out, in its inventor’s 
hands, to be almost unconnected with it. The subject is one of very great importance, 
and has been recognized as such by many of the greatest investigators, including Gauss 
and others; but each, before and after Listing’s time, has made his separate contri­
butions to it without any attempt at establishing a connected account of it as an 
independent branch of science.

It is time that a distinctive and unobjectionable name were found for it; and 
once that is secured, there will soon be a crop of Treatises. What is wanted is an 
erudite, not necessarily a very original, mathematician. The materials already to hand 
are very numerous. But it is not easy (in English at all events) to find a name 
for it without coining some altogether new word from Latin or Greek roots. Topology 
has a perfectly definite meaning of its own, altogether unconnected with our subject. 
Position, with our mathematicians at least, has come to imply measure. Situation is 
not as yet so definitely associated with measure; for we can speak of a situation to 
right or left of an object without inquiring how far off. So that till a better term 
is devised, we may call our subject, in our own language, the Science (not the Geometry, 
for that implies measure) of Situation.

Listing, to whom we owe the first rapid and elementary, though highly suggestive, 
sketch of this science, as well as a developed investigation of one important branch 
of it, was in many respects a remarkable man. It is to be hoped that much may 
be recovered from his posthumous papers; for there can be little doubt that in con­
sequence of his disinclination to publish (a disinclination so strong that his best-known 
discovery was actually published for him by another), what we know of his work is 
a mere fragment of the results of his long and active life.

In what follows I shall not confine my illustrations to those given by Listing, 
though I shall use them freely; but I shall also introduce such as have more 
prominently forced themselves on my own mind in connection mainly with pure physical 
subjects. It is nearly a quarter of a century since I ceased to be a Professor of 
Mathematics; and the branches of that great science which I have since cultivated 
are especially those which have immediate bearing on Physics. But the subject before 
us is so extensive that, even with this restriction, there would be ample material, in 
my own reading, for a whole series of strictly elementary lectures.

I ought not to omit to say, before proceeding to our business, that it is by no 
means creditable to British science to find that Listing’s papers on this subject the 
Vorstudien zur Topologie (Gottinger Studien, 1847), and Der Census raumlicher Gomplexe 
(Gottingen Abhandlungen, 1861)—have not yet been rescued from their most undeserved 
obscurity, and published in an English dress, especially when so much that is com­
paratively worthless, or at least not so worthy, has already secured these honours. I was 
altogether ignorant of the existence of the Vorstudien till it was pointed out to me 
by Clerk-Maxwell, after I had sent him one of my earlier papers on Knots', and 
I had to seek, in the Cambridge University Library, what was perhaps the only then 
accessible copy.

(1) Down and Up are at once given us by gravity. They are defined as the 
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direction in which a stone falls, or in which a plummet hangs, and its reverse. Even 
below-decks, when the vessel is lying over under a steady breeze, and we “have our 
sea-legs on,” we instinctively keep our bodies vertical, without any thought of setting 
ourselves perpendicular to the cabin-floor. And this definition holds in every region 
of space where the earth’s attraction is the paramount force. In an imaginary cavity 
at the earth’s centre the terms would cease to have any meaning.

East, in the sense of “ Orient!’ is the quarter in which the sun rises; and this 
distinction is correct all over the earth except at the poles, where it has no meaning. 
But if we were to define South as the region in which the sun is seen at midday, 
our definition would be always wrong if we were placed beyond the tropic of Capricorn, 
and at particular seasons even if we were merely beyond that of Cancer. Still there 
is a certain consensus of opinion which enables all to understand what is meant by South 
without the need of any formal definition.

But the distinction between Right and Left is still more difficult to define. We
must employ some such artifice as “A man’s right side is that which is turned east­
wards, when he lies on his face with his head to the north.” For, in the lapse of
ages of development, one may perhaps be right in saying, with Moliere’s physician, 
“Nous avons change tout cela”; and men’s hearts may have migrated by degrees to the 
other side of their bodies, as does one of the eyes of a growing flounder. Or some hitherto 
unsuspected superiority of left-handed men may lead to their sole survival; and then 
the definition of the right hand, as that which the majority of men habitually employ 
most often, would be false.

I will not speak further of these things, which I have introduced merely to show 
how difficult it sometimes is to formulate precisely in words what every one in his 
senses knows perfectly well; and thus to prepare you to expect difficulties of a higher 
order, even in the very elements of matters not much more recondite.

(2) But there is a very simple method of turning a man’s right hand into his 
left, and vice versa, and of shifting his heart to the right-hand side, without waiting 
for the (problematical) results of untold ages of development or evolution. We have 
only to look at him with the assistance of a plane mirror or looking-glass, and these 
extraordinary transformations are instantly effected. Behind the looking-glass the world 
and every object in it are perverted (verkehrt, as Listing calls it). Seen through an 
astronomical telescope, everything is inverted merely (umgekehrt). Particular cases of this 
distinction, which is of very considerable importance, were of course known to the old 
geometers. For two halves of a circle are congruent; one semicircle has only to be 
made to rotate through two right angles in its own plane to be superposable on the 
other. But how about the halves of an isosceles triangle formed by the bisector of 
the angle between the equal sides ? They are equal in every respect except congruency; 
one has to be turned over before it can be exactly superposed on the other.

Listing gives many examples of this distinction, of which the following is the 
simplest:—

Inversion:—(English) V and (Greek) A.
Perversion:—(English) R and (Russian) fl.
Inversion and perversion:—(English) L and (Greek) T.
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He also gives an elaborate discussion of the different relative situations of two 
dice whose edges are parallel, taking account of the points on the various sides.

When we flype a glove (as in taking it off when very wet, or as we skin a hare), 
we perform an operation which (not describable in English by any shorter phrase than 
“ turning outside in ”) changes its character from a right-hand glove to a left. A 
pair of trousers or a so-called reversible water-proof coat is, after this operation has 
been performed, still a pair of trousers or a coat, but the legs or arms are inter­
changed; unless the garments, like those of “Paddius a Corko,” are buttoned behind1.

(3) The germ of the whole of this part of the subject lies in the two ways in 
which we can choose the three rectangular axes of x, y, z\ and is intimately con­
nected with the kinematical theory of rotation of a solid.

Thus we can make the body rotate through two right angles about one axis, so 
that each of the other two is inverted. Such an operation does not change their relative 
situation.

But to invert one only, or all three, of the axes requires that the body should 
(as it were) be pulled through itself, a process perfectly conceivable from the 
kinematical, but not from the physical, point of view. By this process the relative 
situation of the axes is changed.

When we think of the rotation about the axis of x which shall bring Oy where 
Oz was, we see that it must be of opposite character in these two cases. And it 
is a mere matter of convention which of the two systems we shall choose as our 
normal or positive one.

That which seems of late to have become the more usual is that in which a 
quadrantal rotation about x (which may be any one of the three) shall change Oy 
into the former Oz (i.e. in the cyclical order x, y, z), when it is applied in the 
sense in which the earth turns about the northern end of its polar axis. Thus we 
may represent the three axes, in cyclical order, by a northward, an upward, and an 
eastward line. So that we change any one into its cyclical successor by seizing the 
positive end of the third, and, as it were, unscrewing through a quadrant2.

The hands of a watch, looked at from the side on which the face is situated, 
thus move round in the negative direction; but if we could see through the watch, 
they would' appear to move round in the positive direction. This universally employed 
construction arises probably from watch-dials having been originally made to behave 
as much as possible like sun-dials, on which the hours follow the apparent daily 
course of the sun, i.e. the opposite direction to that of the earth’s rotation about 
its axis.

(4) This leads us into another very important elementary branch of our subject,

1 When a Treatise comes to be written (in English) on this science, great care will have to be taken 
in exactly defining the senses in which such words as inversion, reversion, perversion, &c. are to be employed. 
There is much danger of confusion unless authoritative definitions be given once for all, and not too late.

2 These relations, and many which follow, were illustrated by models, not by diagrams; and the reader 
who wishes fully to comprehend them will find no reason to grudge the little trouble involved in constructing 
such models for himself.



LXVI.J listing’s TOPOLOGIE. 89

one in which Listing (it is to be feared) introduced complication rather than 
simplification, by his endeavours to extricate the botanists from the frightful chaos 
in which they had involved themselves by their irreconcilable descriptions of vegetable 
spirals. [He devotes a good many pages to showing how great was this confusion.]

When we compare the tendrils of a hop with those of a vine, we see that 
while they both grow upwards, as in coiling themselves round a vertical pole, the 
end of the hop tendril goes round with the sun (secundum solem), that of the vine 
tendril against the sun (contra solem).

Thus the vine tendril forms an ordinary or (as we call it) right-handed screw, 
the hop tendril a left-handed screw.

Now, if a point move in a circle in the plane of yz in the positive direction, 
and if the circle itself move in the direction of x positive, the resultant path of 
the point will be a vine-, or right-handed screw. But if the circle’s motion as a 
whole, or the motion of the point in the circle, be reversed, we have a left-handed 
screw; while if both be reversed, it remains right-handed. Every one knows the 
combination of the rotatory and translatory motions involved in the use of an 
ordinary corkscrew; but there are comparatively few who know that a screw is the 
same at either end—that it has, in fact, what is called dipolar symmetry.

With a view to assist the botanists, Listing introduced a fancied resemblance 
between the threads of the two kinds of (double-threaded) screws and the Greek 
letters X. and 8, for the latter of which he also proposed the long J used as a sign 
of integration; thus XXXX. and 8883, or ////.

The first, which is our vine- or right-handed screw, he calls from his point of 
view (which is taken in the axis of the screw) laeotrop, the other dexiotrop. He 
also proposes to describe them as lambda- or delta-Windungen. But it is clear that 
all this “ makes confusion worse confounded.” Every one knows an ordinary screw. 
It is right-handed or positive. Hence he can name, at a glance, any vegetable or 
other helix.

(5) A symmetrical solid of revolution, an ellipsoid for instance (whether prolate 
or oblate), has, if at rest, dipolar symmetry. But if it rotate about its axis, we can at 
once distinguish one end of the axis from the other, and there is dipolar asymmetry.

This distinction is dynamical as well as kinematical, as every one knows who is 
conversant with gyroscopes or gyrostats.

A flat spiral spring, such as a watch- or clock-spring, or the gong of an 
American clock, if the inner coils be pulled out to one side, becomes a right-handed 
screw; if to the other, a left-handed screw. In either case it retains the dipolar 
symmetry which it had at first, while plane.

But when we pass an electric current round a circle of wire, we at once give 
it dipolar asymmetiy. Ihe current appears, from the one side, to be going round 
in the positive direction; from the other, in the negative. This is, in fact, the point 
of Ampere’s explanation of magnetism.

A straight wire heated at one end has dipolar asymmetry, not only because of 
the different temperatures of its ends, but because of the differences of their electric 
potential (due to the “Thomson effect”).

T. IL 12
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The same is generally true of every vector (or directed) quantity, such as a 
velocity, a force, a flux, an axis of rotation, &c.

(6) An excellent example of our science is furnished by the Quincunx, which is 
the basis of the subject of Phyllotaxis in botany, as well as of the arrangement of 
scales on a fish.

A quincunx (from the scientific point of view) is merely the system of points 
of intersection of two series of equidistant parallel lines in the same plane. By 
a simple shear parallel to one of the two series of lines, combined (if necessary) 
with mere uniform extensions or contractions along either or both series, any one 
quincunx can be changed into any other. Hence the problems connected with the 
elements of the subject are very simple; for it follows from the above statements 
that any quincunx can be reduced to square order. The botanist who studies the 
arrangement of buds or leaf-stalks on a stem, or of the scales on a fir-cone, seeks 
the fundamental spiral, as he calls it, that on which all the buds or scales lie. And 
he then fully characterizes each particular arrangement by specifying whether this 
spiral is a right- or left-handed screw, and what is its divergence. The divergence 
is the angle (taken as never greater than tt) of rotation about the axis of the 
fundamental spiral from one bud or scale to the next.

(7) It is clear that if the stem or cone (supposed cylindrical) were inked and 
rolled on a sheet of paper, a quincunx (Plate III. fig. 1) would be traced, consisting 
of continuously repeated (but, of course, perverted) impressions of the whole surface. 
Hence if A, Aj, be successive prints of the same scale, B a scale which can be 
reached from A by a right-handed spiral, AB, of m steps, or by a left-handed 
spiral, A^, of n steps, these two spirals being so chosen that all the scales lie on 
n spirals parallel to AB and also on m spirals parallel to A,B, we shall find a 
scale of the fundamental spiral by seeking the scale nearest to AAj within the 
space ABA^

Here continued fractions perforce come in. Let pf be the last convergent to 
mln. Then, if it be greater than mln, count p leaves or scales from A along AB, 
and thence v leaves or scales parallel to BAly and we arrive at the required leaf or 
scale. If the last convergent be less than m/n, count v leaves along A^, and 
thence p parallel to BA. If the leaf, a, so found in either case, be nearer to A 
than to Au the fundamental spiral (as printed, i.e. perverted) is right-handed; and 
vice versd. Thus the first criterion is settled.

To find the divergence, take the case of pfv greater than mln-, and a, so found, 
nearer to A than to A,. Draw ac perpendicular to AAly and let the spirals through 
a, parallel to BA and BA, respectively, cut AA in d and e. Then the divergence 
is ZirAclAA^ This is obviously greater than 2irAdlAA1 (i.e. 27rv/n), and less than 
27rAe/AA1 (i.e. iirp/m)-, and can be altered by shearing the diagram parallel to AA„ 
or (what comes to the same thing) twisting the stem or cone. To find its exact 
value, draw through B a line perpendicular to AA, (i.e. parallel to the axis of the 
stem or cone), and let C, the first leaf or scale it meets, be reached from B by r 
steps along BA, followed by s steps parallel to BA-,. Then the divergence is easily 
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seen to be 2tt (/zs + vr)l(ms + nr); and we have the complete description of the object, 
so far as our . science goes.

In the figure, which is taken from an ordinary cone of Pinus pinaster, we have 
m — 5, n = 8; whence ^ = 2, v = 3. Also r = 3, s = 2; and the fundamental spiral 
(perverted) is therefore right-handed, with divergence 2tf13/34.

Should m and n have a common divisor p, it is easily seen that the leaves 
are arranged in whorls', and, instead of one fundamental spiral, there is a group of 
p such spirals, forming a multiple-threaded screw. Each is to be treated by a process 
similar to that above.

(8) The last statement hints at a subject treated by Listing, which he calls 
paradromic winding. Some of his results are very curious and instructive.

Take a long narrow tape or strip of paper. Give it any number, m, of half­
twists, then bend it round and paste its ends together.

If m be zero, or any other even number, the two-sided surface thus formed has 
two edges, which are paradromic. If the strip be now slit up midway between the 
edges, it will be split into two. These have each m/2 full twists, like the original, 
and (except when there is no twist, when of course the two can be separated) are 
m/2 times linked together.

But if m be odd, there is but one surface and one edge; so that we may draw 
a line on the paper from any point of the original front of the strip to any point 
of the back, without crossing the edge. Hence, when the strip is slit up midway, it 
remains one, but with m full twists, and (if m > 1) it is knotted. It becomes, in 
fact, as its single edge was before slitting, a paradromic knot, a double clear coil 
with m crossings.

[This simple result of Listing’s was the sole basis of an elaborate pamphlet 
which a few years ago had an extensive sale in Vienna; its object being to show 
how to perform (without the usual conjuror’s or spiritualist’s deception) the celebrated 
trick of tying a knot on an endless cord.]

The study of the one-sided autotomic surface which is generated by increasing 
indefinitely the breadth of the paper band, in cases where m is odd, is highly 
interesting and instructive. But we must get on.

(9) I may merely mention, in passing, as instances of our subject, the whole 
question of the Integral Curvature of a closed plane curve; with allied questions such 
as “ In an assigned walk through the streets of Edinburgh, how often has one 
rotated relatively to some prominent object, such as St Giles’ (supposed within the
path) or Arthur’s Seat (supposed external to it)?” We may vary the question by
supposing that he walks so as always to turn his face to a particular object, and
then inquire how often he has turned about his own axis. But here we tread on 
Jellinger Symonds’ ground, the non-rotation of the moon about her axis I

But the subject of the area of an autotomic plane curve is interesting. It is one 
of Listing’s examples. De Morgan, W. Thomson, and others in this country have also 
developed it as a supposed new subject. But its main principles (as Muir has shown 
in Phil. Mag. June, 1873) were given by Meister 113 years ago. It is now so well 
known that I need not dilate upon it.

12—2
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(10) A curious problem, which my colleague Chrystal recently mentioned to me, 
appears to be capable of adaptation as a good example of our subject. It was to 
this effect:—

Draw the circle of least area which includes four given points in one plane.
In this form it is a question of ordinary geometry. But we may modify it as 

follows:—
Given three points in a plane; divide the whole surface into regions such that 

wherever in any one of those regions a fourth point be chosen, the rule for construct­
ing the least circle surrounding the four shall be the same.

There are two distinct cases (with a transition case which may be referred to 
either), according as the given points A, B, G (suppose) form an acute- or an 
obtuse-angled triangle.

(a) When ABC is acute-angled (fig. 2). Draw from the ends of each side 
perpendiculars towards the quarter where the triangle lies, and produce each of them 
indefinitely from the point in which it again intersects the circumscribing circle.

The circle ABC is itself the required one, so long as D (the fourth point) lies 
within it.

If D lie between perpendiculars drawn (as above) from the ends of a side, as 
AB, then ABD is the required circle.

If it lie in any other region, the required circle has D for one extremity of a 
diameter, and the most distant of A, B, G for the other.

(/3) When there is an obtuse angle, at C say (fig. 3). Make the same con­
struction as before, but, in addition, describe the circle whose diameter is AB. All 
is as before, except that AB is the circle required, if D lie within it; and that if 
D lie within the middle portion of the larger of the two lunes formed the required 
circle is ABD.

[In figs. 2, 3, 4, which refer to these two cases in order, and to the intermediate 
case in which the triangle is right-angled at G, each region is denoted by three or 
by two letters. When there are three, the meaning is that the required circle passes 
through the corresponding points; when there are but two, these are the ends of 
a diameter. The separate regions are, throughout, bounded by full lines; the dotted 
lines merely indicate constructions.]

(11) A very celebrated question, directly connected with our subject, is to make 
a Knight (at chess) move to each square on the board once only till it returns to 
its original position. From the time of Euler onwards numerous solutions have been 
given. To these I need not refer further.

A much simpler question is the motion of a Rook, and to this the lately 
popular American “ 15-puzzle ” is easily reduced. For any closed path of a rook 
contains an even number of squares, since it must pass from white to black alternately. 
[This furnishes a good instance of the extreme simplicity which often characterizes 
the solutions of questions in our subject which, at first sight, appear formidable.] 
And in the American puzzle every piece necessarily moves like a rook. Hence if an 
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even number of interchanges of pieces will give the required result, the puzzle can 
be solved; if not, the arrangement is irreducible.

(12) A few weeks ago, in a railway-train, I saw the following problem proposed:— 
Place four sovereigns and four shillings in close alternate order in a line. Required, 
in four moves, each of two contiguous pieces (without altering the relative position 
of the two), to form a continuous line of four sovereigns followed by four shillings. 
Let sovereigns be represented by the letter B, shillings by A.

One solution is as follows:—
Before starting:— . . ABABABAB 

1st move ......... B A A B A B A . . B
2nd „ .............. B A A B . . A A B B
3rd „ .............. B . . B A A A A B B
4th  ................. B B B B A A A A . .

If we suppose the pieces to be originally arranged in circular order, with two 
contiguous blank spaces, the law of this process is obvious. Operate always with the 
penultimate and antepenultimate, the gap being looked on as the end for the time 
being. With this hint it is easy to generalize, so as to get the nature of the 
solution of the corresponding problem in any particular case, whatever be the number 
of coins. It is also interesting to vary the problem by making it a condition that 
the two coins to be moved at any instant shall first be made to change places.

(13) Another illustration, commented on by Listing, but since developed from a 
different point of view in a quite unexpected direction, was originated by a very 
simple question propounded by Clausen in the Astronomische Nachrichten (No. 494). 
In its general form it is merely the question, “What is the smallest number of 
pen-strokes with which a given figure, consisting of lines only, can be traced ? ” No 
line is to be gone over twice, and every time the pen has to be lifted counts one.

The obvious solution is:—Count the number of points in the figure at each of 
which an odd number of lines meet. There must always be an even number of such 
(zero included). Half of this number is the number of necessary separate strokes 
(except in the zero case, when the number of course must be unity). Thus the 
boundaries of the squares of a chess-board can be traced at 14 separate pen-strokes; 
the usual figure for Euclid I. 47 at 4 pen-strokes; and fig. 5 at one.

(14) But, if 2/i points in a plane be joined by 3n lines, no two of which 
intersect, (i.e. so that every point is a terminal of 3 different lines), the figure requires 
n separate pen-strokes. It has been shown that in this case (unless the points be 
divided into two groups, between which there is but one connecting line, fig. 7) the 
3n lines may be divided into 3 groups of n each, such that one of each group ends 
at each of the 2n points. See fig. 6, in which the lines are distinguished as a, ft, 
or y. Also note that &c., and ayiy &c. form entire cycles passing through all
the trivia, while By By &c. breaks up into detached subcycles.

Thus, if a Labyrinth or Maze be made, such that every intersection ot roads is 
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a Trivium, it may always be arranged so that the several roads meeting at each 
intersection may be one a grass-path, one gravel, and the other pavement. To make 
sure of getting out of such a Labyrinth (if it be possible), we must select two kinds 
of road to be taken alternately at each successive trivium. Thus we may elect to 
take grass, gravel, grass, gravel, &c., in which case we must either come to the exit 
point or (without reaching it) return to our starting-point, to try a new combination. 
For it is obvious that, if we follow our rule, we cannot possibly pass through the 
same trivium twice before returning to our starting-point.

(15) This leads to a very simple solution of the problem of Map-colouring with 
four colours, originally proposed by Guthrie, and since treated by Cayley, Kempe, 
and others.

The boundaries of the counties in a map generally meet in threes. But if four, 
or more, meet at certain points, let a small county be inserted surrounding each 
such point; and there will then be trivia of boundaries only. These various boundaries 
may, by our last result, be divided (usually in many different ways) into three 
categories, a, 7 suppose, such that each trivium is formed by the meeting of one 
from each category. Now take four colours, A, B, C, D, and apply them, according to 
rule, as follows; so that

a separates A and B or C and D, 
„ A and C „ B and D,

y „ A and D „ B and C,

and the thing is done. For the small counties, which were introduced for the sake 
of the construction, may pow be made to contract without limit till the boundaries 
become as they were at first.

The connection between these two theorems gives an excellent illustration of the 
principle involved in the reduction of a biquadratic equation to a cubic.

Kempe has pointed out that four colours do not in general suffice for a map 
drawn upon a multiply-connected surface, such as that of a tore or anchor-ring. 
This you can easily prove for yourselves by establishing one simple instance. (This 
is an example of a case of Listing’s Census.')

(16) From the very nature of our science, the systems of trivia, as we described 
them in § 14, may be regarded as mere distorted plane projections of polyhedra which 
have trihedral summits only. There are two obvious classes of exceptions, which will 
be at once understood from the simple figures 7 and 8. Their characteristic is that 
parts of the figure containing closed circuits (i.e. faces of the polyhedron) are connected 
to the rest by one or by two lines (edges) only. The lines are always 3m in number, 
and, excluding only the first class of exceptions, can be marked in 3 groups a, /3, 7, 
one of each group ending at each point (trihedral angle).

Now in every one of the great variety of cases which I have tried (where the 
figure was, like fig. 6, a projection .of a true polyhedron) I have found that a 
complete circuit of edges, -alternately of two of these groups (such as &c.) can 
be found, usually in many ways, so as to exhaust both groups and pass once through 
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each of the angles. That is, in another form, every such polyhedron may be projected 
in a figure of the type shown in fig. 9, where the dotted lines are supposed to lie 
below the full lines. But, in the words of the extraordinary mathematician Kirkman, 
whom I consulted on the subject^ “the theorem has this provoking interest, that 
it mocks alike at doubt and proof1.” Probably the proof of this curious proposition 
has (§ 11) hitherto escaped detection from its sheer simplicity. Habitual stargazers 
are apt to miss the beauties of the more humble terrestrial objects.

(17) Kirkman himself was the first to show, so long ago as 1858, that a “clear 
circle of edges” of a unique type passes through all the summits of a pentagonal 
dodecahedron. Then Hamilton pounced on the result and made it the foundation of 
his Icosian Game, and also of a new calculus of a very singular kind. See figures 
9, 10, 11, which are all equivalent projections of a pentagonal dodecahedron.

At every trivium you must go either to right or to left. Denote these operations 
by r and I respectively. In the pentagonal dodecahedron, start where you will, either 
r1 or Z5 brings you back to whence you started. Thus, in this case, r and I are to 
be regarded as operational symbols—each (in a sense) a fifth root of + 1. In this 
notation Kirkman’s Theorem is formulated by the expression

rlrlrrrUlrlrlrrrlll = 1;

or, as we may write it more compactly,
[■(r^)Sr3^3p — 1, or [(^r)3^2p _ 1

It may be put in a great many apparently different, but really equivalent, forms; for, 
so long as the order of the operations is unchanged, we may begin the cycle where 
we please. Also we may, of course, interchange r and I throughout, in consequence 
of the symmetry of the figure.

It is curious to study, in such a case as this, where it can easily be done, the 
essential nature of the various kinds of necessarily abortive attempts to get out of 
such a labyrinth. Thus if we go according to such routes as (rl)Hrls, or rir' (sequences 
which do not occur in the general cycle), the next step, whatever it be, brings us 
to a point already passed through. We thus obtain other relations between the symbols 
r and I. We can make special partial circuits of this kind, including any number of 
operations from 7 up to 19.

All of these remarks will be obvious from any one of the three (equivalent) diagrams 
9, 10, or 11.

(18) As I have already said, the subject of knots affords one of the most typical 
applications of our science. I had been working at it for some time, in consequence 
of Thomson’s admirable idea of Vortex-atoms, before Clerk-Maxwell referred me to 
Listing’s Essay; and I had made out for myself, though by methods entirely different 
from those of Listing, all but one of his published results. Listing’s remarks on this 
fascinating branch of the subject are, unfortunately, very brief; and it is here especially, 
I hope, that we shall learn much from his posthumous papers. In the Vorstudien he

1 ‘Reprint of Math. Papers from the Ed. Times,’ 1881, p. 113. 
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looks upon knots simply from the point of view of screwing or winding; and he 
designates the angles at a crossing of two laps of the cord by the use of his X and 
3 notation (§ 4). Fig. 12 will show the nature of such crossings. Figs. 13, 14, and 
15 show what he calls reducible and reduced knots. In a reducible knot the angles 
in some compartments at least are not all X or all 3 (the converse is not necessarily 
true). In a reduced knot, each compartment is all X or all 8.

(19) My first object was to classify the simpler forms of knots, so as to find to 
what degree of complexity of knotting we should have to go to obtain a special form 
of knotted vortex for each of the known elements. Hence it was necessary to devise 
a mode of notation, by means of which any knot could be so fully described that 
it might, from the description alone, be distinguished from all others, and (if requisite) 
constructed in cord or wire.

This I obtained, in a manner equally simple and sufficient, from the theorem which 
follows, one which (to judge from sculptured stones, engraved arabesques, &c.) must have 
been at least practically known for very many centuries.

Any closed plane curve, which has double points only, may be looked upon as 
the projection of a knot in which each portion of the cord passes alternately under 
and over the successive laps it meets. [The same is easily seen to hold for any number 
of self-intersecting, and mutually intersecting, closed plane curves, in which cases we 
have in general both linking and locking in addition to knotting.]

The proof is excessively simple (§ 11). If both ends of one continuous line lie 
on the same side of a second line, there must be an even number of crossings.

(20) To apply it, go continuously round the projection of a knot (fig. 16), putting
A, B, C, &c. at the first, third, fifth, &c. crossing you pass, until you have put letters
to all. Then go round again, writing down the name of each crossing in the order 
in which you reach it. The list will consist of each letter employed, taken twice over.
A, B, C, &c. will occupy, in order, the first, third, fifth, &c. places; but the way in
which these letters occur in the even places fully characterizes the drawing of the pro­
jected knot. It may therefore be described by the order of the letters in the even 
places alone; and it does not seem possible that any briefer description could be 
given.

To prove that this description is complete, so far as the projection is concerned, 
all that is required is to show that from it we can at once construct the diagram. 
Thus let it be, as in fig. 16, EFBACD. Then the full statement is 

AEBFGBDA ECFDjA &c.

(21) To draw from such a statement, choose in it two apparitions of the same 
letter, between which no other letter appears twice. Thus A E G F D[A (at the end of 
the statement) forms such a group. It must form a loop of the curve. Draw such 
a loop, putting A at the point where the ends cross, and the other letters in order 
(either way) round the loop. Proceed to fill in the rest of the cycle in the same 
way. The figures thus obtained may present very different appearances; but they are 
all projections of the same definite knot. The only further information we require for 
its full construction is which branch passes over the other at each particular crossing.



LXV1.] listing’s TOPOLOGIE. 97

This can be at once supplied by a + or — sign attached to each letter where it occurs 
in the statement of the order in the even places.

(22) Furnished with this process, we find that it becomes a mere question of 
skilled labour to draw all the possible knots having any assigned number of crossings. 
The requisite labour increases with extreme rapidity as the number of crossings is 
increased. For we must take every possible arrangement of the letters in the even 
places, and try whether it is compatible with the properties of a self-intersecting plane 
curve. Simple rules for rejecting useless or impracticable combinations are easily formed. 
But then we have again to go through the list of survivors, and reject all but one of 
each of the numerous groups of different distortions of one and the same species of knot.

I have not been able to find time to carry out this process further than the 
knots with seven crossings. But it is very remarkable that, so far as I have gone, 
the number of knots of each class belongs to the series of powers of 2. Thus:

Number of crossings ............ 3, 4, 5, 6, 7,
Number of distinct forms... 1, 1, 2, 4, 8.

It is greatly to be desired that some one, with the requisite leisure, should try to 
extend this list, if possible up to 11, as the next prime number. The labour, great 
as it would be, would not bear comparison with that of the calculation of tt to 
600 places, and it would certainly be much more useful. [But see Nos. XL, XLI, which 
are of later date than this Address. 1899.]

Besides, it is probable that modern methods of analysis may enable us (by a single 
“happy thought” as it were) to avoid the larger part of the labour. It is in matters 
like this that we have the true “ raison d’etre ” of mathematicians.

(23) There is one very curious point about knots which, so far as I know, has 
as yet no analogue elsewhere. In general the perversion of a knot (i.e. its image in 
a plane mirror) is non-congruent with the knot itself. Thus, as in fact Listing points 
out, it is impossible to change even the simple form (fig. 14) into its image (fig. 15). 
But I have shown that there is at least one form, for every even number of crossings, 
which is congruent with its own perversion. The unique form with four crossings gave 
me the first hint of this curious fact. Take one of the larger laps of fig. 17, and 
turn it over the rest of the knot, fig. 18 (which is the perversion) will be produced.

We see its nature better from the following process (one of an infinite number) 
for forming Amphicheiral knots. Knot a cord as in fig. 19, the number of complete 
figures of “eight” being at pleasure. Turn the figure upside down, and it is seen to 
be merely its own image. Hence, when the ends are joined, it forms a knot which is 
congruent with its own perversion.

(24) The general treatment of links is, unless the separate cords be also knotted, 
much simpler than that of knots—i.e. the measurement of belinkedness is far easier 
than that of beknottedness.

I believe the explanation of this curious result to lie mainly in the fact that it is 
possible to interweave three or more continuous cords, so that they cannot be separated, 
and yet no one shall be knotted, nor any two linked together.
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This is obvious at once from the simplest possible case, shown in fig. 20. Here the 
three rings are not linked but locked together.

Now mere linkings and mere lockings are very easy to study. But the various 
loops of a knot may be linked or locked with one another. Thus the full study of a 
knot requires in general the consideration of linking and locking also.

(25) But it is time to close, in spite of the special interest of this part of the 
subject. And I have left myself barely time to mention the very interesting portion 
of the Topologic which Listing worked out in detail. You will find a brief synopsis 
of a part of it prefixed to Clerk-Maxwell’s Electricity and Magnetism, and Cayley has 
contributed an elementary statement of its contents to the Messenger of Mathematics 
for 1878; but there can be no doubt that so important a paper as the Census raum- 
licher Complexe ought to be translated into English.

To give an exceedingly simple notion of its contents I may merely say that Listing 
explains and generalizes the so-called Theorem of Euler about Polyhedra (which all of 
us, whose reading dates some twenty years back or more, remember in Snowball’s or 
Hymers’ Trigonometry'), viz. that “if <8 be the number of solid angles of a polyhedron, 
F the number of its faces, and E the number of its edges, then

S + F = E + 2.”

The mysterious 2 in this formula is shown by Listing to be the number of spaces 
involved; i.e. the content of the polyhedron, and the Amplexum, the rest of infinite 
space.

And he establishes a perfectly general relation of the form
V-S+L-P = 0,

where V is the number of spaces, S of surfaces, L of lines, and P of points in any 
complex; these numbers having previously been purged in accordance with the amount 
of Cyclosis in the arrangement studied. But to make even the elements of this 
intelligible I should require to devote at least one whole lecture to them.

Meanwhile I hope I have succeeded in showing to you how very important is 
our subject, loose and intangible as it may have at first appeared to you; and in 
proving, if only by special examples, that there are profound difficulties (of a kind 
different altogether from those usually attacked) which are to be met with even on the 
very threshold of the Science of Situation.
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LXVII.

ON RADIATION.

[Proceedings of the Royal Society of Edinburgh, February 18, 1884.]

The first part of this communication was devoted to a recapitulation of the 
advances in the Theory of Exchanges made by Stewart in 1858, and published in 
the Transactions of the Society for that year. Such a recapitulation it will be seen 
is necessary, as Stewart’s papers seem either to have fallen into oblivion or to be 
deemed unworthy of notice. It was pointed out that Stewart showed in these papers 
that the radiation within an impervious enclosure containing no source of heat must 
ultimately become, like the pressure of a non-gravitating fluid at rest, the same at 
all points and in all directions; but that this sameness is not, like that of fluid 
pressure, one of mere total amount; it extends to the quantity and quality of every 
one of the infinite series of wave-lengths involved. For, as one or more of the bodies 
may be black, the radiation is simply that of a black body at the temperature of 
the enclosure. Any new body, at the proper temperature, may be inserted in the 
enclosure without altering this state of things; and must therefore emit precisely the 
amount and quality which it absorbs. This remark contains all that is yet known 
on the subject. For we have only to assume for the purpose of reasoning, the 
existence of a substance partially, or wholly, opaque to one definite wave-length, and 
perfectly transparent to all others; or with any other limited properties we choose; 
and suppose it to be put (at the proper temperature) into the enclosure. If we next 
assume that its temperature when put in differs from that of the enclosure, the 
experimental fact that, in time, equilibrium of temperature is arrived at, shows that 
the radiation of any particular wave-length by a body increases with rise of temperature. 
And so forth.

Yet in the latest authoritative work on the subject, Lehrbuch der Spektralanalyse, 
von Dr H. Kayser (Berlin, 1883), though historical details are freely given, the name 
of Stewart does not occur even once! There are in the same work other instances of 
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historical error nearly as grave. Thus the physical analogy, by which Stokes in 1852 
first explained the basis of spectrum analysis, is given in Dr Kayser’s work; but it 
is introduced by the very peculiar phrase “....... wollen wir versuchen, eine mechanised e 
Erklarung der Erscheinungen zu geben, welche auf unsere Anschauungen liber das 
Leuchten begriindet ist.......and the name of Stokes is not even mentioned in con­
nection with it!

The second part of the paper deals with the question of the limits of accuracy 
of the reasoning which led Stewart, and those who have followed him, to results of 
such vast importance. Dr Kayser, indeed, announces his intention “in aller Strenge 
mathematisch zu beweisen” the equality of emissive and absorptive powers. But the 
mere fact that phosphorescent bodies, such as luminous paint, give out visible radiations 
while at ordinary temperatures, shows at once that there are grave exceptions even 
to the fundamental statement that the utmost radiation, both as to quantity and as 
to quality, at any one temperature, is that of a black body:—and very simple con­
siderations show that all the reasoning which has been applied to the subject is 
ultimately based on the Second Law of Thermodynamics (or Carnot’s principle), and 
is therefore true only in the sense in which that law is true, i.e. in the statistical 
sense. The assumed ultimate uniformity of temperature in an enclosure, which is 
practically the basis of every demonstration of the extended law of exchanges, is 
merely an expression for the average of irregularities which are in the majority of 
cases too regularly spread, and on a scale too minute, to be detected by our senses, 
even when these are aided by the most delicate instruments. The kinetic theory of 
gases here furnishes us with something much closer than a mere analogy. For the 
very essence of what appears to us uniform temperature in a gas is the regularity 
of distribution of the irregularities of speed of the various particles. And, just as in 
every mass of gas there are a few particles moving with speed far greater than 
that of mean square, so it is at least probable that a black body at ordinary 
temperatures emits (though, of course, excessively feebly) radiations of wave-lengths 
corresponding to those of visible light. Effects apparently or at least conceivably 
due to this cause have been obtained by various experimenters.

If we could realise a dynamical system, analogous to that of a gas on the kinetic 
theory, but such that none of the particles could have any but one of a certain 
limited number of definite speeds, and if there were still a tendency to the nearest 
statistical average, we should have something capable of explaining phosphorescence at 
ordinary temperatures.
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LXVIII.

ON AN EQUATION IN QUATERNION DIFFERENCES.

[Proceedings of the Royal Society of Edinburgh, February 18, 1884.]

When the sides of a closed polygon are bisected, and the points of bisection joined 
in order, a new polygon is formed. It has the same number of sides, and the same 
mean point of its corners, as the original polygon. In what cases is it similar to the 
original polygon ? In what cases will two, three, or more successive operations of this 
kind produce (for the first time) a polygon similar to the original one ?

Take the mean point as origin, and let t/jO, qa, ... qna be the n corners. Here 
a is any vector, which, if the polygon be plane, may be taken in that plane; and 
q1; ... qn are quaternions, which in the special case just mentioned are powers of one 
quaternion in the same plane. We obviously have, if Dqr = qr+1, for the plane polygon 
two conditions:—the first,

(1 + D + D2 + ... + D"-1} qra = 0,

depending on our choice of origin; and the second

L(1 +R^qra^QDsqra,

depending on the similarity of the with derived polygon to the original. In this last 
equation, Q is a scalar multiple of an unknown power of the quaternion of which the 
q’s are powers, expressing how the original polygon must be turned in its own plane, 
and how its linear dimensions must be altered, so that it may be superposed on the 
with derived polygon. Also s is an unknown integer, but it has (like Q) a definite 
value or values when the problem admits of solution, r has any value from 1 to n 
inclusive, as may be seen at once by operating by any integral power of D, and 
remembering that we have necessarily

= qr.
The solution of this case is easily effected, and gives the well-known results:—the 
general solution involving all equilateral and equiangular polygons, where m may have 
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any integral value. Besides this, there are special solutions for the triangle, and for the 
quadrilateral reduced at one operation to a parallelogram. In the former of these m 
may have any value; in the latter (unless the figure be a square) m must be even.

But, when the polygon is gauche, the second of the above conditions becomes

(1 + Dy^a = QD'>qraQ-\

and the solution is somewhat more difficult. Its interest consists in its leading to a new 
and curious question in quaternions.

APPENDIX.

Theorem relating to the Sum of Selected Binomial-Theorem Coefficients.

[Messenger of Mathematics, February, 1884.]

Let equal masses be placed, two and two together, at the corners of an m-sided polygon. 
Slide one from each end of a side till they meet at its middle point. They now form a 
new, and smaller, m-sided polygon, but their centre of inertia has not been disturbed. Repeat 
the process indefinitely, and the masses will ultimately be collected in the centre of inertia.

Now if the distances of the corners of the original polygon from a fixed plane be

^1, ^2 5 • • • , j

those of the first derived polygon will be

+ j(w2 + w3), ..., ^(um + u^.

These are all included in the expression

% (1 + D) ur,

with the proviso that Dmur = ur.

Similarly, the first corner of the nth derived polygon is
2-^(1 + D^u,.

Now let Nrm, where r is not greater than m, be the sum of the rth, (r+m)th, (r+2m)th, 
&c. coefficients of the binomial (1+x')’1; the above expression becomes

2-n (Nfu, + + ... + Nrmur + ... + N^uf).

But, when n is infinite, its ultimate value is (as above)

1 , X— (u1 + u2+ ... + um). m

Hence Ln=„ (2~nNrm) = — :\ m,

and it seems remarkable that the limit is independent of r.
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LXIX.

ON VORTEX MOTION.

[Proceedings of the Royal Society of Edinburgh, February 18, 1884.]

This paper contained a discussion of the consequences of the assumption of continuity 
of motion throughout a perfect fluid; one of the bases of von Helmholtz’s grand in­
vestigation, on which W. Thomson founded his theory of vortex-atoms. It is entirely on 
the assumed absence of finite slip that von Helmholtz deduces the action of a rotating 
element on any other element of the fluid, and that Thomson calculates the action of 
one vortex-atom or part of such an atom on another atom, or on the remainder of itself. 
The creation of a single vortex-atom, in the sense in which it is defined by Thomson, 
involves action applied simultaneously to all parts of the fluid mass, not to the 
rotating portion alone.
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LXX.

NOTE ON REFERENCE FRAMES.

[Proceedings of the Royal Society of Edinburgh, July 7, 1884.]

As I understand Prof. J. Thomson’s problem (Proc. R. S. E. xn. p. 568) it is equi­
valent to the following:—

A set of points move, Galilei-wise, with reference to a system of co-ordinate axes; 
which may, itself, have any motion whatever. From observations of the relative positions 
of the points, merely, to find such co-ordinate axes.

It is obvious that there is an infinitely infinite number of possible solutions; 
because, if one origin moves Galilei-wise with respect to another, and the axes drawn 
from the two origins have no relative rotation, any point moving Galilei-wise with 
respect to either set of axes will necessarily move Galilei-wise with respect to the 
other. Hence any one solution suffices, for all the others can be deduced from it by 
the above consideration.

Referred to any one set of axes which satisfy the conditions, the positions of the 
points are, at time t, given by the vectors

ai+Sd for A, «2 + Bd f°r &c.

But it is clear, from what is stated above, that we may look on the pair of vectors 
for any one of the points, say a, and /3X for A, as being absolutely arbitrary:—though, 
of course, constant. We will, therefore, make each of them vanish. This amounts to 
taking A as the origin of the co-ordinate system. The other expressions, above, will 
then represent the relative positions of B, C, &c., with regard to A.

The observer on A is supposed to be able to measure, at any moment, the lengths 
AB, AC, AD, &c.; the angles BAC, BAD, CAD, &c.; and also to be able to recognise 
whether a triangle, such as BCD, is gone round positively or negatively when its corners 
are passed through in the order named. What this leaves undetermined, at any particular 
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instant, is merely the absolute direction of any one line (as AB), and the aspect of 
any one plane (as ABC) passing through that line. These being assumed at random, 
the simultaneous positions of all the points can be constructed from the permissible 
observations. But it is interesting to inquire how many observations are necessary; 
and how the /S’s depend on the a’s.

Thus, at time t, whatever be the mode of measurement of time, we have equations 
such as follow:—

— a = a22 + 2Sa2B2 ■ t + B^t2,
-b = Sa2a3 + S (a^ + B^s). t + SB A . i2,
-c=as2 + 2SaA. t + /3ST,

For any one value of t we have n equations of each of the 1st and 3rd of these 
types, and n (n — l)/2 of the 2nd, n + 1 being the whole number of points. In all, 
n (n + l)/2 equations.

The scalar unknowns involved in these equations are (1) the values of t; (2) a22, a32, 
&c.; (3) /3?, Bs, &c.; (4) Sa^, &c.; (5) SBA, &c.; (6) ^a2A, SaA, &c.; and 
(7) <S(a2A + A“s), &c. Their numbers are, for (2), (3), (6), n each; for (4), (5), (7), 
n(n —l)/2 each; in all 3n (n + 1) 2. Suppose that observations are made on m suc­
cessive occasions. Since our origin, and our unit, of time are alike arbitrary, we may 
put t = 0 for the first observation, and merge the value of t at the second observation 
in the tensors of Bz, Ba, &c. This amounts to taking the interval between the first 
two sets of observations as unit of time. Thus the unknowns of the form (1) are 
m — 2 in number. There are therefore

mn (n + l)/2 equations and 3n (n + l)/2 + m — 2 unknowns.

Thus m = 3 gives an insufficient amount of information, but m = 4 gives a superfluity.

In particular, if there be three points only, which is in general sufficient, 3 complete 
observations give

9 equations with 10 unknowns;

while 4 complete observations give
12 equations with 11 unknowns.

Thus we need take only two of the three possible measurements, at the fourth instant 
of observation.

The solution of the equations, supposed to be effected, gives us among other things, 
aj, and >Sa2a3. Any direction may be assumed for a2, and any plane as that of 

a2 and a3. From these assumptions, and the three numerical quantities just named, 
the co-ordinate system can be at once deduced.

This solution fails if = a^a2, or TVap.3 = 0; for then the three points A, B, C, 
are in one line at starting. But this, and similar cases of failure (when they are 
really cases of failure) are due to an improper selection of three of the points. We 
need not further discuss them.

T. 11. 14
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But it is interesting to consider how the vectors /3 can be found when one position 
of the reference frame has been obtained. Keeping, for simplicity, to the system of 
three points, we have by the solution of the equations above the following data:—

SaA = e> Sa383 = e', 8 (aA + 82^ =f, T8« = g, T83 = g', S8A-h-, 

where e, e', f, g, g', h are known numbers; which, as the equations from which they 
were derived were not linear, have in general more than one system of values. The 
second, third, and sixth of these equations give

838. o^aA = hVa2a3 + (/- S8A) VaA + e'V83^2-

Provided 82 is not coplanar with a2, as, this equation gives, by the help of the fifth 
above, a surface of the 4th order of which 82 is a vector. But 82 is aiso a vector 
of the plane SaA = e, and of the sphere T82 = g- Hence it is determined by the 
intersections of those three surfaces.

But if . a2aA vanishes, the equation above gives (by operating with S. Va2a3) 

0 = h (Fa2a3)3 — (/ — 882^3) 8.82V ■ a3Pa2a3 + e’S. 82V. a2Pa2a8, 

which gives a surface of the second order (a hyperbolic cylinder) in place of the surface 
of the fourth order above mentioned. This may, however, be dispensed with:—for 82 
is in this case determined by the planes SaAi = 6 and 6'. a2a3/32 = 0, together with the 
sphere T82 = g.
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LXXI.

ON VARIOUS SUGGESTIONS AS TO THE SOURCE OF 
ATMOSPHERIC ELECTRICITY1.

1 Read at the meeting of the Scottish Meteorological Society on March 17, and communicated by the Society.
14—2

[Nature, March 27, 1884.]

We have seen that, taking for granted the electrification of clouds, all the 
ordinary phenomena of a thunderstorm (except globe lightning) admit of easy and 
direct explanation by the known laws of statical electricity. Thus far we are on 
comparatively sure ground.

But the case is very different when we attempt to look a little farther into the 
matter, and to seek the source of atmospheric electricity. One cause of the difficulty 
is easily seen. It is the scale on which meteorological phenomena usually occur; so 
enormously greater than that of any possible laboratory arrangement that effects, 
which may pass wholly unnoticed by the most acute experimenter, may in nature 
rise to paramount importance. I shall content myself with one simple but striking 
instance.

Few people think of the immense transformations of energy which accompany an 
ordinary shower. But a very easy calculation leads us to startling results. To raise 
a single pound of water, in the form of vapour, from the sea or from moist ground, 
requires an amount of work equal to that of a horse for about half an hour! This 
is given out again, in the form of heat, by the vapour when it condenses; and the 
pound of water, falling as rain, would cover a square foot of ground to the depth of 
rather less than one-fifth of an inch. Thus a fifth of an inch of rain represents a 
horse-power for half an hour on every square foot, or, on a square mile, about a million 
horse-power for fourteen hours! A million horses would barely have standing room on 
a square mile. Considerations like this show that we can account for the most violent 
hurricanes by the energy set free by the mere condensation of vapour required for the 
concomitant rain.
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Now the modem kinetic theory of gases shows that the particles of water­
vapour are so small that there are somewhere about three hundred millions of millions 
of millions of them in a single cubic inch of saturated steam at ordinary atmo­
spheric pressure. This corresponds to -j^oo or so a cubic inch of water, i.e. to 
about an average raindrop. But if each of the vapour particles had been by any 
cause electrified to one and the same potential, and all could be made to unite, 
the potential of the raindrop formed from them would be fifty million million times 
greater.

Thus it appears that if there be any cause which would give each particle of 
vapour an electric potential, even if that potential were far smaller than any that 
can be indicated by our most delicate electrometers, the aggregation of these particles 
into raindrops would easily explain the charge of the most formidable thundercloud. 
Many years ago it occurred to me that the mere contact of the particles of vapour 
with those of air, as they interdiffuse according to the kinetic theory of gases, 
would suffice to produce the excessively small potential requisite. Thus the source 
of atmospheric electricity would be the same as that of Volta’s electrification of dry 
metals by contact. My experiments were all made on a small scale, with ordinary 
laboratory apparatus. Their general object was, by various processes, to precipitate 
vapour from damp air, and to study either (1) the electrification produced in the 
body on which the vapour was precipitated; or (2) to find on which of two parallel, 
polished plates, oppositely electrified and artificially cooled, the more rapid deposition 
of moisture would take place. After many trials, some resultless, others of a more 
promising character, I saw that experiments on a comparatively large scale would be 
absolutely necessary in order that a definite answer might be obtained. I commu­
nicated my views to the Royal Society of Edinburgh in 1875, in order that some 
one with the requisite facilities might be induced to take up the inquiry, but I am 
not aware that this has been done.

I may briefly mention some of the more prominent attempts which have been made 
to solve this curious and important problem. Some of them are ludicrous enough, 
but their diversity well illustrates the nature and amount of the difficulty.

The oldest notion seems to have been that the source of atmospheric electricity 
is aerial friction. Unfortunately for this theory, it is not usually in windy weather 
that the greatest development of electricity takes place.

In the earlier years of this century Pouillet claimed to have established by 
experiment that in all cases of combustion or oxidation, in the growth of plants, 
and in evaporation of salt water, electricity was invariably developed. But more 
recent experiments have thrown doubt on the first two conclusions, and have shown 
that the third is true only when the salt water is boiling, and that the electricity 
then produced is due to friction, not to evaporation. Thus Faraday traced the action 
of Armstrong’s hydro-electric machine to friction of the steam against the orifice by 
which it escaped.

Saussure and others attributed the production of atmospheric electricity to the 
condensation of vapour, the reverse of one of Pouillet’s hypotheses. This, however, 
is a much less plausible guess than that of Pouillet; for we could understand a 
particle of vapour carrying positive electricity with it, and leaving an equal charge 
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of negative electricity in the water from which it escaped. But to account for the 
separation of the two electricities when two particles of vapour unite is a much less 
promising task.

Peltier (followed by Lamont) assumed that the earth itself has a permanent 
charge of negative electricity whose distribution varies from time to time, and from 
place to place. Air, according to this hypothesis, can neither hold nor conduct elec­
tricity, but a cloud can do both; and the cloud is electrified by conduction if it 
touch the earth, by induction if it do not. But here the difficulty is only thrown 
back one step. How are we to account for the earth’s permanent charge ?

Sir W. Thomson starts from the experimental fact that the layer of air near 
the ground is often found to be strongly electrified, and accounts for atmospheric 
electricity by the carrying up of this layer by convection currents. But this process 
also only shifts the difficulty.

A wild theory has in recent times been proposed by Becquerel. Corpuscles of 
some kind, electrified by the outbursts of glowing hydrogen, travel from the sun to 
the upper strata of the earth’s atmosphere.

Miihry traces the source of electricity to a direct effect of solar radiation falling 
on the earth’s surface.

Liiddens has recently attributed it to the friction of aqueous vapour against dry 
air. Some still more recent assumptions attribute it to capillary surface-tension of 
water, to the production of hail, &c.

Blake, Kalischer, &c., have lately endeavoured to show by experiment that it is 
not due to evaporation, or to condensation of water. Their experiments, however, 
have all been made on too small a scale to insure certain results. What I have 
just said about the extraordinary number of vapour particles in a single raindrop, 
shows that the whole charge in a few cubic feet of moist air may altogether escape 
detection.

And so the matter will probably stand, until means are found of making these 
delicate experiments in the only way in which success is likely to be obtained, viz. 
on a scale far larger than is at the command of any ordinary private purse. It is 
a question of real importance, not only for pure science but for the people, and ought 
to be thoroughly sifted by means which only a wealthy nation can provide.
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LXXIL

NOTE ON A SINGULAR PASSAGE IN THE PRINCIPIA.

[Proceedings of the Royal Society of Edinburgh, January 19, 1885.]

In the remarkable Scholium, appended to his chapter on the Laws of Motion, 
where Newton is showing what Wren, Wallis, and Huygens had done in connection 
with the impact of bodies, he uses the following very peculiar language:—

“Sed et veritas comprobata est a D. Wrenno coram Regid Societate per experimentum 
Pendulorum, quod etiam Clarissimus Mariottus Libro integro exponere mox dignatus est.”

The last clause of this sentence, which I had occasion to consult a few days ago, 
appeared to me to be so sarcastic, and so unlike in tone to all the context, that I was 
anxious to discover its full intention.

Not one of the Commentators, to whose works I had access, makes any remark on 
the passage. The Translators differ widely.

Thus Motte softens the clause down into the trivial remark “ which Mr Mariotte 
soon after thought fit to explain in a treatise entirely on that subject.”

The Marquise du Chastellet (1756) renders it thus:—
“........mais ce fut Wrenn qui les confirma par des Experiences faites avec des 

Pendules devant la Societe Royale: lesquelles le cdlebre Mariotte a rapportdes depuis dans 
un Traits qu’il a composd expres sur cette matibre.”

Thorp’s translation (1777) runs :—
“which the very eminent Mr Mariotte soon after thought fit to explain in a treatise 

entirely upon that subject.”
Finally, Wolfers (1872) renders it thus:—
“der zweite zeigte der Societat die Richtigkeit seiner Erfindung an einem Pendel- 

versuche, den der beriihmte Mariotte in seinem eigenen Werke aus einander zu setzen, 
fur wiirdig erachtete.”

Not one of these seems to have remarked anything singular in the language 
employed. But when we consult the “ entire book ” in which Mariotte is said by 
Newton to have “expounded” the result of Wren, and which is entitled Traits de la, 
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Percussion ou Choc des Corps, we find that the name of Wren is not once mentioned in 
its pages! From the beginning to the end there is nothing calculated even to hint to 
the reader that the treatise is not wholly original.

This gives a clue to the reason for Newton’s sarcastic language; whose intensity 
is heightened by the contrast between the Clarissimus which is carefully prefixed to 
the name of Mariotte, and the simple D. prefixed, not only to the names of Englishmen 
like Wren and Wallis, but even to that of a specially distinguished foreigner like 
Huygens.

Newton must, of course, like all the scientific men of the time (Mariotte included), 
have been fully cognizant of Boyle’s celebrated controversy with Linus, which led to 
the publication, in 1662, of the Defence of the Doctrine touching the Spring and Weight 
of the Air. In that tract, Part n. Chap. 5, the result called in Britain Boyles Law is 
established (by a very remarkable series of experiments) for pressures less than, as well 
as for pressures greater than, an atmosphere; and it is established by means of the very 
form of apparatus still employed for the purpose in lecture demonstrations. Boyle, at 
least, claimed originality, for he says in connection with the difficulties met with in 
the breaking of his glass tube:—

“........an accurate Experiment of this nature would be of great importance to the 
Doctrine of the Spring of the Air, and has not yet been made (that I know) by 
any man.........”

In Mariotte’s Discours de la Nature de I’Air, published fourteen years later than 
this work of Boyle, we find no mention whatever of Boyle, though the identical form 
of apparatus used by Boyle is described. The whole work proceeds, as does that on 
Percussion, with a calm ignoration of the labours of the majority of contemporary 
philosophers.

This also must, of course, have been perfectly well known to Newton:—and we 
can now see full reason for the markedly peculiar language which he permits himself 
to employ with reference to Mariotte.

What was thought of this matter by a very distinguished foreign contemporary, 
appears from the treatise of James Bernoulli, De Gravitate jEtheris, Amsterdam, 1683, 
p. 92.

“ Veritas utriusque hujus regulae manifesta fit duobus curiosis experimentis ab 
Illustr. Dn. Boylio hanc in rem factis, quae videsis in Tractatu ejus contra Linum, 
Cap. V., cui duas Auctor subjunxit Tabulas pro diversis Condensationis et Rarefactionis 
gradibus.”

In order to satisfy myself that Newton’s language, taken in its obvious meaning, 
really has the intention which I could not avoid attaching to it, I requested my colleague 
Prof. Butcher to state the impression which it produced on him. I copied for him the 
passage above quoted, putting A for the word Wrenno, and B for Mariottus; and I 
expressly avoided stating who was the writer. Here is his reply :—

“I imagine the point of the passage to be something of this kind (speaking without 
farther context or acquaintance with the Latinity of the learned author):—

“A established the truth by means of a (simple) experiment, before the Royal 
Society; later, B thought it worth his while to write a whole book to prove the 
same point.
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“I should take the tone to be highly sarcastic at B’s expense. It seems to suggest 
that B was not only clumsy but dishonest. The latter inference is not certain, but 
at any rate we have a hint that B took no notice of A’s discovery, and spent a deal 
of useless labour.”

This conclusion, it will be seen, agrees exactly with the complete ignoration of 
Wren by Mariotte.

When I afterwards referred Prof. Butcher to the whole context, in my copy of 
the first edition of the Principia, and asked him whether the use of Clarissimus was 
sarcastic or not, he wrote—

“ I certainly think so. Indeed, even apart from the context, I thought the 
Clarissimus was ironical, but there can be no doubt of it when it corresponds to 
D. Wren.”

In explanation of this I must mention that, when I first sent the passage to 
Prof. Butcher, I had copied it from Horsley’s sumptuous edition; in which the /J’s 
are omitted, while the Clarissimus is retained.

Alike in France and in Germany, to this day, the Law in question goes by the 
name of Mariotte. The following extracts, from two of the most recent high-class text­
books, have now a peculiar interest. I have put a word or two of each in Italics. These 
should be compared with the dates given.

“Diese Frage ist schon fruhzeitig untersucht und zwar fast gleichzeitig von dem 
franzbsischen Physiker Mariotte (1679) und dem englischen Physiker Boyle (1662).” 
Wiillner, Lehrbuch der Experimentalphysik, 1882, § 98.

“ La loi qui regit la compressibility des gaz a temperature constante a etd trouvee 
presque simultanement par Boyle (1662) en Angleterre et par Mariotte (1676) en France; 
toutefois, si Boyle a public le premier ses experiences, il ne sut pas en tirer I’enoncd 
clair que donna le physicien fran^ais. C’est done avec quelque raison que le nom de loi 
de Mariotte a passe dans 1’usage.” Violle, Cours de Physique, 1884, § 283.

On this I need make no remark further than quoting one sentence from Boyle, 
where he compares the actual pressure, employed in producing a certain compression in 
air, with “ what the pressure should be according to the Hypothesis, that supposes the 
pressures and expansions to be in reciprocal proportion.” M. Violle has probably been 
misled by the archaic use of “ expansion ” for volume.

It must be said, in justice to Mariotte, that he does not appear to have claimed 
the discovery of any new facts in connection either with collision or with the effect of 
pressure on air. He rather appears to write with the conscious infallibility of a man for 
whom nature has no secrets. And he transcribes, or adapts, into his writings (without 
any attempt at acknowledgment) whatever suits him in those of other people. He seems 
to have been a splendidly successful and very early example of the highest class of what 
we now call the Paper-Scientists. Witness the following extracts from Boyle, with a 
parallel citation from Mariotte of fourteen years’ later date at least. The comparison 
of the sponges had struck me so much, in Mariotte’s work, that I was induced to search 
for it in Boyle, where I felt convinced that I should find it.

“This Notion may perhaps be somewhat further explain’d, by conceiveing the Air 
near the Earth to be such a heap of little Bodies, lying one upon another, as may be 
resembled to a Fleece of Wooll. For this (to omit other likenesses betwixt them) 
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consists of many slender and flexible Hairs; each of which, may indeed, like a little 
Spring, be easily bent or rouled up; but will also, like a Spring, be still endeavouring 
to stretch itself out again. For though both these Haires, and the JEreal Corpuscles to 
which we liken them, do easily yield to externall pressures; yet each of them (by virtue 
of its structure) is endow’d with a Power or Principle of Selfe-Dilatation; by virtue 
whereof, though the hairs may by a Mans hand be bent and crouded closer together, 
and into a narrower room then suits best with the Nature of the Body, yet, whils’t the 
compression lasts, there is in the fleece they composeth an endeavour outwards, whereby 
it continually thrusts against the hand that opposeth its Expansion. And upon the 
removall of the external pressure, by opening the hand more or less, the compressed 
Wooll doth, as it were, spontaneously expand or display it self towards the recovery 
of its former more loose and free condition till the Fleece hath either regain’d its 
former Dimensions, or at least, approached them as neare as the compressing hand, 
(perchance not quite open’d) will permit. The power of Selfe-Dilatation is somewhat 
more conspicuous in a dry Spunge compress’d, then in a Fleece of Wooll. But yet we 
rather chose to employ the latter, on this occasion, because it is not like a Spunge, 
an intire Body; but a number of slender and flexible Bodies, loosely complicated, as the 
Air itself seems to be.”

And, a few pages later, he adds:—
“........a Column of Air, of many miles in height, leaning upon some springy 

Corpuscles of Air here below, may have weight enough to bend their little springs, 
and keep them bent: As, (to resume our former comparison,) if there were fleeces of 
Wooll pil’d up to a mountainous height, upon one another, the hairs that compose the 
lowermost Locks which support the rest, would, by the weight of all the Wool above 
them, be as well strongly compress’d as if a Man should squeeze them together in his 
hands, or imploy any such other moderate force to compress them. So that we need not 
wonder, that upon the taking off the incumbent Air from any parcel of the Atmosphere 
here below, the Corpuscles, whereof that undermost Air consists, should display them­
selves, and take up more room than before.”

Mariotte (p. 151). “On peut comprendre a peu pres cette difference de condensation 
de l’Air, par 1’exemple de plusieurs eponges qu’on auroit entassdes les unes sur les 
autres. Car il est Evident, que celles qui seroient tout au haut, auroient leur entendue 
naturelie: que celles qui seroient immddiatement au dessous, seroient un peu moins 
dilatdes; et que celles qui seroient au dessous de toutes les autres, seroient tres-serrees 
et condensees. Il est encore manifesto, que si on 6toit toutes celles du dessus, celles du 
dessous reprendroient leur dtendue naturelle par la vertu de ressort qu’elles ont, et 
que si on en 6toit seulement une partie, elles ne reprendroient qu’une partie de leur 
dilatation.”

Those curious in such antiquarian details will probably find a rich reward by making 
a careful comparison of these two works; and in tracing the connection between the 
Liber integer, and its fons et origo, the paper of Sir Christopher Wren.

Condorcet, in his Eloge de Mariotte, says:—“ Les lois du choc des corps avaient ete 
trouvees par une mdtaphysique et par une application d’analyse, nouvelles 1’une et l’autre, 
et si subtiles, que les demonstrations de ces lois ne pouvaient satisfaire que les grands 
mathematiciens. Mariotte chercha a les rendre, pour ainsi dire, populaires, en les

T. II. 15
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appuyant sur des experiences, &c.” i.e., precisely what Wren had thoroughly done before 
him.

“Le discours de Mariotte sur la nature de Fair renferme encore une suite d’expdri- 
ences intdressantes, et qui dtaient absolument neuves.” This, as we have seen, is 
entirely incorrect.

But Condorcet shows an easy way out of all questions of this kind, however delicate, 
in the words:—“ On ne doit aux morts que ce qui peut etre utile aux vivants, la vdrite 
et la justice. Cependant, lorsqu’il reste encore des amis et des enfants que la vdrite peut 
affliger, les egards deviennent un devoir; reais au bout d’un siecle, la vanite peut seule 
etre blessde de la justice rendue aux morts.”

Thus it is seen that even the turn of one of Newton’s phrases serves, when rightly 
viewed, to dissipate a widespread delusion:—and that while Boyle, though perhaps he 
can scarcely be said to have, been “born great,” certainly “achieved greatness”; the 
assumed parent of La Loi de Mariotte (otherwise Mariotte’sches Gesetz) has as certainly 
had “greatness thrust upon” him.
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LXXIII.

NOTE ON A PLANE STRAIN.

[Proceedings of the Edinburgh Mathematical Society, February 13, 1885. Vol. III.]

The object of this note is to point out, by a few remarks on a single case, how 
well worth the attention of younger mathematicians is the full study of certain 
problems, suggested by physics, but limited (so far as that science is concerned) by 
properties of matter.

In de St Venant’s beautiful investigations of the flexure of prisms, there occurs 
a plane strain involving the displacements

y2 -
D’ v 2D '

Physically, this is applicable to de St Venant’s problem only when ® and y are each 
small compared with D. But it is interesting to consider the results of extending 
it to all values of the coordinates. This I shall do, but very briefly.

1. The altered coordinates of any point are given, in terms of the original co­
ordinates, by

y' = y +
y2 — <r2

21) '

Hence = bx (1 + + by ~

by' =-bx^ + by (1+

15—2
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From these we see at once that, so far as an indefinitely small area is concerned, 
the strain is a mere extension in all directions in the ratio 

combined with a rotation through an angle whose tangent is

x
D + y'

2. Hence elementary squares remain squares; and any two series of lines, dividing 
the plane into little squares, will continue to do so after the strain.

One simple case is furnished by sets of lines parallel to the axes.
becomes the parabola

Thus y = b

..........(1),
2 (D + b)2 / , ,

and x = a becomes a parabola

x'2-^- 
x ~ D

a2 + D2
2D I ..................................................(2).

must evidently be orthogonal, and if the 
b be equal, must divide the plane into 
(2) that the sign of a is immaterial, the

x = — a

These groups of parabolas, (1) and (2), 
simultaneous small increments of a and 
little squares. But, as it is clear from 
two lines

x = a, 

are both deformed into the same parabola, 
area becomes duplex.
later.

Hence it appears that every part of the 
This will be examined by another and more suitable method

Having thus obtained another set of lines which divide the plane into squares, 
we may begin again with it and obtain a third set, &c.

3. A line, y = mx, passing through the origin, becomes the parabola 

/m3-l , A2 nm2 + 1 , ..
1 ——x -my j — D—O® ~y)-

The orthogonal trajectories of all such parabolas are the curves into which the circles 

x2 + y2 — c2

are deformed. Their equation may be put in the form

where y" is written instead of y’. + •J J 2D
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These curves have the property that, at every point, the sum (or difference) of the 
distance from a given point, and of a multiple of the square root of the distance from 
a given line, is constant.

4. But, if we express the new rectangular coordinates of a point in terms of its 
original polar coordinates, we have

, n r2X —r COS 0 + yy. cos

^2
y' = r sin 6 + sin AD

Thus the deformed circles, above spoken of, are seen to be epicycloids of the cardioid 
series. Their orthogonal trajectories are the parabolas just mentioned.

5. Another curious set of questions is, as it were, the reverse of these:—i.e., what 
were the curves, in the unstrained plate, which became the system

x = a, y — b, 

or the other (also orthogonal) system

y = mx, x2 + y2 = c2?

6. But a different transformation is still more explicit in the information it gives. 
Shift the origin to (0, — D), and we have

x• _xy y2 — a? + D2
y =

If we put x = p sin tf), y = p cos </>, these give

A2
x = on sin 2</>,

, D p2

Hence a circle, of radius p, surrounding the new origin, becomes a circle of radius
P2 / D\surrounding the point (0, - half-way between the new and old origins. The

of any point in the circle becomes 2</>.

Hence the whole surface is opened up like a fan round the new origin, every 
radius through this origin having its inclination to the axis of y doubled. Thus the 
parts of a diameter, on opposite sides of the centre, are brought to coincide; and an 
infinitely extended line, through the centre, becomes limited at the centre. Thus what 
was a single sheet becomes duplex, as was said above.

7. It suffices to have indicated, by a partial examination of some of the curious 
features of a single case, the stores of novelties which are thus easily reached. See 
especially, for additional materials of the same kind, the investigation in 706—7 of 
Thomson and Tait’s Natural Philosophy.
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LXXIV.

SUMMATION OF CERTAIN SERIES.

[Proceedings oj the Edinburgh Mathematical Society, June 12, 1885. Vol. ill.] 

[Abstract1.]

1 This abstract is part of the paper read in June, entitled “ On the detection of amphicheiral knots, with
special reference to the mathematical processes involved.” I have unfortunately mislaid the MS.—P. G. T.

The attempt to enumerate the possible distinct forms of knots of any order, 
though unsuccessful as yet, has led me to a number of curious results, some of which 
may perhaps be new. The general character of the methods employed will be obvious 
from an inspection of a few simple cases, and any one who has some practice in 
algebra may extend the results indefinitely.

Take, for instance, the series

rm — n(r + s)m + ^E^(r+2s)“-&c.
L . Ai

where the coefficients are the terms of (1-1)“, and the other factors are the with 
powers of the terms of an arithmetical series:—m being a positive integer. The 
well-known properties of exponential series give us an easy method of summing all 
expressions of this form. For we have

(epx _ eqx^n _ enpx _ ne (n—ip+q) x _|_ n. n — 1 e(n-2p+2q)x _ ^JC.
1.2

which may be written in the form

((p - q) x + x2 + ~ x? +

1 /_ Yl qi _  I ____ \
= S m (npm — n(np + q — p)m + 2 (np + 2 q - p)m — &C.J xm.
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Make np = r, q — p = s', and p and q are known.

The required sum is then the coefficient of xm in the expansion of 

/ »2 — o2m! I(p-9)a;+ ®2+ ..J .

It vanishes therefore, so long as m < n; and for m = n its value is 

m! ( p — q)m = (—)m m' sm.

When the coefficients in the given series are the alternate terms of (1 — I)’1, we 
have only to treat, as above, the expression

4. eqzyn 4. (epx _ eqXyi_

Such results may be varied ad libitum, by introducing two or more quantities in 
place of x, and comparing coefficients of like terms:—e.g., as in finding, by the two 
methods of expansion, the term in xrys of the quantity

_ eqyyi_

But it suffices to have called attention to processes which can give endless varieties 
of results, some of which may have useful applications.
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LXXV.

ON CERTAIN INTEGRALS.

[Proceedings of the Edinburgh Mathematical Society, December 11, 1885. Vol. iv.]

This paper was based mainly on the results of an investigation which will appear 
in full in the Transactions of the Royal Society of Edinburgh. Incidentally, however, 
it led to a discussion of the question:—Find the law of density of a planet’s atmo­
sphere, supposing Boyle’s law to be true for all pressures, and the temperature to be 
uniform throughout.

Boyle’s law gives p = kp, where p is the density at distance r from the planet’s 
centre.

The Hydrostatic condition is = — pR, where R is the attraction on unit of 

mass.
, M+ f 4<7rr2p dr

Hence k-r- — — p------ -—;, where r„ is the radius, and M the mass of thedr r
planet.

Write this as
— = — M — I 4nrr~pdr
p dr J r„

and differentiate; and we obtain the curious equation

d IP dp\ 4tt ...........................(1>-
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A special value of p (compatible with the absence of a solid nucleus) is 

, k 
p = + 2^’

but this cannot be generalised.

The finding of the integral of (1) in a form convergent for all values of r 
greater than r0 presents novel and grave difficulties; but it is clear from the physical 
question on which the whole is based that such a solution exists.

If we change the independent variable to s, where rs = 1, (1) becomes

d2 log p _ 4?r p 
ds2 k s4’

or, if log p — u, -j- = e,

ds2 s4

This seems to be the simplest form into which the equation can be transformed.

[See a paper by Sir W. Thomson, “ On the Equilibrium of a Gas under its own 
Gravity only.” Proc. R. S. E. Feb. 21, 1887; or Phil. Mag. 1887, I., 287. 1899.]

T. II. 16
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LXXVI.

HOOKE’S ANTICIPATION OF THE KINETIC THEORY, AND OF 
SYNCHRONISM.

[Proceedings of the Royal Society of Edinburgh, March 16, 1885.]

While collecting materials for a Text-book of the Properties of Matter, the 
author had occasion to consult the very curious pamphlet by Robert Hooke, entitled 
Lectures de Potentia Restitutiva, or of Spring (London, 1678).

In this work there is a clear statement of the principle of Synchronism, which 
was applied by Stokes to the explanation of the basis of Spectrum Analysis. There 
is also a very remarkable statement of the elementary principles of the modern 
Kinetic Theory of Gases, the first mention of which is usually fixed sixty years later, 
and ascribed to D. Bernoulli in his Hydrodynamica (Argentorati, 1738).

[Here is the chief passage referred to:—
“ In the next place for fluid bodies, amongst which the greatest instance we have is 

air, though the same be in some proportion in all other fluid bodies.
“ The Air then is a body consisting of particles so small as to be almost equal to the 

particles of the Heterogeneous fluid medium incompassing the earth. It is bounded but on 
one side, namely, towards the earth, and is indefinitely extended upward, being only hindred 
from flying away that way by its own gravity, (the cause of which I shall some other time 
explain.) It consists of the same particles single and separated, of which water and other 
fluids do, conjoyned and compounded, and being made of particles exceeding small, its motion 
(to make its ballance with the rest of the earthy bodies) is exceeding swift, and its Vibrative 
Spaces exceeding large, comparative to the Vibrative Spaces of other terrestrial bodies. I 
suppose that of the Air next the Earth in its natural state may be 8000 times greater 
than that of Steel, and above a thousand times greater than that of common water, and pro- 
portionably I suppose that its motion must be eight thousand times swifter than the former, 
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and above a thousand times swifter than the latter. If therefore a quantity of this body 
be inclosed by a solid body, and that be so contrived as to compress it into less room, 
the motion thereof (supposing the heat the same) will continue the same, and consequently 
the Vibrations and Occursions will be increased in reciprocal proportion, that is, if it be 
Condensed into half the space the Vibrations and Occursions will be double in number: If 
into a quarter the Vibrations and Occursions will be quadruple, <fcc.

“Again, If the conteining Vessel be so contrived as to leave it more space, the length 
of the Vibrations will be proportionably inlarged, and the number of Vibrations and Occur­
sions will be reciprocally diminished, that is, if it be suffered to extend to twice its former 
dimensions, its Vibrations will be twice as long, and the number of its Vibrations and 
Occursions will be fewer by half, and consequently its indeavours outward will be also weaker 
by half.

“ These Explanations will serve mutatis mutandis for explaining the Spring of any other 
Body whatsoever.” 1898.]

16—2
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LXXVII.

ON THE FOUNDATIONS OF THE KINETIC THEORY OF GASES.

[Transactions of the Royal Society of Edinburgh, May 14, 1886, Vol. xxxiii.]
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The attempt to account for the behaviour of gases by attributing their apparently 
continuous pressure to exceedingly numerous, but nearly infinitesimal, impacts on the 
containing vessel is probably very old. It certainly occurs, with some little develop­
ment, in Hooke’s tract of 1678, Lectures de potentid restitutivd, or of Spring; and, 
somewhat more fully developed, in the Hydrodynamica of D. Bernoulli, 1738. Traces 
of it are to be found in the writings of Le Sage and Prdvost some 80 or 90 years 
ago. It was recalled to notice in 1847 by Herapath in his Mathematical Physics, 
and applied, in 1848, by Joule to the calculation of the average speed of the particles 
in a mass of hydrogen at various temperatures. Joule expressly states*  that his results 
are independent of the number of the particles, and of their directions of motion, as 
also of their mutual collisions.

* The paper is reprinted Phil. Mag. 1857, II. See especially p. 215.



lxxvil] on the foundations of the kinetic theory of gases. 125

In and after 1857 Clausius greatly improved the treatment of the problem by 
taking account not only of the mutual impacts of the particles but also of the 
rotations and internal vibrations which they communicate to one another, with the 
bearing of this on the values of the specific heats; at the same time introducing 
(though only to a limited extent) the statistical method. In this series of papers 
we find the first hint of the length of the mean free path of a particle, and the 
explanation of the comparative slowness of the process of diffusion of one gas into 
another. But throughout it is assumed, so far as the calculations are concerned, that 
the particles of a gas are all moving with equal speeds. Of the Virial, which Clausius 
introduced in 1870, we shall have to speak later.

In the Philosophical Magazine for 1860 Clerk-Maxwell published his papers on 
the “ Collisions of Elastic Spheres,” which had been read to the British Association 
in the previous year. In this very remarkable investigation we have the first attempts 
at a numerical determination of the length of the mean free path. These are 
founded on the observed rate of diffusion of gases into one another; and on the 
viscosity of gases, which here first received a physical explanation. The statistical 
method is allowed free play, and consequently the law of distribution of speed among 
the impinging particles is investigated, whether these be all of one kind or a mixture 
of two or more kinds. One of his propositions (that relating to the ultimate partition 
of energy among two groups of colliding spheres), which is certainly fundamental, is 
proved in a manner open to very grave objections:—not only on account of the 
singular and unexpected ease with which the proof is arrived at, but also on account 
of the extraordinary rapidity with which (it seems to show) any forced deviation 
from its conclusions will be repaired by the natural operation of the collisions, 
especially if the mass of a particle be nearly the same in each system. As this 
proposition, in the extended form given to it by Boltzmann and others, seemed to 
render the kinetic theory incapable of explaining certain well-known experimental facts, 
I was induced to devote some time to a careful examination of Maxwell’s proof 
(mainly because it appears to me to be the only one which does not seem to evade 
rather than boldly encounter the real difficulties of the question*),  with the view of 
improving it, or of disproving the theorem, as the case might be. Hence the present 
investigation, which has incidentally branched off into a study of other but closely 
connected questions. The variety of the traps and pit-falls which are met with even 
in the elements of this subject, into some of which I have occasionally fallen, and 
into which I think others also have fallen, is so great that I have purposely gone 
into very minute detail in order that no step taken, however slight, might have the 
chance of escaping criticism, or might have the appearance of an attempt to gloss 
over a real difficulty.

* Compare another investigation, also by Clerk-Maxwell but based on Boltzmann’s processes, which is given 
in Nature, vm. 537 (Oct. 23, 1873). Some remarks on this will be made at the end of the paper. Meanwhile 
it is sufficient to point out that this, like the (less elaborate) investigations of Meyer and Watson, merely 
attempts to show that a certain state, once attained, is permanent. It gives no indication of the rate at 
which it would be restored if disturbed. As will be seen later, I think that this “rate” is an element of 
very great importance on account of the reasons for confidence (in the general results of the investigation) 
which it so strikingly furnishes.
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The greater part of the following investigation is concerned only with the most 
elementary parts of the kinetic theory of gases, where the particles are regarded as 
hard smooth spheres whose coefficient of restitution is unity. The influence of external 
forces, such as gravity, is neglected; and so is that of internal (molecular) forces. 
The number of spheres is regarded as extremely great (say of the order IO20 per 
cubic inch): but the sum of their volumes is regarded as very small in comparison 
with the space through which they are free to move; as, for instance, of the order 
10~3 or 10~4. It will be seen that several of the fundamental assumptions, on which 
the whole investigation rests, are justified only by reference to numbers of such 
enormous magnitude, or such extreme minuteness, as the case may be. The walls of 
the containing vessel are supposed simply to reverse the normal velocity of every sphere 
impinging on them.

I. One set of Equal Spheres.

1. Very slight consideration is required to convince us that, unless we suppose 
the spheres to collide with one another, it would be impossible to apply any species 
of finite reasoning to the ascertaining of their distribution at each instant, or the 
distribution of velocity among those of them which are for the time in any particular 
region of the containing vessel. But, when the idea of mutual collisions is intro­
duced, we have at once, in place of the hopelessly complex question of the behaviour 
of innumerable absolutely isolated individuals, the comparatively simple statistical 
question of the average behaviour of the various groups of a community. This dis­
tinction is forcibly impressed even on the non-mathematical, by the extraordinary 
steadiness with which the numbers of such totally unpredictable, though not uncommon, 
phenomena as suicides, twin or triple births, dead letters, &c., in any populous country, 
are maintained year after year.

On those who are acquainted with the higher developments of the mathematical 
Theory of Probabilities the impression is still more forcible. Every one, therefore, 
who considers the subject from either of these points of view, must come to the 
conclusion that continuous collisions among our set of elastic spheres will, provided 
they are all equal, produce a state of things in which the percentage of the whole 
which have, at each moment, any distinctive property must (after many collisions) 
tend towards a definite numerical value; from which it will never afterwards markedly 
depart.

This principle is of the utmost value, when legitimately applied; but the present 
investigation was undertaken in the belief that, occasionally at least, its powers have 
been to some extent abused. This appears to me to have arisen from the difficulty 
of deciding, in any one case, what amount of completeness or generality is secured 
when the process of averaging is applied in successive steps from the commencement 
to the end of an investigation, instead of being reserved (as it ought to be) for a 
single comprehensive step at the very end.

Some of the immediate consequences of this principle are obvious without calcu­
lation : such as
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(a) Even distribution, at any moment, of all the particles throughout the space 
in which they move.

(6) Even distribution of direction of motion among all particles having any one 
speed, and therefore among all the particles.

(c) Definite percentage of the whole for speed lying between definite limits.
These apply, not only to the whole group of particles but, to those in any portion 

of space sufficiently large to contain a very great number of particles.
(d) When there are two or more sets of mutually colliding spheres, no one 

of which is overwhelmingly more numerous than another, nor in a hopeless minority as 
regards the sum of the others, similar assertions may be made as to each set 
separately.

2. But calculation is required in order to determine the law of grouping as to 
speeds, in (c) above. It is quite clear that the spheres, even if they once had equal 
speed, could not possibly maintain such a state. (I except, of course, such merely 
artificial distributions as those in which the spheres are supposed to move in groups 
in various non-intersecting sets of parallel lines, and to have none but direct impacts. 
For such distributions are thoroughly unstable; the very slightest transverse impact, 
on any one sphere, would at once upset the arrangement.) For, when equal smooth 
spheres impinge, they exchange their velocities along the line of centres at impact, 
the other components being unchanged; so that, only when that line is equally 
inclined to their original directions of motion, do their speeds, if originally equal, 
remain equal after the completion of the impact. And, as an extreme case when 
two spheres impinge so that the velocity of one is wholly in the line of centres at 
impact, and that of the other wholly perpendicular to it, the first is brought to rest 
and the second takes the whole kinetic energy of the pair. Still, whatever be the 
final distribution of speeds, it is obvious that it must be independent of any special 
system of axes which we may use for its computation. This consideration taken 
along with (6) above, suffices to enable us to find this final distribution.

3. For we may imagine a space-diagram to be constructed, in which lines are 
laid off from an origin so as to represent the simultaneous velocities of all the spheres 
in a portion of space large enough to contain a very great number of them. Then 
(6) shows that these lines are to be drawn evenly in all directions in space, and 
(c) that their ends are evenly distributed throughout the space between any two 
nearly equal concentric spheres, whose centres are at the common origin. The density 
of distribution of the ends f.e., the number m unit volume of the space-diagram) is 
therefore a function of r, that is, of + y2 + z2. But the argument above shows, 
further, that this density must be expressible in the form

whatever rectangular axes be chosen, passing through the origin. These joint conditions 
give only two admissible results: viz., either

f(x) = A, or f\x) = BeCx‘.
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The first is incompatible with the physical problem, as it would make the per­
centage of the whole particles, which have one definite speed, increase indefinitely with 
that speed. The same consideration shows a fortiori that, in the second form of 
solution, which is the only one left, C must be negative. Hence the density of the 
distribution of “ ends ” already spoken of is

If n be the whole number of particles, i.e., of “ ends,” we must obviously have
/•OO

4tf53 I e~,ir2r2dr = n.
Jo
1 /tf The value of the integral is ~ ;

so that the number of spheres whose speed is between r and r + dr is

4 ne^^Pdr...................................................... (1).

This distribution will hereafter be spoken of as the “special” state.

The mean speed is therefore
r°° 24 A / — j e^'^'Pdr = ;

V w J 0 V irh

while the mean-square speed is

g-br^dr ~2h'

This shows the meaning of the constant h. (Several of the results we have just 
arrived at find full confirmation in the investigations (regarding mixed systems) which 
follow, if we only put in these P for Q passim:—i.e., pass back from the case of a 
mixture of spheres of two different groups to that of a single group.)

4. Meanwhile, we can trace the general nature of the process by which the 
“special” arrangement of speed expressed by (1) is brought about from any initial 
distribution of speed, however irregular. For impacts on the containing vessel do not 
alter r, but merely shift the particular “ end ” in question to a different position on 
its spherical locus. Similarly, impact of equal particles does not alter the distribution 
of velocity along the line of centres, nor along any line perpendicular to it. But it 
does, in general, produce alterations in the distribution parallel to any line other 
than these.

Hence impacts, in all of which the line of centres is parallel to one common 
line, produce no change in the arrangement of velocity-components along that line, 
nor along any line at right angles to it. But there will be, in general, changes 
along every other line. It is these which lead gradually (though very rapidly) to 
the final result, in which the distribution of veldcity-components is the same for all 
directions.
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When this is arrived at, collisions will not, in the long run, tend to alter it. 
For then the uniformity of distribution of the spheres in space, and the symmetry 
of distribution of velocity among them, enable us (by the principle of averages) to 
dispense with the only limitation above imposed; viz., the parallelism of the lines of 
centres in the collisions considered.

5. In what precedes nothing whatever has been said as to the ratio of the 
diameter of one sphere to the average distance between two proximate spheres, except 
what is implied in the preliminary assumption that the sum of the volumes of the 
spheres is only a very small fraction of the space in which they are free to move. 
It is probable, though not (so far as I know) thoroughly proved, that if this fraction 
be exceedingly small the same results will ultimately obtain, but only after the lapse 
of a proportionately long time; while, if it be infinitely small, there will be no law, 
as there will be practically no collisions. On the other hand, if the fraction be a 
large one (i.e., as in the case of a highly compressed gas), it seems possible that 
these results may be true, at first, only as a very brief time-average of the condition of 
the spheres in any region large enough to contain a great number:—that, in fact, the 
distribution of particles and speeds in such a region will be for some time subject to 
considerable but extremely rapid fluctuations. Reasons for these opinions will be seen 
in the next section of the paper. But it must also be noticed that when the particles 
fill the greater part of the space in which they move, simultaneous impacts of three 
or more will no longer be of rare occurrence; and thus a novel and difficult feature 
forces itself into the question.

Of course with infinitely hard spheres the probability of such multiple collisions 
would be infinitely small. It must be remembered, however, that the investigation is 
meant to apply to physical particles, and not to mere mathematical fictions; so that 
we must, in the case of a highly compressed gas, take account of the possibility of 
complex impacts, because the duration of an impact, though excessively short, is 
essentially finite.

II. Mean Free Path among Equal Spheres.

6. Consider a layer, of thickness 8a;, in which quiescent spheres of diameter s 
are evenly distributed, at the rate of nj per unit volume. If the spheres were opaque, 
such a layer would allow to pass only the fraction

1 — n^s^Sx^

of light falling perpendicularly on it. But if, instead of light, we have a group of 
spheres, also of diameter s, falling perpendicularly on the layer, the fraction of these 
which (whatever their common speed) pass without collision will obviously be only

1 — n^rs^x;

for two spheres must collide if the least distance between their centres is not greater 
than the sum of their radii. It is, of course, tacitly understood when we make such 
a statement that the spheres in the very thin layer are so scattered that no one

T. II. 17 
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prevents another from drying its full duty in arresting those which attempt to pass. 
Thus the fraction above written must be considered as differing very little from 
unity. In fact, if it differ much from unity, this consideration shows that the estimate 
of the number arrested will necessarily be exaggerated. Another consideration, which 
should also be taken into account is that, in consequence of the finite (though very 
small) diameter of the spheres, those whose centres are not in the layer, but 
within one diameter of it, act as if they were, in part, in the layer. But the 
corrections due to these considerations can be introduced at a later stage of the 
investigation.

7. If the spheres impinge obliquely on the layer, we must substitute for Sx the 
thickness of the layer in the direction of their motion.

If the particles in the layer be all moving with a common velocity parallel to 
the layer, we must substitute for the thickness of the layer in the direction of the 
relative velocity.

If the particles in the layer be moving with a common velocity inclined to the 
plane of the layer, and the others impinge perpendicularly to the layer, the result will 
be the same as if the thickness of the layer were reduced in the ratio of the 
relative to the actual speed of the impinging particles, and it were turned so as to 
be perpendicular to the direction of the relative velocity.

8. Now suppose the particles in the layer to be moving with common speed 
vlt but in directions uniformly distributed in space. Those whose directions of motion 
are inclined at angles between /3 and B + ^B to that of the impinging particles are, 
in number,

Wi sin /3d/3/2;

and, by what has just been said, if v be the common speed of the impinging 
particles, the virtual thickness of the layer (so far as these particles are concerned) is

V^x/v,

where v0 = + Vi2 — 2wx cos /3

is the relative speed, a quantity to be treated as essentially positive.

Thus the fraction of the impinging particles which traverses this set without 
collision is

1 — noirs'* £>xv<, sin /3d^/2u

To find the fraction of the impinging particles which pass without collision 
through the layer, we must multiply together all such expressions (each, of course, 
infinitely nearly equal to unity) between the limits 0 and 7r of B- The logarithm 
of the product is

_ f + 2vv1 cos B. sin BdB-
2v J 0
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Making v0 the variable instead of /3, this becomes

TiiTTS2^ f „ ,

r'd’-
If v be greater than vlt the limits of integration are v — Vi, and v + 'Wi, and the 

expression becomes
- (1 +

but, if v be less than vlt the limits are Vj — v and Vi + v, and the value is

— irs^ox I -—f — ). koVj v /

These give, as they should, the common value

— 4w17rs2&r/3 
when v = Vi.

9. Finally, suppose the particles in the layer to be in the “special” state. If 
there be n in unit volume, we have for the number whose speed is between the 
limits Vi and Vi + dv}

/hs/ — g-w

Hence the logarithm of the fraction of the whole number of impinging particles, whose 
speed is v and which traverse the layer without collision, is

-4wwa (?+S)d^+A e~hv' (f+dvi
The value of the factor in brackets is easily seen to be

dV 1 d^V (2v 1 \ 3
“ ~dh + Wd^ + \3h + Wv) 6 ’

or —g——1- —V
4<h2v Ih) ’

where F= f e^^dv,
Jo 

and thus it may readily be tabulated by the help of tables of the error-function.

When v is very large, the ultimate value of the expression is

1 /w
4y h3’

which shows that, in this case, the “special” state of the particles in the layer does 
not affect its permeability.

17-2
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10. Write, for a moment, —

as the logarithm of the fraction of the particles with speed v which traverse the 
layer unchecked. Then it is clear that

e~ex

represents the fraction of the whole which penetrate unchecked to a distance x into 
a group in the “special” state. Hence the mean distance to which particles with 
speed v can penetrate without collision is

I e~exxdx
Jo _ ■

r” “ e'
I e~exdx 

Jo

This is, of course, a function of v; and the remarks above show that it increases 
continuously with v to the maximum value (when v is infinite)

1 
mrs2 ’

i.e., the mean path for a particle moving with infinite speed is the same as if the 
particles of the medium traversed had been at rest.

11. Hence, to find the Mean Free Path among a set of spheres all of which 
are in the special state, the natural course would appear to be to multiply the 
average path for each speed by the probability of that speed, and take the sum of the 
products. Since the probability of speed v to v + dv is

4 e~h^v2dv,

the above definition gives for the length of the mean free path,

4 ^/— J e^^v^dvfe,

or, by the expression for e above,
1 e^^rPdv

o r ~ +si +r ~ w+-) '
JO Jo \ 3v2J Jv \3 vj

This may without trouble (see § 9) be transformed into the simpler expression
1 iPe^dx

n7rS) 0 xe^ + (2x* + 1) f^dx ’

which admits of easy numerical approximation. The numerical work would be 
simplified by dividing above and below by g-®2, but we prefer to keep the present 
form on account of its direct applicability to the case of mixed systems. And it is 
curious to note that 4e~x2 is the third differential coefficient of the denominator.
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The value of the definite integral (as will be shown by direct computation in 
an Appendix to the paper) is about

0’677;

and this is the ratio in which the mean path is diminished in consequence of the 
motion of the particles of the medium. For it is obvious, from what precedes, that 
the mean path (at any speed) if the particles were quiescent would be

1
nirs^'

[The factor by which the mean path is reduced in consequence of the “ special ” 
state is usually given, after Clerk-Maxwell, as 1/^/2 or 0’707.

But this appears to be based on an erroneous definition. For if nv be the 
fraction of the whole particles which have speed v, pv their free path; we have 
taken the mean free path as

S (Pipy),

according to the usual definition of a “mean.”

Clerk-Maxwell, however, takes it as

S(n„v)
S (n^lp^ ’

i.e., the quotient of the average speed by the average number of collisions per 
particle per second. But those who adopt this divergence from the ordinary usage 
must, I think, face the question “ Why not deviate in a different direction, and 
define the mean path as the product of the average speed into the average time of 
describing a free path ? ” This would give the expression

S (n^v). 5

The latter factor involves a definite integral which differs from that above 
solely by the factor in the numerator, so that its numerical determination is
easy from the calculations already made. It appears thus that the reducing factor 
would be about

2
-;—x 0’650, =0’734 nearly;
V7T J ’

i.e., considerably more in excess of the above value than is that of Clerk-Maxwell. 
Until this comparatively grave point is settled, it would be idle to discuss the small 
effect, on the length of the mean free path, of the diameters of the impinging 
spheres.]
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III. Number of Collisions per Particle per Second.

12. Here again we may have a diversity of definitions, leading of course to 
different numerical results. Thus, with the notation of § 11, we may give the mean 
number of collisions per particle per second as

2

This is the definition given by Clerk-Maxwell and adopted by Meyer; and here the 
usual definition of a “ mean ” is employed. The numerical value, by what precedes, is

16ns2A3 [ e~hv2v'dv | (v2 + dv, + f e^hv2 + —^ dvi

2 
and, as the mean speed is (§ 3) ,

v irk

we obtain Clerk-Maxwell’s value of the mean path, above referred to, viz.,

1
mrs2>d2 '

Jo (Jo V Ji> \ o v /

Meyer evaluates this by expanding in an infinite series, integrating, and summing. 
But this circuitous process is unnecessary; for it is obvious that the two parts of 
the expression must, from their meaning, be equal; while the second part is integrable 
directly.

13. On account of its bearing (though somewhat indirectly) upon the treatment 
of other expressions which will presently occur, it may be well to note that a mere 
inversion of the order of integration, in either part of the above double integral, 
changes it into the other part.

Otherwise:—we may reduce the whole to an immediately integrable form by the 
use of polar co-ordinates; putting

v = r cos 0, Vi = r sin 0,

and noting that the limits of r are 0 to oo in both parts, while those of 0 are 0 
to tt/4 in the first part, and tt/4 to tt/2 in the second. [This transformation, 
however, is not well adapted to the integrals which follow, with reference to two 
sets of spheres, because h has not the same value in each set.]

14. Whatever method we adopt, the value of the expression is found to be

. ns2 = 2. /— mis2;
V h V irb
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But (in illustration of the remarks at the end of § 11) we might have defined 
the mean number of collisions per particle per second as

S (v) 1\ , or as ; &c., &c.2 (nvpv) 2 (nvpvfv)

The first, which expresses the ratio of the mean speed to the mean free path, gives
2 mis2

and the second, which is the reciprocal of the mean value of the time of describing 
a free path, gives

1 Trns2
Vh 0'650'

The three values which we have adduced as examples bear to one another the 
reciprocals of the ratios of the above-mentioned determinations of the mean free path.

IV. Clerk-Maxwell’s Theorem.

15. In the ardour of his research of 1859*, Maxwell here and there contented 
himself with very incomplete proofs (we can scarcely call them more than illustrations) 
of some of the most important of his results. This is specially the case with the 
investigation of the law of ultimate partition of energy in a mixture of smooth 
spherical particles of two different kinds. He obtained, in accordance with the so- 
called Law of Avogadro, the result that the average energy of translation is the 
same per particle in each system; and he extended this in a Corollary to a mixture 
of any number of different systems. This proposition, if true, is of fundamental 
importance. It was extended by Maxwell himself to the case of rigid particles of 
any form, where rotations perforce come in. And it appears that in such a case 
the whole energy is ultimately divided equally among the various degrees of freedom. 
It has since been extended by Boltzmann and others to cases in which the individual 
particles are no longer supposed to be rigid, but are regarded as complex • systems 
having great numbers of degrees of freedom. And it is stated, as the result of a 
process which, from the number and variety of the assumptions made at almost every 
stage, is rather of the nature of playing with symbols than of reasoning by consecutive 
steps, that in such groups of systems the ultimate state will be a partition of the 
whole energy in equal shares among the classes of degrees of freedom which the 
individual particle-systems possess. This, if accepted as true, at once raises a formidable 
objection to the kinetic theory. For there can be no doubt that each individual 
particle of a gas has a very great number of degrees of freedom besides the six 
which it would have if it were rigid:—the examination of its spectrum while 
incandescent proves this at once. But if all these degrees of freedom are to share 
the whole energy (on the average) equally among them, the results of theory will no 
longer be consistent with our experimental knowledge of the two specific heats of a 
gas, and the relations between them.

* Phil. Mag., 1860.
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16. Hence it is desirable that Clerk-Maxwell’s proof of his fundamental Theorem 
should be critically examined, and improved where it may be found defective. If it 
be shown in this process that certain preliminary conditions are absolutely necessary 
to the proof even of Clerk-Maxwell’s Theorem, and if these cannot be granted in the 
more general case treated by Boltzmann, it is clear that Boltzmann’s Theorem must 
be abandoned.

17. The chief feature in respect of which Maxwell’s investigation is to be 
commended is its courageous recognition of the difficulties of the question. In this 
respect it far transcends all other attempts which I have seen. Those features, besides 
too great conciseness, in respect of which it seems objectionable, are

(a) He assumes that the transference of energy from one system to the other 
can be calculated from the results of a single impact between particles, one from 
each system, each having the average translational energy of its system.

Thus (so far as this step is concerned) the distribution of energy in each 
system may be any whatever.

(6) In this typical impact the velocities of the impinging spheres are taken as 
at right angles to one another, so that the relative speed may be that of mean 
square as between the particles of the two systems. The result obtained is fallacious, 
because in general the directions of motion after impact are found not to be at 
right angles to one another, as they would certainly be (on account of the perfect 
reversibility of the motions) were this really a typical impact.

(c) Clerk-Maxwell proceeds as if every particle of one system impinged upon 
one of the other system at each stage of the process—i.e., he calculates the trans­
ference of energy as if each pair of particles, one from each system, had simultaneously 
a typical impact. This neglect of the immensely greater number of particles which 
either had no impact, or impinged on others of their own group, makes the calculated 
rate of equalisation far too rapid.

(d) Attention is not called to the fact that impacts between particles are 
numerous in proportion to their relative speed, nor is this consideration introduced in 
the calculations.

(e) Throughout the investigation each step of the process of averaging is 
performed (as a rule) before the expressions are ripe for it.

18. In seeking for a proof of Maxwell’s Theorem it seems to be absolutely 
essential to the application of the statistical method to premise:—

(A) That the particles of the two systems are thoroughly mixed.

(B) That in any region containing a very large number of particles, the particles 
of each kind separately acquire and maintain the error-law distribution of speeds— 
i.e., each set will ultimately be in the “ special ” state. The disturbances of this 
arrangement produced in either system by impacts on members of the other are 
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regarded as being promptly repaired by means of the internal collisions in the system 
itself. This is the sole task assigned to these internal collisions. We assume that 
they accomplish it, so we need not further allude to them.

[The warrant for these assumptions is to be sought as in § 4; and in the fact 
that only a small fraction of the whole particles are at any instant in collision; 
i.e., that each particle advances, on the average, through a considerable multiple of 
its diameter before it encounters another.]

(C) That there is perfectly free access for collision between each pair of particles, 
whether of the same or of different systems; and that, in the mixture, the number 
of particles of one kind is not overwhelmingly greater than that of the other kind.

[This is one of the essential points which seem to be wholly ignored by Boltzmann 
and his commentators. There is no proof given by them that one system, while 
regulating by its internal collisions the distribution of energy among its own members, 
can also by impacts regulate the distribution of energy among the members of 
another system, when these are not free to collide with one another. In fact, if (to 
take an extreme case) the particles of one system were so small, in comparison with 
the average distance between any two contiguous ones, that they practically had no 
mutual collisions, they would behave towards the particles of another system much as 
Le Sage supposed his ultra-mundane corpuscles to behave towards particles of gross 
matter. Thus they would merely alter the apparent amount of the molecular forces 
between the particles of a gas. And it is specially to be noted that this is a 
question of effective diameters merely, and not of masses:—so that those particles 
which are virtually free from the self-regulating power of mutual collisions, and 
therefore form a disturbing element, may be much more massive than the others.]

19. With these assumptions we may proceed as follows:—Let P and Q be the 
masses of particles from the two systems respectively; and when they impinge, let 
u, v be their velocity-components measured towards the same parts along the line 
of centres at impact. If these velocities become, after impact, u', v' respectively, we 
have at once

P(u'-u)=--^^(u-v) = -Q(v'-v);

an immediate consequence of which is
P _ u2) = - -p4^ [Fu2 - - (P - Q) uv] = - Q (v'2 - v2).

Hence, denoting by a bar the average value of a quantity, we see that transference of 
energy between the systems must cease when

Fu2 — Qp — (P — Q) uv = 0 ..............................................(1),
and the question is reduced to finding these averages.

[I thought at first that uv might be assumed to vanish, and that u2 and v2 
might each be taken as one-third of the mean square speed in its system. This set 
of suppositions would lead to Maxwell’s Theorem at once. But it is clear that, when 
two particles have each a given speed, they are more likely to collide when they

T. II. 18
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are moving towards opposite parts than when towards the same parts. Hence uv 
must be an essentially negative quantity, and therefore Pu2 necessarily less than Qv2, 
if P be greater than Q. Thus it seemed as if the greater masses would have on 
the average less energy than the smaller. These are two of the pitfalls to which 
I have alluded. Another will be met with presently.]

