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PRZEDMOWA TŁUMACZA

Przymusowym wywczasom w rosyjskiej niewoli zawdzięczam poznanie dzieł prof. S. P. Ti- 
moszenki, którego wybitne prace na polu mechaniki technicznej były mi przedtem znane z pu­
blikacji francuskich i niemieckich. Jego „Kurs soprotiwlenja małerjałow" odznacza się tak 
cennemi zaletami, że nawet w innych warunkach nie zawahałbym się w wyborze tej właśnie książki 
dla jej przyswojenia naszej literaturze. Niewiele bowiem możnaby przytoczyć dzieł z tej dziedziny, 
któreby, zachowując techniczny charakter i przystępność wykładu, osiągnęły równie wysoki poziom 
naukowy. Nawet bardzo poczytne i przez techników różnych narodowości cenione książki z tego 
zakresu nie są wolne od licznych nieścisłości, a przytem powtarzają bezkrytycznie niektóre poglądy 
dawnych autorytetów, uznane w nauce za błędne. Takich usterek nie znalazłem w kursie prof. 
Timoszenki, mimo całe bogactwo i obfitość treści.

W przekładzie opuściłem rozdział VII (§§ 48—53) traktujący o momentach bezwładności figur 
płaskich, albowiem te rzeczy można znaleźć w każdej prawie książce poświęconej mechanice ogól­
nej lub statyce wykreślnej. Natomiast dodałem niektóre uzupełnienia na podstawie własnych prac, 
przeważnie nieznanych autorowi oryginału. Te dodatki (lub też drobne zmiany) odróżniłem w ręko­
pisie ujęciem w klamry.

Mam nadzieję, że książka uczyni zadość piekącej potrzebie polskich techników, albowiem od 
„Wykładu wytrzymałości materjałów" Wł. Klugera z r. 1875 nie posiadamy nowszego 
kompletnego kursu politechnicznego dla tego tak niesłychanie ważnego działu mechaniki techni­
cznej (Prof. L. Karasiński w Warszawie zdążył niestety wydać tylko pierwszą część swej inte­
resującej „Wytrzymałości tworzyw").

Szczerą podziękę winienem prof. S. P. Timoszence za prawdziwie koleżeńskie i bezintere­
sowne poparcie mej pracy w trudnych warunkach jeńca wojennego, a Ministerstwu handlu 
i przemysłu, oraz Ministerstwu robót publicznych za wydatną pomoc materjalną, która 
umożliwiła wydanie książki przy obecnem naszem przesileniu gospodarczem. Wyrazy wdzięczności 
należą się także „Technicznemu Towarzystwu wydawniczemu" w Warszawie, które 
zrezygnowało wspaniałomyślnie z swych praw do rękopisu, nabytych jeszcze w r. 1917 w Moskwie.

We Lwowie w styczniu 1921 r.

M. T. HUBER
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WSTĘP

Przy projektowaniu budowli i maszyn gra nader ważną rolę kwestja dobrania wymiarów dla 
oddzielnych części, czyli elementów konstrukcyjnych, Aby tę kwestję rozstrzygnąć, należy przede- 
wszystkiem określić siły zewnętrzne, które będą działać na konstrukcję, a następnie znaleźć z nich 
siły wewnętrzne, powstające w poszczególnych elementach. Dla zapewnienia bezpieczeństwa i trwa­
łości konstrukcji, trzeba obrać wymiary poszczególnych części tak, ażeby siły wewnętrzne nie 
przekraczały pewnych norm, ustanowionych dla rozmaitych materjałów konstrukcyjnych na pod­
stawie doświadczalnego badania ich wytrzymałości.

Ogół metod analitycznych, służących do wyznaczenia sił wewnętrznych, tudzież sposobów, 
któremi posługujemy się przy doświadczalnem badaniu wytrzymałości materjałów konstrukcyjnych, 
stanowi przedmiot nauki o wytrzymałości.

W wykładzie tego przedmiotu można wysuwać na pierwszy plan bądź to część teoretyczną, 
bądź też doświadczalną, zależnie od celu, jaki mamy przed sobą, atoli w ogólnym rozwoju nauki 
okazuje się, że obiedwie części są zarówno ważne. Teoretyczne spekulacje mogą się okazać bez- 
płodnemi, o ile się nie opierają na doświadczeniach. Tak samo i oddzielne doświadczenia bez teore­
tycznego uogólnienia nie wystarczają do wyprowadzenia prawideł potrzebnych do racjonalnego 
obliczenia i nie posłużą do dalszego rozwoju nauki.