20. But these first impressions are entirely dissipated when we proceed to 
calculate the average values. For it is found that if we write (1) in the form

Pu2 — uv — Qv2 — uv = 0,

the terms on the left are equal multiples of the average energy of a P and of a 
Q respectively. Thus Maxwell’s Theorem is rigorously true, though in a most unexpected 
manner. There must surely be some extremely simple and direct mode of showing 
that u2 — uv is independent of the mean-square speed of the system of Q’s. Mean­
while, in default of anything more simple, I give the investigation by which I arrived 
at the result just stated.

21. Suppose a particle to move, with constant speed v, among a system of 
other particles in the “ special ” state; the fraction of the whole of its encounters 
which takes place with particles, whose speed is from to Wj + dvx and whose 
directions of motion are inclined to its own at angles from /3 to /3 + dft, is (§ 8) 
proportional to

e^^v^dv^t sin ft dft, 
or as we may write it for brevity

I'M sin ft dft.
This is easily seen by remarking that, by § 8, while the particle advances through 
a space ^x, it virtually passes through a layer of particles (such as those specified) 
of thickness v^xjv. Here (§ 3) 3/2/c is the mean-square speed of the particles of the 
system.

Let the impinging particle belong to another group, also in the special state. 
Then the number of particles of that group which have speeds between v and v + dv 
is proportional to

e^^dv = v, 
as we will, for the present, write it.

Now let V, Vlt Fo, in the figure, be the projections of v, v1, v0 on the unit
sphere whose centre is 0; C that of the line of 
centres at impact. Then VOV^ft. Let VoOV=a, 
VoOV^a., V.OC^y, and VV0G = ^. The limits of 7 
are 0 and vr/2; those of </> are 0 and 2?r. Also the 
chance that C lies within the spherical surface­
element sin ydyd<f>, is proportional to the area of 
the projection of that element on a plane perpen­
dicular to the direction of v0, i.e., it is propor­
tional to

cos y sin ydyd^>.
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But by definition we have
u = v cos VOC = v (cos a cos y + sin a sin y cos <£),
v = v1 cos V^C = (cos aj cos y + sin a, sin y cos </>);

and by the Kinematics of the question, as shown by the dotted triangle in the figure, 
we have

v cos a — v1 cos ai = r0,
v sin a — Vi sin aj = 0.

Thus, as indeed is obvious from much simpler considerations,
u — V = vQ cos y,

J WjVo sin ^d^u (u — v) cos y sin ydyd<f> 
so that ua — uv =----- t---------------------------------------------------------------------------------

I WtVo sin ^d/3 cos y sin ydyd^

vvTv0 sin ^d^v (cos a cos y + sin a sin y cos ^>) v0 cos2 y sin ydydfy

14/5 ~ (dh dk) l3,S

4 l3/3
Thus Clerk-Maxwell’s Theorem is proved.

vv^ sin/3d/3 cos y sin ydyd<l>

where each of the integrals is quintuple.

The term in cos <f> vanishes when we integrate with respect to <£:—and, when we 
further integrate with respect to y, we have for the value of the expression

| Jsin ^d^ w0 cos a

sin fl d/3

where the integrals are triple.
Now 2w0 cos a = r2 + r02 - v^,

and Wj sinfldfl = vodvo,

so that the expression becomes

I' r02 dv0 VV,-----
J W1

It will be shown below (Part VI.), that we have, generally, 
2n-l

[ v^dv,, Im+1 y-rr \h+k) 2
4 n\ (hk)^ ’

and that it is lawful to differentiate such expressions with regard to h or to k. Hence

u2 — uv =

18—2
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22. The investigation of the separate values of the parts of this expression is 
a little more troublesome, as the numerators now involve second partial differential 
coefficients of f; but it is easy to see that we have 

A _ AY j _ 2.rfA dk) 1
16

A_A^
\ dh dk) I^+I^ h+2k

2h (h + k)

and, from these, the above result again follows.

[It is clear, from the investigation just given, that the expression for the value of 
u2 — uv would be the same (to a numerical factor pres) whatever law we assumed for the 
probability of the line of centres having a definite position, and thus that Maxwell’s 
Theorem would be true, provided only that the law were a function of 7 alone, and 
not of $ (i.e., that the possible positions of the line of centres were symmetrically 
distributed round the direction of relative motion of the impinging particles). In my 
first non-approximate investigation (read to the Society on Jan. 18, and of which an 
Abstract appeared in Nature, Jan. 21, 1886) I had inadvertently assumed that the possible 
positions of C were equally distributed over the surface of the hemisphere of which is 
the pole, instead of over the surface of its diametral plane. The forms, however, of 
u2 and of uv separately, suffer more profound modifications when such assumptions are 
made.]

V. Rate of Equalisation of Average Energy per particle in two 
Mixed Systems.

23. To obtain an idea of the rate at which a mixture of two systems approaches 
the Maxwell final condition, suppose the mixture to be complete, and the systems 
each in the special state, but the average energy per particle to be different in the two. 
As an exact solution is not sought, it will be sufficient to adopt, throughout, roughly 
approximate expressions for the various quantities involved. We shall choose such as 
lend themselves most readily to calculation.

It is easy to see, by making the requisite slight modifications in the formula of 
§12, that, if m be the number of P’s and n that of Q’s in unit volume, the number of 
collisions per second between a P and a Q is

/ir(h+k)
2mns2 * /----77------, 

V hk

where s now stands for the sum of the radii of a P and of a Q. For if, in the formula 
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referred to, we put (hk^ for h3, and also put k for h in the exponentials where the 
integration is with respect to vlt it becomes

8«s2 Qik^m^, 

according to the notation of § 21. This is the average number of impacts per second 
which a P has with Q’s.

Hence, if tn- be the whole energy of the P’s, p that of the Q’s, per unit volume, the 
equations of § 19 become

16 PQ /^h + k), 
=-tcws V -mp) = -P’

from which we obtain, on the supposition (approximate enough for our purpose) that 
we may treat l//i +1 /k as constant,

— mp = Ge~tlT,

, 1 16 PQ , /ir(h + k)where y

The quantity nw — mp — mn (w/m — p/n)

is mn times the difference of the average energies of a P and a Q, and (since 
en= 100 nearly) we see that it is reduced to one per cent, of its amount in the time

13-8 (P + QY I hk , 
= 4 67 = 16s2(m + m)“W' V seconds-

24. For a mixture, in equal volumes, of two gases in which the masses of the 
particles are not very different, say oxygen and nitrogen, we may assume as near enough 
for the purposes of a rough approximation

3 
m = n = x x 1020,

whence m + n (per cubic inch) is double of this, 

A =±
2A Ik = (12 x 1600 inch sec.)2,

s = 3 x 10-8 inch,

o , 13-8 x 1016 x 4 / 3 1
80 that = 16 x 9 x 3 x 10“ x 12 x 1600 V W = 33T102 seconds’ ncar1^5

and the difference has fallen to 1 per cent, of its original amount in this period, 
i.e., after each P has had, on the average, about four collisions with Q’s. This calculation 
has no pretensions to accuracy, but it is excessively useful as showing the nature of the 
warrant which we have for some of the necessary assumptions made above. For if 
the rapidity of equalisation of average energy in two systems is of this extreme order 
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of magnitude, we are entitled to suppose that the restoration of the special state in any 
one system is a phenomenon taking place at a rate of at least the same if not a 
higher order of magnitude.

Clerk-Maxwell’s result as regards the present question 
impact between a P and a Q, the difference of their energies

is that, at every typical 
is reduced in the ratio

so that, if the masses were equal, the equalisation would be instantaneous.

VI. On some Definite Integrals.

25. It is clear that expressions of the forms

r00
e~1lx,ixrdx / e~ky2ysdy 

o Jo

/’CO 7.00

and 1 I e-Wifidy,
Jo J x

where r and s are essentially positive integers, may lawfully be differentiated under the 
integral sign with regard to h or to k. In fact they, and their differential coefficients, 
which are of the same form, are all essentially finite.

As, in what immediately follows, we shall require to treat of the first of these forms 
only when r is odd and s even, and of the second only when r is even and s odd, 
it follows that their values can all be obtained by differentiation from one or other 
of the integrals

e-^xdx f e ky'dy = —-,
o Jo 4ih Vh + k

and
X

dir
k dh + k

These values may be obtained at once by noticing that the second form is integrable 
directly; while, by merely inverting the order of integration, it becomes the first with 
h and k interchanged.

26. In §§ 21, 22 we had to deal with a number of integrals, all of one form, of 
which we take as a simple example

It vvx — dv0
J Wi

1 f°°I e
•J J 0

if e ivydy((x + y)s-(x-y)3)+f e Wydy ((y+ a)s-(y - aY) 
v 0 J x
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From the remarks above it is clear that this can be expressed as

2 5/5 d2 1 / d2 1 )
3 4 (\ dhdk dk'2) hfh + k V dkdh dh2) kfh + k)

— ? 3 / & + 3A, 3k + h \
“3 4 2 \h2(h + kfi + k^h + kfi)

_ fir (ks + 3k2 h) + (3kh2 + hP)
4 h2k2 (h + kfi

_ V’’’ (h + k)*
4 (hk)2

The peculiar feature here shown is the making up of the complete cube of k + h 
in the numerator by the supply of the first half of its terms from the first part of the 
integral, and of the remainder from the second*. On trial I found that the same thing 
holds for Zs and I7, so that I was led to conjecture that, generally, as in § 21

2n—1
-^2n+i = «f (h+ty 2

2n + l 4 (hkf+1 ’

After the preliminary work we have just given, it is easy to prove this as follows. 
We have always

fx + y)m+1 -(x- y)“+1) (foe + yf + (x - yf)

= (x + y^3 -(x- y)m+a + («2 - yf2 (fx + y)m-i -(x- y )“->).

Operate on this by J e~h^xdxJ e~Wydy , 

and on the same expression, with x and y interchanged (when, of course, it remains 
true), by 

r00 / \
I e~hx2xdx I e^^ydy ( ),
Jo Jx \ /

and add the results. This gives at once

d _ d V r 
fih~dk)

which is found on trial to be satisfied by the general value given above.

* Prof. Cayley has called my attention, in connection with this, to the following expression from a Trinity 
(Cambridge) Examination Paper:—

(a + b)2n = (a + b)n(an + bn)
+ (a + &)n-1 (nan b + nabn)
+ (o+b}^ a2bA

+ (a + b) (a"6«-i + a»-i6«).' ' 1.2...... (n -1) '
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27. Partly as a matter of curiosity, but also because we shall require a case of 
it, it may be well to mention here that similar processes (in which it is no longer 
necessary to break the y integration into two parts) lead to the companion formula

T fX) p<x>
~ = e~/l'a:2xdx e^^ydy ((x + y)2n — (x — y)2n)/2n
2n Jo Jo

it 1.3.5 ... (2n— 1) (h + k)n~1
4 2n 2»4-l

(hk) 2

And we see, by Wallis’ Theorem, that (when n is increased without limit) I2n is 
ultimately the geometric mean between I2n-i and Im+1.

VII. Mean Path in a Mixture of two Systems.

28. If we refer to § 10, we see that, instead of what was there written as — e8x, 
we must now write — (e + e^ 8x; where e1; which is due to stoppage of a particle of 
the first system by particles of the second, differs from e in three respects only. Instead 
of the factor 4s2, which appears in e, we must now write (s + Sj)2; where sx is the 
diameter of a particle of the second system. Instead of h and n we must write 
and respectively.

Hence the mean free path of a particle of the first system is

ttJo e + el

which, when the values of e and e, are introduced, and a simplification analogous to those 
in §§ 9, 11, is applied, becomes

1 p__________________________ 46"^^^__________________________
W7rSJ xe-* + (l+2x2)J“e~*dx+^(?-^y^ +2x12)p'€-^dx^’

in which xx = x ■

Thus the values tabulated at the end of the paper for the case of a single system 
enable us to calculate the value of this expression also.

VIII. Pressure in a System of Colliding Particles.

29. There are many ways in which we may obtain, by very elementary processes, 
the pressure in a system of colliding particles.

(a) It is the rate at which momentum passes across a plane unit area; or the 
whole momentum which so passes per second. [It is to be noted that a loss of 
negative momentum by the matter at either side of the plane is to be treated as a gain 
of positive.]
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In this, and the other investigations which follow, we deal with planes supposed 
perpendicular to the axis of or with a thin layer bounded by two such planes.

The average number of particles at every instant per square unit of a layer, whose 
thickness is bx, is n8x. Of these the fraction

v = 4 e^^i^dv

have speeds from v to v + dv. And of these the fraction

sin jdd^l^

are moving in directions inclined from to /3 + d^ to the axis of x. Each of them, 
therefore, remains in the layer for a time

ixfv cos /3,

and carries with it momentum Pv cos /3

7Tparallel to x. Now from /3 = 0 to we have positive momentum passing towards x 
a

positive. From /3 = — to = w we have an equal amount of negative momentum leaving 

x positive. Hence the whole momentum which passes per second through a plane unit 
perpendicular to x is

2 x Pn
r00 . 1 _
vv2 cos2 /3 sin 0 d/3 = ~ Pnv2, 

Jo J o

2Pressure =p = - (Kinetic o

where the bar indicates mean value. That is

Energy in Unit Volume).

(b) Or we might proceed as follows, taking account of the position of each particle 
when it was last in collision.

Consider the particles whose speeds are from v to v + dv, and which are contained 
in a layer of thickness bx, at a distance x from the plane of yz. Each has (§ 10) on 
the average ev collisions per second. Thus, by the perfect reversibility of the motions, 
from each unit area of the layer there start, per second,

nvevbx

such particles, which have just had a collision. These move in directions uniformly 
distributed in space; so that

sin ^d^)2

of them are moving in directions inclined /3 to + d^ to the axis of x. Of these 
the fraction

e—ex sec 3

T. II. 19
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(where x is to be regarded as signless) reach the plane of yz, and each brings 
momentum

Pv cos /3 

perpendicular to that plane. Hence the whole momentum which reaches unit area 
of the plane is 

7T 
i r00 r00

2x~nPl vv2 cosflsinfldfl edxe~asec^ 
2 J 0 Jo Jo

= nP I cos2/? sin^d^, 
Jo Jo

the same expression as before.

(c) Clausius’ method of the virial, as usually applied, also gives the same result.

30. But this result is approximate only, for a reason pointed out in § 6 above. To 
obtain a more exact result, let us take the virial expression itself. It is, in this case, if 
N be the number of particles in volume V,

1 _ Q i
& A

where R is the mutual action between two particles whose centres are r apart, and is 
positive when the action is a stress tending to bring them nearer to one another. Hence, 
omitting the last term, we have approximately 

which we may employ for the purpose of interpreting the value of the term omitted.

[It is commonly stated (see, for instance, Clerk-Maxwell’s Lecture to the Chemical 
Society*)  that, when the term ^(Rr) is negative, the action between the particles is in 
the main repulsive:—“ a repulsion so great that no attainable force can reduce the 
distance of the particles to zero.” There are grave objections to the assumption of 
molecular repulsion; and therefore it is well to inquire whether the mere impacts, which 
must exist if the kinetic theory be true, are not of themselves sufficient to explain the 
experimental results which have been attributed to such repulsion. The experiments 
of Regnault on hydrogen first showed a deviation from Boyle’s Law in the direction of 
less compression than that Law indicates. But Andrews showed that the same thing 
holds for all gases at temperatures and pressures over those corresponding to their 
critical points. And Amagat has experimentally proved that in gaseous hydrogen, which 
has not as yet been found to exhibit any traces of molecular attraction between its 
particles, the graphic representation of pV in terms of p (at least for pressures above an 
atmosphere, and for common temperatures) consists of a series of parallel straight lines. 
If this can be accounted for, without the assumption of molecular repulsion but simply 

* Chem. Soc. Jour., xni. (1875), p. 493.
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by the impacts of the particles, a real difficulty will be overcome. And it is certain that, 
at least in dealing with hard colliding spheres if not in all cases, we have no right to 
extract from the virial, as the pressure term, that part only which depends upon impacts 
on the containing vessel; while leaving unextracted the part depending on the mutual 
impacts of the particles. The investigation which follows shows (so far as its assumptions 
remain valid when the particles are not widely scattered) that no pressure, however great, 
can bring a group of colliding spheres to a volume less than four times the sum of 
their volumes. If they were motionless they could be packed into a space exceeding the 
sum of their volumes in the ratio 6 : tt V2, or about 1’35 : 1, only.]

In the case of hard spheres we have obviously r = s; and, with the notation of 
§19, remembering that Q = P, k — h, we have

R = — P (u — v).

Hence we must find, by the method of that section, the mean value of the latter 
expression. It is easily seen to be

pfwiV* sin/3d/3 cos2 7 sinydydfy _ 2P ^vviv^dv^vv^ 
sin/3d/3 cosy sinydyd<f> 3 iw-[v02dv0/vv1

= /Z.
3 A/3 V 2h’

But, § 14, the average number of collisions, per particle per second, is

Hence, for any one particle, the sum 
average, uniformly over its surface) is, in one

of the values of R (distributed, on the 
second,

2NP 4N —
S (R) =----,Ty~ 7TS2 = - 5 vPP^ = —p. 4tts2. h V 3 V

Thus it would appear that we may regard each particle as being subjected to the 
general pressure of the system; but as having its own diameter doubled. It is treated, 
in fact, just as it would then be if all the others were reduced to massive points.

The value of the term in the virial is

1^2(72)

because, though every particle suffers the above average number of collisions, it takes 
two particles to produce a collision. This is equal to

— npjrs3 = — 6p (sum of volumes of spheres);
so that the virial equation becomes

_ 3
nPv2/2 = ^p {F — 4 (sum of volumes of spheres)}, A

which, in form at least, agrees exactly with Amagat’s* experimental results for hydrogen.
* Annates de Chimie, xxn. 1881.

19—2
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These results are closely represented at 18° C. by

p(V- 2 6) = 2731;
and at 100° C. by 2’7) = 3518.

The quantity subtracted from the volume is sensibly the same at both temperatures. 
The right-hand members are nearly in proportion to the absolute temperatures. The 
pressure is measured in metres of mercury. Hence the volume of the gas, at 18° C. 
and one atmosphere, is (to the unit employed)

2-6 + 2731/0'76 = 3596 nearly.

Thus, by the above interpretation of Amagat’s results, we have at 18° C.
mrs3 = 3'9/3596.

Clerk-Maxwell,' in his Bradford Lecture*, ranks the various numerical data as to 
gases according to “the completeness of our knowledge of them.” The mean free path 
appears in the second rank only, the numbers in which are regarded as rough ap­
proximations. In the third rank we have two quantities involved in the expression 
for the mean free path, viz., the absolute diameter of a particle, and the number of 
particles per unit volume (s and n of the preceding pages).

To determine the values of s and n separately, a second condition is required. 
It has usually been assumed, for this purpose, that the volume of a gas, “when 
reduced to the liquid form, is not much greater than the combined volume of the 
molecules.” Maxwell justifies this assumption by reference to the small compressibility of 
liquids.

But, if the above argument be, even in part, admitted, we are not led to any 
such conclusion, and we can obtain ns3 (as above) as a quantity of the second rank. 
We have already seen that ns2 is inversely proportional to the mean free path, and 
is thus also of the second rank. From these data we may considerably improve our 
approximations to the values of n and of s.

Taking Maxwell’s estimate of the mean free path in hydrogen, we have (to an 
inch as unit of length)

—-77 = 380.10~8.
irns2

From these values of ns2 and ns3 we have, approximately, for 0° C. and 1 atmosphere, 

n = 16.1020, s = 6. 10~9.

The values usually given are

n = 3.1020, s = 2-3.10-s.

It must be recollected that the above estimate rests on two assumptions, neither

* Phil. Mag., 1873, n. 453. See also Nature, vin. 298. 
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of which is more than an approximation, (a) that the particles of hydrogen behave 
like hard spheres, (b) that they exert no mutual molecular forces. If there were molecular 
attraction the value of ns3 would be greater than that assumed above, while ns" would 
be unaltered. Thus the particles would be larger and less numerous than the estimate 
shows.

[Of course, after what has been said, it is easy to see that V should be di­
minished further by a quantity proportional to the surface of the containing vessel 
and to the radius of a sphere. But though this correction will become of constantly 
greater importance as the bulk occupied by a given quantity of gas is made smaller, 
it is probably too minute to be detected by experiment.]

IX. Effect of External Potential. {Added June 15, 1886.)

31. Another of Maxwell’s most remarkable contributions to the Kinetic Theory 
consists in the Theorem that a vertical column of gas, when it is in equilibrium 
under gravity, has the same temperature throughout. He states, however, that an 
erroneous argument on the subject, when it occurred to him in 1866, “nearly upset 
[his] belief in calculation.”* He has given various investigations of the action of 
external forces on the distribution of colliding spheres, but all of them are complex. 
The process of Boltzmann, alluded to in a foot-note to the introduction {ante, p. 125), 
and which Clerk-Maxwell ultimately preferred to his own methods, involves a step of 
the following nature.

An expression, analogous to the f of § 3, but in which B and C are undeter­
mined functions of the coordinates x, y, z of a point, is formed for the number of 
particles per unit volume, at that point, whose component speeds, parallel to the 
axes, lie between given narrow limits. I do not at present undertake to discuss the 
validity or the sufficient generality of the process by which this expression is obtained, 
though the same process is (substantially) adopted by Watson and others who have 
written on the subject. However obtained, the expression is correct. It can be 
established at once by reasoning such as that in 2, 3, 4. To determine the forms 
of the aforesaid functions, however, a most peculiar method is adopted by Boltzmann 
and Maxwell. The number of the particles per unit volume at x, y, z whose cor­
responding “ ends ” occupy unit volume at u, v, w in the velocity space-diagram (§ 3), 
is expressed in terms of these functions, and of u- + v" + w3. The variation of the 
logarithm of this number of particles is then taken, on the assumption that

bx = ubt, &c., = — ~j— bt, &c.,ax

where U is the external potential; and it is equated to zero, because the number of

* Nature, vin., May 29, 1873. Maxwell’s name does not occur in the Index to this volume, though he has 
made at least five contributions to it, most of which bear on the present subject:—viz. at pp. 85, 298, 361, 
527, 537.
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particles is unchangeable. As this equation must hold good for all values of u, v, w, 
it furnishes sufficient conditions for the determination of B and C. The reasons for 
this remarkable procedure are not explained, but they seem to be as below. The 
particles are, as it were, followed in thought into the new positions which they would 
have reached, and the new speeds they would have acquired, in the interval 8t, had 
no two of them collided or had there been no others to collide with them. But this 
is not stated, much less justified, and I cannot regard the argument (in the form 
in which it is given) as other than an exceedingly dangerous one; almost certain to 
mislead a student.

What seems to underlie the whole, though it is not enunciated, is a postulate 
of some such form as this:—

When a system of colliding particles has reached its final state, we may assume 
that (on the average} for every particle which enters, and undergoes collision in, a 
thin layer, another goes out from the other side of the layer precisely as the first 
would have done had it escaped collision.

32. If we make this assumption, which will probably be allowed, it is not 
difficult to obtain the results sought, without having recourse to a questionable 
process of variation. For this purpose we must calculate the changes which take 
place in the momentum, and in the number of particles, in a layer; or, rather, we 
must inquire into the nature of the processes which, by balancing one another’s 
effects, leave these quantities unchanged.

Recur to § 29, and suppose the particles to be subject to a potential, U, which 
depends on x only. Then the whole momentum passing per unit of time perpen­
dicularly across unit surface of any plane parallel to yz is

O J 0

Bn 
2h ’

where n (the number of particles per cubic unit), and h (which involves the mean­
square speed), are functions of x.

At a parallel 
corresponding value

plane, distant a from the first in the 
is

direction of x positive, the

But the difference

1 „ A d\n
2PV + adx) h' 

must be sufficient to neutralise, in the
the momentum which is due to the external potential, i.e.,

„ dU— Bna. —r~.dx

layer between these planes,

or

Hence lPn d ™-_pdU_
21 dxh~ 1 dx ’

^dU_ \ dn 1 dh 
dx n dx h dx (1).
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Again, the number of particles which, in unit of time, leave the plane unit 
towards the side x positive is 

IT
1 f® p . If”

pv cos/3 sin ^d^ = 7 n pv.
& J 0 J 0 4 Jo

Hence those which leave the corresponding area at distance a are, in number,

But, by our postulate of last section, they can also be numbered as
1 f”^nj pv (1 — £2/v2),

where t2 = 2a —7—.dx

This expression is obtained by noting that none of those leaving the first plane 
can pass the second plane unless they have

t>2 cos2/3 > 2a .dx
All of the integrals contained in these expressions are exact, and can therefore give 
no trouble. The two reckonings of the number of particles, when compared, give

, dU dn 1 dh
1 dx n dx 2h dx.................................................

From

which

which

(1) and (2) together we find, first 
^ = 0, 
dx

is the condition of uniform temperature; and again 
n = «oe—

is the usual relation between density and potential.

so

[In obtaining (2) above it was assumed that, with sufficient accuracy, 
= 1 _

To justify this:—note that in oxygen, at ordinary temperatures and under gravity, 
g
~ = 15 502 in foot-second units,2h, 

d^-^2 
dx “ 4

that, even if a = 1 inch, we have approximately
1

h?= 2h
CLOG 300,000 ’

It 
of

is easy to see that exactly similar reasoning may be applied when U is a function 
x, y, z\ so that we have, generally,

n =



152 ON THE FOUNDATIONS OF THE KINETIC THEORY OF GASES. [LXXVII.

where h is an absolute constant. And it is obvious that similar results may be 
obtained for each separate set of spheres in a mixture, with the additional proviso 
from Maxwell’s Theorem (§§ 20, 21) that P/h has the same value in each of the sets.

APPENDIX.

The following little table has been calculated for the purposes of §§ 11, 28, by Mr J. B. Clark, 
Neil-Arnott Scholar in the University of Edinburgh, who used six-place logarithms:—■

X A\ A.

•1 ■000099 •200665 •00049 + •000990 •00493 +
•2 •001537 •405312 •00379 + •007686 •01896 +
•3 •007420 ■617838 •01198 + •024676 •03994-
•4 ■021814 •841997 •02591 - •054537 •06477 +
•5 •048675 1-081321 •04501 + •097350 •09003 -
•6 •090418 1-339068 •06752 + •150698 •11254-
■7 •147091 1-618194 •09089 •210130 •12985 +
•8 •215978 1-921318 •11241- •269973 •14051 +
•9 •291870 2-250723 •12968 + •324301 •14409-

1-0 •367879 2-608351 •14104- •367879 ■14104-
1-1 •436590 2-995825 •14572 + •396900 •13249-
1-2 ■491380 3-414479 •14388 + •409409 •11990 +
1’3 •527004 3 865384 •13633 + •405388 •10488-
1-4 ■541119 4-349386 •12441 + •386514 •08887 -
1-5 •533581 4-867132 •10962 + •355721 •07309-
1-6 •506619 5-419114 •09348 - •316637 •05843-
17 •464174 6-005696 •07729 - •273044 •04546 +
1-8 ■409127 6-627149 •06203 + ■228404 •03447 -
1-9 •352543 7-283658 •04840- •185549 •02547 +
2-0 •293040 7-975359 •03674 + •146520 •01837 +
2-1 ■236390 8-702340 •02715 + ■112567 •01294-
2-2 •185224 9-464667 •01956- •084193 •00889
2-3 ■141065 10-262360 •01373 + •061333 •00598 -
2-4 •104541 11-095474 •00941 + •043559 •00393-
2-5 •075390 11-964016 ■00630 + ■030156 •00252 +
2-6 •052962 12-867980 ■00411- •020370 •00158 +
2-7 •036242 13-807388 •00262 + •013423 ■00097 +
2-8 •024155 14-782249 •00162 + •008627 •00058 +
2-9 •015700 15-792549 •00099 + ■005414 •00034 +
3’0 ■009963 16-838302 •00057 + •003321 •00019 +

Here A, — and — while X2 = o:€ ^ + (28s2 + 1) [ e ^dx.
Jo

The sum of the numbers in the fourth column is 1-69268, so that the approximate value 
of the integral in § 11, which is 0'4 of this, is 0’67707.

The sum of the numbers in the sixth column is 1’62601, so that the value of the integral 
in [the addition to] § 11 is about 0’6504.
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In the present communication I have applied the results of my first paper to 
the question of the transference of momentum, of energy, and of matter, in a gas 
or gaseous mixture; still, however, on the hypothesis of hard spherical particles, 
exerting no mutual forces except those of impact. The conclusions of §§ 23, 24 of 
that paper form the indispensable preliminary to the majority of the following in­
vestigations. For, except in extreme cases, in which the causes tending to disturb the 
“special” state are at least nearly as rapid and persistent in their action as is the 
process of recovery, we are entitled to assume, from the result of § 24, that in every 
part of a gas or gaseous mixture a local special state is maintained. And it is to 
be observed that this may be accompanied by a common translatory motion of the 
particles (or of each separate class of particles) in that region; a motion which, at 
each instant, may vary continuously in rate and direction from region to region; 
and which, in any one region, may vary continuously with time. This is a sort of

T. II. 20 
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generalisation of the special state, and all that follows is based on the assumption 
that such is the most general kind of motion which the parts of the system can 
have, at least in any of the questions here treated. Of course this translational 
speed is not the same for all particles in any small part of the system. It is merely 
an average, which is maintained in the same roughly approximate manner as is the 
“special state,” and can like it be assumed to hold with sufficient accuracy to be 
made the basis of calculation. The mere fact that a “steady” state, say of diffusion, 
can be realized experimentally is a sufficient warrant for this assumption; and there 
seems to be no reason for supposing that the irregularities of distribution of the 
translatory velocity among the particles of a group should be more serious for the 
higher than for the lower speeds, or vice versa. For each particle is sometimes a 
quick, sometimes a slow, moving one:—and exchanges these states many thousand 
times per second. All that is really required by considerations of this kind is allowed 
for by our way of looking at the mean free paths for different speeds.

I may take this opportunity of answering an objection which has been raised 
in correspondence by Professor Newcomb, and by Messrs Watson and Burbury, to a 
passage in § 3 of the First Part of this paper*.  The words objected to are put in 
Italics:—

* In the Phil. Mag., for April 1887, the same objection is raised by Prof. Boltzmann; who has appended 
it to the English translation of his paper presently to be referred to. But he goes farther than the other 
objectors, and accuses me of reasoning in a circle.

“But the argument above shows, further, that this density must be expressible in 
the form

whatever rectangular axes be chosen, passing through the origin.”

The statement itself is not objected to, but it is alleged that it does not follow 
from the premises assumed.

This part of my paper was introduced when I revised it for press, some months 
after it was read; the date of revision, not of reading, being put at the head. It 
was written mainly for the purpose of stringing together what had been a set of 
detached fragments, and was in consequence not so fully detailed as they were. 
I made some general statements as to the complete verification of these preliminary 
propositions which was to be obtained from the more complex investigations to which 
they led; thus showing that I attached comparatively little weight to such intro­
ductory matters. If necessary, a detailed proof can be given on the lines of § 21 
of the paper. The “argument” in question, however, may be given as below. It is 
really involved in the italicised words of the following passage of § 1:—“ in place of 
the hopeless question of the behaviour of innumerable absolutely isolated individuals, 
the comparatively simple statistical question of the average behaviour of the various 
groups of a community.”

Suppose two ideal planes, parallel to x — 0, to move with common speed, x, 
through the gas. The portion of gas between them will consist of two quite distinct 
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classes of particlesthe greatly more numerous class being mere fleeting occupants, 
the minority being (relatively) as it were permanent lodgers. These are those whose 
speed perpendicular to the planes is very nearly that of the planes themselves. The 
individuals of each class are perpetually changing, those of the majority with extra­
ordinary rapidity compared with those of the minority; but each class, as such, forms 
a definite “group of the community.” The method of averages obviously applies to 
each of these classes separately; and it shows that the minority will behave, so far 
as y and z motions are concerned, as if they alone had been enclosed between two 
material planes, and as if their lines of centres at impact were always parallel to 
these. The instant that this ceases to be true of any one of them, that one ceases 
to belong to the group;—and another takes its place. Their behaviour under these 
circumstances (though not their- number) must obviously be independent of the speed 
of the planes. Hence the law of distribution of components in the velocity space­
diagram must be of the form

/(^.^(y, z)-, 

and symmetry at once gives the result above.

[(Inserted March oth, 1887.) Another objection, but of a diametrically opposite 
character, raised by Mr Burbury* and supported by Professor Boltzmann f, is to the 
effect that in my first paper I have unduly multiplied the number of preliminary 
assumptions necessary for the proof of Maxwell’s Theorem concerning the distribution 
of energy in a mixture of two gases. In form, perhaps, I may inadvertently have done 
so, but certainly not in substance.

The assumptions which (in addition to that made at the commencement of the 
paper (§ 5) for provision against simultaneous impacts of three or more particles, 
which was introduced expressly for the purpose of making the results applicable to 
real gases, not merely to imaginary hard spheres,) I found it necessary to make, are 
(§ 18) as follows; briefly stated.

(A) That the particles of the two systems are thoroughly mixed.
(B) That the particles of each kind, separately, acquire and maintain the “special 

state.”
(C) That there is free access for collision between each pair of particles, whether

* The Foundations of the Kinetic Theory of Gases. Phil. Mag. 1886, I, p. 481.
+ Uber die zum theoretischen Beweise des Avogadro’-schen Gesetzes erforderlichen Voraussetzungen. Sit zb. 

der kais. Akad., xciv., 1886, Oct. 7. In this article Prof. Boltzmann states that I have nowhere expressly- 
pointed out that my results are applicable only to the case of hard spheres. I might plead that the article he 
refers to is a brief Abstract only of my paper; but it contains the following statements, which are surely 
explicit enough as to the object I had in view:—

“ This is specially the case with his [Maxwell’s] investigation of the law of ultimate partition of energy 
in a mixture of smooth spherical particles of two different kinds.”

“It has since been extended by Boltzmann and others to cases in which the particles are no longer 
supposed to be hard smooth spheres.”

“Hence it is desirable that Maxwell’s proof of his fundamental Theorem should be critically examined.” 
Then I proceed to examine it, not Professor Boltzmann’s extension of it. In my paper itself this limitation is 
most expressly insisted on.

20—2 
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of the same kind or of different systems; and that the number of particles of one 
kind is not overwhelmingly greater than that of the other.

Of these, (A) and (B), though enunciated separately, are regarded as consequences 
of (0), which is thus my sole assumption for the proof of Clerk-Maxwell’s Theorem. 
Professor Boltzmann states that the only necessary assumptions are:—that the particles 
of each kind be uniformly distributed in space, that they behave on the average 
alike in respect of all directions, and that (for any one particle ?) the duration of 
an impact is short compared with the interval between two impacts. His words are 
as follows:—“Die einzigen Voraussetzungen sind, dass sowohl die Molekiile erster als 
auch die zweiter Gattung gleichformig im ganzen Raume vertheilt sind, sich durch- 
schnittlich nach alien Richtungen gleich verhalten und dass die Dauer eines Zusam- 
menstosses kurz ist gegen die Zeit, welche zwischen zwei Zusammenstossen vergeht.”

He farther states that neither system need have internal impacts; and that 
Mr Burbury is correct in maintaining that a system of particles, which are so small 
that they practically do not collide with one another, will ultimately be thrown into the 
“ special ” state by the presence of a single particle with which they can collide.

Assuming the usual data as to the number of particles in a cubic inch of air, 
and the number of collisions per particle per second, it is easy to show (by the help 
of Laplace’s remarkable expression*  for the value of when m and n are very-

* Theorie Analytique des Probabilites, Livre II. chap. n. 4. [In using this formula, we must make sure that 
the ratio mln is sufficiently large to justify the approximation on which it is founded. It is found to be 
so in the present case. At my request Professor Cayley has kindly investigated the correct formula for the 
case in which m and n are of the same order of large quantities. His paper will be found in Proc. R.S.E., 
April 4, 1887.]

large numbers) that somewhere about 40,000 years must elapse before it would be 
so much as even betting that Mr Burbury’s single particle (taken to have twice the 
diameter of a particle of air) had encountered, once at least, each of the 3.1020 very 
minute particles in a single cubic inch. He has not stated what is the average 
number of collisions necessary for each of the minute particles, before it can be knocked 
into its destined phase of the special state; but it must be at least considerable. 
Hence, even were the proposition true, aeons would be required to bring about the 
result. As a result, it would be very interesting; but it would certainly be of no 
importance to the kinetic theory of gases in its practical applications.

I think it will be allowed that Professor Boltzmann’s assumptions, which (it is 
easy to see) practically beg the whole question, are themselves inadmissible except 
as consequences of the mutual impacts of the particles in each of the two systems 
separately. Professor Boltzmann himself, indirectly and without any justification (such 
as I have at least attempted to give), assumes almost all that he objects to as redundant 
in my assumptions, with a good deal more besides. But he says nothing as to the 
relative numbers of the two kinds of particles. Thus I need not, as yet, take up 
the question of the validity of Professor Boltzmann’s method of investigation (though, 
as hinted in § 31 of my first paper, I intend eventually to do so); and this for the 
simple reason that, in the present case, I cannot admit his premises.



LXXVIII.] ON THE FOUNDATIONS OF THE KINETIC THEORY OF GASES. 157

Mr Burbury assumes the non-colliding particles to be in the “ special state,” and 
proceeds to prove that the single additional particle will not disturb it. But, sup­
posing for a moment this to be true, it does not prove that the solitary particle 
would (even after the lapse of ages) reduce any non-colliding system, with positions 
at any instant, speeds, and lines of motion, distributed absolutely at random (for here 
there cannot be so much as plausible grounds for the introduction of Professor 
Boltzmann’s assumptions) to the “ special state.” If it could do so, the perfect re­
versibility of the motions, practically limited in this case to the reversal of the motion 
of the single particle alone, shows that the single particle would (for untold ages) 
continue to throw a system of non-colliding particles further and further out of the 
“ special” state; thus expressly contradicting the previous proposition. In this conse­
quence of reversal we see the reason for postulating a very great number of particles 
of each kind. If Mr Burbury’s sole particle possessed the extraordinary powers 
attributed to it, it would (except under circumstances of the most exact adjustment) 
not only be capable of producing, but would produce, absolute confusion among non­
colliding particles already in the special state. Considering what is said above, I do 
not yet see any reason to doubt that the assumption of collisions among the particles 
of each kind, separately, is quite as essential to a valid proof of Maxwell’s Theorem 
as is that of collisions between any two particles, one from each system. I have 
not yet seen any attempt to prove that two sets of particles, which have no internal 
collisions, will by their mutual collisions tend to the state assumed by Professor 
Boltzmann. Nor can I see any ground for dispensing with my farther assumption 
that the number of particles of one kind must not be overwhelmingly greater than 
that of the other. A small minority of one kind must (on any admissible assumption) 
have an average energy which will fluctuate, sometimes quickly sometimes very slowly, 
within very wide and constantly varying limits.

De Morgan* made an extremely important remark, which is thoroughly applicable 
to many investigations connected with the present question. It is to the effect 
that “no primary considerations connected with the subject of Probability can be, 
or ought to be, received if they depend upon the results of a complicated mathe­
matical analysis.” To this may be added the obvious remark, that the purely 
mathematical part of an investigation, however elegant and powerful it may be, is 
of no value whatever in physics unless it be based upon admissible assumptions. 
In many of the investigations, connected with the present subject, alike by British 
and by foreign authors, the above remark of De Morgan has certainly met with scant 
attention.]

In my first paper I spoke of the errors in the treatment of this subject which 
have been introduced by the taking of means before the expressions were ripe for 
such a process. In the present paper I have endeavoured throughout to keep this 
danger in view; and I hope that the results now to be given will be found, even 
where they are most imperfect, at least more approximately accurate than those which 
have been obtained with the neglect of such precautions.

Encyc. Metropolitana. Art. Theory of Probabilities.
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The nature of Clerk-Maxwell’s earlier investigations on the Kinetic theory, in 
which this precaution is often neglected, still gives them a peculiar value; as it is 
at once obvious, from the forms of some of his results, that he must have thought 
them out before endeavouring to obtain them, or even to' express them, by analysis. 
One most notable example of this is to be seen in his Lemma (Phil. Mag. 1860, II. 
p. 23) to the effect that

2 d+ Uxmdx =------~ ;m + 2 dx

where U and r are functions of x, not vanishing with x, and varying but slightly 
between the limits — r and r of x;—and where the signs in the integrand depend 
upon the character of m as an even or odd integer. This forms the starting point 
of his investigations in Diffusion and Conductivity. It is clear from the context why 
this curious proposition was introduced, but its accuracy, and even its exact meaning, 
seem doubtful.

In all the more important questions now to be treated, the mean free path of 
a particle plays a prominent part, and integrals involving the quantities e, or e + ex 
(as defined in §§ 9, 10, 28) occur throughout. We commence, therefore, with such a 
brief discussion of them as will serve to remove this merely numerical complication from 
the properly physical part of the reasoning.

X. On the Definite Integrals,

vw 
e o

vvr 
e1 + ze2'

33. In the following investigations I employ, throughout, the definition of the 
mean free path for each speed as given in § 11. Thus all my results necessarily differ, 
at least slightly, from those obtained by any other investigator.

By § 11 we see at once that

vvr _ 1
o e mrs2

e^vr+'^dv
J e~hv'‘(v12 + Vt4/3d2) dv,+ J e~hv^ (dDj/3 + v2[ v) dv.

1 4<xr+ie x2dx
mrs2 ^hr I . . . [x .

I xe~x + (2a?2 + 1) I e x dx
a 0 Jo

Cr 
supp°se-

The finding of Cr is of course a matter of quadratures, as in the Appendix to 
the First Part of this paper, where the values calculated are, in this notation, 
and Co-, and Mr Clark has again kindly assisted me by computing the values of 
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C^, C3, Cf, which are those required when we are dealing with Viscosity and with 
Heat-Conduction in a single gas. The value of C2 has also been found, with a view 
to the study of the general expression for Cr. These will be given in an Appendix to 
the present paper.

34. When we come to deal with Diffusion, except in the special case of equality 
of density in the gases, this numerical part of the work becomes extremely serious, 
even when the assumption of a “steady” state is permissible. As will be seen in § 28 
of my first paper, we should have in general to deal with tables of double entry, for 
the expressions to be tabulated are of the form—

vvr _ 1
6] + ze3 mrs2 fhr

00 4>xr+ie x‘ dx
0 ®e”®*+(2®s+1) J e-x2dx + z(xie~x', + (2xf+ 1)j e-^dx^

rtf fir
= = suppose.

For the second gas the corresponding quantity will be written as Here 

x3 = x f h^h,

and nf /s + sA2 
nf \ 2s J

so that they are numerical quantities, of which the first depends on the relative
masses of particles of the two gases, while the second involves, in addition, not
only their relative size but also their relative number. It is this last condition which 
introduces the real difficulty of the question, for we have to express the value of the
integral as a function of z before we can proceed with the further details of the
solution, and then the equation for Diffusion ceases to resemble that of Fourier for Heat- 
Conduction.

The difficulty, however, disappears entirely when we confine ourselves to the study 
of the “steady state” (and is likewise much diminished in the study of a variable 
state) in the special case when the mass of a particle is the same in each of the 
two gaseous systems, whether the diameters be equal or no. For, in that case, we 
have h^h and x3 = x, so that the factor 1/(1 + z) can be taken outside the integral 
sign. Thus, instead of we have only to calculate Cr of the previous section.

XI. Pressure in a Mixture of Two Sets of Spheres.

35. Suppose there be n3 spheres of diameter and mass Plt and n2 with s, 
per cubic unit. Let s = (sJ + si)/2.

Then the average number of collisions of each Hi with PjS is, per second,

nA2.
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The impulse is, on the average (as in § 30),

Similarly, each Px encounters, in each second (§ 23), the average number

A
of P2s, and the average impact is

_ Pi Py /trQii + h^ 
A + AV Ma

Thus the average sum of impacts on a P1 is, per second,

— 2Pj ti^, due to P^ ;

and o A A ^x + ^2 , , x n
P^P.~h^ due toP^

In the Virial expression ^(Rr), {§ 30}, r must be taken as for the first of 
these portions, and as s for the second. Hence we have

-l(Rr) = -- n,W + 2 AA(Ai +Aa) P, 1 
4 ’ 2^ lS1 + (P. + P,)^1^ + h2 22 J

= — - p + 2n1n2s3 + n^s/};

for A = A = A +A = 1 Ah A + n2P2\ = 2p
h2 h, + h2 n\ hi h2 J n ’

where 71 = ^ + n2.

In the special case s, = s2 = s, this becomes, as in § 30,

i 2 (Rr) = — TrpTis3.

To obtain an idea as to how the “ultimate volume,” spoken of in that section, 
is affected by the difference of size of the particles, suppose n, = n2. The values of 
the above quantities are

TTTb
— p {sj3 + 2s3 + s23} and — imps3;

so that (as we might have expected) disparity of size, with the same mean of 
diameters, increases the quantity in question.

Thus, if : s : s2 :: 1 : 2 : 3,
the ratio of the expressions above is 11 : 8. The utmost value it can have (when

is infinite, or is evanescent) is 5 : 2.
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XII. Viscosity.

36. Suppose the motion of the gas, as a whole, to be of the nature of a simple 
shear; such that, relatively to the particles in the plane of yz, those in the plane 
sc have a common speed

V=Bx
parallel to y. V, even when x is (say) a few inches, is supposed small compared 
with the speed of mean square. We have to determine the amount of momentum 
parallel to y which passes, per second, across unit area of the plane of yz.

In the stratum between x and x + 8x there are, per second per unit surface, nvevSx 
collisions discharging particles with speed v to v + dv (distributed uniformly in all 
directions) combined, of course, with the speed of translation of the stratum. The 
number of these particles which cross the plane of yz at angles 0 to O + d0 with 
the axis of x is

e-^^^sin^d^.
[Strictly speaking, the exponent should have had an additional term of the order 
eBx2/v, but this is insensible compared with that retained until x is a very large 
multiple of the mean free path. See the remarks in § 39 below.] Each takes with it 
(besides its normal contribution, which need not be considered) the abnormal momentum

PBx, 
relatively to yz and parallel to y.

Hence the whole momentum so transferred from x positive is
7T

PBn f°° ft fx—-— I vv sm0d0 I e~exsece exdx, 
2 Jo Jo Jo

PBn vv & .a . a,a PBn w
or —x— — cos20 sin 0d0 = —x— —.2 Jo ejo 6 Jo e

Doubling this, to get the full differential effect across the plane of yz, it becomes (§ 33)
PBnC, PBn 0 838
3irns2 Jh Sims2 y/h

The multiplier of B, i.e. of dVfdx, is the coefficient of Viscosity. Its numerical 
value, in terms of density and mean path, is

0’412.

Clerk-Maxwell, in 1860, gave the value

0’376, y/h

which (because Z = 7O7X/677, as in §11) differs from this in the ratio 20:21. In
T. II. 21
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this case the short cuts employed have obviously entailed little numerical error. 
Since pX is constant for any one gas, the Viscosity (as Maxwell pointed out) is 
independent of the density.

37. Both expressions are proportional to the square-root of the absolute tem­
perature. We may see at once that, on the hypothesis we have adopted, such must 
be the case. For, if we suppose the speed of every sphere to be suddenly increased 
m fold, the operations will go on precisely as before, only m times faster. But the 
absolute temperature will be increased as m? : 1. Similar anticipations may be made 
in the cases of Diffusion and of Thermal Conductivity.

Maxwell was led by his experimental measures of Viscosity, which seemed to 
show*  that it increases nearly in proportion to the first power of the absolute 
temperature, to discard the notion of hard spheres, and to introduce the hypothesis of 
particles repelling one another with force inversely as the fifth power of the distance. 
I have already stated that there are very grave objections to the introduction of 
repulsion into this subject, except of course in the form of elastic restitution. That 
the particles of a gas have this property is plain from their capability of vibrating, 
so that they must lose energy of translation by impact; and I intend, in the next 
instalment of this investigation, so far to modify the fundamental assumption hitherto 
made as to deduce the effects corresponding to a coefficient of restitution less than 
unity; and also to take account of molecular attraction, specially limited in its range 
to distances not much greater than the diameter of a sphere.

* Cf., however, Stokes, Phil. Trans., 1886, vol. clxxvii. p. 786.

XIII. Thermal Conductivity.

38. We must content ourselves with the comparatively simple case of the steady 
flow of heat in one direction; say parallel to the axis of x. This will be assumed 
to be vertical, the temperature in the gas increasing upwards, so as to prevent 
convection currents. No attention need, otherwise, be paid to the effects of gravity.

Hence the following conditions must be satisfied:—

(a) Each horizontal layer of the gas is in the special state, compounded with 
a definite translation vertically.

(6) The pressure is constant throughout the gas.
(c) There is, on the whole, no passage of gas across any horizontal plane.
(d) Equal amounts of energy are, on the whole, transferred (in the same direction) 

across unit area of all such planes.

39. Let n be the number of particles per unit volume in the layer between 
x and x + dx-, v the fraction of them whose speed, relatively to the neighbours as a 
whole, lies between v and v + dv; a the speed of translation of the layer.
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The number of particles which pass, per unit area per second, from x positive 
through the plane x — 0, is the sum of those escaping, after collision, from all the 
layers for positive x, and not arrested on their way:—viz.,

IT ...
I re ra -BecH’wfc . — a,
s nvvee Jo smdd#----------dx.

Jo Jo Jo v cos 6

Here a, though in any ordinary case it need not be more than a very small 
fraction of an inch, is a quantity large compared with the mean free path of a 
particle. Its value will be more exactly indicated when the reason for its introduction 
is pointed out.

The last factor of the integrand depends on the fact that the particles are 
emitted from moving layers:—involving the so-called Doppler, properly the Romer, 
principle.

We neglect, however, as insensible the difference between the absorption due to 
slowly moving layers and that due to the same when stationary.

Because a, the range of x, is small we may write with sufficient approximation

n = n0 + n0'x, &c., &c.

Introducing this notation, the expression above becomes

Now, to the degree of approximation adopted,
fx

edx — e^+ 6^1'2,.
Jo

The second term of this must always be very small in comparison with the first, 
even for an exceptionally long free path. But, if we were to make

X — 26^1 Cq ,

the second term would become equal to the first. Hence a, the upper limit of the 
x integration, must be made much smaller than this quantity. Thus we may write

e-sec«J0%<fc= g-^sec^l _ e0'x2 sec 6/2 + ..

We said, above, that eoa = a/ —
/

is a large number, say of the order IO2. It appears then at once that terms in

€-e0« = e-ioo _ 10 4;! nearly

may be neglected. Such terms occur at the upper limit in the integration with 
regard to x above, and what we have said shows, first why a had to be introduced, 
second why it disappears from the result.

21—2
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Writing now only those factors of the above expression which are concerned in 
the integration with respect to x, we have

I h +(— + — + —...I (1 — e0'xa sec 0/2 + ...)
Jo ( Wo ^0 / J

or — {cos 0 + — { cos20|.

The terms in e0' are found to have cancelled one another, a result which greatly 
simplifies the investigation.

Had we complicated matters by introducing «0 + a0'x in place of a, the term in 
a/ (which, if it exist at all, is at least very small) would have been divided on 
integration twice by e0, a quantity whose value is, on the average, of the order 5.106 
(to an inch as unit of length).

The expression now becomes

We have omitted the zero suffixes, as no longer required; and, as the plane x = 0 is 
arbitrary, the expression is quite general.

Omitting the product of the two small terms, and integrating with respect to 0, 
we have

If” ( la ln' V'\ In I~ nv\v% — a+ — 4—]v3e>.
2 Jo ( \n v )

The corresponding expression for the number of particles which pass through the 
plane from the negative side is, of course, to be obtained by simply changing the 
signs of the two last terms. Thus, by (c) of § 38, we have

or

40. The pressure at the plane ®=0, taken as the whole momentum (parallel to 
x) which crosses it per unit area per second, is to be found by introducing into our 
first integrand the additional factor

P (v cos 0 — a),

where P is the mass of a particle. There results

f/0 +
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We must take the sum of this, and of the same with the signs of the two last 
terms changed; so that the pressure (which is constant throughout, by (5) of § 38) is

P-jf = S .................................................

Thus n/h is constant throughout the gas.

[If a very small, thin, disc were placed in the gas, with its plane parallel to 
yz, and the steady state not thereby altered, the difference of pressures on its sides 
would be

nP J v 12m — >

or (see § 42 below) p \ g C, - - £ C2 + .

For ordinary pressures, and a temperature gradient 10° C. per inch, this is of the 
order IO-7 atmosphere only.]

41. For the energy which passes per second per unit of area across » = 0, we 
must introduce into the first integrand of § 39 the additional factor

P
(d2 — 2m cos 0);

and the result of operations similar to those for the number of particles is
P ((ri v\ I )

+ .................. <3>
This expresses the excess of the energy passing from the negative to the positive 
side of ® = 0, over that passing from positive to negative; and, by (d) of §38, must 
be constant.

42. To put (1) and (3) in a more convenient and more easily intelligible form,
note that because

v — 4 6

we have v 3 h' ,, 
- = 5 T~hv- v 2 h

But, by (2), n _ h' 
n h

Thus, by (1),

_ h 1 p_ p A
~ 3 ^h3 mrs* \2 1 ’/

^h3 Qpirs3 <2 1 7 (1''

Similarly (3) becomes E ^h3 6^(4 G1 ^°3 + C^.....................................<3>-
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43. The only variable factor (h'jE) in these expressions for a, and for E, is the 
same in both. Hence, as E does not vary with x, h'/h? is constant, and so also is 
a. Thus since, if r be absolute temperature, we have

we find at once,

hr = constant;

= A + Bx.

Thus the distribution of temperature, and therefore that of density, is determined 
when the terminal conditions are given. The formula just given agrees with the 
result first obtained by Clausius in an extremely elaborate investigation*,  in which 
he showed that Maxwell’s earliest theory of Heat-Conduction by gases is defective.

* Pogg. Ann., cxv. 1862; Phil. Mag., 1862, I.
+ Trans. R.S.E., 1878, p. 717.

The general nature of the motion of the gas is now seen to be analogous to 
that of liquid mud when a scavenger tries to sweep it into a heap. The broom 
produces a translatory motion of the mud, which is counteracted by gravitation-sliding 
due to the surface gradient:—just as the displacement (by translation) of the whole 
gas, from hot to cold, is counteracted by the greater number of particles discharged 
(after collisions) from a colder and denser layer, than from an adjoining warmer and 
less dense layer.

44. The results of calculation of values of Cr given in the Appendix enable us 
to put the expressions (T) and (3') into the more convenient forms

« = -^ — 006.......................................................... (1"),

.................................... CD.
where it is to be remarked that the product pX is independent of the temperature 
of the gas.

The Conductivity, k, is defined by the equation

and thus its value is k = . 0 45,V To W
w'here r0, h0 are simultaneous values of r and h.

At 0° C. (i.e. r = 274) this is, for air, nearly 3.10-5 in thermal units on the 
pound-foot-minute-Centigrade system:—i.e. about 1/28,000 of the conductivity of iron, 
or 1/3600 of that of lead+. Of course, with our assumption of hard spherical particles, 
we have not reckoned the part of the conducted energy which, in real gases, is due 
to rotation or to vibration of individual particles.
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XIV. Diffusion.

45. The complete treatment of this subject presents difficulties of a very formidable 
kind, several of which will be apparent even in the comparatively simple case which 
is treated below. We take the case of a uniform vertical tube, of unit area in 
section, connecting two vessels originally filled with different gases, or (better) mixtures 
of the same two gases in different proportions, both, however, maintained at the same 
temperature; and we confine ourselves to the investigation of the motion when it 
can be treated as approximately steady. We neglect the effect of gravity (the denser 
gas or mixture being the lower), and we suppose the speeds of the group-motions to 
be very small in comparison with the speed of mean square in either gas. [In some 
of the investigations which follow, there are (small) parts of the diffusion-tube in 
which one of the gases is in a hopeless minority as regards the other. Though one 
of the initial postulates (d of § 1) is violated, I have not thought it necessary to 
suppress the calculations which are liable to this objection; for it is obvious that 
the conditions, under which alone it could arise, are unattainable in practice.]

Clerk-Maxwell’s Theorem (§ 15), taken in connection with our preliminary assump­
tion, shows that at every part of the tube the number of spheres per cubic unit, 
and their average energy, are the same. Hence, if nlt n2, be the numbers of the
two kinds of spheres, per cubic unit, at a section x of the tube

«i + Ma = n = constant................................................. (1).

Also, if Pj, P2, be the masses of the spheres in the two systems respectively, h2
and h2 the measures (§ 3) of their mean square speeds, we have

= P2fh2 = (niPy/lt! + n2P = Up Ju................................ (2),
where p is the constant pressure.

Strictly speaking, the fact that there is a translational speed of each layer of 
particles must affect this expression, but only by terms of the first order of small 
quantities.

46. The number' of particles of the Pt kind which pass, on the whole, towards 
positive x through the section of the tube is (as in § 39)

njOtj — ni
J o

where Oj is the (common) translational speed of the P^s, and 1/e, the mean free 
path of a P1 whose speed is v. We obtain this by remarking that, in the present 
problem, A is regarded as constant, so that there is no term in v(.

Hence, if be the mass of the first gas on the negative side of the section, 
divided by the area of the section, we have

................................................. (3).
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If G2 be the corresponding mass of the second gas, we have (noting that, by (1), 
+ n2 = 0)

= - P? (w2a2 + ................................................. (4).

From the definitions of the quantities Gv, G2, we have also

dGx d~G^~^ = Pln1, P^dx dx-
dG., , d2G2 T, •.............................................. (5).
dx dx2 J

47. We have now to form the equations of motion for the layers of the two 
gases contained in the section of the tube between x and x + 8x. The increase of 
momentum of the P, layer is due to the difference of pressures, behind and before, 
caused by P/s; minus the resistance due to that portion of the impacts of some 
of the P/s against P2’s in the section itself, which depends upon the relative speeds 
of the two systems, each as a whole. This is a small quantity of the order the 
whole pressure on the surfaces of the particles multiplied by the ratio of the speed 
of translation to that of mean square. The remaining portion (relatively very great) 
of the impacts in the section is employed, as we have seen, in maintaining or 
restoring the “special state” in each gas, as well as the Maxwell condition of 
partition of energy between the two gases. If P be the resistance in question, the 
equations of motion are

8x — P8x 
. «i /

where 9 represents total differentiation.

48. To calculate the value of P, note that, in consequence of the assumed 
smallness of oq, a2, relatively to the speeds of mean square of the particles, the 
number of collisions of a Pi with a P2, and the circumstances of each, may be 
treated as practically the same as if and a2 were each zero:—except in so far that 
there will be, in the expression for the relative speed in the direction of the line of 
centres at impact, an additional term

(«! — a2) cos r/r,

where is the inclination of the line of centres to the axis of x. Thus to the 
impulse, whose expression is of the form

2PQ
P+Q

(u - v),

as in § 19 of the First Part of the paper, there must be added the term we seek, viz.,

2PiP2 
Pi + P2

(a, — a2) cos i/r.
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This must be resolved again parallel to x, for which we must multiply by
cos Also, as the line of centres may have with equal probability all directions, 
we must multiply further by sin \lrd\lr/2, and integrate from 0 to tt. The result
will be the average transmission, per collision, per Plt of translator y momentum of
the layer parallel to x. Taking account of the number of impacts of a Pi on a P2,
as in § 23, we obtain finally

R = nxn^ 
o

/tt (/q 4- A2) P1P2 x
V Ms Pi+P2(] (7).

where s is the semi-sum of the diameters of a PY and a P2.

49. To put this in a more convenient form, note that (2), in the notation of 
(5), gives us the relation

h, dx h2 dx P’

whence G^ 4- G2/h2 = 2px .................................................  (8).

We have not added an arbitrary constant, for no origin has been specified for x. 
Nor have we added an arbitrary function of t, because (as will be seen at once 
from (3)) this could only be necessary in cases where the left-hand members of (6) 
are quantities comparable with the other terms in these equations. They are, however, 
of the order of

d2Gx d~G} „ 
dtf ’ dxdtai’ C-’

and cannot rise into importance except in the case- of motions much more violent 
than those we are considering.

From (8) we obtain + = ..................................................... (9);
(ht (Lt V

which signifies that equal volumes of the two gases pass, in the same time, in opposite 
directions through each section of the tube. This gives a general description of the 
nature of the cases to which our investigations apply.

But, by (3) and (4), we have for the value of

P\P^-^2 («i

the expression r, fdGy 1 „ , „ [dG, 1 T1 ,— P2W2 — g P | 4- P1«1 + ^P Pl 2®!J

or, by (9), (2), and (5)

0 , (dGi 1 d^Gi ( (ft . d\ ( dt ~3ndP (”2 + ni 2^)

T. II. 22
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Substituting this for the corresponding factors of R in the first of equations (6), 
and neglecting the left-hand side, we have finally

1 dtGi 8 2 /ir(h1 + h2) ph2 [dG^ 
2h2 dx2 + 3S v hjt2 Py + P2 ( dt 

dG^/S P, + P2 11, 
dt 116s’ P 3n (?l21 ’ 3 ’V da? ’

or, somewhat more elegantly,

50. This equation resembles that of Fourier for the linear motion of heat; but, 
as already stated in § 34, the quantities which occur in it render it in general 
intractable. The first part of what is usually called the diffusion-coefficient (the mul­
tiplier of d2Gyldx2 above) is constant; but the second, as is obvious from (5) and (8), 
is, except in the special case to which we proceed, a function of dG^dx-, i.e. of the 
percentage composition of the gaseous mixture.

51. In the special case of equality, both of mass and of diameter, between the 
particles of the two systems, the diffusion-coefficient becomes

/A+ .
8ns1 irh 3nirs2 \Zh,’

T /3 ■ /w CA X X _Or 7)= T./-x-|---r . ., = "7J 1'8,\4 'y 2 3/ 0’677

where X is the mean free path in the system. Hence the diffusion-coefficient among 
equal particles is directly as the mean free path, and as the square root of the 
absolute temperature. Fourier’s solutions of (10) are of course applicable in this 
special case.

If we now suppose that our arrangement is a tube of length I and section S, 
connecting two infinite vessels filled with the two gases respectively; and, farther, 
assume that the diffusion has become steady, the equation (10) becomes

dGj _ d2G1 
dt dx2 ’

where the left-hand member is constant. Also, it is clear that, since dG^dx must thus 
be a linear function of x, we have

^ = Pn1=Pn(l-y'\ 
ax \ 1/
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so that the mass of either gas which passes, per second, across any section of the 
tube is

SDp/l,
where p is the common density of the two gases.

For comparison with the corresponding formulae in the other cases treated below, 
we may now write our result as

Also, to justify our assumption as to the order of the translatory speed, we find 
by (3)

138X «i =--------- 7= .
(I —

Hence, except where I — x is of the order of one-thousandth of an inch or less, this 
is very small compared with h a. And it may safely be taken as impossible that ny 
can (experimentally) be kept at 0 at the section x = I.

If the vessels be of finite size, and if we suppose the contents of each to be 
always thoroughly mixed, we can approximate to the law of mixture as follows. On 
looking back at the last result, we see that for p we must now substitute the 
difference of densities of the first gas at the ends of the connecting tube. Let g2 
be the quantities of the two gases which originally filled the vessels respectively;, 
and neglect, in comparison with them, the quantity of either gas which would fill 
the tube. Then, obviously,

dG. = _ SDp /G, _ gt - Ga
dt I \gi g2 / ’

whence Gi = r1 + e 1
+ 9*

This shows the steps by which the initial state (g^ 0) tends asymptotically to the 

final state i———glt —~—gx), in which the gases are completely mixed. When the 
^9i + 9* 9i+ 9z '

vessels are equal this takes the simple form

52. In the case just treated there is no transmission of energy, so that the 
fundamental hypotheses are fully admissible. In general, however, it is not so. The 
result of § 41, properly modified to apply to the present question, shows that the 
energy which, on the whole, passes positively across the section x is, per unit area 
per second,

| + _ 1 n' (P1
T \ III 1I2 / V

99__ 9
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This, of course, in general differs from section to section, and thus a disturbance of 
temperature takes place. In such a case we can no longer assume that and h2 
are absolute constants; and thus terms in would come in; just as a term in Gs
appeared in the expression for energy conducted (§ 42). Thus, in order that our 
investigation may be admissible, the process must be conducted at constant tempera­
ture. This, in general, presupposes conditions external to the apparatus.

58. Though it appears hopeless to attempt a general solution of equation (10), 
we can obtain from it (at least approximately) the conditions for a steady state of 
motion such as must, we presume, finally set in between two infinite vessels filled 
with different gases at the same temperature and pressure. For the left-hand member 
is then an (unknown) constant, a second constant is introduced by integrating once 
with respect to «; and these, which determine the complete solution, are to be found 
at once by the terminal conditions

1 dG1 (n for x = 0) .
Io „ -o..................... ""

And, by a slight but obvious modification of the latter part of § 51 above, we can 
easily extend the process to the case in which the vessels are of finite size:— 
always, however, on the assumption that their contents may be regarded as promptly 
assuming a state of uniform mixture. The consideration of § 52, however, shows that 
the whole of the contents must be kept at constant temperature, in order that this 
result may be strictly applicable.

54. Recurring to the special case of § 51, let us now suppose that, while the 
masses of the particles remain equal, their diameters are different in the two gases. 
Thus, suppose sy> s2. Then it is clear that

s/2 — s2, and s2 — s2,

are both positive. In this case, infinite terminal vessels being supposed, (10) gives for 
the steady state

j _ p (3 A, £/_____।
irnjh (4s2 V 2 3 Wi’ + «iS2+ n^)} dx ....................' ”

whose integral, between limits as in (11) above, is

., P f3n /tt Cpi /I _ 1 2s/__ Sj 2s22 sA]
im \/h ^4s2 V 2 3 \s2 — s2a s? — ss (s/ — s2)2 s (s2 — s22)2 sj)

Here A is the rate of passage of the first gas, in mass per second per unit area 
of the section of the tube.

If now we put Sj = S + <7, S2 = S — a,

then, when a is small compared with s, the multiplier of 0^/3 is

(1 + aa/3sa)/sa, nearly.
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When o- is nearly equal to s, i.e. one of the sets of particles exceedingly small 
compared with the other, it is nearly

1'283/s8.

Thus it appears that a difference in size, the mean of the diameters being unchanged, 
favours diffusion.

Suppose, for instance, : s : s2 :: 3 : 2 : 1,

and we have P (3 /w 2^ / 4 36. 3 4, 1\) 
7rZsaVM4V 2 + 3 \15 + 25 °g 2 + 9 °g 2/J ’

= - -yP-w + § 1'085} = - 1-24,
iris2 gh |4V 2 3 ) iris2 \/h

= -^1'83. 
L it

Compare this with the result for equal particles (§ 51), remembering that X 
now stands for the mean free path of a particle of either gas in a space filled with 
the other:—and we see that (so long at least as the masses are equal) diffusion 
depends mainly upon the mean of the diameters, being but little affected by even 
a considerable disparity in size between the particles of the two gases. Thus it 
appears that the viscosity and (if the experimental part of the inquiry could be 
properly carried out) conductivity give us much more definite information as to the relative 
sizes of particles of different gases than we can obtain from the results of diffusion.

Equation (12) shows how the gradient of density of either gas varies, in the 

stationary state, with its percentage in the mixture. For the multiplier of —is 
dx 

obviously a maximum when
_1 __1_ 

sa + ys,2 + sa + s^/y ’

in which y = n^n^, is so. This condition gives
nlln2 = y = s2lsi.

Hence the gradient is least steep at the section in which the proportion of the two 
gases is inversely as the ratio of the diameters of their particles; and it increases 
either way from this section to the ends of the tube, at each of which it has the 
same (greatest) amount. This consideration will be of use to the full understanding 
of the more complex case (below) in which the masses, as well as the diameters, of 
the particles differ in the two gases.

55. Let us now suppose the mass per particle to be different in the two gases. 
The last terms of the right-hand side of (10), viz.,

S’
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may be written in the form

Pi dn^ f(n - n^h2 f"___________/(y) dy____________
dx | VAx Jo + y g

+ ____________ f^dy____________

Jo (n - nj) (y) + nf^F

where the meanings of f and F are as in § 34.

If we confine ourselves to the steady state, we may integrate (10) directly with 
respect to x, since dG^dt is constant. In thus operating on the part just written, 
the integration with regard to x (with the limiting conditions as in (11)) can be 
carried out under the sign of integration with respect to y:—and then the y inte­
gration can be effected by quadratures.

The form of the x integral is the same in each of the terms. For

f0 (n — n^drh _ f° _ n ( A B
JnAn1 + B(n—n1) J nA (n — nj +Bn^ A—Bl + A — B A

This expression is necessarily negative, as A and B are always positive. When A 
and B are nearly equal, so that B = (1 + e)A, its value is

n /I e
A l2-3 +........

so that, even when A and B are equal, there is no infinite term.

It is easy to see, from the forms of F (y), and of its first two differential 
coefficients, that the equation

h^F (y) = h^F (y

can hold for, at most, one finite positive value of y.

56. As a particular, and very instructive case, let us suppose
P, : P2 :: : h, ” 16 : 1, 

the case of oxygen and hydrogen.

(a) First, assume the diameters to be equal. Then the integral of (10), with 
limits as in (11), taken on the supposition that the flow is constant, is
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As remarked above, the definite integral is essentially negative. For so is every 
expression of the form

a — b Aa — Bb B 
A^B + (A - By °gA

provided A, B, a, and b be all positive. When A and B are equal its value is

-24(a+6)-
I have made a rough attempt at evaluation of the integral, partly by calculation, 

partly by a graphic method. My result is, at best, an approximation, for the 
various instalments of the quadrature appear as the relatively small differences of two 
considerable quantities. Thus the three decimal places, to which, from want of 
leisure, I was obliged to confine myself, are not sufficient to give a very exact 
value. The graphical representations of my numbers were, however, so fairly smooth 
that there seems to be little risk of large error. The full curve in the sketch 
below shows (on a ten-fold scale) the values of the integrand (with their 'signs

changed), as ordinates, to the values of y as abscissae. The area is about — 2165. 
Hence we have

idGi 
dt

P, 
its2 v ht

3-463.
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(6) Suppose next that the diameter of 
the semi-sum of the diameters is s as before.

a P1 is three times that of a P2, but 
The definite integral takes the form

f(y)W

|w/(y) wg) wg)/g) trg)

+ {|r(y) - i^g)}’pw - trgjp '°s

The corresponding curve is exhibited by the dashed line in the sketch, and its area 
is about — 3T57. Hence, in this case,

dG. 
dt 3'793.

7TS2 V«1

(c) Still keeping the sum of the semidiameters 
P^ be three times that of a P^ The integral is

the same, let the diameter of a

o ^P(y)-16Pg) P(y)-36Pg)

|TO/(y) Ml)

Hp(y)-16F®r g ]P(y)-36F(W g 
(4 (4/J ( \4/J

The curve is the dotted line in the cut, and its area is about — 1’713. Hence we have

dG. 
dt

—^-3’312.

If we compare these values, obtained on such widely different assumptions as to the 
relative diameters of the particles, we see at once how exceedingly difficult would 
be the determination of diameters from observed results as to diffusion. (Compare § 54.)

But we see also how diffusion varies with the relative size of the particles, the 
sum of the diameters being constant. For the smaller, relatively, are the particles 
of smaller mass (those which have the greater mean-square speed) the more rapid is 
the diffusion.

And further, by comparison with the results of §§ 51, 54, we see how much more 
quickly a gas diffuses into another of different specific gravity than into another of 
the same specific gravity.
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When the less massive particles are indefinitely small in comparison with the 
others, the diameter of these is s; and for their rate of diffusion we have

Pi 
dt ~ ‘

When it is the more massive particles which are evanescent in size, the numerical 
factor seems to be about 3’48. Hence it would appear that, even in the case of 
masses so different, there is a minimum value of the diffusion-coefficient, which is 
reached before the more massive particles are infinitesimal compared with the others.

[At one time I thought of expressing the results of this section in a form 
similar to that adopted in the expression for D in § 51. It is easy to see that the 
quantity corresponding to X would now be what may be called the mean free path 
of a single particle of one gas in a space filled with another. Its value would be 
easily calculated by the introduction of 1^ for h in the factor v of the integral

while keeping e in terms of h. This involves multiplication of each number in the 
fourth column of the Appendix to Part I. by the new factor But, on
reflection, I do not see that much would be gained by this.]

T. II. 23
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APPENDIX.

The notation is the same as in the Appendix to Part I.

X xXJX, ^XJX3 »?XJX2 ^xjx2

0-1 ■000049 •000005 •000001 •000000
■2 ■000758 •000152 •000030 •000001
•3 •003594 •001078 •000323 ■000029
•4 ■010364 •004146 ■001658 •000265
■5 •022505 •011252 •005626 •001407
•6 ■040512 ■024307 •014584 •005250
•7 •063623 •044536 031175 ■015276
•8 •089928 •071942 •057554 •036834
•9 •116712 •105041 •094537 ■076575

1-0 •141040 •141040 ■141040 •141040
1-1 •160292 •176321 •193953 •234683
1'2 ■172656 •207187 •248624 •358019
1-3 •177229 •230398 ■299517 •506184
1-4 •174174 •243844 •341382 ■669108
1-5 •164430 •246645 •369968 •832427
1-6 •149568 •239309 •382894 ■980209
1-7 •131393 •223368 •379726 1-097407
1'8 •111654 ■200977 •361758 1-172098
1-9 •091960 •174724 •331976 1-198432
2 0 •073480 •146960 ■293920 1-175680
2-1 •057015 ■119731 •251435 1-108829
2-2 •043032 ■094670 •208274 1-008046
2-3 •031579 •072632 ■167054 •883714
2-4 •022584 ■054202 ■130085 •749288
2-5 •015750 •039375 •098438 ■615234
2-6 •010686 •027784 •072238 •488332
2-7 ■007074 •019099 •051567 ■375926
2-8 •004536 ■012701 035563 •278812
2-9 ■002871 •008326 •024145 ■203063
3-0 •001710 •005130 •015390 •138510
3-1 •001071 •003320 •010294 ■098925
3-2 •000629 •002014 ■006445 •065997
3'3 •000361 •001192 •003935 •042852
3-4 •000211 •000689 ■002344 •027098
3-5 •000111 •000389 •001361 •016671
3-6 •000066 •000240 •000865 •010004
3'7 •000037 ■000136 •000505 •005839
3-8 •000229 ■003307
3-9 •000118 •001798
4-0 •000062 ■000985

2-095244 2-954862 4-630593 14-624154

Thus the values of C}, C3, C3, and C3 are respectively 0'838, 1-182, 1'852, and 5'849.
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I have explained at some length, in my “Reply to Prof. Boltzmann*, ” the 
circumstances under which the present inquiry originated and has been pursued. Of 
these I need now only mention two:—first, the very limited time which I can spare 
for such work; second, the very meagre acquaintance I possessed of what had been 
already done with regard to the subject. My object has been to give an easily 
intelligible investigation of the Foundations of the Kinetic Theory; and I have, in 
consequence, abstained from reading the details of any investigation (be its author who 
he may) which seemed to me to be unnecessarily complex. Such a course has, 
inevitably, certain disadvantages, but its manifest advantages far outweigh them.

* Proc. R. S. E., January 1888 ; Phil. Mag., March 1888.
+ “Report on some of the Physical Properties of Water,” Phys. Chem. Chall. Exp., Part IV. [LXI. above, p. 56.]

23—2

In August 1888, however, I was led in the course of another inquiry F to peruse 
rapidly the work of Van der Waals, Die Continuitat des gasformigen und flussigen 



180 ON THE FOUNDATIONS OF THE KINETIC THEORY OF GASES. [LXXIX.

Zustandes. This shows me that Lorenz had anticipated me in making nearly the same 
correction of the Virial equation as that given in the earlier part of § 30 of my first 
paper. His employment of the result is a totally different one from mine; he uses 
it to find a correction for the number of impacts. The desire to make, at some time, 
this investigation arose with me when I was writing my book on Heat, as will be 
seen in the last paragraphs of § 427 of that book. [First edition, 1884.] It was caused 
by my unwillingness to contemplate the existence of molecular repulsion in any form, 
and my conviction that the effects ascribed to it could be explained by the mere 
resilience involved in the conception of impacts.

The present paper consists of instalments read to the Society at intervals during 
the years 1887-8. The first of these, which is also the earliest in point of date, deals 
with a special case of molecular attraction, on which, of course, depends the critical 
temperature, and the distinction between gases and vapours. Here the particles which, 
at any time, are under molecular force have a greater average kinetic energy than the 
rest. Mathematical, or rather numerical, difficulties of a somewhat formidable nature 
interfered with the exact development of these inquiries. I found, for instance, that 
in spite of the extreme simplicity of the special assumption made as to the molecular 
force, the investigation of the average time between the encounter of two particles and 
their final disengagement from one another involves a quadrature of a very laborious 
kind. Thus the correction of the number of impacts could not easily be made except 
by some graphic process.

One reason for the postponement of publication of the present part was the hope 
that I might be enabled to append tables of the numerical values of the chief integrals 
which it involves, especially the peculiarly interesting one

y = e-a:2 I ex2dx.
J o

Want of time, however, forced me to substitute for complete tables mere graphical 
representations of the corresponding curves, drawn from a few carefully calculated values. 
These are not fitted for publication, though they were quite sufficient to give a general 
notion of the numerical values of the various results of the investigation; and enabled 
me to take the next step:—viz. the approximate determination of the form of the Virial 
equation when molecular attraction is taken account of. Part IV. of this investigation, 
containing this application, was read to the Society on Jan. 21, 1889, and an Abstract 
has appeared in the Proceedings. It appears that the difference of average kinetic 
energy between a free, and an entangled, particle is of special importance in the physical 
interpretation of the Virial Equation.

An Appendix is devoted to the consideration of the modification which the previous 
results undergo when the coefficient of restitution is supposed to be less than 1. This 
extension of the investigation was intended as an approximation to the case of radiation 
from the particles of a gas, and the consequent loss of energy. But, so far as I have 
developed it, no results of any consequence were obtained. I met with difficulties of 
a very formidable order, arising mainly from the fact that the particles after impact 
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do not always separate from one another. The full treatment of the impact of a single 
particle with a double one is very tedious; and the conditions of impact of two 
double particles are so complex as to be totally unfit for an elementary investigation 
like the present.

The remainder of the Appendix is devoted to two points, raised by Professors 
Newcomb and Boltzmann, respectively:—the first being the problem of distribution of 
speed in the “ special ” state;—the other involving a second approximation to the 
estimates of Viscosity and Thermal Conductivity already given in Part II.

XV. Special Assumption as to Molecular Force.

57. To simplify the treatment of the molecular attraction between two particles, 
let us make the assumption that the kinetic energy of their relative motion changes 
by a constant (finite) amount at the instant when their centres are at a distance a 
apart. This will be called an Encounter. There will be a refraction of the direction 
of their relative path, exactly analogous to that of the path of a refracted particle 
on the corpuscular theory of light. To calculate the term of the virial (§ 30) which 
corresponds to this, we must find

(a) The probability that the relative speed before encounter lies between u and 
w + du.

(6) The probability that its direction is inclined from 0 to 0 + dd to the line of 
centres at encounter.

(c) The magnitude of the encounter under these conditions, and its average value.

Next, to find the (altered) circumstances of impact, we must calculate

(d) The probability that an encounter, defined as above, shall be followed by 
an impact.

(e) The circumstances of the impact.

(/) The magnitude of the impact, and its average value per encounter.

In addition to these, we should also calculate the number of encounters per 
second, and the average duration of the period from encounter to final disentangle­
ment, in order to obtain (from the actual speeds before encounter) the correction for 
the length of the free path of each. This, however, is not easy. But it is to be 
observed that, in all probability, this correction is not so serious as in the case when 
no molecular force is assumed. For, in that case the free path is always shortened; 
whereas, in the present case it depends upon circumstances whether it be shortened 
or lengthened. Thus, if the diameters of the particles be nearly equal to the en­
counter distance, there will in general be shortening of the paths, and consequent 
diminution of the time between successive impacts:—if the diameters be small in 
comparison with the encounter distance, the whole of the paths will be lengthened
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and the interval between two encounters may be lengthened or shortened. Thus if 
we assume an intermediate relation of magnitude, there will be (on the average) but 
little change in the intervals between successive impacts. Hence also the time during 
which a particle is wholly free will be nearly that calculated as in § 14, with the substi­
tution, of course, of a for s.

XVI. Average Values of Encounter and of Impact.

58. The number of encounters of a v, with a vlt in directions making an angle 
/3 with one another, is by § 21 proportional to

vv^ sin ft dft,

where = v" + v2 — 2wj cos /3.

Hence the number of encounters for which the relative speed is from u to u + du 
is proportional to

u2du f—............................................................... (1).
J VV,

The limits of vT are v + u, or u + v, according as v < u, and those of v are 0 to oo, so 
that the integral is

77 fv+u v r™ ,,V F /g-hiv-u)2 _ e-h(v + u^\
Jo vJv-u Jo 2hv v

= vdv(e-2h^ - ).
J o

The first term of this integral may be written as

( (x+^)dxe~2hx2,
J _u \ 2/

2

and the second as —J {x — dx e~2hx2.

2

Together, these amount to I xdxe~2kx2 + u dxe~2,1x2.
Ju Jo

2

The first term vanishes, and the second is 

u / IT
2 V th'

Thus the value of (1) is u‘du / 7r
4 V 2h» (2).
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But, on the same scale, the whole number of encounters in the same time is

h % w/ - 5 -1 ■
Thus the fraction of the whole encounters, which takes place with relative speed u to 
u 4- du, is

A2 
u3du 2 ’

whose integral, from 0 to oo, is 1 as it ought to be.

59. Now these relative motions are before encounter distributed equally in all 
directions. Let us deal therefore only with those which are parallel to a given line. 
The final result will be of the same character relative to all such lines; and there­
fore the encounters will not disturb the even distribution of directions of motion.

Refer the motion to the centre, 0, of one of the encountering particles. Let 
A be the point midway between the particles at encounter, B that of impact, the

encountering particle coming parallel to CO. Let OA = »/2, OB (as before) = s/2. Let 
0, <£ be the angles of incidence and refraction at encounter, that of incidence at 
impact, u and w the relative speeds before and after the encounter. Then

u sin 0 = w sin <£;

and, if Pc2 represent double the work done in the encounter by the molecular forces

u2 cos2 0 + c2 = w2 cos2 </>,

so that u2 + c2 = w2.

Also it is obvious from the diagram that

■ . . , au . as sm Ur = a sm d> = — sin 0.T w
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Hence the encounter will not be followed by an impact if

sw
au

60. We must next find the average value of an encounter, and also of an 
impact; in the latter case taking account of all the encounters whether or not they 
involve an impact.

The numerical value of the encounter-impulse in the above figure is evidently

P (w cos ^> — u cos #)/2,

which must be doubled to include the repetition on separation; and the average value, 
when the relative speed is u, is

7T
f 2

2P I sin 0 cos 6 (w cos — u cos 0) d0
J o

2P a
= 3m2 + «2) ~ c3 ~ w3} .............................................  (3).

The value of the subsequent impact is

— Pw cos

and the average value

— 2Pw [cos 0 sin 0 a/1 — sin2 0d0.
J V s2w2

7T
When sw > au, the limits are 0 and ~, and the value is

But when sw < au, the limits are 0 and sin 1 —, and the value is au

By (2) and (3) we find as the average value of the encounter, taking account of all 
possible relative speeds,

p rx
+ — h2 udue^1^ {(c2 + u2)^ — c3— w3l,3 Jo
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or, if we write for simplicity, e2 = Ac2/2,

- svx k (3 Ji -* y 2}

..................................................... w

The expression obviously vanishes, as it ought to do, when e = 0. And it is 
always positive, for its differential coefficient with respect to e is

p
5v2W e^dy.VA Je y

In a similar way (4) and (5) give, with (2), as the average impact per encounter,
SC

R=PS^.\ P^ufudue-^2 (1 - (1 - + C whtdue-^
3 a2 I Jo \ \ s2w2J J J sc

\/ a2—s2
sc

= _ ? | r vrudue-^ - v^.due-W2 (1 -
3 a2 Vo Jo \ s2w2J\'

The first integral we have already had as part of the encounter. To simplify the 
second, let s/a = cos a, and it becomes

COta

0
udue-^2 (w2 + c2 — w2 sec2a)®,

which, with

gives

or

c2 — w2 tan2 a = z2,

cot2 a zidze J
Jo

y) tansae-Ac2cot2af2 ” xldxex~.
nJ Jo

The whole is now

p (eW2 / /-rr feJ 2 \ /2\B *s— A2cos2a |^6 (s^/--4V2£ tan3ae 2 Pdx^

Pcos2af /tt
VA ( V 2 +

V2e- V2ee2 [ e^dy + ^e tan2 a - ^e-62001^ tan3 a
Jo Jo .

JP I I IT C PCCOta.
= --77-cos2 a . / - + V2e sec2 a - V2ee'2 e~v2dy - V2e-e2cot2a tan3 a / ex2dxVA I V 2 Jo Jo

T. II. 24
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which, when e = 0 and cosa=l, becomes 

P \/2h’

as in § 30.

It would at first sight appear that the value of the impact is finite ^= — Pe 

(ir\
i.e. a=^l. But, in such a case, we must remember that

the second part of the first expression for R above has no existence. In fact the value 
of the second of the two integrals is tan3a. ecot a, when ecota is small; and this 
destroys the apparently non-vanishing term.

XVII. Effect of Encounters on the Free Path.

61. If two particles of equal diameters impinge on one another, the relative path 
must obviously be shortened on the average by

IT

| 2tt sin 6 cos2 Odd o
Jo 2s6 ——————————————— —• ,

i 3
I 2tt sin 6 cos Odd 

J o

But if v, Vt be their speeds, and their relative speed, the paths are shortened 
respectively by the fractions v/v0 and Vi/v0 of this. The average values must be equal, 
so that we need calculate one only.

Now the average value of v/vQ is obviously

I WiWsin fid ft

where ft is the angle between the directions of motion, so that 

vv^ sin ^d^ = vodvo.

Hence the average above is

J Vj _ _ J__  _ 4_______1
[vr^dv,, 1^ J2tt, 

~rh
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Hence the mean of the free paths during a given period becomes

1_ . 
\/2n7rs2___ 3 ’

that is, it is shortened in the ratio

1 — k utts3 : 1, o

or 1—4 (sum of vols. of spheres in unit vol.) : 1 = 1 — ~ : 1 say.

Hence the number of collisions per second, already calculated, is too small in the same 
ratio.

Thus the value of S (R) in § 30 must be increased in the ratio 1:1 — ^ and the

virial equation there given becomes
— 3 /

nPvf% = a P I
I

If this were true in the limit, the ultimate volume would be double of that before 
calculated, i.e. 8 times the whole volume of the particles.

62. Another mode of obtaining the result of § 61 is to consider the particles as 
mere points, and to find the average interval which elapses between their being at a 
distance s from one another and their reaching the positions where their mutual distance 
is least. The space passed over by each during that time will have to be subtracted 
from the length of the mean free path calculated as in § 11 when the particles were 
regarded as mere circular discs.

The average interval just mentioned is obviously

1 I s cos 0. sin 6cos Odd „
1 Jo __  = 2s
u | 3w’

I sin 0 cos 6d0 
J o

Hence the average space passed over in that interval is

2s f vxv2
3u]PV- VV1 dv / h _

/ 3 “ 3 ’

If we put a for s in this expression we have the amount to be subtracted from 
the average path between two encounters in consequence of the finite size of the region 
of encounter.

24—2
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XVIII. Awera^re Duration of Entanglement, and consequent Average Kinetic Energy.

63. We have next to find the average duration of entanglement of two particles:— 
i.e., the interval during which their centres are at a distance less than a.

The whole relative path between the entering and leaving encounters is

2 (a cos </> — s cos l/r),

or 2a cos <f>,
according as there is, or not, an impact.

Hence the whole time of entanglement is the quotient, when one or other is divided 
by w. And the average value, for relative speed u, is

7T
t = ~ [ (ajw2 — u2 sin2 d — Jw2s2 — a2u2 sin2 0)cos d sin ddd 

w2Jo

ws > au;when

and

when

~ sin-1 —4 ( __________ y a™ _____________
—ajw2 — u2 sin2 d cos 0sin Odd — I Jw2s2 — a2u2 sin2 d cos d sin Odd

(Jo Jo

(u (w3 " C’) — w3s3 
3w2 \u au2 

ws < au.

These must be multiplied by the chance of relative speed u, as in § 58, and the 
result is

08

ih2 (C™ udu ( w3s3\ , 1 C^a"~s2udu » , 1
~ I a (w3—• c3)----- —)e huli+— I —~(w2s2 — a?u2fe~hulf;3 (Jo w \ x ’ a2 J a2Jo w2 v ’ ) ’

or, with the notation of § 60,

Jr... rccOSQCa Jt.. „ 'I
= —5- eAc2/2 - I - (w3 (1 — cos3 a) — c3) e~+ — (c2 — w2 sin2 of e-hw-i2\

3 w Jc w v ’ j

= ~ ehc2'2 [ — (w3 (1 - cos3 a) - c3) e-*^2 + ~ e~^ “t2a f°™ .
3 J c & J 0 C2 —

As the value of this expression depends in no way on the length of the free 
path, it is clear that the average energy of all the particles is greater than that of 
the free particles, by an amount which increases rapidly as the length of the free 
path is diminished.
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APPENDIX.

A. Coefficient of Restitution less than Unity.

Let us form again the equations of § 19, assuming e to be the coefficient of restitution. 
We have

p (U' _ U) = _ (u - v) = - Q (v' - v),

so that P (u'2 - u2) = - P(^ (u-v){(2P + Ql-e)u + $ (1 + e) v},

Q (V'2 - (« ~ v)[P(l + «) u + {2^ + P(1 - e)} v].

The whole change of energy in the collision is half the sum of these quantities, viz.,

With the help of the expressions in § 22, we find for the average changes of energy of a P 
and of a Q, respectively,

^P - ^) = - {2 (Pk-Qh^Qlf-e) (A + A)},

IQ - 72) = {2 (Pk - Qh) - P (1 - e) (A + *)}.

The first term on the right is energy exchanged between the systems; and, as in the case 
of e = l, it vanishes when the average energy per particle is the same in the two systems. 
The second term (intrinsically negative for each system) is the energy lost, and is always 
greater for the particles of smaller mass. The average energy lost per collision is

P<2(l-e2)/l 1\ 
2(P+Q) \h k)'

It is easy to make for this case an investigation like that of § 23. But we must 
remember that there is loss of energy by the internal impacts of each system, which must 
be taken into account in the formation of the differential equations. This is easily found 
from the equations just written, by putting Q= P:—but the differential equations become 
more complex than before, and do not seem to give any result of value. [Shortly after 
Part I. was printed off, Prof. Burnside called my attention to the fact that the equations 
of interchange of energy in § 23 are easily integrable without approximation. But the 
approximate solution in the text suffices for the application made.]

B. The Law of Distribution of Speed.

In addition to what is said on this subject in the Introduction to Part II., it may be 
well to take the enclosed (from Proc. R. S. E., Jan. 30, 1888).
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“The behaviour parallel to y and z (though not the number) of particles whose velocity­
components are from x to x + dx, must obviously be independent of x, so that the density 
of ‘ ends ’ in the velocity space diagram is of the form

/(®) P (y, z).

The word I have italicised may be very easily justified. No collisions count, except those 
in which the line of centres is practically perpendicular to x (for the others each dismiss 
a particle from the minority; and its place is instantly supplied by another, which behaves 
exactly as the first did), and therefore the component of the relative speed involved in the 
collisions which we require to consider depends wholly on y and z motions. Also for the 
same reason, the frequency of collisions of various kinds (so far as x is concerned) does 
not come into question. Thus the y and z speeds, not only in one x layer but in all, 
are entirely independent of x; though the number of particles in the layer depends on 
x alone.”

C. Viscosity.

In my “Reply to Prof. Boltzmann” I promised to give a further approximation to 
the value of the coefficient of Viscosity, by taking account of the alteration of permeability 
of a gas which is caused by (slow) shearing disturbance. I then stated that a rough 
calculation had shown me that the effect would be to change my first, avowedly approximate, 
result by 11 or 12 per cent. only. I now write again the equations of § 36, modifying 
them in conformity with the altered point of view.

The exponential expression in that section for the number of particles crossing the plane 
of yz, must obviously now be written

f *- sec 0 I evod^v
e Jo sin0d0/2,

where vQ is the velocity relative to the absorbing layer at & and e also is no longer 
constant. But we have at once

v0 = v + B^ sin 0 cos </>,

secso that the exponent above is-------- J {ev + (ev)' sin 0 cos </>} dL

Thus the differential of the whole y-momentum which comes to unit surface on x = 0 from 
the layer x, x + dx, is

Pnveve-exoeee A - UP S^n °°S (v sin 0 cos <£ + Bx} sin Odd.
4ir \ cos 0 J 7

Integrating with respect to </> from 0 to 2w, to x from 0 to ®, and to 0 from 0 to
7T

, and doubling the result, we have

Jo \oe 15e2/

The first term expresses my former result, viz.

BPC, 
3ir«2 ^h
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But the whole is BPn r /4 ve'\ _ 2BPn M _ 2BPC,
15 Jo *\e e2) 15 /u e ~ loirs2 Jh’

The ratio is 20^50, = 3-704/4-19 = 0-882.

It is worthy of remark that the term

has the value

Jo ™ 15e2 

5C, - 20, 
Honrs2 x/h ’

and that 4/5ths of the O term are due to e'.

D. Thermal Conductivity.

Applying a process, such as that just given, to the expressions in § 39, we find that 
the exponential in the integral for the number of particles must be written

eo'$2 a n , f ov_ seca = gec +

to the required degree of approximation. [Properly, the superior limit of the 0 integration 

should be cos-1 ; but this introduces quantities of the order a2 only.] Thus equation 

(1) becomes

In the same way equation (3) of § 41 becomes

B=-^f nrv3^~+-)/e-5a/v-9a’/4ev

Thus equations (T) and (3') of § 42 become, respectively,

and

P Z5
.Jlv’ Grys1 \2

BC^'
Sirphs2 ’

^0,-50, + C^ 3P C^J
8 Trhs2

5P 0^
16 nhs1E JW&irs2

Thus we have finally to deal with the new forms of (1") and (3") of § 43, viz. :—

a=-^ ^0-06-^0-12, 
Jh? p ph

^=^PX0-45 + ^'0-44. 
n

When similar methods are applied to the diffusion equations, they become hopelessly 
complicated.
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[A few words are necessary to explain why the present paper has hitherto been 
printed in Abstract only, and to show what modifications it has undergone since it 
was read more than two years ago.

In the paper, as it was first presented to the Society, I contented myself with 
the usual practice of extracting from the virial a negative term (— Rp) to represent 
at least a portion of the part due to the molecular repulsion at impact. But, as will 
be seen by the Abstract printed at the time (Proc. Roy. Soc. Edin., 21/1/89), I stated 
that though this procedure is correct when molecular attraction is not taken into 
account, it requires considerable modification when such attractions are introduced. I also 
stated that its main effect would be to alter one of the disposable quantities (A) in 
my equation. I have since seen that the definition, of what we are now to understand 
by “ temperature,” which I then introduced, leads naturally and directly to the writing 
of a part of A in the form

— e {E + C/(v + y)}, 
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where E is proportional to the absolute temperature and to the average energy of 
a free particle. This remark really substitutes the new undetermined quantity e for 
the which occurred in my former expression. But the equation in its new form,
though containing as many arbitrary constants as before, is considerably more simple 
to deal with, as p occurs only in the term pv, in which both factors are directly 
given by experiment. The term p(v — ft) was a source of great trouble in the 
attempt to determine the proper values of the constants. It was recognised by 
Van der Waals, even in his earliest paper, that the quantity ft suffers large changes 
of value, with changes of volume of the gas, so that no formula in which it is treated 
as a constant could suffice to represent more than a moderate volume-range of the 
isothermals with any consistent degree of accuracy.

When I first read my paper, I had made no serious attempt to attack the 
formidable numerical problem of determining values of the constants which should 
adapt my main formula to Andrews’ experimental data. I contented myself with 
obviously (and professedly) provisional assumptions, which showed that it was well fitted 
to represent the results; but I also gave the relations among the constants of the 
formula and the data as to the mass, and the critical values of the pressure, volume, 
and temperature of the substance.

Later, having carefully reduced Andrews’ data to true pressures (by the help of 
Amagat’s determinations of the isothermals of air at ordinary temperatures), I proceeded 
to try various assumptions as to the values of the quantities v, p, a in my formulae, 
on which (as i = 30°’9C. was already given by Andrews with great precision) all the 
constants can be made to depend. I at first endeavoured to adjust these so as to 
make /3 = 0'0017, in consequence of a statement by Amagat (Ann. de Chimie, 1881, 
xxn. p. 397) as to the ultimate volume of CO2. But I failed to get results giving 
more than a general accordance with Andrews’ experiments; so that I made further 
guesses without taking account of this datum. I had, however, become accustomed to 
the employment of it, as a quantity of the order 10-3 of the volume of the gas at 
0° C. and 1 atm., so that I was much surprised to find that one of my chance 
assumptions, which gave = 0'00005, led to a formula far more closely agreeing with 
Andrews than any I had till then met with. The reason for this agreement is now 
obvious:—The term — ftp is not the proper expression for the part of the virial which 
it is intended to represent; and the true mode of iiitroducing that part is, as pointed 
out in my Abstract, to alter the value of A from isothermal to isothermal, and from 
volume to volume.

In January last I happened to ask M. Amagat if he could give me the value of 
pv for CO2 at 0° C. and 1 atm., which is wanting in his remarkable table (in the 
Ann. de Chimie, above referred to). In reply he kindly furnished me with a new 
and extremely complete set of determinations of pv, in terms of p, for CO2; the range 
of pressures being 1 to 1000 atm., and of temperature 0° to 100° C., some special 
isothermals up to 258° being added. My first step on receiving these data was to try 
how far they agreed with Andrews’ results, which I had carefully plotted (to true 
pressures) from 31°'l to 41° C., and for volumes from '03 to '002. My object was to 
discover, if possible, by comparison of the results of two such exceptionally trustworthy 

T. II. 25
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experimenters, whether any modification of the behaviour of CO2 is (as some theoretical 
writers have asserted) produced by the molecular forces due to the walls of the very 
fine tubes in which Andrews’ measurements were made. I could find nothing of the 
sort. The isothermals, plotted from Amagat’s numbers (which in no case were for any 
of Andrews’ temperatures), took their places in the diagram almost as if they had 
been an additional part of the work of one experimenter. The slight discrepancies at 
the smaller volumes were obviously due to the trace (1/500) of air which, as Andrews 
pointed out, was associated with the carbonic acid in his tubes.

But, although I have got from them only negative information as to the molecular 
effects said to be due to glass, Amagat’s isothermals are so regularly spread over the 
diagram as to be far more readily available for calculation than are those of Andrews. 
I have not, however, the leisure requisite for anything like an exhaustive treatment of 
them; and all that I have attempted is to obtain values of the constants in my formula 
which make it a fair representation of the phenomena in the experimentally investi­
gated range of the gas region of the diagram; and, more especially, that portion of it 
where the volume exceeds the critical volume. It appears to me that to try to push 
the approximation further at present would be waste of time; it cannot be attempted 
with any hope of much improvement until certain points, referred to below, have been 
properly investigated. These may lead to modifications of parts of the formula which, 
though unimportant in the regions now treated, may greatly improve its agreement 
with the facts, in the remaining portions of the diagram. Besides, there is in the data 
the uncertainty due to the presence of air, which was not wholly removed (though 
reduced to 1/2500) even in Amagat’s experiments. This, as above remarked, begins to 
tell especially when the volume is small.

It is very much to be regretted that Clausius did not avail himself of Amagat’s 
data in reducing Andrews’ scale of pressures. He expressly says he rejected them 
because they were not consistent with those of Cailletet. Hence the formula which 
he obtained after great arithmetical labour, though it is in close, sometimes in almost 
startling, agreement with the data through the range of Andrews’ work, is not 
properly a relation among p, v, and t. If we make it such, by putting in the 
correction (in terms of ©) for the pressures as measured by the air-manometer, a 
new ©-factor is introduced into the equation, and its simplicity (which is one of its 
most important characteristics) is lost. I tried to obtain hints for the values of the 
constants in my own formula by making this change in that of Clausius. But 
I found that the factor 1/t which Clausius introduced into the virial term (in order 
to approximate to the effect of the aggregation of particles into groups at the lower 
ranges of temperature), made his formula inapplicable to the wide regions of the 
diagram which Andrews did not attack, but which have been so efficiently explored 
by Amagat. There are, no doubt, traces of this systematic divergence even in the 
special Andrews region, but they become much more obvious in the outlying parts.

It is certainly remarkable that my simple formula, based entirely on the behaviour 
of smooth spheres, should be capable of so close an adjustment to the observed facts; 
and I think that the agreement affords at least very strong testimony in favour of 
the proposed mode of reckoning the temperature of a group of particles. When this



LXXX.] ON THE FOUNDATIONS OF THE KINETIC THEORY OF GASES. 195

is introduced, it appears at once that the term of Van der Waals’ equation, which 
he took to represent Laplace’s K, is not the statical pressure due to molecular forces, 
but (approximately) its excess over the repulsion due to the speed of the particles. 
And hence the (external) pressure is not, as Clausius put it, ultimately the difference 
between two very large quantities, but the excess of one very large quantity over 
the very large difference between two enormously great quantities; and thus the 
whole phenomena of a highly-compressed gas, or a liquid, are to be regarded as 
singular examples of kinetic stability. 28/5/91.]

Preliminary.

In the preceding part of this paper I considered the consequences of a special 
assumption as to the nature of the molecular force between two particles, the 
particles themselves being still regarded as hard, smooth, spheres. My object was to 
obtain, by means of rigorous calculation, yet in as simple a form as possible, 
a general notion of the effects due to the molecular forces. My present objects are 
(1) to apply this general notion to the formation and interpretation of the virial 
equation (in an approximate form), and (2) to apply the results to the splendid 
researches of Andrews and their recent extension by the truly mao-nificent measure­
ments of Amagat.

Passing over some papers of Hirn, and others, in which the earliest attempts 
were made (usually on totally erroneous grounds) to form the equation of the isother­
mals of a gas in which molecular forces are prominent, we come to the Thesis of 
Van der Waals*, who was the first, to succeed in representing, by a simple formula, 
the main characteristics of Andrews’ results. His process is based upon the virial 
equation, and his special object seems to have been an attempt to determine the 
value of the molecular constant usually called “Laplace’s K." Though the whole of 
this essay is extremely ingenious, and remarkably suggestive, it contains (even in its 
leading ideas) much that is very doubtful, and some things which are certainly 
incorrect. One of these was specially alluded to by Clerk-Maxwell d", who, in reviewing 
the essay, said:—“Where he has borrowed results from Clausius and others, he has 
applied them in a manner which appears to me to be erroneous.” It will conduce 
to clearness if I commence with an examination of the equation which is the main 
feature of Van der Waals’ Thesis, and the modifications which it underwent in the 
hands of Clausius.