Ścisły związek między rozlicznemi działami techniki konstrukcyjnej a nauką o wytrzymałości, 
zapewniający tej nauce coraz to nowe zakresy zastosowania i wprowadzający w życie racjonalne 
metody obliczeń, powstał dopiero niedawno łącznie z olbrzymim rozwojem spółczesnej techniki. 
Dawni inżynierowie i architekci obchodzili się bez obliczeń. Przy obiorze wymiarów szli po omacku, 
drogą czystej empirji. Nowe budowle były zwykle kopjami dawniejszych. Typy budowli zmieniały 
powoli swój wygląd, a same budowle były niejako objektami doświadczalnemi. Skoro budowla no­
wego typu okazała się trwałą, to służyła za wzór dla następnych. Kwestja ekonomji nie grała szcze­
gólnej roli i dlatego potrzebną trwałość zabezpieczano nadmiernem powiększaniem wymiarów. Da­
wano zbyt grube ściany, stawiano potężne kolumny i słupy, nie licząc się z ilością spotrzebowa- 
nych materjałów budowlanych, z ilością ludzkiej pracy i z czasem potrzebnym do wzniesienia 
budowli.

Pierwsze naukowe prawidła, które się stały początkiem nauki o wytrzymałości, pojawiły się 
w pierwszej połowie XVII-go wieku. Sławny Galileusz zwrócił uwagę na to, że mechanika ciał 
sztywnych nie wystarcza do rozwiązania kwestji wytrzymałości, że należy pójść dalej i uwzględnić 
fizyczne własności materjałów, ich wytrzymałość i zdolność do pewnej zmiany kształtu pod wpły­
wem sił zewnętrznych. W związku z działalnością budowniczą Galileusza, powstały kwestje wy­
trzymałości belek. Temu zadaniu poświęcił Galileusz szczególną uwagę i udało mu się rozwiązać 
zagadnienie zgięcia belki jednym końcem utwierdzonej (np. zamurowanej w ścianie), a obciążonej 
na drugim swobodnym końcu. Dalszym rozwojem teorji zgięcia belek, ważnej dla zastosowań 
praktycznych, zajął się francuski uczony Coulomb. Liczne wyniki jego badań nie straciły po 
dziś dzień swojej wartości. Wzorami Coulomb’a posługujemy się dotychczas przy badaniu skręce­
nia okrągłych prętów i przy wyznaczaniu naporu ciał sypkich na ograniczające je ściany.
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W XVIII-ym wieku rozwijali dalej teorję wytrzymałości znakomici matematycy Daniel i Ja- 
kób Bernoulli; Euler i Lagrange zajmowali się teorją zgięcia prętów. Interesując się matema­
tyczną stroną zagadnienia zwracali uwagę przedewszystkiem na całkowanie równania różniczko­
wego zgiętej osi pręta i rozpatrywali różne możliwe postacie równowagi zgiętych prętów. Praktyczne 
znaczenie traktowanych zadań pozostało nierozpatrzonem, a wyników otrzymanych przez matema­
tyków nie wyzyskali technicy. Osobliwie interesującym jest los pewnego zagadnienia, rozwiązanego 
przez Eulera. Chodziło o stałość równowagi prostego długiego pręta, ściskanego w kierunku osi 
siłami działającemi na jego oba końce. Wiadomo, że pod wpływem takich sił może pręt utracić 
pierwotną prostą postać i „wyboczyć się". Otóż Euler znalazł wyrażenie matematyczne dla tej 
wartości ściskającej siły, po której przekroczeniu nastąpi wyboczenie pręta, ale wzór jego pozostał 
na razie bez praktycznego zastosowania. Stosując formułę Eulera tam, gdzie jej stosować nie wolno, 
zadecydowali bardzo rychło inżynierowie „nieprawdziwość teorji" i przy rozwiązywaniu zagadnień 
wytrzymałości ściskanych prętów, zaczęli się posługiwać formułami empirycznemi różnego rodzaju. 
Dopiero w stosunkowo niedawnym czasie, w związku z obliczaniem długich prętów, stosowanych 
w konstrukcji żelaznych mostów, pojawiła się kwestja poprawności wzoru Eulera. Wyjaśniono 
granice stosowalności tego wzoru i obecnie używają go powszechnie w technice. Ale na to potrzeba 
było półtora stulecia, aby pogodzić teorję z praktyką.

Rozwój teorji wytrzymałości materjałów, w pierwszej połowie XIX-go wieku, zawdzięczamy 
głównie pracy inżynierów francuskich. Pierwsza Francja położyła jako fundament wyższego wy­
kształcenia technicznego obszerne przygotowanie matematyczne; a znajomość matematyki pozwoliła 
francuskim inżynierom opracowywać z powodzeniem różnorodne działy nauk technicznych. W tym 
czasie pojawia się książka Navier’a: „Resume des leęons donnees a 1’Ecole royale des ponts et 
chaussees" (1824 r.), która, zawierając kompletny wykład wytrzymałości materjałów, nie straciła po 
dziś dzień swego znaczenia. W tymże czasie zapoczątkowano ogólną teorję równowagi ciał sprę­
żystych, rozwijającą się dalej w naukę „teorji sprężystości".

Wzajemne zbliżenie teorji i techniki sprzyjało szczególnie rozwojowi nauki o wytrzymałości. 
Budownictwo mostów, kolejnictwo i spółczesna budowa maszyn, nastręczają wciąż nowe i nowe 
zadania. Od badania wytrzymałości poszczególnych prętów trzeba było przejść do studjum ukła­
dów złożonych z takich prętów. Takie układy nabrały szczególnego znaczenia praktycznego w związku 
z konstrukcją mostów żelaznych. Dla obliczenia mostów wypracowano metody wykreślne, grające 
obecnie bardzo ważną rolę. Spółczesna budowa maszyn, dopuszczająca niekiedy bardzo wielkie 
prędkości ruchu elementów maszynowych, zmusiła do zwrócenia bacznej uwagi na wpływ sił bez­
władności. Pokazało się, że siły te wywołują niekiedy znaczne naprężenia w elementach i mogą 
nawet być powodem zniszczenia maszyn. Nie rzadkie np. są przypadki „eksplozji" kół zamacho­
wych i szybko wirujących krążków turbin parowych. W związku z powiększeniem prędkości ruchu 
wzrasta też i znaczenie powstających przytem drgań. W niektórych warunkach mogą drgania wy­
wołać bardzo wielkie naprężenia dodatkowe i sprowadzić zniszczenie maszyny. Często zda­
rzające się pęknięcia wałów w motorach Diesel’a, stoją zapewne także w związku z powstają- 
cemi podczas ruchu drganiami i uderzeniami. Z podobnemi zadaniami, odnoszącemi się do wpływu 
uderzeń i drgań na siły wewnętrzne, spotykamy się przy obliczaniu mostów kolejowych. Doświad­
czenia i liczne teoretyczne badania wykazują, że pod działaniem obciążeń poruszających się po 
moście powstają naprężenia znacznie większe od tych, jakie można obserwować w przypadkach 
spoczynku owych obciążeń.

Nie będziemy wyliczać całego szeregu nowych zagadnień nauki o wytrzymałości, które zkolei 
stawia spółczesna technika. Zauważymy tylko, że rozwiązanie rozlicznych kwestji z nauki o wytrzy­
małości, komplikuje się jeszcze w wielu przypadkach przez dodatkowe warunki, dyktowane pożądaną 
ekonomją konstrukcji. Spółczesny inżynier musi budować nietylko trwale, ale i tanio. Wypada pro­
jektować konstrukcje silne, trwałe, przy najmniejszem spotrzebowaniu materjałów, pracy ludzkiej 
i czasu. Wiele twórczej energji zwraca się obecnie w tym kierunku, dzięki czemu technika osiągnęła 
wielkie sukcesy i stworzyła znaczną liczbę nowych typów konstrukcyj o przedziwnej lekkości.