XIX. The Isothermal Equations of Van der Waals and Clausius.

64. The virial equation (§ 30, above) is
(mu2) = ^pv -I- JS (Rr);

where, to save confusion, we employ u to denote the speed of the particle whose 
mass is m. From this Van der Waals derives the following expression:—

(p + J) (v - (mu2);

* Over de continuiteit van den gas- en vloeistoftoestand. Leiden, 1873. f Nature, Oct. 15, 1874.
25—2
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and he treats the right-hand member as a constant multiple of the absolute tempera­
ture. (This last point is of extreme importance, but I shall discuss it farther on; 
at present I confine myself to the formation of the equation.)

It is certain (§ 30) that, when there is no molecular force except elastic resili­
ence, the term

JS(^)

in the virial equation takes, to a first approximation at least, the form of a numerical 
multiple of

2 (mw2) 
v ’

and thus that, if this term be small in comparison with the other terms in the equation, 
we may call it

-Wp-
Thus the virial equation becomes p (v — /3) = |2 (mu2).

[So far, all seems perfectly legitimate; though, as will be seen later, I think it has 
led to a good deal of confusion:—at all events, it has retarded progress, by intro­
ducing what was taken as a direct representation of the “ultimate volume” to which 
a substance can be reduced by infinite pressure. When this idea was once settled 
in men’s minds, it seemed natural and reasonable, and consequently the left-hand 
member of the virial equation is now almost universally written p(v — ft); although, 
even in Van der Waals’ Thesis, it was pointed out that comparison with experiment 
shows that [3 cannot be regarded as a constant. But its introduction is obviously 
indefensible, except in the special case of no molecular force.]

Van der Waals’ next step is as follows:—Although p, in the virial equation, has 
been strictly defined as external pressure (that exerted by the walls of the containing 
vessel), he adds to it, in the last-written form of the equation (deduced on the 
express assumption of the absence of molecular force), a term a/v2, which is to 
represent Laplace’s K. Thus he obtains his fundamental equation

(p + J) (®-/3) = |2 (mu2),

or, as it is more usually written (in consequence of the assumption about absolute 
temperature, already noticed),

kt a
v — ft v2 ’

where k is an absolute constant, depending on the quantity of gas, and to be deter­
mined by the condition that the gas has unit volume at 0° C. and 1 atmosphere.

I do not profess to be able fully to comprehend the arguments by which 
Van der Waals attempts to justify the mode in which he obtains the above equation. 
Their nature is somewhat as follows. He repeats a good deal of Laplace’s capillary 
work; in which the existence of a large, but unknown, internal molecular pressure 
is established, entirely from a statical point of view. He then gives reasons (which 
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seem, on the whole, satisfactory from this point of view) for assuming that the 
magnitude of this force is as the square of the density of the aggregate of particles 
considered. But his justification of the introduction of the term a/v2 into an account 
already closed, as it were, escapes me. He seems to treat the surface-skin of the 
group of particles as if it were an additional bounding-surface, exerting an additional, 
and enormous, pressure on the contents. Even were this justifiable, nothing could 
justify the multiplying of this term by instead of by v alone. But the whole
procedure is erroneous. If one begins with the virial equation, one must keep strictly 
to the assumptions made in obtaining it, and consequently everything connected with 
molecular force, whether of attraction or of elastic resilience, must be extracted from 
the term 2 (Rr).

It is very strange that Clausius*, to whom we owe the virial equation, should 
not have protested against this striking misuse of it, but should have contented 
himself with making modifications (derived from general considerations, such as aggre­
gation of particles, &c.) which put Van der Waals’ equation in the form

_ kt a
V v - t(y +a^'

65. Van der Waals’ equation gives curves, whose general resemblance to those 
plotted by Andrews for CO2 is certainly remarkable:—and it has the further advantage 
of reproducing, for temperatures below the critical point, the form of isothermals 
(with physically unstable, and therefore experimentally unrealisable, portions) which 
was suggested by James Thomson, as an extension of Andrews’ work. For a reason 
which will presently appear (§ 67), Van der Waals’ curves cannot be made to coincide 
with those of Andrews.

The modified equation of Clausius, however, seems to fit Andrews’ work much 
better:—but the coincidence with the true isothermals is much more apparent than 
real, because Clausius’ work is based on the measurement of pressures by the air­
manometer, as they were originally given by Andrews, who had not the means of 
reducing them to absolute measure.

But a further remark of Clerk-Maxwell’s (in the review above cited) is quite as 
applicable to the results of Clausius as to those of Van der Waals, viz.:_ “ Though 
this agreement would be strong evidence in favour of the accuracy of an empirical 
formula devised to represent the experimental results, the equation of M. Van der 
Waals, professing as it does to be deduced from the dynamical theory, must be 
subjected to a much more severe criticism.”

66. Before I leave this part of the subject, I will, for the sake of future 
reference, put the equations of Van der Waals and Clausius in a form which I have 
found to be very convenient, viz.:—

......................................... (A)

* Annalen der Physik, ix. 1880.
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and (y — v)s \ / kt a \
(y — /3)(y + a)2/ yv — /3 + t(y + a)2/ ........................... (B).

In these equations p, v, t belong to the critical point, determined by the conditions that 
at such a point p is a minimax in terms of v. The special advantage of this mode of 
representing the isothermals depends on the fact that the first part of the value of p 
belongs to the critical isothermal; so that by comparing, at any one volume, the 
pressures in different isothermals (as given experimentally) we have a comparatively 
simple numerical method of calculating the values of some of the constants in the 
equation.

67. But, even if we were to regard the formula of Van der Waals as a purely 
empirical one, there is a fatal objection to it in the fact that it contains only two 
disposable constants. Thus, if it were correct, the extraordinary consequence would follow 
that there is a necessary relation among the three quantities, pressure, volume, and 
temperature, at the critical point:—so that, no matter what the substance, when two 
of these are given the third can be calculated from them. I do not see any grounds 
on which we are justified in assuming that this can be the case. Certainly, if it were 
established as a physical truth, it would give us views of a much stronger kind than 
any we yet have as to the essential unity of all kinds of matter. Van der Waals 
seems to have taken his idea in this matter from one of Andrews’ papers, in which 
there is a hazardous, and therefore unfortunate, speculation of a somewhat similar 
character. Anyhow, it would seem that, at least until experiment proves the contrary, 
we are bound to provide, in our theoretical work, for the mutual independence of at 
least the three following quantities:—

1. The diameters of the particles.
2. The range of sensible molecular force.
3. The maximum relative potential energy of two particles.

Besides these, there is the question of the law of molecular force, which we are certainly 
not entitled to assume as necessarily the same in all bodies. This has most important 
bearings on the formation of doublets, triplets, &c., at lower temperatures.

The modified’ formula of Clausius has one additional constant, and is therefore not 
so much exposed to the above objections as is that of Van der Waals. Still I think it 
has at least one too few.

XX. The Virial Equation for attracting Spherical Particles.

68. What is required is not an exact equation, for this is probably unattainable 
even when we limit ourselves to hard spherical particles. To be of practical value the 
equation must (while presenting a fair approximation to the truth) be characterised by 
simplicity. And, should the experimental data require it, we must be prepared to give 
the equation of any one isothermal in two or more forms, corresponding to various 
ranges of volume. It is exceedingly improbable (when we think of the mechanism
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involved) that any really simple expression will give a fair agreement with an isothermal 
throughout the whole range of volumes which can be experimentally treated.

From the general results of Part III. of this paper we see that the term
(mu^)

in the virial equation must, when molecular forces are taken into account, contain a 
term proportional to the number of particles which are at any (and therefore at every) 
time within molecular range of one another. Hence if, when the volume is practically 
infinite, we have for the mean-square speed of a particle

(where n is the whole number of particles), we shall have, when the volume is not 
too much reduced, no work having been done on the group from without,

p
v + 7

where C and 7 may be treated as constants, the first essentially positive if the 
molecular force be attractive, the second of uncertain sign. Even if the volume be 
very greatly reduced it is easy to see, from the following considerations, that a similar 
expression holds. The work done on a particle which joins a dense group is, on 
account of the short range of the forces, completed before it has entered much beyond 
the skin, and is proportional, ceteris paribus, to the skin-density. Hence the whole 
work done on the group by the molecular forces is (roughly) proportional to

vp .p0,
the first factor expressing the number of the particles, the second the work done on 
each. But, as we are dealing with a definite group of particles, the first factor is 
constant, so that the whole work is directly as p„, or inversely as (say) ^ + 7, because 
Po < p. But the work represents the gain in kinetic energy over that in the free state, 
so that this mode of reasoning leads us to the same result as the former for the 
average kinetic energy of all the particles.

In so far as R depends on the molecular attraction, the term

is evidently proportional, per unit volume of the group, to the square of the density:— 
for the particles, in consequence of their rapid motions, may be treated as occupying 
within an excessively short time every possible situation with regard to one another. 
Thus, as regards any one, the mass of all the rest may be treated as diffused uniformly 
through the space they occupy. In volume v, therefore, the amount is as vp\ But, 
in the present case, the quantity vp is constant, so that, again, the approximate value 
of the term is directly as p, or inversely as v. But, once more, we must allow for 
the bounding film (though not necessarily to the same exact amount as before), so we 
may write this part of the term as

A
v + a
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But there is another part (negative) which depends on resilience. This is (§ 30) 
proportional to the average kinetic energy, and to the number of particles and the 
number of collisions per particle per second. The two last of these factors are practi­
cally the same as those employed for the molecular attraction. Hence the whole of 
the virial term may be written as

A-e\E+C/(v + y)} 
v + a

Thus if we write again A and C for
. eC . ~ eC A -I-------- and C -]---------- ,a — y a — 7

respectively, the complete equation takes the form 

which is certainly characterised by remarkable simplicity.

69. We must now consider how far it is probable that the quantities in the 
above expression (other than p and v) can be regarded as constant. E, of course, 
can be altered only by direct communication of energy; but the case of the others 
is different. Generally, it may be stated that there must be a particular volume 
(depending primarily upon the diameters of the particles) at and immediately below 
which the mean free path undergoes an almost sudden diminution, and therefore we 
should expect to find corresponding changes in the constants. In particular, it must 
be noted that some of them depend directly on the length of the free path, and 
that somewhat abrupt changes in their values must occur as soon as the particles 
are so close to one another that the mean free path becomes nearly equal to their 
average distance from their nearest neighbours. For then the number of impacts per 
second suffers a sudden and large increase. Thus, in consequence of the finite size of 
the particles, we may be perfectly prepared to find a species of discontinuity in any 
simple approximate form of the virial equation. From this point of view it would 
appear that there is not (strictly) a “critical volume” of an assemblage of hard 
spheres, but rather a sort of short range of volume throughout which this compara­
tively sudden change takes place. Thus the critical Isothermal may be regarded as 
having (like those of lower temperature) a finite portion which is practically straight 
and parallel to the axis of volume. That this conclusion is apparently borne out by 
experimental facts (so far at least as these are not modified by the residual trace of 
air) will be seen when we make the comparison.

In fact we might speak of a superior and an inferior critical volume, and the 
portions of the isothermals beyond these limits on both sides may perhaps have 
equations of the same form, but with finite changes in some at least of the constants.

Another source of a species of discontinuity in some, at least, of the constants 
is a reduction of E to such an extent that grouping of the spheres into doublets, 
triplets, &c., becomes possible. Thus we have a hint of the existence of a “ critical 
temperature.”
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It must be confessed that, while we have only an approximate knowledge of the 
length of the mean free path (even among equal non-attracting spheres) when it 
amounts only to some two or three diameters, we practically know almost nothing 
about its exact value when the volume is so much reduced that no particle has a 
path longer than one diameter.

[It might be objected to the equation arrived at above, should it be found on 
comparison with experiment that a and 7 are both positive, that it will not make 
p infinite unless v vanish. To this I need only reply that the equation has been 
framed on the supposition that the particles are in motion, and therefore free to 
move. What may happen when they become jammed together is not a matter of 
much physical interest, except perhaps from the point of view of dilatancy. If the 
equation represents, with tolerable accuracy, all the cases which can be submitted to 
experiment, it will fully satisfy all lawful curiosity.]

XXI.—Relation between Kinetic Energy and Temperature.

70. Before we can put the above virial equation into the usual form of a relation 
among p, v, and t, it is necessary that we should consider how the temperature of 
an assemblage of particles depends upon their average kinetic energy.

Van der Waals and Clausius, following the usual custom, take the average kinetic 
energy as being proportional to the absolute temperature. Clerk-Maxwell is more 
guarded, but he says:—“The assumption that the kinetic energy is determined bv 
the absolute temperature is true for perfect gases, and we have no evidence that 
any other law holds for gases, even near their liquefying point.”

On this question I differ completely from these great authorities, and may err 
absolutely. Yet I have many grave reasons on my side, one of which is immediately 
connected with the special question on hand. To take this reason first, although it 
is by no means the strongest, it appears to me that only if E above (with a constant 
added, when required, as will presently be shown) is regarded as proportional to the 
absolute temperature, can the above equation be in any sense accurately considered 
as that of an Isothermal. If the whole kinetic energy of the particles is treated as 
proportional to the absolute temperature, the various stages of the gas as its volume 
changes with E constant correspond to changes of temperature without direct loss or 
gain of heat, and belong rather to a species of Adiabatic than to an Isothermal. 
Neither Van der Waals nor Clausius, so far as I can see, calls attention to the fact 
that when there are molecular forces the mean-square speed of the particles necessarily 
increases with diminution of volume, even when the mean-square speed of a free 
particle is maintained unaltered; and this simply because the time during which each 
particle is free is a smaller fraction of the whole time. But when the whole kinetic 
energy is treated as a constant (as it must be in an Isothermal, when that energy 
is taken as measuring the absolute temperature), it is clear that isothermal compression 
must reduce the value of E. It further follows that the temperature of a gas might 
be enormously raised if its volume were sufficiently reduced by the process (capable

T. II. 26 
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of being carried out by Clerk-Maxwell’s Demons') of advancing, at every instant, those 
infinitesimal portions of the containing walls on which no impact is impending. This 
is certainly not probable. If, on the other hand, we were to look at the matter from 
the point of view of intense inter-molecular repulsion (such as, for instance, Clerk- 
Maxwell’s well-known hypothesis of repulsion inversely as the fifth power of the 
distance, which was so enthusiastically lauded by Boltzmann), we should be led to 
the very singular conclusion that such an assemblage of particles might possibly be 
cooled even by ordinary compression; certainly that the Demons could immensely cool 
it by diminishing its volume without doing work upon it.

If this mode of reasoning be deemed unsatisfactory, we may at once fall back 
on thermodynamic principles; for these show that a gas could not be in equilibrium 
if either external, or molecular, potential could establish a difference of temperature 
from one region of it to another. For it must be carefully remembered (though it 
is very often forgotten) that temperature-differences essentially involve the transference 
of heat, on the whole, in one direction or the other between bodies in contact:— 
so that if there be a cause which can produce these temperature-differences, it is 
to be regarded as a source of at least restoration of energy. Let the contents of 
equal volumes at different parts of a tall column of gas under constant gravity be 
compared. In each the pressure may be regarded, so far as it is due to the external 
potential, as being applied by bounding walls. But the temperature is the same in 
each, and the only other quantity which is the same in each is E. For, as the 
particles are free to travel from point to point throughout the whole extent of the 
group, the average value of E must be the same for all; and, therefore, in regions 
where the density is small, it must be that of free particles:—i.e., absolute temperature.

71. For the isothermal formation of liquid, heat must in all cases be taken from 
the group. This must have the effect of diminishing the value of E. Hence, in a 
liquid, the temperature is no longer measured by E, but by E + c, where c is a 
quantity whose value increases steadily, as the temperature is lowered, from the value 
zero at the critical point. Thus, since of course we must take the physical fact of 
the existence of liquids as a new datum in our calculations, and with it the agglo­
meration into doublets, triplets, &c. (whose share of the average energy differs in 
general from that of their components when free), we see that the state of aggre­
gation which we call liquid is such that, as it is made colder and colder, a particle 
which can escape from it requires to have more and more than its average share of 
the non-molecular part of the energy.

We might be tempted to generalise further, and to speculate on the limiting 
conditions between the liquid and the solid states. But these, and a host of other 
curious and important matters suggested by the present speculation, prominent among 
which is the question of the density of saturated vapour at different temperatures 
(with the mechanism of the equilibrium of temperature between the liquid and the 
vapour), must be deferred to the next part of this paper. It is sufficient to point 
out here how satisfactorily the present mode of regarding the subject fits itself to 
the grand facts regarding latent heat, and to its steady diminution as the pressure 
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under which ebullition takes place is gradually raised to the critical value. What 
we are called upon to do now is to justify, by comparison with experiment, the 
hypothesis which we have adopted as to the proper physical definition of temperature, 
and the form of the virial equation to which it has led us. If we have any measure 
of success in this, we may regard the main difficulty of at least the elements of these 
further problems as having been to some extent removed.

What has been said above leads us, in the succeeding developments, to write (so 
long at least as we are dealing with vapour or gas)

E = Rf,

where t is the absolute temperature, and R (whose employment is now totally changed) 
is practically the rate of increase of pressure with temperature at unit volume, under 
ordinary conditions.

XXII.—The Equation of Isothermals.

72. Assuming the definition of temperature given in last section, the virial equation 
of § 68 becomes

C_____ A_
v + 7 v + a'1 d---- — t d- v + a)

For the minimax, which occurs at the critical point, we must have simultaneous! v

*-0, *-0.
dv dr

But dp A — Ret C
V dv + P (y + a)2 (v + y)2 ’

d2p dp a A - Ret 2(7 
dv2 dv (v + a)3 (y + 7)’'

Denoting by a bar quantities referring to the critical point, these equations give 
_ _ A - Ret C 
V (y + a)2 (v + y)2 ’ 

„ _ A — Rei C 
(v + a)3 (y + y)3 ’

, a V z P a +a)3 ri pwhence A — Ret = —------- , I =------------ .a — 7 a — 7
26—2
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But the first equation of this section can be written as

nA. e ) /x . di A — Ret C pv = R 1 + --- (t — t) + Rt-------------- 1----- -7 \ v + a. v + a v +

By the help of the values ofA — Ret, and C, just found, and the further condition 
that p, v, t satisfy this general equation, we can easily put it in the form

p-ph- , J+jifi + “ । * - *............................ (cy

r v (v + a) (v 4 7)/ \ v+ a/ v ' '

There are seven constants in this equation:—viz., p, v, t, a, 7, e, and R- but there 
are two relations among them, one furnished by the usual condition that the gas 
treated has unit volume at 0°C., and 1 atm.; the other (from the conditions of the 
minimax) being

o- Rtdr + a + 7 = — .
P

73. If we compare (C) with the corresponding forms of the equations of Van 
der Waals and Clausius ((A) and (B) of § 66 above) we see that all three agree in 
a remarkable manner as to the form of the equation of the critical isothermal. In 
fact, the only difference is that in (C) the divisor of (v — v)3 contains three distinct 
factors, while in each of (A) and (B) two of the three factors are equal. It is quite 
otherwise with the term which expresses the difference of ordinates between the 
critical isothermal and any other of the series:—so that even if all three equations 
agreed in giving the correct form of the critical isothermal no two of them could 
agree for any other.

XXIII.—Comparison with Experiment.

74. We must now compare our formula with experiment. And here I have been 
exceptionally fortunate, as the kindness of M. Amagat has not only provided me with 
a complete set of values of pv in terms of p for CO2 between the limits 1 to 1000 
atm. and 0° to 100° C., but has further replied to my request for a set of values 
of p, at different temperatures, for certain special values of v. This important table 
I give in full, inserting columns of differences. It is very much better adapted than 
the former to numerical calculation, as the form of the virial equation requires that 
v should, for this purpose, be treated as the independent variable.
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Pressure of CO2 in terms of Volume and Temperature (Amagat).

At 0° C. and 1 atm. the volume is unity. After the experiments were completed the CO2 was tested, 
and left 0’0004 of its volume when absorbed by potash.

The interpolated columns are differences (or average differences, if in brackets) of pressure for 
10° at constant volume.

Vol. •02385 •01636 •013 •01 ■0076S! ' -00578 •00428 •00316 •0025 ■002 •00187

o
0 31 34-4 34-4 307-5

2 7’4 10 10 10 10 10 10 96 5
10 33 41-8 44-4 44-4 404

2 3’3 6’7 11-9 12 12 12 12 116
20 35 45-1 51-1 56-3 56-4 56-4 64 300 5202 3-2 5'4 6’5 11'9 14'3 14’3 151 45 84 107’5
30 37 48-3 55-5 62-8 68-3 70-7 71-5 109 384 627-5
32 37’4 49 56-4 641 70 73-7 74-6 77

35 38 49-9 57-6 65-8 72-6 77-2 79-5 84-7
2 31 4’2 5’8 8*3 12'4 17'1 26'5 46 86'5 122’5

40 39 51-4 59-7 68-6 76-6 83-1 87-8 98 155 470-5 7501-9 31 41 5’9 8’2 11-6 17 0 27’3 46 89’5
50 40-9 54-5 63-8 74-5 84'8 94-7 104-8 125-3 201 560 856-51’9 31 4-0 5’7 8-0 11'5 17'1 28'5 49’5 91 9760 42-8 57'6 67'8 80-2 92-8 106-2 121-9 153-8 250-5 651 953-51-9 3'0 4-0 5’6 7'8 11*3 17'0 29'4 48
70 44-7 60-6 71-8 85-8 100-6 117-5 138-9 183-2 298-5 7451*9 2’9 3’9 5-5 7-6 11-3 17'4 28’3 47’5 88*5
80 46’6 63-5 75-7 91-3 108-2 128’8 156-3 211-5 346 832-51’9 3 0 3’9 5'4 7-8 11-4 17'2 29 48’5
90 48-5 66-5 79-6 96-7 116 140-2 173-5 240-5 394-5 918

2 3-0 4'0 5'6 7'8 11-1 17-6 30’5 49 80100 50-5 69-5 83-6 102-3 123-8 151’3 191-1 271 443-5 998
[1’73] [2’8] [3'7] (5’1) [7-2] [10’6] [16-4] [28] [46-8]

137’5 57 80 97'5 121-5 151 191 252-5 376 619
[1’81] [2-8] [3’7] [5-3] [7’2] [10'9] [17 1] [29'4] [48]

198 68 97 120 153-5 195 257 356 554 909
(1’751 [2’5] [3’3] [4'6] [6'6] [9’8] [15’6]

258 78-5 112 140 181 234-5 316 449-5

It is obvious, from a glance at the columns of differences, that the change of 
pressure at constant volume, while the CO2 is not liquid, is almost exactly proportional 
to the change of temperature. M.. Amagat expressly warned me that the three last 
temperatures in the table are only approximate, as they were not derived from air­
thermometers, but simply from the boiling-points of convenient substances.

They appear to indicate a slow diminution of dpfdt (v constant) as the temperature 
is raised above 100° C., but this is beside our present purpose.

Leaving them out of account, we find that in the range 31° to 100° C. the 
fluctuations of the changes of pressure per 10° (at constant volume) are very small, 
and do not seem to follow any law. These fluctuations besides are, especially when 
the volume of the gas is small, well within the inevitable errors of observation in a 
matter of such difficulty. Hence we take a simple average in each column; and thus 
we have the following table:—
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Average Change of Pressure per 10° of Temperature at Constant Volume.

V •02385 •01636 •013 •01 ■00768 •00578 •00428 •00316 •0025 •002 •00187
Ap 1’93 30 40 5’6 7'9 11-5 172 28-5 47-8 87-7 108?
vAp •046 ■049 •052 ■056 ■061 •066 •074 •090 T20 •175 •20?

Calc. ■I -046 •049 ■052 •056 •061 •068 •077 •087
•061 •073 •093 T22 T75 •20

The numbers in the fourth row are the values of

10 000371 + 0-000021\ 
v + 0'001)

and those in the fifth row are from

It is clear that these formulas give fair approximations to the data, the first for 
volumes down to 0’005 or so, the second for smaller volumes.

Comparing with formula (C) of § 72, we see that the values of R, Re, and a 
are respectively

000371, 0’000021, and 0’001
for the larger volumes, and

0’00371, 0’000011, and -0’0012
for the smaller. The values of 7 and v can now be determined by the relation in 
§72, and a few experimental data. After a number of trials I arrived at

v = 0’0046,

as most consonant with the data for larger volumes; and I have provisionally assumed 
the value

v = 0’004

for the lower range of volumes, in agreement with what was said in § 69 above as 
to the probable existence of a short, horizontal, portion of the critical isothermal. The 
value of y for the first portion of the curve is found to be 0’0008; and I have 
assumed it to be — 0’0008 for the rest, thus ignoring the condition for the minimax 
at the commencement of this part of the curve. I consider this course to be fully 
justified by the arguments given in § 69 above. Thus, taking from the assumption 
below the value 73 atm. for the critical pressure, we arrive at the following equations 
for the parts of the critical isothermal which lie on opposite sides of the short, 
approximately straight, portion :—

(v - 0’0046)3
v(y + 0’001) (v + 0’0008)/ ’

(r - 0’004?
v(v — 0’0012) (« — 0’0008)/ '

and p = 73
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In a careful plotting of the isothermals of CO2 from the whole of Amagat’s data 
(including, of course, those given above), I inserted, by means of differences calculated 
from the preceding formulae for dpfdt, the probable isothermal of 31° C. This is only 
0°l higher than the critical temperature as given by Andrews, which is certainly a 
little too low in consequence of the small admixture of air. The experimental data 
in the following table were taken directly from the curve so drawn. They are, of 
course, only approximate:—especially for the smaller volumes, for there the curves are 
so steep that it is exceedingly difficult to obtain exact values of the ordinates for 
any assigned volume. It is also in this region that the effects of the slight trace 
of air are most prominent.

Approximate Isothermal of 31° C.

The third line is calculated from the first of the above formulae, the fourth line from the second.

1 -024 -02 -015 -0125 ‘01 ‘0075 '006 -005 ’0045 -004 -0035 ’003 ’0025 -002

p(exp.) 1T2 37’1 42-4 51’6 57'2 63 4 69'6 72-4 72'9 73 73 73'2 76'8 114 392
(1T3 37-2 42-5 51’4 57'0 63'3 69’6 72'3 72'95 73 73'16 74'4 79'6 96'4 149
( 73'0 73'2 79'1 117'6 377

For volumes down to 0'0035 the agreement is practically perfect. The remainder of 
the data, even with the second formula, are not very well represented. The value of 
p for volume 0'003 has given much trouble, and constitutes a real difficulty which 
I do not at present see how to meet. It is quite possible that, in addition to the 
defects mentioned above, I may have myself introduced a more serious one by assum­
ing too high a value for the lower critical volume, or by taking too low a temperature 
for the critical isothermal. Had I selected the data for the isothermal of 31O,3 or 
so, it is certain that (with a slight change in v) the agreement with the formula 
would have been as good as at present for the larger volumes, and it might have 
been much better for the smaller. But I have not leisure to undertake such tedious 
tentative work. As it is, the formulae given above represent Amagat’s results from 
31° to 100° C. for volumes from 1 to 0'0035, with a maximum error of considerably 
less than 1 atmosphere even at the smallest of these volumes. And, even with the 
least of the experimental volumes, the approximations to the corresponding (very large) 
pressures are nowhere in error by more than some 4 or 5 per cent. This is at 
least as much as could be expected even from a purely empirical formula, but I hope 
that the relations given above (though still extremely imperfect) may be found to 
have higher claims to reception.

[Since the above was put in type it has occurred to me that this remarkable 
agreement, between the results of experiment on a compound gas, and those of a 
formula deduced from the behaviour of hard, spherical, particles, may be traced to 
the fact that the virial method is applicable, not only to the whole group of particles 
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but (at every instant) to the free particles, doublets, triplets, &c., in so far as the 
internal relations of each are concerned. Hence the terms due to vibrations, rotations, 
and stresses, in free particles, doublets, &c., will on the average cancel one another 
in the complete virial equation. How far this statement can be extended to particles 
which are not quite free will be discussed in the next instalment. 5/6/91.]

[Some of the above remarks on Van der Waals’ treatment of the virial equation 
were objected to by Lord Rayleigh and by Prof. Korteweg. The correspondence will be 
found in Nature (Vols. xliv. and xlv., 1891—2). I quote here a few sentences of my 
own which, had I been rewriting instead of merely reprinting my paper, might have 
been in part at least incorporated in it.

“ I had not examined with any particular care the opening chapters, to which your letter chiefly 
refers; probably having supposed them to contain nothing beyond a statement and proof of the Virial 
Theorem (with which I was already familiar) along with a reproduction of a good deal of Laplace’s work.

Of course your account of this earlier part of the pamphlet (which I have now, for the first 
time, read with care) is correct. But I do not see that any part of my statements (with perhaps 
the single exception of the now italicized word in the phrase ‘ the whole procedure is erroneous ’) is 
invalidated by it. No doubt, the sudden appearance of al®* in the formula above quoted is, to some 
extent at least, accounted for; but is the term correctly introduced ? ”

“ I think that the mere fact of Van der Waals’s saying (in a passage which is evidently applicable 
to his own processes, though it is applied only to that of Lorentz) ‘die ganze Rechnung doch nur 
bis auf Grossen der ersten Ordnung (wie &/») genau ist ’ throws very grave doubt on the whole 
investigation. For in the most interesting part of the critical isothermal of CO2 the fraction b/v 
cannot be looked upon as a small quantity of the first order. In fact, without raising the question, 
either of Van der Waals’s mode of interpreting the term ^2 (mF2) or of the paucity of constants in 
his equation, the above consideration would of itself render the results untrustworthy. Van der Waals 
has most opportunely and effectively called attention to an exceedingly promising mode of attacking 
a very difficult problem, and his methods are both ingenious and suggestive; but I do not think 
that his results can be regarded, even from the most favourable point of view, as more than ‘ Guesses 
at Truth.'

For, if we take the experimental test, there can be no doubt that (as I have stated in § 65 
of my paper) ‘Van der Waals’s curves cannot be made to coincide with those of Andrews.’ And 
I think I have given reasons for believing that ‘the term of Van der Waals’s equation, which he 
took to represent Laplace’s K, is not the statical pressure due to molecular forces but (approximately) 
its excess over the repulsion due to the speed of the particles.’ Of course I mean by this that, 
when Van der Waals, comparing his equation with experiment, assigns a numerical value to his 
term a/v2, he is not justified in regarding it as the value of Laplace’s K; though that quantity 
was, he tells us, the main object of his inquiry.”

“ I do not agree with Prof. Korteweg’s statement that Van der Waals’s method, if it could be 
worked out with absolute rigour, would give the same result as the direct method. There is but 
one way of dealing with the virial equation:—if we adopt it at starting we must develop its terms 
one by one, and independently. In this connection I may refer to Lord Rayleigh’s statement 
Nature, 26/11/91): ‘It thus appears that, contrary to the assertion of Maxwell, p is subject to 
correction.’ I cannot admit that p is ‘ corrected ’; it is not even changed either in meaning or in 
value. It is introduced as, and remains (at the end of any legitimate transformations of the equation) 
the value of the pressure on the containing vessel. This, of course, depends upon what is going on 
in the interior. Other terms in the virial equation, which happen to have the same factor, may be 
associated with p for convenience; they assist in finding its value, but they do not change its meaning, 
nor do they ‘correct’ it.” 1899.]
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ON THE FOUNDATIONS OF THE KINETIC THEORY 
GASES. V.

OF

(Abstract.') 

[Proceedings of the Royal Society of Edinburgh, February 15, 1892.]

The first instalment of this part of my paper deals mainly with the theory of
the behaviour of mixtures of CO2 and N, for which some remarkable experimental 
results were given by Andrews about 1874. His full paper, so far as he had drawn 
it up for press, was published posthumously in the Phil. Trans, for 1886, and is 
reprinted in his Scientific Papers, No. L. One special reason for the introduction of 
this question at the present stage of my work was the desire to attempt a cor­
rection of Amagat’s numbers, for the (very small) admixture of air with his CO2. 
The virial equation for a mixture is formed on the same general principle as that 
I employed for a single gas. There are, of course, more undetermined constants:— 
and, unfortunately, the data for their determination are barely adequate. The general 
results, however, agree in character with those described by Andrews:—the particular 
phenomenon which is most closely studied being the increase of volume, at constant 
pressure, when the gases (originally separated by the liquefaction of one) were allowed 
to diffuse into one another.

Since Part IV. of this paper was printed, M. Amagat has published (Comptes Rendus, 
October 12, 1891) additional data of a most valuable character bearing on the iso­
thermals of CO2:—especially the very important isothermal of 32° C.; and he has 
given the pressure of the saturated vapour at 0°, 10°, 20°, and 30° C. I have 
endeavoured to utilise these, as far as possible, not only for my present main object:— 
the examination of the relation between temperature and kinetic energy:—but also, 
incidentally, for the determination of the latent heat of the saturated vapour at 
various temperatures, and the relative densities of the liquid and vapour when in 
equilibrium. These data have also enabled me to obtain more exact approximations 

27T. II.
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to the values of the constants in my formula, and thence to improve my determin­
ations of the critical temperature, pressure, and volume.

In §71 of Part IV. I arrived at the conclusion that “in a liquid the temperature
is no longer measured by E [the part of the kinetic energy which is independent
of the molecular forces], but by E + c, where c is a quantity whose value increases
steadily, as the temperature is lowered, from the value zero at the critical point.”
For numerical data to test this conclusion, I study a cycle formed from the critical 
isothermal and any lower one, and two lines of equal volume, corresponding to those 
of the liquid and the saturated vapour when in equilibrium at that lower temperature. 
The change of energy in passing from one of these limits of volume to the other 
is found to be less for the critical isothermal than for any lower one. Thus the 
mean specific heat at constant volume, for the range of temperature employed, is less 
in the vapour than in the liquid. But from the equation, which is found to satisfy 
very closely the data for the isothermals of the gas for some 70 degrees above the 
critical point and of the vapour for 30 degrees below that point, it appears that 
the specific heat at constant volume is sensibly constant within these limits. [At 

100° C. and upwards, it appears that ~ falls off; so that is negative, and the 

specific heat at constant volume is therefore, even in the gas, greater for smaller 
volumes. But this does not seriously affect the above statement.] Hence, at any 
volume less than the critical volume, more heat is required to raise the temperature 
1 degree when the substance is wholly liquid than when it is gaseous. This com­
pletely justifies the statement quoted above, provided that we assume the properties 
of the liquid and gas to merge continuously into one another at the critical temperature; 
but, unfortunately, the data are not sufficient to give more than very rough estimates 
of the value of the quantity c there spoken of.

I am at present engaged in endeavouring to obtain more exact values of the 
constants in my equation, in order to improve my estimates. Thus the numbers which 
follow may have to undergo some modifications, but there seems to be no reason for 
thinking that these are likely to be serious.

If vlt i>2 be the respective volumes of the saturated vapour, and of the liquid, 
at absolute temperature t, we know that the latent heat is expressed by the formula—

X = ~

From Amagat’s data I find for the values of this quantity, and for the ratio
of the densities of the liquid and vapour:—

Temperature C. X

0° 4-369 9-023
10 3-788 6-200
20 2-882 3-823
30 1-460 1-906
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Taking the density of CO2 at 0° C. and 1 atm. as 0 002, it is easy to see that 
the values of X must be multiplied by

500 2117
62'5 ’ 1390 ’ = 12’2 nearly,

to reduce them to ordinary heat units. Thus the latent heat at 0° C. is about 53, 
while at 30° C. it is only 17’8.

In the following table P represents the gain of energy from the liquid state to 
that of saturated vapour, at the indicated temperature:—i.e.,

while

is the corresponding gain of energy, in the critical isothermal, between the same limits
of volume.

Temperature C. p Q
0° 3'747 3'577

10 3'244 3113
20 2'459 2'409
30 1-233 1'203

The difference, P — Q, is (when multiplied, as above, by 12’2) nearly equal to the 
excess of the heat required to raise the temperature of the liquid (at constant volume) 
to the critical point, over that required to raise the temperature of the vapour, from 
saturation, through the same range, the volume remaining unaltered.

It appears that CO2, when passing through the range of volume spoken of in 
§ 69 of Part IV. of my paper, has about half the density of water.

[The paper, of which the above is an Abstract, was never fully written out for 
press. Further papers of M. Amagat soon led to (slight) modifications of the curves 
which had been employed in my calculations; so that the numbers given above require 
some change, and we have now the data necessary. I find, for instance, that I had 
long ago noted (as an improved version of the last column of the table opposite) the 
figures

”i/®2

9'52
6'45
4-08
1-79

which are very nearly the same as those given by M. Amagat in the Comptes Rendus 
for March 13th of this year. 1899.]

27—2
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LXXXIL

NOTE ON THE EFFECTS OF EXPLOSIVES.

[Proceedings of the Royal Society of Edinburgh, February 21, 1887.]

Many of the victims of the dynamite explosion, a year or two ago, in the London 
Underground Railway, are said to have lost the drum of one ear only, that nearest to 
the source. This seems to point to a projectile, not an undulatory, motion of the air 
and of the gases produced by the explosion. So long, in fact, as the disturbance 
travels faster than sound, it must necessarily be of this character, and would be capable 
of producing such effects.

Another curious fact apparently connected with the above is the (considerable)
finite diameter of a flash of forked lightning. Such a flash is always photographed
as a line of finite breadth, even when the focal length is short and the focal adjust­
ment perfect. This cannot be ascribed to irradiation. The air seems, in fact, to be
driven outwards from the track of the discharge with such speed as to render the 
immediately surrounding air instantaneously self-luminous by compression.

Such considerations show at once how to explain the difference between the effects 
of dynamite and those of gunpowder. The latter is prepared expressly for the purpose 
of developing its energy gradually. Thus while the flash of gunpowder fired in the 
open is due mainly to combustion of scattered particles,—that produced by dynamite 
is mainly due to impulsive compression of the surrounding air, energy being conveyed 
to it much faster than it can escape in the form of sound.
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ON THE VALUE OF WHEN m AND n ARE VERY
LARGE.

[Proceedings of the Edinburgh Mathematical Society, Vol. v., 1887.]

I had occasion, lately, to consider the following question connected with the Kinetic 
Theory of Gases:—

Given that there are 3.1020 particles in a cubic inch of air, and that each has 
on the average 10“ collisions per second; after- what period of time is it even 
betting that any specified particle shall have collided, once at least, with each of 
the others?

The question obviously reduces to this:—Find m so that the terms in 

xm=+xa +.+ xnyn

which contain each of the n quantities, once at least, as a factor, shall be numerically 
equal to half the whole value of the expression when ®1 = a;2 =....... =xn=l. Thus 
we have

Xm - S (V - + S (X - xr - x,)m -....... = | A™

or

It is strange that neither Herschel, De Morgan, nor Boole, while treating 
differences of zero, has thought fit to state that Laplace had, long ago, given all that 
is necessary for the solution of such questions. The numbers are of such im­
portance that one would naturally expect to find in any treatise which refers to them 
at least a statement that in the Theorie Analytique des Probability (Livre II., chap. H., 
§ 4) a closely approximate formula is given for their easy calculation. No doubt the 
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process by which this formula is obtained is somewhat difficult as well as troublesome, 
but the existence of the formula itself should be generally known.

When it is applied to the above problem, it gives the answer in the somewhat 
startling form of “about 40,000 years.” [Ante, No. LXXVIII., p. 156. 1899.]

P.S.—April 4, 1887.—Finding that Laplace’s formula ceases to give approximate 
results, for very large values of m and n when these numbers are of the same order 
of magnitude, I applied to Prof. Cayley on the subject. He has supplied the requisite 
modification of the formula, and his paper has been to-night communicated to the 
Royal Society of Edinburgh. [Cayleys Mathematical Papers, Vol. XIL, No. 853. 1899.]
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NOTE ON MILNER’S LAMP.

[Proceedings of the Edinburgh Mathematical Society, Vol. v., 1887.]

This curious device is figured at p. 149 of De Morgan’s Budget of Paradoxes, 
where it is described as a “ hollow semi-cylinder, but not with a circular curve," 
revolving on pivots. The form of the cylinder is such that, whatever quantity of oil 
it may contain, it turns itself till the oil is flush with the wick, which is placed 
at the edge.

Refer the “ curve ” to polar coordinates, r and 0; the pole being on the edge, 
and the initial line, of length a, being drawn to the axis. Then if d0 correspond to 
the horizontal radius vector, ft to any definite radius vector, it is clear that the 
couple due to the weight of the corresponding portion of the oil is proportional to

fP ( 2 1Pd0 ] a cos 0„ - r cos (0 — 0„) 1.

This must be balanced by the couple due to the weight of the lamp, and of the oil 
beyond ft; and this, in turn, may be taken as proportional to

cos (a + 0O).
Thus the equation is

2 / \
acos0o Pd0—cos 0„ P cos 0d0 + sin 0„ P sin 0d0 I = b3 cos (a + 0X 

J e„ o\ J e„ J /

Differentiating twice with respect to 0O, and adding the result to the equation, we 
have (with 0 now put for 0„)

dv dv
2ar2 sin 0 — 2ar cos# + 2r2 = 0.a# dU
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Rejecting the factor r, and integrating, we have
r2 = 2ar cos 0 + C.

This denotes a circular cylinder, in direct contradiction to De Morgan’s statement!

As it was clear that this result, involving only one arbitrary constant, could not 
be made to satisfy the given differential equation for all values of b, a, and I fancied 
that it could not be the complete integral. I therefore applied to Prof. Cayley, who 
favoured me with the following highly interesting paper. It commences with the 
question I asked, and finishes with an unexpectedly simple solution of Milner’s 
problem. [Cayley’s Mathematical Papers, Vol. XIII., No. 889. 1899.]

It appears clear that De Morgan did not know the solution, for the curve he has 
sketched is obviously one of continued curvature—and he makes the guarded state­
ment that a friend “ vouched for Milner’s Lamp.”
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AN EXERCISE ON LOGARITHMIC TABLES.

[Proceedings of the Edinburgh Mathematical Society, Vol. V., 1887.]

In reducing some experiments, I noticed that the logarithm of 237 is about 2’37... . 
Hence it occurred to me to find in what cases the figures of a number and of its 
common logarithm are identical:—i.e., to solve the equation

logi0® = «/10’", 

where m is any positive integer.

It is easy to see that, in all cases, there are two solutions; one greater than, the 
other less than, e. This follows at once from the position of the maximum ordinate 
of the curve

y = (iog®)/®.

The smaller root is, for m =1, x = 1'371288.......

m = 2, x = 1'023855 .......

For higher values of m, it differs but little from 1, and the excess may be calculated 
approximately from

y-y2/2 + ... =(l+y) log. 10/10m.

Ultimately, therefore, the value of the smaller root is

1'00....... 0230258 ........

where the number of cyphers following the decimal point is m — 1.
T. II. 28



218 AN EXERCISE ON LOGARITHMIC TABLES. [lxxxv.

The greater root must have m+p places of figures before the decimal point; 
p being unit till m = 9, then and thenceforth 2 till m = 98, 3 till m = 997, &c.*  Thus, 
for example, if m > 8 < 98 we may assume

* [It is easy to see that the indices, of the integral powers of 10 which satisfy the original equation, 
are themselves of the form IO4, where q is such that

m = 104-q.
Thus, with 3 = 0, we have 10 itself as the greater root when m = L 1899.]

x = (m + 1) 10™ + y,

so that
m +1 . I. y 1 y 

°gl0 10 + °gl"( + (m + 1) 10m] “ 10”1 ’

which is easily solved by successive approximations.

But it is simpler, and forms a capital exercise, to find, say to six places, the greater 
root, by mere inspection of a good Table of Logarithms.

Thus we find, for instance,

m
17
18
96
97

X
182,615.1013 
192,852.1014 
979,911.10" 
989,956.1093
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LXXXVI.

ON GLORIES.

[Proceedings of the Royal Society of Edinburgh, July, 1887.]

When Mr Omond was appointed to the Ben-Nevis Observatory I requested him 
to take every opportunity of observing what are called Glories—especially noting, when 
possible, their angular diameters and the order of their colours, so that it might be 
possible to decide upon the exact mode in which they are produced.

Young, while attributing to their true cause the spurious (or supernumerary) 
rainbows, proceeds to say:—“ The circles, sometimes seen encompassing the observer’s 
shadow in a mist, are perhaps more nearly related to the common colours of thin 
plates as seen by reflection.”—[Lectures, II. p. 645.]

Now from Mr Omond’s observations it appears that the mists to which the 
glories are due produce coronse of, say, 2° or 3° radius;—from which it follows that 
the diameter of the particles is somewhere of the order inch. It is thence 
shown that, were Young’s explanation correct, the radii of the rings would vary 
with great rapidity in passing from one kind of homogeneous light to another. This 
is altogether irreconcilable with Mr Omond’s observations.

That the glories are not of the nature of spurious rainbows is shown very simply 
by the fact that they are more intense as their radii are smaller.

Hence, the only possible explanation is diffraction depending on the form of the 
vertex of the reflected wave. The form of an originally plane wave, once reflected 
inside a drop of water is, roughly, when the central ray has just emerged, a portion 
of an hyperboloid of revolution, doubled back cusp-wise round its border. An 
approximate calculation is given, based on this assumption.

28—2
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A simple first approximation to the 
of a plane wave incident normally on a 
small circular apertures of nearly equal 
analogous to coronas.

theory of glories is given by the behaviour 
screen pierced with a great number of very 
size. They are thus, to a certain extent,

APPENDIX.

On Mr Omond’s Observations of Fog-Bows.

[Proceedings of the Royal Society of Edinburgh, January, 1888.]

The author remarked that one of the constituents of the double fog-bow described 
in some of Mr Omond’s recent observations*,  is obviously the ordinary primary rainbow, 
diminished in consequence of the very small size of the water drops. But the other, having 
nearly the same radius but with its colours in the opposite order, appears to be due to 
ice-crystals in the fog. This is quite consistent with the record of temperatures. Just as 
small drops of water may remain unfrozen in air below 0° C., small ice-crystals may remain 
unmelted at temperatures above that point.

* Proceedings R.S.E. xiv. p. 314.
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LXXXVII.

PRELIMINARY NOTE ON THE DURATION OF IMPACT.

[Proceedings of the Royal Society of Edinburgh, Feb. 20, 1888.]

The results already obtained were got by means of a roughly made apparatus 
designed for the purpose of testing the method used, so that only a single instance, 
to show their general character, need now be given. When a wooden block of 10 lbs. 
mass fell through a height of 18J inches on a rounded lump of gutta-percha, the 
time of impact was found to be somewhere about 0'001 sec., and the coefficient of 
restitution was 0'26.

As the principle of the method has been found satisfactory in practice, new 
apparatus is in course of construction, which will enable me to use a fall amounting 
to 10 feet at least. It is proposed to make a series of experiments on different 
substances, with great varieties of mass and of speed in the impinging body.
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LXXXVIH.

ON IMPACT.

[Transactions of the Royal Society of Edinburgh, Vol. xxxvi. Revised Nov. 8, 1890.]

The present inquiry is closely connected with some of the phenomena presented 
in golf:—especially the fact that a ball can be “jerked” nearly as far as it can be 
“driven.” For this, in itself, furnishes a complete proof that the duration of the 
impact is exceedingly short. But it does not appear that any accurate determination 
of the duration can be made in this way. Measurements, even of a rude kind, are 
impracticable under the circumstances.

In 1887 I made a number of preliminary experiments with the view of devising 
a form of apparatus which should trace a permanent record of the circumstances of 
impact. I found that it was necessary that one of the two impinging bodies should 
be fixed:—at least if the apparatus were to be at once simple and manageable. 
This arrangement gives, of course, a result not directly comparable with the behaviour 
of a golf-ball. For pressure is applied to one side only, both of ball and of club; 
but when one of two impinging bodies is fixed it is virtually struck simultaneously 
on both sides. Even with the altered conditions, however, the inquiry seemed to be 
worth pursuing. I determined to operate, at least at first, on cylinders of the elastic 
material; so fixed that considerable speed might be employed, while the details of 
several successive rebounds could be recorded. It is not at all likely that this will 
be found to be the best form for the distorted body; but it was adopted as, in 
many respects, convenient for preliminary work. For the main object of the experi­
ments was to gain some information about a subject which seems to have been left 
almost entirely unexplored; and it is only by trial that we can hope to discover 
the best arrangement. Messrs Herbertson and Turnbull, who were at the time Neil- 
Arnott Scholars, and working in my Laboratory, rendered me great assistance in these 
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preliminary trials, whose result was the construction of a first rude apparatus on the 
following plan.

A brick-shaped block of hard wood was dropped endwise from a measured height 
upon a short cylinder of cork, vulcanized india-rubber, gutta-percha, &c., which was 
imbedded to half its length in a mass of lead, firmly cemented to an asphalt floor. 
The block slid freely between guide-rails, precisely like the axe of a guillotine. In 
front of the block was a massive fly-wheel, fitted on one end of its axle, and carrying 
a large board (planed true) on which was stretched, by means of drawing-pins, a 
sheet of cartridge-paper. The sheet was thus made to revolve in its own plane. A 
pencil, projecting from the block, was caused by a spring to press lightly upon the 
paper; and it was adjusted so that its plane of motion passed as exactly as possible 
through the axis of the paper disc. To prevent breakage of the pencil on the edge 
of the disc, it was pushed into its bearings, and released by a trigger only after it 
had, in its fall, passed the edge. The block, having fallen, rebounded several times 
to rapidly diminishing heights and, after a second or two, came to rest on the cork 
cylinder. The pencil then traced a circle and, as soon as this was complete, the fly­
wheel (previously detached from the gas-engine) was at once stopped by the application 
of a very powerful brake. The circle thus described was the datum line for all the 
subsequent measures; since the tracings which passed beyond it were obviously made 
during the impact, while those within it referred at least mainly to the comparatively 
free motion between two successive impacts. The duration of the impact was at once 
approximately given by the arc of the circle intercepted between the tracings of the 
pencil as it passed out and in, combined of course with the measured angular velocity 
of the fly-wheel. It is not yet known at what stage during the recovery of form 
the impinging bodies go out of contact with one another. In the present paper we 
are content to assume that contact commences and terminates at the instants of 
passage across the datum circle. This is certainly not rigorously true as regards the 
commencement, but the assumption cannot introduce any serious error; while of the 
termination we have no knowledge. It may be remarked, in passing, that the error 
at commencement will necessarily be greater the larger the mass of the falling body. 
It will also be greater for soft than for hard bodies, and especially for those of the 
former class which most depart from Hooke’s Law.

In the winter 1887-8, and in the subsequent summer, some very curious results 
were obtained by Messrs Herbertson and Turnbull with this rough apparatus. Several 
of these were communicated to the Society at the time when they were obtained. 
Thus, for instance, it was found that although the mass of the block was over 5 lbs., 
the time of impact on a cork cylinder- was of the order of 0s-01 only, while with 
vulcanite it was of the order 08-001. Also, for one and the same body, the duration 
was less, the more violent the impact. [The golf result mentioned above was now 
at once explained; for, as the mass of a golf-ball is less than Ay of that of the 
block, under equal forces its motions will be fifty times more rapid. Thus, even if it 
were of cork, the time of impact would be of the order of about one five-thousandth 
of a second only; and the shorter the more violent the blow.] Taking the coefficient 
of restitution as 0’5 on the average, the time-average of the force during impact after 
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a fall of 4 feet was, for these classes of bodies respectively, of the orders 400 lbs. 
weight and 4000 lbs. weight. This result is of very high interest from many points 
of view.

The values of the coefficient of restitution for impacts of different intensity were 
obtained by drawing tangents to the fall-curve at its intersections with the datum 
circle corresponding to the assumed commencement and end of each impact, and 
finding their inclination, each to the corresponding radius of the circle. The co­
efficient of restitution is, of course, the ratio of the tangents of these angles. The 
results of these graphical methods could easily be checked by forming the polar 
equations of the various branches of the fall-curve (ascending and descending) and 
obtaining the above-mentioned tangents of angles by direct differentiation. If we 
assume the friction (whether of rails or pencil) to be approximately constant, it is 
easy to see that the equation of the part of the tracing made during a fall, or 
during a rise, can be put in the very simple form

r = A + B&.
Here the centre of the disc is the pole, and the initial line is the particular radius 
which was vertical when the block was at one of its successive highest positions. 
This radius separates the rise, from the fall, part of each branch of the curve. A 
is of course the same for both parts, but B (being directly as the acceleration of 
the block, and inversely as the square of the angular velocity of the disc) is larger 
for the rise than for the fall; because friction aids gravity in the ascent and acts 
against it in the descent. A number of sets of corresponding values of the polar 
coordinates were measured on each part of the curve, the angles being taken from 
an approximately assumed initial line. Three of these sets determined A, B, and the 
true position of the initial radius; and the others were found to satisfy (almost 
exactly) the equation thus formed. This shows that the assumption, of friction nearly 
constant throughout the whole trace, is sufficiently accurate. B is always positive in 
the equation, but A is negative or positive according as the block does, or does not, 
rebound to a height greater than the radius of the datum circle.

It is not necessary to tabulate here any of the very numerous results of these 
earlier experiments. While the work was in progress many valuable improvements of 
the apparatus suggested themselves, and I resolved to repeat the experiments after 
these had been introduced. The whole of these subsequent results are tabulated 
below. The following were found to be the chief defects of the earlier arrangement, 
so far at least as they were not absolutely inherent in the whole plan. These have 
been since remedied; and results obtained with the improved apparatus have been, 
from time to time, communicated to the Society.

1. The use of a pencil is objectionable from many points of view. Serious worry 
and much loss of time are incurred in consequence of the frequent breaking of the 
lead, even when every possible precaution seems to have been taken. Then the 
rapid wearing-down of the point by the cartridge-paper causes the later-traced portions 
of each diagram (including especially the datum circle, which is of vital importance) 
to be drawn in broad lines, whose exact point of intersection can be but roughly 
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guessed at. The friction, also, was (mainly on account of the roughness of the paper) 
so large that the values of B, for the ascending and descending parts of any one 
branch of the curve, differed from the mean by a large fraction of it, sometimes as much 
as 20 per cent. This is approximately the ratio which the acceleration due to friction 
bears to that due to gravity; so that the friction was, at least occasionally, as much 
as one pound weight. This, of course, seriously interfered with the accurate measure 
of the coefficient of restitution. Instead of the board and cartridge-paper I intro­
duced a specially prepared disc of plate-glass, which ran perfectly true. It was 
covered uniformly with a thin layer of very fine printers’ ink, which was employed
wet. For the pencil was substituted a needle-point, so that this part of the apparatus
was rendered exceedingly light, strong, and compact. The lines traced could easily
be made as fine as those of an etching, but it was found that a slightly blunted 
point (giving a line of about 0'005 inch in breadth) produced probably less friction, 
at all events less irregularity, than did a very sharp one. The difference of either
value of B from the mean rarely amounted to more than 1'5 or 2 per cent, of the 
mean. When the ink was dry, which happened after about a day, photographic prints 
were taken by using the disc as a negative. [In the later experiments it was found 
that, when proper precautions were taken, no delay on this account was necessary.] 
To test whether the paper of the positives had been distorted, in drying after fixing, 
a number of circles were described on the glass disc at various places before the ink 
was dry. They were found to remain almost exactly circular on the dried photograph. 
All the subsequent measurements were made on these photographs. In a subsequent 
paper I hope to give the results of careful micrometric measures, made on the glass 
plate itself, of the form of the trace during impact. This may lead to information 
which could not be derived from the photographs themselves with any degree of 
accuracy. My first object was to obtain a number of separate experiments, so as to 
get the general laws of the phenomena, and for this purpose the glass plate had to 
be cleaned and prepared for a new series of experiments as rapidly as possible. The 
micrometric measures cannot be effected in a short time.

2. In the earlier experiments the fly-wheel continued in connection with the 
gas-engine until the fall was completed. Hence the rate of rotation was irregular, 
and the mode adopted for its measurement gave an average value only. In the later 
experiments an electrically-controlled tuning-fork, furnished with a short bristle, made 
its record on the disc, simultaneously with the fall of the block; and the gas-engine 
belt was thrown on an idle pulley immediately before the experiment commenced. 
The angular velocity of the disc was sensibly different in different experiments, 
according as the engine was thrown off just before, or just after, an explosion. But 
the fact that its fly-wheel is a gigantic one made these differences of small importance. 
They were, however, always taken account of in the reductions. The disc, when left 
to itself, suffered no measurable diminution of angular velocity during a single turn. 
In the earlier experiments one rotation of the disc occupied about 0s'3; but I was 
afraid to employ so great a speed with the glass plate, so its period was made not 
very different from one second. I found it easy to obtain on the glass disc the 
records of four successive falls, each with its series of gradually diminishing rebounds,

T. II. 29 
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and along with these the corresponding serrated lines for the tuning-fork. These 
records were kept apart from one another by altering the position of the fork, as 
well as that of the needle-point on the block, immediately after each fall. The latter 
adjustment alters, of course, nothing but the radius of the datum-circle, and the 
corresponding values of the quantity A. As soon as the four falls had been recorded, 
the glass disc was dismounted, and all the necessary details of the experiment—e.g., 
date, heights of fall, substance impinged on, mass of block, &c.—were written (backwards) 
on the printers’ ink, with a sharp point, and of course appeared on the photograph. 
The changes of mass, just alluded to, were occasionally introduced by firmly screwing 
on the top of the block a thick plate of lead of mass equal to its own.

3. A very troublesome difficulty was now and then met with, but chiefly when 
the elastic substance employed was a hard one, such as vulcanite or wood. For the
block was occasionally set in oscillation during the impact, and especially at the 
instant when it was beginning to rebound. The trace then had a wriggling o’­
outline, altogether unlike the usual smooth record. Sometimes the wriggle 
perpendicularly to the disc, and the trace was then alternately broadened am 
evanescent. After some trouble I found that the main cause was the slig nt 
(produced by repeated falls on hard bodies) in the striking part of the block, which 
had originally been plane. The wriggling always appeared when this dent did not 
fit exactly upon the (slightly convex) upper end of the hard cylinder. To give free 
play at the moment of impact, the lower part of the guide-rails had been, by filing, 
set a very little further apart than the rest, and thus small transverse oscillations 
of the block were possible. I hope to avoid this difficulty in future, by fixing a 
hard steel plate on the striking part of the block, and making all the remaining 
experiments with this. Of course a few of the former experiments must be repeated 
in order to discover whether the circumstances are seriously, or only slightly, modified 
by the altered nature of the striking surface. There can be no doubt that the 
distortion, as tabulated, belongs in part to each of the impinging bodies; but it is 
not easy to assign their respective shares.

The general nature of the whole trace of one experiment will be obvious from 
the upper figure in the Plate, which is reduced to about 0’3 of the actual size. The 
lower figures (drawn full size) show the nature of the trace during impact:—the first 
series, some of which exhibit the “wriggles” above described, belonging to the pencil 
records of the old apparatus; the second series containing some of those obtained 
with the improved form just described.

In the earlier work, with the cartridge-paper, falls of 8 and even of 12 feet 
were often recorded. The results of the later work have been, as yet, confined to 
falls of 4 feet at most. But I intend to pursue the experiments much further, after 
fitting an automatic catch on the apparatus; such as will prevent the block from 
descending a second time if it should happen to rebound so far that the needle-point 
leaves the glass disc.

What precedes is of course designed to furnish only a general notion of the 
nature of the apparatus, the principle on which it works, and the results already 
obtained with it. Some further remarks, on the physical principles involved, will be 
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made after details of dimensions, and of numerical data have been given. But it 
must be stated here that with the later form of the apparatus it was found necessary 
to have a party of at least three engaged in each experiment; one to attend to the 
driving-gear, a second to the falling block, and a third to the tuning-fork. My assist­
ant, Mr Lindsay, took the first post; I usually took the second myself; and the 
fork was managed by Mr Shand, to whom I am besides indebted for the greater part 
of the subsequent measurements and reductions. These, of course, involved an amount 
of work which, though not perhaps more difficult than the rest, was incomparably 
longer and more tiresome.

Description of the Apparatus.

Two beams nearly 12 feet long, and 6 inches by 2^ inches cross section, are rigidly 
fixed, vertically, and at a distance of 8| inches from each other, to a massive stone 
pillar. To them the rails, which act as guides for the falling body, are screwed, the 
distance between them being 6| inches. At the base, between the rails, is a cylinder 
of lead, 6 inches by 6 inches, firmly imbedded in a mass of concrete, and having on 
its upper end a hole, § inch deep and 1| inch diameter, for holding the lower end 
of the substance experimented on. This consists of cork, india-rubber, vulcanite, &c., 
as the case may be, cut into a cylinder, inch diameter, and 1| inch long, with 
the lower end flat and the upper slightly rounded. It thus projects about inch 
after being thrust home into the hole in the leaden cylinder, in which it rests on 
a thin disc of gutta-percha. This was found effectually to prevent the cylinder’s 
being displaced in the lead-block. Before it was introduced, the cylinder was occasion­
ally left not in contact with the bottom of the hole, so that the record of the next 
impact was vitiated. Sometimes, indeed, the cylinder had jumped entirely out of the 
hole before the block redescended.

In a plane, parallel to that which contains the guides and nearly 2£ inches from 
it, a massive fly-wheel, 28| inches diameter, whose moment of inertia is 102'6 in lbs. 
sq. ft., is placed. The iron frame supporting it is fixed to the concrete floor by means 
of bolts, so that the whole can be rigidly fixed in position or lifted back at pleasure 
A thick wooden board is firmly attached to the front of this wheel, and on it is 
laid a sheet of felt. On the top of the felt, an octagonal plate of glass, about | 
inch thick, the edges of which are bevelled, is placed, and then firmly pressed to the 
board by means of bevelled metal plates, covered with felt, and screwed down on 
four alternate edges.

The mass of the glass is 28 lbs., its moment of inertia 25'21. For the wood 
these are 21'5 and 24'19 respectively. The total mass (including the fly-wheel) being 
122'5 lbs., k2 is found to be about 1'24 sq. ft.

A rope passing up the outside of one of the beams, over two small pulleys, and 
down between the rails, serves to raise and lower the block, next to be described, 
or to keep it suspended by a hook at any desired height. A cord running parallel 
to the rope is attached to the catch of the hook at the end of the rope, so that 
by pulling this cord the hook is tilted and allows the block to fall.

29—2
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The block is rectangular, and formed of hard wood (plane-tree along the grain), 
11| by by 2| inches, weighing 5| lbs. Down the centre of each of the edges runs 
a deep groove, at the ends of which pieces of iron with a polished groove of U 
section are screwed on. It is on these that the guides bear while the block is falling. 
The guides and Us being well oiled, the friction is reduced to a minimum.

A brass plate, 5| inches by 2| inches, is sunk into the face of the block about 
| inch, and through the plate and wood a longitudinal slot, 3 inches by j inch, is 
cut, the centre of the slot coinciding with the centre of the block. Another plate 
of brass, 3| inches by 2| inches, with two parallel slots 2| inches long and { inch 
broad, half an inch distant from, and on either side of the centre, lies on the fixed 
plate, and can be clamped to it by means of flat-headed screws passing through the 
slots. This movable plate has, therefore, a longitudinal (vertical) play of about 2 inches 
when the screws are loose. It carries the tracing-point and its adjusting mechanism.

The tracing-point is at the extremity of a steel rod, one inch of whose length 
is of | inch diameter, the remaining | inch being of rather less than £ inch diameter. 
The thicker part works freely, but not loosely, in a cylindrical barrel, the thinner 
part passing through a collar at the front end. The cylinder is fixed, at right angles, 
to the movable brass plate, and passes through the slot in the block. The rod is 
lightly pressed forwards at the thicker end by a piece of watch-spring, so as to keep 
it, when required, steadily in contact with the revolving disc. In the wall of the 
cylindrical barrel is a long slot which runs backwards for 1 inch parallel to the axis, 
and then, turning at right angles to its former direction, runs through a small fraction 
of the circumference of the barrel. In this slot works a stout wire screwed perpen­
dicularly into - the rod which carries the tracing-point. Of course when this wire is 
in the transverse part of the slot the needle-point is retracted; but as soon as it 
is turned into the axial part the spring makes the needle-point project through the 
collar. Before the block falls, the wire is in the transverse part of the slot, and the 
needle-point is retracted. But when, in its fall, the point has passed the edge of 
the glass disc, a pin fixed at the proper height catches the end of the wire and 
turns it into the axial slot. As soon as the tracing is complete, the wire is forced 
back (by means of a system of jointed levers) into the transverse slot, and thus the 
tracing-point is permanently withdrawn from the disc, so that the block can be pulled 
up, and adjusted for another fall.

The last part of the apparatus to be described is that for recording the time.
It consists of an electrically controlled tuning-fork, making 128 vibrations per second. 

A circular bar of iron, 8 inches long, is fixed perpendicularly to one of the beams, 
and in the plane of the beams. From this the tuning-fork is suspended by means 
of circular bearings. It therefore has a swinging motion perpendicularly to the disc, 
as well as a translatory motion parallel to it. By means of a screw it can be fixed 
in any position, and to any degree of stiffness. The bar is at such a height that 
the end of the tuning-fork carrying the tracing-point is in the same horizontal plane 
with the centre of the revolving glass plate. By this means it can be adjusted to 
trace its record anywhere between the edge of the plate and a circle whose radius 
is 5 or 6 inches, measured from the centre of the glass.
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Theory of the Experiments.

So far as concerns the motion of the block between two successive impacts, the 
investigation is extremely simple. For we assume (in fair accordance with the results, 
as shown above) that the friction is practically constant. Thus the motion of the 
block is represented by

Mr = Mg + F, 
the positive sign referring to upward motion.

We have also, taking the angular velocity, o>, of the disc as uniform throughout 
the short period of the experiment,

dd = adt.

d^T / F \ IThus = (y ± J / ^ = 25, say;

so that r = A + B02,

if we agree that 6 is to be measured in each case from the particular radius which 
is vertical at the moment when the block is at one of its highest positions.

If our assumptions were rigorously correct, the equations of those branches of the 
curve which are traced during each successive rise of the block should differ from one 
another solely in the values of the constant A. Similarly with those traced during 
successive descents. The ascending and descending branches of the same free path 
should differ solely by the change of value of B, according as the friction aids, or 
opposes, the action of gravity. Also the two values of B should differ from their 
mean by a smaller percentage the greater is the mass of the block. This, however, 
will be necessarily true only if the friction be independent of the weight of the block.

As a test of the closeness of our approximation, to be applied to the experimental 
results below, it is clear that, if we call Bo the mean of the values of B for the 
parts of the curve due to any one rebound, we have

250 = ^.
CO2

But, in the notation of the Tables as explained in the next section, we have

a> = 2tt/(QN/128).

Taking the value of g as 32-2 when a foot is unit of length, it is 9814 to 
millimetres; and the two equations above give the following simple relation between 
Bo and N

B^^N2

which is sufficiently approximate to be used as a test, the fraction being in defect 
by about 0'14 per cent, only, say l/700th.
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.Thus, in the first experiment of those given below for date 23/7/90, we have
N = 21-25, 

which gives as the calculated value
Bo = 123-16; or, with l/700th added, =123-33.

The actual value, as given by the equations for the two parts (&, £2) of the first 
rebound, is

1(125-73 + 120-81)= 123-27,

the difference being less than 0'05 per cent. In this case the acceleration due to 
friction bears to that of gravity the ratio

2-46 : 123-27;
almost exactly 2 per cent.

From the data (7!, 72) for the second rebound we find the actual value of Bo to be

|(131-31 + 121-46)= 126'33;
and the percentage of acceleration due to friction rather less than 4. As the whole 
rise in this second rebound was considerably less than an inch, these results are 
highly satisfactory.

It is a fairer mode of proceeding, however, to calculate the value of N from 
that of Bo, by means of the above relation The values, thus calculated, are inserted
in the tables below, in the same column as the measured value of A, with the
prefixed letters B, 7> &c., to show from which rebound, the first, second, &c., they
have been calculated. These agree in a very satisfactory manner with the value of
N given by the record of the tuning-fork.

From the facts, that the time of impact is nearly the same for all small dis­
tortions, and that it diminishes rapidly as the distortion is greater, it follows that 
the equation of motion must be of the form

Mx = — Cx — X

during the first stage of the impact; and of approximately the same form, but with
the square of the coefficient of restitution as a factor of the right, during the second
stage. In this equation x (which is confined to positive values) is measured from
the datum line, so that no term in g comes in explicitly. X is a function of x,
which is small for small values of x, but increases faster than does the first power 
of x for larger values. Hence, for small relative speeds, the time of compression is

7F / M
2 V G

and that of rebound 1/e times as much. The utmost distortion is

V /^4-^

where V is the speed at the datum line. The first term is due to the fall; the 
second, which is due to the weight of the block, does not appear in our Tables, as
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the measures are made from the datum line. Its value, however, is usually only a 
small fraction of that of the first term.

To compare the distortion with the duration of impact in experiments made with 
the same mass, falling from different heights, the following equation was tried:— 

where the numerical factors are introduced for convenience. This assumes X, above, 
to vary as the square of the distortion measured from the datum circle, and it gives, 
for the time of compression, in terms of the greatest distortion, a, the expression

y = f1_________ dz__________
J o Vn2 (1 — z2) + a (1 — ^)/a ’

= P 
^n2 + a/a

to a sufficient approximation. Here p is a numerical quantity which is about 1'6 
when a/a is small in comparison with n2, and continuously approaches the value 1'4 
as a gradually increases. It is easy to give similar expressions for other assumed 
laws of relation of stress to distortion; but, as will be seen later, this part of the 
inquiry has not yet led to any result of value.

In testing the results obtained with the earlier apparatus I assumed the force 
(for the more violent impacts) to be as the square of the distortion simply. This gives, 
in the notation of the Tables below,

D x T~2 x HA

Of course any investigations, based on such simple assumptions as those made 
above, can be only very rough approximations, since they ignore altogether the true 
nature of the distortion of either of the impinging bodies, as well as the internal 
wave disturbance which is constantly passing to and fro in the interior of each; 
part of it, no doubt, becoming heat, but another part ultimately contributing to the 
resilience. In such circumstances the impact may perhaps sometimes consist of a 
number of successive collisions; certainly the pressure between the two bodies will 
have a fluctuating value.

Measurements of the Tracings, and their Reduction.

From the tracing for each separate experiment the following quantities were 
carefully determined. Their values are given in the subsequent Tables, under the 
corresponding letters below.

1. Number of vibrations of the fork corresponding to one-sixth of a complete 
revolution of the disc .................... ;—..................................  N.

Three diameters of the disc were drawn, making angles of 60° with one another, 
and the number of undulations of the fork-tracing intercepted between each pair of 



232 ON IMPACT. [lxxxviii.

radii was counted. This process was preferred to the simpler one, of counting the 
undulations in the entire circumference, for two reasons:—it tests the uniformity of 
the rotation, or a possible shrinking of the photographic paper; and it makes one 
common process of measurement applicable to complete traces, and to others which 
from some imperfection of adjustment presented only parts which were sufficiently 
distinct. When only one measurement is given under this head, it means either that 
only one was possible or that all six gave the same result. When two are given, 
they are chosen as the least and greatest of the six. They usually differ by a small 
quantity only, and may indicate distortion of the paper or irregularity of the fork 
(due to the bristle’s being clogged with printers’ ink, or to its pressing too strongly 
on the plate?). In these cases the arithmetical mean is to be taken for any sub­
sequent calculation.

2. The radius of the datum circle ...............................................................................R.
This, and the other measurements of length, are in millimetres.

3. The height of fall, or of rebound ...........................................................................H.
For the first fall, this was of course measured on the rails:—for the subsequent re­
bounds it was measured on the tracing.

4. Chord of the arc of datum circle intercepted by the trace during impact ... C. 
As this arc was, on the average, considerably less than one-tenth of radius, the chord 
is practically equal to it (differing at most by 1/1200th only), and it is thus a measure 
of the duration of the impact. The duration is, in fact,

C 6A 3 ON
2ttR ' 128 “ 400 ‘ R

this approximation being much within the inevitable errors of experiment. It is 
tabulated under ............................................................................................................................. T.

5. Greatest distortion—i.e., greatest distance of the trace beyond the datum circle 
(of course not including the (small) distortion due to the weight of the block). This 
datum is always, to a small but uncertain amount, increased by the distortion of the 
lower part of the falling block. This is probably nearly proportional to that of the 
elastic cylinder, so that the numbers given are all a little too large, but they are 
increased nearly in a common ratio .......................................................................................D.

It was found impracticable to estimate with certainty the relative distances of 
this greatest ordinate from the ends of the intercepted arc; as the radial motion 
generally remains exceedingly small during a sensible fraction of the whole time of 
impact. This is true of all the substances examined, even when they have properties 
so different as those of vulcanite and vulcanised india-rubber. It seems as if the 
elastic substance were for a moment stunned (if such an expression can be permitted) 
when the sudden distortion is complete.

We can easily assign limits within which the time of compression must lie. For, 
since the elastic force resists the motion, and increases with the distortion, its time­
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average during the compression is greater than its space-average:—i.e.

mV mV
~T> ~2D’

where m is the mass of the block, V its speed at the datum line, and t the time 
of compression. Hence

If we make the assumption that the force at each stage during restitution is e times 
its value during compression, this gives

D T 2D
V < 1 + l/e< V ’

and the values tabulated satisfy these conditions. Thus the somewhat precarious 
assumption as to the circumstances of restitution is, so far, justified.

6. The tangents of the inclination of the trace to the radius of the datum circle 
drawn to the intersection of these curves before and after impact ........................ Au A2.

These values were determined directly by drawing tangents to the trace; and 
indirectly by calculation from the equation of each part of the trace. The agreement 
of the observed (o) and calculated (c) values is satisfactory.

Attempts to form the equation of the part of the trace made before the first 
impact were not very successful, as the available range of polar angle was small, and 
the radius vector increases rapidly for small changes of that angle. Hence the calculated 
value of Ax was obtained simply as the ratio of the tangential and radial speeds of 
the tracing-point at the moment of its first crossing the datum circle. This was 
taken as

R<o r ,, = = „ nearly.
V2gH 36-o^

In this numerical reduction II is taken as 4 feet, i.e., 1219 mm.; and the full 
value of g is employed, as we do not know the amount by which friction diminishes 
it, the contact of the tracing-point with the disc coming about only during an un­
certain portion of the lower range of the fall; while it is not possible to estimate 
with any accuracy the effect of the impact on the trigger. The calculated value of 
the tangent will therefore always be too small, but (since the square-root of the 
acceleration is involved) rarely by more than 1 per cent. On the other hand, the 
graphic method employed for the direct measurement of this tangent usually exaggerates 
its value.

7. The ratios of these pairs of tangents—i.e., the values of the coefficient of
restitution ...........................................................................................................................................

The equation of each distinct part of the trace (alluded to in 6, above) was 
found thus:—The minimum (or maximum) radius-vector was drawn approximately for

T. II. 30
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each separate free path, and other radii were drawn, two on either side of it, making 
with it convenient angles:—usually 40°, 80°, — 40°, — 80°, or such like. The notation 
employed below for the measured lengths of these radii-vectores is simply square 
brackets enclosing the value of the angle-vector, thus:—

[80], [40], [0], [-40], [-80],

If x be the angular error introduced in the estimated position of the minimum radius, 
we determine it, as well as the A and 5 of the equation of the corresponding half 
of the branch of the curve in question, from three equations of the very simple form

[0] = A + Bx2,
[40] = A + B (40 + x)2,
[80] = 4+5(80 + x)2,

(which may be made even more simple for calculation by putting y for 40 + x\ The 
assumed initial radius was in most cases so near to the minimum that very little 
difference was found between [0] and A; x being usually very small.

We now write the equation of this part of the branch in the form
r = A + B {0 + x)2;

the numerical values of A, B, x being inserted, after x has been reduced to radians, 
and B modified accordingly. The equations, in this final form, are printed below— 
each with the data from which it was obtained. (A fine protractor, by Cary, London, 
reading to one minute over an entire circumference, belongs to the Natural Philosophy 
Class collection of Apparatus; so that it was found convenient to deal with degrees 
in all measurements of angle, and in the bulk of the subsequent calculations:—the 
results being finally reduced to circular measure.)

In the Tables below, after the data (enumerated above) from each experiment, 
come the equations of the successive parts of each trace in order. In these, Bi, Bi 
refer respectively to the rise and fall due to the first rebound; y2 to the second 
rebound, &c.

To test the formulae thus obtained, other radii were measured, as far as possible 
from those already employed, say for instance [20], [60], [— 20], [— 60], &c. These 
measured values, and the corresponding values calculated from the equation (before 
reducing to circular measure), are also given below. The agreement is, in most cases, 
surprisingly close; and shows that the assumption of nearly constant friction cannot 
be far from correct.

The whole of the above statement presupposes that the adjustments have been 
so exact that the line of fall of the needle-point passes accurately through the centre 
of the disc. On a few occasions, only, it was not so:—but the necessary correction 
was easily calculated and applied, by means of the trace preceding the first impact; 
even if the trace of the first rebound did not reach to the level of the centre of 
the disc. In fact, if we wish to find the curve which would have been traced on 
the disc had the adjustment been perfect, it is easy to see that we must draw from
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each point of the trace a tangent to the circle described about the centre of the 
disc so as to touch the true line of fall. The position of the centre of the disc, 
relatively to the point of contact of this tangent, is the same as that of the true 
point, relatively to the actual point, of the trace. This applies, of course, to all parts 
of the trace, including the datum circle.

In the special trace which has been selected for photolithography as an illustration 
(see Plate IV) this adjustment is markedly imperfect; much more so than in the worst 
of the others. The path of the tracing-point passed, in fact, about 3 mm. from the 
centre of the disc; while, in the worst of the other cases, the distance was not more 
than half as great. But this very imperfection serves to enable the reader to follow 
without any difficulty the various convolutions of the trace. The measurements and 
reductions, obtained from this specially imperfect figure, agree wonderfully with those 
obtained from the best traces. It would only have confused the reader had we selected 
one of the latter for reproduction, since each of them contains the record of four 
experiments—i.e., it contains four times as much detail as does the trace reproduced.

Conclusions from the Experiments.

It will be observed from the following Tables that the assumed initial radius­
vector was never very far from the true position of the minimum; the correction (in 
circular measure) being usually of the order 0'01, i.e., about 0°6, and very often much 
less. When the minimum was small, the correction was usually larger; but in few 
cases did it amount to 0'05, i.e., 3°. This correction ought, of course, to have equal 
values for the two parts of each free path.

The substances experimented on were fresh specimens, not those which had been 
frequently battered by 8 and 12 foot falls in the earlier experiments. They were 
limited to four, Plane-tree, Cork, Vulcanised India-rubber, and Vulcanite. The first 
material was chosen the same as that of the falling block, in order that (if possible) 
a correction for the compression of the block might be determined, and applied to 
the results of the experiments on other materials. I do not as yet see any simple 
mode of obtaining approximately such a correction:—and the data from different 
experiments with the same materials are scarcely sufficiently consistent with one 
another to warrant the application of rigorous analysis, a task which would involve 
immense labour as well as difficulties of a most formidable order. Hence there is 
not much to be said, for the present at least, about the behaviour of a hard body 
such as vulcanite, whose distortion is only of the same order as that of the block. 
The time of the impact between it and the wood-block is somewhere about l/500th 
of a second when the speed of the block is about 16 feet per second. For lower 
speeds it is longer; while for very low speeds this substance seems to show a 
peculiarity which is specially marked in cork, and will be considered below.

With vulcanised india-rubber, when the speed is 16 feet per second, the time of 
impact is about l/130th of a second; it becomes longer as the relative speed is less; 
until, with very low speeds, it becomes practically constant.

30—2
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With cork the period of impact for a speed of 16 feet per second is about l/TOth 
of a second; it increases as the speed is reduced to about 8 feet per second; and 
again steadily diminishes as the speed is still further reduced. This seems to indicate 
that (at least in circumstances of rapid distortion) the elastic force in cork increases 
in a slower ratio than does the distortion, while both are small, but at a higher 
ratio when they are larger.

In all the cases tested the coefficient of restitution seems steadily to diminish 
as the speed of impact is increased.

In some of the experiments the mass of the block was doubled; and occasionally 
the doubled mass was allowed to fall from half the previous height, so that its energy 
remained unaltered. But the number of cases is as yet too small to enable us to 
judge with certainty the consequences of these changes. I hope to discuss this point 
in a subsequent paper.

23/7/90. Plane Tree, I.

N R H C T D Ai A2 e
0 C 0 c

21'25 292-5 1219-2 3-8 000206 2-0 0'421 0-377 1-474 1-608 •286*
67-0 4-7 255 0-8 1’600 1-626 2-651 2-720 •604

13 21-24 221 4-8 260 0-5 2-798 2-844 4-198 •667
7 21-5 91 5-0 271 0-3

4'2 5-8 314
21

0 c
A, 1[0] 225'0 [15] 232-8 232’9

[20] 239-3 r = 225 + 125-73 (6> — 0115)2 [35] 270-3 270’2
1[40] 284-3 [42] 291-8 290’5

[- 
F

[0] 
• 20] 
40]

225-0
240-8
286'0

r = 225 + 120’81 (0—’0128)2 [- 30] 259 7 
[- 42] 293-0

259’9
291’7

7i, [0] 270-8
[10] 274-4 r = 270-8 + 131-31 (0 - -0087)2 [24] 293-0 292-9
[20] 286-0

?2> 1[0] 270'8
[- 10] 274-7 r = 270-8 + 121-46 (0 - ’0047)2 [- 24] 292-7 292’6
[~ 20] 286-0

II.
N R H C T D Ai Ag e

0 C 0 c
22-9 301-5 1219'2 30 0-00170 1-6 0-388 0-36 0-924 1028 •42

155'2 3-8 215 12 1037 1039 1-867 1 919 •555
£ 22-5 42-7 4-0 225 -6 1-982 1’942 3’271 ■606
7, 22-7 16-2 4-2 237 -4

7-5
3-7

* Note.—It is clear from this value of e, and from the amount of the first rebound, that the cylinder was 
not home in the lead-block. This fall is therefore not trustworthy in some of its details.
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A, [ o ] 
[20] 
[40]

A. [ o ] 
[-20] 
[-40] 

vi, r o ] 
[10] 
[20] 

7a, [0] 
[-10] 
[- 20]

146-6 
162-3 
212-2
1466 
164-5 
215-5 
258-8 
262-8 
275’5 
258’8 
262’9 
275’5

r = 146’6 + 140’50 (0 - -0143)2

r = 146’6 + 135’91 (0 - -0141)2

r = 258’8 + 142’80 (0 - ’0072)2

r = 258’8 + 139’52 (0 - -003)2

[30
[60A

[-io: 
[-50 ' 
[-60’5]

[32;

[- 32]

0

] 183-0
] 300-9

] 151-4
] 253-7
] 302-2

] 302-2

301-1

c
1830 
299'1

151-4 
253’5
302’2

302’2

301’8

III. Double Mass.
N R H

22-33 322-4 609’6
104-4

/9,22-23 27-5
7, 22-06 9-7

4-0
2-0

A, [0] 218-3
[20] 234'9
[40] 284-7

fa, [0] 218-3
[- 20] 235-1
[- 40] 284-5

71) [0] 294-5
[10] 298-4
[20] 310-4

72, [0] 294-5 
[- 10] 298’8 
[- 20] 311’2

C T D A,
0 

4’1 0’00212 1’9 0’575 i
5’6 289 1’0 1’385 :
5’2 269 ’5 2’592 !
7’8 403 ’5
8’2 424 ’3

r = 218’3 + 136’24 (0/ 

r = 218’3 + 133’61 (0 - ’0056)2

r = 294’5 + 132’95 (0 - ’0031)2 

r = 294’5 + 132’95 (0 - -0054)2 |

a2
C 0 c

0’56 1’281 1’356
1’368 2’718 2’680
2-634 4-705

o c
[30 ] 256-1 255-6
[50-08] 322-9 322’4

[-30 ] 255-6 255’7 
[- 50’08] 321’6 321’7

[26’04] 321’6 321’6

]- 26’04] 322’1 322’6

e

•449
•509
•551

IV.
N

22’8

A 22-5 
7, 22’8

R

3318

A, [0] 
[20] 
[40] 
[0] 

[- 20] 
[-40]

H

1219’2
155’0
36’7
11’6
4’7
2-3

176’6
193’3
243’6
176’6
194’5
246’2

C T D Aj
0 

4’5 0’00231 2’4 0’408 (
5-3 272 1’3 1'098 1
5-6 287 -8 2-371 5
8-0 410 -6
8-1 415 -5

r = 176’6 + 137’88 (0 - -0017)2

r = 176’6 + 138’70 —’0103)2 |

a2
C O C

14 1-072 1’150
1133 2’179 2’238
2-397 4-127 

o c
[30 ] 214-3 214-2 
[60-05] 331-7 327-6

— 30 ] 216'0 216-0 
- 60-05] 332-8 332'0

e

•381
•504
•575
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7n [ 0 ] 295-9
[10] 300'2

o c

r = 295'9 + 147'73 (0 --0039)2 [29'04] 332’8 333'0
[20] 313'5

295'9 
300'3
3130

7a> [0]
[-10] r = 295'9 + 136 24 (0 —'0010)2 [-29'04] 331'7 331'0
[-20]

14/6/90. Cork, I.
N R H C T D Aj A2

O 0 0 c
e

21'7 296'4 1219'2 30'5 0'0167 190 0'390 0'373 1'10 1'124 '355
21-8 122'8 44'5 243 8'2 1'250 1'230 2'71 •461

/3, 21-79 22-0
4'4

39'8 218 3'3
370 202 1-5

o c
A.- [0] 173'5 [17'45] 182'5 182'9

[20] 186'5 r= 173'24 + 141'16 (0--O428)2 [32'45] 211'3 211'9
[40] 233'8 [56'06] 296'9 296'8

A, [0] 173'5 [-12'57] 181'0 1814
[- 20] 191'2 r = 173'29 + 118'18 (0 - '0424)2 [- 28'57] 207'6 207'9
[- 40] 238'0 [- 56'06] 295'9 296'45

II.
N R H C T D A; A2

O C 0 c
e

22'4 306'1 1219'2 29'6 0'0162 19'0 0'394 0'373 1'065 1'106 •37
225 131'5

23'7
45'2 247 8'9 1'204 1'196 2'578
40'3 220 3'6

•467

22-2

ft, [0]

4'9

174'8

38'5 210 1'6
o c

[20]
[40]

A, [0]

189'0
238'3
174'8

r = 174'7 + 144'44 (0 -'0244)2 [56'35] 306'5 306'5

[- 20] 
[-40]

193'8
243'6

r = 174'6 + 124'75 (0 —'0408)2 [- 56'35] 305'7 305'5

III.
N R H C T D Aj A2

O C 0 c
e

22'75 321-0 1219'2 30'2 00160 18'8 0'414 0'385 1'107 1'167 •374
22'8 128'2

23'8
47'0 249 8'7 1'226 1'249 2'633
42'1 223 3'6

•465

A 22'47

[ o ]

4'9

192'0

39'2 208 1'6
o c

[20] 
[40] 
[ o ]

206'5
257'0
1920

r = 191'8 + 147'73 (0--O34O)2 [55'3] 321 319'9

[- 20] 
[-40]

211-0
261'0

r= 191'8+ 128'03 (0--O38O)2 [-55'3] 320'9 321'6
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IV.
N R H C T D Aj A2 e

0 c 0 c
22-25 329'1 12192 31-2 0-0157 18-5 0-427 0-405 1-126 1-195 •379

1375 50-3 254 9-1 1-257 1-263 2-611 •481
/3,21-94 26-0 45-0 227 3-7

5-4 41-6 210 1-65
0 c

A, [0] 
[20] 
[40]

191-6
204-8
252-1

r = 191-38 + 139-85 (0 - -0393)2 [32-25] 229-9 
[58'5 ] 328-4

229-7
326-2

&, [ 0 ] 
[- 20] 
[-40]

191-6
210'0
258-5

r = 191-4 + 123'11 (0 - -0394)2 [- 27-74] 225-5 
[- 58-5 ] 329-8

225-2
329'8

28/7/90. Vulcanite, I.
N R H C T D Ai a2 e

0 c 0 c
21-6 295-9 1219-2 3-5 000190 2-5 0394 0-388 0-649 0-745 •607

300-8 4-4 240 2-1 0-768 0-780 1-297 1-404 •592
/3, 21-42 85-2 4-9 267 0-95 1-426 1-435 2-264 •630
7, 21’6 320 5-0 272 0-5

15-0 5-1 278 0'3
7-3 5-8 316 0-2
4-0 6-5 354 0-15

0 c
A, [ 0 ] -5-2 [20 ] 7-76

[40] 52-0 r = - 5-02 + 131-31 (0 - -0370)2 [60 ] 128-0 128-98
[80] 237-5 [88-72] 295'8 294-96

A, [ o ] - 5-2 [- 20 ] 14-0 12-8
[- 40] 60-0 r = - 5-41 + 119-49 (0 - -0417)2 [- 60 136-0 136'3
[-80] 241-8 [- 88-72] 296-5 296’7

7i> [0] 210-7
[20] 2259 r = 210-7 + 130 (0 - -0007)2 [46-57] 296-5 296-4
[40] 272-8

%, [0] 210'7
[-20] 227-0 r = 210'7 + 124’75 —’0126)2 [- 46-57] 295-5 295-7
[-40] 273-6

II.
N R H C T D Aj a2 e

0 c 0 c
220 313-2 1219'2 3-0 0-00157 1-5 0-396 0-39 0-714 0-779 •555

292-8 4-0 209 1’3 0-833 0-821 1-338 1-436 •623
A 21-91 88-0 4-4 231 -95 1-458 1-491 2-264 •644
7, 21-83 35'0 4-1 215 -4

160 0 c
A, [0] 

[40] 
[80]

20-6
800

274'5
r = 20-35 + 138'53 (0 - -0420)2 [60 ] 1600 

[85-53] 313-2
160-3
311-9

&, [0] 
[-40] 
[- 80]

20-6
89'2

278-5
r = 20-32 + 123-76 (0 - -0479)2 [- 60 ] 168-6 

[- 85-53] 313-2
168-6
3141
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[0]
[20]
[40]

7-n [0] 
[- 20] 
[- 40]

225-1 
240’5
288-8
225-1
242-0
2895

r = 225-1 + 134-92 (0 -

r = 225’06+ 125’40(0

III. Double Mass.
N R H C T D

21-8 326-7

& 21-75

609'6 
172-2
52-0 
199
9'2

4-3
4-7
5-9
5'0

000214 21
233 1-2
293 0-9
248 0-45

A. [0] 
[20] 
[40] 
[0] 

[" 20] 
[- 40]

IV.
N R

1551 
170-6
2183
155-1 
1719
219'5

H

r = 1551 + 131-97 (0 -

r — 155'07 + 126'39 (0

C T D

22-1 343-0

3,22-02

1219'2 
228-5

46-9
22-4

9-3

50 
4-9?
6 0
7-3

10-7

0-00240 3-2 
235? 1-4? 
288 1'0 
350 -65
513 -8

A, [0] 
[20] 
[40]

A, [0] 
[- 20] 
[- 40]

114-9
131-0
179-6
114-9
1.31-9
181-0

r = U4-9 + 133-28(0-

r = 114-9+ 131-64(0-

24/6/90. Vulcanised India-rubber. I.
N R H 0 T D

21-95 300-8 1219-2
220 386'8

/3,21-6 158-0
V, 2213 72-3
3, 22-02 34-6

165 
7-6
35
15 

•6

14-6 
20'4 
23-8 
25-3 
25-0 
25-3 
25-4
25-4 
25-3

0-0079 11'7
111 8-8
129 6-4
139 4-5
136 3-2
139 21
139 1'4
139 0-9
139 0-5

■ -OHO)2

0

[46-92] 313-2

c

313-2

- -0185)2 [- 46'92] 313-2 313-0

0 
0-583 
1086

Aj A2
C 0 c

0-58 0-971 1-087
1113 1-857

e

•600
•585

0 c

■ 0063)2 [65-62] 326-9 326-3

- -0159)2 [- 65-62] 326-7 325-5

A^ A2
0 C 0 c

0-425 0'425 0'892 0’989 -476
0-985? 0-992 1-706? ‘577

0 c

-0015]2 [60 ] 261 260-6
[74-62] 343 340-4

•DI D^\2 [-60 ] 262-4 262-1DIDO ) [- 74-62] 3430 341-8

Aj a2 e
O c 0 c

0400 0’374 0-607 0-656 •659
0'737 0-702 1-032 0-994. -714
1117 1-068 1-508 1-484 ■741
1-570 1-570 2-260 •695
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T. II.

A, [ o ] - 86-7
0

[93’5 ] 300*5

c

299’2[80] 199 r = - 87 + 135-92 (6 4 0541)2
[90] 272

A, [0] -86 7
[-80] 145 r = — 86’7 + 118-52(0“ [■- 103-2 ;] 300’5 297’8
[-90] 206'5

Vi. [0] 142-5 [10 ] 144’9 144’8
[20] 155-8 r = 142-25 + 143-13 (0 - ’0414)2 [so ;] 175’3 175’5
[40] 2040 [62’97 ] 300’8 302’3

7.. [0] 142-5 [-30 ] 181’0 1810
[-20] 160-6 r = 142-36 + 124-42 (0 - -0338)2 [-50 :] 244’5 244’6
[-40] 209-0 [- 62’97'] 301’2 302’0

Si. [0] 228-5 [io ] 231’8 231’7
[20] 243-7 r = 228-44 + 141’49 (0 - ’02O6)2 [30 ;] 264’4 264’2
[40] 293-4 [42’27;] 301-2 301’2

8a, [0] 
[- 20] 
[-40]

228-5
245-5
292-6

r = 228’44 + 123’43 (0 - -0227)2 [-10 ' 
[- 42’27]

| 233’0 
j 300’0

233’2
3000

II.
N R H C T D Aj a2 e

0 C io c
21-7 310’8 1219’2 15’5 00080 11’6 0’412 0’38 0’680 0’683 -606
21’6 389-3 21-3 111 8’8 0’742 0’722 1 054 1’058 ’704

/3, 21’5 159-8 25-3 131 6’3 1132 1-132 1’600 1’589 707
7, 21-49 730 26’6 138 4’5 1’689 1’682 2’238 •755
3, 21-39 351 26’5 138 3’2

170 26’9 140 2’2
7-9 27-7 144 15
3-6 27’5 143 0’9
15 27-5 0’5

0 c
A, [ 0 ] - 78-5

[60] 80 r = - 78’8 + 132’63 (0 + -0471)2 [20] — 61’5 — 65’9
[80] 197'5
[0] -78-5

[-80] 136 r = - 78’8 + 119-17 (0 + ‘0536)2 [- 60] 37 38-7
[- 90] 195-5

7i> [0] 151-2 [30 ] 182’3 182’7
[20] 164-0 r = 151-0 + 134’92 (0 - ’0386)2 [50 ] 244’6 244’8
[40] 209-7 [64’68] 311’2 311’3

72. [ 0 ] 151-2 [-10 ] 156’5 156’36
[- 20] 168-7 r= 151’02 +117’36 (0--O391)2 [ -50 ] 248’3 248’6
[-40] 214'8 [- 64’68] 310’3 310’9

8i, [0]
[20]
[40]

238-4
252-4
298-7

r = 238’32 + 132’53 (0 - -0231)2 [10 ] 
[43’55]

241’4
310’3

241’4
310’3

82, [ 0 ] 
[- 20] 
[-40]

238-4 
2550
300-2

r = 238’3 + 117-36 (0 --0281)2 -10 ] 
- 43’55]

2431
3111

2431
311’1

31
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III.
N R H C T D Ai a2 e

0 C O c
21-75 323-5 12192 15-6 00078 11-5 0-419 0-407 0’670• 0679• -625

/3, 22 0 3920 22-1 110 8-7 0-765 0’741 1-087 1091 703
7, 2173 162-3 25-8 129 6'4 1’160 1’141 1-616i 1’581 718
3, 21-66 75-0 27-5 138 4-5 1’698 1’726 2-484 •683

360 27’5 138 3’2
17-3 27’8 139 2’2

8-1 28’3 142 1’6
3’8 30’0 150 1’0
1-6 310 155 6

A, [0] - 69-4 0 c
[80] 202-4 r = - 69’5 + 144’45 (0 - -0244)2 [60] 87 81-6
[90] 276-0

A, [0] -69-4
[-80] 158-2 r = - 69’5 + 119’83 (0 - 0314)2 [-60] 56 541

[-100] 287-0
Vn [0]

[20]
[40]

160-9
1739
220-0

r = 160’7 + 135’81 (0 - -0374)’ [30 ] 
[64’67]

1930
323’4

192’8
3225

7- [0] 
[-20] 
[-40]

160-9
178-5
225-9

r = 160’8 + 122’28 (0 - -0316)2 [-10 ] 
[- 64’67]

166’0
323’8

166’0
325’2

Sx, [ o ] 
[20] 
[40]

248-3
263-0
311-3

r = 248’2 + 137’88 (0 - ’0218)2 [10 ] 
[43’8]

251’5
323’8

251’4
324-2

[ o ] 
[-20] 
[- 40]

248-3
264-7
3100

r = 248’2 + 118’51 (0 - ’0237)2 [-30 ] 
[- 43’8]

283’7
322’5

283’7
321’8

IV.
N R H C T D Ai a2 e

0 c 0 c
21-75 3335 12192 16’0 0’0078 11’5 0’432 0’42 0’722 0’723 •598

/3, 21-6 392-6 22’6 110 8’9 0’771 0’767 1’097 1’088 •703
7, 21-92 164-0 26’5 129 6’3 1’170 1’185 1’659 1’652 ■705
3, 21-81 74-2 28’1 137 4’4 1-739 1’759 2-402 •724

354 28-6 139 3’1
173 29’2 142 2’3

8-2 29’4 143 1’6
3-9 31’5 153 10
17 31’1 151 6

•6
A, [0] -60-5 0 c

[80] 219 r = - 60’7 + 135’26 (0 - 0419)2 [60 ] 100 99-7
[90] 291

A, [ o ] — 60’5
[- 80] 165-0 r = - 60’6 + 120’16 (0 - ’0262)2 [-20] --44 --48-1

[- 100] 294-5
7n [0] 169-9 [io ] 172’3 1723

[20] 183-3 r = 169’7 + 141’16 (0 - -0384)2 [•50 ] 267-5 267-9
[40] 2310 [64’5] 334’0 336-6
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7s> [ 0 ] 169-9
[- 20] 187’4 r = 169'8 + 121-46 (0 - '0318)2
[- 40] 234'5

Su [0] 259-6
[20] 274-5 r = 259'6 + 138'21 (6 - -0201)2
[40] 3231
[ 0 ] 259-6

[- 20] 2768 r = 259-5 + 121-79 (6 - -0278)2
[-40] 323-7

28/6/90. Vulcanised India-Rubber. I.