Wskutek szybkiej zmiany typów konstrukcyjnych i wielkiej różnorodności materjałów, nie 
można teraz przy obiorze wymiarów cżęści składowych iść drogą czystej empirji; niema czasu 
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czekać, aż praktyka pokaże zachowanie się poszczególnych konstrukcji w warunkach rzeczywistych. 
Wszystko należy przewidzieć i naprzód obmyśleć. Tego można dokonać tylko rachunkiem opartym 
na naukowych podstawach i widzimy istotnie, że z rozwojem techniki budowlanej, z powiększeniem 
wartości ludzkiej pracy i udoskonaleniem własności materjałów, idzie w parze coraz większe zna­
czenie teoretycznych obliczeń, coraz większej dokładności wymaga się, wprowadzając stopniowo 
w zakres badań warunki dopełniające, które można było pominąć przy pierwszych obliczeniach, 
robionych „z grubsza".

Równolegle z wzrostem znaczenia badań teoretycznych zwiększa się także doniosłość labora- 
torjów. Pierwotnem zadaniem laboratorjów mechanicznych było badanie wytrzymałości i sprężystych 
własności rozmaitych materjałów budowlanych. Obecnie rozszerzyło się ich pole działania; obok 
badania materjałów zajmują się laboratorja także 'badaniem całych elementów konstrukcyjnych,* 
a nawet modeli całych konstrukcji. Takie doświadczenia mają niekiedy charakter sprawdzający 
i służą do przekonania się o słuszności poprzednich badań teoretycznych; często jednak mają też 
i samodzielne znaczenie.

Zagadnienie techniczne wypływające z codziennych potrzeb praktyki nie zawsze może ocze­
kiwać na zupełne rozwiązanie teoretyczne; w tych więc przypadkach, kiedy teorja nie dostarcza 
rozwiązania bezpośredniego, kiedy nie można ująć w rachunek wszystkich okoliczności komplikują­
cych zadanie, uciekamy się do doświadczeń. Badamy na modelach wytrzymałość konstrukcji i otrzy­
mujemy tą drogą odpowiedź potrzebną dla praktyki. Doświadczenia tego typu grają ważną rolę 
w najnowszych czasach w związku z budową olbrzymich żelaznych mostów. Niezwykłe rozmiary 
budowli zniewoliły projektujących inżynierów do stworzenia elementów konstrukcyjnych nowego 
typu, różniącego się znacznie od przyjętych ogólnie i używanych dotychczas. Zupełne rozjaśnienie 
kwestji wytrzymałości takich elementów można było uzyskać tylko drogą specjalnych doświadczeń.

Wzajemne zbliżenie teorji i techniki w zakresie nauki o wytrzymałości, które zaznaczyliśmy 
powyżej, można zauważyć i w innych działach umiejętności technicznych. Znaczenie teorji i rola 
naukowego badania w technice wciąż wzrasta, co oczywiście wpływa na wymagania stawiane spół- 
czesnemu inżynierowi i musi się odbić na stanie wyższego wykształcenia technicznego. Nie wy­
starcza już rzemieślnicze wyuczenie się, przygotowujące inżyniera do szablonowej pracy w jakiej­
kolwiek ciasnej specjalności; potrzeba także inżynierów-teoretyków z obszernem przygotowaniem 
naukowem i z uzdolnieniem do badań laboratoryjnych. Popyt na inżynierów tego typu zaznacza 
się zwłaszcza w krajach wiodących prym w przemysłowym rozwoju, gdzie wytężona walka o byt, 
zmusza poszczególne przedsiębiorstwa pracować nieustannie nad dalszem udoskonaleniem swoich 
wyrobów, Aby uczynić zadość tej potrzebie, wprowadzono w niektórych niemieckich politechnikach, 
cały szereg nieobowiązkowych wykładów treści matematycznej, które każdemu chętnemu słucha­
czowi pozwalają posiąść poważne przygotowania matematyczne, nie ustępujące w obszarze uniwer­
syteckiemu. Ustanowiono stopień naukowy doktora-inżyniera, udzielany za naukowe opracowanie 
zadań technicznych, a nie rzadkie są wypadki, w których prywatne przedsiębiorstwa, oceniające znacze­
nie naukowego przygotowania, wysyłają swoich inżynierów do zakładów naukowych dla słuchania wy­
kładów uzupełniających i uzyskania stopnia doktorskiego. Także w niektórych uniwersytetach nie­
mieckich pojawiła się dążność do wzajemnego zbliżenia teorji z techniką. Ustanowiono w tym celu 
katedry nauk technicznych, urządzono laboratorja inżynierskie, zorganizowano seminarja, w których 
mogą razem pracować teoretycy i inżynierowie. Jako przykład można przytoczyć uniwersytet w Ge­
tyndze, gdzie na czele tego ruchu stoją tacy uczeni, jak F. Klein, C. Runge i L. Prandtl. Dzięki 
ich energji powstały stałe wykłady o charakterze technicznym, założono laboratorja techniczne, 
a słuchacze wydziału matematycznego mogą uczęszczać na cały szereg kursów stosowanej mate- 
tyki i mechaniki, mogą brać udział w seminarjach poświęconych spółczesnym technicznym za­
gadnieniom, np. rozmaitym działom elektrotechniki, hydrauliki, statyki budowli i żeglugi powietrznej.