0 c
[-10 ] 174-9 174-9
[-30 ] 207-1 207-2
[-50 ]| 269-7 269-1
[- 64-5] 333'3 332-5
[30 ] 294-6 294-6
[42-97j 333-3 333-2

[-30 ] 296-7 296'5
[- 42'77]| 333-2 333'2

N R H C T D Aj a2 e
0 c 0 c

21-75 293-4 1219'2 13-7 0-0076 116 0-370 0-37 0-601 0-629 •616
/3, 22-0 4181 18-2 100 9-2 0-637 0-621 0-875 0'922 •728
7) 22-28 182-6 22-5 124 6-7 0'954 0-942 1-358 1-326 •702
8, 22-31 89-5 24-0 133 51 1-368 1-342 1-836 •745

45-7 24-1 134 3-7
23-9 24-5 135 2-7
12-5 25-2 139 19
63 250 138 1-4
30 25-3 139 0-9

II

A, [0]--124-5 0 C

[80] 158 r = -124-8 + 130-00(0 — -0524)2 [90]| 217 217-8
[ioo] 293-5
[0]--124-5

[-80] 123 r = - 124'7+ 133'29(0 - -0332)2 [-30] -86'3 --90 0
[- 90] 190-5

[0] 
[20] 
[40]

1106
125-7
174-7

r = 11055+ 13912(0-- -0191)2 [50 ] 212-3 
[66-68] 293-7

2120
292-9

7a> [ 0 ] 110-6 [-30 ]| 148-9 148-5
■ [-20] 128-0 r = 110-6 + 132-13 (0 - ■0141)2 [-50 ] 2140 214-3

[- 40] 177-6 [- 66-68]| 293-1 293-7
[0] 
[20] 
[40]

204-6
220-2
269-5

r = 204-6 + 138'2 (0 - '0128)2 [30 ] 
[46'55]

240-8
| 293-1

240-6
292-9

[0] 
[-20] 
[- 40]

204-6
221-4
270'8

r = 204-6 + 133'77 (0 - •0054)2 [-30 ] 
[- 46-55]

| 242-2 
293-7

242-0
2940

N R H C T D A■1 A2 e
0 C (5 C

21-75 302-0 12192 14-4 OOO77 119 0-384 0'38 0-618 0-644 •622
/3, 21-6 423-0 19-5 105 9-3 0-652 0-65 0-914 0952 ■713
7, 21-96 183-9 23-1 124 6-9 0'983 0989 1-428 1-383 •689
8, 21-87 90'0 24-4 131 5-1 1-402 1-411 1-954 •718

461 25-9? 139 3-7
24-4 25-4 136 2-7
130 251 135 1-9

6-8 26'2 141 1-4
3-4 265 142 10

31—2
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A, [0]- 121
0 c

[80] 146 r = - 121-2 4- 130-00 (0 - -0377)2 [+20;|-105 -■101-8
[90] 215

A, [0] -■1210
[- 80] 1147 r = - 121-1 + 125'41 (0 - 0251)2 [- 106-2]| 302-5 298-5
[- 90] 178-6

7i, [0] 1180 [30 ] 153-0 1530
[20] 1330 r = 118 +136'24 (0--O168)2 [50 1| 217-5 217-8
[40] 181-2 [67-72] 302-3 302-9

7s> [0] 
[- 20] 
[-40]

1180
135-0
183 0

r = 118-0 + 127-21 (0 - -0169)2 [-50 ‘ 
[- 67’72]

| 218-8
| 301-6

2186
300-8

8i, [0] 
[20] 
[40]

212-6
228-2
276-2

r = 212-6 + 132-95 (0 - -0065)2 [10 ] 
[47-35]

| 216-4 
301-6

216-3
3020

82, [ 0 ] 
[-20] 
[-40]

212-6
228-9
276-5

r = 212-6 + 128-36 (0 - 0074)2 -10 ]
[- 47-35]

| 216-7
| 302-1

216-8
301-8

III. Double Mass.
N R H C T D -A-i A2 e

0 c 0 c
2245 325-6 12192 16-7 0-0086 13 ? 0-401 0-4 0-7121 0-744, -563

0, 22-5 350-7 24-5 126 9-9 0-749 0-736 1124■ 1-149। -667
7, 22-57 147-2 31-0 159 80 1'154 1131 16481 1-641 •700
8, 22-5 70-5 351 180 60 1'723 1-663 2-356 ■731

35-6 36-6 188 4-4
18-4 37-2 191 3-2

9-7 39-2 201 2-3
4-9 398 204 17
2'4 40-6 209 1'0
1-2

0 c
A, [0] 

[60] 
[80]

-25-3 
147-0 
271-0

r = —!26-1 + 136-57 (0--O787)2 [50 ] 
[87-2]

100
3258

97-5
323-8

A, [0] -25
[- 60] 102 r = - 25-7 + 139-53 (0 - -0879)2 [- 96-25] 325-8 327-8
[-80] 214

7n [0] 
[20] 
[40]

178-2
194-8
245-0

r = 178-2 +137-88 (0- -0021)2 [50]
[59]

283?
325-7

282-7
323-8

7a, [ 0 ] 178'2 [-30] 2161 216-2
[- 20] 195-0 r = 178-2 +140'34 (0 - -0031)2 [-50] 284-5 284-2
[-40] 246-0 [- 59] 325-9 325-9

8i, [ 0 ] 255’3
[20] 272-3 r = 255-3 +139'52 (0)2 [40'77] 325'9 325-9
[40] 323-3

^, [ 0 ] 
[- 20] 
[-40]

255-3
272-2
322-5

r = 255-3 + 137'06 (0 - ’0021)2 [-io ] 
[-40-77]

259-5
325-4

259-6
3250
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IV.
N R H

21-6 337'5 1219'2
ft 22 0 360'9
7, 22'34 1550

74'3 
38-0 
19'7 
10'5
5'4 
2'7 
1-3

C T D
0 

17'8 00085 13? 0'434
25'6 122 10'2 0'772
320 153 8'2 1'180
36'8 176 6'2 1'741
38'5 184 4'6
396 189 3'5
40'3 192 2'5
40'3 192 1'7
40'3 192 1'2
40'3 192 0'7

Aj A2 e
C 0 c

0'428 0'774 0'787 '561
0'759 1'163 1'162 '664
1-160 1'668 '707

2-376 '733

ft, [0] 
[60] 
[80]

ft, [0] 
[- 60] 
[-80]

7i> [0] 
[20] 
[40]

72, [0] 
[-20] 
[-40]

-22'5 
146'5 
265'0

-22'5
101
209
182'7 
199'0 
248'5
182'7 
1991
248'8

r = - 24 + 127'38 (0 - 1094)2

r = - 21'71 + 136'9 (0 - -0928)2

r = 1827 + 136'24 (0 - '0031)2

r = 182'7 + 136'56 (0 - -0026)2

1

1 
1

[40 ]
[90'2 ]

-40 ]
[-98'6 ]

[30 ]
[50 ] 
[61'27]

— 50 ] 
- 61'27]

0

| 63'5
| 337-8

30
337'8

219'7 
285'5
337'5

286'3 
337'9

c

337

28'4 
340'6

219'6 
285'7 
337'5

286'1
338'1

24/7/90. Vulcanised India-rubber. I.
N R H G T D Aj A2

0 C 0 c
21'6 302'9 1219'2 14'3 00076 120 0'387 0'384 0'617 0'628

£21'7 451'4 19'6 104 9'6 0'639 0'632 0'917 0'924
7) 22'06 199'8 23'2 123 7'4 0'960 0'940 1'297 1'310
3, 22'42 97'0 25'5 135 5'7 1'309 1'320 1'778

49'0 26'2 139 4'0
25'5 27'0 143 3'1
13'3 280 149 2'3
6'9 29'5 157 1'6
3'5 29'5 157 10
1'6

e

•628
•697
•740
•736

ft, [0] - 
[80]

[100] 
ft, [ o ] - 

[-80] 
[-100] 
7i, [0]

[20]
[40]

7a, [0] 
[-20] 
[-40]

148
124'5 r = - 148'4 + 129'02 (0 - '0581)2
271'3

•148
91 r = - 148 + 127'38 (0 - '0262)2

228'3
103'7
119 0 r = 103'7 + 135'81 (0 - '0132)2
167'4

103'7
1210 r = 103'7 + 130'0 (0 -'0161)
1700

[-

[103'6 [

[- 40
- 109'4 ]

[30 '
[50 =
[60 ]
[69'97’

[-30 ]
[-50 J
[-60 ]
[- 69'97]

0

] 303

|-86 ■
| 303
| 139'0
| 204'1

249'6
| 303'1

141'8
| 206'7 

250'8
| 302'3

c
300'7

- 90'5 
304'5
139'1 
204'1
2490 
3020 
141'6 
206'4 
250'7 
302'7
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[0]
[20]
[40]

8a, [0] 
[-20] 
[-40]

206-3
222-5
272-6
206-3
224-0
274-7

r = 206-3 + 139'19 (0 - 0077)2

r = 206-3 + 135-42 (3 - -0127)2

[47-93]

[- 47-93]

0

302-3

303-6

c

301-7

303-9

II. Double Mass. 
N R H

221 311'8 609-6
22-2 241-0

1130
A 2211 56'9
y, 22-03 29’3
8, 22-06 15-6

8-2 
43 
23 
1-4

A, [0] 70-4
[20] 860
[40] 134 7

A, [0] 70-4
[- 20] 87'7
[- 40] 137-0 

yn [0] 198-0 
[20] 213-5 
[40] 262-0 

y2, [0] 198-0 
[- 20] 214-5 
[- 40] 262-6 

[ 0 ] 255-1 
[10] 259-0 
[20] 271-0

S2> [0] 255-1 
[-10] 259-2 
[- 20] 271-4

III.
N R H

22-25 328'8 1219’2
22-1 394-8

A 22-4 169’6
% 22-26 82-7
8,22-87 42-2
e, 2312 22 0
£ 22-93 11-6

61 
31 
15

C T D
0 

19-5 00103 11-5 0-563
26-6 141 92 0-885
321 170 7-1 1-294
35-9 190 5-9 1-782
34-8 184 4-0
34-2 181 2-8
336 178 20
330 175 1-3
27-5 146 0-6

r = 70-4 + 135-81 (3 - -0100)2 

r = 70-4+ 131-31 (0--O142)2 

r = 198-0 + 135-42 (3 - '0106)2 

r = 198 + 129-67 (0--OO77)2 

r = 255-1 + 132-95 (0 - -0032)2 

r = 255-1 + 132-95 (3 - 0001)2

C T D
0 

162 0-0081 122 0-417
24-2 122 10-4 0-711
30-6 154 8-4 1-099
34-5 173 6-6 1-530
36'3 182 4-9
37-3 187 3-7
37-0 186 2-5
38'9 195 1-8
389 195 1'3

Ai
c 0

0-545 0'814 
0-875 1-242 
1-285 1-831 
1-791 2-482

[10 ] 
[60 ] 
[76-87] 

[-30 ] 
[-60 ] 
[-76-87]

[53-18]

[- 53-18] 

[37’52]

[- 37-52]

Ax
C 0

0-4 0-645
0-710 1’052 
1-089 1-553 
1-522 2’087 
2-102 
2-917

Aa
c

0-863 
1-253 
1-798

0
74-3 

216-0 
312-0 
108-1 
218-8 
312-2

312-2

311-5

311-5

3120

c
0-704 
1-089 
1-510 
2061 
2893

e

•692 
•713
•707 
•718

c
74-1 

2165 
311-2
108-4 
218-3 
3118

312-0

311-6

311-5

3120

e

•647
•676
■707
■733
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ft, [0] -669
0 c

[60] 86-5 r = - 66-9 + 138-21 (0 - -0063V [96-7] 329 323-8
[80] 205

A, [0] -669
[- 60] 74-6 r = — 67 + 135-91 (0--O265)2 [- 99'4] 329-0 329-6
[- 80] 188

7i, 1
1
[0] 
’20] 
[40]

159-0
1751
224-0

r = 159 + 136-24 (0 - 0053)2 [50 ] 
[63-87]

261'3
329-1

261-5
326-7

72, 1 
[- 
[-

[0] 
20] 
40]

159'0
175-9
225-6

r = 159 + 134-59 (0 - 0053)2 [-50 ] 
[- 63'87]

262-9
328-2

262-7
327-8

8i, [0] 246-4
1[20] 263-1 r = 246-4 + 144-05 (0 - -0085)2 [43-72] 328-2 328-4
1[40] 314-9

82, [0] 246'4
[- 20] 263-8 r = 246-4 + 141-49 (0 - -0016)2 [- 43-72] 329-2 329-1
[- 40] 315-7

€1, r 0 ] 286-2
1;io] 290-6 r = 286-2 + 147-73 (0 - -0019)2 [31-08] 329-2 329-36
[20] 3040

ea, [0] 286-2
[- 10] 290-5 r = 286-2 + 144-44 (0 - -0020)2 [- 31-08] 328-2 328-4
[- 20] 303-6

fi, [;o] 306-2
1:io] 310-4 r = 306-2 + 146-08 (0 - -0049)2 [22-53] 328-2 328-2
1[20] 323'5

fa, 1 0] 306'2
[- 10] 310-8 r = 306'2 + 141-16 (0 - -0061)2 [- 22-53] 328-9 328-7
[- 20] 324-0

21/8/90. Vulcanised India-rubber.
(This is the trace reproduced in the plate, and the details are given here to show that fair results 

can he obtained even when the adjustment is very imperfect.)
N R H C D T A, A2 e

0 c 0 c
22-75 338 1219-2 15-3 11-9 O-OO77 •383 ■636 -655 -602

/3, 22-5 456 21-5 9-6 •0108 •660 •693 -966 1-066 683
7, 22-9 197-5 25-0 7-6 •0125 •933 1000 1-354 1-42 -689
S, 23-4 95-0 26-6 55 •0133 1-418 1-42 1-842 -770

48-0 28-0 4-2 0140
24-5 300 3 0 •0150
12-5 315 2-4 •0158
60 33-0 1-9 •0165

0 c
ft, [0 ] - 118 [55] 16-6 18

[80] 168-2 r = — 118 +146-09 (02 [70] 100 101
[100] 331-7 [90] 242-4 244
[0] -■118 [- 70] 85'5 88-6

[- 80] 150-6 r = — 117-8 + 130-33 (0 - •0368)2 [-75] 116 1182
[- 100] 300-1 [—90] 217-5 219-0
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[ 0 ] 
[30] 
[60]

131-5
1710
289-0

r = 131'5 + 143'14 (0 + ’0017)2 [15]
[45]

0
141-5
219-8

c 
141-5 
220'2

%, [ 0 ] 131-5 [- io] 135-9 135-9
[- 30] 1710 r = 131-5 + 144-45 (0 - -0007)2 [- 50] 241-8 2413
[- 60] 290'0 [- 65] 317-0 317-2

Sn [0] 232-6 [io ] 237 237-2
[20] 251-0 r = 232-6 + 149-37 (0 + -0019)2 [30 ] 274 273-8

1[40] 305-8 [40-5] 327-6 327-3
M
[-
[-

[0] 
20] 
40]

232-6
2508
305-4

r = 232-6 + 149-37(0)2 [-30 ] 
[- 40'75]

273-5
327-6

273-5
327-8

DESCRIPTION OF THE PLATE.

The chief figure is, as above stated, photo-lithographed on the scale of 0 3 from the record 
of a Afoot fall on Vulcanised India-rubber. Even in this reduced scale it shows fairly enough 
the relative details of at least eight of the successive rebounds. These are numbered in order. 
The original showed several more. As its lines were not only very fine, but in blue, they 
had to be carefully gone over with a photographically inactive colour, so that much of the 
more delicate detail is unavoidably lost. The tuning-fork was kept in contact with the disc 
for a little more than a complete revolution. The consequent overlapping of the trace enables 
us to see that the angular velocity had not sensibly changed during one revolution of the disc.

The three figures immediately below are (pencil) records of successive impacts on Native 
India-rubber (9/1/89). Time of rotation of disc 08-3.

Then follow records of impacts on Pine Tree (7/11/88) from heights of 8, 4, and 2 feet. 
These show the “wriggles” spoken of in the text. Time 08,3.

The group of five which follows belongs to the experiment III. of 23/7/90 with Plane 
Tree, whose details are given in the Table. Some of these show traces of wriggles.

The final group contains details of the first eight successive impacts of IV. of 7/6/90 
on Vulcanised India-rubber. To save space, the first and third, as also the second and sixth, 
which took place at the same portions of the datum circle, have been drawn together.

In each of the two later groups the time of rotation of the disc was a little more than 
one second.

The disc always had positive rotation; so that the older figures (those in pencil) must 
be read the opposite way to the others, which were reversed in printing from the disc:— 
i.e., the compression part of the impact is to the left on the pencilled figures, to the right 
on the others.
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LXXXIX.

ON IMPACT. IL

[Transactions of the Royal Society of Edinburgh, Vol. xxxvn. Read January 18, 1892.]

[Since this second instalment of my paper was read to the Society my attention 
has been called to a remarkable investigation by Hertz* ; in which the circumstances 
of collision of two elastic spheres are fully worked out, under the special limitations 
that both are smooth, and that their deformations are exceedingly small. This forms 
a mere episode in the paper, which is devoted mainly to the statical form of the 
problem of deformation; as, for instance, the case of the ordinary apparatus for the 
production of Newton’s rings. But it contains a definite numerical result; giving for 
the duration of impact between two iron spheres of 50 mm. diameter, which encounter 
one another directly with a relative speed of 10 mm. per second, the value 0s-00038. 
This seems to be the earliest reckoning of the time of collision. The experimental 
verification of Hertz’ formulae was undertaken with success by Schneebeli-f-, who obtained 
results in close accordance with them. His mode of measuring the duration of impact 
was defective, though ingenious. But the speeds employed by him, though for the 
most part considerably greater than those contemplated in Hertz’ work, were far inferior 
to the lowest of which I have availed myself:—and thus no comparison can be 
instituted between my results and the theoretical formulae; first, because I have 
necessarily dealt with deformations so large as to be directly measurable; secondly, 
because the formulae, being originally obtained for the statical problem, have left 
aside thermodynamical considerations, and thus assume equal duration for compression 
and for restitution, which is certainly incorrect; finally, because one of my colliding 

* Journal fur die reine und angewandte Mathematik, xcii., 1882. Uber die Beriihrung fester elastischer Korper.
+ Archives des Sciences physiques, &o., Geneve, nv., 1885. Becherches experimentales sur le Choc des Corps 

tlastiques.
T. ii. 32
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bodies was fixed, and thus virtually struck on both sides, besides being notably 
deformed throughout the greater part of its substance; while, except in the case of 
very hard bodies, the surface of contact was nearly equal to the whole section of 
the cylinder. I regret, however, that I had not seen Hertz’ paper before I made 
my apparatus, as a study of it might have led to improvements in my arrangements; 
especially in the choice of the form of the elastic substance to be operated on. But 
my results have the advantage of being applicable to many practical questions (besides 
those of Golf, to which they owe their birth), such as the driving of a nail by a 
hammer, or of a pile by a ram, &c. One of Hertz’ results is specially interesting, 
viz. that the duration of impact between two balls is infinite if the relative speed 
be indefinitely small. This may easily be seen to depend upon the fact that (in 
consequence of their form) the total force between them, at any instant, varies as a 
power of the deformation higher than the first.]

The experiments, whose results are tabulated at the end of the paper, were (with 
the exception of the first, presently to be noticed) made with a new set of specimens 
of various elastic substances, considerably larger in all their dimensions than those 
previously employed. They were, as before, cylinders very slightly rounded at their 
upper ends; but their lengths, as well as their diameters, were 56 mm. instead of 
32 mm. as formerly. As I could not procure a piece of good cork of the requisite 
dimensions, the cylinder of that substance employed was built up of two semi-cylinders, 
gently kept together by two india-rubber bands. The glass cylinder turned out to be 
somewhat difficult of manufacture, and the experiments with it are altogether defective. 
But, after the third, and most considerable, impact to which it was subjected it 
presented a very interesting appearance. There was formed inside it a fissure some­
what in the shape of a portion of a bell; meeting the upper surface in a nearly 
circular boundary 12 mm. in diameter. This fissure showed the colours of thin plates 
in a magnificent manner. It gave the impression that the portion of the glass 
contained within it had, by the shock, been forced downwards relatively to the rest. 
Its lower, and wider, extremity did not come within 4 mm. of the sides of the 
cylinder, and this was at a depth of about 6 mm. below the upper surface.

One result of the new experiments is obvious at the first glance. The duration 
of impact is notably longer than before; in consequence of the increased dimensions 
of the elastic bodies operated on. But the coefficient of restitution is only slightly 
affected.

As the old block had been split during some experiments in which it was allowed 
to fall on vulcanite from heights of 3 m. and upwards, a new one (also of plane tree) 
was obtained. The mass of this new block was 375 lbs., and (except where it is 
otherwise specially noted in the tables of experimental results) had its lower end 
shod with a flat plate of hard steel 6 mm. in thickness, and 1 lb. mass. The main 
object of this was to prevent the “wriggles” formerly noticed. Another plate of the 
same material, with a blunted wedge-shaped ridge projecting from its lower surface, 
was occasionally substituted for this (as noted) in some of the experiments on vul­
canised india-rubber. It was tried on cork also, but the result was disastrous.
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The object of this ridge was to test the effect, on the coefficient of restitution 
and on the duration of impact, produced by applying a given momentum of the 
falling body in a more concentrated form, by restricting the surface-region of its 
application to the elastic solid. The results obtained by this process, though un­
fortunately limited to one elastic substance, are very interesting. The duration of 
impact is notably increased, in spite of the increased distortion; but the coefficient 
of restitution is practically unaltered.

The first set of experiments given below (7/4/91) was made with the old cylinder 
of Vulcanised India-Rubber. They were designed to form a link between the present 
experiments (with the steel plate) and the former set (in which the impinging surface 
was hard wood).

Mr Shand has again made the measurements of the traces, and reduced the 
observations, precisely in the same manner as before:—and it will be seen, from the 
numbers in the columns headed N, that the new series of results is at least as 
trustworthy as the old one. But I was not satisfied with the numbers in the columns 
Ai, A2; nor, of course, with those in e, which are their respective ratios. These data 
are derived from the very difficult and uncertain process of drawing tangents at the 
extremities of portions of curves. I therefore calculated (to two places only) the values 
of the square-root of the quotient of each pair of successive numbers in the column 
H. If there were no friction, the results thus obtained should be the successive 
values of the coefficient of restitution. And, even taking friction into account, if we 
suppose the acceleration it produces to be w-fold that of gravity (m being, as shown 
in the first part of the paper, nearly constant and somewhere about 0'03) the values 
in the table so formed should be those of

e \/ itS =e c1 - m) nearly-

This (though at a first glance it might not be suspected) is the result to which we 
should be led by calculating from the equations of the various parts of the trace 
the tangents of the inclination of the curve to the radius-vector at the points where 
it meets the datum circle. For

, J dd\ R 
\ dr Jr %^B(R-A)

,, , _ tan </>i _ /B2 (R - M2) _ /BJR
80 that e~tan^“V B^R-A^ \/B&

Unfortunately, it is in general difficult to get a trustworthy value of B for the (first) 
incomplete branch of the curve. But, by various modes of calculation and measure­
ment, I have made sure that the friction is practically the same whatever be the 
mass of the block, so that its effects are the less sensible the greater is that mass. The 
numbers thus obtained fluctuated through very narrow limits, at least for such bodies 
as native and vulcanised india-rubber, and therefore give for very extensive ranges of 
speed of impact a thorough verification of Newton’s experimental law; viz. the con­
stancy of the coefficient of restitution for any given impinging bodies. This had, 

32—2 
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however, been long ago carefully tested by the elaborate experiments of Hodgkinson*. 
There was, it is true, a slight falling off for the very high speeds, and likewise for 
the very low: as will be seen from the table of Approximate Coefficients of Restitution 
which follows the experimental results. The first may be due in part to a defect in 
the apparatus, the second will be accounted for below.

The approximate constancy of e, for all relative speeds, proves merely that the 
force of restitution is, at every stage, proportional to that required for compression. 
We must therefore look to the values of the total distortion, or to those of the duration 
of impact, for information as to the relation between the distortion and the force 
producing it. The equation of motion during the compression is, say,

Mx = Mg — F —f' (x)..................................................... (1).
Hence, as F may be considered to be nil while the datum circle is being traced, we 
have for the correction, 3 suppose, to be applied to the tabulated values of D, that 
positive root of

Mg-f(x)=0 .......................................................... (2)
which vanishes with M.

Integrating the equation of motion, we have

Mxf2 = MV*/2 + (Mg - F) x -f(x) .....................................(3),

where V is the speed at impact, and f(x) vanishes with x. Thus, at the turning point, 
0 = MF’/2 + (Mg - F) (D + 3) -f(D + 3).

Now, by (2), we see that (Mg — F) is of the order /'(3) only, so that, when V (and 
therefore D) is considerable, we may write this in the approximate form

0 = MW(2

This equation enables us to get an approximate estimate of the form of the function 
f. A graphical representation of D in terms of MH, based on the various data of 
the experiments of 22/6/91, below, on vulcanised india-rubber, gave three nearly parallel, 
but closely coinciding curves, whose common equation (when the different values of 3 
for the different masses were approximately taken account of) was of the form

MH xD’;

for the subtangents were 2'5-fold the absciss®. Hence we are entitled to write (3) 
in the tentative form

Mxf2 = MK72 + (Mg -F)x- Ax*.........................................(4).

Equation (2) now becomes Mg = fA3-;
whence 3 may be found, A being determined from one of the larger values of D 
(and the corresponding kinetic energy) by the relation

MgH = AD^..............................................................(5).

* British Association Report, 1834.
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These give the approximate value

D\5H) •
Thus I found that the values of D, for the experiment of 22/6/91 on vulcanised 
india-rubber, must be augmented by 075 mm., 1'2 mm., and 1’9 mm. respectively:— 
according as the mass was single, double, or quadruple. These agree remarkably well 
with the relative positions of the parallel curves already spoken of: and also with 
direct measurements of 3 which have been recently made for me, by a statical process, 
by Mr Shand. In what follows, I shall assume that the values of D have had this 
(positive) correction applied.

By the help of (4) we now have, for the time of compression, the expression 

, />“ _____________dec
2A'° -(Mg-F)(D-ay A ’

Except for the very small values of D, we may neglect the last term under the 
radical, and the expression, slightly diminished in value, becomes

I M A dz
V 2AVPJo^ ’̂

The numerical value of the integral is approximately 1'5. For any one substance the 
time of compression is therefore inversely as the fourth root of D; and, of course, 
directly as the square root of But we may also write the expression, by means 
of equation (5) above, in a form which applies to all substances for which the elastic 
force is in the sesquiplicate ratio of the distortion, viz.

1-5D 
^2gh

This result lies just half-way between the limits, D/V and 2D/V, assigned (from 
general considerations) in the first part of this paper.

With the data for the first fall of the quadruple mass in the experiment last 
referred to, this expression becomes almost exactly 0s-01. The value of e is about 
077, so that the whole time of impact should be ^1 + 0s-01, or Os’O23; while

the experimental value of T is 0s-0211. But, in consequence of the quantity 3, above 
spoken of, all the measurements of arcs from which T is calculated are necessarily 
too small. Add to C, as measured, the product of 3 by the sum of the two tangents, 
as given in the table; and diminish R by the amount 8; the observed time becomes 
0s,0224; so that the formula gives a tolerably close approximation.

If we bear in mind that the values of D ought to be increased by the quantity 
3, we see at once the reason, already referred to, for the apparent falling off of the 
values of e at low speeds, when they are calculated from the values of H given in 
the tables.
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Among the practical applications of the results above, we see that when a nail 
is driven, say by a J-lb. hammer moving at the rate of 10 feet per second, the time 
of impact being taken as 0s'0004, the time-average force is some 300 lbs. weight. If 
the head be one-tenth inch square, this corresponds to a pressure of more than 2000 
atmospheres.

Finally, to finish as I began, with an application to golf, although from the nature 
of the case, the experimental data are not very directly applicable:—we see that, as 
the coefficient of restitution from wood is about 0’66, and the mass of the ball about 
0’1 lb., the club must be moving at some 300 feet per second to produce an initial 
speed of 500 feet per second:—and the time-average of the force during collision must 
be reckoned in tons’ weight. The experiments on hammered, and on unhammered 
balls, all made at the same time and of the same material, show clearly how very 
small is the gain in coefficient of restitution, and therefore in initial speed, which 
is due to the hammering:—and thus force us to look in another direction for an 
explanation of the unquestionable superiority of hammered over unhammered balls.

[It is very curious that the law of force in terms of the distortion (as given 
above) is the same as that which results from Hertz’ investigations. For, what is 
called D above is the diminution, in length, of the whole cylinder operated on; while, 
in Hertz’ work, the quantity which he calls a, and to whose 3/2th power the force 
is proportional, is the advance towards one another (since the first contact) made by 
points chosen in the two bodies, whose distance from the (infinitesimal) surface of 
contact is finite, yet very small in comparison with the dimensions of the bodies 
themselves. In my experiments the vertical shortening extends throughout the whole 
of at least the protruding part of the cylinder, and in extreme cases the distortion 
is so great that the diameter at the middle becomes more than double that at the 
ends; in Hertz’ investigations it is assumed to be mainly confined to the immediate 
neighbourhood of the surface of contact.

It is even more curious to find that the same law holds, at least in a closely 
approximate manner, for the very large and unsymmetrical distortions produced by the 
ridged base, as shown by the data of 7/11/91.

Some additional details connected with this investigation, including a sketch of 
the apparatus and of the trace of 13/7/92, will be found in an article Sur la Duree 
du Choc, which appeared in the Revue des Sciences pures et appliqudes, 30/11/92.]
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[In the following experiments, unless some contrary statement is made, the falling 
block terminated in a horizontal plate of steel.]

7/4/91. Vulcanised India-Rubber. (Old Small Cylinder.)

I. Single Mass.
A, 

•4396
Aa 

■6200
e

•709
N R H C D T

21-7 337'0 1219'2 15'5 11'0 '0075
/3, 20'8 510'6 18'1 8'5 '0087 •6903 •8693 •794
7, 21'6 283'5 19'3 6'7 -0093 •9163 11165 •821
3, 21'6

[ 0 ]-174'0
[ 20]-158'4
[100] 212'5

&,[ 0 ] —174
[- 20]-157'6
[-100] 207-6

7i, [ 0 ] 53'4

163'6 19'7 5'3 '0095
96'7 21'5 4'4 '0103
58'6 22'2 3'6 '0107
35'5 229 2'8 '0110
21'8 23'5 2'3 '0113
13'6 24'1 18 0116
8'4 25'0 1'6 '0120
5'0 27'1 1'3 '0130
31 27-1 1-0 0130
1'8 27'1 0'9 '0130

r = -174 +120'16 (6 + -01133)2

r = -174 +116'22 (0 + '02754)2

1-1875 1'4496

0

•819

c
[ 30 ] 94'5
[60] 211'3

72, [ 0 ] 53'4

r = 53'4 +137'89 (0 + '02266)2 [80-75] 337 3361

[- 30] 85'3
[—60] 181'7

51( [ 0 ] 173-3

r =53'4 +117'20 (0-'00174)2 [-89-15] 337 336’5

[ 30 ] 209'7
[ 60 ] 319'2

82) [ 0 ] 173'3

r = 173'3 +133'29 (0 - '00105)2 [63-17] 3370 335-0

[- 30] 208'3
[- 60] 3102

II. Single Mass.

r = 173'3 +122'13 (0 + '01186)2 [- 65-7 ] 3370 337-2

N R H C D T Ax A, e
21'7 326'7 1219'2 15'0 10'8 '0074 ■4330 •5639 •768

A 20'9 548'0 17'6 8'7 '0087 •6403 •7766 •824
7, 21-4 3030 19'0 70 '0094 ■8606 1-0289 •837
3, 21-5 177'6 19'1 5'6 '0095

106'6 19'9 4'5 '0099
64'5 21'0 3'7 '0104
40'4 22'3 3'0 '0110
25'1 22'5 2'5 '0116
15'7 230 20 '0114
10'1 23'3 1'5 '0115

1-1054 1-3581 •814
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AJO] -221-8
r = - 221'8 +128-14 (0 + -01918)2 [117]

0 
326'7

c
322-6[30]-1841

[100] 177-3
A, [ 0 ] -221-8 

[- 30]-188-5 r = - 221-8 +121-7 (3 - -0005)2 [-121-1] 326'7 322-0
[-110] 226-6

7i, [ 0 ] 23'8
[40] 97-5 r = 23-7 + 137-89 (3 + -03365)2 [83] 326-7 326-6
[ 80 ] 305-5

72, [ 0 ] 23-8
[- 40] 79 0 r = 23-8 + 112-94 (3 + -00105)2 [-93-4 ] 326-7 324-3
[- 80] 244-2

81; [ 0 ] 148-9 
[ 30 ] 185-1 r = 148-9 + 131-32 (3 + -00140)2 [66'4 ] 326'7 325-7
[ 60 ] 293-3

S2, [ 0 ] 148-9 
[- 30] 184-0 r = 148-9 +122-78 (3 + -01116)2 [-68-15] 326-7 325-9
[- 60] 286-5

III. Quad. Mass.
N R H C D T Ax a2 e

21-3 3206 1219-2 21-6 14-6 -0107 •4383 •7813 •561
A 21-1 359'5 29-8 12-7 -0146 •7669 1-0052 •763
7, 21-1 197-8 34-7 10-9 -0172 1-0241 1-2305 •832
8, 21-4 121-5 38-3 9-1 -0190 1-3206 1-5911 •830

A, [ 0 ] - 38'7 
[ 60 ] 78-0

79-0 40-6 7-8 -0201
53-0 41-7 6-5 -0207
35-4 41-7 5-3 ‘0207
24-1 39'7 4-1 -0198
161 41-0 3-6 0203
10-8 43-2 3-1 -0214

r = - 39’6 + 127-38 (3 - -08595)2 [101-7 ]
0

320-6
c

323-7
[90] 241-1

A, [ 0 ] - 38-7 
[- 60] 106-6 r = - 39'5 +114-58 (3 + -08194)2 [-96-5 ] 320-6 317-9
[- 90] 273-5

71, [ 0 ] 122-8 
[ 30 ] 157-6 r = 122-8 +123-11 (3 + -00819)2 [71'83] 320-6 318-8
[ 60 ] 259-9

72, [ 0 ] 122-8 
[- 30] 156-8 r = 122-8 +119-83 (3 + -00907)2 [- 72-75] 320-6 318-7
[- 60] 256-6

Sx, [ 0 ] 199'5 
[ 20 ] 214-7 r = 199-5 + 126'72 (3 - -00279)2 [55-9 ] 320-6 319-4
[ 40 ] 260-8

82, [ 0 ] 199-5 
[- 20] 214-2 r = 199-5 + 125'08 (3 - -00610)2 [- 56'95] 320-6 321-5
[- 40] 259-4
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T. II.

IV. Quad. Mass.

•4142
a2 

•7050
e

•588
N R H 0 D T

21-45 307-0 1219'2 20-0 15-3 ‘0104
/3, 21-2 394-6 27-3 13’0 -0142 •7076 •9088 •779
7, 21-3 212-8 34-0 11-3 -0177 •9725 11813 •823
3, 21-5

/MO]- 88-3

128-0 36-9 9'6 -0192
803 40-0 8-1 -0209
54-0 40-8 7-0 -0213
36'5 420 5-6 -0219
24-7 42-0 46 -0219
16'4 45-0 4-0 -0235
11-2 45-0 3-3 -0235

47-9 2-8 -0250
50-3 2-1 -0262
54-0 1-7 -0282
54-4 1-2 -0284

1'2052 1-5409

0

•782

c
[ 80 ] 150-0
[100] 286'8

A, [ 0 ] - 88-3

r = - 88-4 + 126-72 (0 - -0246)2 [102-33] 307 304'7

[- 80] 157-0
[-100] 290-9

7i, [ 0 ] 93’8

r = - 88-5 +119-17 {3 + -0389)2 [101-63] 307 303

[ 30 ] 127-0
[60] 229'5

72, [ 0 ] 93-8

r = 93-8 + 126-07 (3 - -01046)2 [75-1 ] 307 306-9

[- 30] 127-9
[- 60] 229-0

MO] 179-3

r = 93-8 +122-13 (3 + -00488)2 [- 75-15] 307-0 305-4

[ 20 ] 194-9
[ 40 ] 241 0

52, [ 0 1 179-3

r = 179'3 + 125'08 (3 + -00401)2 [57-1 ] 307 304-5

[—20] 194-0 r = 179-3+ 126'40 (0--OO8O2)2 
[- 40] 239-5

12/6/91. New Native India-Rubber.

I. Single Mass.

[- 57-93] 307 306-5

N R H C D T Ax a2 e
22-7 265-5 750-0 28-4 21-3 ’018 •4317 •4866 •8872

e, 22-7 501-2 29-5 18-1 -019 - •5441 •6017 •9042
343-8 30-6 15-9 ’0195 •6358 •7167 ■8871
240-7 31-7 13-7 -020 ’7550 •8627 •8751
165-7 33-3 11-6 '021 •9004 1-0514 ■8563
110-5 35-4 10-0 -023

74-2 36-0 8-3 -023
49-5 39-1 7'1 -025
33-2 40-8 6'0 -026
221 42-3 5'2 -027
14-7 45-1 4-5 -029
92 460 3-7 -029
5-7 48-6 3-0 -031
3-4 51-0 2-3 -033

1-1403 1-2892 ■8845

33
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N R H C D T A, a2 e
2-2 48'6 1-6 •031
13 48-6 11 031
1-0 48-6 •9 •031

•7 48'6 ■6 ■031
6i, [ 0 ] 99-2 0 c

[30] 140-1 r = 99-2 + 148-39 (0 + -0014)2 [40] 171-8 171-8
[60]| 262-3

6o, [ 0 1 99'2
[-30]] 135-2 r =; 99-2+ 131-98(0-- -0014)2 [- 40] 163 163'3
[- 60 ] 243’5

II. Single Mass.

N R H C D T A, a2 e
21-8 274-5 7500 29'9 21-6 ■018 •4581 •5131 •8928

e, 21-8 508-0 31-8 18-3 •019 •5860 ■6473 ■9052
347-8 330 15-8 •0195 •6873 •7646 ■8989
244-6 34-2 135 •020 •8064 •9163 •8800
167-3 360 11-8 •021 •9833 1-1086 •8870
112-2 37-9 10-1 ■023
753 39-5 8'5 •024
50-2 41-3 7-5 •025
33-5 43-1 6-4 •026
221 45-8 5’4 •027
14-5 48-1 4-6 ■029
9'0 49'5 3-7 •0295
5-7 50-9 2-9 •030
3-7 50'9 2-3 •030
2-7 50-9 1-9 •030
1-7 509 13 •030
1-2 50'9 •9 ■030

€1, [ 0 ]| 108-0 0 c
[30]| 145-5 r = 108 + 136-24 (0 + •0010)2 [40] 175-0 175'0
[60]| 257-8

e2, [ 0 ] 108-0
[-30]] 143-5 r = 108 + 122 •46 (0 - -0005)2 [- 20] 123-7 122'9
[- 60]] 246-2

III. Double Mass.
N R H C D T Ax a2 e

21-2 292-1 7500 37-6 26-1 ■020 ■4956 •5528 •897
e, 21-8 536-8 40-9 23-1 ■022 •5715 •6590 •867

399-3 41-0 20'4 •022 •6590 •7220 •913
303-8 42-9 183 •023 •7632 •8337 •915
232-9 44'0 16-3 •024 •8561 •9270 •923
177-3 45’5 14-7 •025 •9556 1-0831 •882
133-7 46-6 13-2 •025
100-0 48-1 113 •026

73-7 501 10-5 •027
54-7 52-6 9-2 •0286
40-2 52-6 8'0 •0286
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N R H C D T A, a2 e
29'3 52-6 6-9 •0286
22-2 52-6 6-0 •0286
16-2 52-6 5-2 •0286
115 52-6 4-4 •0286

8-2 51-7 36 •028
5-7 520 30 •028
4-0 51-1 2-1 •028
2-9 50-2 1-5 •027
20 48-3 11 026
1'6 44-7 0-6 •024
10 37-6 ■4 •020

■8 34-2 •018
ei> [ 0 ] 59-5 0 c

[30] 991 r = 59-6 + 133-95 (0 + -0209)2 [74-4] 292'1 292-5
[60] 2121

e2, [ 0 ] 59'5
[- 30] 94'0 r = 59-5 + 125'74 (0)s [- 77-6] 292-1 290-1
[- 60] 197-5

IV. Double Mass.

e,, [ 0 1 78-0 o c
[30] 116-1 r = 78 + 135’59 (0 + "0066)2 [75'2] 313 314
[ 60 ] 228-5

N R H C D T Aj A, e
21'8 313 7500 39-5 26'4 •021 •5165 •5879 •879

e, 21-9 539-2 41-7 23-3 •022 •6120 •6681 •916
401-7 44-1 20'8 ■023 •6997 •7879 •888
305-9 46-2 18-7 ■024 •8012 •8795 •911
237-9 47-4 16-7 •025 •9244 1-000 ■924
180-8 49-0 15-0 •026 1-0441 1-1504 •908
137-2 51-0 13-6 •027
103-4 52-7 120 •028

77-7 53-8 10-6 •028
58'1 56'0 9'5 •029
435 58-0 8-6 •030
32-3 59-5 7-5 •031
23-9 61-3 6-5 ■032
17-3 61-0 5-8 •032
130 61-0 4-8 •032

9-5 610 3'9 •032
6-9 61'8 3-5 •032
4-9 62-6 2-8 •033
3-4 631 2-2 •033
2-3 63-0 1-7 •033
1-6 62-9 1-2 •033
1-2 609 •7 •032

•8 50-8 •4 •026
•5 48- ? •3 •025

e2, [ 0 ] 78-0
[-30] 114-5 78 +127-38 (0 + -O1185)2 [-77 ] 313 312
[- 60] 220'9

33—2
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22/6/91. New Vulcanised India-Rubber.

I. Single Mass.
N R H C D T Ai a2 e

22-0 269'2 914'4 25'3 18'4 0155 •4262 •5325 •800
8, 22'4 459'4 26'7 13'8 •0163 •5844 •7150 •817

252'7 27'0 10'8 •0165 •7627 •9331 •817

[ 0 ] 117'6

151'3 
90'8 
537 
311
18'0 
10'4

6'1 
3'6 
20

27'7 8'5
28'4 6'7
29'1 5'2
29'1 40
300 3'1
30'9 2'5
31'1 2'0
31'1 1'4
31'1 1'0

•0170
•0174
•0178
•0178
•0184 
•0189 
■0190 
0190 
•0190

•9833 1'1918

0

•825

c
[20] 133'1 r = 117'6 + 141'17 (0- •0174)2 [60'5 ] 269'2 269-8
[40] 183'0

82, [ 0 ] 117'6
[- 20] 134'5 r = 117'6 + 132'63 (0 + ■00645)2 [- 61'15] 269'2 270'9
[- 40] 183'7

II. Single Mass.
N R H C D T a2 e

21-2 283'2 914'4 26'1 18'5 0146 •4434 •5438 •815
3, 22'4 464'5 27'2 13'9 ■0152 •5961 •7400 ■805

260'3 28'5 11'0 •0160 •7921 •9675 ■819

[ 0 ] 128'4

155'3 
93'4 
56'6 
33'2 
18'9 
10'7

5-9 
35
20

29'0 8'7
29'9 6'9
31'0 55
31'5 4'2
321 3'4
33'5 2'5
34'4 20
35'2 1'5
36'8 1'1

•0163
•0168
•0174
■0177
•0180
•0188
•0193
•0198
•0207

1-0082 1-2349

0

•816

c
[ 20 ] 1461 r = 128'4 + 142'81 (0 + '00296)2 [59-55] 283-2 283-4
[ 40 ] 198'6

8,, [ 0 ] 128'4
[- 20] 144'1 r = 128'4 + 131'65 (0- •00401 )2 [-62-2 ] 283-2 284-6
[- 40] 191'9

III. Double Mass.
N R H C D T A, A2 e

22-0 299'7 914'4 33'9 23'6 •0186 •4455 ■5704 •781
S, 21'7 505'1 37'4 18'8 •0206 •6009 •7655 ■785

305'9 38'8 15'3 0212 •7790 •9523 ■818
193'7
124'1
79'8
500

39'8 12'4
40'7 10'1
42'2 8'0
42'2 6'6

■0219
•0224
■0232
■0232

•9573 1-1875 •806
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N R H C D T Aj a2 e

M 0 ] 106-4

31-4 43-6 5-0 '0240
19-5 44-4 4-1 -0244
12-2 44-6 3'3 ‘0246
7’6 44'6 2’5 '0246
4-6 44-6 1'8 '0246
2-7 44-6 1-3 -0246
1-6

0 c
[ 20 ] 122'0
[ 40 ] 170-0

8S, [ 0 ] 106-4

r = 106-4 + 132-96 (3 - -00645)2 [70 ] 299-7 3027

[- 20] 122-5
[—40] 169-4

IV. Quad. Mass.

r = 106’4 + 126-40 (3 + -00785)2 [- 70-4] 299-7 299'7

N R H C D T A, A2 e
22-3 317-7 914-4 40'2 28-2 0211 •4621 •6340 •729

8, 22-3 486-3 47-0 23-7 -0248 •6290 ■8021 •784
293-3 510 19'5 -0268 ■7974 10035 •795
183-4 54-1 16-0 -0285 1-0355 1-2527 •827

MO] 134-8

117'5 55-5 12-9 -0292
75-2 56'9 10-5 -0300
48-7 57-8 8-7 -0304
31-5 59-5 6-7 -0313
19'9 59-5 5-2 -0313
12-3 60’5 40 -0318

7-4 61'9 3-0 -0326
4'6 62-0 2-2 -0326
2-7 62-0 1-5 -0326
1-7 62-0 1-1 0326

1-2783 1-5587

0

•820

c
[ 20 ] 151-1
[40] 201-6

MO] 134-8

r = 134-8 + 140-51 (3 - -00837)2 [66-5 ] 317-7 321'2

[-20| 152-0 
[- 40] 202-0

16/6/91. Cork.

I. Single Mass.

r = 134-8 + 134-60 (3 + -00854)2 [- 66-25] 317-7 317'2

N R H C D T Aj A, 8
22-5 272'3 1219-2 14-4 9-9 ’0089 ? •3640 •6732 •541

/8, 22-0

MO] 23-0

250-0 14-1 5-2 -0087
71-4 14-1 3-0 -0087
24-5 14-7 17 -0091

8-9 15-4 1-2 -0095

•7664 1-3230

0

•579

c
[ 30 ] 78-2
[ 60 ] 214-9

MO] 23-0

r = 21-7 + 148-72 (3 + -0924)2 [69-1 ] 272-3 272'4

[- 30] 50-2
[- 60] 141-1

r = 22-8 + 116-22 (3 - -03836)2 [- 85-25] 272-3 267V



262 ON IMPACT. [lxxxix.

II. Single Mass.
Ax 

•3959
a2

■7341
e

•539
N R H C D T

2215 286'8 1219-2 16-0 10-3 -0093
[3, 21-9

ft, [ 0 ] 34-3

252-9 15-6 5-4 '0090
71’5 15-7 3-2 -0091
25-1 16-3 1-9 -0094

9-4 16-5 1-3 -0096
3-5 17-6 -8 -0102

■8156 1-4176

0

■575

c
[ 30 ] 76-9
[ 60 ] 200-7

ft, [ 0 ] 34-3

r = 34-3 + 148-06 (0 + -0129)2 [74-4 ] 286-8 288-6

[- 30] 65-0
[- 60] 158-0

r = 34-3 + 113-59 (0 - -00384)2 [- 84-83] 286-8 282-0

III. Double Mass.
N R H C D T Ax a2 e

21-15 296-5 1219-2 29-1 15-7 -0156 •4032 •9884 ■408
ft 21-4

ft, [ 0 ] 1161

179-8 27-4 6-7 -0147
44-5 261 3-6 -0140
140 25-6 2-2 -0137

4-9 28-3 1-4 -0151

•9977 1-9458

0

•513

c
[30] 151-5 
[ 60 ] 258-6

r = 116-1 + 130-66 (0 - -00732)2 [67-5 ] 296-5 296-3

ft, [ 0 ] 1161
[- 30] 148-9
[- 60] 247-3

r = 116’1 + 119'50 (0)2 [- 70-33] 296-5 296-2

IV. Quad. Mass.
N R H C D T Ax a2 e

21-45 321-7 1219-2 52-1 24-7 -0261 •4245 1'2218 •347
ft 21-3

ft, [ 0 ] 186-4

135-1 54-2 100 0271
26-4 46-2 4-4 '0231

6-8 46-9 2-5 -0235

1-2550 2-7450

0

•457

c
[ 20 ] 202-0
[40] 248-8

r = 186-04+ 128-4 (0? [58-75] 321-7 321-0

ft, [ 0 ] 186'4
[- 20] 201-5 
[- 40] 246'0

r = 186-4 + 120-65 (0 - -00663)2 [- 60-6 ] 321-7 319-6

24/6/91. Cork.
I. Single Mass.

N R H C D T Ax a2 e
22-3 273-1 2286-0 24-1 20-5 •0148 •2568 •5844 •439

7, 22-3 373-6 19-7 7-5 • ■0121 •6322 1-2009 •526
88-6 17-2 3-7 •0105
29-7 16-9 21 •0104
11-4 17-4 1-4 •0107

4-6 17-8 10 •0109
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[ 0 ] 
[20] 
[40]

184'2
2021 
254'7

r = 184'2 + 14215 (0 + '00610)2 [45-1]
0

273-1
c

273'9

72, [ 0 ] 184'2
[- 20] 199'4 r = 184-2 + 129-02 (3 - -00558)2 [-30 ] 218-7 218-8
[-40] 246'0

II. Single Mass.

7s, [ 0 ] 1981
[—20] 214-2 r = 198’1 + 130'66 (0 +’00192)2 [-30 ] 234-0 2343
[- 40] 262-1

N R H C D T A, a2 e
22-23 289'2 2286-0 26-1 211 •0151 •2754 •6200 •444

y, 221 3900 223 8-0 0129 •6590 1-3079 •504
91-5 18-8 3-8 ■0108
303 18-5 2-3 •0107
11-5 191 1-6 ■0110

4'7 20'4 10 •0118
7n [ 0 ] 198-1 0 c

[20] 214-8 r = 1981 + 138-87 (3- •00209)2 [46-7] 289-2 289-7
[40] 265-3

III. Double Mass.

[20] 257'5 r = 242’4 +131’65 (0 —'01011)2 [30] 277’1 2771

N 
21-8

R 
306-0

H 
2286-0

C 
38-6

D 
29-2

T 
•0206

Aj 
•2908

a2 
•7463

e 
•390

7, 21-8 3120 41-6 12-2 •0222 •7776 1-6697 •466
64-3 33-5 4-9 •0179
180 31-8 2-7 •0170

5-9 31-8 1-6 •0170
1-8 361? 1-1 •0193?

7n[ 0 ] 242-4 0 c

[ 40 ] 304’7
y2, [ 0 ] 242’4

[—20] 258-0 r = 242-4 +128-04 (0)2 [-10] 246'3 246'3
[- 40] 304'7

IV. Quad. Mass.

N 
22-1 

£ 22'0

R 
323-8

H
2286-0

232-6
42-0

8-4

C 
45-5 
72’1 
62-3 
571

D 
33-9 
17-8 
6'8 
3-0

T 
•0233 
•0369 
•0319 
■0292

Aj 
•3102 
■9244

a2
•9163

21283

e 
•3385 
•4743

A, [ 0 ] 
[30] 
[60]

91'0
126-5
236-0

r = 91-0 + 134-93 (3- •01064)2 [75’5]
0

323'8
c

321-6

£, [ 0 ] 
[- 30] 
[-60]

91-0 
128-0 
237-6

r = 91 + 132-30 (3 + -0052)2 [-40 ] 156'1 156-4
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26/6/91. Vulcanised India-Rubber.

I. Single Mass.

•2836
a2

•3578
e

•793
N R H C D T

22-5 310'8 2438-4 26'4 29’8 -0143

IL Single Mass.
N R H C D T Ax a2 e

21-9 300-0 2438-4 26-0 29-7 -0142 •2733 •3518

III. Double Mass.
N R H C D T Ai a2 e

22-05 285-7 2438-4 26'0 31'1 -0151 •2586 •3457 •748

IV. Quad. Mass.
N R H C D T Ax a2 e

22-05 270-1 2438-4 25-6 35'4 -0157 •2348 •3275 •717

3/7/91. Vulcanite.

I. Single Mass. 
N R H C D T Ax a2 e

22-35 271-4 1219-2 1'6 12 -0010 •3620 •7002 ■517
/3, 22-3 259 3 1-9 1-1 -0012 •7265 1-3663 •532

A, [ 0 ] 12-4
[ 30 ] 59'8

72-7 2-2 -5 -0014
31-2 2-6 -5 -0016
16-8 2-9 -3 -0018

9-8 32 -3 -0020
5-9 2-8 -2 -0017
3-5 3-2 -2 -0020
20

r = 121 +148'72 (0 + -O4254)2 [73'4]
6 

271-4
c 

272-6
[ 60 ] 188-7

A, [ 0 ] 12-4
[- 30] 44-0 r = 12-4 + 12213 (0 - '01464)2 [- 83'4] 271-4 265-9
[- 60] 142-6

II. Double Mass.
N R H C D T A> A2 e

22-4 279-1 1219-2 2-1 2-3 -0013 •3561 •5250 •678
y, 22-5 492-3 2-4 1'6 '0014 •5372 •9424 •570

7i; [ 0 ] 127-5 
[ 20 ] 144'0

151-7 2-8 1-0 -0017
48-2 3'1 -6 -0019
23-0 3-6 -4 -0022
11-5 4-2 -3 -0025

r = 127-5 + 141-50 (0 - -0075)2 [•59'7]
0

279’1
c 

278-9
[ 40 ] 195-0

y2, [ 0 ] 127-5
[- 20] 144-7 r = 127-5 + 136-24 (0 - -00401)2 [60-0] 279-1 275'8
[- 40] 195-1
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III. Double Mass.
N R H C D T A A2 e

23'35 299'3 2438'4 1'9 1'8 '0011 ■2586 ■4986 •519
7, 23'2 542'8 2'1 14 '0012 •5486 •8601 •638

7i, [ 0 ] 127'7
[30] 167'5

172-3 2'4 1-0 '0014
57-0 3'3 '5 -0019
25'3 3'7 '4 '0022
11-4 40 '3 '0023

r = 127'7 + 150'36 (0 - -OO9O70)2 [61'75]
0

299'3
c

299-9
[60] 289'7

72, [ 0 ] 127'7 
[- 30] 168'0 r = 127'7 + 143'14 (6 + -0136)2 [- 62'4 ] 299'3 301-7
[- 60] 286'8

IV. Quad. Mass.

N R H C D T Ai a2 e
22'85 308'7 1219'2 3'4 2'7 '0019 •3805 •7673 •496

/3, 22'5 291'0 3'3 1'1 '0018 •7841 1-7090 •459

A, [ 0 ] 17'6
[ 30 ] 66'0

58'0 5'2 '9 '0029
14-7 9'6 '9 '0053
4'8 9'6 '5 '0053
1-7 96 '3 '0053

r = 17'3 + 151'35 (0 +-0436)2 [77-5]
0 

308-7
c

312-3
[ 60 ] 197'4

A, [ 0 ] 17'6
[- 30] 47'3 r = 17'4 + 125'41 (0 - '03487)2 [- 88-2] 308-7 301-2
[- 60] 145'7

V. Quad. Mass.
N R H C D T Ai a2 e

22'75 321'1 2438'4 2'3 1'5 '0012 •2867 ■8878 •323
/3, 22'5 2721 2'6 0'8 '0014 •8466 1-8040 •469

&, [ 0 ] 49'0
[ 30 ] 90'3

53'9 5'0 0'8 '0027
13'3 8'5 0'8 '0045
4'5 8'4 0'4 '0045

r = 49 + 142'81 (0 + 'O143)2 [78-7]
0

3211
c

324
[ 60 ] 210 0

A, [ 0 ] 490
[- 30] 83'6 r = 49 + 132'63 (0--O1255)2 [- 82-6] 321-1 319-8
[- 60] 1910

10/7/91. Lead.

I. Single Mass.
N R H C D T Ai a2 e

22'55 279'0 1219'2 2'5? 1'4? '0015? ■3640 ■8230? -442?
T. II. 34
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II. Single Mass.
N R H C D T

•0011
•0012

A, a2 e
23-35 2950 1219'2

120-5 1-8 0-8
21-1 2-0 0-4

III. Double Mass.
N R HOD T Aj a2 e

22-55 304-2 1219'2 1-7 1-3 •0009 •3899 1-0355 •3765

IV. Quad. Mass.
N R

158-6 2-6 -7
17-0 2-6 -4

H C D

•0014
■0014

T Ax a2 e
230 325-3 1219-2 3-0 1-4 •0016 •4265 1-7461 •244

V. Quad. Mass.
N R

84-7
9-4

H C D T At a2 e
23-0 317-8 2438-4 4-5 2'0 •0024 •2773 1-9375 •143

29/6/91. Plane Tree.
I. Single Mass.

N R H C D T A, a2 e
21-1 269'6 1219-2 2-0 1-7 •0012 •3719 ■7590 •490

/3, 21-0 215-3 2-8 IT •0016 •8785 1-6977 •517

/3i, [ 0 ] 54-6
[ 30 ] 89'3

45-0 2-6 '6
15-4 2-6 -3

7-3 33 2

r = 54-6 + 130-66 (6 -

•0015 
0015
0019

■00802)2 [73-9]
0

269-6
c 

269-2
[60] 195-6

&, [ 0 ] 54-6
[- 30] 84-7 r = 54'6 + 110-64(0- •OO209)2 [-80 ] 269-6 269-6
[- 60] 175-5

II. Single Mass.
N R H CD T Ax a2 e

22-3 277-6 1219-2 11 •0007 •3640 •7618 •478
3, 21-7 229-9 2-6 1-3 •0016 •8273 T5340 •439

3i, [ 0 ] 47’7
[ 30 ] 85-3

54-1 2-3 -7
17-0 3-0 -4

7-9 3-1 -2

r = 47-7 + 134-93(0 +

•0014
•0018
•0019

•00436)2 [74-25]
0

277-6
c

275-8
[ 60 ] 196-9

A, [ 0 ] 47-7
[- 30] 82-0 r = 47-7 + 123'77 (0 + -00296)2 [-78 ] 277'6 278-1
[-60] 184-2



34—2

LXXXIX.] ON IMPACT. 267

III. Double Mass.
N R H C D T Ax a2 e

22'5 288-7 1219-2 2-2 1-9 0013 •3679 •8754 •420
/3, 22'5 198-6 2-9 1-2 -0017 •9004 1-7251 •522

A, [ 0 ] 90-6
[ 30 ] 128-0

48-8 3-4 -8 -0020
15-2 5'1 -6 -0030

5-5 8-5 -5 -0050

r = 90'6 + 141-83 (0 - -00994)2 [68-4]
0 

288-7
c

289-3
[60] 243'2

&, [ 0 ] 90'6
[- 30] 128-0 r = 90-6 + 134-60 (0 + -00349)2 [- 69-4] 288-7 289-2
[- 60] 239'3

IV. Single Mass.
N R H C D T Aj a2 e

22-2 299-9 2438-4 ... 1-0 •2830 '6494 •436
y, 211 408-8 2-5 1'4 -0014 •6720 1-2846 •523

71, [ 0 ] 210-0 
[ 20 ] 225-2

907 2-1 -9 -0012
25-0 2-9 -5 -0016
11-1 3-5 -3 -0019

5-2 4-3 -2 -0024

r = 210-0 + 138-21 (0 - -00174)2 [471]
0

299-9
c 

303-0
[ 40 ] 274-1 

y2) [ 0 ] 210-0 
[- 20] 227-4 r = 210+ 128'37 (0 + 'OO174)2 [-30 ] 247-9 245'4
[- 40] 276-1

V. Double Mass.
N R H C D T Ax a2 e

22-4 316-4 2438-4 •2943 •9067 •324
/3, 21-4 255-4 3-6 1-4 -0019 •9131 1-7747 •515

A, [ 0 ] 61-2
[ 30 ] 95-8

58-6 4-0 1-0 -0021
15-6 5-7 -7 -0030

5-0 11-0 '6 -0058

r = 61-2 + 129-02 (0 - '00575)2 [80-75]
0

316’4
c 

314-3
[ 60 ] 201-2

A, [ 0 ] 61-2
[- 30] 95-2 r = 61-2 + 119'83 {0 + -0O9O7)2 [-83 ] 316'4 315-8
[- 60] 195-0

VI. Quad. Mass.
N R H C D T Ax a2 e

21-9 313-4 2438-4 5-2? 3’3? -0027? •2867 11263 •255
/3, 22-4 126'1 3-2 -9 '0017 1-2364 3-3122 •374

17-4 9-0 -8 -0047
3-2 9'5 -4 -0050
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A,[0]
[20]
[40]

187'0
203-8
254-3

r = 187 + 138-21 (6? [54-6]
0

313'4
c

3125

&,[0] 187-0
[- 20] 203-8 r = 187 + 134-27 {0 + -00453? [- 55-2] 313-4 312-8
[-40] 253'3

I. Single Mass.
6/7/91. Steel.

N 
223

R 
275-0

H 
1219-2

C
11

D 
1-6

T
•0007

A, 
■3502

a2
•7292

e 
•343

252-5 1-5 1-0 •0009 •7590 1-6709 •454
50-4 2-0 •5 •0012
14-5 2-7 •3 •0016

II. Single Mass.
N R H C D T a2 e

21-0 278-6 1219-2 •9 1-5 •0005 •3939 •8012 •492
253-9 16 •9 •0009 •8079 1-7113 •472
516 1-9 •3 0011
15-0 22 •1 •0012

III. Double Mass.
N R H C D T Ax a2 e

21-75 284-3 1219-2 1-7 2-0 •0010 •3620 •7028 •515
286’6 19 •9 0011 •7346 1-4229 •516

68-3 2'4 •6 •0014
19-2 3'3 ■5 ■0019

IV. Single Mass.
N R H C D T a2 e

21-8 292-5 2438-4 0-9 12 •0005 •2679 •5716 •469
385-0 11 •6745 1-6088 •419
57-7 2-2 •4 0012
113 3'5 •2 0019

V. Double Mass.
N R H C D T Aj a2 e

21-55 297-5 2438-4 1-8 1-6 0010 •2726 ■7490 •364
309-0 1-5 •8 0008 •7813 1-6755 •466

62-5 2-5 •4 0014
10-2 4-6 ■3 ■0025

VI. Quad. Mass.
N R H C D T A, a2 e

2225 303-5 1219-2 31 2-1 •0017 •3799 11145 •341
118-7

4-9
VII. Quad. Mass.

N R H C D T A2 a2 e
21-55 324-7 2438-4

83'5
6-7
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8/7/91. Glass.
I. Single Mass.

N 
225

R 
279-7

H
68-0
61

C 
2-0

D
•5

T 
0012

Ax 
1-4882

a2
5 0504

e
•294

II. Single Mass. III. Single Mass.
R H H

282-8 609-6 1219'2
73-8 124-6
116 19-1

7/11/91. Vulcanised India-Rubber. (Single Mass.)
I. Flat Base.

N R H C D T Ax a3 e
21-4 277 1066 22 173 •0127 •3899 •4791 •814

624-2 22-8 14-3 •0132 •4986 •6168 •808
371-2 24 116 •0138 ■6581 •8040 •818
221-3 25 9'1 •0144
1305 25-9 7-2 •0149

77-5 27-2 5-8 •0157
45’5 281 4-4 •0162
26'1 290 3-5 •0167
150 30-0 2-9 •0173

8-0 31-2 2-1 •0180

II. Flat Base.
N R H C D T Ax a2 e

21-65 283 1066 22-2 177 •0127 •3939 •4942 •797
23-9 14-7 •0136 •4986 •6358 •784

384-6 24-7 12-0 •0141 ■6519 •8391 •777
230-0 26'5 9-4 •0151
136-3 271 7-3 •0155
81-5 28-2 60 •0161
48-0 29'0 4-9 •0166
27-7 307 40 •0175
160 32-0 3-0 0183
9 0 32-5 21 •0186

III. Ridged Base.
N R H C D T Ax a2 e

21'8 283 1066 34-9 26-2 0201 •4122 •5195 •793
559'6 37-9 21-2 •0218 •5430 •6681 •813
338-5 39-0 173 •0224 •6916 •8481 •815
207-8 40-8 143 •0235
128-0 41-7 11-2 •0240

78-8 417 8-9 ■0240
48 0 43-0 7-0 •0247
290 440 5-6 •0253
170 44'3 4-1 "0255
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IV. Ridged Base.
N 

21'6
R 

296'5
H C D T

1066 35-5 27-0 -0193
604-5 39-9 22'2 -0217
363'0 41'5 18'0 '0226
221'3 43'8 14'5 '0238
135'5 44'9 11-9 '0244
81'9 46'7 9-1 -0254
50'3 46'7 7'3 -0254
30'1 47'2 5'7 '0257
17'2 48'6 4'6 ’0264

•4142
•5430
•7062

a2
•5250
•6873
•8770

e
•789
•790
•805

13/7/92. Vulcanised India-Rubber. (Single Mass.)
N R H C D T Aj A2 e

O C 0 c
19-783 333'3 1000 27'8 16'5 '0123 '5206 ’5098 '6556 '6488 '794

592'8 29'1 13'3 '0129 '6728 '6617 '8069 -8138 '834
/3,20'05 354'6 30'3 10'9 '0134 '8511 -8356 1'0680 1'0540 '797
7, 20'54 213'2 31'6 8'9 '0140 1'0756 1'0776 1'3151 '818
8, 20'53 129'1 32'8 7'2 '0145 1'4097 1'7205 '819
e, 20'78 74'9 341 5'6 '0151 1'8040 2'3314 '774

42-6 359 4'5 '0159 2'4142 3'0656 '788
23'3 37'7 3'5 '0167 3'2540 4'3373 '750
12'6 39'3 2-5 '0174 4'3433 6'1066 '711

6'1 403 1'7 '0178
2'8 42'1 1'3 '0186
1-3 42'9 08 '0190

o c
A’LtE? ml

L60J — lo4 7 L J

’'~ “ ^ + 106-88 («-0009)- +

.- = -21-9 + 118-34(0+ -0208)-

r = -21-9 +111'81(0--0288)= 1371

[0] 120'5
[30] 153'0 r= 120'5 + 117'62 (0 +-0021)2 [76'9] 333'3 333
[60] 250'0

82, [0] 120'5 r 45 i 191-5 191’6
[-30] 152'5 r = 120'5 + 112'33 (0 +'0101)2 [-78'3] 333'3 333'4

e1; [ 0 ] 203'9
[20] 219'2 r = 203'9 + 120'64 (0 +-0072)2 [58’9 ] 333'3 333'2
[40] 263-9

e2, [ 0 ] 203'9 r -m i 901-fi 900 '7
SI? 203-9 +114-89 (0--0037C 333.3 33^

[This was a single experiment, specially designed for the Nurnberg Exhibition.]
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26/5/91. Unhammered Golf Ball. (Wood Block Unshod.)
I. Single Mass.

N R H C D T Ai A, e
22-7 240-7 1219-2 6-6 6-0 •00465 •3272 ■5902 •555

306'0 8-6 40 ■00605 ■6371 •9325 •683
1089 9-9 2-7 •00697 1-0110 1’5608 ■648

43-0 101 1-9 •00711
18-3 10-1 1-4 •00711

8-1 10-5 •9 ■00739
3-8 11-6 •8 00817
1-7

II.
N R H C D T Ax Ao e

21-9 257-3 1219-2 7-3 6-3 •00464 •3504 •6050 ■579
337-4 9'5 4-3 •00603 •6140 •9896 •621
118-6 10'8 2-8 ■00686 1-1039 1-6022 •689

47-3 11-1 1-9 •00705
205 11-2 13 00711
9'5 11-4 •9 ■00724
4-6 11-8 ■6 •00750
2-3 11-8 •4 •00750

III. Double Mass.
N R H C D T Ai Ao e

21'9 273-5 1219-2 10-9 7-6 •00651 •3689 •7360 •501
272-0 14-7 5’5 •00878 •7536 1-2916 •583

98-8 17-0 40 •01016 1-2753 1-9774 •645
40-1 17-7 2’6 •01058
179 17 9 1-8 •01070

8-4 17-9 1-2 ■01070
4-0 18-6 •9 •01111
2-0 18-7 •7 •01117

IV. Quad. Mass.
N R H C D T Ai a2 e

21-9 288-7 1219-2 15-6 10-1 •00883 •3819 •8430 •453
233-0 22-6 7-7 ■01279 •8391 14154 •593

82-1 26-5 5 3 •01500 1-4200 2-2198 •640
32-6 28-1 3-5 01591
14-3 28-5 2-4 ■01613

6-4 28-5 16 •01613
2-8 29-5 1-1 ■01670

28/5/91. Hammered Golf Ball. (Block Unshod.)
I. Single Mass.

N R H 0 D T Ax A, e
21-8 245-3 1219-2

378-0 7-8 4-1 •00517 •5902 •9163 ■644
144-3 9'0 2-7 •00597 •9358 1-3814 •677

61-5 9-3 2-0 •00617
27-5 10'5 1-5 •00696
12-4 11-9 11 ■00789

6-2 12-4 •9 •00822
2-9
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II.
N R H C D T Aj a2 e

21-6 254-3 1219'2 6-3 5-7 •00499 •3581 •5384 •665
386-3 8-2 4-0 •00520 ■6285 •9490 ■662
149-2 90 2-9 •00571 •9725 1-4388 •676

63-4 101 2-2 •00640
29-9 10-2 1-5 •00647
14-2 110 1-2 •00697

6-7 117 •8 •00742
3 0

III. Double Mass.
N R H 0 D T A, a2 e

21-6 272-5 1219-2 9'2 6-7 •00544 •3679 ■6745 •545
321-3 123 5-6 •00728 •6835 1-0486 •652
132-6 13'3 3-9 ■00787 1-0432 1-6085 •648

59'8 14-7 2-7 •00870
28-0 15-6 21 •00923
13-7 163 1-6 •00964

6-9 17'5 1-2 •01035
3-5 18'2 1-0 •01077
1-6

IV. Quad. Mass.
N R H C D T A, a2 e

22-6 288-1 1219’2 13-4 9-4 •00784 •3640 •7646 •476
279-9 17-6 6-9 •01030 •7308 1-2505 •584
108-1 20-1 4-6 ■01177 1-1771 1'9596 •601

44-0 22-0 3-2 •01288
18-9 23-8 2-6 •01393
90 23-0 1-6 •01346
4-3
2-0

1/3/92. Hammered Golf Ball. (All Single Mass.)
I. (Steel Plate.)

N R H C D T At a2 e
21-75 263 1219-2 5'9 5'0 •00364 •3410 •5820 •586

297-2 7-8 3-5 •0048 •6330 1-0176 •622
105-0 9-0 2'5 '0056 1-0913 1-6865 •647
392 9-5 1-6 ■00586
15-8 109 1-2 •00617
6’9 111 0-9 ’00685
2-7 11-4 ■7 •00703

II. (Steel Plate.)
N R H C D T Ai a2 e

23-2 273-0 1219-2 6-9 5-9? •00438 •3551 ■6009 •591
354-2 8-6 3-7 •00545 •6627 1-0247 •647
123-1 9-3 2-5 ■00590 11132 1-6842 •661

45-9 96 1-7 •00609
190 10-6 1-2 •00672

8-4 111 ■9 •00704
3-7
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III. (Wood.)
a2N R H C D T Aj e

21-0 279-5 1219-2 5-8 4-3 •00325 •3462 •5774 •600
3830 7-7 3-5 •00432 •6208 •9691 •641
131-9 8-3 21 •00465 1-0283 1-5911 •646
49'4 8-9 16 •00499
20'1 9-5 1-1 •00533

8-6 9-8 •8 •00549
40

IV. (Wood.)
N R H C D T Aj a2 e

223 293-6 1219'2 6-4 4-7 ? 00363 •4040 •7028 •575
384-7 8-2 3-6? •00465 •6644 1-0538 •630
134-0 9-5 2-4 •00539 1-1028 1-6643 •663

50-9 101 18 •00573
21'0 109 11 •00618
90 10-9 •9 •00618
41 10-9 ■5 •00618

V. (Wood.)
N R H C D T A, Aa e

22-6 306'5 1219-2 61? 4-2 •00336 •3939 •6656 •593
390-7 8-4? 3-0 ? •00462 •6758 1-2685 •533
1060 io-o 2-2 •00550 1-2647 1'9500 •649
410 10-7 17 •00589
16'9 116 1-2 ■00638

7-4 12-5 •9 •00688
3-2 14-4 •75 •00792

VI. (Steel Plate.)
N R H C D T A. a2 e

21-35 310-8 1219-2 8-0 5'5 0041 •4204 •6681 •629
381'8 10-8 4-0 ? •00554 ■7178 1-2572 •571
102-7 12-3 2-5 •00631 1-3968 2-1742 •642

37-0 12-7 1-7 •00652
15-6 13-7 1-1 •00703
6'6 14-8 •9 •00759

16/3/92. Unhammered Golf Ball. (All Single Mass.)

I.
N

(Steel Plate.)

R H C D T Aj a2 e
22-45 275-4 1219-2 5-5 4-7 00335 •3581 •6009 •596

373-9 6-8 3-0 •00414 •6334 1-0000 •633
128'0 8'6 21 •00523 1-0724 1-7217 •623

45-5 8-6 13 •00523
17'4 90 0-9 •00548

6'8 100 •7 •00608

II.
N R H 0 D T Ax a2 e

21-15 283-6 1219-2 5-7 4-8 •00317 •3819 ■5914 •645
420'2 7-3 3'5 •00406 •6249 1'0053 •622
144-3 8-7 2-3 •00484 1-0488 1-7532 •598
520 99 15 •00551
19'4 103 11 ■00573

7-5 10-6 •8 •00590
35
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III.
N

22-2
R 

291-3
H 

1219-2
C 
6'0

D
4-9 ?

T 
00341

Ai
•3726

a2
•5716

e
•652

433'4 7-8 3-5 •00444 ■6192 1-0247 •604
148-5 8-6 2-5 •00489 1-0428 1-6764 ■622

53-9 96 1-8 ’00546
20-2 12-2 1-4 ■00694

7-7 13-8 1-0 •00785
IV.

N R H C D T Ax a2 e
20-8 299-0 1219-2 6-6 4-7 ■00343 •3959 •6108 •648

438-8 8-0 36 •00415 "6594 1-0649 •619
153'8 9-5 26 ■00493 1-0637 1-7603 •604

55-2 103 1-7 •00535
20-7 11-6 1-4 •00602

8-5 12-9 •9 •00670
V. (Wood.)

N R H 0 D T At a2 e
2155 305-6 1219-2 6-6 50 ■00347 ■3919 •6469 •606

426-2 8-2 33 •00431 ■6586 1-0963 •601
144-7 9-9 25 •00521 11370 1-7893 •635

52-3 10-8 1-7 ■00568
19-9 125 13 •00658
80 133 •9 •00700

VI.
N R H C D T a2 e

21-25 315-2 1219-2 6-6 4-4? 00332 •4227 •6494 •651
438-3 8-4 35 •00423 •6937 11048 •628
153-0 96 25 00483 1-1599 1-8572 •625
561 10-4 1-6 •00523
21-5 108 11 •00543

8-7 120 0-7 •00604
VII.

N R H C D T Ax a2 e
21-6 324-8 1219-2 6-6? 4-3 ? •00328 •4327 •7220 •599

447-3 8-8 3-8 •00437 •6958 1-1048 •630
158-6 10-2 2-5 •00506 1-1566 1-8807 •615

58-3 111 1-7 •00551
22'5 12-8 1-4 •00635

9-3 13'6 10 •00675
VIII.

N R H C D T Ax a2 e
21-35 331-2 1219-2 6-7 ? 40? •00322 •4418 ■7063 •626

445'2 8-9 3-6 •00428 ■7225 1 0933 •661
158-0 100 2-6 ■00481 1-1785 1-8367 •642

59-5 110 1-7 •00529
5/4/92. Hammered Golf Ball on Hammered Golf Ball.
I. Single Mass.

N R H C D T Ax a2 e
21-37 260-9 1219-2 8 3 70 ■00507 •3620 •5774 •627

400 3 100 5-0 •00611 ■6092 ■9072 •672
150-4 10-9 3-3 •00666 •9896 1’4550 •681

57-5 12-3 2-5 •00752
241 13-4 1-7 •00819
10-5 12-2 •9 •00746

4-8 12-8 ■6 •00782
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II. Single Mass.
N 

22'2
R 

268-6
H

1219-2 
458-2 
173-2
68’5 
28-8 
128

5'6 
23

C 
80 
9-7 

11-3 
121 
13-6 
14-3 
154 
17-4

D 
7-4 
5'4 
40 
2-9 
20 
1-4 
1-0

•7

T 
’00494 
•00598 
•00697 
•00747 
■00839 
•00882 
00950 
•01074

Ax 
•3310 
•5362 
•8894

A2 
•5200 
•8332 

1'3151

e
•636
•644
•676

III. Single Mass.

N R H C D T Aj As e
22-1 277-0 12192 8-9 7-5 00530 •3696 ’5543 ■667

467-8 103 5-3 •00613 •5766 •8682 ■664
178-0 120 3-8 •00714 •9358 1-3900 •673

71-3 131 2-8 •00780
307 141 20 •00840
137 14-6 1-4 •00869

6-1 12-8 •8 •00762

IV. Double Mass.

N R H C D T A a2 e
22-6 285-2 1219-2 118 9-2 •00698 •3682 •5695 •646

3739 141 69 •00834 •6273 •8926 •702
1433 17-3 51 •01023 1-0064 1-4804 •680

59-8 18-2 3'4 •01076
25-9 19'7 2-4 •01165
11-5 ? 20-2 1-7 01196

5'0 21-6 12 •01277

V. Double Mass.

N R H C D T Aj As e
2312 297-1 1219-2 121 9'9? •00703 •3705 •5670 •653

408-2 160 7-3 ■00929 •6350 •9025 •704
1613 180 5-2 •01045 •9896 1'4770 •670

68-0 195 3-6 •01132
29'9 20-8 2-6 •01208
133 21-4 1-8 •01243

5-9 205 1-2 •01190
2-9 22-2 0-9 •01289

VI. Quad. Mass.

N R H C D T Ai a2 e
21'5 312-2 1219-2 19-5 12-5? •01002 •4215 •7248 •582

286-6 26-5 93 •01362 •8069 1-1840 •682
115-3 290 6-6 •01490 1-2746 1-9170 •665
47'7 314 4'6 ■01614
20-0 31-5 3-0 •01619

9 0 35-6 2-2 •01829
3-7 35-6 1’5 •01829

35—2
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24/3/92. Unhammered Golf Ball on Unhammered Golf Ball.
I. Single Mass.

N R H C D T Ax a2 e
22-35 262-3 1219-2 8-3 71 ■00528 ■3424 •5206 •658

419-5 9'6 5-0 •00610 •5774 •8214 •703
161 6 11-0 36 ■00699 •8988 1'3556 •663
64'1 11-4 2-4 ■00725
26-6 132 1-9 •00839
12-2 136 1-4 •00865

5'5 151 11 •00960
II. Single Mass.

N R H C D T A A. e
22'05 270-3 1219-2 8-1 7-0 •00493 •3488 •5392 •647

461'9 9-8 5-1 •00597 •5693 •8243 •691
176-5 112 36 •00682 •9099 1-3352 •681

69'1 123 2-6 •00749
30-5 130 19 •00791
13-5 133 13 ■00810
61 136 0-9 •00828

III. Single Mass.
N R H C D T a2 e

21-4 278-2 1219’2 8-7 7-1 •00499 •3819 ■5658 •675
473-2 106 ? 5'4? •00608 •5758 •8391 ■686
184-6 118 3-9 •00677 •9244 1-3238 •698

73-6 125 2'5 00718
31-7 141 2-0 •00809
143 13-8 13 •00792

6-3 151 ? •8 ? •00867
IV. Double Mass.

N R H C D T Aj a2 e
21-12 286'5 1219'2 127 9-2 •00699 •3819 ■6342 •602

381-2 15-8 6-8 •00869 •6745 •9657 •698
1561 181 5-2 ■00996 1-0538 1-5014 •702
667 195 36 •01073

19-7 2-4 •01084
12-6 21-0 1-7 •01155

5-7 210 1-2 01155
V. Double Mass.

N R H C D T Ax a2 e
22-0 2971 1219-2 130 9-8 •00718 •3809 •5957 •639

423-9 16-4 7-5 •00906 ■6494 •9083 •715
169'5 18-9 5-4 •01044 1-0088 1-4578 •692

71-0 20'1 37 •01111
31-4 20'9 2-5 •01155
13-5 22-2 17 •01227

5-9 233 1-3 •01288
2-7 24-0 1-0 •01326

VI. Quad. Mass.
N R H C D T Ax a2 e

219 313-6 1219-2 190 120 •00990 •4156 •7400 ■562
321-0 25'6 9'6 •01334 •7983 1-1263 •709
136-3 28'8 7-1 ■01501 1-1988 1-7321 •692

58-9 31-0 4-9 •01615
25-9 31-9 3-2 ■01662
11-6 34-8 2-3 •01813
51 35-2 1-5 •01834
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2/6/92. Eclipse Ball—Steel Plate.
I. Single Mass.

N R H C D T a2 e
22-25 273’8 1219’2 9’5 7-3 ■00576 •3541 ■6346 •558

11-2 46 •00679 •6669 1-1504 •580
107’0 12’2 3-0 •00740

38-1 140 2-0 •00850
139 140 1-3 ■00850

II. Single Mass.
N R H C D T Ai a2 e

22-4 281’7 1219’2 9’8 7-3 •00582 •3696 •6656 •555
333’8 11-5 4-7 •00682 •7107 1-1648 •610
1060 12’8 3-0 ■00760
39’3 140 2-0 •00831
14-6 14’6 13 •00866

«i> 1:o] 267’7 0 c
’6] | 2690 r = 267’7 + -04444 (0 — •5625)a [18-48] 282 282

1 | 273’5
«2, |■o] 267’7

[~ 6; 269’4 r = 267-7 +-04028 (0 + -517)2 [18-38] 282 2821
[- 12' 274’0

III. Double Mass.
N R H C D T Ax a2 e

22-2 290’8 1219’2 14-0 9-9 •00798 ■3676 •7146 •514
291’9 17-8 6-4 •01014 ■7590 13143 •577
87’4 19-9 40 01134
29’6 20’6 2-3 •01174
10-5 204 1-4 ■01162

IV. Double Mass.
N R H C D T Ai a2 e

21’55 300 1219’2 151 10-2 •00809 •4061 •7391 •549
297’0 19’3 6-4 •01035 •8142 1-3865 •587
88’8 20-9 4’0 •01120
30-4 22-8 2-5 •01222
107 24-2 1-7 ■01297
35 26’0 10 •01394

V. Quad. Mass.
N R H C D T Ai a2 e

22’22 314’5 1219’2 19-7 12'2 •01039 •4115 •8746 •471
241’2 27-4 8'0 ■01445 •9179 1'6577 •554
66’6? 306 4-5 •01613
20’5 34-3 2-9 ■01808

6’2 36-8 1-5 •01940
VI. Quad. Mass.

N R H C D T Ax a2 e
22’6 324’3 1219’2 201 12-5 •01045 •4149 ■8889 ■467

245’0 27’0 7-8 •01404 •9163 1-8094 •506
63’6 320 4’5 •01664
197 35-5 2-8 •01846

5’8 36-8 ? 13? 01913
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APPROXIMATE COEFFICIENTS OF RESTITUTION.

Successive Values of e (1 — m), calculated by the First Formula in the Paper. (The 
suffix to the number of the experiment indicates the mass, and the height of the 
first fall is quoted.)

7/4/91. Old V. I. R.
1219.

12/6/91. New N. I. R.
750.

22/6/91. New V. I. R.
914-4.

13/7/92 
1000.

R IR HR IV4 R IR HR IVa R IR HR IV4 R
•64 -67 -54 -57 •82 -82 -84 -85- •71 -71 -74- -73 ■77
■74 -74 -74 -73 •83 '82 -86 -86 ■74 -75 -78 -78 ■77
76 -76 -78 -78- ■84 '85 -87 -87 •77 -77 -79+ -79 •77
•77 -78- -80 -79 •83 -82 -87 -87 •77 -77 -80 -80 •77
•78 -78 -82 '82 ■82 -82 -87 -87 •75+ -77 -80 -80 •76
•78 -79 -82- -82+ •82 '82 '86 '87 ■76 -77 -79 -80+ ■75
■78+ -79 -83 -82 •81 -82 -86 '87 •76 '76- -79 -80 •74
■79 -79 -83 81 •82 -81 -86 -87 + •76 -75 -79 -79 •74
•78 -80 -82 -83
•77
•79
•78-

16/6/91. Cork.
1219.

• 81 -81 -86 -87 +
• 81 -81 -85 -86
• 79 -79 -85 -86
■ 79 -80- '87 '86
• 77 -80+ -85 -85
• 80 -85 -84 -87
• 74 -79 -84 -85
• 88 -83 '84 -85
• 82 -84 -84

•84 -83
•84 -82
•89 '84

24/6/91. Cork.
2286.

■ 77 -75- -79 -78 -70
• 76+ -77 -79 -77 -68
• 74 -75+ -78 -79 '68

■77 -77

3/7/91. Vulcanite.
1219. 2438. 1219. 2438.

R IR HR IV4 R IR HR IV4 R IR HR IV4 v4
•46 -45- -38 -33 •40 -41 -32 -31+ -46 '63 '47 '49 33
•53 -53 -49 -44 •49 -49 -45 -42 "53 '55 '56 ‘45 ■44
•59- -59 -56 -50 •58 -58 -53- -45 ’65 56 -58 '50 •49
•60 -61 -59

•61

29/6/91. Plane.
1219.

•63 '61 -57 +
•63 '64 -55

2438.

•71 -69 -67 -57
•76 -71 -67+ -59
•78
•78
•76

6/7/91. Steel.
1219. 2438. 1219.

•58

2438
R IR UR IVX V2 VR R IR HR IV, V2 VR VIR

•42 -43 -40 -41 •32 -23 '45 •45 -49 -39 -36 '31 ■19
•46 -49 -49 -47 ■48 -37 -42 ■45 -49 -39- -45 20 •29
•58 -56 '56- -52
•69 '69 '60 -66

•68

•51 -43 -53
•56

•53 -52 -44 40
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1066. 26/5/91. Unhammered. 28/5/91. Hammered.
7/11/91. V. I. R. Golf Ball, Wood Base.

Flat Base. Ridged Base. 1219. 1219.
IL nix IVx IIx ni2 iv4 Ii Hi HR iv4

•76 — ■72 •74 •50 •52 •47 •44 •55 •56 •51 •48
•77 — •78 ■77 •59 •59 •60 •59 •63 •62 ■64 •60-
■77 •77 •78 •78 •63 •63 •63 ■63 •65 •65 •67 •64
■77 •77 •78 •78 •65 •66 •67 •66 •67 •69- •68 •65
•76 •77 •78 •78- ■66 •68 •69 — ■66 •67 •69 ■70 ■69
■74 •77 •78 •78 •68 •70- •69 •66 •70 •69- •71 •69
•75 •76 •78- •78- •66 •70 •70 •69 •67 •71 •68
•75 •76 •77 •75
•73 -75



280 [xc.

QUATERNION NOTES.

[Proceedings of the Royal Society of Edinburgh, June 4, 1888.]

(a) Prof. Cayley’s paper*, which was read at last meeting, reminded me of an 
old investigation which I gave only in brief abstract in our Proceedings for 1870 [Antti, 
No. XVIII.]. There is, unfortunately, a misprintf in the chief formula of transformation. 
In fact, we have quite generally, as a matter of quaternion analysis,

Dyer — VDacr = Dy a — (V JEer + Dya)

= — = V^ay . er

= (Vo-)® — S'. VjO-jV . er — Ver. SV er + SVVr. cr^er.

The hydrokinetic equation is
Da<r = V {P-A, 

\ r)

so that V. VD„cr = 0;

or, by the above transformation,
V.DaV a = V^Say . a),

which is the equation treated by Cayley.

It is worthy of note that the right-hand member may be written as
V (Vo-)2 - S. V^V . er - VVa . SV a [or as VVa. SV a - S. V.a.V . a]

because SVV1. Va^ = 0 identically.

* [Collected Papers, Vol. xin., No. 890. Note on the Hydrodynamical Equations.']
+ [Also an omission, corrected in the Reprint. The expression itself occurred to me while I was making the 

translation of v. Helmholtz’ paper on Vortex Motion which appeared in Phil. Mag., n., 1867. The multiform 
transformations of the expression furnish a very interesting and instructive exercise in Quaternions. 1899.]
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If we now introduce the equation of continuity 

^<7 = 0, 

we have (as in the abstract referred to)

— — S. Vjo-jV . <7 = 
with the further result

- V2 (p - Q = (Va)2 + SVV1.

(b) The second note contains additions, of which

fffV. War* =// (rSaUv - aSrUv) ds

may be given as a specimen, to the paper on Quaternion Integrals printed in abstract 
as No. XXII. above. [One of the chief special applications, for which these formulae 
were devised, was the comparison of integrals taken over the same finite closed 
surface. Thus for instance, even in the simple particular case cited, we have some 
remarkable equalities on the right from the mere assumption that a and t satisfy 
(in any of the infinite variety of ways possible) the condition

V Var = scalar,

or Var = V®. 1899.]

T. II. 36
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XCL

OBITUARY NOTICE OF BALFOUR STEWART.

[Proceedings of the Royal Society of London, 1889.]

Dr Balfour Stewart was born in Edinburgh on November 1st, 1828, and died 
in Ireland on December 18th, 1887, having just entered his sixtieth year. He was 
educated for a mercantile profession, and in fact spent some time in Leith, and after­
wards in Australia, as a man of business. But the bent of his mind towards physical 
science was so strong that he resumed his studies in Edinburgh University, and soon 
became assistant to Professor J. D. Forbes, of whose class he had been a distinguished 
member. This association with one of the ablest experimenters of the day seems to 
have had much influence on his career; for Forbes’s researches (other than his Glacier 
work) were mainly in the departments of Heat, Meteorology, and Terrestrial Magnetism, 
and it was to these subjects that Stewart devoted the greater part of his life. In 
the classes of Professor Kelland, Stewart had a brilliant career; and gave evidence 
that he might have become a mathematician, had he not confined himself almost 
exclusively to experimental science.

In 1858, while he was still with Forbes, Stewart completed the first set of his 
investigations on Radiant Heat, and arrived at a remarkable extension of Prdvost’s 
“ Law of Exchanges.” His paper (which was published in the Transactions of the Royal 
Society of Edinburgh) contained the greatest step which had been taken in the subject 
since the early days of Melloni and Forbes. The fact that radiation is not a mere 
surface phenomenon, but takes place like absorption throughout the interior of bodies, 
was seen to be an immediate consequence of the new mode in which Stewart viewed 
the subject. Stewart’s reasoning is, throughout, of an extremely simple character, and 
is based entirely upon the assumption (taken as an experimentally ascertained fact) that 
in an enclosure, impervious to heat and containing no source of heat, not only will 
the contents acquire the same temperature, but the radiation at all points and in all 
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directions will ultimately become the same, in character and in intensity alike. It 
follows that the radiation is, throughout, that of a black body at the temperature of 
the enclosure. From this, by the simplest reasoning, it follows that the radiating and 
absorbing powers of any substance must be exactly proportional to one another (equal, 
in fact, if measured in proper units), not merely for the radiation as a whole, but 
for every definitely specified constituent of it. In Stewart’s paper (as in those of the 
majority of young authors) there was a great deal of redundant matter, intended to 
show that his new views were compatible with all that had been previously known, 
and in consequence his work has been somewhat lightly spoken of, even by some com­
petent judges. These allow that he succeeded in showing that equality of radiation 
and absorption is consistent with all that was known; but they refuse to acknowledge 
that he had proved it to be necessarily true. To such we would recommend a perusal 
of Stewart’s article in the Philosophical Magazine (Vol. xxxv., 1863, p. 354), where they 
will find his own views about the meaning of his own paper. The only well-founded 
objection which has been raised to Stewart’s proof applies equally to all proofs which 
have since been given, viz., in none of them is provision made for the peculiar phenomena 
of fluorescence and phosphorescence.

The subject of radiation, and connected properties of the luminiferous medium, 
occupied Stewart’s mind at intervals to the very end of his life, and led to a number 
of observations and experiments, most of which have been laid before the Royal Society. 
Such are the “Observations with a Rigid Spectroscope,” and those on the “Heating 
of a Disk by rapid Rotation in Vacuo,” in which the present writer took part. Other 
allied speculations are on the connection between “ Solar Spots and Planetary Con­
figurations,” and on “Thermal Equilibrium in an Enclosure containing Matter in Visible 
Motion.”

From 1859 to 1870 Stewart occupied, with distinguished success, the post of Director 
of the Kew Observatory. Thence he was transferred to Manchester as Professor of 
Physics in the Owens College, in which capacity he remained till his death. His main 
subject for many years was Terrestrial Magnetism; and on it he wrote an excellent 
article for the recent edition of the Encyclopedia Britannica. A very complete summary 
of his work on this subject has been given by Schuster in the Manchester Memoirs 
(4th Series, Vol. I., 1888). In the same article will be found a complete list of Stewart’s 
papers.

Among the separate works published by Stewart, his Treatise on Heat, which has 
already reached its fifth edition, must be specially mentioned. It is an excellent intro­
duction to the subject, though written much more from the experimental than from 
the theoretical point of view. In the discussion of radiation, however, which is given 
at considerable length, a great deal of theoretical matter of a highly original character 
is introduced.

Of another work, in which Stewart took a great part, The Unseen Universe, the 
writer cannot speak at length. It has passed through many editions, and has experienced 
every variety of reception—from hearty welcome and approval in some quarters to the 
extremes of fierce denunciation, or of lofty scorn, in others. Whatever its merits or 
demerits it has undoubtedly been successful in one of its main objects, viz., in showing 
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how baseless is the common statement that “Science is incompatible with Religion.” It 
calls attention to the simple fact, ignored by too many professed instructors of the public, 
that human science has its limits; and that there are realities with which it is altogether 
incompetent to deal.

Personally, Stewart was one of the most lovable of men, modest and unassuming, 
but full of the most weird and grotesque ideas. His conversation could not fail to set 
one a-thinking, and in that respect he was singularly like Clerk-Maxwell. In 1870 he 
met with a frightful railway accident, from the effects of which he never fully recovered. 
He passed in a few months from the vigorous activity of the prime of life to grey-headed 
old age. But his characteristic patience was unruffled and his intellect unimpaired.

He became a Fellow of the Royal Society in 1862, and in 1868 he received the 
Rumford Medal.

His life was an active and highly useful one; and his work, whether it took the 
form of original investigation, of accurate and laborious observation, or of practical teaching, 
was always heartily and conscientiously carried out. When a statement such as this can 
be truthfully made, it needs no amplification.
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XCII.

THE RELATION AMONG FOUR VECTORS.

[Proceedings of the Royal Society of Edinburgh, March 4, 1889.]

A system of five points is completely determined by the vectors joining one of 
them with the other four. If a, [3, 7 be three of these, the fourth is necessarily

8 = xa + yS + zy.

Hence any property characteristic of a group of five points will remain when x, y, z 
are eliminated. But we have

Sa8 = xSaa 4- ySa/3 + zSay, 

8/38 = xSfh + ySSS + zSSy> 
Sy 8 — xSya +ySyS + zSyy, 
S88 = xS8a + yS8/3 + zS8y,

Hence, at once, a determinant of the 4th order.

If we note that each term, as S/3y for instance, can be written either as 

(^2 + 72 — /3 — 72) or as — T(3Ty cos Sy,
we see that the determinant may be written either in Dr Muir’s form or as

0 = 1 cosaS cos ay cos a8

cos Sa 1 cos Sy cos/38

cos ya cos yS 1 cos 78

cos 8a cos 8/3 cos 87 1
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which is the relation among the sides and the diagonals of a spherical quadrilateral. The 
method above can, of course, be extended to any number of points. One additional 
point introduces three new scalars to be eliminated, and six new scalar equations for 
the purpose.

If we operate, as above, with any other four vectors, we have

(Addition—Read March 18.)

Sa,a Sa,8 Sa,y Sa,8 = 0,
881^ 88.8 88^ 88.8
8y,a Sy,8 Sy,y Sy,8
S8,a 88,8 88,y 88,8

and the tensors are again factors of rows or columns. Thus, if ABCD, abed, be any
two spherical quadrilaterals,

cos A a cos Ab cos Ac cos Ad = 0.
cos Ba cos Bb cos Be cos Bd
cos Ca cos Cb cos Cc cos Cd
cos Da cos Db cos De cos Dd

This has many curious particular forms; one, of course, being the former result, when 
the two quadrilaterals coincide. Another is when the quadrilaterals are “polar.” Let 
a be the pole of AB, b of BC, &c., then

cos Ab cos Be cos Cd cos Da — cos Ac cos Bd cos Ca cos Db = 0.
And numerous other relations can be obtained, with equal ease, by the same simple 
process.

Cayley’s form of the expression connecting the distances, two and two, among five 
points in space is an immediate consequence of the identity

tx (a - 0)2 = Sira2 -
where an a2, &c., are n given vectors, 6 any vector whatever, and x„ ®2, &c., n undeter­
mined scalars.

For, provided that n is greater than 4, we may always assume 
Sir = 0, Sira = 0, 

which are equivalent to four homogeneous linear relations among the afs.

Let, then, n = 5, and write the above identity separately for each a, put in place of 0. 
Thus we have

tx (a — = Sira2,
Sir (a — a2)2 = Sira2,

Sir (a — a6)2 = Sira2.
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Take, with these, 2® = 0,

and we obtain six linear equations from which to eliminate the five values of x. The 
result is, at once, A, B, C, D, E being the points,

AA*  BA*  CA*  DA*  EA*  1

* [Collected Papers, No. 1. Dr Muir’s expression, mentioned above, is given in Proc. R. S.E., xvi., p. 86. 
1899.]

AB2 BB*  CB*  DB*  EB1 1
2«a- = 0.

AE*  BE*  CE*  DE*  EE*  1

111110

As 2®a2 may have any value, this is Cayley’s expression*.  An interesting variation of it 
is supplied by taking 2 {xA) = 0, instead of 2 (x) = 0, as the sixth equation.
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XCIIL

ON THE RELATION AMONG THE LINE, SURFACE, AND 
VOLUME INTEGRALS.

[Proceedings of the Royal Society of Edinburgh, April 1, 1889.]

The fundamental form of the Volume and Surface Integral is 
fff^uds = ^Uvuds.

Apply it to a space consisting of a very thin transverse slice of a cylinder. Let 
t be the thickness of the slice, A the area of one end, and a a unit-vector perpendicular 
to the plane of the end. The above equation gives at once

V(aV) u . tA — t fV. aUvudl,
where dl is the length of an element of the bounding curve of the section, and the 
only values of Uv left are parallel to the plane of the section and normal to the 
bounding curve. If now we put p as the vector of a point in that curve, it is plain 
that

V. a Uv = Udp, dl = Tdp,

and the expression becomes (after division by t)
V (aV) uA = fudp.

By juxtaposition of an infinite number of these infinitely small directed elements, a (now 
to be called Uv) being the normal vector of the area A (now to be called ds), we 
have at once

^V[Uv^)uds = Sudp,
which is the fundamental form of the Surface and Line Integral.

In fact, as the first of these expressions can be derived at once from the ordinary 
equation of “continuity,” so the second is merely the particular case corresponding to 
displacements confined to a given surface.
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XCIV.

QUATERNION NOTE ON A GEOMETRICAL PROBLEM.

[Proceedings of the Royal Society of Edinburgh, June 4, 1889.]

The problem referred to is that of inscribing in a sphere a closed n-sided polygon, 
whose sides shall pass respectively through n given points which are not on the surface. 
Hamilton evidently regarded his solution of this question as a very tough piece of mathe­
matics (see his Life, Vol. Hi. pp. 88, 426). In preparing the third edition of my Quaternions, 
I was led to a mode of treating this question which enables us to dispense with the 
brilliant feats of analysis which seem to be required in Hamilton’s method.

[A sketch of his very curious analysis is given in § 250 of that work. § 250* 
gives the full text of my own process. As I have since found it to be needlessly 
prolix, it is considerably pruned down and concentrated in the present reprint. 1899.]

The quaternions which Hamilton employed were such as change the radius to one 
corner of the polygon into that to the next by a conical rotation. In the present Note 
I employ the quaternions which directly turn one side of the polygon to lie along the 
next. The sides, severally, are expressed as ratios of two of these successive quaternions.

Let plt p2, &c., pn be (unit) vectors drawn from the centre of the sphere to the 
corners of the polygon; aj, a2, ...an, the points through which the successive sides are 
to pass. Then (by Euclid) we have n equations of the form

(Pm+1 ®m) (p™ ^m) — 1 + Jm; Suppose.

These equations ensure that if the tensor of any one of the p’s be unit, those of all 
the others shall also be units. Thus we have merely to eliminate p2, ..., pn-, and then 
remark that (for the closure of the polygon) we must have

Pn+i = Pi*
That this elimination is possible we see from the fact already mentioned, which 

shows that the unknowns are virtually mere unit-vectors; while each separate equation 
contains coplanar vectors only. In other words, when pm and am are given, pm+1 is 
determinate without ambiguity.

T. II. 37
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The general equation above may obviously be written as
{pm+1 — am+i — — am+i)] (Pm ~ am) = 1 + a»r = Am J

or, if we introduce the quaternion
Qm—l = {pm ~ am) {Pm—1 — am—1) • • • {Pl ~ «1),

aS qm — Am^m—2 4" ^mqm—i •

Here ” am am+i
is one of the vector sides of the polygon whose comers are the assigned points. 
And the statement above as to the nature of the quaternions employed is expressed as 

qm—i ~ {pm Qm—2’

Since we have
?o = pi-a1, 9'1 = (p2-a2)(p1-«1) = Aj + ^o, q2 = A2q0 +&c.

it is clear that the values of q are all linear functions of pn of the form
qm = 4~ SmPi ;

where rm and sm are definite functions of au a2, ... am only.

Again, from pm-am = ^A,
qm—2

we have pm = , suppose.
<]m—2 ^m—2

This gives at once, by the definition of p,
1 = Pm—2 ^-mQm—2 = (pm ^m) 2 i

and, as an immediate consequence,
Pm—1 = 1 4“ Qm = ^mQm—i 4" -^-mQm—2 ~ ^mQm—i 4“ (1 4" Otjn2) 2

= Qm—2 4“ ^mPm—2 = (Pm ^-m) Pm—2 •

We now see at once that
1 = (pm ^m) (pm—1 V-m—1) • • • (P2 ^2) ^0 ~ (pi ^i)>

Pm—1 = ( )W 1 (pm ^m) (Pm—i ^m—i) • • • (P2 ”” $2) Po = ( )m 1 C (1 4“ ^iPi)-

Thus, finally, 
C 4- Dp1 Cp1—D , _(j—Dp1 CpT + D

pn+i ~P^~ D_cpi~ j)pi + c’ lf n be n’ ~ D + CP1~ DP1-C’ lf n be °dd

C and D being quaternions to be calculated (as above) from the values of a. The two 
cases require to be developed separately.

Take first, the odd polygon:—then p^ + p1Cp1 = G — DP1,

or pj {d + 8) + P1 {c + 7) pl = c + 7 — {d + 8) P1,
if we exhibit the scalar and vector parts of the quaternions C and D. Cutting out 
the parts which cancel one another, and dividing by 2, this becomes

dpl + S8P1 + P1SyP1 - c = 0,
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which, as pT is finite, divides itself at once into the two equations
Syp! + d = 0, S8p1 — c = 0.

These planes intersect in a line which, by its intersections (if real) with the sphere, 
gives two possible positions of the first corner of the polygon.

For the even polygon we have
PiD — piCp! = C + Dplt or Vp18 — piSyp1 — y = 0;

which may be written V. p^ (8 — Vypj = 0, or 8— Vyp1 = xp1. 

This equation gives pi = + 7)-1 (3 + Sy8/x),

where x is to be found from x2 — y2 — S2y8/x2 — 82.

The two values of x2 have opposite signs. Hence there are two real values of x, equal 
and with opposite signs, giving two real points on the sphere. Thus this case of the 
problem is always possible.

[We might have arrived at equations (a), which involve the complete solution of 
the problem, by the following direct and simple process:—

Let p^, pm be any two successive corners of the polygon, the point through 
which the corresponding side is to pass; we have at once

(pm ^m—1) (pm^-i am—i) — 1 + i,

or

This is general, so that

iPm—i U 1
Pm — Pm—1 “m—i

Pm+i —
^mPm 4" 1  i 1) Pm—i (^m—i ^m) 
Pm — {^m—i ^m) pm—i 4“ (,^m^m—i 4“ 1)

Note that, in these quaternion fractions, the coefficients of the linear expressions 
in pm-1} above and below, are the same pairs of quantities, in direct and inverted 
order, viz.

^m—1> 1 ^m^m—i 4" 1, i &m)
1 and , 1 ’
t , Mm—j Clm—i ^m ) &m&m—i 4~ J-

Their ostensible signs are, obviously, either alike above and unlike below, or unlike 
above and alike below, alternately.

Hence, as

we have

p2 = (signs alike above), 
Pi-Ui

CP1 + D
Pn+i -Pt- ? G,

where the upper signs belong to the case of n odd, and the lower to n even. 1899.]
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NOTE APPENDED TO CAPTAIN WEIR’S PAPER “ON A NEW 
AZIMUTH DIAGRAM.”

[Proceedings of the Royal Society of Edinburgh, July 15, 1889.]

[As Sir W. Thomson was unable personally to communicate Capt. Weir’s paper to 
the Society, he asked me to add to it a Note on the principle of the new method.]

Capt. Weir’s singularly elegant construction not only puts in a new and attractive 
light one of the most awkward of the formulse of Spherical Trigonometry, but it 
practically gives in a single-page diagram the whole contents of the two volumes of 
Burdwood’s Azimuth Tables. Further, it supplies a very interesting graphical plane 
construction of a function of three independent variables.

In the usual notation for spherical triangles, if A be the zenith, C the pole, and 
B a heavenly body (whose declination is S), C is the hour-angle (A), b the colatitude

— X^, and A the supplement of the azimuth. Hence, from the formula 

cot a sin b = cot A sin C + cos b cos C, 
we have at once

/ • u \ sinA,tan (azimuth) = i5.x sm X cos h — tan 3 cos X
Capt. Weir, in his diagram, virtually puts

a; = sin h sec X)
y = cos A tan X).........................................................

so that tan (azimuth) =-----fK.
y — tan o
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x and y being found by the intersection of the confocal conics

, < + the latitude ellipse,sec2X tan2X

and ,.- — Ay = 1, the hour-angle hyperbola.sin2 A cos2 h b

The Amplitude is the value of the azimuth at rising or setting, so that the 
corresponding hour-angle is to be found from

cos h + tan X tan 8 = 0.

With this value of A, equations (1) become

x = sec X V1 — tan2 X tan2 8) , .
y — — tan2 X tan 8 J ...............................................'

Elimination of 8 gives, of course, the latitude ellipse as before. But elimination of X 
gives, instead of the confocal hyperbola, the curve

x* + [y — | (tan 8 — cot 8)]2 = | (tan 8 + cot 8)2,

or x2 + Oy + cot 28)2 = cosec2 28,

which is a circle passing through the common foci of the ellipses and hyperbolas.

The construction of the “Diagram” by means of (1) is, theoretically, a very simple 
matter. Thus, take OA as unit length on the axis of x, and draw AP parallel to y. 
Make AOP = X, and yOH = h. Draw the circles whose centre is 0, and radii OP and 
AP respectively. Let OH meet them in p, q. From p and q draw lines parallel to Oy,

Ox, respectively. Their point of intersection, Q, belongs obviously to the ellipse X, and to 
the hyperbola h. A somewhat similar, simple, construction can easily be given for the 
circle.
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XCVI.

ON THE RELATIONS BETWEEN SYSTEMS OF CURVES WHICH, 
TOGETHER, CUT THEIR PLANE INTO SQUARES.

[Proceedings of the Edinburgh Mathematical Society, November 9, 1889. Vol. vii.]

If p be the vector of a corner of a square in one system, a that in a system 
derived without inversion, we must obviously have

da = u + k sin k sin £

= u [(i cos +j sin </>) dx — (i sin $ — j cos dy] 
k being the unit-vector perpendicular to the common plane.

This requires that

~ {u (i cos $ + j sin </>)} = {w (- i sin +j cos </>)},

which gives the two equations
du , du . . / . d<b . d<h\
dy dx Y \ dy dx)
du .. du , / , d<b . dd>\sm <f> —cos cb = u — cos d> -f- — sin d> N , dy Y dx \ ay T dx)

or, in a simpler form,

(1).

1 du _d<l> ' 
u dx dy
1 du _ d<h 
udy dx t 

(2).
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Eliminating and u separately, we have

d2 log u d2 log u _ 
dx2 + dy2 ’

d2^ d^ = 
dx2 dy2

Thus log u = CT1
4> = )

represent associated series of equipotential, and current, lines in two dimensions.

Assuming any lawful values for the members of (2) we obtain u and <£, and thence, 
by integration of (1), a- is given in terms of p.

Thus <r = +jy,

where f and y are known functions of x and y. From this x and y can be found in 
terms of £, y. Thus if

Fi (®, y) = A, F2 (x, y} = A2............................................. (4)

be a pair of sets of curves possessing the required property, we obtain at once another 
pair by substituting for x and y their values in terms of y. These may now be written 
as x, y, and tjie process again applied, and so on.

Thus, let the values of the pairs of equal quantities in (2) be 1, 0, respectively 
(which is obviously lawful), we have

u = e®, = y;
so that (1) becomes

da = e® {(i cos y+j sin y) dx — (i sin y — j cos y) dy],

and a = ex (i cosy +j sin?/)

or £ = e® cos y, y = e® sin y.

From these we have

x = log Vf- + y2, y = tan-1 ;

or, using polar coordinates for the derived series,

x = log r, y = 0.

[This is easily seen to be only a special case of (3) above.] Hence, by (4), another 
pair of systems satisfying the condition is

Fi (log r, d) = A], F2 (log r, 0) = A2.

This, of course, is only one of the simplest of an infinite number of solutions of the 
equation (1), which may be obtained with the greatest ease from (2).
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If there is inversion, all that is necessary is to substitute p-1 for p, or — p^dpp^ 
for dp. But the necessity for this may be avoided by substituting for any pair of 
systems which satisfy the condition their electric image, which also satisfies it, and 
which introduces the required inversion.

The solution of this problem without the help of quaternions is interesting. Keeping 
as far as possible to the notation above, it will be seen that the conditions of the 
problem require that

& doo + dy] + fdoo + dy\ — u2 (dx2 + dy2)
\dx dy J \dx dy J v ' 

whatever be the ratio dx: dy.

This gives at once

\dx) \dx) \dy) \dy) ’ 

djd^dydp^^ 
dx dy dx dy

From these the equations (2) can be deduced by introducing $ as an auxiliary angle.
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XCVIL

ON THE IMPORTANCE OF QUATERNIONS IN PHYSICS*.

[Philosophical Magazine, January, 1890.]

My subject may usefully be trpated under three heads, viz.:—

1. The importance of mathematics, in general, to the progress of physics.

2. The special characteristics required to qualify a calculus for physical applications.

3. How quaternions meet these requirements.

The question has often been asked, and frequently answered (one way or other) 
in the most decided manner:—Whether is experiment or mathematics the more important 
to the progress of physics? To any one who really knows the subject, such a question 
is simply absurd. You might almost as well ask:—Whether is oxygen or hydrogen 
the more necessary to the formation of water? Alone, either experiment or mathematics 
is comparatively helpless:—to their combined or alternate assaults everything penetrable 
must, some day, give up its secrets.

To take but one instance, stated as concisely as possible:—think of the succession 
of chief steps by which Electromagnetism has been developed. You had first the funda­
mental experiment of Oersted:—next, the splendid mathematical work of Ampere, 
which led to the building up of a magnet of any assigned description by properly 
coiling a conducting wire. But experiment was again required, to solve the converse 
problem:—and it was by one of Faraday’s most brilliant discoveries that we learned 
how, starting with a magnet, to produce an electric current. Next came Joule and 
v. Helmholtz to show (the one by experiment, the other by analysis) the source of

* Abstract of an Address to the Physical Society of the University of Edinburgh, November 14, 1889. 
See the Author’s Address to Section A at the British Association, 1871. [Ante, No. XXIII.]

t. ii. 38



ON THE IMPORTANCE OF QUATERNIONS IN PHYSICS. [xcvii.298

the energy of the current thus produced:—in the now-a-days familiar language, why 
a powerful engine is required to drive a dynamo. Passing over a mass of important 
contributions mathematical and experimental, due to Poisson, Green, Gauss, Weber, 
Thomson, &c., which, treated from our present point of view, would furnish a narrative 
•of extraordinary interest, we come to Faraday’s Lines of Force. These were suggested 
to him bv a long and patient series of experiments, but conceived and described by 
him in a form requiring only technical expression to become fully mathematical in the 
most exclusive sense of the word. This technical expression was given by Clerk-Maxwell 
in one of his early papers, which is still in the highest degree interesting, not only 
as the first step to his Theory of the Electromagnetic Field, but as giving by an 
exceedingly simple analogy the physical interpretation of his equations. Next, the 
narrative should go back to the establishment of the Wave-theory of Light:—to the 
mathematics of Young and Fresnel, and the experiments of Fizeau and Foucault. 
Maxwell’s theory had assigned the speed of electromagnetic waves in terms of electrical 
quantities to be found by experiment. The close agreement of the speed, so calculated, 
with that of light rendered it certain that light is an electromagnetic phenomenon. 
But it was desirable to have special proof that there can be electromagnetic waves; 
and to measure the speed of propagation of such as we can produce. Here experiment 
was again required, and you all know how effectively it has just been carried out by 
Hertz. It is particularly to be noticed that the more important experimental steps 
were, almost invariably, suggested by theory—that is, by mathematical reasoning of 
some kind, whether technically expressed or not. Without such guidance experiment 
can never rise above a mere groping in the dark.

I have to deal, at present, solely with the mathematical aspect of physics; but 
I have led up to it by showing its inseparable connection with the experimental side, 
•and the consequent necessity that every formula we employ should as openly as possible 
proclaim its physical meaning. In presence of this necessity we must be prepared to 
forego, if required, all lesser considerations, not excluding even such exceedingly desirable 
qualities as compactness and elegance. But if we can find a language which secures 
these to an unparalleled extent, and at the same time is transcendently expressive— 
bearing its full meaning on its face—it is surely foolish at least not to make habitual 
use of it. Such a language is that of Quaternions; and it is particularly noteworthy 
that it was invented by one of the most brilliant Analysts the world has yet seen, 
a man who had for years revelled in floods of symbols rivalling the most formidable 
combinations of Lagrange, Abel, or Jacobi. For him the most complex trains of formulae, 
of the most artificial kind, had no secrets:—he was one of the very few who could 
afford to dispense with simplifications: yet, when he had tried quaternions, he threw 
over all other methods in their favour, devoting almost exclusively to their develop­
ment the last twenty years of an exceedingly active life.

Everyone has heard the somewhat peculiar, and more than doubtful, assertion— 
Summum jus, summa injuria. We may, without any hesitation, make a parallel but 
more easily admitted statement -.—The highest art is the absence (not, as Horace would 
have it, the concealment') of artifice. This commends itself to reason as well as to 
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experience; but nowhere more forcibly than in the application of mathematics to physical 
science. The difficulties of physics are sufficiently great, in themselves, to tax the highest 
resources of human intellect; to mix them up with avoidable mathematical difficulties is 
unreason little short of crime. (To be obliged to evaluate a definite integral, or to solve 
a differential equation, is a necessity of an unpleasant kind, akin to the enforced extraction 
of a cube root; and here artifice is often requisite in our present state of ignorance : but 
its introduction for such purposes is laudable. It does for us the same kind of service 
which has been volunteered in the patient labour of the calculators of logarithmic tables. 
It is not of inevitable, but of gratuitous, complications that we are entitled to complain.) 
The intensely artificial system of Cartesian coordinates, splendidly useful as it was in its 
day, is one of the wholly avoidable encumbrances which now retard the progress of 
mathematical physics. Let any of you take up a treatise on the higher branches of 
hydrokinetics, or of stresses and strains, and then let him examine the twofold notation 
in Maxwell’s Electricity. He will see at a glance how much expressiveness as well as 
simplicity is secured by an adoption of the mere notation, as distinguished from the 
processes, of quaternions. It is not difficult to explain the cause of this. But let us 
first take an analogy from ordinary life, which will be found to illustrate fairly enough 
some at least of the more obvious advantages of quaternions.

There are occasions (happily rare) on which a man is required to specify his name 
in full, his age, height, weight, place of birth, family history, character, &c. He may 
be an applicant for a post of some kind, or for a Life Policy, &c. But it would be 
absolutely intolerable even to mention him, if we had invariably to describe him by 
recapitulating all these particulars. They will be forthcoming when wanted; but we 
must have, for ordinary use, some simple, handy, and unambiguous method of denoting 
him. When we wish to deal with any of his physical or moral qualities, we can easily 
do so, because the short specification which we adopt in speaking of him is sufficient 
for his identification. It includes all his qualities. We all recognize and practise this 
in ordinary life; why should we outrage common-sense by doing something very different 
when we are dealing with scientific matters, especially in a science such as mathematics, 
which is purely an outcome of logic ?

In quaternions, a calculus uniquely adapted to Euclidian space, this entire freedom 
from artifice and its inevitable complications is the chief feature. The position of a 
point (relative of course to some assumed origin) is denoted by a single symbol, which 
fully characterizes it, and depends upon length and direction alone, involving no reference 
whatever to special coordinates*. Thus we use p (say) in place of the Cartesian x, y, z, 
which are themselves dependent, for their numerical values, upon the particular scaffolding 
which we choose to erect as a (temporary) system of axes of reference. The distance 
between two points is

T(p -pf
instead of the cumbrous Cartesian

{(x - x'y +(y- yf + f - zff

* Note here that though absolute position is an idea too absurd even for the majority of metaphysicians, 
absolute direction is a perfectly definite physical idea. It is one essential part of the first law of motion.

38—2
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But the distance in question is fully symbolized as to direction as well as length by 
the simple form

P~P-

If three conterminous edges of a parallelepiped be p, p, p", its volume is

-S.pp p".

Even when advantage is taken of the remarkable condensation secured by the 
intensely artificial notation for determinants, Cartesian methods must content themselves 
with the much more cumbrous expression

x y z 
x' y' z' 
a!' y" z"

As we advance to higher matters, the Cartesian complexity tells more and more; 
while quaternions preserve their simplicity. Thus any central surface of the second 
degree is expressible by

Sp^p = — 1, or T^p = 1;
while the Cartesian form develops into

Ax2 + %B"xy + A'y2 + ZB'zx + 2Byz + A"z2 = 1.

The homogeneous strain which changes p into p is expressible by a single 
letter:—thus

p = ^p.
Its Cartesian form requires three equations,

x' — ax + by + cz, 
y = dx + ey +fz, 
z' = gx + hy + iz.

These may be simplified, but only a little, by employing the notation for a matrix. 
To express in quaternions the conjugate strain, a mere dash is required: thus

while with the artificial scaffolding we must write our three equations again, arranging 
the coefficients as below:—

a d g
b e h

c f i.

If we now ask the question, What strain will convert the ellipsoid above into the 
unit sphere, the answer will be some time in coming from the ponderous Cartesian 
formulae. The quaternion formula assigns it at once as
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When Gauss gave his remarkable expression for the number of interlinkings of 
two endless curves in space, he had to print it as

1 ['['(x' — x)(dy dz' — dz dy") + (y — y) (dz dx' — dx dz') + (/ — z) (dx dy' — dydx)
J J {(x' - x)2 + (y' - y)2 + (z' — z)2^

What an immense gain in simplicity and intelligibility is secured when we are enabled 
to write this in the form

1 f f 8. p — pi dp dp^
Air) J Tp^pi

eras
4tfJ Tp-p^

so that we instantly recognize in the latter factor the vector force exerted by unit 
current, circulating in one of the closed curves, upon a unit pole placed anywhere on 
the other; and thus see that the whole integral represents the work required to carry 
the pole once round its circuit.

Without as yet defining V, I shall take, as my final example, one in which it 
is involved. A very simple term, which occurs in connection with the strain produced 
by a given displacement of every point of a medium, is

Its Cartesian expression is, with the necessary specification,
<t = +jy + k^,

made up of three similar terms of which it is sufficient to write one only, viz.,
/ 7, 7 i\(dydt dy dt\ . , , (dyd£ dy d£\ n , (dy d^ dy d£\
' \dx dy dydx) \dz dx dxdzj ' \dy dz dz dy)

Now, suppose this to be given as the zr-coordinate of a point, similar expressions (formed 
by cyclical permutation) being written for the y and z coordinates. How long would it 
take you to interpret its meaning?

Look again at the quaternion form, and you see at a glance that it may be written 
V(S^.a)(S^.a),

in which its physical meaning is more obvious than any mere form of words could 
make it.

Or you may at once transform it to

which shows clearly why it vanishes when a and /3 are parallel.

I need not give more complex examples:—because, though their quaternion form 
may be simple enough (containing, say, 8 or 10 symbols altogether), even this unusually 
large blackboard would not suffice to exhibit more than a fraction of the equivalent 
Cartesian form.
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Any mathematical method, which is to be applied to physical problems, must be 
capable of expressing not only space-relations but also the grand characteristics (so far 
as we yet know them) of the materials of the physical world. I have just briefly shown 
how exactly and uniquely quaternions are adapted to Euclidian space; we must next 
inquire how they meet the other requirements.

The grand characteristics of the physical world are:—Conservation of Matter, with 
absolute preservation of its identity; and Conservation of Energy, in spite of perpetual 
change of a character such as entirely to prevent the recognition of identity. The first 
of these is very simple, and needs no preliminary remarks. But the methods of symbolizing 
change are almost as numerous as are the various kinds of change. The more important 
of them employ forms of the letter D :—viz. d. d, D, A, 8, and V.

From our present point of view little need be said of A, which is the equivalent 
of (D — 1) or of (e^—1), because the changes which it indicates take place by starts 
and not continuously. Good examples of problems in which it is required are furnished 
by the successive rebounds of a ball from a plane on which it falls, or by the motion 
of a light string, loaded at intervals with pellets.

Various modes of applying the symbol d are exemplified in the equation

In the terms dx, dy, dz, the symbol d stands for changes of value (usually small) of 
quantities treated as independent. In the term dQ it stands for the whole consequent

change of a quantity which is a function of these independents. By the factors
\dX J

&c. we represent the rates of increase of Q, per unit of length, in the directions in 
which x, y, z are respectively measured. The contrast between the native simplicity of 
the left-hand, and the elaborate artificiality of the right-hand, member of the equation, 
shows at once the need for improvement. To express the rate of change per unit of 
length in any other direction, we have to adopt the cumbrous expedient of introducing 
three direction-cosines, and the result is given in the form

£0
dx

dQ dQ 
dy dz'

The above equation may be read as pointing out, at any one instant, how a function 
of position varies from point to point. To express the change, at any one place, from one 
instant to the next, we write in the usual notation

dQ = (^} dt.
\at /

But if we have to express the changes, from instant to instant, of some property of 
a point, which is itself subject to an assigned change of position with time, we have 
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to combine these expressions, and to indicate the relation of position to time. Thus we 
build up the complicated expression

«=® dt+t ® t dt+dt.
\dt J \dx) dt \dyj dt \dz! dt

Here the symbol 3 is called in, to effect a slight simplification; and we go a little 
further in the same direction by putting u, v, w for

dx dy dz 
dt’ dt’ dt’

which are obviously the components of velocity of the point for which Q is expressed. 
Thus we write

= + u (dQ\ + v + w
dt \dt) \dx) \dyj \dz)'

Of course you all know this quite well; and you may ask why I thus enlarge upon it. 
It is to show you how completely artificial and unnatural are our recognized modes 
of expression.

Fresnel well said:—La nature ne s’est pas embarrassee des difficult^ d’analyse, elle 
n’a Mti que la complication des moyens. Why should we not attempt, at least, to imitate 
nature by seeking simplicity ?

The notation 3, as commonly used, is (like the d in dQ above) quite unobjectionable. 
At least we cannot see how to simplify it further. Its effect is to substitute, for any 
one point of a figure or group, a proximate point in space, so that the figure or group 
of points undergoes slight, and generally continuous, but otherwise wholly arbitrary dis­
placement and distortion. It thus appears that d and 8 are entitled to take their places 
in a calculus, such as quaternions, where simplicity, naturalness, and direct intelligibility 
are the chief qualities sought. We have now to inquire how such expressions as 

can be put in a form in which they will bear their meaning on their face.

It was for this purpose that Hamilton introduced his symbol V. No doubt, it was 
originally defined in the cumbrous and unnatural form

. d . d , d 
i -=—|- 2 j—I- & ~y' • doc J dy dz

But that was in the very infancy of the new calculus, before its inventor had succeeded 
in completely removing from its formulae the fragments of their Cartesian shell, which 
were still persistently clinging about them. To be able to speak freely about this 
remarkable operator, we must have a name attached to it, and I shall speak of it 
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as Nabla*.  We may define it in many ways, all independent of any system of co­
ordinates. Thus we may give the definition

* Hamilton did not, so far as I know, suggest any name. Clerk-Maxwell was deterred by their vernacular 
signification, usually ludicrous, from employing such otherwise appropriate terms as Sloper or Grader; but adopted 
the word Nabla, suggested by Robertson Smith from the resemblance of y to an ancient Assyrian harp of that 
name.

- SaN = da,

meaning that, whatever unit-vector a may be, the resolved part of V parallel to 
that line gives the rate of increase of a function, per unit of length, along it. From 
this we recover, at once, Hamilton’s original definition:—thus

V = — aSaV — /BS^V — ySyV = ada + /Bdp + ydy, 

a, ft, y being any system of mutually rectangular unit-vectors.

But, preferably, we may define Nabla once for all by the equation

- SdpV = d,
where d has the meaning already assigned. The very nature of these forms shows 
at once that Nabla is an Invariant, and therefore that it ought not to be defined 
with reference to any system of coordinates whatever.

Either of the above definitions, however, shows at once that the effect of applying 
V to any scalar function of position is to give its vector-rate of most rapid change, 
per unit of length.

Hence, when it is applied to a potential, it gives in direction and magnitude 
the force on unit mass; while from a velocity-potential it derives the vector velocity. 
From the temperature, or the electric potential, in a conducting body we get (employing 
the corresponding conductivity as a numerical factor) the vector flux of heat or of 
electricity. Finally, when applied to the left-hand member of the equation of a series 
of surfaces

u = C, 
it gives the reciprocal of the shortest vector distance from any point of one of the 
surfaces to the next; what Hamilton called the vector of proximity.

If we form the square of Nabla directly from Hamilton’s original definition, we find

IW w w j ’
simply the negative of what has been called Laplace’s Operator:—that which derives 
from a potential the corresponding distribution of matter, electricity, &c.

Thus Laplace’s equation for spherical harmonics &c. is merely
V2u = 0;

and, as 1/T(p — a) is evidently a special integral, an indefinite series of others can 
be formed from it by operating with scalar functions of V, which are commutative
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with V, such as S^, e~s^, &c. In passing, we may remark that if /3 be a unit 
vector, il +jm + kn, we have

ci i d d d
dx dy dz

This is the answer to the question proposed a little ago.

The geometrical applications of Nabla do not belong to my subject, and they 
have been very fully given by Hamilton. But, for its applications to physical problems, 
certain fundamental theorems are required, of which I will take only three of the 
more important;—an analytical, a kinematical, and a physical one.

I. The analytical theorem is very simple, but it has most important bearings 
upon change of independent variables, and other allied questions in tridimensional 
space. Few of you, without the aid of quaternions or of immediately previous pre­
paration, would promptly transform the independent variables in a partial differential 
equation from x, y, z to r, 3, <£:—and you would certainly require some time to recover 
the expressions in generalized (orthogonal) coordinates. But Nabla does it at once. 
Thus, let

_ . d . d , d
d^ + kc%’

where a = i£+jy + k%,
y, £ being any assigned functions of x, y, z. Further, let

der = <f>dp, 
where <£, in consequence of the above data, is a definite linear and vector function. 
Then, from the mere definition of Nabla,

SdaVa = -d = SdpV, 
which gives at once

. efidpV,, = S. dptp'^a = SdpV.
As dp may have absolutely any direction, this is equivalent to

= V,
where </>' is the conjugate of

II. The fundamental kinematical theorem is easily obtained from the consideration 
of the continuous displacement of the points of a fluid mass. (It is implied in the
word “continuous” that there is neither rupture nor finite sliding.)

If cr be the displacement of the point originally at p, that of p + dp is

a + da- = a — SdpV . a;

and thus the strain, in the immediate neighbourhood of the point p, is such as to 
convert dp into

dp — SdpV . a.
= t — SrV . a.Thus the strain-function is

T. II. 39
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If this correspond to a linear dilatation e, and a vector-rotation e, both being quantities 
whose squares are negligible, we must have

Comparing, we have

= (1 + e) t + Ver. 

— StV . a = er + Ver,

from which at once (by taking the sum for any three directions at right angles to 
one another),

so that 
and

Va = - S(e) + 2e;

SV a represents the compression,
^VVa „ vector-rotation,

of the element surrounding p.

By the help of these expressions we easily obtain the stress-function for a homo­
geneous isotropic solid, in terms of the displacement of each point, in the form

cfico = — n(ScoV . cr + V Scoa) — (c — ^n) coSVa ;

where n and c are, respectively, the rigidity and the resistance to compression; and 
(pco is the stress, per unit of surface, on a plane whose unit normal is co.

III. The fundamental physical relation is that expressing conservation of matter, 
commonly called the equation of continuity. We have only to express symbolically 
that the increase of mass in a finite simply-connected space, due to a displacement, 
is the excess of what enters over what leaves the space. This gives at once

SV ads = SlTuads,

where Uv is unit normal drawn outwards from the bounding surface. If we put for 
cr the expression uVv, where u and v are any two scalar functions of position, this 
becomes Green’s Theorem.

If the space considered be imagined as bounded by two indefinitely close parallel 
surfaces, and by the normals at each point of a closed curve drawn on one of them, 
this is easily reduced * to the form of the line and surface integral

J"J's. UvV ads = j'Sadp.

The simplest forms of these equations are respectively

Uvuds, 

and vV) uds = dpu,

where w is any scalar function of position. But it is clear from the mode in which 
it enters that u may be any quaternion. And it is easy to build on these an

* [Anie, No. XCIII. 1899.]
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indefinite series of more complex relations. Thus, for instance, if a and r be any two 
vector-functions of p, we have

^y(<rV2T + KVa . Vr) ds — II'aUuVrds,

which has many important transformations. You will find it laborious, but alike 
impressive and instructive, to write this simple formula in Cartesian coordinates. It 
consists of four separate equations, containing among them 189 terms in all!

In the three relations just given we have the means of applying quaternions to 
various important branches of mathematical physics, where Nabla is indispensable. But 
I must confine myself to one example, so I will take very briefly the equations of 
fluid motion.

Let e be the density, and a the vector-velocity, at the point p in a fluid. 
Consider the rate at which the density of a little portion of the fluid at p increases 
as it moves along. We have at once, for the equation of continuity,

ot

which we may write, if we please, as

^ = SV(ea\
at

This is the result we should have obtained if we had considered the change of 
contents of a fixed unit volume in space. Next consider the rate at which the 
element gains momentum as it proceeds. We write at once, since momentum cannot 
originate or be destroyed by processes inside the element,

e = — eVP + Il </> Uvds, 
ot J J

where P is the potential energy of unit mass at p, and <pUv is the stress-function 
due to pressure and viscosity. We have already had the form of this function; so 
that the equation transforms at once into

e^= — eVP — Vp — n(V-a + jVSVa);
Ot

which contains the three ordinarily given equations. Here n is the coefficient of 
viscosity, and the pressure p enters the equation in the form

cNW.

To obtain v. Helmholtz’s result as to vortex-motion, put n = 0, and we deduce 
for the rate of change of vector-rotation of an element, as it swims along,

FV<7= V.VV.aVV^.ot
39—2
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If the fluid be incompressible, this becomes

01

From either it is obvious that the rate of change of the vector-rotation vanishes 
where there is no rotation. But time forbids any further discussion of formulae.

Hydrokinetics, as presented by Lagrange and Cauchy, was rather a triumph of 
mathematical skill than an inviting or instructive subject for the student. The higher 
parts of it were wrapped up in equations of great elegance, but of almost impene­
trable meaning. They were first interpreted, within the memory of some of us, by 
Stokes and v. Helmholtz, after we know not what amount of intellectual toil. The 
magnificent artificers of the earlier part of the century were, in many cases, blinded 
by the exquisite products of their own art. To Fourier, and more especially to Poinsot, 
we are indebted for the practical teaching that a mathematical formula, however brief 
and elegant, is merely a step towards knowledge, and an all but useless one, until 
we can thoroughly read its meaning. It may in fact be said with truth that we 
are already in possession of mathematical methods, of the artificial kind, fully sufficient 
for all our present, and at least our immediately prospective, wants. What is required 
for physics is that we should be enabled at every step to feel intuitively what we 
are doing. Till we have banished artifice we are not entitled to hope for full success 
in such an undertaking. That Lagrange and Cauchy missed the import of their 
formulae, leaving them to be interpreted some half-century later, is merely a case of 
retributive justice:—

“.......neque enim lex aequior ulla
Quam necis artifices arte perire su&.”

Lagrange in the preface to that wonderful book, the Mdcanique Analytique, says:—

“Les mdthodes que j’y expose ne demandent ni constructions, ni raisonnemens 
gbomdtriques ou mecaniques, mais seulement des operations algebriques, assujeties a 
une marche reguliere et uniforme.”

But note how different is Poinsot’s view:—

“ Gardons-nous de croire qu’une science soit faite quand on l’a reduite a des 
formules analytiques. Rien ne nous dispense d’dtudier les choses en elles-memes, et 
de nous bien rendre compte des idees qui font 1’objet de nos speculations.”

No one can doubt that, in this matter, the opinion of the less famous man is 
the sound one. But Poinsot’s remark must be confined to the analytical formulae 
known to him. For it is certain that one of the chief values of quaternions is 
precisely this:—that no figure, nor even model, can be more expressive or intelligible 
than a quaternion equation.
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XCVIIL

GLISSETTES OF AN ELLIPSE AND OF A HYPERBOLA.

[Proceedings of the Royal Society of Edinburgh, December 16, 1889.]

Last summer, while engaged with some quaternion investigations connected with 
Dr Plarr’s problem (the locus-boundary of the points of contact of an ellipsoid with three 
rectangular planes), I was led to construct the glissettes of an ellipse. I then showed 
to the Society a series of these curious curves, drawn in my laboratory by Mr Shand, 
who had constructed for the purpose a very true elliptic disc of sheet brass. I did 
not, at the time, think it necessary to print my paper; but, after the close of the 
session, I made the curious remark that precisely the same curves can be drawn each 
as a glissette of its own special hyperbola. This double mode of sliding generation of 
the same curve seems to possess interest. It is somewhat puzzling at first, since the 
ellipse turns completely round, while the hyperbola can only oscillate. But a little 
consideration shows the cause of the coincidence.

Let 0 be the origin, G any position of the centre of the ellipse, GA that of the 
major axis, and P the corresponding position of the tracing point. This does not require 
a figure.

Then it is easy to see that if </> be the inclination of OC to one of the guides, 
0 that of CA to the same, we have

fa2 cos2d + b2 sin20 = fa2 + b2 cos</>.

But this gives V^cos2^ — 62 sin2</> = Va2 — t2 cos d,

which is the corresponding relation for the hyperbola. In fact the one equation is
changed into the other by changing the sign of b2, and interchanging the angles
0 and </>.
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Let the polar coordinates of the tracing point, referred to the centre of the ellipse 
and the major axis, be r, a, we obtain a position of P by the broken line OC, CP; 
their lengths being Va2 + 62, r, and their inclinations to the guide <£, 0 + a, respectively.

If we now turn the guides through an angle a, and use a hyperbola whose axes 
are to those of the ellipse respectively as r : Va2 —62; and consider the curve traced 
by a point Q in its plane, whose central polar coordinates are Va2 + b2, — a; the position 
of the point Q is given by the broken line OC', C'Q. Of these OC is equal and parallel 
to CP, while C'Q is equal and parallel to OC. Thus the points Q and P coincide.

In fact the motion of either is the resultant of two circular motions, one of which 
is complete (viz., 0, which has all values from 0 to 2tf), the other reciprocating 
(viz., $, which varies between sin-1(6/Va2 + b2) and sin-1 (a/Va2 + 62)). But, in the case 
of the ellipse, the centre has the reciprocating motion; while, in the hyperbola, it 
describes the complete circular path.

Mr Shand has constructed a hyperbolic disc, comprising a considerable portion of 
each of the branches of the curve, and it gives very fair glissettes. It is very curious 
to watch the proper point of the hyperbola gliding over the curve already traced by 
the ellipse. But this apparatus is not so easily managed as is the elliptic disc, so 
that the figures in Plate V were drawn by means of the latter, and reproduced on 
a diminished scale by photolithography.

To exhibit, by a few forms, as completely as possible the general nature of these 
glissettes, I selected a series of tracing points equidistant from the centre of the ellipse, 
and situated within and on the boundaries of the various regions, to each of which 
belongs a special form. For this purpose I traced the curve formed by successive positions 
of the instantaneous centre of rotation on the disc. The disc, with this curve on it, 
is represented in the upper central figure. The equation of the curve is

b2x2 — a2y2 _Va2+b2 ^x2 + y2 
bV + a2y‘2 a2 — b2

It is easily traced as follows. Draw the ellipse whose semiaxes parallel to x and y 
respectively are

a2 — b2 , a a2 — b2 and t -___;
v a2 + b2 h v a2 + 62

diminish every radius vector in proportion to the cosine of double the angle vector; 
and then diminish the ordinates in the ratio b : a, so that the ellipse itself becomes 
a circle.

In the disc from which the glissettes were drawn, a (rather more than a foot in 
length) was made double of b.

This equation suggested, as a useful distance of the tracing point from the centre, 
the quantity

(P-b2
2 T2 ’
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and accordingly the points 0, A, B, C, D, E, F were taken on the corresponding circle. 
The glissettes of B and D, of course, have cusps:—and it is interesting to study the 
changes of form from one to the next of the seven just named. Two groups of figures 
give the glissettes of successive points on each of the axes separately, viz., G, 0, K, M 
on the major axis, and J, F, L, N on the minor. Of these K and L have cusps. The 
figures G, H, J were drawn to show how the glissettes of points near the centre 
approximate to the (theoretical) four cusps which belong to the path of the centre 
itself, the finite circular arc described four times over during a complete rotation of 
the ellipse. The point P was chosen as close as possible to the intersection of the 
ellipse and the centrode.

The locus of the instantaneous axis in the guide-plane is of no special interest. It is 
easy to construct it geometrically from its polar equation, which may be written generally as

r (2 Va2 + 62 - r) = 4a267(a2 + &2) sin2 2d,

or in the present special case r (\/5a — r) = 4a2/5 sin2 2d.

It is an ovoid figure, symmetrically situated between the guides, with its blunter end 
turned from the origin.

The equation of the glissettes is found by eliminating d between the equations 

x = Va2 cos2d + 62 sin2d + r cos (d + a), 

y — sin2 d + d2 cos2d +.♦' sin (d + a).

This seems to lead to a relation of the 12th 'degree in x and y; but it must contain 
a spurious factor, as Professor Cayley informs me the final result ought to be of the 
8th degree. And in fact we see at once that, if the tracing point be at a very great 
distance from the centre (in comparison with the major axis of the ellipse) the glissette 
will consist practically of four circles, with centres in the four quadrants between the 
guide-lines.
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XCIX.

NOTE ON A CURIOUS OPERATIONAL THEOREM.

[Proceedings of the Edinburgh Mathematical Society, January 10, 1890.]

The idea in the following note is evidently capable of very wide development, 
but it can be made clear by a very simple example.

Whatever be the vectors a, ft, 7, 3, we have always

V. Va/3 F78 = a.S. /3yb — /3S . ccyS.

But vector operators are to be treated in all respects like vectors, provided each be 
always kept before its subject.

Let a — i^ +jy +

where £, g, £ are functions of x, y, z\ and let 
_ . d . d , . d 
V = i j—F 3 -j—F h > dx J dy dz

as usual. Also let alt be their values when xlt yT, zx are put for x, y, z.

Then by the first equation, attending to the rule for the place of an operator,
V. = VS . - S^aF) a.

If we suppose the operations to be completed, and then make x, = x, y! = y, ^ = 2, 
the left-hand member must obviously vanish. So therefore must the right.

That is:— VS.aV^^S^^Vjo-;
if when the operations are complete, we put — a, Vx = V.

In Cartesian coordinates this is equivalent to three
I write only one, viz.:—

equations, of the same type.

d_ £ g
d(C d_ d_

dXi dyt

£1 Vi

d 
dz-,

£

d 
dx, 

& 
L 
dx

d 
dyi

Vi 
d 
dy

d 
dz,

&
d 
dz

e,

if, after operating, we put = x, = &c., &c.
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c.

NOTE ON RIPPLES IN A VISCOUS LIQUID.

[Proceedings of the Royal Society of Edinburgh, March 3, 1890.]

The following investigation was made in consequence of certain peculiarities in the 
earlier results of some recent measurements of ripples by Prof. Michie Smith, in my 
Laboratory, which will, I hope, soon be communicated to the Society. These seemed 
to suggest that viscosity might have some influence on the results, as might also the 
film of oxide, &c., which soon gathers on a free surface of mercury. I therefore took 
account of the density, as well as of possible rigidity, of this surface layer, in addition 
to the surface tension which was the object of Prof. Smith’s work. The later part of 
the paper, where Cartesian coordinates are employed, runs somewhat on the lines of an 
analogous investigation in Basset’s Hydrodynamics. My original object, however, was 
different from his, as I sought the effects of viscosity on waves steadily maintained 
by means of a tuning-fork used as a current interruptor; not on waves once started 
and then left to themselves. Besides obtaining his boundary conditions in a singular 
manner, I think that in his § 521 Mr Basset has made an erroneous investigation of 
the effects of very great viscosity.

The stress-function in a viscous liquid may be obtained (Ante, No. XCVIL, pp. 306-7) 
from that in an elastic solid, by substituting velocity for displacement; in the form

<f>a> = — /x (Sa>V . a + ^Scoa) — (c — %p) a>SVa................................ (1),

where, in order to include the part of the pressure which is not due to motion, we 
must write p instead of the quantity

cSVa.

Here a is the vector velocity of an element at p, and p is the coefficient of viscosity.
T. II. 40
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Hence, supposing the volume of the element to be unity, we have for the equation 
of motion

e^=_V(eP)+>^S 
ot

= — V (p + eP) — p (V2a + ^VfSVcr),

where e is the density of the liquid, and P the potential energy of unit mass at p; 
and the double integral is taken over the surface of the element. This is a perfectly 
general equation, so we must proceed to the necessary limitations.

First. Let the displacements be so small that their squares may be neglected. 
Then we may write d for 3.

Second. Let the liquid be incompressible; then 
SV a = 0 ................................................................ (2).

With these, the equation of motion becomes

ed^^-V(p + eP)-pV2a..............................................(3).

Third. Let the motion be parallel to one plane, and we have
Skcr = 0............................................................... (4).

From (2) and (4) we have at once 
a = Vw . k.............................................................. (5),

where w is a scalar function of Vkp.

Operate on (3) by V.V, and substitute from (5), and we have

Fourth. Limit w to disturbances which diminish rapidly with depth. Here the 
problem has so far lost its generality that it is advisable to employ Cartesian co­
ordinates, the axis of x (i) being in the direction of wave-motion, and that of y (j) 
vertically upwards. Then it is clear that a particular integral of (6) is

w = (At™ + Be^) 1..................................................(7),

where t denotes V—1. The only conditions imposed on r, s, and n, are that the real 
parts of r and s, in so far as they multiply y, must be positive; and by (6)

p (s2 - r2) = eni..........................................................(8).

The speed of vertical displacement of the surface is 
y = - (Sja-)0 = (SiVw),, = — n (A + B) ‘.(9).

From this, ~2 and , which will be required below, are found by using the factors 
doc dou

— r2 and P.
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The stress on the free surface (where y — g, a quantity of the order j4) is, by (1), 
(</y)o = - Poj ~ P (SjV . a + VSja\.(10),

where, in p0, we must include the effects of the tension T, and of the flexural-rigidity 
E, of the surface-film.

But, by (3) and (5), we have
V (p + eP) = — (e ~ + pV2^ Vw. k;

so that as P = gy

we have dp + egdy = ent, (rtdy — rdx) Ae^+(rx+nt*'-.

* W. Thomson, Camb, and Dublin Math. Journal, in. 89 (1848).
40—2

From this, by integrating, and introducing the surface conditions,

II - p0 = egg - T + E + enAe^+nt^. * a#2 a#4

If we now substitute this in (10) and, for the boundary condition,*  make 

(omitting terms of the second degree in A and B), we have by means of (9) the 
two equations

R (A 4- B) — en2j4 + 2prni (rA + sB) = 0, 

r2 (J. + B) + r2A + s2B = 0, 

where, for shortness, R = egr + Tr3 + EA................................................... (11).

Thus, finally, R-en2 + bpnrh + 4 rs (r - s) = 0.....................................(12).

This must be treated differently according as p is small or great.

I. Let p be small; and let n be given, and real. This is the case of the sustained 
waves in Prof. Smith’s experiments.

The equation obtained by neglecting p, viz.
R — en2 = 0,

gives one, and only one, positive value of r, whose value is diminished (i. e., the wave­
length is increased) alike by surface tension and by surface-flexural-rigidity. Call it r0, 
and let

r = To + pp,

then by (12), keeping only terms of the first order in p, 
(ge + 3Tr2 + 5-Eh4) p + 4nr02i = 0.(13).

Thus p is a pure imaginary, and therefore the viscosity does not affect the length of 
the waves. It makes their amplitude diminish as they leave the source. (For the real 
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part of w belongs in this case, if we take n as positive, to waves travelling in the 
negative direction along x, and vice versa.} The factor for diminution of amplitude 
per unit distance travelled by the wave is

e—.

This expression gives very curious information as to the relative effects of viscosity on 
the amplitudes of long and short waves, when we suppose gravity, surface-tension, or 
surface-flexural-rigidity, alone, to be the cause of the propagation.

If the waves be started once for all, and allowed to die out, r is given and n is 
to be found. This is the first case treated by Mr Basset. If then n = n<, be found from

en2 = R,
we may put n = nQ + p,v.
By (12) we have, keeping only the first power of p.,

ev = 2rk,
which coincides with the result given in § 520 of Basset’s Treatise.

II. Let /a be large. Suppose r to be given, a real positive quantity. Then, by 
(8), we may eliminate n from (12) and obtain

Re
—j + (s2 — r2)2 + 4r2 (s2 — r2) + 4^ (r — s) — 0............................ (14).
A1"

The first term is very small, and the rest has the factor s — r. Omit the term which 
contains this factor twice, and we have

. Re
....................................................... <15)'

This has real positive roots if, and only if,
[Ar4, > Re,

and thus, by (8), when this condition is satisfied n is a pure imaginary, and there can 
be no oscillation. Of the two roots of (15) we must, in consequence of our assumption 
(that (s — r)2 is negligible), choose that which is nearly equal to r. It might be fancied 
that, as this assumption leads to B = — A very nearly, a new limitation would be 
introduced as regards the magnitude of ??. But we have

n = - - (A +B) - - A fl - ——f
' nv ' n \ r2 + s2)

6C= — A — 6(«s+nt)» nearly.p.r J

The wave-pattern, in this case, does not travel but subsides in situ, its amplitude 
diminishing according to the approximate factor

£ - RtlZpA 2

Thus, as was to be expected, the subsidence is slower as the friction is greater. Also, 
if gravitation is the sole cause of subsidence, the longer waves subside the faster; 
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while if the main cause be surface-tension, or surface-flexural-rigidity, the shorter waves 
subside the faster.

III. If there be a uniform film of oxide or dust, in separate particles which 
adhere to and move with the surface, we must add to the expression for surface-stress 
in (10) the term

d- m (d-)0 = — m (Vw)0 k

= — m {jrn (A + B) + ini (rA + sB)} 

where m is the surface-density of the film.

The equations for the elimination of A/B become

(R + mm2 — en2 4- 2pr2ni) A +(R + mm2 4- 2prsni) B — 0, 

f mnri\ / em mnsi\ n n
\ / \ p p. J

so that instead of (12) we have

[e — mts — r)} (R 4- mm2) = e2n2 — ^pAnei 4- 4/x2r3 (s — r) — mn2es.

When p and m are small, this is approximately

R 4- 2mm2 = en2 — ^pr2ni.

There is no other term in the first power of m, independent of p; so that, to 
this degree of approximation (which is probably always sufficient), the dust layer has 
no effect except to increase R. When there is no viscosity this increases the ripple­
length (i.e., diminishes r) for a given period of vibration.

When terms of the first degree in the viscosity are taken account of, the effect on 
n (for a given value of r) is merely to add to it the pure imaginary

2pr2il(e — 2mr), 

whose value increases alike with m and with r.

Thus the period is not affected, but the surface layer aids viscosity in causing 
waves to subside as they advance.

This investigation above may be easily extended to the case in which a thin 
liquid layer is poured on mercury to keep its surface untarnished. The only difficulty 
is with respect to the relative tangential motion at the common surface of the liquids.
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NOTE ON THE ISOTHERMALS OF ETHYL OXIDE.

[Proceedings of the Royal Society of Edinburgh, July 6, 1891.]

The first three pressure-columns of the following little table were constructed from 
the elaborate data given by Drs Ramsay and Young in their important paper “ On 
Evaporation and Dissociation,” Part IV. [Phil. Mag., May 1887). They give, in metres 
of mercury, the pressures required to confine one gramme of oxide of ethyl to various 
specified numbers of cubic centimetres, at temperatures near to that of the critical 
point.

V 193°-8 A B C
2 ... 73- 72-9
23 38-6 ... 38-55 383
2-4 34- 343 34-43 34-16
2'5 31'2 31-3 31-53 31-55
2-75 28- 281 28-24 28-41
3 27-7 27-42 27-45
33 ... 27'2 + 27-19 27-3
37 •.. 27’2 27T9 27-2
4 ... 27-2 27-20 27-2
5 27- 27T 27-12 271
6 26'6 26'7 26'80 26-46
7 25'9 25'9 26-00 25'6

10 22-9 22-9 22-89 22-86
15 18-3 18'4 18-26 18-0
20 15-0 15-0 14-97 14-8
50 7- 7- 7-01 7-02

100 ... 3-7 3-69 3-75
300 ... 1-27 1-28 132
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The values in the second column are taken directly from the paper referred to 
(Table I.), in which 193°'8 C. is regarded by the Authors as the critical temperature. 
Those in column A were calculated for temperature 194° C. from the pressures given 
in the same table for 195° C. and 200° C. (occasionally 210° or 220° C.). Those in 
column B were calculated, also for 194° C., from Table II. of Drs Ramsay and Young, 
which contains their “smoothed” values of the constants. Finally, column C has been 
computed from my own formula, in forms (given below) which are adapted to volumes 
greater and less than the critical volume, respectively. A glance at column B shows 
that, so far as the “ smoothed ” data are concerned, the critical point should be sought 
slightly above 194° C. For, at that temperature, the pressure has still distinctly a 
maximum and a minimum value, both corresponding to volumes between 3 and 5. 
Column A, calculated from the unsmoothed data, does not show this peculiarity. Hence 
I have assumed, as approximate data for the critical point,

i = 194° C., p = 27'2, v = 4.

The last of these is, I think, probably a little too large; but we have the express 
statement of Drs Ramsay and Young that the true critical volume is about 4'06.

representing the coefficient of (t — t) in my general formula

From their Table II., above referred to, I quote the first two lines below, giving
(usually to only 3 significant figures) values of dpldt at constant volume:—

V 2 2-5 3 4 5 10 20 50 100 300
dp 
dt 1-60 0'92 •622 •414 ■319 T33 •056 ■019 -009 •0029

Calc, j
165 090

•616
•633

•426
•405

•320 •131 •056 •019 -009 •0029

The third and fourth lines are calculated respectively from the expressions

^0-85 +
^ + 3] -, andV

fl’2 + - 1-05
-15/

( 1
' v’

P=P 1- (^-^)3 ] + R fi +-£_] 
v(y+a)(y + y)) \ v + a.)

Approximate values of the other constants are now easily obtained; and we have, for 
the critical isothermal, while the volume exceeds the critical value,

v - 27-2 fl - 07-4)3 ]
P ( d(v + 3)(d-0-5)?

In attempting to construct a corresponding formula for volumes lower than the critical 
range, I assumed 3’5 as an inferior critical volume, and obtained

\ iP(v —15)/

As will be seen by the numbers in column C above, which are calculated from them, 
these formulae represent the experimental results very closely:—but I am not quite 
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satisfied with the first of them, because the value (3), which it assigns to a, seems 
to be too large in comparison with v. But, on the other hand, if we much reduce 
this value of a, the closeness of representation of dpjdt is much impaired. Again, the 
value (—1’5) which is assigned for a in the second of these formulae is inconsistent 
with the fact that at 0° C. and 1 atm. the volume of one gramme is 1'4 c.c. nearly. 
But a very small change of a will entirely remove this objection, and will not per­
ceptibly impair the agreement of the formula with experiment.

The general formula is applicable to temperatures considerably under that of the 
critical point, for volumes greater than 4. In fact Drs Ramsay and Young seem to 
assert that at any constant volume p is a linear function of t. But I think even 
their own experiments show that, for v < 4, there is diminution of the value of dpjdt 
as soon as the temperature falls below the critical value:—i.e., as soon as we begin 
to deal with liquid alone. And certainly such is the result which theory would lead 
us to expect.

[It is curious to note that if, in my general formulae (No. LXXX. above, p. 200), 
we assume

a = 7, 

we have / e \ A - G eG pv = E 11 q——— I------ ------ 1- t;\ v + 7/ v + 7 (v + 7/

and this leads to _ _ /, (v - v)3 )
P \ v(v + 7)7

with the condition 3d + 2y = Rtjp.
This formula differs by want of one disposable constant from (C) of the paper 

referred to, but approximates much more closely to it than does either (A) or (B).]



CII.J 321

CII.

NOTE APPENDED TO Dr SANG’S PAPER, ON NICOL’S 
(POLARIZING EYEPIECE.

[Proceedings of the Royal Society of Edinburgh, November 23, 1891.]

At the very urgent request of the late Dr Sang, who regarded the above paper 
as one of his chief contributions to science, I brought before the Council of the Society 
the question of its publication. From the Minute-Book of the Ordinary Meetings, I find 
that it was read on the 20th February 1837, though it is not mentioned in the 
published Proceedings of that date. On 21st July 1891 the Council finally resolved that 
the paper should be printed in the Proceedings “if otherwise found desirable.” The 
reasons in favour of printing it seem to outweigh those which may, readily enough, be 
raised against such a course.

The subject is one with which, except of course in its elements, I have long ceased 
to be familiar. But, from the imperfect examination which I have found leisure to 
make, I have come to the following conclusions.

The paper contains a very important suggestion which (one would have thought) 
should have been forthwith published, whatever judgment might be passed on the rest 
of the work:—viz., the proposal to construct the polariser of two glass prisms, separated 
by a thin layer, only, of Iceland spar. In view of the scarcity of this precious substance, 
such a suggestion was obviously of great value.

I am not sufficiently acquainted with the early history of the Nicol prism to be 
able to pronounce on the question of Dr Sang’s claim to priority in the explanation 
of its action:—but he told me that he believed himself to have been the first to 
demonstrate that the separation effected was due to the total reflection of the ordinary

T. II. 41



322 NOTE APPENDED TO DR SANG’S PAPER, [on.

ray*.  And it is quite certain that, long subsequent to 1837, various very singular 
attempts at explanation have been given in print. The inventor, himself, seems to have 
thought that the effect of his instrument was merely to “increase the divergency” of 
the two rays.

* [See, however, a Note by Fox Talbot (Proc. P. S. E., vn. 468; 15/5/71) which appears to settle this 
important matter of scientific history by reference to a paper published by him in 1834 (Phil. Mag., iv. 
289). 1899.]

The numerical error which Dr Sang has pointed out in Malus’ work seems to 
have been a slip of the pen only, as the minutes and seconds of the angle in question 
are correctly given. He supplies no reference to the passage, but I find it in the 
list of calculated angles at p. 125 of the Th^orie de la Double Refraction. It cannot 
be a mere misprint, because the supplement is given along with the angle, and is 
affected by the corresponding error. But I do not think that Dr Sang’s further remark 
is justified, as Malus not only gives the correct expression for the cosine of the angle 
in question, but seems to have employed in his subsequent calculations the inclination 
of the axis to a face, not to an edge,' of the crystal:—and he gives the accurate 
numerical value of this quantity, as deduced from Wollaston’s measure of the angle 
between two faces.

There is an altogether unnecessarily tedious piece of analysis in Dr Sang’s in­
vestigation of the limits within which the prism works:—and it is so even although 
he shortens it by the introduction of the terribly significant clause “ after repeated 
simplifications.” I will give below what I consider to be a natural and obvious mode 
of dealing with the question (one which, besides, leads to some elegant results):— 
but I have reproduced Dr Sang’s manuscript as it was read, for the circumstances 
of the present publication seem to require literal accuracy. Dr Knott has kindly 
verified for me the agreement of my final equation with that of Dr Sang.

Dr Sang’s problem is equivalent to the following:—

A tangent is drawn to an ellipse from a point of a concentric circle; find when 
it subtends the greatest angle at the common centre.

Let the curves be
+ = 1, and «? + = y2, respectively.

Then, if x = a cos 0, y = R sin f
= y cos v, yi = y sin v, 

the condition of tangency is obviously

Also, since the angle at 0 is to be a maximum, 
d C (ft. ) A(tan 1 I - tan I — v 1 = 0.
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Differentiating the first equation, and eliminating dc^/dv between the two, we get at 
once the remarkably simple relation

(tan <^>)3 = — tan v .................................................. (1).

But we may put the first into the form
cos v sin« ,1------- 1- —vr- tan q> = - sec <p, a--- /3 7 r

(cost)2 1 2 cos v sin v /(sinr)2 1 \ ,,
or ^2 “ ^ + ——tan (^n # = 0....................(2)-

The elimination of tan <£ between (1) and (2) is easily effected by multiplying (2) twice 
over by tan <£, using (1) after each operation. We thus avoid the radicals which make 
Dr Sang’s work so complicated, and we have only to eliminate tan </> and (tan </>)2 among 
three equations of the first degree. The resulting equation is of the fourth degree 
in (sin v)2, but it contains the irrelevant factor

(cosy)2 (siny)2 
a2 +~~^~ ’

(Another method of effecting the elimination, while quite as simple as that just 
given, has the advantage of not introducing the irrelevant factor. Write for shortness 

cos v sin v
= -^q,

and we have p cos </> + q sin </> = - ,

p (sin ^>)3 + q (cos </>)3 = 0.

From the second of these, by the help of the first, we at once obtain

p sin $ + q cos $ = - cos </> sin </>,

p , <1 -1or ----- T 4-- :---7 — ~ •cos <£ sin </> 7

The following are immediate consequences:—obtained, respectively, by multiplying to­
gether the first and fourth of these equations, and by squaring and adding the first 
and third:—

VO 1p2 + q2 + -—4-----v = ~i >1 sin 9 cos 72

p2 + q2 + ^pq sin cos </> = {1 + (sin <£ cos </>)2}.

From these the final result may be written by inspection, in the form

y.+9.+_w

41—2
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which is obviously of the third degree in (sin z/)2.)

[It is particularly interesting to compare these plane results with those of the 
corresponding space-problem as given by the obvious quaternion process. 1899.]

It is clear that there are other parts of Dr Sang’s paper which might be greatly 
simplified by the use of an auxiliary angle; but it suffices to have shown the value 
of the method in the most complicated part of the investigation.

[P.&—Nov. 23, 1891.—Mr R. T. Glazebrook has kindly given me a reference to 
Gomptes Rendus, xcix. 538 (1884), where M. E. Bertrand has suggested the employment 
of glass prisms separated by a thin layer of Iceland spar.]
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cm.

NOTE ON Dr MUIR’S SOLUTION OF SYLVESTER’S 
ELIMINATION PROBLEM.

[Proceedings of the Royal Society of Edinburgh, May 2, 1892.]

The following method of treating the question occurred to me while Dr Muir was 
reading his paper at the last meeting of the Society. It seems to throw some new 
and curious light on the intrinsic nature of the problem. I have confined myself to 
an exceedingly brief sketch, but it is clear that the proposed mode of treatment 
opens a wide field of interesting work.

Write the equations as

O' xy
' JAB

+ ^ = 0, &c.,

or Ip — 2e3 + y2 — 0, &c.

The two values of p'y, &c., are evidently reciprocals of one another. In fact, if we 
were to put

py = tan (f, &c.,

the equations might be written 1 — e3 sin 203 = 0, &c.

£ r
Since we have - . . w = L

V t ?

while the values of the factors on the left are, respectively,

, 1 1,1t3 or - , or -, t3 or -,
*3 *1 *2
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it is obvious that the fourth equation required for the elimination is

. , (£1^3 — l)2 (^2 — ^s)2 (^2^3 — tl)“ (^3^1 ~ ^)2 = O'
(*1*2*8/

Put T=t1t2t3, and this is

2_ 1)2 _ ^2)2 _ ^2)2 = 0.

Expanding and regrouping, the expression is easily transformed to
161 /i+^Y /1+^V.21+^ 1+^2 1+vl = o
T* t \ 2^ J k 2^ ) 2«s J + 2^ ' 2^ ' J

1
or C1 “ e* ~ e* “^®2 + 2eie2e3)2 = 0.

^1 $2

The factor in brackets is the square of the determinant

1 ®3 ®2
) #3 1 >

| e2 1

and thus Dr Muir’s result is reproduced when we insert the values of eu e2, e3 in 
terms of A, B, C, A', B', O'.

One interesting point of the transformation seems to be the breaking up of this 
determinant into the four factors above specified; so that the equation

1
(sin 2d)”1
(sin 2a)-1

(sin 2d)-1 (sin 2a)-1 = 0
1 (sin 2/3 J”1

(sin 2/3)”1 1

has for roots, as values of tan 0,
n 1 tan a . tan B tan a tan B, ------------ —, -—, ana ------ . tan a tanp tan/3 tana

But the novelty and value of the process seem to lie in the mode in which the 
elimination is effected by mere general reasoning.
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CIV.

NOTE ON THE THERMAL EFFECT OF PRESSURE ON WATER.

[Proceedings of the Royal Society of Edinburgh, July 18, 1892.]

I have just seen in the Comptes Rendus (June 27) an account of some experiments, 
on this subject, made by M. Galopin in the laboratory of Professor Pictet. As the 
effects obtained by him seem to be somewhat greater than my own experiments had 
led me to expect, I was induced to repeat my calculations with the view of trying to 
account for the difference. Unfortunately, M. Galopin’s work is confined to 500 atmo­
spheres, a pressure which lies a little beyond the range of my experiments; so that 
no very trustworthy comparison can be made. M. Galopin’s results have one advantage 
over those of the direct experiments of the same kind which I made, inasmuch as 
he was able to use ordinary thermometers, while I employed thermo-electric junctions, 
in measuring the rise of temperature by compression. But they have a corresponding 
disadvantage, in the fact that mine were obtained instantaneously (by means of a dead­
beat galvanometer) and required no correction; while his had to be corrected for the 
heat-equivalent of his apparatus to an amount not easy to estimate with accuracy.

I had assured myself of the general accuracy of my own work by showing that 
three altogether independent modes of estimating the effect of pressure on the maximum 
density point of water gave closely concordant results:—viz. a lowering of that 
point by about 1° C. for every 50 atmospheres. These investigations were described to 
the Society in 1881—4, and appear (in abstract) in our Proceedings-, more fully in 
the Challenger Reports. [See No. LXI. above.] One mode of determination was direct 
(a modification of Hope’s experiment); the others were theoretical deductions, from the 
compressibility of water at different temperatures, and from the rise of temperature 
produced by compression, respectively. M. Amagat subsequently obtained a result very 
closely agreeing with mine as given above. His method differs from any of mine, for he 
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seeks two temperatures, not very different, at which water has the same volume at the 
same pressure.

So far, I had been dealing with pressures of little more than 200 atmospheres. 
Higher pressures led to the result that the displacement of the maximum density point 
increases very much faster than does the pressure. For the terms in higher powers of 
the pressure begin to tell more and more; and another cause comes prominently into 
play, depending on the fact that water has a temperature of minimum compressibility 
(about 60° C. at ordinary pressures). This affects to a very much greater extent the 
lowering of the maximum density point by pressure than it affects the amount of heat 
developed by the compression. Both of these causes are indicated in my formuhe as 
contributing to such a result, but the small numerical factors of the terms which express 
them are not accurately known; and the calculation of the thermal effect of large 
pressures from data obtained by measuring compressibility at different temperatures is a 
very severe test of their accuracy. Besides, in giving a formula which exactly represented 
my determinations of the change of volume of water, under pressures from 150 to 
450 atmospheres, and at temperatures 0° to 15° C., I expressly said that “ it must not 
be extended, in application, much beyond” these limits. If, however, we venture to 
extend it to 500 atmospheres, it leads to the following expression, for the heating of 
water by the sudden application of that pressure,

t + 3‘2
26

where t is the original temperature (C.) of the water operated on. In obtaining this 
result it is assumed, in accordance with Kopp’s data, that the expansibility of water at 
ordinary temperatures and at atmospheric pressure is approximately (t — 4)/72,000. Other 
experimenters make it somewhat greater. [If the maximum density point were lowered 
1° for every 50 atmospheres, the heating by 500 atmospheres would be about (t +l)/22 
only. Comparing this with the result above, we see how considerably the causes, alluded 
to, affect the calculated amount of heating.]

Now I find that M. Galopin’s results may be represented very closely (from 0“ to 
10° C., which are his temperature limits) by the analogous expression

t + 5 
'25“'

The difference between the denominators of these expressions is not serious, and may 
depend upon the uncertainty of the assumed expansibility of water, or upon an over­
correction of his results by M. Galopin. [He increases his observed data by 52 per cent, 
in consequence of the thermal capacity of his apparatus.] But the difference between 
the numerators seems to show once more that M. Galopin’s data have been over-corrected, 
or that it was scarcely warrantable to extend the application of my formula so far 
as 500 atmospheres.
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CV.

NOTE ON THE DIVISION OF SPACE INTO INFINITESIMAL 
CUBES.

[Proceedings of the Royal Society of Edinburgh, December 5, 1892.]

The proposition that “the only series of surfaces which, together, divide space into 
cubes are planes and their electric images” presented itself to me twenty years ago, 
in the course of a quaternion investigation of a class of Orthogonal Isothermal Surfaces 
[No. XXV. above]. I gave a second version of my investigation in vol. ix. of our Pro­
ceedings. [No. XLIV. above.] Prof. Cayley has since referred me to Note vi., appended 
by Liouville to his edition of Monge’s Application de I’Analyse d la Geometric (1850), 
in which the proposition occurs, probably for the first time. The proof which is there 
given is very circuitous; occupying some eight quarto pages of small type, although 
the reader is referred to a Memoir by Lamd for the justification of some of the steps. 
But Liouville concludes by saying:—“ 1’analyse precedente qui dtablit ce fait important 
n’est pas indigne, ce me semble, de 1’attention des gdom^tres.” He had previously 
stated that he had obtained the result “ en profitant d’une sorte de hasard.” As 
Liouville attached so much importance to the theorem, and specially to his proof of 
it, it may not be uninteresting if I give other modes of investigation. The first of 
them is merely an improved form of what I have already given in our Proceedings', 
the second (which is the real object of this note) seems to have secured nearly all the 
advantages which Quaternions can afford, in respect alike of directness, clearness, and 
conciseness. It is very curious to notice that much of this gain in brevity is due 
simply to the fact that the Conjugate of a certain quaternion is employed along with 
the quaternion itself in my later work; while I had formerly dealt with the reciprocal, 
and had, in consequence, to introduce from the first the tensor explicitly. The in­
vestigation should present no difficulties to anyone who has taken the sort of trouble 
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to remember elementary quaternion formulae which every tyro in integration has to take 

to fix in his memory the values of dtan®, d log----- ---------- , or cHan-1#, &c.

The only peculiarities of the question seem to be due to the contrast between the 
(apparently) great generality of the initial equation and the extremely restricted character 
of the sole solution. This will be abundantly evident from the discussions which follow, 
since it would almost appear as if the conditions arrived at were too numerous to be 
simultaneously satisfied. I find it very convenient to use a symbol 3 ^in the sense of 

to express rate of increase per unit of length. Thus
. d d j d

may be written V = + /332 + 783,

where a, /3, 7 are any rectangular unit-system.

The equation da = uq^dpq..............................................................(1)

(where u is a scalar, and q a versor, function of p) ensures that an element of space 
at a corresponds to a similar element at p; so that the transformation from p to a, 
or vice versd, is from one mode of dividing space into infinitesimal cubes to another. 
[From the purely analytical quaternion point of view the question may be regarded 
as simply that of finding u and q as functions of p, so that the right-hand member 
may be a complete differential.] We have at once

Sada = — SdpV . Saa = uS. dpqa.q~\

whatever constant unit vector a may be. Thus
— VSaa = uqaq~'........................................................(2).

A part, only, of the information given by this is contained in
KV . uqaq^1 = 0......................................................... (3),

or T7". qaq~' — = . qaq 1

— V -(Sqq^qaq-1 + qaq~' ^qq~l) — 28. qaq"1^ . Vq^1
= 2qaq~1S. ^qq-1 — 28. qaq^T. Vq^q-1.

From the sum of the three equations of this form (each multiplied by its qaqr1) 
it appears at once that

8 .Vqq-1 = 0...........................................................(4);

so that, as qaq-1 may be any unit vector,

v. a - = -28aV1.q1q-1 u

= Wr1..............................................................(5).
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From two of the three equations of this form we have

331

ajrh —= (vp — .q)
X w / \ u )

whence

- K. 7 (aSi + ^S2) —- = — Sy — , 
VV U tv

where the V is obviously superfluous; so that

„ Vw Vw S3u Vu— + d3 — =---------
u u u u ..........................................(6).

There are, of course, three equations of this form, and they give by inspection

l„Vw Vw Vu 1 Vw- V - - = oWj — = /332 — = 7^ — = - V — ........................u u u2 u2 ' u2 3 u2 (7).

The first and last of these equals give

V2 (V) = 0,

whose general solution is known to be
i v m U~^T{p-eY

where m and e are constants. The other members of (7) show that one term only of 
this 2 is admissible; so that, as no origin was fixed,

. m 
U ~Tp'

From the three equations (5) we get also

V (uq) = 0,

so that q=Up .a,

a being any constant versor. Thus we have the complete solution. It gives by (1) 

da = m^a^p^dpp^a = — m^^dp^a,

so that a is merely — p-1, multiplied by a constant and subjected to a definite rotation.

But the following process is very much simpler. For we may get rid of the 
factor u, and greatly shorten the investigation, by writing the equation of condition 
in the form

da = Kqdpq.............................................................(1).

It gives at once 929i<t = S2 {Kqa.q) = (^KqSq\

or V .yf^q — 70#) q~l = 0...................................................(a).
42—2
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Multiplying by y, and adding the three equations of this form, we have

— = or .qTq = 0*.

* [Note that Sdqq~1=STqlTq. 1897.]

By the help of this we may write (a) as 
^Tq _ fd^Tq d3Uq\
Tq “ 7 \ Tq Uq)

“ that S...................... . ......

Thus, as the form of the three middle terms shows that their common 
be some constant quaternion,

or

dx = dpa,

Uq
Tq = Pa’

for we need not add a constant vector to p, and the form of the first 
equal quantities above shows that no quaternion constant (except, of course, 
form ea already referred to) can be added to the right-hand side.

Thus, finally, as before da — — ap^dpp^Ka.

value must

of the five 
one of the

Though the methods employed in these two investigations are, at least at first 
sight, entirely different, it will be easily seen that the equations (7) and (6) to which 
they respectively lead are identical in meaning with one another, term by term. Yet 
the former shows two differentiations in every term, while the second appears to involve 
one only. Thus also, two distinct integrations were required in the first solution, while 
one sufficed for the second. But in the first, the tensor and versor of the quaternion 
were all along separated; in the second the quaternion itself was directly sought.
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CVI.

NOTE ON ATTRACTION.

[Proceedings of the Edinburgh Mathematical Society, February 10, 1893. Vol. XI.]

It is well known (see Thomson and Tait, §§ 517, 518) that a spherical shell, 
whose surface-density is inversely as the cube of the distance from an external point, 
as well as a solid sphere whose density is inversely as the fifth power of the distance 
from an external point, are centrobaric. The centre of gravity is, in each case, the 
“image” of the external point.

To show that these express the same physical truth, we may of course recur to 
the method of electric images from which they were derived. But we may even 
more easily prove it by a direct process, for it is obviously only necessary to show 
that a thin shell, both of whose surfaces give the same image of an external point, 
has everywhere its thickness proportional to the square of the distance from that 
point.

Call 0 the object, and I the image, point; and draw any radius-vector IPQ, 
meeting the respective surfaces of the shell in P and Q. Then, ultimately,

OQ - OP = QP cos OPI, 
or, in the usual notation,

8 = Sr cos OPI,

whence (introducing the new factor r)

P = Sr — r cos OPI] = Sr 01 cos IOP.

But IOP is equal to the angle between IP and the normal at P, so that the 
thickness of the shell at P is

Sr cos IOP = 01 . e2
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evil.

ON THE COMPRESSIBILITY OF LIQUIDS IN CONNECTION WITH 
THEIR MOLECULAR PRESSURE.

[Proceedings of the Royal Society of Edinburgh, March 6, 1893.]

That liquids, if finitely compressible, must (at any one temperature) become 
steadily less compressible as the pressure is raised, seems to be obvious without any 
attempt at proof. Yet the assertion is even now generally made, mainly in consequence 
of an erroneous statement of Orsted, which has been supported by some compara­
tively recent investigations of Cailletet and others, that the compressibility of water 
(at any one temperature) is practically the same at all pressures not exceeding a few 
hundred atmospheres.

But in 1826 {Phil. Trans., cvi.), Perkins had clearly established the fact that 
the compressibility of water at 10° C. diminishes:—rapidly at first, afterwards more 
and more slowly:—as the pressure is gradually raised. Perkins’ estimate of his 
pressure-unit seems to have been considerably too small, so that his numerical data 
are not very trustworthy:—but this does not in the least invalidate the proof he 
gives of the gradual diminution of compressibility; for that depends of course upon 
relative, not upon absolute, values.

In the very earliest determinations which I made, some ten or twelve years 
ago, while examining the pressure-errors of the “ Challenger ” thermometers, this dimi­
nution of the compressibility of water was prominently shown:—and in 1888 I gave, 
as a fairly close approximation to the average compressibility for the first p atmospheres, 
the empirical expression

^KB+p), 
in which the constants depend on temperature only.
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This, it will be observed, is in complete agreement with the form of the result 
of Perkins. I also found that the addition of common salt, to the water operated 
on, had the effect of increasing the constant B in this formula by a quantity pro­
portional to the amount of salt added; A being practically unchanged, so long as 
the temperature was kept constant.

These considerations seemed to point to the quantity B as being at least closely 
connected with the internal molecular pressure (usually named after Laplace); and, 
speculative as the idea confessedly is, it seemed worthy of further development. 
Another argument in its favour is furnished by a consequence of the hypothesis. 
For it is easy to see that when the average compressibility of a substance can be 
represented by the expression above, the equation of its isothermals must have the 
form

(B + p) (v - a) = C;

approximately that given by the kinetic theory of a gas, when it is regarded as an 
assemblage of hard spherical particles.

Nearly three years ago, while I was preparing for press the second edition of 
my text-book Properties of Matter, M. Amagat kindly gave me several unpublished 
numerical details of his magnificent experiments on the compressibility of water and 
ether. The following short table gives in its second column some of these results for 
water at 0° C.:—

Pressure.
1

Volume.
1-00000

a
1-00000 0

b
1-00000 0

c
1-00000 0

501 •97668 •97664 + 4 •97652 + 16 •97657 + 11
1001 •95645 •95662-17 •95644 + 1 ’95652 — 7
1501 •93924 •93925- 1 •93909 + 15 •93916 + 8
2001 •92393 •92405-12 •92393 0 •92399- 6
2501 •91065 •91064+ 1 •91058 + 7 ■91062 + 3
3001 •89869 •89870- 1 •89873- 4 •89875 - 6

The numbers in the columns a, b, c are volumes calculated respectively from the 
following formulae for the average compressibility for p atmospheres:—

•30454 '30 '3015
6019+p’ 5887+p’ 5933+p‘

The first was calculated from the data for 1, 1501, and 3001 atm.; the second 
from those for 1, 1001, and 2001 atm.; the third was obtained from them by inter­
polation. After the numbers in each column the difference “ observed — calculated ” is 
given. These are all small; and, especially in the case of formula c, the coincidence 
seems almost perfect throughout, for the differences have regular alternations of sign. 
But it is to be noticed that simultaneous increase, or diminution, of A and B by 
as much as 2 per cent, does not seriously affect the agreement of the formula with 
the results of experiment.
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I have been for some time preparing to undertake an extended series of experi­
ments on the compressibility of various aqueous solutions, with the view of finding 
(although by an exceedingly indirect and possibly questionable process) how the 
addition of a salt to water affects its internal pressure. But the recent publication 
of the final results of Amagat’s experiments on the compression of water by pressures 
rising to 3000 atmospheres (more than six-fold the range attained in my own work) 
has led me to make a new series of calculations with the view of testing how far 
the above speculations, suggested by the results of pressures limited to some three 
tons’ weight per square inch, are borne out by the results of pressures of twenty 
tons. The agreement, as will be seen, seems on the whole highly satisfactory; though, 
for a reason already given, and presently to be even more forcibly illustrated, the 
calculations are necessarily of a somewhat precarious character.

Thus we obtain from Amagat’s paper (Comptes Rendus, January 9, 1893) the
following determinations of the volume of water at 0° C., for additional pressures of
400 and 800 atmospheres:—

Pressure. Table, No. 1. Table, No. 2.
1 1-00000 1-00000

401 •98067 ■98071
801 •96371 •96371

The pressures in Table 1 extend to 1000 atm. only, those in Table 2 to 3000 atm.

These give, respectively, for the average compressibility of water per atmosphere 
for the first p additional atmospheres, p ranging from 0 to 800,

0-296 03057
5725+^’ 5939 +p’

whence the compressibility at ordinary pressure may be either 

0-0000517 or 000005147.

To enable us to choose between these formulae we have the following comparison 
with the data for higher pressures in Amagat’s second table:—

Pressure. Amagat. First formula. Second formula.
1001 •95596 '95595 ’95595
2001 ■92367 •92337 •92299
3001 •89828 •89824 •89741

The first formula, therefore, represents with remarkable closeness the average 
compressibility of water at 0° C. for any range of pressure up to 3000 atmospheres; 
while the second obviously gives considerably too much compression at higher pressures. 
Yet there is but one numerical difference between the sets of data from which
these two formulae were derived, and that is merely a matter of four units in the
fifth decimal place of the volume at 401 atmospheres! Thus very small inevitable
errors in the data may largely affect the values of the constants in the formula.
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The only certain method of overcoming this difficulty would be to work with pres­
sures of the same order as B.

The expression which I gave in 1888 for the average compressibility per atmo­
sphere at 0°C. was (Challenger Report, Physics and Chemistry, Vol. II., Part 4, p. 36; 
ante, No. LXI. p. 34),

0-001863 
36 + p ’

the unit for p being 1 ton weight per square inch. To atmospheres (152’3 per ton 
weight per square inch) this is

0’284 
5483+ p’

giving 0’0000518 as the compressibility at ordinary pressures. This agrees closely with 
the first, and more accurate, of the two formulae just given; and yet it was derived 
from data ranging up to 450 atmospheres only. I stated at the time that “probably 
both of the constants in this formula ought to be somewhat larger.” This would make 
it still more closely agree with Amagat’s results.

I have worked out the values of the quantities A and B for the ten special 
temperatures (from 0° to 48O,95 C. inclusive) in Amagat’s table No. 2; taking for each 
temperature the data for pressures 1, 1501, and 3001 atmospheres. The resulting 
formulae give results agreeing very fairly with the compressions given for 501, 1001, 
2001, and 2501 atmospheres:—the agreement being in fact almost perfect for the two 
higher pressures, but the compression being (as a rule) slightly in defect for the 
lower pressures. M. Amagat himself has stated that his results for lower pressures 
are given more accurately in the series of experiments where the pressure was never 
very great, than in those where it was pushed to 3000 atm. In fact his manometer
had to be made considerably less sensitive when very great pressure was employed.
For the reasons just pointed out I cannot wholly trust these calculations, and there­
fore I think it unnecessary to give them here. But they agree (with only one
exception, for 29°’43 C.) in a very remarkable manner in showing that the values of 
A and B steadily increase with rise of temperature up to about 40° C., and thence 
apparently diminish. That the value of A should at first steadily increase with rise 
of temperature was of course to be expected as a consequence of the known change 
of molecular structure if (in accordance with the supposed analogy of the kinetic 
gas formula above quoted) it represents the utmost fractional diminution of volume 
which can be produced by unlimited pressure. And Canton’s old discovery, that rise 
of temperature involves diminution of compressibility, requires that B should at first 
increase more rapidly than does A. [This is not necessarily inconsistent with the 
commonly received statement that the surface-tension of water is, in all cases, 
diminished by rise of temperature.] The turning-point seems to be connected with 
the temperature of minimum compressibility, discovered by Pagliani and Vincentini.

T. II. 43
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The behaviour of water at ordinary temperatures is of such an exceptional 
character that we cannot feel certain that aqueous solutions may not show more than 
mere traces of it. In my projected experiments, therefore, I intend to employ at 
least three different solutions of each of the salts to be examined, one of them 
being only a little below saturation strength. The comparison of the results for 
solutions of very different strength may enable me to eliminate the effects of the 
peculiarities of the solvent.

As a contrast to the behaviour of water, above discussed, I give some results 
for sulphuric ether; also founded on data furnished to me three years ago by M. 
Amagat. These data were given to four decimal places only.

improve it where defective, while otherwise scarcely interfering with it.

Pressure.
1

501 
1001 
1501 
2001
2501 
3001

0° 
Amagat. 
1-0000 

•9468 
•9130 
•8884 
•8684 
•8522 
•8394

C.
Formula.
1-0000

•9498
•9156
•8885
•8684
•8524
■8395

20°'2C.
Amagat. Formula.
1-0320 10320

■9673 -9722
•9294 -9311
•9018 -9018
■8805 -8797
•8630 -8624
•8484 -8484

The agreement is not by any means so complete 
but it is probable that slight changes in the values

as 
of

in the case of water:— 
the constants may greatly

The formulae for average compressibility employed were, respectively,

-2863
2350 + p for 0°, and •3016

2086 + p for 20o,2.

(Note that calculation from the data, direct, gives 0'31126 as the value of A 
in the second of these, but this has to be divided by the volume at one atmosphere.) 
Here, according to the previous mode of interpretation, the Laplace-pressure is 
diminished, and the ultimate volume seems to be increased by rise of temperature, 
as was to be expected.
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PRELIMINARY NOTE ON THE COMPRESSIBILITY OF AQUEOUS 
SOLUTIONS, IN CONNECTION WITH MOLECULAR PRESSURE.

[Proceedings of the Royal Society of Edinburgh, June 5, 1893.]

The experiments referred to in my paper of March 6th (anti, No. CVII.) have 
been completed, but the results are by no means so exact as I hoped to make them. 
There was great difficulty in procuring the small bore tubes for the piezometers, and 
thus I had to employ them without previous calibration, as the solutions to be experi­
mented on had already been prepared, and their densities determined at definite 
temperatures. Delay might have led to evaporation. When I proceeded to the 
calibration, after completing a large series of experiments, I was greatly annoyed to 
find that the bores of many of the tubes were by no means uniform. This accounts 
for the fact that my experiments, though fairly concordant, are not sufficiently so to 
afford more than a very strong probability in favour of the general result of the inquiry. 
For this reason I have described my paper as a Preliminary Note.

The idea I sought to develop was of the following nature. I had found that the 
average compressibility of water, at any one temperature, could be well represented by 
the simple formula

A
B + p’

where p is the range of pressure through which the compressibility is measured; A and 
B being functions of temperature. But I also found that for aqueous solutions of 
common salt, of different strengths, and at the same temperature as the water, the 
formula was altered to

A
B + s + p’

43—2
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where A and B were as before, and s was proportional to the weight of salt dissolved 
in 100 of water. In particular that, when 1 ton weight per square inch (152'3 atmo­
spheres) is the pressure unit, s is nearly the weight of salt in 100 of water.

Theoretical speculations (given at some length in my Report on some of the 
Physical Properties of Water, ante, No. LXI.) led me to look on the B, and the B + s, 
of these formulae as being connected with the molecular pressure in the liquid, and 
I developed one application of them, relating to the maximum density points of various 
solutions of common salt.

The present series of experiments was conducted precisely as were the earlier ones, 
but unfortunately many of the piezometers (of which a large number were required 
in order that several solutions should be operated on at the same time) were new, 
and (as I afterwards found) faulty. The selection of the salts was undertaken by 
Dr Crum Brown, and the solutions were made and the density determinations effected 
in his Laboratory by Mr A. F. Watson.

I give these at once, as they have intrinsic value altogether apart from my work 
and my hypothesis.

In the following table the letters $ and W stand for the masses of salt, and of 
water, respectively. Mr Watson remarks that the error in the numbers of the first 
column, from which the second was calculated, does not exceed 1 in 1000. The error 
in the densities does not exceed unit in the fourth decimal place.

Q
1(KW

Temp.
C. Sp. Gr. Temp.

C. Sp. Gr.

Potassium lodide-
14'538 17'011 50-5 1-1197 13°'5 1T179
9'302 10'256 5°-6 1'0737 12°-2 1'0727
4'313 4'507 5°'4 10329 12°0 1'0323

Potassium Ferrocyanide—
14089 16'399 5°'5 1'0987 13°'5 1'0967
9'411 10'389 6°'3 1'0620 12°T 1-0610
4'753 4'990 6°'O 1-0328 ll°-4 10322

Ammonium Sulphate—
15'938 18'960 6°'8 1'0954 11°'2 10944
9'232 10T71 6°'3 1'0559 12°'7 1-0547
5'301 5'597 5°'7 1'0326 12°'l 10317

Magnesium Sulphate—
13'836 16'058 6°'8 1'1489 ll°-2 11479

9'508 10'507 5°'8 1'1005 13°1 1-0990
5'869 6'235 5°'7 1'0614 12°1 1-0602
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a S'
100 w

Temp. 
C. Sp. Gr. Te“P- Sp. Gr.

c.
Barium Chloride—

13798 16006 5°-8 IT 366 ll°-2 11354
9-096 10-006 5°-8 1-0869 13°T 10855
4'585 4’805 5°-6 1-0423 12°-2 1-0416

To these may be added 
Report referred to.

the following, due to Dr Gibson, from my Challenger

Sodium Chloride—
0° C. 6° C. 12° C.

17-6358 1-138467 1-136040 1T33565
13-3610 1-101300 1-099341 1-097244
8-8078 1-067589 1-066144 1-064485
3-8845 1-029664 1-028979 1-027935

Although I made at least two observations at eachi of the pressures 1, 2, and
3 tons, on each solution, in each of two piezometers, I publish in this Abstract nothing 
beyond some mean results at one temperature and for one pressure:—viz. 12°C. and 2 tons. 
These are fairly representative of the whole work. The columns of mercury used in 
calibration corresponded nearly with the parts of the tubes concerned in the measured 
compression at that pressure; and, on such lengths of tube, errors of measurement due 
to slight changes of temperature of the solution, &c., are comparatively insignificant.

The change of (unit) volume of water per ton at 12° C. and 2 tons is (by my 
former work)

If to the 36 in this expression be added the product of the quantity s below given 
for any one salt, multiplied by the percentage of the salt, we have the numbers in 
the column headed Calc. Those headed Obs. were obtained as stated above; and the 
agreement is on the whole satisfactory. The old determinations for common salt are
included in the table, though they show rather less concordance than the others.

100 4 s Obs. Calc.

Sodium Chloride—
17-6 IT 0-00428 0-00431
134 472 470

8-8 524 519
3-9 594 585

Magnesium Sulphate—
1606 10 450 457
10-51 510 510
6-23 555 559
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1001 s Obs. Cale.

Ammonium Sulphate—
18-96 0-77 0-00475 0-00470
10-17 542 540
5’5 575 580

Potassium Ferrocyanide—
16-4 062 512 513
10-4 554 556

5-0 605 602

Barium Chloride—
16'0 0-52 530 534
100 573 573

4-8 612 611

Potassium Iodide—
1701 0-29 576 576
10-25 602 603
4'5 627 629

As stated in my previous note, my formula agrees extremely well with the recent 
determinations of Amagat, of compression of water up to 3000 atmospheres. But the 
values of A and B which I deduced from them (especially about 12° C.) are some­
what larger than mine, though they bear to one another nearly the same ratio. If 
I had used his value of B, the coincidences above would not have been sensibly impaired, 
but the values of s would have come out a little greater.
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ON THE COMPRESSIBILITY OF FLUIDS.

[Proceedings of the Royal Society of Edinburgh, January 15, 1894.]

The recent publication of the full results of Amagat’s magnificent experiments has 
led me to make further comparisons with the empirical formula (originally suggested 
by the graphs of my Challenger work) which I have on several occasions brought 
before the Society:—viz.

v,, — v _ e 
pva -n+p’

I find that Amagat’s results, for a number of common liquids, from 1 to 3000 atm. 
may be fairly represented by substituting the following values of e and II in the 
above formula:—

0° 10° 20° 30° 40° C.

Ether 0’291 •296 ■302 •310 •319
' 2420 2240 2100 1980 1860

Ethylic Alcohol 0'274 •280 •281 •287 •288
’ 3230 3130 2970 2865 2700

Methylic „ 0-283 •290 •295 •302
‘ 3240 3180 2990 2870

Propylic „ 0-265 •271 •277 ■274
’ 3510 3390 3200 2880

Bisulphide of Carbon 0-286
' 3970

•286
3720

•291
3560

■294
3370

■299
3190

Iodide of Ethyl 0’288
3570

• • •291
2920
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0° 10° 20° 30° 40° C.
0'278 •293

Chloride of Phosphorus . 3490 2990
0'284 •298

Acetone . . • ’3180 2570

For the curiously exceptional case of water we have
o°c. 2°-l 4°'35 6°-85 10°-l 14°-25 20°-4 29°-43 40°-45 48°-85

0'303 ■303 •307 •311 •313 •314 •314 •313 •327 •323
5940 6030 6220 6390 6560 6680 6830 6940 7520 7440

whence compressibility for low pressures,

0'0000511 503 493 486 478 470 459 449 434 434

The agreement with the experimental data would be somewhat closer if II for 
any one temperature were (in accordance with theory) regarded as a quantity which 
increases with the compression produced.

For the present, as no definite theoretical basis has been assigned for it, the formula 
must be regarded merely as an exceedingly convenient mode of summarizing the ex­
perimental results; justified by the closeness of its general agreement with them.

On these numbers remark

First, that e is nearly the same for all the liquids in the table:—its lowest value 
being for propylic alcohol, and its highest for water. But the differences of these 
extremes from the mean of all are less than 7 per cent. Hence it seems that ordinary 
liquids, as a rule, would be reduced by infinite pressure to about 70 per cent, of their 
usual volume:—provided, of course, that the formula remains applicable for pressures 
immensely exceeding even the enormous ones applied by Amagat.

Second, e increases, as a rule, with rise of temperature. [But it does not appear 
to increase, in any case, so much as to make the ultimate volume diminish when 
temperature rises.]

Third. Except in the case of water, H falls off rapidly with rise of temperature. 
This was, of course, to be expected from the increase of volume; and it is the chief 
cause of the increase of compressibility as given by the formula. But the value of n 
does not seem to vary inversely as the square of the volume.

Fourth. In the exceptional case of water, H increases steadily with rise of tempera­
ture, at least up to 40° C. This is the immediate cause of the diminution of com­
pressibility given by the formula as the temperature is raised. But, so far as the present 
rough calculations go, Amagat’s data would seem to make the temperature of minimum 
compressibility considerably lower than that assigned by Pagliani and Vincentini. [This 
may be due to the great range of pressure, or to the fact that the formula treats H 
as a constant instead of taking account of its increase with compression.]

It is interesting to compare, with these, some (necessarily very rough) results fo 
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a substance which requires considerable external pressure to keep it in the liquid state. 
It is shown that if the empirical formula, above, be true generally for any substance, 
it holds from any initial value of p0*> provided that we give e and II proper corre­
sponding changes of value. The new II is greater than the old by the pressure at 
the new v0. The new e must be employed with the new initial volume to give the 
ultimate volume. The following data were calculated from Amagat’s Tables 13 and 19 
(Ann. de Chimie, XXIX., 1893). The first of the three volumes given for each temperature 
is that of the substance when just wholly liquefied by pressure. This comparison is 
by no means a fair one, for the range of volumes is very different alike in extent 
and in situation, for the different temperatures. And, from the extremely great com­
pressibility of the liquid when just formed, we should expect to find the assumption 
of constant II very far from the truth.

Carbonic Acid.
Temp.

P 
34’4

0° C.
V

•002145 44’4

10°

•002338 56’4

20°

•002609 70-7

30°

•003282
500 1781 500 1826 500 1876 500 1926

1000 1656 1000 1685 1000 1716 1000 1748
From these we obtain the following sets of values of e and II:—

0-335 0'373 0'424 0-527
420 276 170 48

The value of II, calculated from the altered formula, has, in each case, been diminished 
by the corresponding initial value of p. We see that e increases with great rapidity 
as the temperature rises:—but the indicated ultimate volumes of carbonic acid, under 
infinite pressure, are not much affected thereby, being respectively

000143 147 150 155
where the unit is the volume of the gas at 0° C. and 1 atm.

The values of II are, of course, small; and they diminish rapidly with rise of 
temperature. [The critical point is about 31°'35 C., which is but little above the 
highest temperature in the table.]

A fairer test than the above, from one point of view at least, might have been 
based upon Amagat’s important Table 17, had it given data for (say) vol. =’00225
at each temperature in 
I could, by taking the 
the results obtained.

addition to those at ’0025 and '0020. I have done the best 
nearest data directly given in Table 13. Here are a few of

* [Thus, from = ep and 1,0 = epi
Vo ff+p’ n+p/

we have at once vi~v -cvo( p Pi A
Vj vAn+p n+pj

n(p-px)~... r p~p' 
'(n+i-epjn+p 'Hj + tp-pj’

if we write Ue
«i =.......    , and n^II+pj. 1899.]

II +1 - epj
T. II. 44
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Carbonic Acid.

20° C. 30° 40° 50°
p V

64'4 '0025 109 -0025 155 '0025 201 -0025
150 '002173 200 -0022 225 -00228 300 -002255
300 002 384 -002 470-5 002 560 -002

e -2833 ■2936 •3136 •3312
n 35'6 22-7 24’5 34-6

Hit. Vol. -001792 •001766 •001716 •001672

Other deductions from Amagat’s data are given, in considerable numbers:—from regions 
of the CO2 diagram in which II is respectively +, —, or even zero, the latter be­
longing of course to the conditions under which it behaves as a true gas. Thus, taking 
the data for volumes

0'01636, 0'013, and 0 01

we obtain the values of II given in the first line of the table below. Here the 
substance was, throughout, at density less than the critical. The second line gives 
the corresponding results for a range of volumes which includes the critical volume:—viz.

0'00578, 0'00428, 0'00316.

The application of the formula to this series (where the part of the isothermal which 
is treated contains a point of contrary flexure) is obviously a matter rather of curiosity 
than of science.

Finally, the third line gives data for volumes all well under the critical volume:— 
viz.

0'00316, 0'00250, and 0 002.

Values of H for CO2 (in Atmospheres).

Temp. 30° C. 35° 40° 50° 60° 70° 80° 90° 100° 198°
(58-5) 34-3 14'2 4-9 2’4 0-5 - 1-2 - 2-1 - 8

-73-5 — 75'5 - 77 -78'6 -80’5 -80 — 81T - 80-3 -80-5
[35-6] -38-6 -43 -42 - 46-5 - 47 - 46'5 — 46'5

The single number in ( ) refers to vapour, that in [ ] to liquid; all the others
to gas. The results for volumes greater than the critical volume are very interesting.

The rest of the paper deals with (unsuccessful) attempts to apply, to Amagat’s data, 
the equation of Van der Waals:—viz.

(p + ^^^RT,

The arguments in consequence of which the constituent A/v2 was originally introduced
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and, as I have elsewhere* endeavoured to show, incorrectly introduced, were specially 
based upon the properties of liquids, rather than of fluids in general; and it is 
therefore to be expected that the formula, if valid, should be specially applicable to 
liquids.

The most valuable characteristic of the equation above, in addition to its special 
merit of giving in certain cases three real values of v, and therefore, in a sense, 
representing the results of Andrews and the conclusions of J. Thomson, is its simplicity. 
But this simplicity depends essentially upon the understanding that A, 0, and R are 
genuine constants-, or, at least, may be treated as such through moderate ranges of 
volume:—as, for instance, in the compression of an ordinary liquid by 3000 atmo­
spheres. The equation loses its value (from this point of view) entirely if, as has been, 
suggested, 0 is a sort of adjustable constant! For if it be so, it ought to be 
expressed as a function of v, or of v and t, and then the simplicity of the whole 
is gone.

Selecting, as before, a set of three corresponding pairs of values of p and v for 
any one temperature, we form three equations which lead to a quadratic in A, when 
0 and R are eliminated. This involves heavy numerical work, and the results are so 
much modified by very slight changes in the data (quite within the limits of experi­
mental error) that I was fain to try the simpler process of assuming tentative values 
for A, and determining the other constants from them:—the equations being then 
linear. But I found that very wide ranges of tentative values of A seemed to suit 
the conditions, to the same (extremely rough) approximation. I could get nothing 
satisfactory. The reason is easily found by making a case in which the labour of 
calculation shall be, to a considerable extent, avoided. It is clear, from the numbers 
in the early part of this paper, that we may lawfully assume the existence of a liquid 
which, for some special (ordinary) temperature, shall give

11 = 2700 atm., e = 0'3.
With these numbers the calculation is very much simplified. For such a liquid, if 
its volume were 1 at atmospheric pressure, would be reduced to 25/28 by 1500 atm., 
and to 16/19 by 3000 atm. The quadratic to which Van der Waals’ formula leads, 
is found to have imaginary roots!

The main cause of this totally-unexpected result seems to be the factor l/-y3 in 
the term corresponding to K. Its effect is to make K increase at a rate quite in­
consistent with the experimental data, at least if the rest of the equation is to retain 
its present form. This is easily seen by taking the following roughly approximate values 

by a graphic process from

•85

17

2570.
* Trans. R. S. E., xxxvi. ii. (1891). Ante, No. lxxx. See also Correspondence with Lord Rayleigh and 

Prof. Korteweg (Nature, xliv. and xlv.) [Part of this has been given on p. 208 above. 1899.]
44—2

of for ether, at constant volume, which 
at

Amagat’s Table 29.

I

v 1 •95 •9

v const., 

at 0° C.

10 12 14'5

1 1250
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Since Van der Waals’ equation gives, for constant volume, 

we easily find the approximate values

R = 063, R = 3-8 ;

and the complete formula is something like
/ 2804\(p + J (v - 0-63) = 1037 + 3-8i,

where t is temperature centigrade.

This cannot be very far wrong, so far at least as /? and R are concerned, for 

it gives the following calculated values of (at the four selected volumes above) which do 
are compared with the observed values:—

Obs. 10 12 14-5 17
Calc. 10'27 11-9 14'1 17'3.

But when we calculate the corresponding pressures and compare them with those 
observed, we have

Obs. 1 460 1250 2570
Calc. 1 134 379 833.

The differences between the numbers in each pair are due to the very rapid increase 
of the K term in the formula, for moderate diminutions of volume. The following 
comparison is instructive. The first numbers are calculated on the hypothesis that K 
is inversely as v2. Those in the second line are the corresponding values of K re­
quired to make an approximate agreement between Amagat’s data, and the (numerical) 
formula above:—

2804 3107 3462 3881
2803 2781 2591 2144.

Thus the requisite values of K diminish rapidly, instead of increasing, as the 
compression proceeds. In fact it would seem as if Van der Waals’ equation gives 
impossible roots in precisely that limited region where experiment shows that real 
ones are to be found. I intend soon to examine the cause of this strange result from 
a purely mathematical point of view.
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ex.

ON THE APPLICATION OF VAN DER WAALS’ EQUATION TO 
THE COMPRESSION OF ORDINARY LIQUIDS.

[Proceedings of the Royal Society of Edinburgh, June 4, 1894]

In a paper, read for me to the Society in January last (ante, No. CIX.) I pointed 
out the difficulties I had met with in trying to reconcile Van der Waals’ equation 
with Amagat’s experimental data for common liquids, and I promised to recur to the 
question when the state of my health should permit. I now find that, as I had then 
only surmised, the constants in Van der Waals’ equation necessarily become non-real 
when we try to adjust it to Amagat’s data.

The proof of this assertion is very simple. Suppose the equation

(p + ^) 0 “ #) = BT
to hold for any three pairs of values of p and v; say p and a, q and b, r and c. 
Eliminating BT among the three resulting equations, we have

The values of A are therefore to be found from the quadratic

~ + (ab -bc + ca)l - S [pq (a - b)} = 0.

m , • -n b — c „ c — a „ a — b
Write, for brevity, P = P-^r> Q = R =U U OU/ U U 
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so that one at least of P, Q, R is essentially negative, if p, q, r be all positive. The 
condition that the values of A shall be real is

[S {P (ab — bc + ca)}]2 + 42 {HQ (a — 6)2 c2} > 0.

But it is an obvious theorem of ordinary algebra, that, whatever be the quantities 
involved, the two expressions

(lx + my + nz)2 + {xy (I — m)2 + yz (m — w)2 + zx (n — I)2}

and (x + y + z)(l2x + m2y + n2z)

are absolutely identical except in form.

Hence the condition for real values of A is simply that

(P + Q + R) [P (ab — bc + ca)2 + Q (ab + bc — ca)2 + R (—ab + be + ca)2} 

shall be positive:—i.e. that its factors shall have the same sign.

To compare with experiment, let us take r = 1 atm., c = 1; and find the relation 
between the values of p and q, the pressures when the volume is reduced to a = 0 9, 
and b = 0’95, respectively.

The factors of the above quantity are

005 01 005
P (0'95)2 + 2 (0'9)2 (0-95)2 (0’9)2

and 0-05 (0-805)2 0'1 (0 905)2 0’05 (0 995)2
P (095)2 + 2 (0 9)2 (095)2 (09)2 ’

or, quite approximately enough for our purpose,

-p + 2'228? — 1’234

and — p + 2'816? — 1’886.

In the latter form each has been divided by the (essentially positive) multiplier of p; 
and, as p and q are each of the order 1000 atm., the last terms may usually be 
disregarded. Thus it appears that the values of A cannot be real if p(q lie between 
the approximate limits 2’23 and 2'82. But from Amagat’s data we easily calculate 
the following sufficiently accurate values:—

Ratio of Pressures at 0° C. for Volumes 0’9 and 0’95.

Water. Bisulphide 
of Carbon.

Methylic 
Alcohol.

Ethylic 
Alcohol.

Chloride 
of Ethyl.

Propylic 
Alcohol. Ether.

2’51 2’61 2’65 2-65 2’69 2 71 2’73

[The values of q range from 458 atm. in the case of ether to 1166 atm. in that of 
water.] All of these ratios lie well within the limits of the region in which the 
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constants of Van der Waals’ equation are non-real; though they are, as a rule, nearer 
to the upper than to the lower limit.

But it is well to inquire what values A assumes at the limits of this region, 
when it has just become real. A rough calculation shows that when p/q = 2'23 we 
have A — — IS'lg' (a tension); and for p/q = 2'82, A = 207. Outside these limits A has 
of course two values.

It thus appears that Van der Waals’ equation becomes altogether meaningless except 
for liquids in which the compressibility alters very much with increase of pressure:— 
i.e. for substances which have just assumed the liquid form under considerable pressure. 
For, of course, under the lower limit we are dealing with substances naturally in a state 
of tension. As I said in my previous paper, this state of things is due mainly to 
the factor 1/v2 with which A (if taken as corresponding to my II) is affected. There 
is little doubt that the II term in my formula does increase as the volume is diminished, 
but much more slowly than in the inverse ratio of the square of the volume.

(Added 6/6/94.) It may be interesting to look at the above result from a different 
point of view, so as to find why it is impossible to reconcile the general equation of 
Van der Waals with the experiments of Amagat.

For this purpose let us take as independent variable, and (using the same data 
as before) find the value of p/q. Eliminating BT and A, we obtain the equation 

from which, at once,

p_* (c2 - a2) (6 - ^) r c*(a>-b*)(c-/3)(^-/3}

q a^-c*)(a-/3)^c-^ q

In the further discussion of this equation we may neglect the last term (which 
is usually very much smaller than the preceding term, and becomes infinite for the 
same values of 3)- Its only noticeable effect is to slightly alter the values of 0 for 
which p/q vanishes. We therefore have, to a quite sufficient approximation,

P ?1712---------- ---------------

where the literal factors have been retained in the more important portion. The value 
of p/q in terms of /3 is thus seen to be a numerical multiple of the ratio of the 
corresponding ordinates of two equal and similarly situated parabolas, whose vertices 
do not coincide. The first cuts the axis of x at b and ca/(c + a), the second at a and 
bcftb + c), so that the second lies wholly within the first while y is negative. They
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intersect in the single point whose abscissa is dbc^ab + be + ca). These parabolas are 
shown in the cut below.

The values of p/q are the ordinates of the chief curve. This has three asymptotes:— 
two parallel to y, and cutting x at a and 6c/(6 + c) respectively; and the third at 
a constant distance, 2'1712, from the axis of x. Its maximum ordinates are given by 
the equation

d ~ ~0 \o -r u- /
dx , \ ( bo \’<a-xAbTc-X)

or 0 = (ab 4- be 4- ca) x2 — 2abcx.
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Thus the maximum (at A in the cut) is on the axis of y; and the minimum (at B) 
corresponds to x = 0'6321. Their values are 2'228 and 2'816 respectively; and the 
ordinate of the point of intersection of the construction-parabolas lies midway between 
them.

Thus, since the minimum numerically exceeds the maximum, the curve has no 
ordinate intermediate to these values; and therefore no selection of real constants can 
make Van der Waals’ equation applicable to a liquid in which the pressure, required 
to reduce its volume by 10 per cent., exceeds that required for a 5 per cent, reduction, 
in any ratio between 2'228 and 2'816.

Moreover, in accordance with what has been said above about the term A/v1, it 
is only while the ratio of pressures exceeds the higher of these limits that this term 
represents a pressure, and not a tension. For the graph of A/q in terms of /3 is easily 
seen to be a rectangular hyperbola whose asymptotes are parallel to the axes; cutting 
a; at 6c/(6+c), and y at b2c21 (52 - c2). The curve cuts x at b, and so its ordinates are 
positive from bc/(b + c) to b, only.

T. II. 45
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CXI.

NOTE ON THE COMPRESSIBILITY OF SOLUTIONS OF SUGAR.

[Proceedings of the Royal Society of Edinburgh, July 18, 1898.]

In continuation of former investigations of the alteration of compressibility of water, 
which is produced by dissolving various salts in it, I was led to imagine that some 
instructive results might be furnished by solutions such as those of sugar, whose bulk 
is nearly the sum of the bulks of their constituents:—for, in them, we might expect 
little change in compressibility from that of water itself; i.e. in accordance with my 
hypothetical formula, little change in the term regarded as representing the molecular 
pressure.

The following preliminary results have recently been obtained for me by Mr Shand, 
Nichol Foundationer, who employed the Fraser gun and the Amagat gauge procured 
for my “ Challenger ” work:—and a new set of piezometers of the same (Ford’s) glass 
as that whose compressibility I had determined to be 00000026. These have been 
carefully gauged, but have not as yet been directly compared with those formerly 
employed.