Taka wspólna praca teoretyków i inżynierów sprzyja. głębszemu naukowemu opracowaniu 
kwestji technicznych i poruszając nowe zagadnienia, współdziała w dalszym rozwoju czystej nauki. 
W tern zjednoczeniu tkwi rękojmia przyszłych wielkich zdobyczy nauki i techniki.





CZĘŚĆ I

ROZCIĄGANIE I ŚCISKANIE

ROZDZIAŁ I

ROZCIĄGANIE I ŚCISKANIE W GRANICACH SPRĘŻYSTOŚCI

§ 1. POJĘCIA ZASADNICZE

W mechanice ogólnej uważa się ciała stałe za doskonale sztywne, czyli przyjmuje się, że od­
ległości między oddzielnemi punktami ciała nie zmieniają się pod działaniem sił zewnętrznych. 
Takie założenie odpowiada pierwszemu przybliżeniu i wystarcza przy traktowaniu całego szeregu 
zagadnień statyki, dynamiki i astronomji, skoro jednakże przejdziemy do badania warunków trwa­
łości budowli i maszyn, to napotykamy zadania bardziej złożone, w których należy wzięć pod 
uwagę zdolność ciał stałych do zmiany swej postaci pod wpływem sił zewnętrznych. Warunki 
równowagi ciała idealnie sztywnego okazuję się i tutaj koniecznemi warunkami równowagi, atoli 
nie sę warunkami wystarczajęcemi i trzeba je uzupełniona podstawie badań fizycznych wła­
sności ciał. Jako fundament służy zwykle hipoteza molekularna. Według niej uważamy ciała za zło­
żone z bardzo małych częsteczek, pomiędzy któremi działaję siły wewnętrzne, zwane międzyczę- 
steczkowemi. Siły te przeszkadzaję każdej zmianie wzajemnego położenia częsteczek i pojawiaję 
się będźto jako siły przyciągające, jeżeli jakieś wpływy zewnętrzne dężę do powiększenia na­
turalnych wzajemnych odległości częsteczek, będź też jako siły odpychajęce, jeżeli podobne przy­
czyny dężę do zmniejszenia tychże odległości.

Jeżeli na takie ciało działa układ sił w równowadze, to pod ich wpływem zmieni ciało swę 
postać geometrycznę, czyli odkształci się; oddzielne częsteczki będę zmieniać swoje wzajemne 
położenia tak długo, aż następi równowaga między siłami zewnętrznemi i wewnętrznemi (między- 
częsteczkowemi). Siły zewnętrzne wykonuję przytem pracę zamieniajęcę się w energję potencjalnę 
odkształconego ciała. Uderzajęcym w oczy przykładem nagromadzenia energji jest każda zgięta sprę­
żyna powozowa lub zwinięta sprężyna zegarowa. Jeżeli zmniejszamy siły zewnętrzne, które wywo­
łały odkształcenie, to ciało dęży w większym lub mniejszym stopniu do odzyskania pierwotnej po­
staci ioddaje częściowo pracę wydanę na odkształcenie.