The solutions experimented on were prepared, in Dr Crum Brown’s Laboratory, by 
Mr W. W. Taylor, M.A., B.Sc., and contained respectively 5, 10, 15, 20 parts, by weight, 
of sugar to 100 of water. The temperature varied but slightly from 120-4 C. during 
the whole course of the experiments.

Average Compressibility per Atmosphere, at 12o-4 C.

Sugar per 100 water 0 5 10 15 20
For first ton . . . 0-00004650 4430 4265 4109 3965

„ two tons . . 4520 4316 4160 4013 3875
„ three tons . 4410 4210 4065 3920 3789
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The numbers in the first column were taken direct from the Plate in my second 
Challenger Report (ante, No. LXL), 0'0000026 being (of course) added to each.

The Reciprocals of these numbers are, in order,

of water.

2151 2257 2344 2439 2522
2212 2317 2404 2492 2581
2268 2375 2460 2551 2640

Comparing with the formula, we see that these reciprocals should be, in the
first column proportional to n, n + i, II + 2; in the second to II + 5x, n + 1 + 5«,
II + 2 + 5®; etc., where x is the increase of II for 1 part sugar in 100 (by weight)

The results are not very concordant, especially in the second and fifth columns 
(which seem to indicate some error in the gauging of the corresponding piezometers), 
but they are all fairly satisfied by taking

n : 1 : X = 2151 : 581 : 19'2;

so that the actual value of II appears to be 37 tons’ weight per sq. inch.

Thus it appears that the effect of sugar is, weight for weight, barely one-third 
of that of common salt in reducing the compressibility of water; for, with common 
salt, x = 1 nearly.

45-2
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CXII

ON THE PATH OF A ROTATING SPHERICAL PROJECTILE.

[Transactions of the Royal Society of Edinburgh, Vol. xxxvn. June 5, and July 3, 1893.]

The curious effects of rotation upon the path of a spherical projectile have been 
investigated experimentally by Robins and many others, of whom Magnus is one 
of the more recent. They have also been the subject of elaborate mathematical 
investigation, especially by Poisson, who has published a large treatise on the question*.  
For all that, we know as yet very little more about them than Newton did in 1666, 
when he made his famous experiments on what we now call dispersion. Writing to 
Oldenburg an account of these experiments in 1671-2f, he says:—

* Recherches sur le Mouvement des Projectiles dans VAir. Paris, 1839. 
+ Isaaci Newtoni Opera qua exstant Omnia (Horsley), vol. iv. p. 297.

“Then I began to suspect whether the rays, in their trajection through the prism, 
did not move in curve lines, and according to their more or less curvity, tend to divers 
parts of the wall. And it increased my suspicion, when I remembered that I had 
often seen a tennis-ball, struck with an oblique racket, describe such a curve line. For, 
a circular as well as a progressive motion being communicated to it by that stroke, 
its parts, on that side where the motions conspire, must press and beat the contiguous 
air more violently than on the other; and there excite a reluctancy and re-action of the 
air proportionably greater. And for the same reason, if the rays of light should possibly 
be globular bodies, and by their oblique passage out of one medium into another acquire 
a circulating motion, they ought to feel the greater resistance from the ambient aether, 
on that side where the motions conspire, and thence be continually bowed to the other.”

From this remarkable passage it is clear that Newton was fully aware of the effect 
of rotation in producing curvature in the path of a ball, also that it could be of 
sufficient amount to be easily noticed in the short flight of a tennis-ball; that he 
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correctly described the direction of the deviation, and that he ascribed the effect to 
difference of air-pressure for which he assigned a cause. All that has since been done 
experimentally seems merely to have given various more or less striking illustrations 
of these facts, without any attempt to find how the deflecting force depends upon the 
velocities of translation and rotation: and I am not aware of any successful attempt 
to extend or improve Newton’s suggestion of a theoretical explanation. It seems in 
fact to have been altogether unnoticed, perhaps even ignored.

Thus Robins*, writing some seventy years later than the date of Newton’s letter, 
speaks of

“the hitherto unheeded effects produced by this resistance; for its action is not 
solely employed in retarding the motions of projectiles, but some part of it exerted 
in deflecting them from their course, and in twisting them in all kinds of directions 
from their regular track; this is a doctrine, which, notwithstanding its prodigious 
import to the present subject, hath been hitherto entirely unknown, or unattended 
to; and therefore the experiments, by which I have confirmed it, merit, I conceive, 
a particular description; as they are themselves too of a very singular kind ”

Robins measured accurately, by means of thin screens placed across his range, the 
deviation (to right or left) of successive shots fired from a gun which could be exactly 
replaced in its normal position, after each discharge; and found that it increased 
much more rapidly than in simple proportion to the distance. Then he experimented 
successfully with a gun whose barrel was bent a little to the left near the muzzle 
with the view of forcing a loose-fitting bullet to rotate by making it roll on one side 
of the bore. The bullet, of course, at first deviated a little to the left; but this was 
soon got over, and it then persistently curved away to the right. And he showed the 
effect of rotation very excellently by suspending a ball by two strings twisted together, 
so as to give rotation to it when it was made to vibrate as a pendulum. The plane 
of vibration rotated in the same sense as did the ball.

I have not had an opportunity of consulting, in the original, Euler’s remarks on 
this question. The following quotations are taken from a retranslationf of his German 
version of Robins’ work, but the statements they contain are so definite that the 
translator cannot be supposed to have misrepresented their meaning:—

“The cause which Mr Robins assigns for the uncertainty of the shot cannot be 
the true one, since we have indisputably proved, that it arises from the figure of the 
ball only.” p. 313.

“if the ball has a progressive motion, we may, as has been already shown, consider 
it at rest, and the air flowing against it with the velocity of the ball’s motion; for 
the force with which the particles of air act on the body will be the same in both 
cases.” [Then follows an investigation.].................... “hence this proposition appears

* New Principles of Gunnery (new edit.), 1805, p. 206. The paper referred to is stated to have been read 
to the Royal Society in 1717.

+ “ The true Principles of Gunnery investigated and explained, comprehending translations of Professor 
Euler’s Observations, &c. &c.” By Hugh Brown. London, 1277 (sic).
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indisputably true; that a perfectly spherical body which, besides its progressive motion, 
revolves round its centre, will suffer the same resistance as if it had no such rotation. 
If, therefore, such a ball should receive two such motions in the cannon, yet its progressive 
motion in the air would be the very same as if it had no rotation.” pp. 315-7.

Poisson’s treatment of the subject is altogether unnecessarily prolix, and in con­
sequence not very easily understood. It is sufficient to say that, like Euler, he rejects*  
Robins’ explanation; and that his basis of investigation of the effects of rotation on 
the path of a homogeneous sphere really amounts to no more than this:—that, since 
friction is greater where the density of the air is greater, the front of the ball suffers 
greater friction than does the back. Thus there is a lateral force, which he shows 
to be very small, tending to deflect the ball as if it were rolling upon the air in 
front of it. As this is exactly the opposite of the effect described by Robins, I feared 
at first that I must have misunderstood Poisson’s mathematics. But this feeling gave 
way to one of astonishment when I read further; for there can be no doubt of the 
meaning of the following passage which occurs in his comments on the investigation:—

* Poisson, in fact, says of his own results:—“ NSanmoins, d’apris la composition de la formula qui exprime 
la deviation horizontale h la distance du canon oil le boulet retombe sur le terrain, on reconnait facilement 
que cette deviation ne peut jamais etre qu’une tris petite fraction de la longeur de la portae; en sorte que 
ce n’est pas au frottement de la surface du boulet contre la couche d’air adjacente et d’inbgale density, que 
sont dues principalement les deviations observees, ainsi que Robins et Lombard 1’avait pens A” Memoire sur 
le Mouvement des Projectiles, &c. Comptes Rendus, 5 Mars, 1838, p. 288.

t “ Ueber die Abweichung der Geschosse,” Berlin Trans., 1852.

“C’est ce que 1’on peut aussi regarder comme Evident a priori, si 1’on considere 
que cette deviation est due a 1’exces de la density de 1’air en avant du projectile, 
sur sa density en arriere; exces qui donne lieu a un plus grand frottement du fluide, 
contre 1’h^misphere antdrieur, et a un moindre contre 1’hdmisphbre posterieur .... 
il en resultera une force horizontale qui poussera ce point [the centre of inertia] dans 
le sens du plus grand frottement ou en sens contraire de la rotation a laquelle il 
rdpond, c’est-a-dire vers la gauche, quand les points de la partie antdrieure du projectile 
tourneront de gauche a droite, et vers la droite, lorsqu’ils tourneront de droite a gauche.” 
Recherches, &c., p. 119.

In fact, Poisson’s elaborate investigation leads to no term, in the expression for 
the normal component of the force, which can have different values at corresponding 
points of the two front semihemispheres of the projectile:—and it is to a force of 
this nature that Newton’s remarks and Robins’ experiments alike point.

The paper of Magnus f commences with a historical sketch of the question, but 
it contains no reference to Newton. The author obviously cannot have read Robins’ 
papers, for he mentions his work only once, and in the following altogether inadequate 
and unappreciative fashion:—

“ Robins, der zuerst eine Erklarung dieser Abweichung in seinen Principles of 
Gunnery versucht hat, glaubte, dass die ablenkende Kraft durch die Umdrehung des 
Geschosses erzeugt werde, und gegenwartig nimmt man dies allgemein an.”
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Had Magnus known of the experiments with the crooked gun-barrel and the 
rotating pendulum, he would surely have employed a stronger expression than “glaubte”! 
For Robins says (p. 208) of his own pendulum experiment:—

“it was always easy to predict, before the ball was let go, which way it would 
deflect, only by considering on which side the whirl would be combined with the 
progressive motion; for on that side always the deflecting power acted; as the resistance 
was greater here, than on the side where the whirl and progressive motion were opposed 
to each other.”

This passage strongly resembles part of the extract already made from Newton’s 
letter. But Robins justly adds (two words have been italicized)—

“ This experiment is an incontestible proof, that, if any bullet, besides its progressive 
motion, hath a whirl round its axis, it will be deflected in the manner here described.”

The one novelty in the experiments of Magnus (so far as spherical projectiles are 
concerned) consisted in blowing a stream of air against the rotating body, instead of 
giving it a progressive as well as a rotatory motion; thus, in fact, realizing the idea 
suggested by Euler in one of the quotations made above. He was thus enabled, by 
means of little vanes, to trace out in a very interesting and instructive manner the 
character of the relative motion of the air and the rotating body. This was a cylinder 
instead of a sphere, so the effects were greater and of a simpler character, but not 
so directly applicable to bullets. Otherwise, his experiments are merely corroborative 
of those of Robins.

But neither Robins nor Magnus gives any hint as to the form of the expression 
for the deflecting force, in terms of the magnitudes of the translatory and the rotatory 
speed. That it depends upon both is obvious from the fact that it does not exist 
when either of them is absent, however great the other may be.

1. For some time my attention has been directed to this subject by the singularly 
inconsistent results which I obtained when endeavouring to determine the resistance 
which the air offers to a golf-ball.  The coefficient of resistance which I calculated 
from Robins’ data for iron balls, by introducing the mass and diameter of a golf-ball, 
was very soon found to be too small:—and I had grounds for belief that even the 
considerably greater value, calculated in a similar way from Bashforth’s data, was also 
too small. Hence the reason for my attempts to determine its value, however indirectly. 
The roughness of the ball has probably considerable influence; and, as will be seen 
later, so possibly has its rotation. I collected, with the efficient assistance of Mr T. 
Hodge (whose authority on such matters, alike from the practical and the observational 
point of view, no one in St Andrews will question), a fairly complete set of data for 
the average characteristics of a really fine drive:—elevation at starting, range, time 

*

* “The Unwritten Chapter on Golf,” Nature, 22/9/87; and “Some Points in the Physics of Golf,” Ibid., 
28/8/90, 24/9/91, 29/6/93. Also a popular article “Hammering and Driving,” Golf, 19/2/92; where the importance 
of underspin is considered, mainly from the point of view of stability of motion of a projectile which is 
always somewhat imperfect as regards both sphericity and homogeneity.
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of flight, position of vertex, &c. Assuming, as the definite result of all sound experiment 
from Robins to Bashforth*, that the resistance to a spherical projectile (whose speed 
is less than that of sound) varies nearly as the square of the speed, I tried to determine 
from my data the initial speed and the coefficient of resistance, treating the question 
as one of ordinary Kinetics of a Particle. We easily obtain, for a low trajectory, 
simple but sufficiently approximate expressions for the range, the time of flight, and 
the position of the vertex, in terms of the data of projection and the coefficient of 
resistance. If, then, we assume once for all an initial elevation of 1 in 4, the only 
disposable initial element is the speed of projection. Making various more or less 
probable assumptions as to its value, I found for each the corresponding coefficient 
of resistance which would give the datum range. Thus I obtained the means of 
calculating the time of flight and the position of the vertex of the path. The greater 
the assumed initial speed (short, of course, of that of sound) the larger is the coefficient 
of resistance required to give the datum range, and the more closely does the position of 
the vertex agree with observation; though it seems always considerably too near the 
middle of the path. But the calculated time of flight, which is greatest (for a given 
range) when there is no resistance, is always less than two-thirds of that observed:— 
while, for high speeds, and correspondingly high resistances, it is diminished to less 
than half the observed value. To make certain that this discrepancy was not due to 
the want of approximation in my equations, yet without the slightest hope of success 
in reconciling the various conflicting data, I made several calculations by the help of 
Bashforth’s very complete tables, which carry the approximation as far as could be 
wished; but the state of matters seemed worse rather than better. It then became 
clear to me that it is impossible for a projectile to pursue, for so long a period as 
six seconds, a path of only 180 yards, no part of which is so much as 100 feet above 
the ground:—unless there be some cause at work upon it which can, at least partially, 
counteract the effect of gravity. The only possible cause, in the circumstances, is 
underspin:—and it must, therefore, necessarily characterise, to a greater or less degree, 
every fine drive. (And I saw at once that I had not been mistaken in the opinion, 
which I had long ago formed from observation and had frequently expressed, that the 
very longest drives almost invariably go off at a comparatively slight elevation, and are 
concave upwards for nearly half the range.) In Nature (24/9/91) I said:—

“ it thus appears that.........................the rotation of the ball must play at least
as essential a part in the grandest feature of the game, as it has long been known 
to do in those most distressing peculiarities called heeling, toeing, slicing, &c.”

This conclusion, obvious as it seemed to myself, was vigorously contested by nearly 
all of the more prominent golfers to whom I mentioned it:—-being generally regarded as 
a sort of accusation, implying that the best players were habitually guilty of something 
quite as disgraceful as heeling or toeing, even though its effects might be beneficial 
instead of disastrous. The physical cause of the underspin appears at once when we 
consider that a good player usually tries to make the motion of the club-head as 
nearly as possible horizontal when it strikes the ball from the tee, and that he stands a

* On the Motion of Projectiles, 2nd edn., London, 1890.
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little behind the tee. Thus the club-head is moving at impact in a direction not 
perpendicular to the striking face; and, unless the ball be at once perfectly spherical 
and perfectly smooth, such treatment must give it underspin:—the more rapid the 
rougher are the ball and the face of the club. This is, simply, Newton’s “oblique 
racket.”

In fact, if the ball be treated as hard, and if the friction be sufficient to prevent 
slipping, there is necessarily a maximum elevation (about 34°) producible by a club 
moving horizontally at impact, however much “ spooned ” the face may be. This 
maximum is produced when the face of the club makes, with the sole, an angle of 
about 28°:—which is less than that of the most exaggerated “ baffy ” I have seen. 
This, taken along with the remark above (viz. that the longest drives usually go off at 
very small elevations), is another independent proof that there is considerable underspin.

Hence the practical conclusion, that the face of a spoon, if it is to do its proper 
work efficiently, ought to be as smooth as possible.

2. I next considered how to take account, in my equations, of the effects of the 
rotation; and it appeared to me most probable that this could be done, with quite 
sufficient approximation, by introducing a new force whose direction is perpendicular 
at once to the line of flight and to the axis of rotation of the ball:—concurrent in 
fact with the direction of rotatory motion of the foremost point of the surface. Various 
considerations tended to show that its magnitude must be at least nearly proportional 
to the speed of rotation and that of translation conjointly. Among these there is the 
simple one that its direction is reversed when either of these motions is reversed. 
This may be generalised; for if the vector axis, e, be anyhow inclined to the vector 
of translation, a, the direction (why not then the magnitude also, to a constant 
multiplier pres) of the deflecting force is given by Vea. Another is that, as the 
resistance (i.e. the pressure) on the non-rotating ball is proportional to the square of 
the speed, the pressures on the two front semihemispheres of the rotating ball must 
be (on the average) proportional to (v + eto)2 and (v — ew)2 respectively:—where v is the 
speed of translation, u> that of rotation, and e a linear constant. The resultant of 
these, perpendicular to the line of flight, will obviously be perpendicular also to the 
axis of rotation, and its magnitude will be as va. But I need not enumerate more 
arguments of this kind. In the absence of anything approaching to a complete theory 
of the phenomenon we must make some assumption, and the true test of the assumption 
is the comparison of its consequences with the results of observation or experiment. 
This I have attempted, with some success, as will be seen below.

3. Another associated question, of greater scientific difficulty but of less apparent 
importance to my work, was the expression for the rate of loss of energy of rotation 
by the ball. Is it, or is it not, seriously modified by the translation ? But here I 
had what seemed strong experimental evidence to go on, afforded by the fact that I 
had often seen a sliced or heeled ball rotating rapidly when it reached the ground 
at the end of its devious course. This is, of course, what would be expected if the 
deflecting force were the only, or at least the principal, result of the rotation:_ for, 
being always perpendicular to the direction of translation, it does no work. But, on

T. II. 46
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the other hand, if the friction on a rotating ball depends upon its rate of translation, 
the ball while flying should lose its spin faster than if its centre were at rest. This 
is a kind of information which might have been obtained at once from Magnus’ 
experiments, but unfortunately was not.

4. As I felt that there was a good deal of uncertainty about the whole of these 
speculations, I resolved to consult Sir G. G. Stokes. I therefore, without stating any 
arguments, asked him whether my assumptions appeared to him to be sufficiently 
well-founded to warrant the expenditure of some time and labour in developing their 
consequences:—and I was much encouraged by his reply. For he wrote:—

“if the linear velocity at the surface, due to the rotation, is small compared with 
the velocity of translation, I think your suggestion of the law of resistance a reasonable 
one, and likely to be approximately true. This would make the deflecting force vary 
as vm. I think too that the resistance in the line of flight will vary nearly as d2, 
irrespective of the velocity of rotation of the ball.

“As to the decrement of the energy of rotation, I think the second law which you 
suggested is likely to be approximately true. The linear velocity due to rotation, even 
at the surface where it is greatest, being supposed small, or at least tolerably small, 
compared with the velocity of translation, I think you are right in saying that the
force acting laterally upon the ball will vary, at least approximately, as vw. If this
acted through the centre, it would have no moment. But I think it will not act
through the centre, though probably not far from it, so that it would have a moment
varying as vco. Hence the decrement of angular velocity would vary as dw, and the 
decrement of energy of rotation as w (— dwjdt'), or as co . vw, or as W, according to 
your second formula.

“ However, I think the force at any point of the surface, of the nature of that 
which we have been considering, would act very approximately towards the centre, and 
therefore would have little moment, so that after all the moment of the force tending 
to check the rotation may depend rather on the spin directly than on its combination 
with the velocity of translation. But, if this be so, I doubt whether the diminution 
of rotation during the short time that the ball is flying is sufficient to make it worth 
while to take it into account.”

5. For a first inquiry, and one of great consequence as enabling us to get at 
least general notions of the magnitude of the deflecting force, let us take the simple 
case of a ball, projected in a direction perpendicular to its axis of rotation, in still 
air, and not acted on by gravity. [This would be the case of a top or “pearie,” 
with its axis vertical, travelling on a smooth horizontal plane.] Suppose, further, that 
the rate of rotation is constant. Then, in intrinsic coordinates, the equations of tan­
gential and normal acceleration given by our assumptions are

s = — s2/«, and s2/p = s2 = kas,ds
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respectively. The second may be put in either of the forms

<p = km, or = kmfs.

The first shows that the direction of motion revolves uniformly; the second, that the 
curvature is inversely as the speed of translation. And, as the first equation gives

s = Ve-S>a,
the intrinsic equation of the path is evidently

, ka>a . , 
^^-y- ~ !)>

if </> be measured from the initial direction of projection, and V be the initial speed. 
This is an endless spiral, which has an asymptote, but no multiple points, and whose 
curvature is

— es/a
V •

It therefore varies continuously from nil, at negative infinite values of s, to infinity 
at positive infinite values. Any arc of the spiral has therefore precisely the character 
of the horizontal projection of the path of a sliced, toed, or heeled, golf-ball; for it 
is obvious at once that the curvature steadily increases with the diminishing speed of 
the ball, thus far justifying the assumptions made in forming the equations of motion. 
We have only to trace this spiral, once for all, to get the path for any circumstances 
of projection. For the asymptote is obviously parallel to

, kma
cp =----y = — a suppose.

Measure from this direction, and the equation becomes
— aea'a.

a gives the length corresponding to unit in the figure; and a (which determines the 
point of it from which the ball starts) depends only upon a and the ratio of the spin 
to the initial speed. This, with <£/a and s/a interchanged, is the equation of the 
equiangular spiral, which would be the path if the resistance were directly as the speed.

6. This enables us to get an approximate idea of the possible value of km in the 
flight of a golf-ball. For if it be well sliced, its direction of motion when it reaches 
the ground is often at right angles to the initial direction, although the whole deviation 
from a straight path may not be more than 20 or 30 yards. Assume for a moment, 
what will be fully justified later, that in such a case we may have (say) s = 480 feet, 
a = 240 feet, and V = 350 foot-seconds. We see that

7T , 24 „ .x = km x x 6'4; 2 3o

so that km — ~ = 0’357, nearly,
0*0

gives a sort of average value, which may safely be used in future calculations. In 
the case just considered, the acceleration (at starting) due to the rotation, is 0’357 x 350

46—2 
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or nearly four-fold that of gravity: i.e., the initial deflecting force is four times the 
weight of the ball.

7. In trying to find the positions of the asymptote, and of the pole, of the spiral 
of § 5, I spent a good deal of time on integrals like

sin (f>dcb 
Jo a + ^> ’

with the hope of adapting them to easy numerical calculation by transformation to 
others with finite limits, such as 0, tt/2. Happily, I learned from Professor Chrystal 
that they had been tabulated by Mr J. W. L. Glaisher:—and from his splendid paper 
{Phil. Trans. 1870) I obtained at once all that I sought. In fact his Sify and Cify 
are simply the a, y coordinates of this spiral (each divided by a); the axes being 
respectively the perpendicular from the pole on the asymptote, and the asymptote itself. 
Thus I traced at once, as shown in Plate VI. Fig. 1, the first three-quarters of a turn:—• 
and the transformations I had already obtained enabled me to interpolate points when 
(after ^> = 5) those given in the tables were too distant from one another for sure 
drawing. Another help in completing the curve graphically is given by the fact that 
the tangent, at any point, makes with the asymptote the angle </> which belongs to 
the point. This spiral does not, perhaps, exhibit the courses of the two functions 
so clearly as do the separate curves given by Glaisher; but it certainly shows their 
mutual relation, and their maximum and minimum values, in a very striking manner.

The numbers, affixed to various points of the figured spiral, are (in circular measure) 
the corresponding values of </>, or (by the equations of § 5) they may be taken as 
proportional to the times of reaching these points by the moving ball, starting with 
infinite speed from an infinite distance.

8. Even in the plane problem of § 5, the introduction of the effects of a steady 
current of wind in the plane of motion complicates the equations in a formidable 
manner. Suppose be measured from the reversed direction of the wind, and let the 
speed of the wind be W. Then if U, with direction be the relative velocity of 
the ball with regard to the wind (for it is upon this that the resistance, and the 
deflecting force, depend), we have

U cos i[r = W + s cos </>,

U sin yjr= s sin </>;

and the equations of motion are

U2s =------ cos {<f> — + kU sin (</> — -^),CL

— = — sin (</> — •'/'’) +&Z7 cos (</> —-Jr); 
p a

where, once for all, we have written k for kw.
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Putting v for s, and eliminating t, these become 

dv U, , Trr . ,v = — — (W cos <£ + v) + k W sm </>,

iA = ~ W sin </> + k ( W cos $ + i?);CCS Ct

where, of course, U2 = TP2 + v2 + 2 Wv cos

These equations reduce themselves at once to the simpler ones above treated, when 
we put W = 0, and therefore U = v. As they stand they appear intractable, in general, 
except by laborious processes of quadrature. But while </> is small, i.e., while the 
ball is advancing nearly in the wind’s eye, they may be written approximately as

dv (W + w)2 „v -y- =------------— + kWd>,ds a

„dd> W + v , /Trr x v =------- 11^> + k ( TP + d).
CCS CL

From the first of these we see not only that the space-rate of diminution of 
speed is increased in the ratio {W+v'yfv2, which was otherwise obvious; but also that 
the rotation tends, in a feeble manner, to counteract this effect. From the second we see 
that the space-rate of change of direction is increased, not only by the factor (W + v)/v 
in the term due to spin, but by a direct contribution from the resistance itself. The 
effect of a head-wind in producing upward curvature, even in a “skimmer,” is well 
known; and we now see that it is, at first, almost entirely due to the underspin 
which, without being aware of it, long drivers necessarily give to the ball. As soon 
as sin </> has, by the agency of the underspin, acquired a finite value, the direct 
resistance comes in to aid the underspin in further increasing it. We now see the 
true nature of the important service which (in the hands of a powerful player) the 
nearly vertical face of a driving putter renders against a strong wind. It enables him 
to give great translatory speed, with little elevation, and with just spin enough to 
neutralize, for the earlier part of the path, the effect of gravity.

9. Before I met with Robins’ paper, I had tried his pendulum experiment in a 
form which gives the operator much greater command over the circumstances of rotation 
than does his twisting of two strings together. Some years ago, with a view to 
measuring the coefficient of resistance of air, even for high speeds, in the necessarily 
moderate range afforded by a large room, I had procured a number of spherical 
wooden shells, turned very thin. My object, at that time, was to make the mass as 
small as possible, while the diameter was considerable:—but, of course, the moment of 
inertia was also very small. So, when I fixed in one of them the end of a thin 
iron wire, the other end of which was fastened to the lower extremity of a vertical 
spindle which could be driven at any desired speed by means of multiplying gear, the 
wire suffered very little torsion, except at the moments of reversal of the spin. The 
pendulum vibrations of this ball showed almost perfect elliptic orbits, rotating about 
the centre in the same sense as did the shell:—and with angular velocity approximately 
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proportional to that of the shell. These two experimental results are in full accordance 
with the assumed law for the deflecting force due to rotation. For, the ordinary vector 
equation of elliptic motion about the centre is

cr = —

If the orbit rotate, with angular velocity 12, about the vertical unit vector a, perpen­
dicular to its plane, a becomes

p = a.

Eliminate a from these equations, and we have at once

p = — (m2 —f22) p + 2f2ap.

The part of the acceleration which depends upon the motion of translation of the 
bob:—viz.

2 flap,

is proportional to the speed, and also to 12, that is (by the results of observation) 
proportional to the rate of spin; and it is perpendicular alike to a and to the direction 
of translation. These statements involve the complete assumption above. The other 
part of the acceleration depends upon position alone, and must therefore be — n2p, that 
of the non-rotating ball. Hence we see that

m2 = n2 + fl2,

or the period in the rotating ellipse is always shortened:—whether the ball move round 
it in the sense of the spin or not. This test cannot be applied with any certainty in 
the experiment described above, for in general 12 is much less than n, so that m 
exceeds n by a very small fraction only of its value.

A very beautiful modification of this experiment consists in making the path of 
the pendulum bob circular, before it is set in rotation. Then rotation, in the same 
sense as the revolution, makes the orbit shrink and notably diminishes the period. 
Reverse the rotation; the orbit swells out, and the period becomes longer.

10. The equations of motion of a golf-ball, which is rotating about an axis per­
pendicular to its plane of flight, and moving in still air, are now easily seen to be

s2 • ,
to

tj) = k — t cos </>.

The most interesting case of this motion is a “long drive,” as it is called, where 
</> is always small, so long at least as it is positive; its utmost average value for the 
first two-thirds of the range being somewhere about 0'25. This applies up to, and 
about as much beyond, the point of contrary flexure. A little after passing that point, 
$ begins to diminish at a considerably greater rate than that at which it had previously 
increased.
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A first approximation gives, as above,
s = Ve~8^a,

if we omit the term g sin 0 in the first equation. With this, the second equation gives 
at once, on integration,

We might substitute this for sin $ in the first equation, and so obtain a second, and 
now very close, approximation to the value of s. But the result is far too cumbrous 
for convenient use in calculation. We will, therefore, be content for the present with 
the rudely approximate value of s written above.

Integrating again with respect to s, we have

f * ds -«+k4 (-1 - (.«• -1 - .
Jo K \ a) 4P\ a J

Now, for rectangular coordinates (x horizontal) and the same origin,

x = l cos <f>ds — ^ ^1 - $ + &c.) ds, y = J sin $>ds = J + &dc^ ds;

so that, to the order of approximation we have adopted, the equation of the path is

J-“+Tr’1"s)’frsr-1W
The only really serious defect in this approximation is the omission of g sin in the 
first equation. This renders the value of s too large for the greater part of the path, 
and thus the value of y will be slightly too small up to the point of inflection, and 
somewhat too large up to (and some way beyond) the vertex of the path.

11. When this paper was first read to the Society, it contained a considerable 
number of details and sketches of the paths of golf-balls, based on three very different 
estimates of the constant of resistance:—respectively much less than, nearly equal to, 
and considerably greater than, that suggested by Bashforth’s results. These details have 
just been printed in Nature (June 29), and I therefore suppress them here, replacing 
them by calculations based on experiments made between the two dates at the head of 
the paper. One important remark, suggested by the appearance of these curves, must, 
however, be made now. Whatever, from 180 to 360 feet, be assumed as the value of a, 
the paths required to give a range of 180 yards and a time of 6S,5, have a striking 
family resemblance. So much do they agree in general form, that I do not think 
anything like an approximation to the true value of a could be obtained from eye­
observations alone. We must, therefore, find a or V directly. Only the possession of 
a really trustworthy value of a, found by such means, would justify the labour of 
attempting a closer approximation than that given above. I have not as yet obtained 
the means of making any direct determinations of a, but I have tried to find its value 
indirectly; first, from experimental measures of V made some years ago by means of 
a ballistic pendulum; secondly, a few days ago, by (what comes nearly to the same 
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thing) measuring directly the speed of the club-head at impact, and thus determining 
the speed from the known coefficient of restitution of the ball. All of these experiments 
have been imperfect, mainly in consequence of the novelty of the circumstances 
and the feeling of insecurity, or even of danger, which prevented the player from 
doing his best. The results, however, seem to agree in showing that V is somewhat 
over 300 foot-seconds (say, for trial, 350) for a really fine drive. Taking the carry as 
180 yards, and the time as 6s, the value of a given by the formulae above is somewhere 
about 240 feet. With these assumed data, the initial (direct) resistance to the ball’s 
motion is sixteen-fold its weight. Bashforth’s results for iron spheres, when we take 
account of the diameter and mass of a golf-ball, give about 280 feet as the value of a. 
The difference (if it really exist) may possibly arise from the roughness of the golf-ball, 
which we now see to be essential to long carry and to steady flight, inasmuch as the 
ball is enabled by it to take readily a great amount of spin, and to avail itself of 
that spin to the utmost. One of the arguments in § 2 above would give the resistance 
as proportional to v2 + e2a>2, instead of to v2 simply.

12. We have thus all the data, except values of a and of k, required for the 
working out of the details of the path by means of the approximate x, y equation just 
given. The best course seems to be to assume values of a from 0’24 (according to
Mr Hodge) down to zero; and to find for each the corresponding value of k which
will make y = 0 for x = 540. This process gives the following values with a = 240,
V = 350, as above :—

a k W^g a log kVIg
0'24 0'182 200 166'3
012 0'246 2'69 237'5
0'0 0'309 3'37 291'6

It will be seen that the values of k are of the order pointed to by the behaviour 
of a sliced ball, though they are considerably less than that given in the example of 
§ 6. This, of course, is a strong argument in favour of the present theory; for, even 
in the wildest of (unintentional) heeling, the face of the club is scarcely so much inclined 
to its direction of motion as it is in good, ordinary, driving with a grassed club. 
(Slicing is very much less susceptible of accurate quantitative estimation by means of 
eye-observations.) The third column gives the ratio of the initial deflecting force to 
the weight of the ball. As this is more than unit in each of the three cases, all 
these paths are at first concave upwards. The numbers in the fourth column indicate 
(in feet) the distance along the range from the origin to the point of inflexion.

The approximate equation of the first of these paths is

y = 57-6 - + 30'05 (ex,a - 1 - -V 3'76 (e2x'a - 1 - — V
a a \ aJ \ a J

The abscissa of the maximum ordinate is given by
0 = 57'6 + 30 05 (e* - 1) - 7'52 (e2^ - 1),

which leads to exla = 4'93, whence x = 384 nearly.
The vertex is therefore at 0'71 of the range.
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13. Under exactly the same circumstances, had there been no rotation, the equation 
of the path would have been

= 57'6 - - 3-76 - 1 - —a \ a J

This gives for y = 0, x = T71a = 410 feet only.

The position of the vertex is given by

0 = 57'6 -7-52 (e^-l);

so that x = 258 feet, nearly.

In this case the vertex is at 0'63 of the range, only, and the time of flight 
is 3S1.

We have here, in consequence of a very moderate spin only, (in fact about half 
of that given by a good slice), all other initial circumstances being the same, an 
exceedingly well-marked difference in character between the two paths, as well as 
notable differences in range, and time of flight. Thus, while a player who gives no spin 
has (say) a carry of 136 yards only; another, who gives the same initial speed and 
inclination of path but also a very moderate amount of spin, accomplishes 180 yards 
with ease; his ball, in fact, remaining twice as long in the air.

14. For the sake of further illustration, let us consider the course by which the 
ball, sent off at the same inclination, but without rotation, may be forced by mere 
initial speed to have a range of 540 feet. Here the condition for V is

/240\a0 = 129'6 - 8 f-yj 84-5,

so that the requisite speed is 548 foot-seconds; an increase of 56 per cent., involving 
about 2‘5-fold energy of translation, which I take to be entirely beyond the power 
of any player. And the time of flight is reduced to 3S,7 only, a rapidity of execution 
never witnessed in so long a carry. The initial resistance in this case rises to nearly 
forty-fold the weight of the ball. The equation of the path is

y = 57-6 - -1-54 - 1 - —L
a \ a /

and the vertex is at 355, or about two-thirds of the range, only.

15. Fig. 2 shows the three paths just described, which start initially in the same 
direction; the uppermost is that with speed 350 and moderate spin. The lowest has 
the same speed, but no spin. The intermediate course, also, has no spin, but the 
initial speed is 548 to enable it to have a range of 540 feet. Thus the two upper 
paths in this figure are characteristic of the two modes of achieving a long carry:— 
viz. skill, and brute force, respectively. In fig. 3 the first of these paths is repeated, 
and along with it are given the corresponding trajectories with the same initial speed
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350, but with inclinations of 0-12 and 0'0 respectively, and with the values of k, given 
above, which are required to secure the same common range. [To increase this range 
from 180 to 250 yards, even in the lowest and thus least advantageous path where 
there is no initial elevation, all that is required is to raise the value of kV (the 
initial acceleration due to rotation) from 108 to 219; i.e. practically to double it. 
V might, perhaps, be increased by from 25 to 30 per cent, by a greatly increased 
effort in driving:—but k is much more easily increased. A carry of 250 yards, in still 
air, is therefore quite compatible with our data, even if there be no initial elevation. 
It can be achieved, for instance, if V is 400 foot-seconds, and k about 50 per cent,
greater than that which we have seen is given by a good slice. Of course it will
be easier of attainment if the true value of a is greater than 240 feet. When there 
is no rotation there must be initial elevation; and, even if we make it as great as 
1 in 4, the requisite speed of projection for a carry of 250 yards would be 1120 feet
per second, or about that of sound.] Each of the curves has its vertex marked, and
also its point of inflexion, when it happens to possess one. Fig. 4 gives a rough, 
conjectural, sketch of the probable form of the path if, other things being the same, the 
spin could be very greatly increased. As I do not see an easy way to a moderately 
approximate solution of this problem, either by calculation or by a graphic process, 
I intend to attempt it experimentally. I am encouraged to persevere in this by the 
fact that in one of the few trials which I have yet made, with a very weak bow, 
I managed to make a golf-ball move point blank to a mark 30 yards off. When 
the string was adjusted round the middle of the ball, instead of catching it lower, 
the droop in that distance was usually about 8 feet. With a more powerful bow, and 
with one of the thin wooden shells I have mentioned above, the circumstances will 
be very favourable for a path with a kink in it.
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CXIII.

ON THE PATH OF A ROTATING SPHERICAL PROJECTILE. II.

[Transactions of the Royal Society of Edinburgh, Vol. xxxix. Part II.]

(Read 6th and 20th January, 1896.)

The first instalment of this paper was devoted in great part to the general subject 
involved in its title, but many of the illustrations were derived from the special case of 
the flight of a golf-ball. Since it was read I have endeavoured, alike by observation 
and by experiment, to improve my numerical data for this interesting application, 
particularly as regards the important question of the coefficient of resistance of the air. 
As will be seen, I now find a value intermediate to those derived (by taking average 
estimates of the mass and diameter of a golf-ball) from the results of Robins and of 
Bashforth. This has been obtained indirectly by means of a considerable improvement 
in the apparatus by which I had attempted to measure the initial speed of a golf-ball. 
I have, still, little doubt that the speed may, occasionally, amount to the 300, or 
perhaps even the 350, foot-seconds which I assumed provisionally in my former paper:— 
but even the first of these is a somewhat extravagant estimate: and I am now of 
opinion that, even with very good driving, an initial speed of about 240 is not often 
an underestimate, at least in careful play. From this, and the fact that six seconds at 
least are required for a long carry (say 180 yards), I reckon the “terminal velocity” at 
about 108, giving tP/BGO as the resistance-acceleration.

I hope to recur to this question towards the end of the present paper:—but I 
should repeat that I naturally preferred the comparatively recent determination to the 
much older one, and that in formerly assuming a resistance even greater than that which
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Bashforth’s formula assigns, I was to some extent influenced by the consideration of 
the important effects of roughening or hammering a golf-ball. For I fancied that this 
might increase the direct resistance, as well as the effects due to rotation, by the better 
grip of the air which it gives to the ball. [See last sentence of § 11. Of course the 
assumption of increased coefficient of resistance required a corresponding increase of the 
estimate of initial speed.] The time of describing 180 yards horizontally, i.e., when 
gravity is not supposed to act, if the initial speed is 240 and the “terminal velocity” 
108, is about 5S 2; and this has to be increased by at least Is, if we allow for the 
curvature of the path and the effect of gravity. I have employed this improved 
value of the coefficient of resistance in all the calculations which have been made 
since I obtained it. But various considerations have led me to the conclusion that the 
resistance, towards the end of the path, may be somewhat underrated because of the 
assumption that it is, throughout, proportional to the square of the speed. This point, 
also, will be referred to later, as I wish to make at once all the necessary comments and 
improvements on the part already published.

Though the present communication is thus specially devoted to some curious 
phenomena observed in the game of golf, it contains a great deal which has more 
extended application:—to which its results can easily be adapted by mere numerical 
alterations in the data. Therefore I venture to consider its subject as one suitable for 
discussion before a scientific Society.

In my short sketch of the history of the problem I failed to notice either of two 
comparatively recent papers whose contents are at least somewhat closely connected 
with it. These I will now very briefly consider.

The first is by Clerk-Maxwell* “ On a particular Case of the Descent of a Heavy 
Body in a Resisting Medium.” The body is a flat rectangular slip of paper, falling with 
its longer edges horizontal. It is observed to rotate about an axis parallel to these 
edges, and to fall in an oblique direction. The motion soon becomes approximately 
regular; and the deflection of the path from the vertical is to the side towards which 
the (temporarily) lower edge of the paper slip is being transferred by the rotation. 
[When the rectangle is not very exact, or the longer edges not quite horizontal, or the 
slip slightly curved, the appearance, especially when there is bright sunlight, is often 
like a spiral stair-case.] Maxwell examines experimentally the distribution of currents, 
and consequently of pressure, about a non-rotating plane upon which a fluid plays 
obliquely; and shows that when the paper is rotating the consequent modification of 
this distribution of pressure tends to maintain the rotation. The reasoning throughout 
is somewhat difficult to follow, and the circumstances of the slip are very different from 
those of a ball:—but the direction of the deflection from the unresisted path is always 
in agreement with the statement made by Newton.

Much more intimately connected with our work is a paper by Lord Rayleigh-f- 
“On the Irregular Flight of a Tennis Ball” in which the “true explanation” of the

* Cambridge and Dublin Mathematical Journal, ix. 145 (1854).
+ Messenger of Mathematics, vn. 14 (1878).
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curved path is attributed to Prof. Magnus. The author points out that, in general, the 
statement that the pressure is least where the speed is greatest, is true only of perfect 
fluids unacted on by external forces; whereas in the present case the whirlpool motion 
is directly due to friction. But he suggests the idea of short blades projecting from the 
ball, the pressure on each of which is shared by the contiguous portion of the spherical 
surface. Here we have practically Newton’s explanation—i.e. the “pressing and beating 
of the contiguous air.” Lord Rayleigh’s paper contains an investigation of the form of 
the stream-lines when a perfect fluid circulates (without molecular rotation) round a 
cylinder, its motion at an infinite distance having uniform velocity in a direction per­
pendicular to the axis of the cylinder. And it is shown that the resultant pressure, 
perpendicular to the general velocity of the stream, has its magnitude proportional alike 
to that velocity and to the velocity of circulation. [There are some comments on this 
paper, by Prof. Greenhill, in the ninth volume of the journal referred to.]

In the Beiblatter zu d. Ann. d. Phys. (1895, p. 289) there appears a somewhat 
sarcastic notice of my former paper. The Reviewer, evidently annoyed at my remarks 
on Magnus’ treatment of Robins, which he is unable directly to controvert, refers to 
Helie, Traiti de Balistique, as containing an anticipation of my own work. I find 
nothing there beyond a very small part of what was perfectly well known to Newton 
and Robins; except a few of the more immediately obvious mathematical consequences, 
deduced from the hypothesis (for which no basis is assigned, save that it is the simplest 
possible) that the transverse deflecting force due to rotation is proportional to the first 
power of the translational speed.

In the present article I give first a brief account of my recent attempts to deter­
mine the initial speed of a golf-ball, and consequently to approximate to the coefficient 
of v2 in the assumed expression for the resistance.

Next, instead of facing the labour of the second approximation (suggested in § 10) 
to the solution of the differential equations, I have attempted by mere numerical 
calculation to take account of the effect of gravity on the speed of the projectile, and 
have thus been enabled to give improved, though still rough, sketches of the form 
of the trajectory when it is not excessively flat. This process furnishes, incidentally, 
the means of finding the time of passage through any arc of the trajectory.

Third, I treat of the effects of wind, regarded as a uniform horizontal translation of 
the atmosphere parallel, or perpendicular, to the plane of the path.

Finally, recurring to the limitation of a very flat trajectory, I have treated briefly the 
effects of gradual diminution of spin during the flight. This loss is shown to be in­
adequate to the explanation of the unexpectedly small inclination of the calculated 
path when the projectile reaches the ground. Hence some other mode of accounting 
for its nearly vertical fall is to be sought, and it is traced to the rapid diminution 
of the resistance (assigned by Robins’ law) when the speed has been greatly reduced.
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Determination of Initial Speed.

16. The bob of my new ballistic pendulum was a stout metal tube, some 3 feet 
long, suspended horizontally, near the floor, by two parallel pieces of clock-spring about 
2'5 feet apart, and 8'63 feet long. On one end of the tube was fixed transversely a 
circular disc, 1 foot in diameter, covered with a thick layer of moist clay into which 
the ball was driven from a distance of 4 feet or so. The whole bob had a mass of about 
33 lbs.; and, in the most favourable circumstances, its horizontal displacement was 
about 3'5 to 4 inches. As the ball’s mass is OT lb., the average indicated speed was 
thus about 200 foot-seconds*. Though I had the assistance of two long drivers, whose 
habitual carry is 180 yards or upwards, the circumstances of the trials were somewhat 
unfavourable, for there was great difficulty in hitting the disc of clay centrally. The 
pendulum was suspended in an open door-way; and heavy matting was disposed all 
about the clay so as (in Robins’ quaint language) “ to avoid these dangers, to the 
braving of which in philosophical researches no honour is annexed ”; so that the whole 
surroundings were absolutely unlike those of a golf-course. I therefore make an allow­
ance of 20 per cent., and (as at present advised) regard 240 foot-seconds or something 
like it as a fair average value of the initial speed of a really well-driven ball:—while 
thinking it quite possible that, under exceptionally favourable circumstances, this may 
be increased by 20 or 30 per cent, at least. Now, it is certain that the time of flight 
is usually about six seconds when the range is about 180 yards:—considerably more 
for a very high trajectory, and somewhat less for a very flat one. As we have by § 5 
the approximate formula

we may take a = 360 as a reasonable estimate. This number is possibly some 10 per 
cent, in error, but it is very convenient for calculation, and golf-balls differ considerably 
from one another in density as well as in diameter. With it the “ terminal velocity” of 
a golf-ball is about 108 foot-seconds; intermediate to the values deduced from the 
formulas of Robins and of Bashforth, which I make out to be 114 and 95 respectively.

* If Z be the length (in feet) of the supporting straps, d the (small) horizontal deflection of the bob, 
its vertical rise is obviously d2/2Z, so that its utmost potential energy is

(M+m) gd2/2l, 

where M is its mass and m that of the ball. But, if V was the horizontal speed of the ball, that of bob 
and ball was mVKM+m). Equating the corresponding kinetic energy to the potential energy into which it is 
transformed, we find at once (M+m) gd2/2l=m2 F2/2 (M+m), leading to the very simple expression

With the numerical values given in the text we easily find that this is equivalent to

F=331^1-93 = 53-2D;

where V is, of course, in foot-seconds, but the deflection is now (for convenience) expressed in inches, and 
called D. Hence the numerical result in the text.
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With this value of a, it is easy to see that air-resistance, alone, reduces the speed of a 
golf-ball to half its initial value in a path of 83 yards only. This is the utmost gain of 
range obtainable (other conditions remaining unchanged) by giving four-fold energy of 
propulsion. With the value (282) of a deduced from Bashforth’s formula, this gain 
would have been 65 yards only! [So far for the higher speeds, but it is obvious from 
all ordinary experience of pendulums (with a golf-ball as bob) that slow moving bodies 
suffer greater resistance than that assigned by this law.]

In passing, I may mention that, on several occasions, I fastened firmly to the ball 
a long light tape, the further end being fixed (after all twist was removed) to the 
ground so that the whole was perpendicular to the direction of driving. After the 
4-foot flight of the ball, the diameter at first parallel to the tape preserved its 
initial direction, while the tape was found twisted (in a sense corresponding to under­
spin) and often through one or two full turns, indicating something like 60 or 120 
turns per second. This is clearly a satisfactory verification of the present theory.

Numerical Approximation to Form of Path.

17. The differential equations of the trajectory were integrated approximately in 
§ 10 by formally omitting the term in g in the first of them, that is so far as the 
speed is concerned. In other words:—by assuming that $ is always very small, or the 
path nearly horizontal throughout. It was pointed out that if the value of <£, thus 
obtained from the second, were substituted for sin in the first, equation, we should 
be able to obtain a second approximation to the intrinsic equation of the path, amply 
sufficient for all ordinary applications. But the process, though simple enough in all 
its stages, is long and laborious:—and it is altogether inapplicable to the kinked path, 
discussed in § 15, which furnishes one of the most singular illustrations of the whole 
question.

The fact that one of my Laboratory students, Mr James Wood, had shown himself 
to be an extremely rapid and accurate calculator led me to attempt an approximate 
solution of the equations by means of differences:—treating the trajectory as an equi­
lateral polygon of 6-foot sides, and calculating numerically the inclination of each to 
the horizon, as well as the average speed with which it is described. For we may write 
the differential equations in the form

1 d (if)
2 ds

v • ,_ q gin a 
a T

d<f> _k g 
ds v v2 cos </>,

and these involve approximately

F2 — v2 + 2 +g sin Us = 0,
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Thus we find, after a six-foot step, the new values

z/2 = ^1 — v2 — 384 sin </>,

,, . 6k 192 cos cb<b' = A q------------------ “v y V V2

[If we take account of terms in (8s)2, we find that we ought to write for 12/a 
the more accurate expression 12/a. (1 — 6/a). But this does not alter the form of 
the expression for v2. It merely increases by some 2 per cent, the denominator of 
the coefficient of resistance, of which our estimate is, at best, a very rough one; so 
that it may be disregarded. But the successive values of v2 are all on this account 
too large; and thus the values of </>, in their turn, are sometimes increased, some­
times diminished, but only by trifling amounts. This is due to the fact that the 
change of 0 depends upon terms having opposite signs; and involving different powers 
of v, so that their relative as well as their actual importance is continually changing. 
These remarks require some modification when k is such that may have large values, 
as for instance in the kinked path treated below. But I do not pretend to treat the 
question exhaustively, so that I merely allude to this source of imperfection of the 
investigation.]

Let, now, a = 360, A; =1/3, and suppose </> to be expressed in degrees. We have, 
to a sufficient approximation,

v'2 = (y2 — 400 sin </>) f 1 —

J 120 12000 . A 1\
* = </> + ---------

and successive substitutions in these equations, starting from any assigned values of 
v and </>, will give us the corresponding values for the next side of the polygon, with 
the more recent estimate of the coefficient of resistance. See the two last examples 
in § 19 below, which lead to the trajectories figured as 5 and 6 in Plate VII.

Unfortunately, many of Mr Wood’s calculations were finished before I had arrived 
at my new estimate of the value of a; but their results are all approximately repre­
sentative of possible trajectories:—the balls being regarded as a little larger, or a little less 
dense, than an ordinary golf-ball; in proportion as the coefficient of resistance assumed 
is somewhat too great. And no difficulty arises from the assumption of too great an 
initial speed; for we may simply omit the early sides of the polygon, until we come 
to a practically producible rate of motion.

18. To discover how far this mode of approximation can be trusted, we have 
only to compare its consequences with those of the exact solution. For the intrinsic 
equation can easily be obtained in finite terms when there is no rotation. In fact, 
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by elimination of g between the differential equations of § 10, assuming k = 0, we have 
at once the complete differential of the equation

cos <f> = V cos ^>0 = Vo suppose;

where it is to be particularly noticed that Fo is the speed of the horizontal component 
of the velocity of projection, not the total speed. By means of this the second of 
the equations becomes

9 M 3 > ^=--e^cos^,

whence 2^— 1) = sec tan 60 — sec 6 tan <b + log .
° sec </> + tan </>

The following fragments show the nature and arrangement of the results in one of 
the earlier of Mr Wood’s calculated tables. Having assumed (for reasons stated in 
the introductory remarks above) that a = 240, I supplied him with the following 
formulae:—

w'2 = f 1 — J v2 — 400 sin </>(!— 0’04),

=4’-
12000 

v2 cos (1 — 004),

and I took as initial data F=300, </>=15°; [whence, of course, F02= 84,000 nearly. 
This is required for comparison with the exact solution].

Working from these he obtained a mass of results from which I make a few 
extracts:—

s/6 V2 V l/r s (IM 0 sin0 S (sin <p) COS 0 S(cos 0)
1. 90,000 300 003 •003 15° •2588 •2588 •9659 •9659
2. 85,401 292-2 •00342 •00675 14-876 •2565 •5153 •9665 1-9324
3. 81,032 284-6 00351 •01026 14-746 •2546 •7699 •9671 2-8995

* * * * *
20. 33,045 181-8 •00550 •08666 11-028 T914 4'6102 ■9815 19-4569
21. 31,319 177-0 •00565 •09231 10-686 •1854 4-7956 •9826 20-4395

* * * * *
40. 11,440 106-9 •00935 •23391 - 1023 -•0178 6-6163 •9998 39-3178
41. 10,875 1043 •00959 •24350 - 2'030 - -0355 6-5808 •9994 40-3172

* * * * *
60. 5453 73-8 •01354 •46935 - 30-748 - -5113 1-4677 •8595 58-3988
61. 5377 73-3 •01363 •48298 - 32-564 - -5383 •9294 •8428 59-2416

* * * * *

This table gives simultaneous values of s, v, and directly, t is obviously to be 
found by multiplying by 6 feet the numbers in column fifth; while by the same process 
we obtain rectangular coordinates, vertical and horizontal, from the eighth, and the last, 
columns respectively. Thus for instance we have simultaneously
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s v
120 181'8
240 106’9

t
0s-52 
1 -404

<t> 
ll°-028
- 1 -023

y 
27-66 
39-69

X
116'74
235-9

(The trajectory is given 
next section of the paper.)

as fig. 3 in the Plate, and will be further analysed in the

From the complete table we find that, in this case, $ is positive up to the 38th 
line inclusive, and then changes sign. It vanishes for s = 233 (approximately) after the 
lapse of 18'35. The rectangular coordinates of the vertex are about 230 and 40, and 
the speed there is reduced to 110. From the exact equation we find s = 232 for ^> = 0°. 
This single agreement is conclusive, since the earlier tabular values of s for a given 
value of </> ought to be somewhat in excess of the true values; while the later, and 
especially those for negative values of </> greater than 30° or so, should be somewhat too 
small:—i.e. the calculated trajectory has at first somewhat too little curvature, but 
towards the end of the range it has too much. It is easy to see that this is a necessary 
consequence of the mode of approximation employed:—look, for instance, at the fact 
that the initial speed is taken as constant through the first six feet. See also the 
remarks in § 17. On the whole, therefore, though the carry may possibly be a little 
underrated, the numerical method seems to give a very fair approximation to the truth. 
This admits of easy verification by the help of the value of dcji/ds last written, for it 
enables us to calculate the exact value of s for any assigned value of </> by a simple 
difference calculated from the result obtained from an assumed value.

19. Taking the method for what it is worth, the following are a few of the results 
obtained from it by Mr Wood. I give the numerical data employed, plotting the 
curves from a few of the calculated values of x and y. But I insert, at the side of each 
trajectory, marks indicating the spaces passed over in successive seconds. This would 
have been a work of great difficulty if we had adopted a direct process, even in cases 
where the intrinsic equation can be obtained exactly:—and it must be carried out when 
we desire to find the effects of wind upon the path of the ball.

Fig. 1 represents the path when a = 240 (properly 234), F=300, ^>0 = 0°, and k = 1/3. 
This will be at once recognised as having a very close resemblance to the path of a 
well-driven low ball. The vertex (at 0'76 of the range) and the point of contrary 
flexure are indicated. This trajectory does not differ very much from that given (for 
the same initial data) by the roughly approximate formula of § 10; which rises a little 
higher, and has a range of some ten yards greater. But the assumed initial speed, and 
consequently the coefficient of resistance, are both considerably too great.

In fig. 2 all the initial data are the same except k, which is now increased to 1/2:— 
i.e. the spin is 50 per cent, greater than in fig. 1. We see its effect mainly in the 
increased height of the vertex, and in the introduction of a second point of contrary 
flexure. A further increase of k will bring these points of contrary flexure nearer to one 
another, till they finally meet in the vertex, which will then be a cusp, a point of 
momentary rest, and the path throughout will be concave upwards! This is one of the 
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most curious results of the investigation, and I have realized it with an ordinary golf­
ball :—using a cleek whose face made an angle of about 45° with the shaft and was
furnished with parallel triangular grooves, biting downwards, so as to ensure great under­
spin. [The data for this case give extravagant results when employed in the formula of
§ 10. The vertex it assigns is 510 feet from the starting-point and at nearly 172 feet of
elevation:—while the range is increased by 60 or 70 yards. And that formula can never 
give more than one point of contrary flexure. All this was, however, to be expected; 
since the formula was based on the express assumption that gravity has no direct effect 
on the speed of the projectile.]

Fig. 3 shows the result of dispensing altogether with initial rotation, while 
endeavouring to compensate for its absence by giving an initial elevation of 15°. This 
figure, also, will be recognised as characteristic of a well-known class of drives; usually 
produced when too high a tee is employed, and the player stands somewhat behind his 
ball. Notice, particularly, how much the carry and the time of flight are reduced, 
though the initial speed is the same. The slight underspin makes an extraordinary 
difference, producing as it were an unbending of the path throughout its whole length, 
and thus greatly increasing the portion above the horizon. But of course the pace of 
the ball, when it reaches the ground, is very much greater than in the preceding cases, 
it usually falls more obliquely, and it has no back-spin. On all these accounts we 
should expect to find that the “run” will in general be very much greater. Still, in 
consequence partly of the greater coefficient of resistance at low speeds, presently to be 
discussed, overspin (due to the disgraceful act called “ topping ”) is indispensable for 
a really long run. In such a case the carry will, of course, be still further reduced, 
unless the initial elevation be very considerably increased. (Some of Mr Wood’s 
numerical results, from which fig. 3 was drawn, were given in the preceding section.)

In fig. 4, a and V are as in fig. 1, but k = 1 and = 45°. Here we have the kink, 
of which a provisional sketch (closely resembling the truth) was given in the former 
instalment of the paper. I have not yet obtained it with a golf-ball, though as already 
stated I have got the length of producing the cusp above spoken of. But the kink can 
be obtained in a striking manner when we use as projectile one of the large balloons 
of thin india-rubber which are now so common. We have only to “slice” the balloon 
sharply downwards (in a nearly vertical plane) with the flat hand. This is a most 
instructive experiment, and its repetition presents no difficulty whatever. It is to be 
specially noticed that, in the particular kink sketched, there is a point of minimum 
speed somewhat beyond the vertex, and a point of maximum speed, both nearly in 
the same vertical with the point of projection. The first (where the speed is reduced 
to 58’7) is reached in a little more than two seconds, the other (where it has risen 
to 73’8) in rather more than four.

It may be interesting to give a few details of Mr Wood’s calculations for this 
case:—selecting specially those near the points of maximum and minimum speed, and 
along with them those for closely corresponding elevations on the ascending side. Also 
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near the vertex. The equations were
^i2 - (1 20 — 400 sin </>(!— 0'04)

s/6 V2 V

^i =

1/v

, 360
</>+ -- -

12000 cos i)2 (1 — 0'04)

sin S (sin 0) COS 0 S(cos 0)
1. 90000 300 •003 •003 45° •7071 •7071 •7071 •7071

23.
*

24582 156-8
*

•00638 •10693
*

78°-72 •9807
*

19*6186 T956
*

11-3075

41.
*

5583 74-7
*

•01359 •27640
*

145°3 ■5693
*

358751 ■8221
*

6’2814

44.
*

4278 65-4
*

•01529 •32038
*

166°’46 •2343
*

36’9422 -•9722
*

3-4951
45. 3974 630 •01586 •33624 174°-58 •0944 37-0366 -•9955 2-4996
46. 3739 61-1 •01636 •35260 183°T6 - -0553 36-9813 -•9981 1-5015

48.
*

3475 59-0
*

•01697 ■38630
*

201°-3 - -3633
*

36-4078 -•9317
*

- -5921
49. 3441 58-7 •01704 •40334 210°-5 -•5075 35-9003 -•8616 -1-4537
50. 3464 58'9 •01700 •42034 219°-5 - -6363 352640 -•7714 -2-2251

67.
*

5434 73-7
*

•01357 •67179
*

313°T - -7302
*

200274 •6833
*

- -3162
68. 5443 73-8 •01355 •68534 316°5 - -6880 19-3394 •7258 4- -4096
69. 5435 73-7 •01357 •69891 319°-9 - '6446 18-6948 •7646 + -1742

*

The following ■

* *

data belong to the last elements for

* *

which the calculations were
made: 

80. 4374 66'1 •01512 •85485 352°9 -•1224 14-6898 •9925 11-2602
81. 4202 64-8 •01542 •87027 355°’8 - -0732 14-6166 •9973 12-2575

As the last five values of </> have been increasing steadily by nearly 31° for each
element, it is clear that the direction of motion again rises above the horizontal; but
whether the path has next a point of contrary flexure, or another kink, can only be 
found by carrying the calculation several steps further. [The second kink is very 
unlikely, as the speed is so much reduced at the point where the calculations were 
arrested. Mr Wood has gone to Australia, and I had unfortunately told him to stop 
the numerical work in this particular example as soon as he found that 2 (cos </>), 
after becoming negative, had recovered its former maximum (positive) value.]

The trajectories represented in figs. 5 and 6 may be taken as fairly representative 
of ordinary good play by the two classes of drivers. For we have in both a = 360, 
V = 200. These are the new data, representing (as above explained) the best information 
I have yet acquired. In fig. 5 A; = 1/3, </>0=10°; but in fig. 6 A: = 0, </>„ = 15°. In spite 
of its 50 per cent, greater angle of initial elevation, the carry of the non-rotating 
projectile is little more than half that of the other:—and it takes only one-third of the 
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time spent by the other in the air. But the contrast shows how much more important 
(so far as carry is concerned) is a moderate amount of underspin than large initial 
elevation. And we can easily see that initial elevation, which is always undesirable 
(unless there is a hazard close to the tee) as it exposes the ball too soon to the action 
of the wind where it is strongest, may be entirely dispensed with. This point is 
discussed in next section.

On account of their intimate connection with actual practice, I give a few of the 
numerical results for these two closely allied yet strongly contrasted cases, belonging 
to two different classes of driving:—choosing sides of each polygon passed at intervals 
of about Is, as well as those near the vertices and the point of contrary flexure. The 
formulae for these cases are those given at the end of § 17 above:—the second term 
in the expression for </>' being omitted for the latter of the two trajectories.

For Fig. 5.
s/6 V2 V l/i> s (1/v) $ sin 0 S (sin 0) cos0 S(cos 0)

1. 40,000 200 •00500 •00500 10° ■1736 T736 •9848 •9848
* * * * *

25. 15,497 124-5 •00803 T6549 17-552 •3015 62345 •9534 25-2200
* * * * *

39. 8,216 90-6 •01103 •29869 19-789 •3388 107983 •9410 38-4544
* * * * *

42. 7,042 839 •01192 •33353 19-665 •3366 11-8116 •9417 41-2783
* * * * *

54. 3,511 59-3 •01687 •50626 13-611 •2354 15-3925 •9719 52-7246
* * * * *

61. 2,387 48-9 •02046 ■63904 1-727 •0303 16-3078 •9996 59-6508
62. 2,296 47-9 •02088 •65992 -■ 0'675 - 0120 16-2958 •9999 60-6507

* * * * *
70. 2,249 47-4 •02109 •83155 - 21-807 -•3714 14-5533 •9285 68-4117

* * * * *
79. 3,157 56-2 •01780 1-00513 - 35-890 -•5862 9-9647 •8103 76-1309

* * * * *
89. 4,338 65-9 01519 1-16748 - 40-840 - -6538 3-6521 ■7566 83'8830

* * * * *
94. 4,853 69-7 ■01436 1-24081 - 41-548 - '6633 0-3507 ■7484 876381

For Fig. 6.

1. 40,000 200 •00500 •00500 15° •2588 •2588 •9659 •9659
* * * * *

26. 16,035 126-6 •00790 •16507 3-523 •0613 4-5617 •9981 25-5497
* * * *

30. 13,940 1181 •00847 T9809 0'472 ■0082 4-6769 •9999 29-5476
31. 13,472 116-1 •00861 •20670 -■ 0-360 -•0064 4-6705 •9999 30-5475

* * * * *
44. 9,147 95-6 •01046 •33189 -■ 13'854 -•2393 3-0442 •9709 43-4147

* * * * *
52. 7,850 88-6 •01129 •41952 - 24-208 -•4099 •3650 •9121 50-9412
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I regret that Mr Wood was obliged to give up his calculations before he had 
worked out more than about a third of the requisite rows of figures for a trajectory 
differing initially from fig. 5 in the sole particular = 5° instead of 10°. This would 
have been still more illustrative than fig. 5 as a contrast with fig. 6. But a fairly 
approximate idea of its form is obtained by taking the earlier part of fig. 5, regarded 
as having the dotted line for its base. See a remark in §22 below, which nearly 
coincides with this.

Effect of Wind.

20. So far, we have supposed that there is no wind. But with wind the con­
ditions are usually very complex, especially as the speed of the wind is generally 
much greater at a little elevation than close to the ground. Hence I must restrict 
myself to the case of uniform motion of the air in a horizontal direction. We have 
in such a case merely to trace, by the processes already illustrated, the path of the 
ball relatively to the air; and thence we easily obtain the path relatively to the 
earth. Here, of course, it is absolutely necessary to calculate the time of passing 
through each part of the trajectory relative to the air. If the wind be in the plane 
of projection, and its speed U, the relative speed with which the ball starts has 
horizontal and vertical components Feos a — U, and Vsin a, respectively. Thus, rela­
tively to the moving air, the angle of elevation is given by

. V sin a tan a = 1r ------, r,V cos a — U
and the speed is

V = V F2 - 2 HF cos a + If2.

The relative trajectory, traced from these data, must now have each of its 
points displaced forwards by the distance, Ut, through which the air has advanced 
during the time, t, required to reach that point in the relative path. Of course, for 
a head-wind, U is negative; and the points of the relative trajectory must be displaced 
backwards.

Figs. 7, 8, 9 illustrate in a completely satisfactory manner, though with some­
what exaggerated speeds and coefficient of resistance, the results of this process. 
Mr Wood had calculated for me the path in still air, with a = 288 (or, rather, 282), 
V = 300, ^> = 6°, £=1/3. Since the time of reaching each point in this path had 
been incidentally calculated, it had only to be multiplied by 25, and subtracted from 
the corresponding abscissa, in order to give the actual path when the speed of the 
head-wind is about 17 miles an hour, and the initial speed about 275. (The exact 
values of this and of the actual angle of projection must be calculated by means 
of the preceding formulae:—but they are of little consequence in so rough an illus­
tration as the present, especially as </>„ and U/V are both small.) The corresponding 
trajectory is shown in fig. 7. If we use the same relative path for wind of 25'5 
miles per hour, the actual initial speed must be about 262’5, and the true path is 
fig. 8. Finally, fig. 9 gives the result with actual initial speed 250, and head-wind 
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blowing at 34 miles an hour. Here, again, a kink is produced in the actual path, 
but it is due to a completely different cause from that of fig. 4. And it is specially 
to be noted how much the vertex is displaced towards (and even beyond) the end 
of the range.

21. It is not necessary to figure the result of a following wind, for such a 
cause merely lengthens the abscissae in a steadily increasing ratio, and makes the 
carry considerably longer, while placing the vertex more nearly midway along the 
path. But it is well to call attention to a singularly erroneous notion, very prevalent 
among golfers, viz., that a following wind carries the ball onwards! Such an idea 
is, of course, altogether absurd, except in the extremely improbable case of wind 
moving faster than the actual initial speed of the ball. The true way of regarding 
matters of this kind is to remember that there is always resistance while there is 
relative motion of the ball and the air, and that it is less as that relative motion 
is smaller; so that it is reduced throughout the path when there is a following wind.

Another erroneous idea, somewhat akin to this, is that a ball rises considerably 
higher when driven against the wind, and lower if with the wind, than it would 
if there were no wind. The difference (whether it is in excess or in defect will 
depend on the circumstances of projection, notably on the spin) is in general very 
small; the often large apparent rise or fall being due mainly to perspective, as the 
vertex of the path is brought considerably nearer to, or further from, the player.

These approximations to the effect of wind are, as a rule, very rough; because 
in the open field the speed of the wind usually increases in a notable manner up 
to a considerable height above the ground, so that the part of the path which is 
most affected is that near the vertex. But the general character of the effect can 
easily be judged from the examples just given.

When the wind blows directly across the path, the same process is to be applied. 
It is easy to see that the trajectory is no longer a plane curve; and also that, in 
every case, the carry is increased. But, in general, “allowance is made for the wind,” 
i.e. the ball is struck in such a direction as to make an obtuse angle with that of 
the wind, more obtuse as the wind is stronger. In this case the carry must invariably 
be shortened. But without calculation we can go little beyond general statements 
like these.

Effect of Gradual Diminution of Spin.

22. In my former paper I assumed, throughout, that the spin of the ball remains 
practically unchanged during the whole carry. That this is not far from the truth, is 
pretty obvious from the latter part of the career of a sliced or a heeled ball. If, 
however, in accordance with § 4, we assume it also to fall off in a geometric ratio 
with the space traversed:—an assumption which is probable rather than merely plausible; 
so long, at least, as we neglect the part of the loss which would occur even if the 
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ball had no translatory speed:—the equations of § 10 require but slight modification. 
For we must now write, instead of k,

ke~slb.

The time rate at which this falls off is proportional to itself and to v, directly, and 
to b inversely.

If we confine ourselves to the very low trajectories which are now characteristic 
of much of the best driving, we may neglect (as was provisionally done in § 10) the 
effect of gravity on the speed of the ball, and write simply

v = Ve~s,a.

Thus the approximate equation of the path becomes

g = a+^.'(6*-l)-^2(€*-l).

Here
1 _1_1. 
a' a b ’

and finally y = ax + (exla‘ — 1 — xfa’) — (e2!C/a — 1 — 2x1a),

where a is always very small, perhaps even negative; and may, at least for our present 
purpose, be neglected. Its main effect is to elevate, or depress, each point of the path 
by an amount proportional to the distance from the origin; and thus (when positive) 
it enables us to obtain a given range with less underspin than would otherwise be 
required.

23. For calculation it is very convenient to begin by forming tables of values 
of the functions

f O’) = - and F (p) =-----—;
I I P

for values of p at short intervals from 0 to 3 or so. [Note that the same tables 
are adaptable to negative values of p, since we have, obviously,

f(-p)=e~Pf(p), and F (-p) ~ e~P (J (p) - F (p))].

These we will take for granted. We may now write
O”2

y = y2 - gF(2x/a))

<Fla') -

= - ge^).

The range, and the horizontal distances of the vertex and of the point of con­
trary flexure, respectively, are given by the values of x which make the second factors 
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vanish:—and it is curious to remark that (to the present rough approximation, of 
course, and for given values of a and a') these depend only upon the value of kV]g, 
i.e. the initial ratio of the upward to the downward acceleration. Thus so far as 
the range is concerned, the separate values of k and V are of no consequence, all 
depends on their product. But it is quite otherwise as regards the flatness of the 
trajectory, for the maximum height is inversely as the square of V. Of course we 
must remember that one indispensable condition of the approximation with which 
we are dealing is that the trajectory shall be very flat; and thus, if the range is 
to be considerable, V cannot be small, and (also of course) k cannot be very large. 
We have already seen how to obtain a fairly approximate value of a (say 360), but 
b presents much greater difficulty. We may, therefore, assume for it two moderate, 
and two extreme values, and compare the characteristics of the resulting paths. If b 
be infinite, we have the case already treated, in which the spin does not alter during 
the ball’s flight; while, if b be less than a, the spin dies out faster than does the 
speed and we approximate (at least in the later part of the path) to the case of 
no spin. Hence we may take for the values of b the following:—oo, 900, 360, and 
180so that a' has the respective values 360, 600, oo, and — 360. Let the carry 
(x) be, once for all, taken as 180 yards. Then, for y—0, we must have 2®/a = 3; and 
the respective values of x/a' are 1'5, 0’9, 0, and —1’5. With these arguments the 
values of F are, in order,

1-7873; 0'8807, 0’6908, 0’5, and 0’3258;

so that we have the following approximate values of the ratio kVIg 

2’03, 2’59, 3’57, 5’49.

The first two require a moderate amount of spin, only, if we take 240 as the 
initial speed.

The approximate position of the vertex (®0) of the first of these paths is given by 
/■(2«»=2’03/(«0/u), or e^»=3’06, («„/« = 11184)

whence x^ = 402’6, or about three-fourths of the carry.

The corresponding value of y is about 27 feet.

The point of contrary flexure is at e®/® = 2’03, so that xx = 255, and the value of 

there has its maximum, about 0’07 only. 
ax

In the other three paths above, the maximum ordinate and the maximum in­
clination both increase with the necessarily increased value of k, while the vertex and 
the point of inflexion both occur earlier in the path. The approximate time of flight, 
in all, is a little over five seconds. The paths themselves are shown, much fore­
shortened, in figs. 10, 11, 12, 13, where the unit of the horizontal scale is 3’6 times 
that of the vertical. This is given with the view of comparing and contrasting them. 
Fig. 14 shows the first, and flattest, of these paths in its proper form. It is clearly 
a fair approximation to the actual facts; and when we compare it with the others,

T. II. 49
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as in the foreshortened figures, we see that the assumption of constant spin (§ 4) is 
probably not far from the truth. For, in the great majority of cases of drives of 
this character, there is observed to be very little run:—and this can be accounted 
for only on the assumption that there is considerable underspin left at the pitch. 
But it is also clear that the falling off of the spin produces comparatively little 
increase of the obliquity of impact on the ground, even in the exaggerated form in 
which these paths are drawn. Their actual inclinations to the ground have tangents 
about 0’49, 0'66, 0’78, and 1'08 respectively. The last, and greatest, of these angles 
is just over 45°.

24. It is interesting to compare this set of data, and their consequences, with 
those of §§ 11, 14, 15. The latter were in fair agreement with many of the more 
easily observed features of a good drive, but they gave too high a trajectory. The 
new measure of initial speed, and the consequent reduction of the estimated value of 
the coefficient of resistance, have led to results more closely resembling the truth.

But in all, as we have seen, there is one notable defect. The ball comes down 
too obliquely, and this is the case more especially when the carry is a long one, and 
the ball’s speed therefore much reduced. I was at first inclined to attribute this to 
my having assumed the spin to remain constant during the whole flight. This was 
my main reason for carrying out the investigations described in 22 sq. But these 
give little help, as we have just seen, and I feel now convinced that the defect is 
due chiefly to the assumption that the resistance is throughout proportional to the square 
of the speed. I intend to construct an apparatus on the principle described in § 16 
above, but of a much lighter type, to measure the resistance for speed of 30 feet- 
seconds or so, downwards. But I shall probably content myself with verifying, if I 
can, the idea just suggested; leaving to some one who has sufficient time at his 
disposal the working out of the details when the resistance is proportional (towards 
the end of the path) to the speed directly, or to a combination of this with the 
second power. The former is considerably more troublesome than Robins’ law; and 
a combination of the two may probably be so laborious as to damp the ardour of 
any but a genuine enthusiast. The possibility that the law of resistance may change 
its form for low speeds (i.e., towards and beyond the vertex of the path) throws 
some doubt upon the accuracy of the determination of the coefficient of resistance 
from the range, the time of flight, and the initial speed. But, at present, I have no 
means of obtaining a more accurate approximation.

25. The whole of this inquiry has been of a somewhat vague character, but its 
value is probably enhanced, rather than lessened, in consequence. For the circum­
stances can never be the same in any two drives, even if they are essentially good 
ones, and made by the same player. To give only an instance or two of reasons 
for this:—Two balls of equal mass may have considerably different coefficients of 
resistance in consequence of an apparently trifling difference of diameters, or of the 
amount or character of the hammering:—or they may have very different amounts 
of resilience, due to comparatively slight differences of temperature or pressure during
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their treatment in the mould. The pace which the player can give the club-head 
at the moment of impact depends to a very considerable extent on the relative 
motion of his two hands (to which is due the “nip”) during the immediately pre­
ceding two-hundredth of a second, while the amount of beneficial spin is seriously 
diminished by even a trifling upward concavity of the path of the head during the 
ten-thousandth of a second occupied by the blow. It is mainly in apparently trivial 
matters like these, which are placidly spoken of by the mass of golfers under the 
general title of “knack,” that lie the very great differences in drives effected, under 
precisely similar external conditions, by players equal in strength, agility, and (except 
to an extremely well-trained and critical eye) even in style.

[Oct. 5, 1898.—The printing of this paper has been postponed for nearly three 
years in the hope, not as yet realised, that I might be able to determine accurately 
by experiment the terminal speed of an average golf-ball, as well as the average 
value of k, when (as in § 5) kwv represents the transverse acceleration, in terms of 
the rates of spin and translation. Another object has been to measure the effect 
of rapid rotation upon the coefficient of resistance to translatory motion. These ex­
periments, in various forms, are still being carried out by means of various modes 
of propulsion, from a cross-bow to a harpoon-gun. I hope also to procure data, for 
speed and resistance, applicable to various other projectiles such as cricket-balls, arrows, 
bird-bolts, etc.]

[1899.—A popular sketch of the main results of Nos. CXII. and CXIIL, so 
far as they are applicable to the game of Golf, will be found in the Badminton 
Magazine for March, 1896.]

49—2
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CXIV.

NOTE ON THE ANTECEDENTS OF CLERK-MAXWELL’S ELECTRO­

DYNAMICAL-WAVE-EQUATIONS.

[Proceedings of the Royal Society of Edinburgh, April 2, 1894.]

The first obvious difficulty which presents itself, in trying to derive Clerk-Maxwell’s 
equations from those of the elastic-solid theory, appears in the fact that the latter, being 
linear, do not impose any relations among simultaneous disturbances. Thus, for instance, 
they indicate no reason for the associated disturbances which, in Maxwell’s theory, con­
stitute a ray of polarised light. Hence it appears that we must look on the vectors of 
electric and magnetic force, if they are to be accounted for on ordinary dynamical principles, 
as being necessary concomitants, qualities, or characteristics of one and the same vector­
disturbance of the ether, and not themselves primarily disturbances. From this point 
of view the disturbance, in itself, does not correspond to light, and may perhaps not 
affect any of our senses. And the very form of the elastic equation at once suggests 
any number of sets of two concomitants of the desired nature, which are found to be 
related to one another in the way required by Maxwell’s equations.

For the moment, as sufficiently illustrating the essential point of the above remarks, 
I confine myself to disturbances, in the free ether, such as do not involve change of 
volume. The elastic equation is

e = - a*W,

* Stokes, “On the Dynamical Theory of Diffraction,” Camb. Phil. Trans., ix. (1849),

with the limiting condition SV0 = O*.

[Had not this condition been imposed, the dynamical equation would have involved, 
on the right, the additional term

(a2 - 62) VSV0.]
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From any vector satisfying these equations let us derive (by means of the 
operators d/dt and aV, which are the only ones occurring in the equation of motion) 
the concomitants

e = 6, fi = — aV0',

or e = 0, = — aVO, &c., &c.,

and we have between them Clerk-Maxwell’s equations

e = a.V fi = — aVe,

with the conditions /We = 0, SV fi = 0.

The extension to dielectrics, whether they be isotropic or not, is obtained at once:— 
and it secures (in the latter case) all the simplicity which Hamilton’s linear and vector 
function affords. Thus the properties of double refraction, wave-surfaces, &c., follow 
almost intuitively.

When we come to conducting bodies, we have to introduce further conditions. 
But I do not enter on these at present, as the problem is essentially altered in 
character. Nor do I, for the moment, discuss the bearing of the above notions upon 
the profound question of the possible nature of electricity and of magnetism.

There is a sort of analogy to the above, in the case of sound. For it is not 
the (vector) disturbance of the air which affects the sense of hearing, but the (scalar) 
concomitant change, or rate of change, of density.

Thus, possibly, the widely different results obtained by observers of the alteration 
of plane of polarisation in diffracted light, may all really be in accordance with Stokes’ 
splendid investigation:—if we look upon light as an effect produced by the concomitants 
of the ether disturbance, and not directly by the ether disturbance itself.
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cxv.

ON THE ELECTRO-MAGNETIC WAVE-SURFACE.

[Proceedings of the Royal Society of Edinburgh, April 2, 1894.]

We may write the electro-magnetic equations of Clerk-Maxwell as 
^=77^, ^ = -7^.

For plane waves, running with normal velocity va = — p~\ we have 
= ef(yt + Sap), d2 = yf ft + Sap), 

whence at once </>e = Vyy, -fy = — Vpe,
so that Spf>e = 0, Spfrp = 0.

[For the moment, we assume that <£ and f are self-conjugate, so that a linear 
function of them is also self-conjugate. And we employ the method sketched in Tait’s 
Quaternions, §§ 438-9.]

We have nyjr-1^ = = — V. ^pVpe,

or 'fpSey[r/i = rife + Spyfrp . fe = ^re, say.

Thus we have, to determine g, the single scalar equation

S . = Sp, (nf-1 + Spfp. <U’)-1 p = 0.............................. (a).

This is the index-surface, and the form of shows that it has two sheets:— 
i.e., there are two values of Tp for each value of Up.

The tangent plane to the wave is

= - 1...............................................................(b).
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To shorten our work, introduce in place of e the auxiliary vector 
r = = e/Se-^-p,

so that i/r/4 = n<f>r + SpAfrp. ..................................................(c).

(a) may now be written Spcfir = 0.............................................................. (a).

Hence (c) gives, by operating with S .p, S. r, and <8. yfr^p, 
SpA^r = 1 ..............................................................(1),

1 = nSrcfir + SpAfrp, St^t.................................................(2),

— 1 = nSp-^^^T + Srp S/jA^p,.............................................(3).

These preliminaries being settled, we must find the envelope of (6) subject to the 
sole condition (a). We have at once by differentiation

Spdp = 0, and Sdp, (d>T — ^pSt^t^) = 0, 

so that xp = — yffpSr^r...................................................... (d).

Treat this with the three operators used before, and we have respectively 

x = Spyfrp Sr<f>T.......................................................... (4),

Srp = 0...............................................................(5),

xSptfr^p = Spy^^T + Stc^t............................................. (6).

By means of (5), (3) becomes — 1 = nSpyjr-1^, 

so that (6) takes the form xSpyfr^p = — - + ................................................... (6).

Substitute for typ in (d) its value in terms of t from (c); and x becomes, by 
(4) and (6), a factor of each term; so that

p = — nSpyJr^p . </>r — ................................................. (d).

Eliminating t between this and (5), we have finally 
S. p (y]r + nSpyjr^p . t^^p = 0.

(Equation (2) above, has not been, so far, required:—but it is necessary if we 
desire to find the values of Sptyp and other connected quantities.)

It is obvious that, if we had originally eliminated e instead of r/, we should have 
obtained the (apparently) different form

S. p (<f> + mSpcfi^p . ^)_1p = 0.

It is an interesting example in the treatment of linear and vector functions to 
transform one of these directly into the other. (Tait’s Quaternions, § 183.)
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CXVI.

ON THE INTRINSIC NATURE OF THE QUATERNION METHOD.

[Proceedings of the Royal Society of Edinburgh, July 2, 1894.]

My title is purposely ambiguous, because it has to represent two things:—I intend 
to treat not only of what a quaternion really is, but also of its self-containedness, or 
independence.

Professor Cayley has just stated* that “while coordinates are applicable to the 
whole science of geometry, and are the natural and appropriate basis and method in 
the science, Quaternions seem to me a particular and very artificial method for treating 
such parts of the science of three-dimensional Geometry as are most naturally discussed 
by means of the rectangular coordinates x, y, z''

On this I would remark as follows:—

1. I have always maintained that it is not only not a reproach to, but one of 
the most valuable characteristics of, Quaternions that they are uniquely adapted to 
tridimensional space. In my Address to Section A, at the British Association Meeting 
in 1871 (No. XXIII. above), I said:—

“ It is true that, in the eyes of the pure mathematician, Quaternions have one 
grand and fatal defect. They cannot be applied to space of n dimensions, they are 
contented to deal with those poor three dimensions in which mere mortals are doomed 
to dwell, but which cannot bound the limitless aspirations of a Cayley or a Sylvester. 
From the physical point of view this, instead of a defect, is to be regarded as the 
greatest possible recommendation. It shows, in fact, Quaternions to be a special in­
strument so constructed for application to the Actual as to have thrown overboard

“Coordinates versus Quaternions,” Proc. R.S.E., July 2, 1894; or Collected Papers, No. 962. 
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everything which is not absolutely necessary, without the slightest consideration whether 
or no it was thereby being rendered useless for applications to the Inconceivable.”

2. Whether Quaternions are to be regarded as artificial, or the reverse, will obviously 
depend wholly upon what is to be understood by the term Quaternions. This forms the 
main object of the present paper.

3. Though the passage quoted above contains no statement as to the relative 
merits of Quaternions, and Coordinates,- as instruments (in the region which is 
common to them), it is clear from other passages in his paper that Prof. Cayley holds 
that Quaternions are, at best, superfluous:—he allows that they enable us to effect 
great abbreviations, but he insists that, to be applied or even understood, they must 
be reconverted into the x, y, z elements of which they are, in his view, necessarily 
composed.

But their Inventor himself, who certainly devoted vastly more time and attention 
to Quaternions than it can have been possible for Prof. Cayley to devote, took a very 
different view of the mattei-:—

“ It is particularly noteworthy that [Quaternions were] invented by one of the most 
brilliant Analysts the world has yet seen, a man who had for years revelled in floods 
of symbols rivalling the most formidable combinations of Lagrange, Abel, or Jacobi. 
For him the most complex trains of formulae, of the most artificial kind, had no 
secrets:__he was one of the very few who could afford to dispense with simplifications: 
yet, when he had tried Quaternions, he threw over all other methods in their favour, 
devoting almost exclusively to their development the last twenty years of an exceedingly 
active life.”

It will be gathered from what precedes that, in my opinion, the term Quaternions 
means one thing to Prof. Cayley and quite another thing to myself:—thus

To Prof. Cayley Quaternions are mainly a Calculus, a species of Analytical Geo­
metry; and, as such, essentially made up of those coordinates which he regards as 
“the natural and appropriate basis of the science.” They artfully conceal their humble 
origin, by an admirable species of packing or folding:—but, to be of any use, they

----doubly dying, must go down 
To the vile dust from whence they sprung !

To me Quaternions are primarily a mode of representation:—immensely superior to, 
but of essentially the same kind of usefulness as, a diagram or a model. They are, 
virtually, the thing represented: and are thus antecedent to, and independent of, 
coordinates: giving, in general, all the main relations, in the problem to which they 
are applied, without the necessity of appealing to coordinates at all. Coordinates 
may, however, easily be read into them:—when anything (such as metrical or numerical 
detail) is to be gained thereby. Quaternions, in a word, exist in space, and we have 
only to recognize them:—but we have to invent or imagine coordinates of all kinds. 
The grandest characteristic of Quaternions is their transparent intelligibility. They give 
the spirit, as it were, leaving the mere letter aside, until or unless, it seems necessary

T. II. 50
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to attend to that also. In this respect they give a representation analogous to the real 
image of a planet in the focus of an object-glass or mirror:—all that is obtainable is 
there, and you may apply your microscopes and micrometers to it if you please. But, 
theoretically at least, you may dispense with them and have recourse to your eyes 
and your yard-stick alone, if you increase your focal length, and along with it the 
aperture, of your object-glass sufficiently. Of course Newton’s “most serene and quiet 
air” would be indispensable. For the development of this feature of my subject, and 
for illustrative examples, I refer to the B. A. Address above cited; and to the Address 
to the Edinburgh University Physical Society (No. XCVII. above), alluded to by Prof. 
Cayley.

To those who have read Poe’s celebrated tale, The Purloined Letter, it will be 
obvious that the contrast between these two views of Quaternions is even greater than 
that between the Parisian Police and M. Dupin himself, though of very much the 
same kind.

There was a time, in their early history, when Professor Cayley’s view of Quaternions 
was not merely a correct one, it was the only possible one. But, though the name 
has not been altered, the thing signified has undergone a vital change. To such an 
extent, in fact, that we may almost look upon the Quaternion of the latter half of 
this century as having, from at least one point of view, but little relation to that 
of the seven last years of the earlier half.

Hamilton’s extraordinary Preface to his first great book shows how from Double 
Algebras, through Triplets, Triads, and Sets, he finally reached Quaternions. This was the 
genesis of the Quaternion of the forties, and the creature then produced is still essentially 
the Quaternion of Professor Cayley. It is a magnificent analytical conception; but it 
is nothing more than the full development of the system of imaginaries i, j, k; defined 
by the equations

i2 — f = k2 = ijk = — 1,

with the associative, but not the commutative, law for the factors. The novel and 
splendid points in it were the treatment of all directions in space as essentially alike 
in character, and the recognition of the unit vector’s claim to rank also as a quadrantal 
versor. These were indeed inventions of the first magnitude, and of vast importance. 
And here I thoroughly agree with Prof. Cayley in his admiration. Considered as an 
analytical system, based throughout on pure imaginaries, the Quaternion method is 
elegant in the extreme. But, unless it had been also something more, something very 
different and much higher in the scale of development, I should have been content 
to admire it:—and to pass it by.

It has always appeared to me that, magnificent as are Hamilton’s many contributions 
to mathematical science:—his Fluctuating Functions, and his Varying Action, for in­
stance:—nothing that he (or indeed any other man) ever did in such matters can be 
regarded as a higher step in pure reasoning than that which he took when he raised 
Quaternions from the comparatively low estate of a mere system of Imaginaries to the 
proud position of an Organ of Expression; giving simple, comprehensive, and (above all) 
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transparently intelligible, embodiment to the most complicated of Real geometrical and 
physical relations. From the most intensely artificial of systems arose, as if by magic, 
an absolutely natural one!

Most unfortunately, alike for himself and for his grand conception, Hamilton’s nerve 
failed him in the composition of his first great Volume. Had he then renounced, for 
ever, all dealings with i, j, k, his triumph would have been complete. He spared Agag, 
and the best of the sheep, and did not utterly destroy them! He had a paternal 
fondness for i, j, k; perhaps also a (not unnatural) liking for a meretricious title such 
as the mysterious word Quaternion; and, above all, he had an earnest desire to make 
the utmost return in his power for the liberality shown him by the authorities of 
Trinity College, Dublin. He had fully recognized, and proved to others, that his i, j, k 
were mere excrescences and blots on his improved method:—but he unfortunately 
considered that their continued (if only partial) recognition was indispensable to the 
reception of his method by a world steeped in Cartesianism! Through the whole 
compass of each of his tremendous volumes one can find traces of his desire to avoid 
even an allusion to i, j, k; and, along with them, his sorrowful conviction that, should 
he do so, he would be left without a single reader. There can be little doubt that, 
by thus taking a course which he felt to be far beneath the ideal which he had 
attained, he secured for Quaternions at least the temporary attention of mathematicians. 
But there seems to me to be just as little doubt that in so doing he led the vast 
majority of them to take what is still Professor Cayley’s point of view; and thus, to 
regard Quaternions as (apparently at least) obnoxious to his criticisms. And I further 
believe that, to this cause alone, Quaternions owe the scant favour with which they 
have hitherto been regarded.

[I am quite aware that, in making such statements, I inferentially condemn (to 
some extent, at least) the course followed in my own book. But, since my relations 
with Hamilton in the matter have been alluded to more than once, and alike incompletely 
and incorrectly, by Hamilton’s biographer, I may take this opportunity of making a slight 
explanation, not perhaps altogether uncalled for. That Hamilton can altogether have 
forgotten the permission (limited as it was) which he had given me, when, a little 
later, I proposed to avail myself of it (strictly within the limits imposed), seems incredible. 
Mr Graves should either have let the matter alone, or have gone into much greater 
detail about it. As it stands, he virtually represents Hamilton as being unaccountably 
capricious. The following extract from the letter (of date July 10, 1859) in which 
Hamilton gave his sanction to my writing a book on the subject, speaks for itself. 
I had, of course, no rights in the matter:—and I cheerfully submitted to the restrictions 
he imposed on me; especially as I understood that he expressly (and most justly) desired 
to be the first to give to the world his system in its vastly improved form.

“ [2.] If 1 shall go on to speak of my views, wishes, or feelings, on the subject of future publication, 
I request you beforehand to give to any such expression of mine your most indulgent construction; and 
not to attribute to me any jealousy of you, or any wish to interfere, in any way, with your freedom, 
as Author and as Critic.

[3.] If we were altogether strangers, I could have no right to address you on such a subject at
50—2
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all. [Here follow, as an example, some allusions (which need not be quoted) to a then recent pamphlet 
of Mobius, dealing with the Associative Principle in Quaternion Multiplication.] But between you and 
me, the case is perhaps not exactly similar; as we have so freely corresponded, and as you are an 
Author in the same language, and of the same country :—England, Scotland, and Ireland, being here 
held to have their sons compatriots.

[4.] To Mobius’s excellent Pamphlet, it is likely that I may return. Meanwhile I trust that it 
cannot be offensive to you, if I confess,—what indeed your No. 38 encourages me to state,—that in 
any such future publication on the Quaternions as you do me the honour to meditate, I should 
prefer the establishment of ‘Principles’ being left, for some time longer,—say even 2 or 3 years,— 
in my own hands. Open to improvement as my treatment of them confessedly is, I wish that 
improvement, at least to some extent, to be made and published by myself. Briefly, I should like 
(I own it) that no book, so much more attractive to the mathematical public than any work of mine, 
as a book of yours is likely to be, should have the appearance of laying a ‘ Foundation’ : although 
the richer the ‘Superstructure,’ on a previously laid foundation, may be, the better shall I be 
pleased. I think, therefore, that you may be content to deduce the Associative Law, from the rules 
of i, j, k; leaving it to me to consider and to discuss whether it might not have been a fatal 
objection to these rules, if they had been found to be inconsistent with that Principle.

[7.] For calculation, you know, the rules of i, j, k are a sufficient basis, although of course we 
have continual need for transformations, such as

Vy V/3a = aS^y — fiSya,

which may at last be reduced to consequences of those rules; and also require some Notation, such 
as N, V, K, T, U, which I have been glad to find that you are willing, at least for the present, to 
retain and to employ. But my peculiar turn of mind makes me dissatisfied without seeking to go 
deeper into the philosophy of the whole subject, although I am conscious that it will be imprudent 
to attempt to gain any lengthened hearing for my reflections. In fact I hope to get much more 
rapidly on to rules and operations, in the Manual than in the Lectures ; although I cannot consent 
to neglect the occasion of developing more fully my conception of the Multiplication of Vectors, 
and of seeking to establish such multfiplication] as a much less arbitrary process, than it may seem 
to most readers of my former book to be.”

I do not now think that Hamilton, with the “peculiar turn of mind” of which 
he speaks, could ever, in a book, have conveyed adequately to the world his new 
conception of the Quaternion. I got it from him by correspondence, and in conversation. 
When he was pressed to answer a definite question, and could be kept to it, he replied 
in ready and effective terms, and no man could express viva voce his opinions on such 
subjects more clearly and concisely than he could:—but he perpetually planed and re­
polished his printed work at the risk of attenuating the substance: and he fatigued 
and often irritated his readers by constant excursions into metaphysics. One of his 
many letters to me gave, in a few dazzling lines, the whole substance of what afterwards 
became a Chapter of the Elements; and some of his shorter papers in the Proc. R. I. A. 
are veritable gems. But these were dashed off at a sitting, and were not planed and 
repolished.

Should I be called upon, in the future, to produce a fourth edition of my book, 
the Chapter which Prof. Cayley so kindly furnished for the third edition will probably 
preserve by far the greater part of the allusions to i, j, k (except, of course, the 
necessary introductory and historical ones) which it will contain.]
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In the sense above explained, I consider Prof. Cayley’s remarks to be so far 
warranted, hard to bear though some of them undoubtedly are. But the Quaternion, 
when it is regarded from the true point of view, is seen to be untouched, in fact 
unassailable, by any criticism based upon such grounds as reference to coordinates. It 
occupies a region altogether apart. To compare it to a pocket map is to regard it 
as a mere artificial mode of wrapping up and concealing the i, j, k or the x, y, z 
which are supposed to be its ultimate constituents. To be of any use it must be 
unfolded, and its neatly hidden contents turned out. But, from my point of view, this 
comparison is entirely misleading. The quaternion exists, as a space-reality, altogether 
independent of and antecedent to i, j, k or x, y, z. It is the natural, they the altogether 
artificial, weapon. And I venture further to assert (1) that if Descartes, or some of 
his brilliant contemporaries, had recognised the quaternion, (and it is quite conceivable 
that they might have done so), science would have then advanced with even more 
tremendous strides than those which it has recently taken; and (2) that the wretch 
who, under such conditions, had ventured to introduce i, j, k, would have been justly 
regarded as a miscreant of the very basest and most depraved character: possibly 
subjected to “brave punishments,” the peine forte et dure at the very least! In a word, 
Hamilton invented the Quaternion as Prof. Cayley sees it; he afterwards discovered 
the Quaternion as I see it.

If Quaternions are to be compared to a map, at all, they ought to be compared 
to a contoured map or to a model in relief, which gives not only all the information 
which can be derived from the ordinary map but something moresomething of the 
very highest importance as regards the features of a country.

A much more natural and adequate comparison would, it seems to me, liken 
Coordinate Geometry (Quadriplanar or ordinary Cartesian) to a steam-hammer, which 
an expert may employ on any destructive or constructive work of one general kind, 
say the cracking of an egg-shell, or the welding of an anchor. But you must have 
your expert to manage it, for without him it is useless. He has to toil amid the 
heat, smoke, grime, grease, and perpetual din of the suffocating engine-room. The work 
has to be brought to the hammer, for it cannot usually be taken to its work. And 
it is not, in general, transferable; for each expert, as a rule, knows, fully and confidently, 
the working details of his own weapon only. Quaternions, on the other hand, are like 
the elephant’s trunk, ready at any moment for anything, be it to pick up a crumb 
or a field-gun, to strangle a tiger, or to uproot a tree. Portable in the extreme, applicable 
anywhere:—alike in the trackless jungle and in the barrack square:—directed by a little 
native who requires no special skill or training, and who can be transferred from one 
elephant to another without much hesitation. Surely this, which adapts itself to its work, 
is the grander instrument! But then, it is the natural, the other the artificial, one.

The naturalness of Quaternions is amply proved by what they have effected on 
their first application to well-known, long threshed-out, plane problems, such as seemed 
particularly ill-adapted to treatment by an essentially space-method. Yet they gave, 
at a glance, the kinematical solution (perfectly obvious, no doubt, when found) of that 
problem of Fermat’s which so terribly worried Viviani! And, without them, where 
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would have been even the Circular Hodograph, with its marvellous power of simplifying 
the elementary treatment of a planet’s orbit ? I could give many equally striking 
instances.

As to the necessity, in modern mathematical physics, for some substitute for what 
I must (with all due deference to Prof. Cayley) call the cumbersome, unnatural, and 
unwieldy mechanism of coordinates, I have elsewhere fully expressed my own opinion, 
and need not repeat it.

Of course it will be obvious from what precedes that I adhere to every word of 
the first extract which Prof. Cayley has made from my original Preface.

The phrase which he afterwards extracts for comment:—“ such elegant trifles as 
Trilinear Coordinates’’:—seems somewhat too sweeping, and I should certainly hesitate 
to use it without qualification. But the context shows that, in my Preface, it was 
used to characterize the so-called “ Abridged Notation” which had then been for some 
years introduced into Cambridge reading and examinations, not at all because of its 
superiority in completeness to the ordinary x, y system:—and therefore not on scientific 
grounds:—but mainly for the purpose of “aggravating” students, whether in the lecture­
room or in the Senate House, at very small additional labour on the part of the 
lecturer or the examiner. But I made no reference whatever to Quadriplanar Co­
ordinates; for which I feel all due respect, not altogether free from an admixture of 
wholesome awe!
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CXVII.

SYSTEMS OF PLANE CURVES WHOSE ORTHOGONALS FORM 
A SIMILAR SYSTEM.

[Proceedings of the Royal Society of Edinburgh, May 6, 1895.]

(Abstract.')

While tracing the lines of motion and the meridian sections of their orthogonal 
surfaces for an infinite mass of perfect fluid disturbed by a moving sphere:—the 
question occurred to me, “When are such systems similar?” In the problem alluded 
to the equations of the curves are, respectively,

(rlaf = cos 0, and (rff = sin 0.

It was at once obvious that any sets of curves such as
i

(rla)m = cos 0 and (r/b)m = sin 0

are orthogonals. But they form similar systems only when

= 1.

Hence the only sets of similar orthogonal curves, having equations of the above 
form, are (a) groups of parallel lines and (b) their electric images (circles touching 
each other at one point). As the electric images of these, taken from what point 
we please, simply reproduce the same system, I fancied at first that the solution must 
be unique:—and that it would furnish an even more remarkable example of limitation 
than does the problem of dividing space into infinitesimal cubes. (See No. CV. above.) 
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But I found that I could not prove this proposition; and I soon fell in with 
an infinite class of orthogonals having the required property. These are all of the 
type

= (tan0)2™+i.......................................................(1),

which includes the straight lines and circles already specified. The next of these in 
order of simplicity among this class is

i
r = ag2cos2e cos 0,

i
with r = &g2sin2S sjn q

In order to get other solutions from any one pair like this, we must take its electric 
image from a point whose vector is inclined at tt/4 or 3tt/4 to the line of reference. 
For such points alone make the images similar. And a peculiarity now presents itself, 
in that the new systems are not directly superposable:—but each is the perversion 
of the other.

If we had, from the first, contemplated the question from this point of view, an 
exceedingly simple pair of solutions would have been furnished at once by the obviously 
orthogonal sets of logarithmic spirals

r = ae°, r = be~°;

and another by their electric images taken from any point whatever. The groups 
of curves thus obtained form a curious series of spirals, all but one of each series 
being a continuous line of finite length whose ends circulate in opposite senses round 
two poles, and having therefore one point of inflection. The excepted member of each 
series is of infinite length, having an asymptote in place of the point of inflection. 
This is in accordance with the facts that:—a point of inflection can occur in the image 
only when the circle of curvature of the object curve passes through the reflecting 
centre, and that no two circles of curvature of a logarithmic spiral can meet one 
another. [See No. CXVIII. below.]

We may take the electric images of these, over and over again, provided the 
reflecting centre be taken always on the line joining the poles. All such images will 
be cases satisfying the modified form of the problem.

If we now introduce, as a factor of the right-hand member of (1), a function 
of 0 which is changed into its own reciprocal (without change of sign) when 0 increases 
by vr/2, we may obtain an infinite number of additional classes of solutions of the 
original question; and from these, by taking their electric images as above, we derive 
corresponding solutions of the modified form. We may thus obtain an infinite number 
of classes of solutions where the equations are expressible in ordinary algebraic, not 
transcendental, forms.
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Thus we may take, as a factor in (1), tan2(0 + a). The general integral is com­
plicated, so take the very particular case of m=l, a=7r/4. This gives the curves

tan 6 sec 0 2/(i+tane) 
~ (1 + tan 0y>

Again, let the factor be tan (0 — a) tan (0 + a). With m = 1, and tana = l/V3, we get 
the remarkably simple form

^=1 
a 3®2 ’

But such examples may be multiplied indefinitely.

[As the last example given above, though a specially simple one, is curious from 
several points of view, I append a tracing of the four curves

for the particular cases of numerical equality between a and b. The + a curves are 
full, the others dotted.

T. II. 51
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Whatever be the values of a and b, we have at an intersection of these curves

^_3j^__3cot29 and ^2 M
dx % ay dx 3 a2-y2 3 ’

respectively, so that their orthogonality is obvious.

Each of them consists of a single symmetrical kink, without contrary flexure; 
having its double point at the origin, where its (infinite) branches cross its axis at 
angles of + 60°.

Their form is, of course, unique, the constant determining merely the scale of 
each figure; except when it changes sign, and then the figure is simply reversed. But, 
even in that case, two curves of the same series cannot intersect, except of course at the 
origin; as, at either side of the origin the parts of the two lie respectively between, and 
outside, the common tangents to the series. Also it is obvious that one member of each 
series can be made .to pass through any other assigned point in their plane, provided 
it be not taken on one of the tangents at the origin. For then the substitution 
of its coordinates in either equation determines the characteristic constant without 
ambiguity.

When, as in the cut, a and b are numerically equal, the curves intersect one 
another at their points of maximum distance from their respective axes of symmetry, 
where they are necessarily perpendicular to one another. And the common tangents to 
one series intersect members of the other series in points which separate, on each curve, 
the regions in which it is met by the kinked parts, from those in which it is met 
by the branched parts, of those of the other series. 1899.]
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CXVIIL

NOTE ON THE CIRCLES OF CURVATURE OF A PLANE 
CURVE.

[Proceedings of the Edinburgh Mathematical Society, December 13, 1895.]

When the curvature of a plane curve continuously increases or diminishes (as is 
the case with a logarithmic spiral for instance) no two of the circles of curvature can 
intersect one another.

This curious remark occurred to me some time ago in connection with an accidental 
feature of a totally different question. [Systems of Plane Curves whose Orthogonals 
form a similar System. Antti, No. CXVII.)

The proof is excessively simple. For if A, B, be any two points of the evolute, 
the chord AB is the distance between the centres of two of the circles, and is necessarily 
less than the arc AB, the difference of their radii. (This is true even if the evolute 
be sinuous, so that the original curve has ramphoid cusps.)

When the curve has points of maximum or minimum curvature, there are corre­
sponding [keratoid] cusps on the evolute; and pairs of circles of curvature whose centres 
lie on opposite sides of the cusp, C, may intersect:—for the chord AB may now exceed 
the difference between CA and CB.

51—2
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CXIX.

NOTE ON CENTROBARIC SHELLS.

[Proceedings of the Royal Society of Edinburgh, February 3, 1896.]

It is singular to observe the comparative ease with which elementary propositions 
in attraction can be proved by one of the obvious methods, while the proof by the 
other is tedious.

Thus nothing can be simpler than Newton’s proof that a uniform spherical shell 
exerts no gravitating force on an internal particle. But, so far as I know, there is 
no such simple proof (of a direct character) that the potential is constant throughout 
the interior.

On the other hand the direct proof that a spherical shell, whose surface-density

is inversely as the cube of the distance from an internal point, is centrobaric is neither 
short nor simple. (See, for instance, Thomson and Tait’s Elements of Natural Philosophy,
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§ 491. ) But we may prove at once that its potential at external points is the same 
as if its mass were condensed at the internal point.

For if an elementary double 
and E, we have

cone, with its vertex at S, cut out areas K

E - K
SE2 SK2 •

Let P be any external point, and take T on PS (produced) so that 

PS. ST = KS. SE = b2.

Then we have obviously, from similar- triangles, 

SK .EP = SP .KT.

Thus _K________ 1 1 K
EP ~ SK. SE SK .EP~b^SP-KT'

But the sum of the values of is the (constant) potential at T for unit surface­

density ; so that the sum of the values of the first side of the equation is inversely 
as SP ■, and the proposition is proved.

Although no mention has been made of Electric Images, in the above investigation, 
it is obvious that nearly all their chief elementary properties have been proved, almost 
intuitively, in the course of these three or four lines. The others are obtained at once 
by applying the same method to the case in which P is inside the spherical shell, and 
T outside:—remembering that the potential at T is now inversely as the distance of T 
from the centre, 0, of the sphere; and referring the potential of E to a point S' on OS 
produced till OS. OS' is the square of the radius of the shell.

[This investigation has been at once further simplified and extended, in § 52 of 
my little book Newtons Laws of Motion. 1899.]
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cxx.

ON THE LINEAR AND VECTOR FUNCTION.

[Proceedings of the Royal Society of Edinburgh, May 18 and June 1, 1896.]

In the following Abstract I refer to such Linear and Vector Functions, only, as 
correspond to homogeneous strains which a piece of actual matter can undergo. There 
is no difficulty:—though caution is often called for:—in extending the propositions to 
cases which are not realizable in physics*.

The inquiry arose from a desire to ascertain the exact nature of the strain when, 
though it is not pure, the roots of its cubic are all real:—i.e., when three lines of 
particles, not originally at right angles to one another, are left by it unchanged in 
direction.

1. The sum, and the product (or the quotient), of two linear and vector functions 
are also linear and vector functions. But, while the sum is always self-conjugate if 
the separate functions are so (or if they be conjugate to one another), the product 
(or quotient) is in general not self-conjugate:—though the determining cubic has, in 
this case, real roots. The proof can be given in many simple forms.

If ct and &> represent any two pure strains, there are three real values of g, each 
with its corresponding value of p, such that

^p = gwp...................................................................(1).

* [Thus the transformations, given below, are presumed to involve real quantities only. Dr Muir, in 
making some valuable comments on one of the results (Phil. Mag. 1897, I. 220), appears to have overlooked 
this important preliminary condition. 1899.]
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Assume w^p — a; and the equation becomes

= ga.

But a)~'^a>~i is obviously self-conjugate. Hence the three values of g are real, and 
the vectors a form a rectangular system. Thus (1) is satisfied by three expressions 
of the form

p = aJ~a = g^tB-~icr..................................................(2) ;

i.e., there is one rectangular set of vectors which have their directions altered in the 
same way by the square roots of the inverses of each of the given strains.

But (1) may be written in the form

co'Wp = gp,

where &>-1sr is in general not a self-conjugate function. Thus

Two pure strains in succession give a strain which is generally rotational, but whose 
cubic has three real roots.

Conversely, when a strain is such as to leave unchanged three directions in a body, 
it may be regarded as the resultant of two successive pure strains.

These are to be found from (2), in which the values of g and p are now regarded as 
given, so that the problem is reduced to finding to (a pure strain), and the (rectangular) 
values of a from three equations of the form

= <T.

When w is thus found, the value of it is given by (1). The solution is easily seen 
to express the fact that to and sr, alike, convert the system pu p2, p3 into vectors 
parallel to Vp2p3, Vp3pi, Vpip3, respectively.

2. Other modes of solution of (1) are detailed, of which we need here mention 
only that which depends upon the formation of the cubic in

<£ = sr — gw,

the calculation of the coefficients in Mg, and the comparison of these forms with their 
equals found from

<f> = srco-1 — g, 

and from <£ = — g;

a process which gives interesting quaternion transformations.

3. Some curious consequences can be deduced from these formula?, which have 
useful bearing upon the usual matrix mode of treating the problem algebraically.
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For, if we take

w = ( A 
c 
b

c b
B a 
a C

) and a> = । P
0
0

0

0

0
0
r

which
(1) in

involve complete 
9

generality since

A-pg

b j,

c

k are u

b

ndefined, 

= 0.

we have for the cubic

c B — qg a
b a C — rg

The transformation of (1) given above is equivalent to dividing the successive rows, 
and also the columns, of this determinant by \Jp, \/q, >Jr respectively. It thus becomes

A/p-g c/Jpq b/Jpr
c/Jpq Blq-g afjqr
bjjpr afjqr Cjr — g

from the form of which the reality of the roots is obvious.

A somewhat similar process* shows that the roots of

A — x b c
d E—x f
g h 1 — x

are always all real, provided the single condition, 
cdh = bfg, 

be satisfied.

* [Multiply the rows, and divide the columns, respectively, by p, q, r. It becomes

A-x bplq cp/r 
dq/p E-x fq/r 
gr)p hr/q I-x

so that, to make it axi-symmetrical, we must have

Thus finally it becomes 

(plq)2=d/b, 
(q/r)2=h/f, 
(r/p)2 = clg.

A-x Jbd s/cg
Jdb E-x Jfh
J go I-x

if the condition in the text above is satisfied. 1896.]
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It is easy to see that this statement may be put in the form:—The roots of Mg= 0 
are real, provided a rectangular system can be found such that

Si<frjSj(l)kSk<l>i = Sk<f>jSj<f>iSi([>k.

The quaternion form, of which this is an exceedingly particular case, expresses 
simply that the roots of the cubic in </> are all real, if a self-conjugate function co 
can be found, such that is self-conjugate. This is merely another way of stating 
the chief result of § 1 above. But it may be interesting to illustrate it from this 
point of view. We may write, in consequence of what has just been said,

SpipzPs • ^p — giVpipsSpip +g2Vp3p1Sp2p + gsVp^Spsp,

and coo- =p1p1Sp1cr + p2p2Sp3cr + p3p3Sp3a-.

These give at once
= p1g1p1Sp1p +p2g2p2Sp2p + p3g3p3Sp3p, 

which is obviously self-conjugate.

4. The results above have immediate application to fluid motion. For, when there 
is a velocity-potential, the motion is “differentially irrotational”:—i.e., the instantaneous 
change of form of any fluid element is a pure strain; a particular cubical element 
at each point becoming brick-shaped without change of direction of its edges. But 
if we think of the result of two successive instantaneous changes of this character, 
we see that there is in general at every point a definite elementary parallelepiped, 
the lengths, only, of whose edges are changed by this complex strain. In special cases, 
only, is a similar result produced by three successive pure strains.

[The remainder of this Abstract referred to the genesis and history of No. CXV. 
above.]

T. II. 52
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CXXI.

ON THE LINEAR AND VECTOR FUNCTION.

[Proceedings of the Royal Society of Edinburgh, March 1, 1897.]

In a paper read to the Society in May last, I treated specially the case in which
the Hamiltonian cubic has all its roots real. In that paper I employed little beyond
the well-known methods of Hamilton, but some of the results obtained seemed to
indicate a novel and useful classification of the various forms of the Linear and Vector
Function. This is the main object of the present communication.

1. It is known that we may always write

</>p= S (aSotjp)

and that three terms of the sum on the right are sufficient, and in general more than is 
required, to express any linear and vector function. In fact, all necessary generality is 
secured by fixing, once for all, the values of a, ft, 7, or of a1( 71, leaving the others
arbitrary:—subject only to the condition that neither set is coplanar. Thus as a 
particular case we may write either

^p = XaSip,

or <f>p = 'ZiSaip.

In either case we secure the nine independent scalar coefficients which are required 
for the expression of the most general homogeneous strain. But forms like these are 
relics of the early stage of quaternion development, and (as Hamilton expressly urged) 
they ought to be dispensed with as soon as possible.

2. A linear and vector function is completely determined if we know its effects on 
each of any system of three non-coplanar unit-vectors, say a, R, 7. If its cubic have 
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three real roots, these vectors may, if we choose, be taken as the directions which it 
leaves unaltered: if but one, we may take a corresponding system in the form 

a, fi cos a + ty sin a,

where t is J —1. But it is preferable to keep the simpler form a, /3, 7, with the under­
standing that fi and 7 may be bi-vectors, of the form just written.

3. In terms of the three roots thus designed, we may form, with the help of 
three arbitrary scalars (two of them bi-scalars of the form y + lz, if necessary), three 
very simple but distinct varieties of linear and vector function :—viz.

(a) Strains leaving three directions, a, fi, 7 or Vfiy, Vya, Va8, unaltered, so that 
their reciprocals have the same form.

Safiy. = xaSfiyp + yfiSyap + zySafip,

with Safiy • </>iP = xVfiySap + yVyaSfip + zVafiSyp.

In this case, if x, y, z are the same in each, </>j is the conjugate of <^.

(When x = y = z, these strains leave the form and position of a body unaltered; 
but each linear dimension is increased x fold.)

(6) Pure strains :—
up = xaSap + yfiSfip + zySyp,

with Wj p — x VfiySfiyp + y VyaSyap + z VafiSafip.

The second of these changes the system a, fi, 7, into Vfiy, Vya, Vafi; while the 
first effects the reverse operation.

(c) Combinations of two or more, from (a) or (6), or from (a) and (6):—

Either form of (a) repeated (with altered scalar constants), simply perpetuates the 
form. In <£><£1 and we have new forms, which are pure when x : y : z are the 
same in each of the factors.

The two forms (&), in succession, give one or other of the forms (a); and, con­
versely, either form of (a) may be regarded as the resultant of the two forms (6) 
taken in the proper order. This is the main result of my former paper:—for it is 
obvious that, having between them twelve disposable constants, is and may be made 
to represent any two pure strains.

But, while <(>^ and merely repeat the type w; and and the type 
CTj; we have novel forms in the combinations

and .

Many of these are useful in the solution of equations among forms; such as, for 
instance,

X2=^ tx , or &c.
52—2 
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where is to be found when y/r is given. One simple result of the above discussion, 
which is often of great use in such matters, is the obvious condition that two such 
forms shall be commutative in their successive application.

4. When two roots are imaginary, all the forms above are still real; since, when 
and 7 take the forms ± ty, y and z must be written y + iz. In the forms (6), 

the imaginary terms cancel one another; in (a) the real terms do so, and the whole 
is divisible by i.

5. Of course, with a, 7 (as in 2, above) and three scalar constants, we can 
produce any form of linear and vector function. And the paper concludes with forms 
in which these constants are merged in a new arbitrary vector.
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CXXII.

NOTE ON THE SOLUTION OF EQUATIONS IN LINEAR AND 
VECTOR FUNCTIONS.

[Proceedings of the Royal Society of Edinburgh, June 7, 1897.]

In a paper read to the Society on March 1 (ante, No. CXXI.) I spoke of the 
application of some of its results to the solution of equations involving an unknown 
Linear and Vector Function. These results depended chiefly upon the expression of the 
function in terms of its roots, scalar and directional; and I now give a few instances 
of their utility, keeping in view rather variety of treatment than complexity of subject. 
The matter admits of practically infinite development, even when we keep to very 
simple forms of equation, and is thus specially qualified to show the richness in re­
sources which is so characteristic of quaternions. But it will be seen also to be strongly 
suggestive of the extreme caution required even in the most elementary parts of this 
field of inquiry.

In what follows, I employ to denote the unknown function; $, y/r, etc., known 
functions, sr is specially reserved for a self-conjugate function, and to for a pure 
rotation.

1. Given ^X = X^ ..............................................................(D;

i .e., to find the condition that two functions shall be commutative in their successive 
application. Let a be a root of </>, real or imaginary, so that

<l>a=ga.

We have at once, by applying the members of the proposed equation to a,

^Xa- = X^a- = 9Xa"
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Thus, except in the case of equal roots of <£,

;
so that the required condition is merely that has the same directional roots as <£. 
When two values of g are equal, two of the directional roots of are limited only to 
lie in a definite plane:—when all three are equal, </> becomes a mere magnification, and 
X is, of course, wholly undetermined.

[When the roots of $ are all real, we have

Safly. XP — h^aS^yp + h„ ft Syap + h^ySaftp.

When two are imaginary we may preserve this form; or, if we wish to express it in 
terms of real quantities only, we may write it as

Safty. xp = haSftyp + (h2ft — h3y) Syap + (h2y + h3ft) Saftp,

where the meanings of h2, h3, ft, y, are entirely changed.

It is well to notice that the squares of these functions preserve the form, so that 
in the first

Safty. x2P = hf^ftyp + hfftSyap + hfySyap ;

and in the second we have the value

hfaSftyp + {(hf — hf) ft — %h2h3y} Syap + {(A22 — hf) y + 2O3/3] Saftp.

Thus the square roots of such expressions may be obtained by inspection.]

2. Had the known factors been different in the two members, i.e., had the 
equation been

^x^x^.............................................(i'X
the same process would still have been applicable, though the result would have been 
very different. For a being a root of we have

^Xa=9Xa
as before. But we can no longer conclude from this anything further than that the 
scalar roots of must be the same as those of <^, in order that the given equation may 
not be self-contradictory. Thus, if x/r have three real roots, so must <£, and conversely. 
If this necessary condition be fulfilled, x is any function which changes the directional 
roots of x/r into those of Its own scalar roots remain indefinite.

3. Let the equation be
<I>X' = X<I>' .......................................................... (2)-

The members, besides being equal, are conjugates; so that they represent any pure strain 
whatever.

Thus x = and x= which are of course consistent with one another. 
Remark that, as a particular case, vr may be a mere number. If vr be taken = we 
have the obvious solution x —



CXXII.] SOLUTION OF EQUATIONS IN LINEAR AND VECTOR FUNCTIONS. 415

4. If we alter the order of the factors on one side of (2) we have an altogether 
new form:—

‘Px'^^'x....................................... (3)-
Since $ is given, this may be written

X = ^X>
where is known. An immediate transformation by taking the conjugate gives

X = 'MV
a type which is obviously a particular case of (1'); and, besides, will be treated later, 
with the sole difference that will then be the given function, and that to be found. 
But when a solution has thus been obtained, it must be tested in the original equation; 
for selective eliminations, such as that just given, often introduce irrelevant solutions. 
(See § 8, below.)

5. A curious modification of (3) is produced by making in it </> and % identical, 
so that it becomes

XX'=XX ..........................................................(4).
Though no longer linear, this equation is in some respects analogous to (1). It thus 
imposes the condition that x and its conjugate shall have the same directional roots. If 
all three be real they must therefore form a rectangular system. If two be imaginary, 
the vectors of their real and imaginary parts form a rectangular system with the third. 
Thus x may be any Pure st™11) or a rotation associated with a pure strain symmetrical 
about the axis of the rotation.

A simpler mode of dealing with (4) is suggested by the last remark. For we may 
always assume

and (4) becomes = ®-2 =

from which (coupled with the results of (1)) the above conclusions are obvious.

6. The form X^X = V................................................................(5)
also admits of simple treatment. Its conjugate is

xVx' = </>'•
Now we can always write $ = nr + Ve,
with </>' = w - Ve,
and the equations above become, by addition and subtraction,

X^X xVex'^Ve.
Put the first of these in the form

X^toi. (o^^x =
where &>j and w3 are, so far, arbitrary. As each side is the product of a strain and 
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its conjugate (because the conjugate of a pure rotation is its reciprocal), we may at 
once write

X^CO1 = ^<02,

or X — ^co^-

where co = co^cor1 is still arbitrary. To determine it, the second equation above, viz.

XVeX' = Ve,

gives me = x'e>

where m is the product of the numerical (scalar) roots of x\ obviously unit in this case, 
as there is no change of volume. This gives

tovr^e = ^e,

so that the axis of co is vie, but the angle of rotation remains undetermined.

The direct algebraic verification of this solution is troublesome, unless we refer the 
strain to the axes of its pure part w, when it becomes fairly simple. For cf) can 
then be written as

( A2 — v p, )
v B2 —X , 

— p. X C2

whence it is easy to see that

£ {-V+(l — e)lm] 

e + (1 — e)m2 

ri
p K/+ (1 - e) mn]

[mf+ (1 - e) In]

$ {“ V+ (1 “ e)mn}

e + (1 — e) n2

>

e + (1 — e) Z2 

^(n/+(l-e) Im] 

ri
-j {— mf+ (1 — e) In] Al

where 

and

= AX/jA2X2 + B-p- + UV, 

e2 +/2 = 1-

etc.,

7. A similar mode of treatment can, of course, be 

x^ ..........

applied to the more general form 

............................................ (6).

After what has just been said, it is easy to see that if yjr — v1 + Velt we shall have

with the condition for co (and for the possibility of a solution)

mcov^e = •sr1ie1,

where m is the product of the numerical roots of x-

[In connection with the results above it may be interesting to find the relations 
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among the various constituents of the two different modes of breaking up a linear 
vector function into pure and rotational partsi.e.,

^> = + Fe = WjW.

(See No. XXI. above, for another solution.)

The general form of a pure rotation is

co = aAln ( ) a~AllT = cos A + sin AV. a — (1 — cos A) aS. a,

where a is the unit vector axis and A the angle of rotation.

Thus, writing for shortness c = cos A and s = sin A,

^p + Vep = cro-jp + Vap — (1 — c) i^aSap, 

wp — Vep = c^ip — sVa^1p — (1 — c) aSat^p, 

so that 2Vep = s(w1Fap + Va^p) + (1 — c) V. (Fa^a) p.

Now Hamilton (in giving his cubic) showed that

(m2 — OTj) Vap = Vvriap + Va-s^p,

so we have 2 Vep = s (m2Vap - F^ap) + (1 - c) V.(Va^a) p ;

and, as this is true for all values of p,

2e— s (m2a — ^a) + (1 — c) Fa^a,

the second term disappearing when the rotation is about one of the axes of the pure 
part of the strain. Again

2tvp = 2c^p + s (^Fap — Va^p) — (1 — c) faaSap + aSai^p}

is obviously self-conjugate.]

8. An instantaneous, and (at first sight) apparently quite different, solution of 
(5) is obtained by multiplying each side into the reciprocal of its conjugate. For we 
thus have a case of (1) in the form

= M^X-
But this equation, which would assign to any value commutative with is
very much more general than (5) from which it is derived. [This is an excellent 
example of the necessity for caution already pointed out.]

To analyse this solution, with the view of restricting it, note that by Hamilton’s 
method we have at once

m = 2 F. we = 2eV. ^a, suppose,

where m is the product of the scalar roots of </>; a a unit vector, and e a scalar 
constant, both definite.

T. II. 53
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Thus 'H^P ^iaP

2e= p 4— (-sr 4- eV. ^~^a)V^ap

/ 2e2\ 2em- , , 2e2 , „= 1------pH--------— Vais *p m*aSam *p, \ m j ’ m 1 m-------------- r

where is the product of the scalar roots of wi, and therefore

m = m — Seme = m + e2.

[The former solution, giving

Xp = m^wm~^p

— p cos A 4- sin Am^Vam^p — (1 — cos A) m^aSam~^p,

contains this as a particular case, for it is easy to see that the two expressions agree
if we are entitled to assume simultaneously

cos A = 1 2e- . 2enA , . 2e2 , sm A = , 1 — cos A = - m------------- m---------------------- m

The first and last are identical; and the first and second require merely that 
we shall have

_ / 2e2\2 4e2in.
\ mJ m2 ’

which is satisfied in consequence of the expression for m above.]

That the complete admissible value of % is what we have already found, and 
contains only the one scalar indeterminate A, is easily verified by expressing as a 
linear combination of the operators 1, m^Tam^i, m^aSam^, which are suggested by its 
relation to and are obviously commutative with one another; and independent, 
in the sense of not producing any new operator by their combinations. Then the 
required relations among the coefficients are determined by comparing term by term 
the expressions for </>x and

9. Finally, we may treat (5) by a method similar to that adopted for (1). Let 
a now be a directional root of x, so that xa = ga. Then we have

, 1 , X^ = - fa.

But the cubics of x and X are necessarily identical, and thus their common 
numerical roots can be no others than 1, g, 1/g. Also, since </> is assumed to be real, 
g is imaginary, for $ changes the g directional root of xJ to the 1/y root of x> and 
conversely.
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But, if we operate by the conjugate of (5) upon a, we get

Thus the directional roots of \ are treated alike by </>' and by </>, and must there­
fore belong to So those of belong to Thus we are again conducted
to the previous result; but this third method gives us great additional information 
as to the intrinsic nature of the strains involved, and the relations which exist among 
them.

10. It is, of course, only in special cases that simple methods like these can 
be applied to linear vector-function equations of a little greater complexity. But 
when they are applicable they often give singularly elegant solutions. As an instance 
take the equation

fax+xfa=fa.......................................(7),
or, as it may obviously be written,

Let a be a directional root of 0.2, then at once

= fa2*

or xa=(fa+ff'T1faa-
If the roots of fa be unequal, the three equations of this form completely deter­
mine

11. Again, let fax + xfa = faxfa + fa .............................................. (8).

If <7i> ai> etc., are roots °f fa> this gives three equations of the form

(fa + ^0 X«i = faX (‘M) + faa,.
If the values of a be unequal, we can of course find the coefficients in

^01 = Ui«i + + C!«3

</>4a2= a2a1+ b2a2 + ...
^>4®3 = .....................................

Then, putting Xi for xa1; etc., we have finally

^>3 1 (^i 4- X, — u4X4 + biX2 T 0^X3 4- <^>3 ifaoti.

The three equations of this form give Xu etc., that is, x«i, etc., and thus is found in 
terms of its effects on three known vectors.

12. The most general linear equation in % and may be written as

^Xfa + Sfax fa 1 = £
53—2
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Take a, ft, 7, three non-coplanar vectors, and let

= pa + qft + ry 
<j)1ft = p'a + 7/3 + r'y V etc.

^7 = p"a. + q"ft 4- r”y ]

■^'a = sa + tft + uy

ty’ft = s'a + t'ft + ...\ etc.
^'7 = s”a +............

Apply the members of the given equation to a, /3, 7 separately; and operate on 
each of the results with S.a, S.ft, S.y. We obtain nine scalar equations in ^a=X, 
Xft = p, %y = v, of which two are

S {Sa<p (pX + qp + rv) + S^a (sX + tp + uv)} = Saga, 

S {Sfty (pX + qp + rv) + a (s'X +1’p + uv)} = S/3^a.

These are necessary, and sufficient, to determine X, p, v; and thence x-
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CXXIII.

ON THE DIRECTIONS WHICH ARE MOST ALTERED BY A 
HOMOGENEOUS STRAIN.

[Proceedings of the Royal Society of Edinburgh, December 7, 1897.]

The cosine of the angle through which a unit vector p is turned by the homo­
geneous strain </> is

W_L 
u~ Tp.T<f>p'

This is to be a maximum, with the sole condition

Tp^l.

Differentiating, &c., as usual we have

xp = - 2<j>pSp<l>'<l>p + <f<]>pSp<j>p, 

where 2 </> = </> +
Operate by 8. p and we have

— x = — Sp<j>pSp(f<l>p;

<f>p cf <j>p
so that p = “ 2 Sp^p + Sp^p •

Hence the required vector, and its positions after the strains and </>'</>, lie in one 
plane; and the tangent of the angle between p and c^P is half of the tangent of the 
angle between p and [In the original, </> was (by an oversight) written for so
that the last statement has been modified. 1899.]

When the strain is pure, the required values of p are easily found. Let the chief 
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unit vectors of <i> be a, R, 7, and its scalars gx, g2, g3. Then the equation above gives 
at once three of the form

There are two kinds of solutions of these equations.

First. Let the first factor vanish in two of them, e.g.,

SRp = 0, Syp = 0, or p — a.

Then the remaining equation is satisfied identically, because its second factor becomes

Si2’

whence ti2=l.

Thus, as we might have seen at once, the lines of zero alteration (minima) are the 
axes of the strain.

Second. Let the second factor vanish in two of the equations, e.g.,

1 + ___ 5^_=() 1 + J^____ £l_ = 0.
Spcfip Spcf^p ’ Sp(f>p Spc^-p

These give at once Sp$p = - , Spd>2p = — g2gs;
... 9^ +9s

In this case it is evident that we have also

Sap = 0.

[In fact, neither the first factors, nor the second factors, in the three equations, can 
simultaneously vanish:—except in the special case when two of gx, g2, gs are equal.]

Of the three values of w2 just found, the least, which depends upon the greatest and 
least of the three values of g, gives the single vector of maximum displacement:— 
the other two are minimaxes, corresponding to cols where a contour line intersects 
itself.

(Read February 21, 1898.)

The self-intersecting 
g’s, were exhibited on a 

of which the amount of

contour-lines, corresponding to 3, 2, 1 as the values of the 
globe; whose surface was thus divided into regions in each

displacement lies between definite limits. 8
9The contour u*=

encloses the regions in which the maximum = -J is contained:—and (where its separate 

areas are superposed) one of the minima. This minimum is surrounded by a detached
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part of w2 = —, while the rest surrounds the other two minima (w2 = 1); and the double Zu
points of these contours are the minimaxes.

A general idea of their forms may be gathered from their orthogonal projections on 
the principal planes, as shown in Figs. 1, 2, 3 of Plate VIII. These projections are 

g
curves of the 4th order:—but w2 = x (dashed) splits into two equal ellipses on the xy y

24 plane, and hyperbolas on that of xz; while u2 = — (dotted) gives ellipses on yz and 

hyperbolas on xz. Fig. 4 gives, on a fourfold scale, the region near the z pole of the 
projection on yz, of which the details cannot be shown on the smaller figure.

The curves were traced from their equations. One example must suffice. Thus

w2=§=<?^±_2Ji±£l2
9 9a:2 + 4y2 + ^2

gives, eliminating z by the condition x2 + y2 + z2 = l,
Q

(2a?2 + y2 + I)2 = g (8a?2 + 3y2 + 1), y

/ 1\2 16or ^2a?2 + y2 - = y a?,

/ IV 5 2(^3)+^.

The forms of these curves depend only on the ratios g, : g2 : g3, so that I have 
appended Fig. 5, in which we have 5:4:3, for comparison with Fig. 3 where we 
have 3:2:1.
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CXXIV.

ON THE LINEAR AND VECTOR FUNCTION.

[Proceedings of the Royal Society of Edinburgh, May 1, 1899.]

Three years ago I called the attention of the Society to the following theorem:—

The resultant of two pure strains is a homogeneous strain which leaves three directions 
unchanged; and conversely.

[It will be shown below that any strain which has three real roots can also be 
looked on (in an infinite number of ways) as the resultant of two others which have 
the same property.]

As I was anxious to introduce this proposition in my advanced class, where I 
was not justified in employing the extremely simple quaternion proof, I gave a number 
of different modes of demonstration; of which the most elementary was geometrical, and 
was based upon the almost obvious fact that

If there be two concentric ellipsoids, determinate in form and position, one of which 
remains of constant magnitude, while the other may swell or contract without limit; there 
are three stages at which they touch one another.

[These are, of course, (1) and (2), when one is just wholly inside or just wholly 
outside the other (that is when their closed curves of intersection shrink into points), 
and (3) when their curves of intersection intersect one another. The whole matter 
may obviously be simplified by first inflicting a pure strain on the two ellipsoids, such 
as to make one of them into a sphere, next considering their conditions of touching, and 
finally inflicting the reciprocal strain.]

But the normal at any point of an ellipsoid is the direction into which the radius­
vector of that point is turned by a pure strain; so that for any two pure strains 
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there are three directions which they alter alike. (These form, of course, the system 
of conjugate diameters common to the two ellipsoids.) This is the fundamental pro­
position of the paper referred to, and the theorem follows from it directly.

In the course of some recent investigations I noticed that if $ have real roots, so 
also has

whatever real strain may be. This is, of course, obvious, for they are ^01, ^/3, ^7, if 
a, /3, 7 be the roots of <£. At first sight this appeared to me to be a generalisation 
of the theorem above, of a nature inconsistent with some of the steps of the proof. 
But it is easy to see that it is not so. For all expressions of the form

^co^'

correspond to pure strains if co is pure. Hence

and is thus, as required by the theorem, the product of two pure strains.

Of course we might have decomposed it into other pairs of factors, thus 

y/rco^1. etc.

In the former case the factors have each three real roots, in the latter they have not 
generally more than one.

A great number of curious developments at once suggest themselves, of which I 
mention one or two.

Thus, let there be three successive pure strains (which may obviously represent 
any strain). We may alter them individually, as below, in an infinite number of ways 
without altering the whole.

®®1®3 = COj-1 . ®x®»i . CO2 = CO . CO^COi . Wj-1

= Wx^®-1®!-1 . Wx®®!®!-1 ®x®®x . ®2

= ®x-3®“1. ®x®®i®®x. ®2 = etc.

The expression wvr itself, when its three roots are given, i.e., a, /3, 7 with 
gu g?, gives co and •sr separately, with three scalars left arbitrary. For we may take

cop = x^Sap + x2^S^p + ...,

up = y^V^yS^yp + y2VyaSyap + ..., 

and then obviously there are three conditions only, viz.

= ^- = ^7.
®iyi X2y2 x3y3

T. II. 54
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Another portion of the paper deals with a sort of converse of the above problem:— 
The relation between two strains (whether with three real roots or with one) when 
their successive application gives a pure strain; and various questions of a similar 
kind.

In these inquiries we constantly meet with a somewhat puzzling form, which 
repeats itself in a remarkable manner under the usual modes of treatment, viz.:—

wVep + Vewp.
A little consideration, however, shows that it can be put into the form

V (m2e — a>e) p,
which is thoroughly tractable.
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cxxv.
NOTE ON CLERK-MAXWELL’S LAW OF DISTRIBUTION OF 

VELOCITY IN A GROUP OF EQUAL COLLIDING SPHERES.

[Proceedings of the Royal Society of Edinburgh, June 15, 1896.]

The sarcastic criticism which M. Bertrand (Comptes Rendus, May 4 and 18, 1896) 
again bestows on Clerk-Maxwell’s earliest solution of the fundamental problem in the 
Kinetic Theory of Gases, together with Prof. Boltzmann’s very different, but thoroughly 
depreciatory, remarks (ib., May 26), have led me to reconsider this question, already 
discussed by me at some length before the Society. Both of these authorities declare 
Maxwell’s investigation to be erroneous:—but, while Prof. Boltzmann allows his result to 
be correct, M. Bertrand goes further, and bluntly calls it absurd. He had, in his Calcul 
des Probability (1888), already given Maxwell’s proof as an example of illusory methods. 
I have the misfortune to agree with Maxwell, and to hold that his reasoning, though 
not by any means complete, is (like his result) correct. (Trans. R.S.E., vol. xxxm. 
pp. 66 and 252.)

I have not found anything in these communications of mine (so far at least as 
the present question is concerned) which I should desire to retract; but they can 
be considerably improved; and I think that, by the introduction of the Pbppler- 
(properly the Romer-) principle, the true nature of a part of the argument can be 
made somewhat more immediately obvious. Also I will venture to express the hope 
that Prof. Boltzmann may at last recognise that I have, in this matter at least, not 
deserved the reproach of having reasoned in a circle*.

1. The following quotation from my first paperf (in which I have italicized the 
greater part of one sentence) shows the general ground of my reasoning, which was 
expressly limited to a very numerous group of equal, perfectly hard, spherical particles.

* Phil. Mag., xxv. (1888), pp. 89, 177. + [Ante, No. lxxvii. pp. 126, 129. 1899.]
54—2
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“Very slight consideration is required to convince us that, unless we suppose the 
spheres to collide with one another, it would be impossible to apply any species of 
finite reasoning to the ascertaining of their distribution at each instant, or the distri­
bution of velocity among those of them which are for the time in any particular 
region of the containing vessel. But, when the idea of mutual collisions is introduced, 
we have at once, in place of the hopelessly complex question of the behaviour of innu­
merable absolutely isolated individuals, the comparatively simple statistical question of 
the average behaviour of the various groups of a community. This distinction is forcibly 
impressed, even on the non-mathematical, by the extraordinary steadiness with which 
the numbers of such totally unpredictable, though not uncommon, phenomena as suicides, 
twin or triple births, dead letters, &c., in any populous country, are maintained year 
after year.

“ On those who are acquainted with the higher developments of the mathematical 
Theory of Probabilities the impression is still more forcible. Every one, therefore, who 
considers the subject from either of these points of view, must come to the conclusion 
that continued collisions among our set of elastic spheres will, provided they are all 
equal, produce a state of things in which the percentage of the whole which have, 
at each moment, any distinctive property must (after many collisions) tend towards a 
definite numerical value; from which it will never afterwards markedly depart.”

“When [the final result, in which the distribution of velocity-components is the 
same for all directions] is arrived at, collisions will not, in the long run, tend to 
alter it. For then the uniformity of distribution of the spheres in space, and the 
symmetry of distribution of velocity among them, enable us (by the principle of averages) 
to dispense with the only limitation above imposed; viz., the parallelism of the lines of 
centres in the collisions considered.”

2. Now, considering the 3. IO  absolutely equal particles in each cubic inch of a 
gas, where could we hope to find a more perfect example of such a community ? 
Where a more apt subject for the application of the higher parts of the Theory of 
Probabilities I If we are ever to find an approach to statistical regularity, it is surely 
here, where all the most exacting demands of the mathematician are fully conceded.

20

Is it not obvious, at once, that such a group must present at all times, and from
all sides, precisely the same features? In other words:—that the solution of the problem 
is UNIQUE. (This word practically contains the whole point of the question.) If 
not, the higher part of the Theory of Probabilities (in which M. Bertrand himself is 
one of the prominent authorities) is a mere useless outcome of analytical dexterity;
and even common-sense, with consistent experience to guide it, is of no value 
whatever.

A first consequence of this perfect community of interests is that (on the average, 
of course) the fraction of the whole particles, whose component speeds in any assigned 
direction lie between x and x + 8x is expressed by

/O) 8®
where f is a perfectly definite (and obviously even) function.
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It is clear from this that the density of ends in the velocity space-diagram 
depends on r only; but we require further information before we can find how. 
(M. Bertrand seems to admit the first statement; but he insists that, otherwise, the 
solution is wholly arbitrary.}

3. [But, before seeking this, we may take another mode of viewing the situa­
tion :—as follows. It is, of course, nothing more than an illustration of the argument 
just given.

Suppose, merely for the purpose of examining the condition of the gas, and there­
fore without any inquiry into other physical possibilities, which have nothing to do with 
the argument:—

That (a) each particle of the group is self-luminous, and all give out, with equal 
intensity, light of one definite period. (To illustrate the remark just made, note that 
this luminosity is not attributed to collisions, nor to any assigned physical causes.)

(b) The wave-length of light reaching the eye from a moving source is altered 
by an amount proportional to the speed with which its distance from the eye alters.

(c) The displacement of light by a grating on which it falls normally is proportional 
to the wave-length.

(d) An ideal grating may be assumed, of any requisite regularity and fineness; 
and, again for the sake of argument only, it may be supposed to act, however fine 
it be, in the same manner as do ordinary gratings.

These premised, the spectrum of the gas will be a band, whose visible breadth 
depends only on the fineness of the grating and the luminosity of a particle. But 
this band will present, at all times and from all sides of the group, exactly the same 
appearance.

Its brightness, therefore, at any given distance from its central line, will be constant. 
But this means that the fraction of the whole number of particles which have any given 
speed in the line of sight, depends on that speed alone. The utmost speed of a gaseous 
particle is exceedingly small compared with that of light, and the alteration of wave­
length is not affected by the part of the motion of the luminous particle which is trans­
verse to the line of sight.]

4. We have not yet exhausted the consequences of absolutely perfect (average) 
community. For every particle, in virtue of citizenship, has a right to, and obtains, its 
due quota of whatever is shared among the group. Its tenure of any one value of 
x ceases (usually in a most abrupt way) some 1010 times per second, but leaves it 
absolutely free to have, during each of these brief periods, any values of y and z 
which may fall to it. There are, in fact, definite specifications of x, y, z speeds; 
but they are distributed among the particles with absolute independence of one 
another, in a manner which is perpetually changing at an exceptionally rapid rate. 
And the entire independence of x, y, and z speeds is shown by the fact that, in a 
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collision, there is a mere interchange of speeds along the line of centres at impact:— 
whatever be the speeds of the impinging particles in other directions.

Thus the assumption, which Maxwell allowed “ might appear precarious ” (it is 
carefully to be observed that he did not say it appeared so to himself) is fully 
justified. In any element of volume of the space-diagram of velocities, the density 
is proportional to

whatever rectangular axes be employed. This, of course, gives at once Maxwell’s 
result, viz.:—

\ir/

To any one who is doubtful about the accuracy, or the cogency, of the reasoning 
just sketched, we may put the matter in another form. The solution, we saw, is 
unique- But this is obviously a solution, for it is easy to see that collisions do not 
alter it*. Therefore it is the solution.

5. M. Bertrand treats the above result of Clerk-Maxwell’s to the following sweeping 
condemnation:—

“ Il y aurait indulgence a reprocher a cette formule trop peu de rigueur: les 
habitudes de la Gdomdtrie autorisent a la declarer tout simplement absurde.”

Comment on this would be superfluous.

But it is easy to see how M. Bertrand has been led into this position. The 
following is, according to his information, the problem as proposed, and solved, by 
Maxwell:—

“ Les molecules d’une masse gazeuse, etant en nombre immense et considere comme 
infini, sont animdes de vitesses inconnues. On ne sait rien sur les conditions initiales 
et sur les actions perturbatrices qui s’exercent entre elles et sur elles.

“ Determiner le rapport du nombre total des molecules au nombre de celles dont 
la vitesse est comprise entre des limites donnees. On n’admet rien de plus, sinon 
que, par 1’absence de toute ordonnance regulihre, tout est pared dans toutes les 
directions.”

No wonder M. Bertrand says that this reminds one of the question of finding the 
age of the captain from the size of his vessel!

The real cause for wonder is that M. Bertrand, who must be perfectly aware that 
strong common-sense was as prominent a characteristic of Maxwell’s intellect as was 
brilliant, and often daring, originality, could believe him capable of propounding such 
manifest nonsense.

* With this particular form of fix') not only is f(x)f(y)f(z) an Invariant in the usual sense of being 
independent of the rectangular system of axes employed; but its separate factors are unaltered by a collision 
if one of these axes be taken parallel to the line of centres at impact.
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6. What Maxwell did propose, and solve, was a very different problem indeed. 
Here are his words (Phil. Mag. XIX. (1860), p. 22):—

“Prop. IV. To find the average number of particles whose velocities lie between 
given limits, after a great number of collisions among a great number of equal 
particles.”

He had already pointed out that the particles are regarded as spherical and 
perfectly elastic; and that, though collisions are perpetually altering the velocity of 
each, the tendency is to some regular law of distribution of vis viva among the group. 
I am far from asserting that his paper (which, epoch-making as it was, is evidently a 
somewhat hasty and unmatured effort) is free from even large errors: but it certainly 
does not contain such palpable absurdities as those now laid to its charge.

M. Bertrand entirely ignores the fact that Maxwell was dealing with a “community.” 
And his comment on Maxwell might justly be retorted on himself in a slightly altered 
form. For he asserts that the x, y, z speeds are not independent, which is virtually 
the equivalent of the statement that when the latitude of a ship at sea has been any­
how determined, its longitude is no longer wholly indeterminate!

[July 6, 1896. Prof. Boltzmann, to whom I sent a proof of the above, requests me 
to add, on his part, as follows:—

“I have given expression to my high respect for Maxwell in the Prefaces to the 
two Parts of my Lectures on Maxwell’s Theory of Electricity and Light, and specially in 
the Motto to Part II. And, besides, I regard Maxwell’s discovery of the Law of Distri­
bution of Velocity as so important a service that, in comparison, the trifling mistakes 
which appear to me to occur in his first proof are not worthy of consideration. The letters 
which I wrote to M. Bertrand, who was good enough to communicate them to the French 
Academy, had thus by no means the object of expressing my concurrence in M. Bertrand’s 
dissentient (abfaUig) judgment of Maxwell’s work on the Velocity-distribution-law. I 
wished rather to say that M. Bertrand was so much the less justified in this opinion 
because the one objection he was able to make had already been made by others, who 
agree in all essentials with Maxwell.”]
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CXXVI.

ON THE GENERALIZATION OF JOSEPHUS’ PROBLEM.

[Proceedings of the Royal Society of Edinburgh, July 18, 1898.]

In the third Book of The Wars of the Jews, Chap. VIII. § 7, we are told that 
Josephus managed to save himself and a companion out of a total of 41 men, the 
majority of whom had resolved on self-extermination (to avoid falling into the hands 
of Vespasian) provided their leader died with them. The passage is very obscure, 
and in a sense self-contradictory, but it obviously suggests deliberate fraud of some 
kind on Josephus’ part.

“And now,” said he, “since it is resolved among you that you will die, come on, 
let us commit our mutual deaths to determination by lot. He whom the lot falls 
to first, let him be killed by him that hath the second lot, and thus fortune shall 
make its progress through us all; nor shall any of us perish by his own right hand, 
for it would be unfair if, when the rest are gone, somebody should repent and save him­
self.” Whiston, Works of Flavius Josephus, IV. 39.

Bachet, in No. xxm. of his Problemes plaisants et dilectdbles, makes a definite 
hypothesis as to the possible nature of the lot here spoken of; so that the problem, 
as we have it, is really his.

“Supposons qu’il ordonna que comptant de 3 en 3 on tuerait toujours le troisieme,... 
il faut que Joseph e se mit le trente-unieme apres celui par lequel on commemjait a 
compter, au cas qu’il visat a demeurer en vie lui tout seul. Mais s’il voulut sauver 
un de ses compagnons, il le mit en la seizieme place, et s’il en voulut sauver encore 
un autre, il le mit en la trente-cinquibme place.”

Thus stated, the problem can be solved in a moment by the graphical process of 
striking out every third, in succession, of a set of 41 dots placed round a closed curve. 
When three only are left, they will be found to be the 35th, 16th, and 31st; and, 
if the process were continued, they would be exterminated in the order given. And 
any similar question, involving only moderate numbers, would probably be most easily 
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solved in a similar fashion. But, suppose the number of companions of Josephus to 
have been of the order even of hundreds of thousands only, vastly more if of billions, this 
graphic method would involve immense risk of error, besides being toilsome in the 
extreme; and the whole process would have to be gone over again if we wished 
the solution for the case in which the total number of men is altered even by a 
single unit.

It is easy, however, to see that the following general statement gives the solution 
of all such problems:—

Let n men be arranged in a ring which closes up its ranks as individuals are picked 
out. Beginning anywhere, go continuously round, picking out each with man until r only 
are left. Let one of these be the man who originally occupied the pth place. Then, if 
we had begun with n + 1 men, one of the r left would have been the originally (p + m)th, 
or (if + w > n +1) the (p + m — n — l)th.

In other words, provided there are always to be r left, their original positions are 
each shifted forwards along the closed ring by m places for each addition of a single 
man to the original group.

A third, but even more simple and suggestive, mode of statement may obviously be 
based on the illustrations which follow. In these the original number of each man is 
given in black type, the order in which he is struck off, if the process be carried out to 
the bitter end, in ordinary type.

By threes:—for groups of 8, and of 9, men respectively:—
351742860
12345678
9714628 5 3 
12345678 9.

Increase by unit every number in the first line (to which a 0 has been appended) 
and write it over the corresponding number in the third. We have the scheme

46285 3 97 1, 
97146285 3.

Here the numbers, and their order, are the same, but those in the lower rank are 
three places in advance.

T. II.

By fives:—
12 10 3 5 1 11 8 7 4 2 9 6 0
123456789 10 11 12
5 3 10 7 1 13 11 4 6 2 12 9 8
1 2 3 4 5 6 7 8 9 10 11 12 13.

The numbers of the first line, increased by units, and those of the third, are
13 11 4 6 2 12 9 8 5 3 10 7 1
5 3 10 7 1 13 11 4 6 2 12 9 8,

again the same order, but now shifted forwards by five places.
55
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It is easy to see that the two rows thus formed are identical when m = n + l. 
Thus

By tens:— 
14286 3 7950 
123456789 

2539748 10 6 1 
1234567 8 9 10, 

and the statement above is obviously verified.

To show how rapidly the results of this process can be extended to higher numbers, 
I confine myself to the Josephus question, as regards himself alone, the last man. For 
the others, the mode of procedure is exactly the same.

Given that the final survivor in 41, told off by threes, is the 31st, we have 
n last man 
41 31

The rule just given shows that succeeding numbers in these columns are formed 
as follows:—taking only those which commence, as it were, a new cycle:—

41 + x, 31 + 3x — (41 + x) = 2x — 10.

The value of x which makes the right-hand side one oi 
fore to be chosen, so we must put «=6, and the result is

47 2

Successive applications of this process give, in order

• other of 1, and 2, is there-

70 1 13,655 2

105 1 20,482 1

158 2 30,723 1

237 2 46,085 2

355 1 69,127 1
533 2 103,691 2

799 1 155,536 1

1,199 2 233,304 1
1,798 1 349,956 1

2,697 1 524,934 1

4,046 2 787,401 1

6,069 2 1,181,102 2

9,103 1 1,771,653 2
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provided the (merely arithmetical) work is correct. And, of course, we can at once 
interpolate for any intermediate value of n.

Thus, in 799 men, or in 30,723, the first is safe:—in 1000 the 604th; in 100,000 
the 92,620th, and in 1,000,000 the 637,798th.

The earlier steps of this process, which lead at once to Bachet’s number for 41 
(assumed above), are

11 9 1
2 2 14 2
3 2 21 2
4 1 31 1
6 1

so that the method practically deals with millions, when we reach them, more easily 
than it did with tens.

Unfortunately the cycles become shorter as the radix, and with it the choice of 
remainders, increases; so that a further improvement of process must, if possible, be 
introduced when every hundredth man (say) is to be knocked out.

From the data above given, it appears that up to two millions the number of 
cases in which the first man is safe is 19, while that in which the second is safe 
is only 16. (The case of one man, only, is excluded.) As these cases should, in the 
long run, be equally probable, I extended the calculation to

13,059,835,455,001 1

with the result of adding 20 and 19 to these numbers respectively. But the next 
15 steps appear to give only 2 cases in favour of the first man!

55—2
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CXXVIL

KIRCHHOFF.

[Nature, Vol. xxxvi. October 27, 1887.]

Geheimrath Gustav Robert Kirchhoff was born at Konigsberg on the 12th 
of March, 1824. He commenced his professorial career at Berlin University as Privat 
Docent; became Extra-ordinary Professor in Breslau from 1850 to 1854, thereafter till 
1874 Professor of Physics in Heidelberg, whence he was finally transferred (in a 
somewhat similar capacity) to Berlin. His health was seriously and permanently 
affected by an accident which befell him in Heidelberg many years ago, and he had 
been unable to lecture for some time before his death.

It is not easy, in a brief notice, to give an adequate idea of Kirchhoff’s numerous 
and important contributions to physical science. Fortunately all his writings are easily 
accessible. Five years ago his collected papers (Gesammelte Abhandlungen von G. 
Kirchhoff, Leipzig, 1882) were published in a single volume. His lectures on Dynamics 
(Vorlesungen uber Mathematische Physik, Leipzig, 1876) have reached at least a third 
edition; and his greatest work (Untersuchungen uber das Sonnenspectrum, Berlin, 1862) 
was, almost immediately after its appearance, republished in an English translation 
(London, Macmillan). To these he has added, so far as we can discover, only three 
or four more recent papers; among which are, however, the following, published in 
the Berlin Abhandlungen:—

Uber die Formanderung die ein fester elastischer Korper erfahrt, wenn er mag- 
netisch oder dielectrisch polarisirt wird. (1884.)

A subsequent paper gives applications of the results (1884).

Additions to his paper (presently to be mentioned) on the Distribution of Electricity 
on Two Influencing Spheres. (1885.)
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While there are nowadays hundreds of men thoroughly qualified to work out, to 
its details, a problem already couched in symbols, there are but few who have the 
gift of putting an entirely new physical question into such a form. The names of 
Stokes, Thomson, and Clerk-Maxwell will at once occur to British readers as instances 
of men possessing such power in a marked degree. Kirchhoff had in this respect no 
superior in Germany, except his life-long friend and colleague v. Helmholtz.

His first published paper, On electric conduction in a thin plate, and specially in 
a circular one (Pogg. Ann. 1845), gives an instance. The extremely elegant results 
he obtained are now well known, and have of course (once the start was given, or 
the key-note struck) been widely extended from the point of view of the pure 
mathematicians. The simpler results of this investigation, it must be mentioned, were 
fully verified by the author’s experimental tracing of the equipotential lines, and by 
his measurements of their differences of potential. A remark appended to this 
paper contains two simple but important theorems which enable us to solve, by a 
perfectly definite process, any problem concerning the distribution of currents in a 
network of wires. This application forms the subject of a paper of date 1847.

Kirchhoff published subsequently several very valuable papers on electrical questions, 
among which may be noted those on conduction in curved sheets, on Ohm’s Law, on 
the distribution of electricity on two influencing spheres, on the discharge of the 
Leyden Jar, on the motion of electricity in submarine cables, &c. Among these is 
a short, but important, paper on the Determination of the constant on which depends 
the Intensity of induced currents (Pogg. Ann. 1849). This involves the absolute measure­
ment of electric resistance in a definite wire. Kirchhoff was also the inventor of a 
valuable addition to the Wheatstone Bridge. To the above class of papers may be 
added two elaborate memoirs on Induced Magnetism (Or eUe, 1853; Pogg. Erganz- 
ungsband, 1870).

Another series of valuable investigations deals with the equilibrium and motion 
of elastic solids, especially in the form of plates, and of rods. The British reader 
will find part of the substance of these papers reproduced in Thomson and Tait’s 
Natural Philosophy. There are among them careful experimental determinations of 
the value of Poisson’s Ratio (that of the lateral contraction to the axial extension 
of a rod under traction) for different substances. These results fully bear out the 
conclusions of Stokes, who was the first to point out the fallacy involved in the 
statement that the ratio in question is necessarily 1/4.

Kirchhoff’s Lectures on Dynamics are pretty well known in this country, so that 
we need not describe them in detail. Like the majority of his separate papers they 
are somewhat tough reading, but the labour of following them is certainly recom­
pensed. They form rather a collection of short treatises on special branches of the 
subject, than a systematic digest of it. One of the most noteworthy features of the 
earlier chapters is the mode in which dynamical principles (e.g. the Laws of Motion) 
are introduced. While recognizing the great simplification in processes and in verbal 
expression which is made possible by the use of the term Force, Kirchhoff altogether 
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objects to the introduction of the notion of Cause, as a step leading only to confusion 
and obscurity in many fundamental questions. In fact he roundly asserts that the 
introduction of systems of Forces renders it impossible to give a complete definition of 
Force. And this, he says, depends on the result of experience that in natural motions 
the separate forces are always more easily specified than is their resultant. He prefers 
to speak of the motions which are observed to take place, and by the help of these 
(with the fundamental conceptions of Time, Space, and Matter) to form the general 
dynamical equations. Once these are obtained, their application may be much facilitated 
by the introduction of the Name Force; and we may thus express in simple terms 
what it would otherwise be difficult to formulate in words. So long as the motion 
of a single particle of matter only is concerned we can, from proper data, investigate 
its velocity and its acceleration, as directed quantities of definite magnitude. Thus 
we proceed from Kepler’s Laws to find the acceleration of a planet’s motion. This 
is discovered to be directed towards the sun, and to be in magnitude inversely as 
the square of the distance. We may call it by the name Force if we please, but 
we are not to imagine it as an active agent. Something quite analogous appears in 
the equations of motion when we introduce the idea of Constraint. The mode in 
which the idea of Mass is introduced by Kirchhoff is peculiar. It is really equivalent 
to a proof (ultimately based on experiments) of Newton’s Third Lazu. Once, however, 
it is introduced, the same species of reasoning (which differs but slightly from what 
we should call Kinematical) leads to the establishment of D’Alembert’s and Hamilton’s 
Principles, with the definition of the Potential Function, the establishment of Lagrange’s 
Generalized Equations, and the proof of Conservation of Energy, &c. The observational 
and experimental warrant for this mode of treatment is, according to Kirchhoff, the 
fact that the components of acceleration are in general found to be functions of 
position. [Kirchhoff’s view of Force has some resemblance to, but is not identical 
with either of, the views previously published by Peirce and by the writer.] This is 
the chief peculiarity of the book, and very different opinions may naturally be held 
as to its value, especially as regards the strange admixture of Kinematics and 
Dynamics.

Of the rest, however, all who have read it must speak in the highest terms. 
A great deal of very valuable and original matter, sometimes dealing with extremely 
recondite subjects, is to be found in almost every chapter. Among these we may 
specially mention the investigation of surface conditions in the distortion of an elastic 
solid, with the treatment of capillarity, of vortex-motion, and of discontinuous fluid 
motion ^Flussigkeitsstrahlen).

Besides these definite classes of papers, there is a number of noteworthy memoirs 
of a more miscellaneous character:—on important propositions in the Thermodynamics of 
solution and vaporization, on crystalline reflection and refraction, on the influence of heat 
conduction in a special case of propagation of sound, on the optical constants of 
Aragonite, and on the Thermal Conductivity of Iron.

Finally we have the series of papers on Radiation, partly mathematical, partly 
experimental, which, in 1859 and 1860, produced such a profound impression in the 
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world of science, and which culminated in the great work on the solar spectrum 
whose title is given above. The history of Spectrum Analysis has, from that date, 
been one of unbroken progress. Light from the most distant of visible bodies has 
been ascertained to convey a species of telegraphic message which, when we have 
learned to interpret it, gives us information alike of a chemical and of a purely 
physical character. We can analyze the atmosphere of a star, comet, or nebula, and 
tell (approximately at least) the temperature and pressure of the glowing gas. But, 
at the present time, the fact that such information is attainable is matter of common 
knowledge.

This is not an occasion on which we can speak of questions of priority, even 
though we might be specially attracted to them by finding v. Helmholtz and Sir 
W. Thomson publicly taking (in full knowledge of all the facts) almost absolutely 
antagonistic views. However these points may ultimately be settled, it is certain that 
Kirchhoff was (in 1859) entirely unaware of what Stokes and Balfour Stewart had 
previously done, and that he, with the powerful assistance of Bunsen, made what is 
now called Spectrum Analysis: Kirchhoff, by his elaborate comparison of the solar 
spectrum with the spectra of various elements, and by his artificial production of a 
new line whose relative darkness or brightness he could vary at pleasure; Bunsen 
by his success in discovering by the aid of the prism two new metallic elements.
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CXXVIII.

HAMILTON.

[From Encyclopedia Britannica, 1880.]

Hamilton, Sir William Rowan, one of the really great mathematicians of the 
present century, was born in Dublin, August 4, 1805. His father, who was a solicitor, 
and his uncle (curate of Trim), migrated from Scotland in youth. A branch of the 
Scottish family to which they belonged had settled in the north of Ireland in the 
time of James I., and this fact seems to have given rise to the common impression 
that Hamilton was an Irishman.

His genius displayed itself, even in his infancy, at first in the form of a wonderful 
power of acquiring languages. At the age of seven he had already made very con­
siderable progress in Hebrew, and before he was thirteen he had acquired, under the 
care of his uncle, who was an extraordinary linguist, almost as many languages as 
he had years of age. Among these, besides the classical and the modern European 
languages, were included Persian, Arabic, Hindustani, Sanskrit, and even Malay. But 
though to the very end of his life he retained much of the singular learning of his 
childhood and youth, often reading Persian and Arabic in the intervals of sterner 
pursuits, he had long abandoned them as a study, and employed them merely as a 
relaxation.

His mathematical studies seem to have been undertaken and carried to their 
full development without any assistance whatever, and the result is that his writings 
belong to no particular “school,” unless indeed we consider them to form, as they 
are well entitled to do, a school by themselves. As an arithmetical calculator he was 
not only wonderfully expert, but he seems to have occasionally found a positive delight 
in working out to an enormous number of places of decimals the result of some 
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irksome calculation. At the age of twelve he engaged Colburn, the American “cal­
culating boy,” who was then being exhibited as a curiosity in Dublin, and he had 
not always the worst of the encounter. But, two years before, he had accidentally 
fallen in with a Latin copy of Euclid, which he eagerly devoured; and at twelve he 
attacked Newton’s Arithmetica Universalis. This was his introduction to modern 
analysis. He soon commenced to read the Principia, and at sixteen he had mastered 
a great part of that work, besides some more modern works on analytical geometry 
and the differential calculus.

About this period he was also engaged in preparation for entrance at Trinity 
College, Dublin, and had therefore to devote a portion of his time to classics. In 
the summer of 1822, in his seventeenth year, he began a systematic study of Laplace’s 
Mecanique Celeste. Nothing could be better fitted to call forth such mathematical 
powers as those of Hamilton; for Laplace’s great work, rich to profusion in analytical 
processes alike novel and powerful, demands from the most gifted student careful and 
often laborious study. It was in the successful effort to open this treasure-house that 
Hamilton’s mind received its final temper. “Des lors il commen^a a marcher seul,” 
to use the words of the biographer of another great mathematician. From that time 
he appears to have devoted himself almost wholly to original investigation (so far at 
least as regards mathematics), though he ever kept himself well acquainted with the 
progress of science both in Britain and abroad.

Having detected an important defect in one of Laplace’s demonstrations, he was 
induced by a friend to write out his remarks, that they might be shown to Dr 
Brinkley, afterwards bishop of Cloyne, who was then royal astronomer for Ireland and 
an accomplished mathematician. Brinkley seems at once to have perceived the vast 
talents of young Hamilton, and to have encouraged him in the kindest manner. 
He is said to have remarked in 1823 of this lad of eighteen,—“This young man, I do 
not say will be, but is, the first mathematician of his age.”

Hamilton’s career at college was perhaps unexampled. Amongst a number of 
competitors of more than ordinary merit, he was first in every subject, and at every 
examination. His is said to be the only recent case in which a student obtained the 
honour of an optime in more than one subject. This distinction had then become very 
rare, not being given unless the candidate displayed a thorough mastery over his subject. 
Hamilton received it for Greek and for physics. How many more such honours he 
might have attained it is impossible to say; but he was expected to win both the 
gold medals at the degree examination, had his career as a student not been cut 
short by an unprecedented event. This was his appointment to the Andrews pro­
fessorship of astronomy in the university of Dublin, vacated by Dr Brinkley in 1827. 
The chair was not exactly offered to him, as has been sometimes asserted, but the 
electors, having met and talked over the subject, authorized one of their number 
who was Hamilton’s personal friend, to urge him to become a candidate, a step which 
his modesty had prevented him from taking. Thus, when barely twenty-two, he was 
established at the Dublin Observatory. He was not specially fitted for the post, for 
although he had a profound acquaintance with theoretical astronomy, he had paid but

T. II. 56
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little attention to the regular work of the practical astronomer. And it must be 
said that his time was better employed in grand original investigations than it would 
have been had he spent it in meridian observations made even with the best of 
instruments,—infinitely better than if he had spent it on those of the observatory, 
which, however good originally, were then totally unfit for the delicate requirements 
of modern astronomy. Indeed there can be little doubt that Hamilton was intended, 
by the university authorities who elected him to the professorship of astronomy, to 
spend his time as he best could for the advancement of science, without being tied 
down to any particular branch. Had he devoted himself to practical astronomy they 
would assuredly have furnished him with modern instruments and an adequate staff 
of assistants.

In 1835, being secretary to the meeting of the British Association which was 
held that year in Dublin, he was knighted by the lord-lieutenant. But far higher 
honours rapidly succeeded, among which we may merely mention his election in 1837 
to the president’s chair in the Royal Irish Academy, and the rare and coveted 
distinction of being made corresponding member of the academy of St Petersburg. 
These are the few salient points (other, of course, than the epochs of his more 
important discoveries and inventions presently to be considered) in the uneventful 
life of this great man. He retained his wonderful faculties unimpaired to the very 
last, and steadily continued till within a day or two of his death (September 2, 
1865) the task (his Elements of Quaternions') which had occupied the last six years of 
his life.

The germ of his first great discovery was contained in one of those early papers
which in 1823 he communicated to Dr Brinkley, by whom, under the title of Caustics,
it was presented in 1824 to the Royal Irish Academy. It was referred as usual to
a committee. Their report, while acknowledging the novelty and value of its contents,
and the great mathematical skill of its author, recommended that, before being pub­
lished, it should be still further developed and simplified. During the next three 
years the paper grew to an immense bulk, principally by the additional details which
had been inserted at the desire of the committee. But it also assumed a much
more intelligible form, and the grand features of the new method were now easily
to be seen. Hamilton himself seems not till this period to have fully understood
either the nature or the importance of his discovery, for it is only now that we 
find him announcing his intention of applying his method to dynamics. The paper 
was finally entitled “ Theory of Systems of Rays,” and the first part was printed in 
1828 in the Transactions of the Royal Irish Academy. The second and third parts 
have not yet been printed; but it is understood that their more important contents 
have appeared in the three voluminous supplements (to the first part) which have 
been published in the same Transactions, and in the two papers “ On a General 
Method in Dynamics,” which appeared in the Philosophical Transactions in 1834-5. 
The principle of “Varying Action” is the great feature of these papers; and it is 
strange, indeed, that the one particular result of this theory which, perhaps more 
than anything else that Hamilton has done, has rendered his name known beyond 
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the little world of true philosophers, should have been easily within the reach of 
Fresnel and others for many years before, and in no way required Hamilton’s new 
conceptions or methods, although it was by them that he was led to its discovery. 
This singular result is still known by the name “ Conical Refraction,” which he 
proposed for it when he first predicted its existence in the third supplement to his 
Systems of Rays, read in 1832.

The step from optics to dynamics in the application of the method of “Varying 
Action” was made in 1827, and communicated to the Royal Society of London, in 
whose Philosophical Transactions for 1834 and 1835 there are two papers on the 
subject. These display, like the “ Systems of Rays,” a mastery over symbols and a 
flow of mathematical language almost unequalled. But they contain what is far more 
valuable still, the greatest addition which dynamical science had received since the 
grand strides made by Newton and Lagrange. Jacobi and other mathematicians have 
developed to a great extent, and as a question of pure mathematics only, Hamilton’s 
processes, and have thus made extensive additions to our knowledge of differential 
equations. But there can be little doubt that we have as yet obtained only a mere 
glimpse of the vast physical results of which they contain the germ. And though 
this is of course by far the more valuable aspect in which any such contribution 
to science can be looked at, the other must not be despised. It is characteristic of 
most of Hamilton’s, as of nearly all great discoveries, that even their indirect con­
sequences are of high value.

The other great contribution made by Hamilton to mathematical science, the 
Calculus of Quaternions, is fully treated under that heading. [No. CXXIX. below.] 
It is not necessary to say here more than this, that quaternions form as great an 
advance relatively to the Cartesian methods as the latter, when first propounded, 
formed relatively to Euclidian geometry. The following characteristic extract from a 
letter shows Hamilton’s own opinion of his mathematical work, and also gives a hint 
of the devices which he employed to render written language as expressive as actual 
speech. His first great work, Lectures on Quaternions (Dublin, 1852), is almost painful 
to read in consequence of the frequent use of italics and capitals.

“ I hope that it may not be considered as unpardonable vanity or presumption 
on my part, if, as my own taste has always led me to feel a greater interest in 
methods than in results, so it is by methods, rather than by any theorems, which 
can be separately quoted, that I desire and hope to be remembered. Nevertheless it 
is only human nature, to derive some pleasure from being cited, now and then, even 
about a “Theorem”; especially where.......................the quoter can enrich the subject, by
combining it with researches of his own.”

The discoveries, papers, and treatises we have mentioned might well have formed 
the whole work of a long and laborious life. But, not to speak of his enormous 
collection of MS. books, full to overflowing with new and original matter, which have 
been handed over to Trinity College, Dublin, and of whose contents it is to be hoped 
a large portion may yet be published, the works we have already called attention 
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to barely form the greater portion of what he has published. His extraordinary in­
vestigations connected with the solution of algebraic equations of the fifth degree, 
and his examination of the results arrived at by Abel, Jerrard, and Badano, in their 
researches on this subject, form another grand contribution to science. There is next 
his great paper on Fluctuating Functions, a subject which, since the time of Fourier, 
has been of immense and ever increasing value in physical applications of mathe­
matics. There is also the extremely ingenious invention of the Hodograph. Of his 
extensive investigations into the solution (especially by numerical approximation) of 
certain classes of differential equations which constantly occur in the treatment of 
physical questions, only a few items have been published, at intervals, in the Philo­
sophical Magazine. Besides all this, Hamilton was a voluminous correspondent. Often 
a single letter of his occupied from fifty to a hundred or more closely written pages, 
all devoted to the minute consideration of every feature of some particular problem: 
for it was one of the peculiar characteristics of his mind never to be satisfied with 
a general understanding of a question; he pursued it until he knew it in all its 
details. He was ever courteous and kind in answering applications for assistance in 
the study of his works, even when his compliance must have cost him much valuable 
time. He was excessively precise and hard to please with reference to the final polish 
of his own works for publication: and it was probably for this reason that he pub­
lished so little compared with the extent of his investigations.

Like most men of great originality, Hamilton generally matured his ideas before 
putting pen to paper. “He used to carry on,” says his elder son, “long trains of 
algebraical and arithmetical calculations in his mind, during which he was unconscious 
of the earthly necessity of eating; we used to bring in a ‘snack’ and leave it in 
his study, but a brief nod of recognition of the intrusion of the chop or cutlet was 
often the only result, and his thoughts went on soaring upwards.”

For further details about Hamilton (his poetry and his association with poets, 
for instance), the reader is referred to the Dublin University Magazine (Jan. 1842), 
the Gentlemans Magazine (Jan. 1866), and the Monthly Notices of the Royal Astro­
nomical Society (Feb. 1866); and also to an article by the present writer in the 
North British Review (Sept. 1866), from which much of the above sketch has been 
taken. [See, also, especially in connection with some of the opening statements above, 
Life of Sir W. R. Hamilton by the Rev. R. P. Graves (3 vols.; Dublin 1882-89). 
And, in particular, Addendum to that work (Dublin 1891). This Addendum refers 
particularly to the notice of Hamilton in the Dictionary of National Biography. On 
this I remarked (Nature, XLHi. 608), “the patent error of that notice is the confusion 
of Hamilton’s Varying Action with his Quaternions. The consequence is that Hamilton 
gets no credit for his absolutely invaluable contribution to Theoretical Dynamics'.” 
1899.]
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CXXIX.

QUATERNIONS.

[From Encyclopaedia Britannica, 1886.]

The word quaternion properly means “ a set of four.” In employing such a word 
to denote a new mathematical method, Sir W. R. Hamilton (No. CXXVIII.) was probably 
influenced by the recollection of its Greek equivalent, the Pythagorean Tetractys, the 
mystic source of all things.

Quaternions (as a mathematical method) is an extension, or improvement, of 
Cartesian geometry, in which the artifices of coordinate axes, &c., are got rid of, all 
directions in space being treated on precisely the same terms. It is therefore, except 
in some of its degraded forms, possessed of the perfect isotropy of Euclidian space.

From the purely geometrical point of view, a quaternion may be regarded as 
the quotient of two directed lines in space—or, what comes to the same thing, as the 
factor, or operator, which changes one directed line into another. Its analytical definition 
cannot be given for the moment; it will appear in the course of the article.

History of the Method.—The evolution of quaternions belongs in part to each of 
two weighty branches of mathematical history—the interpretation of the imaginary (or 
impossible) quantity of common algebra, and the Cartesian application of algebra to 
geometry. Sir W. R. Hamilton was led to his great invention by keeping geometrical 
applications constantly before him while he endeavoured to give a real significance to 
V— j. We will therefore confine ourselves, so far as his predecessors are concerned, 
to attempts at interpretation which had geometrical applications in view.

One geometrical interpretation of the negative sign of algebra was early seen to 
be mere reversal of direction along a line. Thus, when an image is formed by a 
plane mirror, the distance of any point in it from the mirror is simply the negative 
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of that of the corresponding point of the object. Or if motion in one direction along 
a line be treated as positive, motion in the opposite direction along the same line is 
negative. In the case of time, measured from the Christian era, this distinction is 
at once given by the letters a.d. or B.C., prefixed to the date. And to find the 
position, in time, of one event relatively to another, we have only to subtract the 
date of the second (taking account of its sign) from that of the first. Thus to find 
the interval between the battles of Marathon (490 B.c.) and Waterloo (1815 A.D.) we have

+1815 — (— 490) = 2305 years.
And it is obvious that the same process applies in all cases in which we deal with 
quantities which may be regarded as of one directed dimension only, such as distances 
along a line, rotations about an axis, &c. But it is essential to notice that this is by 
no means necessarily true of operators. To turn a line through a certain angle in a 
given plane, a certain operator is required; but when we wish to turn it through 
an equal negative angle we must not, in general, employ the negative of the former 
operator. For the negative of the operator which turns a line through a given angle 
in a given plane will in all cases produce the negative of the original result, which is 
not the result of the reverse operator, unless the angle involved be an odd multiple of a 
right angle. This is, of course, on the usual assumption that the sign of a product 
is changed when that of any one of its factors is changed,—which merely means that 
— 1 is commutative with all other quantities.

The celebrated Wallis seems to have been the first to push this idea further. In 
his Treatise of Algebra (1685) he distinctly proposes to construct the imaginary roots of 
a quadratic equation by going out of the line on which the roots, if real, would have 
been constructed.

In 1804 the Abbe Bude*, apparently without any knowledge of Wallis’s work, 
developed this idea so far as to make it useful in geometrical applications. He gave, in 
fact, the theory of what in Hamilton’s system is called Composition of Vectors in one 
plane—i.e., the combination, by + and —, of complanar directed lines. His constructions 
are based on the idea that the imaginaries + V— 1 represent a unit line, and its reverse, 
perpendicular to the line on which the real units +1 are measured. In this sense 
the imaginary expression a + b V — 1 is constructed by measuring a length a along the 
fundamental line (for real quantities), and from its extremity a line of length b in some 
direction perpendicular to the fundamental line. But he did not attack the question of 
the representation of products or quotients of directed lines. The step he took is really 
nothing more than the kinematical principle of the composition of linear velocities, but 
expressed in terms of the algebraic imaginary.

In 1806 (the year of publication of Bude’s paper) Argand published a pamphlet'!' in 
which precisely the same ideas are developed, but to a considerably greater extent. For

* Phil. Trans., 1806.
+ Essai sur une maniere de representer les Quantites Imaginaires dans les Constructions Geometriques. A second 

edition was published by Hoiiel (Paris, 1874). There is added an important Appendix, consisting of the papers 
from Gergonne’s Annales which are referred to in the text above. Almost nothing can, it seems, be learned of 
Argand’s private life, except that in all probability he was born at Geneva in 1768.
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an interpretation is assigned to the product of two directed lines in one plane, when each 
is expressed as the sum of a real and an imaginary part. This product is interpreted 
as another directed line, forming the fourth term of a proportion, of which the first term 
is the real (positive) unit-line, and the other two are the factor-lines. Argand’s work
remained unnoticed until the question was again raised in Gergonne's Annales, 1813,
by Framjais. This writer stated that he had found the germ of his remarks among the
papers of his deceased brother, and that they had come from Legendre, who had himself
received them from some one unnamed. This led to a letter from Argand, in which he 
stated his communications with Legendre, and gave a resumd of the contents of his 
pamphlet. In a further communication to the Annales, Argand pushed on the appli­
cations of his theory. He has given by means of it a simple proof of the existence of 
n roots, and no more, in every rational algebraic equation of the nth degree with real 
coefficients. About 1828 Warren in England, and Mourey in France, independently of 
one another and of Argand, reinvented these modes of interpretation; and still later, in 
the writings of Cauchy, Gauss, and others, the properties of the expression a+b'/ — 1 
were developed into the immense and most important subject now called the theory of 
complex numbers. From the more purely symbolical point of view it was developed by 
Peacock, De Morgan, &c., as double algebra.

Argand’s method may be put, for reference, in the following form. The directed line 
whose length is a, and which makes an angle 0 with the real (positive) unit line, is 
expressed by

a (cos 0 + i sin 0),

where i is regarded as + V — 1. The sum of two such lines (formed by adding together 
the real and the imaginary parts of two such expressions) can, of course, be expressed as 
a third directed line—the diagonal of the parallelogram of which they are conterminous 
sides. The product, P, of two such lines is, as we have seen, given by

1 : a (cos 0 + i sin 0) :: a' (cos 0' + i sin 0') : P,

or P = aa' (cos (d + 0') + i sin (0 + d')}.

Its length is, therefore, the product of the lengths of the factors, and its inclination to 
the real unit is the sum of those of the factors. If we write the expressions for the 
two lines in the form

A + Bi, A 4- B'i,

the product is A A' — BB' + i (AB' + BA');

and the fact that the length of the product line is the product of those of the factors 
is seen in the form

(A2 + B*) (A'2 + B'^ = (AA' - BB'f + (AB’ + BA'f.

In the modern theory of complex numbers this is expressed by saying that the Norm of 
a product is equal to the product of the norms of the factors.

Argand’s attempts to extend his method to space generally were fruitless. The 
reasons will be obvious later; but we mention them just now because they called 
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forth from Servois (Gergonnes Annales, 1813) a very remarkable comment, in which was 
contained the only yet discovered trace of an anticipation of the method of Hamilton. 
Argand had been led to deny that such an expression as could be expressed in the 
form A + Bi,—although, as is well known, Euler showed that one of its values is a real 
quantity, the exponential function of — tf/2. Servois says, with reference to the general 
representation of a directed line in space:—

“ L’analogie semblerait exiger que le trinome fflt de la forme

p cos a + q cos /3 + r cos 7;

a, /3> 7 dtant les angles d’une droite avec trois axes rectangulaires; et qu’on efit

( p cos a + q cos + r cos y) (p' cos a + q' cos /3 + r cos 7) = cos2 a + cos2 + cos2 7 = 1.

Les valeurs de p, q, r, p', q, r' qui satisferaient a cette condition seraient absurdes-, mais 
seraient-elles imaginaires, reductibles a la forme generale A + BV—1? Voila une ques­
tion d’analyse fort singuliere que je soumets a vos lumieres. La simple proposition que 
je vous en fais suffit pour vous faire voir que je ne crois point que toute fonction 
analytique non reelle soit vraiment reductible a la forme A + B V — 1.”

As will be seen later, the fundamental i, j, k of quaternions, with their reciprocals, 
furnish a set of six quantities which satisfy the conditions imposed by Servois. And 
it is quite certain that they cannot be represented by ordinary imaginaries.

Something far more closely analogous to quaternions than anything in Argand’s work 
ought to have been suggested by De Moivre’s theorem (1730). Instead of regarding, as 
Buee and Argand had done, the expression a (cos 0 + i sin 0) as a directed line, let us 
suppose it to represent the operator which, when applied to any line in the plane in 
which 0 is measured, turns it in that plane through the angle 0, and at the same 
time increases its length in the ratio a : 1. From the new point of view we see at 
once, as it were, why it is true that

(cos 0 + i sin 0)m = cos m0 + i sin m0.

For this equation merely states that m turnings of a line through successive equal 
angles, in one plane, give the same result as a single turning through m times the 
common angle. To make this process applicable to any plane in space, it is clear that 
we must have a special value of i for each such plane. In other words, a unit line, 
drawn in any direction whatever, must have — 1 for its square. In such a system there 
will be no line in space specially distinguished as the real unit line-, all will be alike 
imaginary, or rather alike real. We may state, in passing, that every quaternion can be 
represented as a (cos 0 + «■ sin 0),—where a is a real number, 0 a real angle, and -sr a 
directed unit line whose square is — 1. Hamilton took this grand step, but, as we have 
already said, without any help from the previous work of De Moivre. The course of his 
investigations is minutely described in the preface to his first great work* on the subject. 
Hamilton, like most of the many inquirers who endeavoured to give a real interpre­
tation to the imaginary of common algebra, found that at least two kinds, orders, or

* Lectures on Quaternions, Dublin, 1853. 
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ranks of quantities were necessary for the purpose. But, instead of dealing with points 
on a line, and then wandering out at right angles to it, as Bu6e and Argand had done, 
he chose to look on algebra as the science of pure time*,  and to investigate the pro­
perties of “sets” of time-steps. In its essential nature a set is a linear function of any 
number of distinct units of the same species. Hence the simplest form of a set is 
a couple; and it was to the possible laws of combination of couples that Hamilton 
first directed his attention. It is obvious that the way in which the two separate time­
steps are involved in the couple will determine these laws of combination. But 
Hamilton’s special object required that these laws should be such as to lead to certain 
assumed results; and he therefore commenced by assuming these, and from the 
assumption determined how the separate time-steps must be involved in the couple. 
If we use Roman letters for mere numbers, capitals for instants of time, Greek letters 
for time-steps, and a parenthesis to denote a couple, the laws assumed by Hamilton as 
the basis of a system were as follows:—

* Theory of Conjugate Functions, or Algebraic Couples, with a Preliminary and Elementary Essay on Algebra 
as the Science of Pure Time, read in 1833 and 1835, and published in Trans. R. I. A., xvn. ii. (1835).

+ Compare these with the long-subsequent ideas of Grassmann, presently to be described.

T. II.

C®i> — (Aj, AS)=(R1 — Alt B2 — A2) = (a, /3);

(a, b)(a, ^) = (aa —b£, ba + a^) f.

To show how we give, by such assumptions, a real interpretation to the ordinary 
algebraic imaginary, take the simple case a=0, b = 1, and the second of the above 
formulae gives

(0, 1) (a, /S) = (-/3, a).

Multiply once more by the number-couple (0, 1), and we have

(0, l)(0, l)(a, ^) = (0, l)(-/3, a) = (-a, -ft
= (-l, 0)(a, /3) = —(a, /3).

Thus the number-couple (0, 1), when twice applied to a step-couple, simply 
changes its sign. That we have here a perfectly real and intelligible interpretation 
of the ordinary algebraic imaginary is easily seen by an illustration, even if it be a 
somewhat extravagant one. Some Eastern potentate, possessed of absolute power, covets 
the vast possessions of his vizier and of his barber. He determines to rob them both 
(an operation which may be very satisfactorily expressed by -1); but, being a wag, he 
chooses his own way of doing it. He degrades his vizier to the office of barber, taking 
all his goods in the process; and makes the barber his vizier. Next day he repeats the 
operation. Each of the victims has been restored to his former rank, but the operator 
— 1 has been applied to both.

Hamilton, still keeping prominently before him as his great object the invention of 
a method applicable to space of three dimensions, proceeded to study the properties of 
triplets of the form x+iy+jz, by which he proposed to represent the directed line in 
space whose projections on the coordinate axes are x, y, z. The composition of two 
such lines by the algebraic addition of their several projections agreed with the 
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assumption of Bude and Argand for the case of coplanar lines. But, assuming the 
distributive principle, the product of two lines appeared to give the expression

xx' — yy' — zz + i (yx + xy') + j (xz' + zxj + ij (yz' + zy').

For the square of j, like that of i, was assumed to be negative unity. But the inter­
pretation of ij presented a difficulty,—in fact the main difficulty of the whole investiga­
tion,—and it is specially interesting to see how Hamilton attacked it. He saw that he 
could get a hint from the simpler case, already thoroughly discussed, provided the two 
factor lines were in one plane through the real unit line. This requires merely that

y : z :: y’ : z ; or yz' — zy' = 0;

but then the product should be of the same form as the separate factors. Thus, in 
this special case, the term in ij ought to vanish. But the numerical factor appears 
to be yz' + zy', while it is the quantity yz' — zy' which really vanishes. Hence Hamilton 
was at first inclined to think that ij must be treated as nil. But he soon saw that “ a 
less harsh supposition” would suit the simple case. For his speculations on sets had 
already familiarized him with the idea that multiplication might in certain cases not be 
commutative; so that, as the last term in the above product is made up of the 
two separate terms ijyz' and jizy', the term would vanish of itself when the factor 
lines are coplanar provided ij=—ji, for it would then assume the form ij(yz' — zy'). 
He had now the following expression for the product of any two directed lines

xx — yy' — zz' + i (yx' -I- xy') +j (xz' + zx) + ij (yz' — zy').

But his result had to be submitted to another test, the Law of the Norms. As soon 
as he found, by trial, that this law was satisfied, he took the final step. “This led 
me,” he says, “ to conceive that perhaps, instead of seeking to confine ourselves to 
triplets,....... we ought to regard these as only imperfect forms of Quaternions,........and 
that thus my old conception of sets might receive a new and useful application.” In 
a very short time he settled his fundamental assumptions. He had now three distinct 
space-units i, j, k; and the following conditions regulated their combination by 
multiplication:—

i2 =j2 = k2 = — 1, ij = —ji — k, jk = — kj = i, ki = — ik =j*.

And now the product of two quaternions could be at once expressed as a third 
quaternion, thus—

(a + ib +jc + kd) (a' + ib' +jc' + kdj = A + iB +jC 4- kD, 
where

A = aa' — bb' — cc' — dd',
B = ab' + ba' + cd' — de', 
C = ac' + ca + db' — bd'. 
D = ad’ + da + be' — cb’.

Hamilton at once found that the Law of the Norms holds,—not being aware that

* It will be easy to see that, instead of the last three of these, we may write the single one ijk= -1.
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Euler had long before decomposed the product of two sums of four squares into this 
very set of four squares. And now a directed line in space came to be represented 
as ix +jy + kz, while the product of two lines is the quaternion

— (xx' + yy' + zz') 4- i {yz — zy') +j (zx — xz') + k (xy' — yx'}.

To any one acquainted, even to a slight extent, with the elements of Cartesian 
geometry of three dimensions, a glance at the extremely suggestive constituents of 
this expression shows how justly Hamilton was entitled to say—“ When the con­
ception had been so far unfolded and fixed in my mind, I felt that the new 
instrument for applying calculation to geometry, for which I had so long sought, was 
now, at least in part, attained.” The date of this memorable discovery is October 16, 
1843.

We can devote but a few lines to the consideration of the expression above. 
Suppose, for simplicity, the factor lines to be each of unit length. Then x, y, z, 
x’, y', z' express their direction-cosines. Also, if 0 be the angle between them, and 
x", y", z" the direction-cosines of a line perpendicular to each of them, we have

xx' + yy' + zz' = cos 0, yz' - zy' = x" sin 0, &c.,

so that the product of two unit lines is now expressed as 
— cos 0 + (ix" +jy" + kz"} sin 0.

Thus, when the factors are parallel, or 0 = 0, the product, which is now the square of 
any (unit) line, is — 1. And when the two factor lines are at right angles to one 
another, or 0 = tt/2, the product is simply ix" +jy" + kz", the unit line perpendicular 
to both. Hence, and in this lies the main element of the symmetry and simplicity 
of the quaternion calculus, all systems of three mutually rectangular unit lines in space 
have the same properties as the fundamental system i, j, k. In other words, if the 
system (considered as rigid) be made to turn about till the first factor coincides with 
i and the second with j, the product will coincide with k. This fundamental system, 
therefore, becomes unnecessary; and the quaternion method, in every case, takes its 
reference lines solely from the problem to which it is applied. It has therefore, as 
it were, a unique internal character of its own.

Hamilton, having gone thus far, proceeded to evolve these results from a train 
of a priori or metaphysical reasoning, which is so interesting in itself, and so 
characteristic of the man, that we briefly sketch its nature.

Let it be supposed that the product of two directed lines is something which 
has quantity; i.e., it may be halved, or doubled, for instance. Also let us assume 
(a) space to have the same properties in all directions, and make the convention 
(&) that to change the sign of any one factor changes the sign of a product. Then 
the product of two lines which have the same direction cannot be, even in part a 
directed quantity. For, if the directed part have the same direction as the factors 
(6) shows that it will be reversed by reversing either, and therefore will recover 
its original direction when both are reversed. But this would obviously be inconsistent
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with (a). If it be perpendicular to the factor lines, (a) shows that it must have simul­
taneously every such direction. Hence it must be a mere number.

Again, the product of two lines at right angles to one another cannot, even in 
part, be a number. For the reversal of either factor must, by (6), change its sign. 
But, if we look at the two factors in their new position by the light of (a), we see 
that the sign must not change. But there is nothing to prevent its being repre­
sented by a directed line if, as farther applications of (ci) and (6) show we must do, 
we take it perpendicular to each of the factor lines.

Hamilton seems never to have been quite satisfied with the apparent heterogeneity of 
a quaternion, depending as it does on a numerical and a directed part. He indulged in 
a great deal of speculation as to the existence of an extra-spatial unit, which was to 
furnish the raison d'etre of the numerical part, and render the quaternion homogeneous 
as well as linear. But, for this, we must refer to his own works.

Hamilton was not the only worker at the theory of sets. The year after the 
first publication of the quaternion method, there appeared a work of great originality, 
by Grassmann*,  in which results closely analogous to some of those of Hamilton were 
given. In particular two species of multiplication (“ inner ” and “ outer ”) of directed 
lines in one plane were given. The results of these two kinds of multiplication 
correspond respectively to the numerical and the directed parts of Hamilton’s quaternion 
product. But Grassmann distinctly states in his preface that he had not had leisure 
to extend his method to angles in space. Hamilton and Grassmann, while their earlier 
work had much in common, had very different objects in view. Hamilton, as we have 
seen, had geometrical application as his main object; when he realized the quaternion 
system, he felt that his object was gained, and thenceforth confined himself to the 
development of his method. Grassmann’s object seems to have been, all along, of 
a much more ambitious character, viz., to discover, if possible, a system or systems 
in which every conceivable mode of dealing with sets should be included. That he 
made very great advances towards the attainment of this object all will allow; that 
his method, even as completed in 1862, fully attains it is not so certain. But his 
claims, however great they may be, can in no way conflict with those of Hamilton, 
whose mode of multiplying couples (in which the “inner” and “outer” multiplication 
are essentially involved) was produced in 1833, and whose quaternion system was 
completed and published before Grassmann had elaborated for press even the rudi­
mentary portions of his own system, in which the veritable difficulty of the whole 
subject, the application to angles in space, had not even been attacked. Grassmann 
made in 1854 a somewhat savage onslaught on Cauchy and De St Venant, the former 
of whom had invented, while the latter had exemplified in application, the system of 
“clefs algebriques,” which is almost precisely that of Grassmann. [See letter now 
appended to this article. 1899.] But it is to be observed that Grassmann, though 
he virtually accused Cauchy of plagiarism, does not appear to have preferred any such 
charge against Hamilton. He does not allude to Hamilton in the second edition of 

* Die Ausdehmingslehre, Leipsic, 1844; 2d ed., “ vollstandig und in Strenger Form bearbeitet” Berlin, 1862. 
Bee also the collected works of Mobius, and those of Clifford, for a general explanation of Grassmann’s method.
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his work. But in 1877, in the Mathematische Annalen, xir., he gave a paper “ On 
the Place of Quaternions in the Ausdehnungslehre” in which he condemns, as far as 
he can, the nomenclature and methods of Hamilton.

There are many other systems, based on various principles, which have been given 
for application to geometry of directed lines, but those which deal with products of 
lines are all of such complexity as to be practically useless in application. Others, such 
as the Barycentrische Calcul of Mobius, and the Methode des Rquipollences of Bellavitis, 
give elegant modes of treating space problems, so long as we confine ourselves to projective 
geometry and matters of that order; but they are limited in their field, and therefore 
need not be discussed here. More general systems, having close analogies to quaternions, 
have been given since Hamilton’s discovery was published. As instances we may take 
Goodwin’s and O’Brien’s papers in the Cambridge Philosophical Transactions for 1849.

Relations to other Branches of Science.—Even the above brief narrative shows how 
close is the connexion between quaternions and the ordinary Cartesian space-geometry. 
Were this all, the gain by their introduction would consist mainly in a clearer insight 
into the mechanism of coordinate systems, rectangular or not—a very important 
addition to theory, but little advance so far as practical application is concerned. But 
we have now to consider that, as yet, we have not taken advantage of the perfect 
symmetry of the method. When that is done, the full value of Hamilton’s grand step 
becomes evident, and the gain is quite as extensive from the practical as from the 
theoretical point of view. Hamilton, in fact, remarks*, “I regard it as an inelegance 
and imperfection in this calculus, or rather in the state to which it has hitherto been 
unfolded, whenever it becomes, or seems to become, necessary to have recourse.......to 
the resources of ordinary algebra, for the solution of equations in quaternions.” This 
refers to the use of the x, y, z coordinates,—associated, of course, with i, j, k. But 
when, instead of the highly artificial expression ix+jy+kz, to denote a finite directed 
line, we employ a single letter, a (Hamilton uses the Greek alphabet for this purpose), 
and find that we are permitted to deal with it exactly as we should have dealt with 
the more complex expression, the immense gain is at least in part obvious. Any 
quaternion may now be expressed in numerous simple forms. Thus we may regard it as 
the sum of a number and a line, a + a, or as the product, Ry, or the quotient, Se-1, of 
two directed lines, &c., while, in many cases, we may represent it, so far as it is required, 
by a single letter such as q, r, &c.

Perhaps to the student there is no part of elementary mathematics so repulsive as 
is spherical trigonometry. Also, everything relating to change of systems of axes, as 
for instance in the kinematics of a rigid system, where we have constantly to consider 
one set of rotations with regard to axes fixed in space, and another set with regard 
to axes fixed in the system, is a matter of troublesome complexity by the usual 
methods. But every quaternion formula is a proposition in spherical (sometimes de­
grading to plane) trigonometry, and has the full advantage of the symmetry of the 
method. And one of Hamilton’s earliest advances in the study of his system (an advance 
independently made, only a few months later, by Cayley) was the interpretation of the

* Lectures on Quaternions, § 513. 
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singular operator q ( ) q~\ where q is a quaternion. Applied to any directed line, this 
operator at once turns it, conically, through a definite angle, about a definite axis. Thus 
rotation is now expressed in symbols at least as simply as it can be exhibited by means 
of a model. Had quaternions effected nothing more than this, they would still have 
inaugurated one of the most necessary, and apparently impracticable, of reforms.

The physical properties of a heterogeneous body (provided they vary continuously 
from point to point) are known to depend, in the neighbourhood of any one point 
of the body, on a quadric function of the coordinates with reference to that point. 
The same is true of physical quantities such as potential, temperature, &c., through­
out small regions in which their variations are continuous; and also, without re­
striction of dimensions, of moments of inertia, &c. Hence, in addition to its geometrical 
applications to surfaces of the second order, the theory of quadric functions of position 
is of fundamental importance in physics. Here the symmetry points at once to the 
selection of the three principal axes as the directions for i, j, k; and it would appear 
at first sight as if quaternions could not simplify, though they might improve in 
elegance, the solution of questions of this kind. But it is not so. Even in Hamilton’s 
earlier work it was shown that all such questions were reducible to the solution of linear 
equations in quaternions; and he proved that this, in turn, depended on the deter­
mination of a certain operator, which could be represented for purposes of calculation 
by a single symbol. The method is essentially the same as that developed, under 
the name of “matrices” by Cayley in 1858; but it has the peculiar advantage of 
the simplicity which is the natural consequence of entire freedom from conventional 
reference lines.

Sufficient has already been said to show the close connexion between quaternions 
and the theory of numbers. But one most important connexion with modern physics 
must be pointed out, as it is probably destined to be of great service in the im­
mediate future. In the theory of surfaces, in hydrokinetics, heat-conduction, potentials, 
&c., we constantly meet with what is called Laplace’s operator, viz.,

d- df df 
dx2 dy2 dz2'

We know that this is an invariant', i.e., it is independent of the particular directions 
chosen for the rectangular coordinate axes. Here, then, is a case specially adapted to 
the isotropy of the quaternion system; and Hamilton easily saw that the expression

. d . d , d 
dx dy + 1 dz

could be, like ix +jy + kz, effectively expressed by a single letter. He chose for this 
purpose V. And we now see that the square of V is the negative of Laplace’s 
operator; while V itself, when applied to any numerical quantity conceived as having 
a definite value at each point of space, gives the direction and the rate of most rapid 
change of that quantity. Thus, applied to a potential, it gives the direction and 
magnitude of the force; to a distribution of temperature in a conducting solid, it 
gives (when multiplied by the conductivity) the flux of heat, &c.



CXXIX.] QUATERNIONS. 455

No better testimony to the value of the quaternion method could be desired than 
the constant use made of its notation by mathematicians like Clifford (in his Kinematic) 
and by physicists like Clerk-Maxwell (in his Electricity and Magnetism). Neither of 
these men professed to employ the calculus itself, but they recognized fully the extra­
ordinary clearness of insight which is gained even by merely translating the unwieldy 
Cartesian expressions met with in hydrokinetics and in electrodynamics into the 
pregnant language of quaternions.

Works on the Subject.—Of course the great works on this subject are the two 
immense treatises by Hamilton himself. Of these the second (Elements of Quaternions, 
London, 1866; 2nd ed. 1899) was posthumous—incomplete in one short part of the 
original plan only, but that a most important part, the theory and applications of V. 
These two works, along with Hamilton’s other papers on quaternions (in the Dublin 
Proceedings and Transactions, the Philosophical Magazine, &c.), are storehouses of in­
formation, of which but a small portion has yet been extracted. A German translation 
of Hamilton’s Elements has recently been published by Gian.

Other works on the subject, in order of date, are Allegret, Essai sur le Calcul des 
Quaternions (Paris, 1862); Tait, An Elementary Treatise on Quaternions (Oxford, 1867; 
2nd ed., Cambridge, 1873; 3rd, 1890; German translation by v. Scherff, 1880, and French 
by Plarr, 1882—84); Kelland and Tait, Introduction to Quaternions (London, 1873; 2nd 
ed. 1882); Hoiiel, Elements de la Theorie des Quaternions (Paris, 1874); Unverzagt, 
Theorie der Quatemionen (Wiesbaden, 1876); Laisant, Introduction a la Methode des 
Quaternions (Paris, 1881); Graefe, Vorlesungen uber die Theorie der Quatemionen (Leipsic, 
1884). [To these must now be added McAulay, Utility of Quaternions in Physics, 
London, 1893; as well as a number of elementary treatises. 1899.]

An excellent article on the “ Principles ” of the science, by Dillner, will be found in 
the Mathematische Annalen, vol. Xi., 1877. And a very valuable article on the general 
question, Linear Associative Algebra, by the late Prof. Peirce, was ultimately printed in 
vol. iv. of the American Journal of Mathematics. Sylvester and others have recently 
published extensive contributions to the subject, including quaternions under the general 
class matrix, and have developed much farther than Hamilton lived to do the solution 
of equations in quaternions. Several of the works named above are little more than 
compilations, and some of the French ones are painfully disfigured by an attempt to 
introduce an improvement of Hamilton’s notation; but the mere fact that so many 
have already appeared shows the sure progress which the method is now making.

[In an article by Prof. F. Klein (Math. Ann. LI. 1898) a claim is somewhat 
obscurely made for Gauss to a share, at least, in the invention of Quaternions. Full 
information on the subject is postponed till the publication of Gauss’ Nachlass, in 
Vol. VIII. of his Gesammelte Werke. From the article mentioned above, and from a 
“Digression on Quaternions” in Klein und Sommerfeld Ueber die Theorie des Kreisels 
(p. 58), this claim appears to rest on some singular misapprehension of the nature 
of a Quaternion:—whereby it is identified with a totally different kind of concept, a 
certain very restricted form of linear and vector Operator. 1899.]
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APPENDIX.

{Reprinted on account of the passage now marked. See p. 452 above.)

QUATERNIONS AND THE AUSDEHNUNGSLEHRE.

[Nature, June 4th, 1891.]

Prof. Gibbs’ second long letter was evidently written before he could have read my reply to the 
first. This is unfortunate, as it tends to confuse those third parties who may be interested in the 
question now raised. Of course that question is naturally confined to the invention of methods, for 
it would be preposterous to compare Grassmann with Hamilton as an analyst.

I have again read my article “Quaternions” in the Encyc. Brit., and have consulted once more 
the authorities there referred to. I have not found anything which I should wish to alter. There is 
much, of course, which I should have liked to extend, had the Editor permitted. An article on 
Quaternions, rigorously limited to four pages, could obviously be no place for a discussion of 
Grassmann’s scientific work, except in its bearings upon Hamilton’s calculus. Moreover, had a similar 
article on the Ausdehnungslehre been asked of me, I should certainly have declined to undertake it. 
Since 1860, when I ceased to be a Professor of Mathematics, I have paid no special attention to 
general systems of Sets, Matrices, or Algebras; and without much further knowledge I should not 
attempt to write in any detail about such subjects. I may, however, call attention to the facts 
which follow : for they appear to be decisive of the question now raised. Cauchy {Comptes Rendus, 
10/1/53) claimed quaternia as a special case of his “clefs algdbriques.” Grassmann, in turn (Comptes 
Rendus, 17/4/54; and Crelle, 49), declared Cauchy’s methods to be precisely those of the Aus- 
dehnungslehre. But Hamilton {Lectures, Pref. p. 64, foot-note), says of the clefs algebriques (and 
therefore, on Grassmann’s own showing, of the methods of the Ausdehnungslehre) that they are “included 
in that theory of Sets in algebra...... announced by me in 1835....... of which Sets I have always con­
sidered the Quaternions...... to be merely a particular case.”

But all this has nothing to do with Quaternions, regarded as a calculus “uniquely adapted to 
Euclidian space.” Grassmann lived to have his fling at them, but (so far as I know) he ventured 
on no claim to priority. Hamilton, on the other hand, even after reading the first Ausdehnungslehre, 
did claim priority and was never answered. He quoted, and commented upon, the very passage (of 
the Preface to that work) my allusion to which is censured by Prof. Gibbs. {Lectures, Pref. p. 62, 
footnote.] I still think, and it would seem that Hamilton also thought, that it was solely because 
Grassmann had not realized the conception of the quaternion, whether as /3a or as /3a-1, that he felt 
those difficulties (as to angles in space) which he says he had not had leisure to overcome. I have 
not seen the original work, but I have consulted what professes to be a verbatim reprint, produced 
under the author’s supervision. {Die Ausdehnungslehre von 1844, oder die lineale Ausdehnungslehre, &c. 
Zweite, im Text unveranderte Auflage. Leipzig, 1878.] Prof. Gibbs’ citations from my article give a 
very incomplete and one-sided representation of the few remarks I felt it necessary and sufficient to 
make about Grassmann. I need not quote them here, as anyone interested in the matter can readily 
consult the article.

In regard to Matrices, I do not think I have ever claimed anything for Hamilton beyond the 
separable and the symbolic cubic (or biquadratic, as the case may be) with its linear factors;
and these I still assert to be exclusively his. My own work in this direction has been confined to
Hamilton’s </>, with its square root, its applications to stress and strain, &c.

As to the general history, of which (as I have said above) I claim no exact or extensive
knowledge, Cayley and Sylvester will, no doubt, defend themselves if they see fit. It would be at
once ridiculous and impertinent on my part were I to take up the cudgels in their behalf.

P. G. Tait.
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CXXX.

RADIATION AND CONVECTION.

[From Encyclopaedia Britannica, 1886.]

1. When a red-hot cannon ball is taken out of a furnace and suspended in the 
air it is observed to cool, i.e., to part with heat, and it continues to do so at a 
gradually diminishing rate till it finally reaches the temperature of the room. But 
the process by which this effect is produced is a very complex one. If the hand be 
held at a distance of a few inches from the hot ball on either side of it or below 
it, the feeling of warmth experienced is considerable; but it becomes intolerable when 
the hand is held at the same distance above the ball. Even this rude form of experi­
ment is sufficient to show that two processes of cooling are simultaneously at work, 
—one which apparently leads to the loss of heat in all directions indifferently, 
another which leads to a special loss in a vertical direction upwards. If the experi­
ment is made in a dark room, into which a ray of sunlight is admitted so as to 
throw a shadow of the ball on a screen, we see that the column of air above the 
ball also casts a distinct shadow. It is, in fact, a column of air very irregularly 
heated by contact with the ball, and rising, in obedience to hydrostatic laws, in the 
colder and denser air around it. This conveyance of heat by the motion of the heated 
body itself is called convection', the process by which heat is lost indifferently in all 
directions is called radiation. These two processes are entirely different in their 
nature, laws, and mechanism; but we have to treat of both in the present article.