Tę własność ciał powracania do pierwotnej postaci i nagromadzania w sobie energji poten­
cjalnej w sposób odwracalny, nazywamy sprężystościę. Jeżeli ciało oddaje całkowitę pracę wy­
łożoną na wywołanie odkształcenia (czyli krótko „pracę odkształcenia") i powraca dokładnie do 
pierwotnej postaci, to nazywamy je doskonale sprężystem. Przy niezupełnem odzyskaniu po­
staci pierwotnej określa się stopień sprężystości ciała stosunkiem pracy oddanej do pracy 
spotrzebowanej na odkształcenie. Liczne materjały budowlane okazują się praktycznie jako doskonale 
sprężyste w dość obszernych granicach i zadaniem konstruktora jest obrać takie wymiary elemen­
tów konstrukcyjnych, przy których odkształcenia nie przekraczają granic sprężystości. Wówczas
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mogę konstrukcje trwale spełniać swoje zadanie, albowiem z ustaniem działania sił zewnętrznych 
powrócę do pierwotnej postaci.

Ogólna teorja równowagi ciał sprężystych jest przedmiotem teorji sprężystości. W wy­
kładach nauki o wytrzymałości poprzestajemy na rozpatrywaniu najprostszych zagadnień, majęcych 
zarazem największe praktyczne znaczenie. Przedewszystkiem zajmujemy się badaniem odkształceń 
prętów kształtu graniastosłupa lub walca. Przyjmujęc, że poprzeczne rozmiary pręta sę małe w po­
równaniu z jego długościę, możemy w więlu przypadkach uprościć znacznie zadanie i znaleźć roz- 
więzanie drogę elementarnę. Ogólna metoda, którę będziemy się posługiwać w dalszym cięgu, po­
lega na tern, że pomyślanym przekrojem dzielimy odkształcone ciało na dwie części i rozpatrujemy 
warunki równowagi jednej z nich. Jeżeli całe ciało było w równowadze, to będzie w równowadze 
i rozpatrywana część ciała; trzeba tylko na powierzchnię przekroju działać siłami zastępujęcemi 
działanie odciętej części na część rozpatrywanę. Te siły, rozmieszczone w sposób cięgły na popro­
wadzonym przekroju, przedstawiaję układ równoważęcy siły zewnętrzne działajęce na rozpatrywanę 
część ciała. W przypadku prętów o postaci graniastosłupa lub walca będziemy brać pod uwagę 
przekroje płaskie, zwykle normalne do osi pręta. Jeżeli siły zewnętrzne działajęce na jednę część 
pręta sprowadzaję się do jednej siły, której linja działania leży w osi pręta, to mamy do czynienia 
z przypadkiem rozcięgania (fig. a) lub ściskania (fig. b) (rys. 1). Na rysunku rozpatrujemy 

lewę część pręta, a siły wewnętrzne w przekroju m n przedsta­
wiaję działanie prawej części na lewę. W tych przypadkach, kiedy 
siły zewnętrzne działajęce na jednę część pręta sprowadzaję się 
do pary sił, leżęcej w płaszczyźnie prostopadłej do osi pręta, 
mamy do czynienia ze zjawiskiem skręcania (fig. c). Gdy wre­
szcie siły zewnętrzne działajęce na rozpatrywanę część pręta spro­
wadzaję się do pary leżęcej w płaszczyźnie równoległej do osi 
pręta, to powstaje przypadek zginania (fig d).

We wszystkich przytoczonych przykładach można bez tru­
dności znaleźć przy pomocy statyki wypadkowę sił zewnętrznych, 
działajęcych na przekrój mn. W przypadku rozcięgania lub ści­
skania otrzymujemy jednę siłę leżęcę na osi pręta. Przy skrę­

caniu znajdujemy wypadkowę parę sił, której płaszczyzna jest 
prostopadła do osi pręta. Nakoniec w przypadku zgięcia leży para sil, do której się sprowadzaję 
siły wewnętrzne rozmieszczone w przekroju m n, w płaszczyźnie przechodzęcej przez oś pręta.