2. To illustrate how the third method by which heat can be transferred, viz. 
conduction, is involved in this process, let the cannon ball (which for this purpose 
should be a large one) be again heated and at once immersed in water until it just 
ceases to be luminous in the dark, and then be immediately hung up in the air. 
After a short period it again becomes red-hot all over, and the phenomenon then

T. II. 58 
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proceeds precisely as before, except that the surface of the ball does not become so 
hot as it was before being plunged in the water. This form of experiment, which 
requires that the interior shall be very considerably cooled before the surface ceases 
to be self-luminous, does not succeed nearly so well with a copper ball as with an 
iron one, on account of the comparatively high conductivity of copper. In fact, even 
when its surface is covered with lamp-black, to make the loss by radiation as great 
as possible, the difference of temperature between the centre and the surface of a 
very hot copper ball—which is only an inch or two in diameter—is inconsiderable.

3. In conduction there is passage of heat from hotter to colder parts of the 
same body; in convection an irregularly heated fluid becomes hydrostatically unstable, 
and each part carries its heat with it to its new position. In both processes heat is 
conveyed from place to place. But it is quite otherwise with radiation. That a body 
cools in consequence of radiation is certain; that other bodies which absorb the radiation 
are thereby heated is also certain; but it does not at all follow that what passes in the 
radiant form is heat. To return for a moment to the red-hot cannon ball. If, while 
the hand is held below it, a thick but dry plate of rock-salt is interposed between 
the ball and the hand there is no perceptible diminution of warmth, and the tem­
perature of the salt is not perceptibly raised by the radiation which passes through 
it. When a piece of clear ice is cut into the form of a large burning-glass it can 
be employed to inflame tinder by concentrating the sun’s rays, and the lens does the 
work nearly as rapidly as if it had been made ,of glass. It is certainly not what we 
ordinarily call “ heat ” which can be transmitted under conditions like these. Radiation 
is undoubtedly a transference of energy, which was in the form commonly called heat 
in the radiating body, and becomes heat in a body which absorbs it; but it is trans­
formed as it leaves the first body, and retransformed when it is absorbed by the second. 
Until the comparatively recent full recognition of the conservation and transformation 
of energy it was almost impossible to form precise ideas on matters like this; and, con­
sequently, we find in the writings even of men like Prdvost and Sir J. Leslie notions of 
the wildest character as to the mechanism of radiation. Leslie, strangely, regarded it 
as a species of “ pulsation ” in the air, in some respects analogous to sound, and 
propagated with the same speed as sound. Prdvost, on the other hand, says, “ Le 
calorique est un fluide discret; chaque element de calorique suit constamment la meme 
ligne droite, tant qu’aucun obstacle ne 1’arrete. Dans un espace chaud, chaque point est 
traversd sans cesse en tout sens par des filets de calorique.”

4. The more intensely the cannon ball is heated the more luminous does it become, 
and also the more nearly white is the light which it gives out. So well is this 
known that in almost all forms of civilized speech there are terms corresponding to 
our “ red-hot,” “ white-hot,” &c. As another instance, suppose a powerful electric current 
is made to pass through a stout iron wire. The wire becomes gradually hotter, up 
to a certain point, at which the loss by radiation and convection just balances the gain 
of heat by electric resistance. And as it becomes hotter the amount of its radiation 
increases, till at a definite temperature it becomes just visible in the dark by red 
rays of low refrangibility. As it becomes still hotter the whole radiation increases; 
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the red rays formerly given off become more luminous, and are joined by others of 
higher refrangibility. This process goes on, the whole amount of radiation still increasing, 
each kind of visible light becoming more intense, and new rays of light of higher 
refrangibility coming in, until the whole becomes white, i.e., gives off all the more 
efficient kinds of visible light in much the same relative proportion as that in which 
they exist in sunlight. When the circuit is broken, exactly the same phenomena occur 
in the reverse order, the various kinds of light disappearing later as their refrangi­
bility is less. But the radiation continues, growing weaker every instant, even after 
the whole is dark. This simple observation irresistibly points to the conclusion that 
the so-called “radiant heat” is precisely the same phenomenon as “light,” only the 
invisible rays are still less refrangible than the lowest red, and that our sense of sight 
is confined to rays of a certain definite range of refrangibility, while the sense of touch 
comes in where sight fails us. Sir W. Herschel in 1798, by placing the bulb of a 
thermometer in the solar spectrum formed by a flint-glass prism, found that the highest 
temperature was in the dark region outside the lowest visible red,—a result amply 
verified at the time by others, though warmly contested by Leslie.

5. This striking conclusion is not without close analogies in connection with the 
other senses, especially that of hearing. Thus it has long been known that the “ range 
of hearing ” differs considerably in different individuals, some, for instance, being pain­
fully affected by the chirp of a cricket, which is inaudible to others whose general 
hearing is Quite as good. Extremely low notes, on the other hand, of whose existence we 
have ample dynamical evidence, are not heard by any one; when perceived at all they 
are felt.

6. We may now rapidly run over the principal facts characteristic of the behaviour 
of visible rays, and point out how far each has been found to characterize that of so- 
called “radiant heat” under similar conditions.

(a) Rectilinear propagation: an opaque screen which is placed so as to intercept 
the sun’s light intercepts its heat also, whether it be close to the observer, at a few 
miles from him (as a cloud or a mountain), or 240,000 miles off (as the moon in a total 
eclipse). (6) Speed of propagation: this must be of the same order of magnitude, at 
least, for both phenomena, i.e., 186,000 miles or so per second; for the sun s heat ceases 
to be perceptible the moment an eclipse becomes total, and is perceived again the 
instant the edge of the sun’s disk is visible, (c) Reflexion: the law must be exactly 
the same, for the heat-producing rays from a star are concentrated by Lord Rosse’s great 
reflector along with its light. (d) Refraction: when a lens is not achromatic its 
principal focus for red rays is farther off than that for blue rays; that for dark heat 
is still farther off. Herschel’s determination of the warmest region of the spectrum 
(§4 above) is another case in point, (e) Oblique radiation: an illuminated or a self- 
luminous surface appears equally bright however it is inclined to the line of sight. The 
radiation of heat from a hot blackened surface (through an aperture which it appears 
to fill) is sensibly the same however it be inclined (Leslie, Fourier, Melloni). (/) In­
tensity : when there is no absorption by the way the intensity of the light received 
from a luminous point-source is inversely as the square of the distance. The same
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is true of dark heat. But this is not a new analogy; it is a mere consequence of 
(a) rectilinear propagation, (g) Selective absorption: light which has been sifted by 
passing through one plate of blue glass passes in much greater percentage through 
a second plate of the same glass, and in still greater percentage through a third. The 
same is true of radiant heat, even when the experiment is made with uncoloured 
glass; for clear glass absorbs certain colours of dark heat more than others (De Laroche, 
Melloni). (A) Interference bands, whether produced by two mirrors or by gratings, 
characterize dark heat as well as light; only they indicate longer waves (Fizeau and 
Foucault), (i) Polarization and double refraction: with special apparatus, such as plates 
of mica split by heat into numerous parallel films, the polarization of dark heat is 
easily established. When two of these bundles are so placed as to intercept the heat 
an unsplit film of mica interposed between them allows the heat to pass, or arrests 
it, as it is made to rotate in its own plane (Forbes), (j) By proper chemical ad­
justments photographs of a region of the solar spectrum beyond the visible red have 
been obtained (Abney). We might mention more, but those given above, when con­
sidered together, are conclusive. In fact (6) or (i) alone would almost settle the 
question.

7. But there is a superior as well as an inferior limit of visible rays. Light 
whose period of vibration is too small to produce any impression on the optic nerve 
can be degraded by fluorescence into visible rays, and can also be detected by its
energetic action on various photographic chemicals. In fact photographic portraits can
be taken in a room which appears absolutely dark to the keenest eyesight. By one
or other of these processes the solar spectrum with its dark lines and the electric arc
with its bright lines have been delineated to many times the length of their visible 
ranges. The electric arc especially gives (in either of these ways) a spectrum of extra­
ordinary length; for we can examine it, as we can not examine sunlight, before it has 
suffered any sensible absorption.

8. Thus radiation is one phenomenon, and (as we shall find) the spectrum of a 
black body (a conception roughly realized in the carbon poles of an electric lamp) is 
continuous from the longest possible wave-length to the shortest which it is hot enough 
to emit. These various groups of rays, however, are perceived by us in very different 
ways, whether by direct impressions of sense or by the different modes in which they 
effect physical changes or transformations. The only way as yet known to us of treating 
them all alike is to convert their energy into the heat-form and measure it as such. 
This we can do in a satisfactory manner by the thermo-electric pile and galvano­
meter.

9. Of the history of the gradual development of the theory of radiation we can 
give only the main features. The apparent concentration of cold by a concave mirror, 
which had been long before observed by Porta, was rediscovered by Pictet, and led 
to the extremely important enunciation of the Law of Exchanges by Prevost in 1791. 
As we have already seen, Prevost’s idea of the nature of radiation was a corpuscular one, 
no doubt greatly influenced in this direction by the speculations of Lesage. But the
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value of his theory as a concise statement of facts and a mode of co-ordinating them 
is not thereby materially lessened. We give his own statements in the following close 
paraphrase, in which the italics are retained, from sect. IX. of his Du Calorique Rayon- 
nant (Geneva, 1809).

“1. Free caloric is a radiant fluid. And because caloric becomes free at the surfaces 
of bodies every point of the surface of a body is a centre, towards and from which fila­
ments (filets) of caloric move in all directions.

“ 2. Heat equilibrium between two neighbouring free spaces consists in equality 
of exchange.

“ 3. When equilibrium is interfered with it is re-established by inequalities of 
exchange. And, in a medium of constant temperature, a hotter or a colder body reaches 
this temperature according to the law that difference of temperature diminishes in 
geometrical progression in successive equal intervals of time.

“ 4. If into a locality at uniform temperature a reflecting or refracting surface is 
introduced, it has no effect in the way of changing the temperature at any point in that 
locality.

“ 5. If into a locality otherwise at uniform temperature there is introduced a 
warmer or a colder body, and next a reflecting or refracting surface, the points on 
which the rays emanating from the body are thrown by these surfaces will be affected, 
in the sense of being warmed if the body is warmer, and cooled if it is colder.

“6. A reflecting body, heated or cooled in its interior, will acquire the surround­
ing temperature more slowly than would a non-reflector.

“7. A reflecting body, heated or cooled in its interior, will less affect (in the 
way of heating or cooling it) another body placed at a little distance than would a 
non-reflecting body under the same circumstances.

“All these consequences have been verified by experiment, except that which regards 
the refraction of cold. This experiment remains to be made, and I confidently predict 
the result, at least if the refraction of cold can be accurately observed. This result is 
indicated in the fourth and fifth consequences [above], and they might thus be subjected 
to a new test. It is scarcely necessary to point out here the precautions requisite to 
guard against illusory results of all kinds in this matter.”

10. There the matter rested, so far as theory is concerned, for more than half a 
century. Leslie and, after him, many others added fact by fact, up to the time of 
De la Provostaye and Desains, whose experiments pointed to a real improvement of 
the theory in the form of specialization. But, though such experiments indicated, on 
the whole, a proportionality between the radiating and absorbing powers of bodies and 
a diminution of both in the case of highly reflecting surfaces, the anomalies frequently 
met with (depending on the then unrecognized colour-differences of various radiations) 
prevented any grand generalization. The first real step of the general theory, in 
advance of what Prdvost had achieved, and it was one of immense import, was made 
by Balfour Stewart in 1858. Before we take it up, however, we may briefly consider 
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Prevost’s statements, putting aside his erroneous views as to the nature of heat; and 
we must also introduce some results of the splendid investigations of Sadi Carnot 
(1824), which cast an entirely new light on the whole subject of heat.

11. Prevost’s leading idea was that all bodies, whether cold or hot, are constantly 
radiating heat. This of itself was a very great step. It is distinctly enunciated in 
the term “ exchange ” which he employs. And from the way in which he introduces 
it it is obvious that he means (though he does not expressly say so) that the 
radiation from a body depends on its own nature and temperature alone, and is inde­
pendent altogether of the nature and temperature of any adjacent body. This also was 
a step in advance, and of the utmost value. It will be seen later that Prevost was 
altogether wrong in his assumption of the geometrical rate of adjustment of differences 
of temperature,—-a statement commonly and erroneously ascribed to Newton*, but true 
only approximately, and even so for very small temperature differences alone. Newton 
in the Queries to the third book of his Optics distinctly recognizes the propagation 
of heat from a hot body to a cold one by the vibrations of an intervening medium. 
But he says nothing as to bodies of the same temperature.

12. To Carnot we owe the proposition that the thermal motivity of a system 
cannot be increased by internal actions. A system in which all the parts are at the 
same temperature has no thermal motivity, for bodies at different temperatures are 
required in order to work a heat-engine, so as to convert part of their heat into 
work. Hence, if the contents of an enclosure which is impervious to heat are at 
any instant at one and the same temperature, no changes of temperature can take place 
among them. This is certainly true so far as our modes of measurement are con­
cerned, because the particles of matter (those of a gas, for instance) are excessively 
small in comparison with the dimensions of any of our forms of apparatus for measuring 
temperatures. Something akin to this statement has often been assumed as a direct 
result of experiment: a number of bodies (of any kinds') within the same impervious 
enclosure, which contains no source of heat, will ultimately acquire the same temperature. 
This form is more general than that above, inasmuch as it involves considerations of 
dissipation of energy. Either of them, were it strictly true, would suffice for our 
present purpose. But neither statement can be considered as rigorously true. We 
may employ them, however, in our reasoning as true in the statistical sense; but we 
must not be surprised if we should find that the assumption of their rigorous truth 
may in some special cases lead us to theoretical results which are inconsistent with 
experimental facts,—i.e., if we should find that deviations from an average, which are 
on far too minute a scale to be directly detected by any of our most delicate instru­
ments, may be seized upon and converted into observable phenomena by some of the 
almost incomparably more delicate systems which we call individual particles of 
matter.

13. The next great advance was made by Balfour Stewartf. The grand novelty 
which he introduced, and from which all his varied results follow almost intuitively,

* Mitchell, Trans. R. S. E., 1899.
t Trans. R. S. E., 1858; see also Phil. Mag., 1863, i. p. 354. 
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is the idea of the absolute uniformity (qualitative as well as quantitative) of the radiation 
at all points, and in all directions, within an enclosure impervious to heat, when thermal 
equilibrium has once been arrived at. (So strongly does he insist on this point that 
he even states that, whatever be the nature of the bodies in the enclosure, the 
radiation there will, when equilibrium is established, be that of a black body at 
the same temperature. He does not expressly say that the proposition will still be true 
even if the bodies can radiate, and therefore absorb, one definite wave-length only; 
but this is a legitimate deduction from his statements. To this we will recur.) His 
desire to escape the difficulties of surface-reflexion led him to consider the radiation 
inside an imperfectly transparent body in the enclosure above spoken of. He thus 
arrived at an immediate proof of the existence of internal radiation, which recruits the 
stream of radiant heat in any direction step by step precisely to the amount by which 
it has been weakened by absorption. Thus the radiation and absorption rigorously 
compensate one another, not merely in quantity but in quality also, so that a body 
which is specially absorptive of one particular ray is in the same proportion specially 
radiative of the same ray, its temperature being the same in both cases. To complete 
the statement, all that is necessary is to show how one ray may differ from another, 
viz., in intensity, wave-length, and polarization.

14. The illustrations which Stewart brought forward in support of his theory are 
of the two following kinds. (1) He experimentally verified the existence of internal 
radiation, to which his theory had led him. This he did by showing that a thick 
plate of rock-salt (chosen on account of its comparative transparency to heat-radiations) 
radiates more than a thin one at the same temperature,—surrounding bodies being 
in this case of course at a lower temperature, so that the effect should not be masked 
by transmission. The same was found true of mica and of glass. (2) He showed 
that each of these bodies is more opaque to radiations from a portion of its own 
substance than to radiation in general. Then comes his conclusion, based, it will be 
observed, on his fundamental assumption as to the nature of the equilibrium radiation 
in an enclosure. It is merely a detailed explanation that, once equilibrium has been 
arrived at, the consequent uniformity of radiation throughout the interior of a body 
requires the step-by-step compensation already mentioned. And thus he finally arrives 
at the statement that at any temperature a body’s radiation is exactly the same both 
as to quality and quantity as that of its absorption from the radiation of a black 
body at the same temperature. In symbolical language Stewart’s proposition (extended 
in virtue of a principle always assumed) amounts to this:—at any one temperature 
let R be the radiation of a black body, and eR (where e is never greater than 1) 
that of any other substance, both for the same definite wave-length; then the substance 
will, while at that temperature, absorb the fraction e of radiation of that wave-length, 
whatever be the source from which it comes. The last clause contains the plausible 
assumption already referred to. Stewart proceeds to show, in a very original and 
ingenious way, that his result is compatible with the known facts of reflexion, refraction, 
&c. and arrives at the conclusion that for internal radiation parallel to a plane the 
amount is (in isotropic bodies) proportional to the refractive index. Of course, when 
the restriction of parallelism to a plane is removed the internal radiation is found 
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to be proportional to the square of the refractive index. This obvious completion of 
the statement was first given by Stewart himself at a somewhat later date.

15. So far Stewart had restricted his work to “dark heat,” as it was then 
called; and he says that he did so expressly in order to confine himself to rays 
“ which were universally acknowledged to produce heat by their absorption.” But he 
soon proceeded to apply himself to luminous radiations. And here he brought forward 
the extremely important fact that “ coloured glasses invariably lose their colour in the 
fire” when exactly at the temperature of the coals behind them, i.e., they compensate 
exactly for their absorption by their radiation. But a red glass when colder than 
the coals behind appears red, while if it be hotter than they are it appears green. 
He also showed that a piece of china or earthenware with a dark pattern on a light 
ground appears to have a light pattern on a dark ground when it is taken out of 
the fire and examined in a dark room. Hence he concluded that his extension of 
Prevost’s theory was true for luminous rays also.

16. In this part of the subject he had been anticipated, for Fraunhofer had 
long ago shown that the flame of a candle when examined by a prism gives bright 
lines {i.e., maxima of intensity of radiation) in the position of the constituents of a 
remarkable double dark line {i.e., minima of radiation) in the solar spectrum, which 
he called D. Hallows Miller had afterwards more rigorously verified the exact coin­
cidence of these bright and dark lines. But Foucault* went very much farther, and 
proved that the electric arc, which shows these lines bright in its spectrum, not 
only intensifies their blackness in the spectrum of sunlight transmitted through it, 
but produces them as dark lines in the otherwise continuous spectrum of the light 
from one of the carbon points, when that light is made by reflexion to pass through 
the arc. Stokes about 1850 pointed out the true nature of the connection of these 
phenomena, and illustrated it by a dynamical analogy drawn from sound. He stated 
his conclusions to Sir W. Thomson^, who (from 1852 at least) gave them regularly 
in his public lectures, always pointing out that one constituent of the solar atmo­
sphere is certainly sodium, and that others are to be discovered by the coincidences 
of solar dark lines with bright lines given by terrestrial substances rendered incan­
descent in the state of vapour. Stokes’s analogy is based on the fact of synchronism 
(long ago discussed by Hooke and others), viz., that a musical string is set in 
vibration when the note to which it is tuned is sounded in its neighbourhood. 
Hence we have only to imagine a space containing a great number of such strings, 
all tuned to the same note. Such an arrangement would form, as it were, a medium 
which, when agitated, would give that note, but which would be set in vibration by, 
and therefore diminish the intensity of, that particular note in any mixed sound which 
passed through it.

17. Late in 1859 appeared Kirchhoff’s first paper on the subject^. He supplied 
one important omission in Stewart’s development of the theory by showing why it is

* L’Institut, 7th February, 1849; see Phil. Mag., 1860, I. p. 193.
+ Brit. Assoc., President’s address, 1871. + Pogg. Ann., or Phil. Mag., 1860. 
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necessary to use as an absorbing body one colder than the source in order to produce 
reversal of spectral lines. This we will presently consider. Kirchhoff’s proof of the 
equality of radiating and absorbing powers is an elaborate but unnecessary piece of 
mathematics, called for in consequence of his mode of attacking the question. He 
chose to limit his reasoning to special wave-lengths by introducing the complex 
mechanism of the colours of thin plates and a consequent appeal to Fourier’s theorem 
instead of to the obviously permissible assumption of a substance imperfectly trans­
parent for one special wave-length, but perfectly transparent for all others; and he 
did not, as Stewart had done, carry his reasoning into the interior of the body. 
With all its elaboration, his mode of attacking the question leads us no farther than 
could Stewart’s. Both are ultimately based on the final equilibrium of temperature 
in an enclosure, required by Carnot’s principle, and both are, as a consequence, equally 
inapplicable to exceptional cases, such as the behaviour of fluorescent or phosphorescent 
substances. In fact (see “Thermodynamics,” No. CXXXI. below), I Carnot’s principle is 
established only on a statistical basis of averages, and is not necessarily true when 
we are dealing with portions of space, which, though of essentially finite dimensions, 
are extremely small in comparison with the sentient part of even the tiniest instrument 
for measuring temperature.

18. Kirchhoff’s addition to Stewart’s result may be given as follows. Let radiation 
r, of the same particular wave-length as that spoken of in § 14, fall on the substance; 
er of it will be absorbed, and (1 — e) r transmitted. This will be recruited by the 
radiation of the substance itself, so that the whole amount for that particular wave­
length becomes (1 — e)r + eR, or r-e(r-R). Thus the radiation is weakened only 
when R < r, a condition which requires that the source (even if it be a black body) 
should be at a higher temperature than the absorbing substance (§ 4, above). But 
the converse is, of course, not necessarily true. This part of the subject, as well 
as the special work of Kirchhoff and of Bunsen, belongs properly to spectrum 
analysis.

19. From the extension of Prevost’s theory, obtained in either of the ways just 
explained, we see at once how the constancy of the radiation in an enclosure is 
maintained. In the neighbourhood of and perpendicular to the surfaces of a black 
body it is wholly due to radiation, near a transparent body wholly to transmission. 
A body which reflects must to the same extent be deficient in its radiation and 
transmission; thus a perfect reflector can neither radiate nor transmit. And a body 
which polarizes by reflexion must supply by radiation what is requisite to render the 
whole radiation unpolarized. A body, such as a plate of tourmaline, which polarizes 
transmitted light, must radiate light polarized in the same plane as that which it 
absorbs. Kirchhoff and Stewart independently gave this beautiful application.

20. Empirical formulae representing more or less closely the law of cooling of 
bodies, whether by radiation alone or by simultaneous radiation and convection, have 
at least an historic interest. What is called Newton’s Law of Cooling (see p. 462 above) 
was employed by Fourier in his Theorie Analytique de la Chaleur. Here the rate of

T. II. 59
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surface-loss was taken as proportional to the excess of temperature over surrounding 
bodies. For small differences of temperature it is accurate enough in its applications, 
such as to the corrections for loss of heat in experimental determinations of specific 
heat,. &c., but it was soon found to give results much below the truth, even when the 
excess of temperature was only 10° C.

21. Dulong and Petit, by carefully noting the rate of cooling of the bulb of a 
large thermometer enclosed in a metallic vessel with blackened walls, from which the 
air had been as far as possible extracted and which was maintained at a constant 
temperature, were led to propound the exponential formula AtA + B to represent the 
radiation from a black surface at temperature t. As this is an exponential formula, 
we may take t as representing absolute temperature, for the only result will be a 
definite change of value of the constant A. Hence if t0 be the temperature of the 
enclosure, the rate of loss of heat should be A(af — a ’), or Aa^^a^— 1). The quantity 
A was found by them to depend on the nature of the radiating surface, but a was 
found to have the constant value 1'0077. As the approximate accuracy of this ex­
pression was verified by the experiments of De la Provostaye and Desains for 
temperature differences up to 200° C., it may be well to point out two of its con­
sequences. (1) For a given difference of temperatures the radiation is an exponential 
function of the lower (or of the higher) temperature. (2) For a given temperature 
of the enclosure the radiation is as (l'OO77)s —1, or 0(1 + 0'00380-1-...), where 0 is 
the temperature excess of the cooling body. Thus the (so-called) Newtonian law gives 
4 per cent, too little at 10° C. of difference.

*

22. Dulong and Petit have also given an empirical formula for the rate of loss 
by simultaneous radiation and convection. This is of a highly artificial character, the 
part due to radiation being as in the last section, while that due to convection is 
independent of it, and also of the nature of the surface of the cooling body. It is 
found to be proportional to a power of the pressure of the surrounding gas (the 
power depending on the nature of the gas), and also to a definite power of the 
temperature excess. The reader must be referred to French treatises, especially that 
of Desains, for further information.

23. Our knowledge of the numerical rate of surface-emission is as yet scanty, 
but the following data, due to Nicol,  may be useful in approximate calculations. 
Loss in heat units (1 lb. water raised 1° C. in temperature) per square foot per minute, 

*

* Proc. R. S. E., VII. 1870, p. 206.

from
Bright copper............................  1'09 0'51 0'42
Blackened copper .................... 2’03 1’46 1'35.

The temperatures of body and enclosure were 58° C. and 8° 0., and the pressure of 
contained air in the three columns was about 30, 4, and 0’4 inches of mercury 
respectively. The enclosure was blackened.
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24. Scanty as is our knowledge of radiation, it is not at all surprising that 
that of convection should be almost nil, except as regards some of its practical 
applications. Here we have to deal with a problem of hydrokinetics of a character, 
even in common cases, of far higher difficulty than many hydrokinetic problems of which 
not even approximate solutions have been obtained.

25. What is called Doppler’s Principle has more recently* led Stewart to some 
curious speculations, which a simple example will easily explain. Suppose two parallel 
plates of the same substance, perfectly transparent except to one definite wave-length, 
to be moving towards or from one another. Each, we presume, will radiate as before, 
and on that account cool; but the radiation which reaches either is no longer of 
the kind which alone it can absorb, whether it come directly from the other, or is 
part of its own or of the other’s radiation reflected from the enclosure. Hence it 
would appear that relative motion is incompatible with temperature equilibrium in 
an enclosure, and thus that there must be some effect analogous to resistance to 
the motion. We may get over this difficulty if we adopt the former speculation of 
Stewart, referred to in brackets in § 13 above. For this would lead to the result 
that, as soon as either of the bodies has cooled, ever so slightly, the radiation in 
the enclosure should become that belonging to a black body of a slightly higher 
temperature than before, and thus the plates would be furnished with radiation which 
they could at once absorb, and be gradually heated to their former temperature.

26. A very recent speculation, founded by Boltzmann f upon some ideas due to 
Bartoli, is closely connected in principle with that just mentioned. This speculation 
is highly interesting, because it leads to an expression for the amount of the whole 
radiation from a black body in terms of its absolute temperature. Boltzmann’s in­
vestigation may be put, as follows, in an exceedingly simple form. It was pointed 
out by Clerk-Maxwell, as a result of his electro-magnetic theory of light, that 
radiation falling on the surface of a body must produce a certain pressure. It is 
easy to see (most simply by the analogy of the virial equation), that the measure 
of the pressure per square unit on the surface of an impervious enclosure, in which 
there is thermal equilibrium, must be one-third of the whole energy of radiation per 
cubic unit of the enclosed space. We may now consider a reversible engine conveying 
heat from one black body to another at a different temperature, by operations 
alternately of the isothermal and the adiabatic character, which consist in altering the 
volume of the enclosure, with or without one of the bodies present in it. For one 
of the fundamental equations (p. 478 below) gives

dE 
dv

.dp

where t is the absolute temperature. If f be the pressure on unit surface, 3/ is the 
energy per unit of volume, and this equation becomes

df 
dt ~f=*f

* Brit. Assoc. Rei>ort, 1871. t Wiedemann’s Ann., 1884, xxu.
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Hence it follows at once that, if the fundamental assumptions be granted, the energy 
of radiation of a black body per unit volume of the enclosure is proportional to the 
fourth power of the absolute temperature. It is not a little remarkable that Stefan*  
had some years previously shown that this very expression agrees more closely with 
the experimental determinations of Du long and Petit than does their own empirical 
formula.

* Sitzungsber. d. k. Ak. in Wien, 1879.

27. It would appear from this expression that, if an impervious enclosure con­
taining only one black body in thermal equilibrium is separated into two parts by 
an impervious partition, any alteration of volume of the part not containing the black 
body will produce a corresponding alteration of the radiation in its interior. It will 
now correspond to that of a second black body, whose temperature is to that of 
the first in the inverse ratio of the fourth roots of the volumes of the detached part of 
the enclosure.

28. Lecherf has endeavoured to show that the distribution of energy among 
the constituents of the radiation from a black body does not alter with temperature. 
Such a result, though apparently inconsistent with many well-known facts, appears 
to be consistent with and to harmonize many others. It accords perfectly with the 
notion of the absolute uniformity (statistical) of the energy in an enclosure, and its 
being exactly that of a black body, even if the contents (as in § 25) consist of a 
body which can radiate one particular quality of light alone. And if this be the 
case it will also follow that the intensity of radiation of any one wave-length by any 
one body in a given state depends on the temperature in exactly the same way as 
does the whole radiation from a black body. Unfortunately this last deduction does 
not accord with Melloni’s results: at least the discrepance from them would appear 
to be somewhat beyond what could fairly be set down to error of experiment. But 
it is in thorough accordance with the common assumption (§ 14) that the percentage 
absorption of any particular radiation does not depend on the temperature of the 
source. The facts of fluorescence and phosphorescence, involving the radiation of 
visible rays at temperatures where even a black body is invisible, have not yet been 
dealt with under any general theory of radiation; though Stokes has pointed out a 
dynamical explanation of a thoroughly satisfactory character, they remain outside the 
domain of Carnot’s principle.

+ Wiedemann’s Ann., 1882, xvn.
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CXXXI.

THERMODYNAMICS.

[From Encyclopaidia Britannica, 1888.]

In a strict interpretation, this branch of science, sometimes called the Dynamical 
Theory of Heat, deals with the relations between heat and work, though it is often 
extended so as to include all transformations of energy. Either term is an infelicitous 
one, for there is no direct reference to force in the majority of questions dealt with 
in the subject. Even the title of Carnot’s work, presently to be described, is much 
better chosen than is the more modern designation. On the other hand, such a 
German phrase as die bewegende Kraft der Warme is in all respects intolerable.

It has been shown * * * that Newton’s enunciation of the conservation of energy 
as a general principle of nature was defective in respect of the connection between 
work and heat, and that, about the beginning of the present century, this lacuna was 
completely filled up by the researches of Rumford and Davy. Joule’s experimental 
demonstration of the principle, and his determination of the work-equivalent of heat by 
various totally independent processes, have been discussed.

But the conservation of energy, alone, gives us an altogether inadequate basis for 
reasoning on the work of a heat-engine. It enables us to calculate how much work 
is equivalent to an assigned amount of heat, and vice versa, provided the trans­
formation can be effected; but it tells us nothing with respect to the percentage of 
either which can, under given circumstances, be converted into the other. For this 
purpose we require a special case of the law of transformation of energy. This was 
first given in Carnot’s extraordinary work entitled Reflexions sur la Puissance Motrice 
du Feu, Paris, 1824*.

* The author, N. L. Sadi Carnot (1796—1832), was the second son of Napoleon’s celebrated minister of war, 
himself a mathematician of real note even among the wonderful galaxy of which France could then boast.
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The chief novelties of Carnot’s work are the introduction of the idea of a cycle 
of operations, and the invaluable discovery of the special property of a reversible 
cycle. It is not too much to say that, without these wonderful novelties, thermo­
dynamics as a theoretical science could not have been developed.

Carnot’s work seems to have excited no attention at the time of its publication. 
Ten years later (1834) Clapeyron gave some of its main features in an analytical form, 
and he also employed Watt’s diagram for the exhibition of others. Even this, how­
ever, failed to call attention properly to the extremely novel processes of Carnot, and 
it was reserved for Sir W. Thomson (in 1848, and more at length in 1849) to point 
out to scientific men their full value. His papers on Carnot’s treatise, following closely 
after the splendid experimental researches of Golding and Joule, secured for the 
dynamical theory of heat its position as a recognized branch of science. James 
Thomson, by Carnot’s methods, predicted in 1849 the lowering of the freezing point 
of water by pressure, which was verified experimentally in the same year by his 
brother. Von Helmholtz had published, two years before, a strikingly original and 
comprehensive pamphlet on the conservation of energy. The start once given, Rankine, 
Clausius, and W. Thomson rapidly developed, though from very different standpoints, 
the theory of thermodynamics. The methods adopted by Thomson differed in one special

The delicate constitution of Sadi was attributed to the agitated circumstances of the time of his birth, which 
led to the proscription and temporary exile of his parents. He was admitted in 1812 to the Ecole Polytechnique, 
where he was a fellow-student of the famous Chasles. Late in 1814 he left the school with a commission in 
the Engineers, and with prospects of rapid advancement in his profession. But Waterloo and the Restoration 
led to a second and final proscription of his father; and, though Sadi was not himself cashiered, he was 
purposely told off for the merest drudgeries of his service; “il fut envoyi successivement dans plusieurs places 
fortes pour y faire son metier d’ingtoieur, compter des briques, rAparer des pans de murailles, et lever des 
plans destines a s’enfouir dans les cartons,” as we learn from a biographical notice written by his younger 
brother. Disgusted with an employment which afforded him neither leisure for original work nor opportunities for- 
acquiring scientific instruction, he presented himself in 1819 at the examination for admission to the staff-corps 
(litat-major), and obtained a lieutenancy. He now devoted himself with astonishing ardour to mathematics, 
chemistry, natural history, technology, and even political economy. He was an enthusiast in music and other 
fine arts; and he habitually practised as an amusement, while deeply studying in theory, all sorts of athletic 
sports, including swimming and fencing. He became captain in the engineers in 1827, but left the service 
altogether in the following year. His naturally feeble constitution, farther weakened by excessive devotion to 
study, broke down finally in 1832. A relapse of scarlatina led to brain fever, from which he had but partially 
recovered when he fell a victim to cholera. Thus died, at the early age of thirty-six, one of the most profound 
and original thinkers who have ever devoted themselves to science. The work named above was the only one 
he published. Though of itself sufficient to put him in the very foremost rank, it contains only a fragment 
of Sadi Carnot’s discoveries. Fortunately his manuscripts have been preserved, and extracts from them have 
been appended by his brother to a reprint (1878) of the Puissance Motrice. These show that he had not only 
realized for himself the true nature of heat, but had noted down for trial many of the best modern methods 
of finding its mechanical equivalent, such as those of Joule with the perforated piston and with the internal 
friction of water and mercury. W. Thomson’s experiment with a current of gas forced through a porous plug 
is also given. One sentence of extract, however, must suffice, and it is astonishing to think that it was written 
over sixty years ago. “ On pent done poser en th^se gfinerale que la puissance motrice est en quantity invariable 
dans la nature, qu’elle n’est jamais, a proprement parler, ni produite, ni detruite. A la v6rit6, elle change 
de forme, c’est-Adire qu’elle produit tantot un genre de mouvement, tant6t un autre ; mais elle n’est jamais 
aneantie.”
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characteristic from those of his concurrents,—they were based entirely on the experi­
mental facts and on necessary principles; and, when hypothesis was absolutely required, 
attention was carefully directed to its nature and to the reasons which appeared to 
justify it.

Three specially important additions to pure science followed almost directly from 
Carnot’s methods:—(1) the absolute definition of temperature; (2) the thermodynamic 
function or entropy; (3) the dissipation of energy. The first (in 1848) and the third 
(in 1852) were given by W. Thomson. The second, though introduced by Rankine, was 
also specially treated by Clausius.

In giving a brief sketch of the science, we will not adhere strictly to any of the 
separate paths pursued by its founders, but will employ for each step what appears 
to be most easily intelligible to the general reader. And we will arrange the steps 
m such an order that the necessity for each may be distinctly visible before we 
take it.

1. General Notions.—The conversion of mechanical work into heat can always be 
effected completely. In fact, friction, without which even statical results would be all 
but unrealizable in practical life, interferes to a marked extent in almost every problem 
of kinetics,—and work done against friction is (as a rule) converted into heat. But 
the conversion of heat into work can be effected only in part, usually in very small 
part. Thus heat is regarded as the lower or less useful of these forms of energy, 
and when part of it is elevated in rank by conversion into work the remainder sinks 
still lower in the scale of usefulness than before.

There are but two processes known to us for the conversion of heat into work 
viz., that adopted in heat-engines, where the changes of volume of the “ working 
substance” are employed, and that of electromagnetic engines driven by thermoelectric 
currents. To the latter we will not again refer. And for simplicity we will suppose 
the working substance to be fluid, so as to have the same pressure throughout, or, 
if it be solid, to be isotropic, and to be subject only to hydrostatic pressure, or to 
tension uniform in all directions and the same from point to point.

The state of unit mass of such a substance is known by experiment to be fully 
determined when its volume and pressure are given, even if (as in the case of ice in 
presence of water, or of water in presence of steam) part of it is in one molecular state 
and part in another. But, the state being determinate, so must be the temperature, and 
also the amount of energy which the substance contains. This consideration is insisted 
on by Carnot as the foundation of his investigations. In other words, before we are 
entitled to reason upon the relation between the heat supplied to and the work done 
by the working substance, Carnot says we must bring that substance, by means of a 
cycle of operations, back to precisely its primitive state as regards volume, temperature, 
and molecular condition.
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2. Watt’s Diagram.—Watt’s indicator-diagram enables us to represent our operations
graphically. For if OM (fig. 1) represent the volume, 
at any instant, of the unit mass of working substance, 
MP its pressure, the point P is determinate and cor­
responds to a definite temperature, definite energy, &c. 
If the points of any curve, as PP', in the diagram 
represent the successive states through which the 
working substance is made to pass, the work done 
is represented by the area MPP'M'. Hence, a cycle 
of operations, whose essential nature is to bring the 
working substance back to its primitive state, is 
necessarily represented by a closed boundary, such as 
PP'Q’Q, in the diagram. The area enclosed is the 
excess of the work done by the working substance 

over that spent on it during the cycle. [This is positive if the closed path be described 
clockwise, as indicated by the arrow-heads.]

3. Carnot’s Cycle.—For a reason which will immediately appear, Carnot limited 
the operations in his cycle to two kinds, employed alternately during the expansion 
and during the compression of the working substance. The first of these involves 
change of volume at constant temperature', the second, change of volume without direct 
loss or gain of heat. [In his hypothetical engine the substance was supposed to be 
in contact with a body kept at constant temperature, or to be entirely surrounded 
by non-conducting materials.] The corresponding curves in the diagram are called 
isothermals, or lines of equal temperature, and adiabatic lines respectively. We may 
consider these as having been found, for any particular working substance, by the 
direct use of Watt’s indicator. It is easy to see that one, and only one, of each of 
these kinds of lines can be found for an assigned initial state of the working sub­
stance; also that, because in expansion at constant temperature heat must be constantly 
supplied, the pressure will fall off less rapidly than it does in adiabatic expansion. 
Thus in the diagram the adiabatic lines PQ, P'Q' cut the lines of equal temperature 
PP', QQ' downwards and to the right. Thus the boundary of the area PP'Q'Q, does 
not cross itself. To determine the behaviour of the engine we have therefore only 
to find how much heat is taken in along PP' and how much is given out in Q'Q. 
Their difference is equivalent to the work expressed by the area PP'Q'Q.

4. Carnot’s Principle of Reversibility.—It will be observed that each operation 
of this cycle is strictly reversible', for instance, to take the working substance along the 
path P'P we should have to spend on it step by step as much work as it gave out 
in passing along PP', and we should thus restore to the source of heat exactly the 
amount of heat which the working substance took from it during the expansion. In 
the case of the adiabatics the work spent during compression is the same as that 
done during the corresponding expansion, and there is no question of loss or gain of 
heat directly.
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If, however, a transfer of heat between the working substance and its surroundings 
have taken place on account of a finite difference of temperature, it is clear that such an 
operation is not reversible. Strictly speaking, isothermal expansion or contraction is 
unattainable in practice, but it is (without limit) more closely approximated to as the 
operation is more slowly performed. The adiabatic condition, on the other hand, is more 
closely approximated to in practice the more swiftly the operation is performed. We 
have an excellent instance of this in the compression and dilatation of air caused by the 
propagation of a sound-wave.

And now we have Carnot’s invaluable proposition, a reversible heat-engine is a perfect 
engine,—perfect, that is, in the sense that no other heat-engine can be superior to it. 
Before giving the proof, let us see the immense consequences of this proposition. 
Reversibility is the sole test of perfection; so that all heat-engines, whatever be the 
working substance, provided only they be reversible, convert into work (under given cir­
cumstances) the same fraction of the heat supplied to them. The only circumstances 
involved are the temperatures of the source and condenser. Thus we are furnished with 
a general principle on which to reason about transformation of heat, altogether inde­
pendently of the properties of any particular substance.

The proof, as Carnot gave it on the hypothesis of the materiality of heat, is 
ex absurdo. It is as follows. Suppose a heat-engine A to be capable of giving more 
work from a given amount of heat than is a reversible engine B, the temperatures 
of source and condenser being the same for each. Use the two as a compound engine, 
A working direct and B reversed. By hypothesis B requires to be furnished with 
part only of the work given by A to be able to restore to the source the heat 
abstracted by A, and thus at every complete stroke of the compound engine the source 
has its heat restored to it, while a certain amount of external work has been done. This 
would be the Perpetual Motion.

5. The Basis of the Second Law of Thermodynamics.—Carnot’s reasoning, just given, 
is based on the hypothesis that heat (or caloric) is indestructible, and that (under certain 
conditions) it does work in being let down from a higher to a lower temperature, just 
as does water when falling to a lower level. It is clear from several expressions in his 
work that Carnot was not at all satisfied with this view, even in 1824, and we have 
seen that he soon afterwards reached the true theory. But it is also clear that 
such an assumption somewhat simplifies the reasoning, for in his hypothetical heat- 
engine all the heat which leaves the boiler goes to the condenser, and vice versa in 
the reversed working. The precise point of Carnot’s investigation where the supposed 
indestructibility of heat introduces error is when, after virtually saying compress from 
Q' to a state Q determined by the condition that the heat given out shall be exactly 
equal to that taken in during the expansion from P to P', he assumes that, on 
farther compressing adiabatically to the original volume, the point P will be reached 
and the cycle completed. J. Thomson, in 1849, rectified this by putting it in the 
true form:__compress from Q' to a state Q, such that subsequent adiabatic compression 
will ultimately lead to the state P.

T. II. 60
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We have now to consider that, if an engine (whether simple or compound) does 
work at all by means of heat, less heat necessarily reaches the condenser than left the
boiler. Hence, if there be two engines A and B as before, and the joint system be
worked in such a way that B constantly restores to the source the heat taken from it
by A, we can account for the excess of work done by A over that spent on B
solely by supposing that B takes more heat from the condenser than A gives to it. 
Such a compound engine would transform into work heat taken solely from the con­
denser. And the work so obtained might be employed on B, so as to make it convey 
heat to the source while farther cooling the condenser.

Clausius, in 1850, sought to complete the proof by the simple statement that 
“this contradicts the usual behaviour of heat, which always tends to pass from warmer 
bodies to colder.” Some years later he employed the axiom, “it is impossible for a 
self-acting machine, unaided by any external agency, to convey heat from one body 
to another at a higher temperature.” W. Thomson, in 1851, employed the axiom, “it is 
impossible, by means of inanimate material agency, to derive mechanical effect from any 
portion of matter by cooling it below the temperature of the coldest of the surrounding 
objects.” But he was careful to supplement this by further statements of an extremely 
guarded character. And rightly so, for Clerk-Maxwell has pointed out that such 
axioms are, as it were, only accidentally correct, and that the true basis of the second 
law of thermodynamics lies in the extreme smallness and enormous number of the 
particles of matter, and in consequence the steadiness of their average behaviour. Had 
we the means of dealing with the particles individually, we could develop on the 
large scale what takes place continually on a very minute scale in every mass of 
gas,—the occasional, but ephemeral, aggregation of warmer particles in one small region 
and of colder in another.

6. The Laws of Thermodynamics.—I. When equal quantities of mechanical effect 
are produced by any means whatever from purely thermal sources, or lost in purely 
thermal effects, equal quantities of heat are put out of existence, or are generated. 
[To this we may add, after Joule, that in the latitude of Manchester 772 foot-pounds 
of work are capable of raising the temperature of a pound of water from 50° F. to 51° F. 
This corresponds to 1390 foot-pounds per centigrade degree, and in metrical units to 
425 kilogramme-metres per calorie.]

II. If an engine be such that, when it is worked backwards, the physical and 
mechanical agencies in every part of its motions are all reversed, it produces as much 
mechanical effect as can be produced by any thermodynamic engine, with the same 
temperatures of source and refrigerator, from a given quantity of heat.

7. Absolute Temperature.—We have seen that the fraction of the heat supplied 
to it which a reversible engine can convert into work depends only on the temperatures 
of the boiler and of the condenser. On this result of Carnot’s Sir W. Thomson based 
his absolute definition of temperature. It is clear that a certain freedom of choice 
is left, and Thomson endeavoured to preserve as close an agreement as possible between 
the new scale and that of the air thermometer. Thus the definition ultimately fixed 
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on, after exhaustive experiments, runs:—“The temperatures of two bodies are propor­
tional to the quantities of heat respectively taken in and given out in localities at 
one temperature and at the other respectively, by a material system subjected to a 
complete cycle of perfectly reversible thermodynamic operations, and not allowed to 
part with or take in heat at any other temperature; or, the absolute values of two 
temperatures are to one another in the proportion of the heat taken in to the heat 
rejected in a perfect thermodynamic engine, working with a source and refrigerator 
at the higher and lower of the temperatures respectively*.” If we now refer again 
to fig. 1, we see that, t and t' being the absolute temperatures corresponding to PP' 
and Qty, and H, H' the amounts of heat taken in during the operation PP' and 
given out during the operation Q'Q respectively, we have

whatever be the values of t and t'. Also, if heat be measured in terms of work, 
we have

H — H' = area PP' Q'Q.

Thus with a reversible engine working between temperatures t and t' the fraction of 
the heat supplied which is converted into work is (£ — £')/£.

It is now evident that we can construct Watt’s diagram in
lines of equal temperature and the adiabatics 
may together intercept a series of equal areas. 
Thus let PP' (fig. 2) be the isothermal t, and 
on it so take points P', P", P'", &c., that, as 
the working substance passes from P to P', P' 
to P", &c., t units of heat (the unit being of 
any assigned value) shall in each case be taken 
in. Let QQ', RR', Sae., be other isothermals, so 
drawn that the successive areas Pty, QR', 
&c., between any two selected adiabatics, may 
be equal. Then, as it is clear that all the 
successive areas between each one pair of iso­
thermals are equal (each representing the area 
t — t'), it follows that all the quadrilateral areas 
in the figure are equal.

such a way that the

Fiq. 2.

It is now clear that the area included between PP' and the two adiabatics 
PQR, P'tyR’ is essentially finite, being numerically equal to t. Thus the temperature 
for each isothermal is represented by the corresponding area. This is indicated in the 
cut by the introduction of an arbitrary line SS', supposed to be the isothermal of 
absolute zero. The lower parts of the adiabatics also are unknown, so that we may draw 
them as we please, subject to the condition that the entire areas PS', P'S'', P"S'", &c., 
shall all be equal. To find, on the absolute scale, the numerical values of two definite 
temperatures, such as the usually employed freezing and boiling points of water, we

* Trans. R. S. E., May 1854.

60—2 
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must therefore find their ratio (that of the heat taken and the heat rejected by a 
reversible engine working between these temperatures), and assign the number of degrees 
in the interval.

Thomson and Joule experimentally showed that this ratio is about 1’365. Hence, 
if we assume (as in the centigrade scale) 100 degrees as the range, the temperatures 
in question are 274 and 374 nearly.

8. Entropy.—Just as the lines PP', QQ', &c., are characterized by constant 
temperature along each, so we figure to ourselves a quantity which is characteristic of 
each adiabatic line,—being constant along it. The equation of last section at once 
points out such a quantity. If we write <£ for its value along PQ, f for P'Q\ we 
may define thus

cf — <£ = Hf

From the statements as to the equality of the areas in fig. 2 the reader will see 
at once that the area bounded by t, t', cf>, <p' is (t — t^ff — if). We are concerned only 
with the changes of <£, not with its actual magnitude, so that any one adiabatic may 
be chosen as that for which $ = 0.

9. The Dissipation of Energy.—Sir William Thomson has recently introduced the 
term thermodynamic motivity to signify “ the possession the waste of which is called 
dissipation.” We speak of a distribution of heat in a body or system of bodies as 
having motivity, and we may regard it from without or from within the system.

In the first case it expresses the amount of work which can be obtained by 
means of perfect engines employed to reduce the whole system to some definite 
temperature, that, say, of the surrounding medium. In the second case the system 
is regarded as self-contained, its hotter parts acting as sources, and its colder parts as 
condensers for the perfect engine.

As an instance of internal motivity we may take the case of a system consisting 
of two equal portions of the same substance at different temperatures, say a pound of 
boiling water and a pound of ice-cold water. If we neglect the (small) change of 
specific heat with temperature, it is found that, when the internal motivity of the 
system is exhausted by means of perfect engines, the temperature is about 46° C., 
being the centigrade temperature corresponding to the geometrical mean of the original 
absolute temperatures of the parts. Had the parts been simply mixed so as to dissipate 
the internal motivity, the resulting temperature would have been 50° C. Thus the 
work gained (i.e., the original internal motivity) is the equivalent of the heat which 
would raise two pounds of water from 46° C. to 50° 0.

As an instance of motivity regarded from without we may take the simple case of 
the working substance in § 2, on the hypothesis that there is an assigned lower tem­
perature limit. As there is no supply of heat, it is clear that the maximum of work 
will be obtained by allowing the substance to expand adiabatically till its temperature 
sinks to the assigned limit.
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Thus if P (fig. 3) be its given position on Watt’s diagram, PQ the adiabatic through
P, and P’Q the isothermal of the lower temperature 
limit, Q is determinate, and the motivity is the 
area PQNM. If, again, we wish to find the motivity 
when the initial and final states P and P' are given, 
with the condition that the temperature is not to 
fall below that of the state P', the problem is re­
duced to finding the course PP' for which the area 
PP'M'M is greatest. As no heat is supplied, the 
course cannot rise above the adiabatic PQ, and by 
hypothesis it cannot fall below the isothermal P'Q,— 
hence it must be the broken line PQP’. Thus, 
under the circumstances stated, the motivity is represented by the area MPQP' M'. 
If any other lawful course, such as PP', be taken, there is an unnecessary waste of 
motivity represented by the area PQP'.

10. Elementary Thermodynamic Relations.—From what precedes it is clear that, 
when the state of unit mass of the working substance is given by a point in the 
diagram, an isothermal and an adiabatic can be drawn through that point, and thus 
<£ and t are determinate for each particular substance when p and v are given. Thus 
any two of the four quantities p, v, t, </> may be regarded as functions of the other 
two, chosen as independent variables. The change of energy from one state to 
another can, of course, be expressed as in § 9, above. Thus, putting E for the energy, 
we have at once

dE=td$>—pdv .......................................................... (1)

if </> and v be chosen as independent variables, and if heat be measured, as above, 
in units of work. This equation expresses, in symbols, the two laws of thermodynamics. 
For it states that the gain of energy is the excess of the heat supplied over the work 
done, which is an expression of the first law. And it expresses the heat supplied 
as the product of the absolute temperature by the gain of entropy, which is a 
statement of the second law in terms of Thomson’s mode of measuring absolute 
temperature.

But we now have two equations in partial differential coefficients:—

From these we have two expressions for the value of
d^E_' 

dvd<f>.

Equating them, we are led to the thermodynamic relation

(dp\
\dv) \d^/’

the differential coefficients being again partial.
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This expresses a property of all “working substances,” defined as in § 1. To 
state it in words, let us multiply and divide the right-hand side by t, and it then 
reads:—

The rate at which the temperature falls off per unit increase of volume in adiabatic 
expansion is equal to the rate at which the pressure increases per dynamical unit of 
heat supplied at constant volume, multiplied by the absolute temperature.

To obtain a similar result with v and t as independent variables, we have only 
to subtract from both sides of (1) the complete differential d(t^>), so that

d(E—tff) = — ^)dt — pdv.

Proceeding exactly as before, we find

In words this result runs (when both sides are multiplied by t):—

The rate of increase of pressure with temperature at constant volume, multiplied by 
the absolute temperature, is equal to the rate at which heat must be supplied per unit 
increase of volume to keep the temperature constant.

Very slight variations of the process just given obtain the following varieties of 
expression:—

(£)-(£) ©—\d<bi \dpj \dt) \dpj

which are to be interpreted as above.

11. Increase of Total Energy under various Conditions.—The expression (1) of 
§ 10 may be put in various forms, each convenient for some special purpose. We give 
one example, as sufficiently showing the processes employed. Thus, suppose we wish 
to find how the energy of the working substance varies with its volume when the 
temperature is kept constant, we must express dE in terms of dv and dt. Thus

dE = t dt +t — pdv.

But we have, by § 10, under present conditions

a result assumed in a previous article (Radiation, No. CXXX. above).

If the working substance have the property (that of the so-called “ideal” perfect gas) 
pv = Rt,



CX XXI.] THERMODYNAMICS. 479

we see that, for it, = 0.
\dv /

The energy of (unit mass of) such a substance thus depends upon its temperature 
alone.

12. Specific Heat of a Fluid.—Specific heat in its most general acceptation is the 
heat required, under some given condition, to raise the temperature of unit mass by 
one degree. Thus it is the heat taken in while the working substance passes, by some 
assigned path, from one isothermal t to another t +1; and this may, of course, have 
as many values as there are possible paths. Usually, however, but two of these paths 
are spoken of, and these are taken parallel respectively to the coordinate axes in 
Watt’s diagram, so that we speak of the specific heat at constant volume or at con­
stant pressure. In what follows these will be denoted by c and k respectively.

Take v and p for the independent variables, as in the diagram, and let k be 
the specific heat corresponding to the condition

f (y, p) = const.

Then Kdt = tdf> = t dv + dp^

while A df df ,
0 = dv + f- dp, dv dp r

and dt , dt , dt = -rdv + -r dp.dv dp r

Thus

d^ d/ _ d^> df 
dv dp dp dv
dt elf dt df ' 
dv dp dp dv

This expression vanishes if f and </> vary together, i.e., in adiabatic expansion, and 
becomes infinite if f and t vary together, i.e., in isothermal expansion; as might easily 
have been foreseen. Otherwise it has a finite value. It is usual, however, to choose 
v and t as independent variables, while we deal analytically (as distinguished from 
diagrammatically) with the subject. From this point of view we have

Kdt = t dv + dt\. 
\dv dt /

But the last term on the right is, by definition, cdt; so that

(k — c) dt = t dv, dv

with the condition di + dv = 0.dt dv
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deb df / dfThus K-c=~tdv£/£’

which is a perfectly general expression. As the most important case, let / represent 
the pressure, then we see, by § 10, that

d<f> _ dp 
dv dt ’

and the formula becomes k - c = - t I .

13. Properties of an Ideal Substance which follows the Laws of Boyle and 
Charles.—Closely approximate ideas of the thermal behaviour of a gas such as air, 
at ordinary temperatures and pressures, may be obtained by assuming the relation

pv = Rt,

which expresses the laws of Boyle and Charles. Thus, by the formula of last section, 
we have at once

k-c = t~/£=R,
V2 I V

a relation given originally by Carnot.

Hence, in such a substance,

def, = c y + (k - c) ~ ,

or </> — </>0 = c log t + (k — c) log v.

In terms of volume and pressure, this is

<£ — </>0 = c \og p/R + k log v,

OP jpyklc — ~<to)/^

the equation of the adiabatics on Watt’s diagram.

This is (for constant) the relation between p and v in the propagation of sound. 
It follows from the theory of wave-motion that the speed of sound is

where t is the temperature of the undisturbed air. This expression gives, by com­
parison with the observed speed of sound, a very accurate determination of the ratio 
kfc in terms of R. The value of R is easily obtained by experiment, and we have 
just seen that it is equal to k — c; so that k and c can be found for air with great 
accuracy by this process,—a most remarkable instance of the indirect measurement of 
a quantity (c) whose direct determination presents very formidable difficulties.
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14. Effect of Pressure on the Melting or Boiling Point of a Substance.—By the 
second of the thermodynamic relations in § 10, above, we have

» that S/,_mSi + ['*')88 = W')S(+('*')SB.
\dtj \dvj \dv/ \dvj

But, if the fraction e of the working substance be in one molecular state (say liquid) 
in which Fo is the volume of unit mass, while the remainder 1 — e is in a state (solid) 
where V, is the volume of unit mass, we have obviously

« = eF0 + (l - e^.

Let L be the latent heat of the liquid, then

(dfX _ td<j> L
\dv) t{Va — V^de ~ f(F0-F) •

Also, as in a mixture of the same substance in two different states, the pressure 
remains the same while the volume changes at constant temperature, we have dp/dv=0, 
so that finally

which shows how the temperature is altered by a small change of pressure.

In the case of ice and water, V1 is greater than Fo, so the temperature of the 
freezing-point is lowered by increase of pressure. When the proper numerical values 
of Fo, Fx, and L are introduced, it is found that the freezing-point is lowered by 
about O°’OO74 C. for each additional atmosphere.

When water and steam are in equilibrium, we have Fo much greater than F1( 
so that the boiling-point (as is well known) is raised by pressure. The same happens, 
and for the same reason, with the melting point, in the case of bodies which expand 
in the act of melting, such as beeswax, paraffin, cast-iron, and lava. Such bodies 
may therefore be kept solid by sufficient pressure, even at temperatures far above their 
ordinary melting points.

This is, in a slightly altered form, the reasoning of James Thomson, alluded to 
above as one of the first striking applications of Carnot’s methods made after his 
work was recalled to notice.

15. Effect of Pressure on Maximum Density Point of Water.—One of the most 
singular properties of water at atmospheric pressure is that it has its maximum 
density at 4° C. Another, first pointed out by Canton in 1764, is that its com­
pressibility (per atmosphere) is greater at low than at ordinary temperatures—being, 
according to his measurements, 0’000,049 at 34° F., and only 0’000,044 at 64° F. It 
is easy to see (though it appears to have been first pointed out by Puschl in 1875)

T. II. 61
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that the second of these properties involves the lowering of the maximum density 
point by increase of pressure. To calculate the numerical amount of this effect, note 
that the expansibility, like all other thermal properties, may be expressed as a function 
of any two of the quantities p, v, t, fa say in the present case p and t. Then we 
have for the expansibility

Also the compressibility may be expressed as

The relation between small simultaneous increments of pressure and temperature, 
which are such as to leave the expansibility unchanged, is thus

0+0^-
Now the expansibility is zero at the maximum density point, for which therefore this 
equation holds. But the equations above give 

\dt/ \dtjso that

The volume of water at low temperatures under atmospheric pressure varies approxi­
mately as

1 + ^^.
144,000

Thus we have =vvLa nearly; and from Canton’s experimental result above stated

we gather that (roughly at least)

\dt)
1

0'000,005 = - 0'000,000,3 ;
uO

from which the formula gives — 0°'02 C. nearly for the change of the maximum density 
point due to one additional atmosphere.

Recent investigations, carried out by direct as well as by indirect methods, seem 
to agree in showing that the true value is somewhat less than this, viz., about 
— 0°'018 C.; so that water has its maximum density at 0° C. when subjected to about 
223 atmospheres. Thus, taking account of the result of § 14 above, we find that the 
maximum density point coincides with the freezing-point at — 2°'8 C. under an 
additional pressure of about 377 atmospheres, or (say) 2'5 tons weight per square 
inch.



CXXXI.] THERMODYNAMICS. 483

16. Motivity and Entropy, Dissipation of Energy.—The motivity of the quantity 
H of heat, in a body at temperature t, is

H (t - t0)/t,
where tQ is the lowest available temperature.

The entropy is expressed simply as
Hf, 

being independent of any limit of temperature.

If the heat pass, by conduction, to a body of temperature t' (lower than t, but 
higher than 4), the change of motivity (i.e., the dissipation of energy) is

which is. of course, loss; while the corresponding change of entropy is the gain

The numerical values of these quantities differ by the factor t0, so that, if we 
could have a condenser at absolute zero, there could be no dissipation of energy. 
But we see that Clausius s statement that the entropy of the universe tends to a 
maximum is practically merely another way of expressing Thomson’s earlier theory of 
the dissipation of energy.

The whole point of the matter may be summarised as follows. When heat is 
exchanged among a number of bodies, part of it being transformed by heat-engines 
into work, the work obtainable (i.e., the motivity) is

S(^)-4S(^/t).
The work obtained, however, is simply

Thus the waste, or amount needlessly dissipated, is
- 42 (H/t).

This must be essentially a positive quantity, except in the case when perfect engines 
have been employed in all the operations. In that case (unless indeed the un­
attainable condition 4 = 0 were fulfilled)

t (Hf) = 0, 
which is the general expression of reversibility.

17. Works on the Subject.—Carnot’s work has, as we have seen, been reprinted. 
The scattered papers of Rankine, Thomson, and Clausius have also been issued in 
collected forms. So have the experimental papers of Joule. The special treatises on 
Thermodynamics are very numerous; but that of Clerk-Maxwell (Theory of Heat), 
though in some respects rather formidable to a beginner, is as yet far superior to 
any of its rivals.
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CXXXIL

MACQUORN RANKINE.

[From a Memoir prefixed to Rankine's Scientific Papers, 1881.]

The life of a genuine scientific man is, from the common point of view, almost 
always uneventful. Engrossed with the paramount claims of inquiries raised high above 
the domain of mere human passions, he is with difficulty tempted to come forward 
in political discussions, even when they are of national importance; and he regards 
with surprise, if not with contempt, the petty municipal squabbles in which local 
notoriety is so eagerly sought. To him the discovery of a new law of nature, or 
even a new experimental fact, or the invention of a novel mathematical method, no 
matter who has been the first to reach it, is an event of an order altogether different 
from, and higher than, those which are so profusely chronicled in the newspapers. It 
is something true and good for ever, not a mere temporary outcome of craft or 
expediency. With few exceptions, such men pass through life unnoticed by, almost 
unknown to, the mass of even their educated countrymen. Yet it is they who, far 
more than any autocrats or statesmen, are really moulding the history of the times 
to come. Man has been left entirely to himself in the struggle for creature comforts, 
as well as for the higher appliances which advance civilization; and it is to science, 
and not to so-called statecraft, that he must look for such things. Science can and 
does provide the means, statecraft can but more or less judiciously promote, regulate, 
or forbid, their use or abuse. One is the lavish and utterly unselfish furnisher of 
material good, the other the too often churlish and ignorant dispenser of it. In the 
moral world their analogues are charity and the relieving officer! So much it is 
necessary to say for the sake of the general reader; to the world of science no 
apology need be made. In it Rankine’s was and is a well-known name.

It is high eulogy, but strictly correct, to say that Rankine holds a prominent 
place among the chief scientific men of the last half century. He was one of the 
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little group of thinkers to whom, after the wondrous Sadi Carnot, the world is 
indebted for the pure science of modern thermodynamics. Were this all, it would 
be undoubtedly much. But his services to applied science were relatively even 
greater. By his admirable teaching, his excellent text-books, and his original memoirs, 
he has done more than any other man of recent times for the advancement of 
British Scientific Engineering. He did not, indeed, himself design or construct gigantic 
structures; but he taught, or was the means of teaching, that invaluable class of 
men to whom the projectors of such works entrust the calculations on which their 
safety, as well as their efficiency, mainly depend. For, behind the great architect or 
engineer, and concealed by his portentous form, there is the real worker, without 
whom failure would be certain. The public knows but little of such men. Not every 
von Moltke has his services publicly acknowledged and rewarded by his Imperial 
employer! But he who makes possible the existence of such men confers lasting 
benefit on his country. And it is quite certain that Rankine accomplished the task.

* * *

In concluding the scientific part of this brief notice of a true man, we need 
scarcely point out to the reader how much of Rankine’s usefulness was due to steady 
and honest work. The unscientific are prone to imagine that talent (especially when, 
as in Rankine’s case, it rises to the level of genius) is necessarily rapid and off­
hand in producing its fruits. No greater mistake could be made. The most powerful 
intellects work slowly and patiently at a new subject. Such was the case with Newton, 
and so it is still. Rapid they may be, and in general are, in new applications of 
principles long since mastered; but it is only your pseudo-scientific man who forms 
his opinions at once on a new subject. This truth was preeminently realized in 
Rankine, who was prompt to reply when his knowledge was sufficient, but patient 
and reticent when he felt that more knowledge was necessary. With him thought 
was never divorced from work:—both were good of their kind:—the thought profound 
and thorough, the work a workman-like expression of the thought. Few, if any, 
practical engineers have contributed so much to abstract science, and in no case has 
scientific study been applied with more effect to practical engineering. Rankine’s name 
will ever hold a high place in the history of science, and will worthily be associated 
with those of the great men we have recently lost. And, when we think of who 
these were, how strangely does such a list:—including the names of Babbage, Boole, 
Brewster, Leslie Ellis, Forbes, Herschel, Rowan Hamilton, Clerk-Maxwell, Rankine, and 
others; though confined to physical or mathematical science alone:—contrast with the 
astonishing utterance of the Prime Minister of Great Britain and Ireland, to the effect 
that the present is by no means an age abounding in minds of the first order! Ten 
such men lost by this little country within the last dozen years or so—any one of 
whom would have made himself an enduring name had he lived in any preceding age, 
be it that of Hooke and Newton, or that of Cavendish and Watt! Nay more, even 
such losses as these have not extinguished the hopes of science amongst us. Every one 
of these great men has, by some mysterious influence of his genius, kindled the sacred 
thirst for new knowledge in younger but kindred spirits, many of whom will certainly 
rival, some even may excel, their teachers!



486 [ex XXIII.

CXXXIII.

ON THE TEACHING OF NATURAL PHILOSOPHY"'.

[Contemporary Review. January, 1878.]

At the very outset of our work two questions of great importance come pro­
minently forward. One of these, I have reason to conclude from long experience, is 
probably a puzzling one to a great many of you: the other is of paramount con­
sequence to us all. And both are of consequence not to us alone but to the whole 
country, in its present feverish state of longing for what it but vaguely understands 
and calls science-teaching. These questions are, What is Natural Philosophy? and, How 
is it to be taught?

A few words only, on the first question, must suffice for the present. The term 
Natural Philosophy was employed by Newton to describe the study of the powers of 
nature: the investigation of forces from the motions they produce, and the application 
of the results to the explanation of other phenomena. It is thus a subject to whose 
proper discussion mathematical methods are indispensable. The Principia commences 
with a clear and simple statement of the fundamental laws of motion, proceeds to 
develop their more immediate consequences by a powerful mathematical method of 
the author’s own creation, and extends them to the whole of what is now called 
Physical Astronomy. And in the Preface, Newton obviously hints his belief that in 
time a similar mode of explanation would be extended to the other phenomena of 
external nature.

In many departments this has been done to a remarkable extent during the two 
centuries which have elapsed since the publication of the Principia. In others, 
scarcely a single step of any considerable magnitude has been taken; and in con­
sequence, the boundary between that which is properly the subject of the natural

* Extended from Notes of the Introductory Lecture to the ordinary course of Natural Philosophy in Edinburgh 
University, October 31st, 1877.
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philosopher’s inquiries and that which is altogether beyond his province is at present 
entirely indefinite. There can be no doubt that, in many important respects, even life 
itself is dependent upon purely physical conditions. The physiologists have quite
recently seized, for their own inquiries, a great part of the natural philosopher’s
apparatus, and with it his methods of experimenting. But to say that even the very
lowest form of life, not to speak of its higher forms, still less of volition and conscious­
ness, can be fully explained on physical principles alone—i.e., by the mere relative 
motions and interactions of portions of inanimate matter, however refined and sublimated 
—is simply unscientific. There is absolutely nothing known in physical science which 
can lend the slightest support to such an idea. In fact, it follows at once from the Laws 
of Motion that a material system, left to itself, has a perfectly determined future, 
i.e., that upon its configuration and motion at any instant depend all its subsequent 
changes; so that its whole history, past and to come, is to be gathered from one almost 
instantaneous, if sufficiently comprehensive glance. In a purely material system there is 
thus necessarily nothing of the nature of a free agent. To suppose that life, even in its 
lowest form, is wholly material, involves therefore either a denial of the truth of 
Newton’s laws of motion, or an erroneous use of the term “matter.” Both are alike 
unscientific.

Though the sphere of our inquiries extends wherever matter is to be found, and 
is therefore coextensive with the physical universe itself, there are other things, not 
only without but within that universe, with which our science has absolutely no power 
to deal. In this room we simply recognize them, and pass on.

Modern extensions of a very general statement made by Newton enable us now to 
specify much more definitely than was possible in his time the range of physical 
science. We may now call it the Science of Matter and Energy. These are, as the 
whole work of the session will be designed to prove to you, the two real things in 
the physical universe; both unchangeable in amount, but the one consisting of parts 
which preserve their identity; while the other is manifested only in the act of trans­
formation, and though measurable cannot be identified. I do not at present enter on 
an exposition of the nature or laws of either; that exposition will come at the proper 
time; but the fact that so short and simple a definition is possible is extremely 
instructive, showing, as it unquestionably does, what very great advances physical 
science has made in recent times. The definition, in fact, is but little inferior in 
simplicity to two of those with which most of you are no doubt already to a certain 
extent familiar—that of Geometry as the Science of Pure Space, and of Algebra as the 
Science of Pure Time.

But, for to-day at least, our second question, viz., How is Natural Philosophy to be 
taught? is of more immediate importance. The answer, in an elementary class like this, 
must of course be—“popularly.” But this word has many senses, even in the present 
connection—one alone good, the others of variously graduated amounts of badness.

Let us begin with one or two of the bad ones. Th_e. subject is a very serious one 
for you, and therefore must be considered carefully, in spite of the celebrated dictum of 
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Terence, Obsequium amicos, veritas odium parit. (In other words, Flatter your audience 
and tickle their ears, if you seek to ingratiate yourself with them; tell them the 
truth, if you wish to raise enemies.) But science is one form of truth. When the 
surgeon is convinced that the knife is required, it becomes his duty to operate. And 
Shakspeare gives us the proper answer to the time-serving caution of Terence and 
Cicero in the well-known words, “ Let the galled jade wince.”

One of these wholly bad methods was recently very well put by a Saturday critic, 
as follows:—

“ The name of ‘ Popular Science ’ is, in itself, a doubtful and somewhat invidious one, being 
commonly taken to mean the superficial exposition of results by a speaker or writer who himself 
understands them imperfectly, to the intent that his hearers or readers may be able to talk about 
them without understanding them at all.”

Clerk-Maxwell had previously put it in a somewhat different form:—
“The forcible language and striking illustrations by which those who are past hope of even being 

beginners may be prevented from becoming conscious of intellectual exhaustion before the hour has 
elapsed.”

This, I need hardly say, is not in any sense science-teaching. It appears, however, 
that there is a great demand for it, more especially with audiences which seek amuse­
ment rather than instruction; and this demand of course is satisfied. Such an 
audience gets what it seeks, and, I may add, exactly what it deserves.

Not quite so monstrous as that just alluded to, yet far too common, is the 
essentially vague and highly ornamented style of so-called science-teaching. The 
objections to this method are of three kinds at least—each independently fatal.

First. It gives the hearer, if he have no previous acquaintance with Physics, an 
altogether erroneous impression of the intrinsic difficulty of the subject. He is exhorted, 
in grandiloquent flights of laboured earnestness, to exert his utmost stretch of intellect, 
that he may comprehend the great step in explanation which is next to be given ; and 
when, after this effort, the impression on his mind is seemingly quite inadequate, he 
begins to fancy that he has not understood at all—that there must be some pro­
found mystery in the words he has heard which has entirely escaped his utmost 
penetration. After a very few attempts he gives up in despair. How many a man has 
been driven away altogether, whose intellect might have largely contributed to the 
advance of Physics, merely by finding that he can make nothing of the pompous dicta 
of his teacher or text-book, except something so simple that he fancies it cannot possibly 
be what was meant 1

Second. It altogether spoils the student’s taste for the simple facts of true science. 
And it does so just as certainly as an undiluted course of negro melodies or music-hall 
comic songs is destructive of all relish for the true art of Mozart or Haydn, or as 
sensation novels render Scott’s highest fancies tame by contrast. And,

“....... as if increase of appetite had grown
By what it fed on,...... ”
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the action on the listener is made to react on the teacher, and he is called upon for 
further and further outrages on the simplicity of science. Sauces and spices not only 
impair the digestion, they create a craving for other stimulants of ever-increasing 
pungency and deleteriousness.

But, thirdly. No one having a true appreciation of the admirable simplicity of 
science could be guilty of these outrages. To attempt to introduce into science the 
meretricious adjuncts of “word-painting,” &c., can only be the work of dabblers—not of 
scientific men, just as

“ To gild refined gold, to paint the lily,
To throw a perfume on the violet,
To smooth the ice, or add another hue 
Unto the rainbow ; or with taper light 
To seek the beauteous eye of heaven to garnish, 
Is wasteful and ridiculous excess.”

None could attempt such a work who had the smallest knowledge of the true beauty of 
nature. Did he know it, he would feel how utterly inadequate, as well as uncalled- 
for, were all his greatest efforts. For, again in Shakspeare’s words, such a course

“ Makes sound opinion sick, and truth suspected, 
For putting on so new a fashioned robe.”

“In the great majority of ‘popular’ scientific works the author, as a rule, has 
not an exact knowledge of his subject, and does his best to avoid committing him­
self, among difficulties which he must at least try to appear to explain. On such 
occasions he usually has recourse to a flood of vague generalities, than which nothing 
can be conceived more pernicious to the really intelligent student. In science ‘ fine 
language ’ is entirely out of place; the stern truth, which is its only basis, requires 
not merely that we should never disguise a difficulty, but, on the contrary, that we 
should call special attention to it, as a probable source of valuable information. If you 
meet with an author who, like the cuttle-fish, endeavours to escape from a difficult 
position by darkening all around him with an inky cloud of verbiage, close the book at 
once and seek information elsewhere.”

But I must come back to the really important point, which is this:—

True science is in itself simple, and should be explained in as simple and definite 
language as possible.

Word-painting finds some of its most appropriate subjects when employed to deal 
with human snobbery or human vice—where the depraved tastes and wills of mortals 
are concerned—not the simple and immutable truths of science. Battles, murders, 
executions; political, legal, and sectarian squabbles; gossip, ostentation, toadyism, and 
such like, are of its proper subjects. Not that the word-painter need be himself 
necessarily snobbish or vicious—far from it. But it is here, as our best poets and 
satirists have shown, that his truest field is to be found. Science sits enthroned, like 
the gods of Epicurus, far above the influence of mere human passions, be they 
virtuous or evil, and must be treated by an entirely different code of rules. And a
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great deal of the very shallowest of the pseudo-science of the present day probably 
owes its origin to the habitual use, with reference to physical phenomena, of terms 
or synonyms whose derivation shows them to have reasonable application to human 
beings and their actions alone—not at all to matter and energy. In dealing with 
such pseudo-science it is, of course, permissible to me, even after what I have said, 
to use word-painting as far as may be thought necessary.

The Pygmalions of modern days do not require to beseech Aphroditd to animate 
the ivory for them. Like the savage with his Totem, they have themselves already 
attributed life to it. “It comes,” as v. Helmholtz says, “to the same thing as 
Schopenhauer’s metaphysics. The stars are to love and hate one another, feel pleasure 
and displeasure, and to try to move in a way corresponding to these feelings.” The 
latest phase of this peculiar non-science tells us that all matter is alive ; or at least 
that it contains the “ promise and potency ” (whatever these may be) “ of all terrestrial 
life.” All this probably originated in the very simple manner already hinted at; viz., 
in the confusion of terms constructed for application to thinking beings only, with 
others applicable only to brute matter, and a blind following of this confusion to its 
necessarily preposterous consequences. So much for the attempts to introduce into 
science an element altogether incompatible with the fundamental conditions of its 
existence.

When simple and definite language cannot be employed, it is solely on account 
of our ignorance. Ignorance may of course be either unavoidable or inexcusable.

It is unavoidable only when knowledge is not to be had. But that of which 
there is no knowledge is not yet part of science. All we can do with it is simply to 
confess our ignorance and seek for information.

As an excellent illustration of this we may take two very common phenomena—a 
rainbow and an aurora—the one, to a certain extent at least, thoroughly understood; 
the other scarcely understood in almost any particular. Yet it is possible that, in our 
latitudes at least, we see the one nearly as often as the other. For, though there 
are probably fewer auroras to be seen than rainbows, the one phenomenon is in general 
much more widely seen than the other. A rainbow is usually a mere local pheno­
menon, depending on a rain-cloud of moderate extent; while an aurora, when it occurs, 
may extend over a whole terrestrial hemisphere. Just like total eclipses, lunar and 
solar. Wherever the moon can be seen, the lunar eclipse is visible, and to all alike. 
But a total solar eclipse is usually visible from a mere strip of the earth—some fifty 
miles or so in breadth.

The branch of natural philosophy which is called Geometrical Optics is based upon 
three experimental facts or laws, which are assumed as exactly true, and as repre­
senting the whole truth—the rectilinear propagation of light in any one uniform medium, 
and the laws of its reflexion and refraction at the common surface of two such media; 
and as a science it is nothing more than the developed mathematical consequences of 
these three postulates.
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Hence, if these laws were rigorously true, and represented all the truth, nothing 
but mathematical investigation based on them would be required for the complete 
development of the phenomena of the rainbow—except the additional postulate, also 
derived from experiment, that falling drops of water assume an exact spherical form 

■—and, as data for numerical calculation, the experimentally-determined refractive index 
for each ray of light at the common surface of air and water.

Thus for instance we can tell why the rainbow has the form of a portion of a 
circle surrounding the point opposite to the sun; why it is red on the outer edge; 
what is the order of the other colours, and why they are much less pure than the 
red; why the whole of the background enclosed within it is brighter than that just 
outside; and so on. Also why there is a second (also circular) rainbow; why it is 
concentric with the first; and why its colours are arranged in the reverse order, &c.

But, so long at least as we keep to Geometrical optics, we cannot explain the 
spurious bows which are usually seen, like ripples, within the primary and outside the 
second rainbow; nor why the light of both bows is polarized, and so forth. We must 
apply to a higher branch of our science; and we find that Physical Optics, which 
gives the results to which those of geometrical optics are only approximations, enables us 
to supply the explanation of these phenomena also.

When we turn to the aurora we find nothing so definite to explain. This may, 
to some extent at least, account for our present ignorance. We remark, no doubt, a 
general relation between the direction of the earth’s magnetic force and that of the 
streamers: but their appearance is capricious and variable in the extreme. Usually 
they have a pale green colour, which the spectroscope shows to be due to homogeneous 
light; but in very fine displays they are sometimes blood-red, sometimes blue. Auroral 
arches give sometimes a sensibly continuous spectrum; sometimes a single bright line. 
We can imitate many of the phenomena by passing electric discharges through rarefied 
gases; and we find that the streamers so produced are influenced by magnetic force. But 
we do not yet know for certain the source of the discharges which produce the aurora, 
nor do we even know what substance it is to whose incandescence its light is due. We 
find by a statistical method that auroras, like cyclones, are most numerous when there 
are most spots on the sun; but the connection between these phenomena is not yet 
known. Here, in fact, we are only beginning to understand, and can but confess our 
ignorance.

But do not imagine that there is nothing about the rainbow which we cannot 
explain, even of that which is seen at once by untrained observers. All the phenomena 
connected with it which we can explain are mathematical deductions from observed 
facts which are assumed in the investigation. But these facts are, in the main, them­
selves not yet explained. Just as there are many exceedingly expert calculators who 
habitually and usefully employ logarithmic tables without having the least idea of what 
a logarithm really is, or of the manner in which the tables themselves were originally 
calculated ; so the natural philosopher uses the observed facts of refraction and reflection 
without having as yet anything better than guesses as to their possible proximate 
cause. And it is so throughout our whole subject: assuming one result, we can prove 
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that the others must follow. In this direction great advances have been made, and 
every extension of mathematics renders more of such deductions possible. But when we 
try to reverse the process, and thus to explain our hitherto assumed results, we are met 
by difficulties of a very different order.

The subject of Physical Astronomy, to which I have already alluded, gives at once 
one of the most striking and one of the most easily intelligible illustrations of this point. 
Given the law of gravitation, the masses of the sun and planets, and their relative 
positions and motions at any one instant,—the investigation of their future motions, until 
new disturbing causes come in, is entirely within the power of the mathematician. But 
how shall we account for gravitation ? This is a question of an entirely different 
nature from the other, and but one even plausible attempt to answer it has yet been 
made.

But to resume. The digression I have just made had for its object to show you 
how closely full knowledge and absolute ignorance may be and are associated in many 
parts of our subject—absolute command of the necessary consequences of a phenomenon, 
entire ignorance of its actual nature or cause.

And in every branch of physics the student ought to be most carefully instructed 
about matters of this kind. A comparatively small amount of mathematical training 
will often be found sufficient to enable him to trace the consequences of a known truth 
to a considerable distance; and no such training is necessary to enable him to see (pro­
vided it be properly presented to him) the boundary between our knowledge and our 
ignorance—at least when that ignorance is not directly dependent upon the inadequacy 
of our deductive powers.

The work of Lucretius is perhaps the only really successful attempt at scientific 
poetry. And it is so because it was written before there was any true physical science. 
The methods throughout employed are entirely those of d priori reasoning, and there­
fore worse than worthless, altogether misleading. Scientific poetry, using both words 
in their highest sense, is now impossible. The two things are in their very nature 
antagonistic. A scientific man may occasionally be a poet also; but he has then two 
distinct and almost mutually incompatible natures; and, when he writes poetry, he 
puts science aside. But, on the other hand, when he writes science, he puts poetry and 
all its devices aside. Mark this well! A poet may, possibly with great effect on the 
unthinking multitude, write of

:....... the huger orbs which wheel
In circuits vast throughout the wide abyss 
Of unimagined Chaos—till they reach 
/Ethereal splendour....... ”

(The word “unimagined” may puzzle the reader, but it probably alludes to Ovid’s 
expression “ sine imagine.” For this sort of thing is nothing if not classical! The 
contempt in which “ scholars ” even now hold mere “ physicists ” is proverbial. And 
they claim the right of using at will new words of this kind, in whose company 
even the “tremendous empyrean” would, perhaps, not be quite out of place.)
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But, whether this sort of thing be poetry or not, it is in no sense science. “Huge,” 
and “vast,” and such-like (for which, if the rhythm permit, you may substitute their 
similars, “Titanic,” “gigantic,” &c.), good honest English though they be, are utterly 
unscientific words. In science we restrict ourselves to small and great, and these amply 
suffice for all our wants. But even these terms are limited with us to a mere relative 
sense; and it can only be through ignorance or forgetfulness of this that more sonorous 
terms are employed. The size of every finite object depends entirely upon the unit in 
terms of which you measure it. There is nothing absolutely great but the Infinite.

A few moments’ reflection will convince you of the truth of what I have just said. 
Let us only go by easily comprehensible stages from one (so-called) extreme to the 
other. Begin with the smallest thing you can see, and compare it with the greatest. 
I suppose you have all seen a good barometer. The vernier attached to such an 
instrument is usually read to thousandths of an inch, but it sometimes leaves you in 
doubt which of two such divisions to choose. This gives the limit of vision with the 
unaided eye. Let us therefore begin with an object whose size is about l-2000th of 
an inch. Let us choose as our scale of relative magnitude 1 to 250,000 or there­
abouts. It is nearly the proportion in which each of you individually stands to the 
whole population of Edinburgh. (I am not attempting anything beyond the rudest 
illustration, because that will amply suffice for my present purpose.) Well: 250,000 times 
the diameter of our minimum visibile gives us a length of ten feet or so—three or four 
paces. Increased again in about the same ratio, it becomes more than 400 miles, some­
where- about the distance from Edinburgh to London. Perform the operation again, 
and you get (approximately enough for our purpose) the sun’s distance from the earth. 
Operate once more, and you .have got beyond the nearest fixed star. Another such 
operation would give a distance far beyond that of anything we can ever hope to 
see. Yet you have reached it by repeating, at most five times, upon the smallest 
thing you can see, an operation in itself not very difficult to imagine. Now as there is 
absolutely nothing known to science which can preclude us from carrying this process 
farther, so there is absolutely no reason why we may not in thought reverse it, and thus 
go back from the smallest visible thing to various successive orders of smallness. And 
the first of these that we thus reach has already been pointed to by science as at 
least a rough approximation to that coarse-grainedness which we know to exist (though 
we shall never be able to see it) even in the most homogeneous substances, such as glass 
and water. For several trains of reasoning, entirely independent of one another, but 
based upon experimental facts, enable us to say with certainty that all matter becomes 
heterogeneous (in some as yet quite unknown way) when we consider portions of it 
whose dimensions are somewhere about 1-500,000,000th of an inch. We have, as yet, 
absolutely no information beyond this, save that, if there be ultimate atoms, they are at 
least considerably more minute still.

Next comes the very important question—How far is experimental illustration 
necessary and usefill ? Here we find excessively wide divergence, alike in theory and 
in practice.

In some lecture-theatres, experiment is everything; in others, the exhibition of 
gorgeous displays illustrative of nothing in particular is said occasionally to alternate 



494 ON THE TEACHING OF NATURAL PHILOSOPHY. [cxxxm.

with real or imagined (but equally sensational) danger to the audience, from which they 
are preserved (or supposed to be preserved) only by the extraordinary presence of mind 
of the presiding performers—a modern resuscitation of the ancient after-dinner amuse­
ment of tight-rope dancing, high above the heads of the banqueters, where each had 
thus a very genuine, if selfish, interest in the nerve and steadiness of the artists.

Contrasted in the most direct manner with these, is the dictum not long ago laid 
down:—

“ It may be said that the fact makes a stronger impression on the boy through the medium 
of his sight—that he believes it the more confidently. I say that this ought not to be the case. 
If he does not believe the statements of his tutor—probably a clergyman of mature knowledge, 
recognized ability, and blameless character—his suspicion is irrational, and manifests a want of the 
power of appreciating evidence—a want fatal to his success in that branch of science which he is 
supposed to be cultivating.”

Between such extremes many courses may be traced. But it is better to dismiss 
the consideration of both, simply on the ground that they are extremes, and therefore 
alike absurd.

Many facts cannot be made thoroughly intelligible without experiment; many others 
require no illustration whatever, except what can be best given by a few chalk-lines on 
a blackboard. To teach an essentially experimental science without illustrative experi­
ments may conceivably be possible in the abstract, but certainly not with professors and 
students such as are to be found on this little planet.

And, on the other hand, you must all remember that we meet here to discuss 
science, and science alone. A University class-room is not a place of public amuse­
ment, with its pantomime displays of red and blue fire, its tricks whether of prestigiation 
or of prestidigitation, or its stump-oratory. The best and greatest experimenter who 
ever lived used none of these poor devices to win cheap applause. His language (except 
perhaps when non-experimenting pundits pressed upon him their fearful Greek names for 
his splendid discoveries) was ever the very simplest that could be used: his experiments, 
whether brilliant or commonplace in the eyes of the mere sight-seer, were chosen solely 
with the object of thoroughly explaining his subject; and his whole bearing was 
impressed with the one paramount and solemn feeling of duty, alike to his audience and 
to science. Long ages may pass before his equal, or even his rival, can appear; but the 
great example he has left should be imitated by us all as closely as possible.

Nothing is easier in extempore speaking, as I dare say many of you know by 
trial, than what is happily called “piling up the agony.” For, as has been well said,

“....... men there be that make
Parade of fluency, and deftly play
With points of speech as jugglers toss their balls ; 
A tinkling crew, from whose light-squandered wit 
No seed of virtue grows.”

Every one who has a little self-confidence and a little readiness can manage it without 
trouble. But it is so because in such speaking there is no necessity for precision in 
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the use of words, and no objection to any epithet whatever, even if it be altogether 
misplaced. But the essence of all such discourse is necessarily fancy, and not fact. Here, 
during the serious work of the session, we are tied down almost exclusively to facts. 
Fancies must appear occasionally; but we admit them only in the carefully-guarded 
form of a reference to old opinions, or to a “ good working hypothesis.” Still, facts 
are not necessarily dry: not even if they be mere statistics. All depends on the way 
in which they are put. One of the most amusing of the many clever songs, written 
and sung by the late Professor Rankine in his moments of relaxation, was an almost 
literal transcript of a prosaic statistical description of a little Irish town, taken from 
a gazetteer! He was a truly original man of science, and therefore exact in his state­
ments; but he could be at once both exact and interesting. And I believe that the 
intrinsic beauty of science is such that it cannot suffer in the minds of a really 
intelligent audience, however poor be the oratorical powers of its expounder, provided 
only he can state its facts with clearness. Oratory is essentially art, and therefore 
essentially not science.

There is nothing false in the theory, at least, of what are called Chinese copies. 
If it could be fully carried out, the results would be as good as the original—in 
fact, undistinguishable from it. But it is solely because we cannot have the theory 
carried out in perfection that true artists are forced to slur over details, and to give 
“ broad effects ” as they call them. The members of the Pre-Raphaelite school are 
thoroughly right in one part at least of their system: unfortunately it is completely 
unrealizable in practice. But the “ broad effects ” of which I have spoken are true 
art, though perhaps in a somewhat modified sense of the word (which, not being 
a scientific one, has many shades of meaning). To introduce these “ broad effects ” 
into science may be artful, but it is certainly unscientific. In so-called “ popular 
science,” if anywhere, Ars est celare inscientiam. The “ artful dodge ” is to conceal 
want of knowledge. Vague explanations, however artful, no more resemble true science 
than do even the highest flights of the imagination, whether in Ivanhoe or Quentin 
Durward, Knickerbocker’s New York or Macaulay’s England, resemble history. And when 
the explanation is bombastic as well as vague, its type is the same as that of the well- 
known speech of Sergeant Buzfuz.

One ludicrous feature of the “ high-falutin ” style is that if you adopt it you throw 
away all your most formidable ammunition on the smaller game, and have nothing 
proportionate left for the larger. It is as if you used a solid shot from an 81-ton 
gun upon a single skirmisher! As I have already said, you waste your grandest terms, 
such as huge, vast, enormous, tremendous, &c., on your mere millions or billions; and 
then what is left for the poor trillions ? The true lesson to be learned from this is, 
that such terms are altogether inadmissible in science.

But even if we could suppose a speaker to use these magnificent words as a genuine 
description of the impression made on himself by certain phenomena, you must remember 
that he is describing not what is known of the objective fact (which, except occasionally 
from a biographic point of view, is what the listener really wants), but the more or less 
inadequate subjective impression which it has produced, or which he desires you to think 
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it has produced, on “ what he is pleased to call his mind.” Whether it be his own 
mind, or that of some imaginary individual, matters not. To do this, except perhaps 
when lecturing on psychology, is to be unscientific. True scientific teaching, I cannot 
too often repeat, requires that the facts and their necessary consequences alone should 
be stated (and illustrated if required) as simply as possible. The impression they are 
to produce on the mind of the reader, or hearer, is then to be left entirely to himself. 
No one has any right to suppose, much less to take for granted, that his own notions, 
whether they be “so-called poetic instincts” (to use the lowest term of contempt) or 
half-comprehended and imperfectly expressed feelings of wonder, admiration, or awe, are 
either more true to fact or more sound in foundation than those of the least scientific 
among his readers or his audience. When he does so he resembles a mere leader of a 
claque. * * * If your minds cannot relish simple food, they are not in that healthy 
state which is required for the study of science. Healthy mental appetite needs only 
hunger-sauce. That it always has in plenty, and repletion is impossible.

But you must remember that language cannot be simple unless it be definite; 
though sometimes, from the very nature of the case, it may be very difficult to under­
stand, even when none but the simplest terms are used. Multiple meanings for technical 
words are totally foreign to the spirit of true science. When an altogether new idea 
has to be expressed, a new word must be coined for it. None but a blockhead could 
object to a new word for a new idea. And the habitual use of non-scientific words in 
the teaching of science betrays ignorance, or (at the very least) wilful indefiniteness.

Do not fancy, however, that you will have very many new words to learn. A month 
of Botany or of Entomology, as these are too often taught, will introduce you to a 
hundredfold as many new and strange terms as you will require in the whole course of 
natural philosophy; and, among them, to many words of a far more “ difficult com­
plexion ” than any with which, solely for the sake of definiteness, we find ourselves 
constrained to deal.

But you will easily reconcile yourselves to the necessity for new terms if you bear 
in mind that these not only secure to us that definiteness without which science is 
impossible, but at the same time enable us to get rid of an enormous number of 
wholly absurd stock-phrases which you find in almost every journal you take up, 
wherever at least common physical phenomena are referred to. When we are told 
that a building was “struck by the electric fluid” we may have some difficulty in 
understanding the process; but we cannot be at all surprised to learn that it was 
immediately thereafter “ seized upon by the devouring element, which raged unchecked 
till the whole was reduced to ashes.” I have no fault to find with the penny-a-liner 
who writes such things as these : it is all directly in the way of his business, and 
he has been trained to it. Perhaps his graphic descriptions may occasionally rise even 
to poetry. But when I meet with anything like this,—and there are but too many 
works, professedly on natural philosophy, which are full of such things,—I know that 
I am not dealing with science.

A wild and plaintive wail for definiteness often comes from those writers and 
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lecturers who are habitually the most vague. A few crocodile tears are shed, appear­
ances are preserved, and they plunge at once into greater mistiness of verbosity than 
before.

Considering the actual state of the great majority at least of our schools and our 
elementary text-books, I should prefer that you came here completely untaught in 
physical science. You would then have nothing to unlearn. This is an absolutely 
incalculable gain. Unlearning is by far the hardest task that was ever imposed on 
a student, or on any one else. And it is also one of those altogether avoidable tasks 
which, when we have allowed them to become necessary, irritate us as much as does 
a perfectly unprofitable one—such as the prison crank or shot-drill. And in this lies 
by far the greatest responsibility of all writers and teachers. Merely to fail in giving 
instruction is bad enough, but to give false information can be the work only of utter 
ignorance or of carelessness, amounting, so far as its effects go, almost to diabolical 
wickedness.

Every one of you who has habitually made use of his opportunities of observation 
must have already seen a greal deal which it will be my duty to help him to under­
stand. But I should prefer, if possible, to have the entire guidance of him in helping 
him to understand it. And I should commence by warning him in the most formal 
manner against the study of books of an essentially unscientific character. By all 
means let him read fiction and romance as a relaxation from severer studies; but let 
the fiction be devoted to its legitimate object, human will and human action; don’t 
let it tamper with the truths of science. From the Arabian Nights, through Don 
Quixote, to Scott, the student has an ample field of really profitable reading of this 
kind; but when he wishes to study, let him carefully eschew the unprofitable, or 
rather pernicious, species of literary fiction which is commonly called “ popular 
science.”

As I have already said, in this elementary class you will require very little 
mathematical knowledge, but such knowledge is in itself one of those wholly good 
things of which no one can ever have too much. And, moreover, it is one of the 
few things which it is not very easy to teach badly. A really good student will learn 
mathematics almost in spite of the badness of his teaching. No pompous generalities 
can gloss over an incorrect demonstration; at least in the eyes of any one competent 
to understand a correct one. Can it be on this account that there are so many more 
aspirants to the teaching of physics than to that of the higher mathematics ? If so, 
it is a very serious matter for the progress of science in this country; as bad, at 
least, as was the case in those old days when it was supposed that a man who had 
notoriously failed in everything else must have been designed by nature for the vocation 
of schoolmaster; a truly wonderful application of teleology.

But even this queer kind of Dominie was not so strange a monstrosity as the 
modern manikins of paper science, who are always thrusting their crude notions on 
the world; the anatomists who have never dissected, the astronomers who have never 
used a telescope, or the geologists who have never carried a hammer! The old 
metaphysical pretenders to science had at least some small excuse for their conduct in

T. II. 63 
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the fact that true science was all but unknown in the days when they chiefly flourished, 
and when their d priori dogmatism was too generally looked upon as science. But 
that singular race is now well-nigh extinct, and in their place have come the paper­
scientists (the barbarous word suits them exactly)—those who, with a strange mixture 
of half-apprehended fact and thoroughly appretiated nonsense, pour out continuous 
floods of information of the most self-contradictory character. Such writers loudly claim 
the honours of discovery for any little chance remark of theirs which research may 
happen ultimately to substantiate, but keep quietly in the background the mass of 
unreason in which it was originally enveloped. This species may be compared to midges, 
perhaps occasionally to mosquitos, continually pestering men of science to an extent 
altogether disproportionate to its own importance in the scale of being. Now and then 
it buzzes shrilly enough to attract the attention of the great sound-hearted, but un­
reasoning because non-scientific, public which, when it does interfere with scientific 
matters, can hardly fail to make a mess of them.

Think, for a moment, of the late vivisection crusade or of the anti-vaccinators. What 
absolute fiends in human form were not the whole race of really scientific medical men 
made out to be, at least in the less cautious of these heated denunciations ? How 
many camels are unconsciously swallowed while these gnats are being so carefully strained 
out, is obvious to all who can take a calm, and therefore a not necessarily unreasonable, 
view of the matter.

But the victims of such people are not in scientific ranks alone. Every man who 
occupies a prominent position of any kind is considered as a fit subject for their attacks. 
By private letters and public appeals, gratuitous advice and remonstrance are perpetually 
intruded upon him. If he succeed in anything, it is of course because these unsought 
hints were taken: if he fail, it is because they were contemptuously left unheeded!

Enough of this necessary but unpleasant digression. I know that it is at least quite 
as easy to understand the most recondite mathematics as to follow the highest of 
genuine physical reasoning; and therefore, when I find apparently profound physical 
speculation associated with incapacity for the higher mathematics, I feel convinced that 
the profundity cannot be real. One very necessary remark, however, must be made 
here: not in qualification, but in explanation, of this statement. One of the greatest 
of physical reasoners, Faraday, professed, as most of you are aware, to know very little 
of mathematics. But in fact he was merely unacquainted with the technical use of 
symbols. His modes of regarding physical problems were of the highest order of mathe­
matics. Many of the very best things in the recent great works on Electricity by 
Clerk-Maxwell and Sir William Thomson are (as the authors cheerfully acknowledge) 
little more than well-executed translations of Faraday’s conceptions into the conventional 
language of the higher analysis.

I hope that the time is not far off when no one who is not (at least in the same 
sense as Faraday) a genuine mathematician, however he may be otherwise qualified, will 
be looked upon as even a possible candidate for a chair of Natural Philosophy in any of 
our Universities. Of course such a danger would be out of the question if we were 
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to constantly bear in mind the sense in which Newton understood the term Natural 
Philosophy. There is nothing so well fitted as mathematics “ to take the nonsense 
out of a man,” as it is popularly phrased. No doubt a man may be an excellent mathe­
matician, and yet have absolutely no knowledge of physics; but he cannot possibly know 
physics as it is unless he be a mathematician. Much of the most vaunted laboratory 
work is not nearly of so high an order of skilled labour as the every-day duty of a good 
telegraph clerk, especially if he be in charge of a syphon-recorder. And many an 
elaborate memoir which fills half a volume of the transactions of some learned society 
is essentially as unsightly and inconvenient an object as the mounds of valueless dross 
which encumber the access to a mine, and destroy what otherwise might have been an 
expanse of fruitful soil.

There are many ways in which these mounds may grow. The miner may be totally 
ignorant of geology, and may thus have bored and excavated in a locality which he 
ought to have known would furnish nothing. Or he may have, by chance or by the 
advice of knowing friends, hit upon a really good locality. Even then there are many 
modes of failure, two of which are very common. He may fail to recognize the ore 
when he has got it; and so it goes at once to the refuse-heap, possibly to be worked 
up again long after by somebody who has a little more mineralogical knowledge—as 
in the recent case of the mines of Laurium. Here he may be useful—at second-hand. 
Or, if it be fossils or crystals, for instance, for which he is seeking, his procedure may 
be so rough as to smash them irreparably in the act of mining. This is dog in the 
manger with a vengeance. But, anyhow, he generally manages to disgust every other 
digger with the particular locality which he has turned upside down; and thus 
exercises a real, though essentially negative, influence on the progress of mining.

The parallel here hinted at is a very apt one, and can be traced much farther. 
For there are other peculiarities in the modes of working adopted by some miners, 
which have their exact counterparts in many so-called scientific inquiries; but, for the 
present, we must leave them unnoticed.

There is but one way of being scientific: but the number of ways of being 
unscientific is infinite, and the temptations alluring us to them are numerous and 
strong. Indolence is the most innocent in appearance, but in fact probably the most 
insidious and dangerous of all. By this I mean of course not mere idleness, but that 
easily acquired and fatal habit of stopping just short of the final necessary step in 
each explanation. Faraday long ago pointed this out in his discourse on Mental 
Inertia. Many things which are excessively simple when thoroughly understood are 
by no means easy to acquire; and the student too often contents himself with that 
half learning which, though it costs considerable pains, leaves no permanent impression 
on the mind, while “one struggle more” would have made the subject his own for 
ever after.

Science, like all other learning, can be reached only by continued exertion. And, 
even when we have done our utmost, we always find that the best we have managed 
to achieve has been merely to avoid straying very far from the one true path;
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For, though science is in itself essentially simple, and is ever best expressed in 
the simplest terms, it is my duty to warn you in the most formal manner that the 
study of it is beset with difficulties, many of which cannot but constitute real obstacles 
in the way even of the mere beginner. And this forms another of the fatal objections 
to the school-teaching of physical science. For there is as yet absolutely no known 
road to science except through or over these obstacles, and a certain amount of 
maturity of mind is required to overcome them.

If any one should deny this, you may at once conclude either that his mental 
powers are of a considerably higher order than those of Newton (who attributed all 
his success to close and patient study) or, what is intrinsically at least somewhat more 
probable, that he has not yet traversed the true path himself. But it would be a 
mere exercise of unprofitable casuistry to inquire which is the less untrustworthy guide, 
he who affirms that the whole road is' easy, or he who is continually pointing out 
fancied difficulties.

Here, as in everything to which the human mind or hand can be applied, nothing 
of value is to be gained without effort; and all that your teacher can possibly do for 
you is to endeavour, so far as in him lies, to make sure that your individual efforts 
shall be properly directed, and that as little energy as possible shall be wasted by 
any of you in a necessarily unprofitable direction.
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