Te wyniki otrzymane na podstawie równań statyki ciała sztywnego nie wystarczaję jednak 
do zawyrokowania o wytrzymałości pręta; do tego trzeba jeszcze poznać prawo rozmieszczenia sił we­
wnętrznych w przekroju. Okazuje się bowiem, że ciało stawia dopóty skuteczny opór siłom we­
wnętrznym, dopóki natężenie sił wewnętrznych, czyli napięć-1) nie przekroczy nigdzie pewnych 
granic. Z najprostszem zadaniem będziemy mieli do czynienia w tym przypadku, kiedy napięcia 
rozkładaję się równomiernie w przekroju i wszędzie maję jeden i ten sam kierunek. Dzielęc wy­
padkowę tych napięć przez pole przekroju pręta znajdziemy siłę przypadajęcę na każdę jednostkę 
pola tego przekroju. Wielkość ta charakteryzuje zupełnie natężenie2) wewnętrznych sił sprężystości dzia­
łajęcych w płaszczyźnie naszego przekroju; nazwiemy ję krótko naprężeniem. W ogólnym przy­
padku będzie rozkład napięć w przekroju nierównomiernym, podobnie jak np. nierównomiernym 
jest rozkład naporu cieczy na ściany naczynia. Dla określenia wielkości wewnętrznych sił sprę­
żystości w każdym punkcie przekroju uogólnimy wprowadzone pojęcie naprężenia. Dajmy na to, 
że chodzi o dowolny punkt N przekroju pręta. Wydzielmy około tego punktu z przekroju element 
pola 8 F i znajdźmy wypadkowę napięć określajęcych działanie odciętej części pręta na część roz­
patrywanę, ale tylko na obszarze pola 5 F.

*) [Tak przetłumaczyłem rosyjski wyraz „usilje* odpowiadający bardzo dobrze angielskiemu „stress", nie mogąc 
się oswoić z wprowadzonym już dawno przez prof. J. J. Boguskiego (przy przekładach z angielskiego) terminem 
Bwysił“].

2) [W znaczeniu „intensitas*].
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Niechaj 8 P będzie wielkością tej wypadkowej, natenczas granica do której zdąża wartość stosunku

8 P
8 F ’ • (O

gdy 8 F dąży do zera, będzie charakteryzować natężenie wewnętrznych sił sprężystości. Te wiel­
kość będziemy nazywać naprężeniem w punkcie /V płaszczyzny przekroju 8 F. Jej wymiarem jest 
siła: (długość)2 a zatem techniczną jednostką naprężenia będzie kilogramowa centymetr kwa­
dratowy (kg/cm2). Stosownie do tego określenia będzie naprężenie odpowiadające naporowi cieczy 
na ściany naczynia w każdym punkcie proporcjonalne względem głębokości h, w której leży roz­
patrywany punkt i równe ciężarowi słupa cieczy o podstawie równej 1 cm8, a wysokości h.

2) [Liczba e przedstawia zarazem bezwzględne wydłużenie jednostki długości któregokolwiek włókna rozciąganego
pręta i dlatego nazywają ją także wydłużeniem jednostkowem].

§ 2. PRAWO HOOKE’A

Przy badaniu rozciągania albo ściskania pryzmatycznych prętów chodzi o to, aby znaleźć 
wzajemną zależność między wielkością sił wewnętrznych, a odpowiadającą im zmianą długości 
pręta. Dajmy na to, że dany pręt (rys. 2) o długości l podlega działaniu sił rozciągających rozło­
żonych równomiernie na obu przekrojach końcowych. Pod działaniem tych sił przedłuży 
się pręt o pewną wielkość X.

Jeżeli pręt podzielimy w myśli na podłużne elementy, t. z. włókna, to okazuje się że 
wszystkie elementy znajdują się w tychże samych warunkach, wszystkie wydłużą się 
o tę samą wielkość.

Przetnijmy pręt płaszczyzną 00, prostopadłą do kierunku sił rozciągających; skoro 
odrzucimy dolną część, to dla równowagi górnej części trzeba na przekrój 00 działać 
siłami wewnętrznemi (napięciami), których wypadkowa jest równa P i skierowana pio­
nowo w dół. Zważywszy, że te napięcia okreś’ają działanie dolnej części na górną, 
a wszystkie włókna znajdują się w tych samych warunkach, możemy przyjąć rozkład napięć 
w płaszczyźnie poprzecznego przekroju jako równomierny. W takim przypadku wielkość

Rys. 2

(2)

określa wartość naprężenia w każdym elemencie obranego przekroju, a zatem i dowolnego innego 
przekroju prostopadłego do osi.

Do określenia odkształcenia pręta będziemy używać stosunku przedłużenia X do pierwotnej 
długości I, jako liczby niezależnej od tejże. Ten stosunek

e = ^.......................................................................... (3)

nazywa się wydłużeniem względnem, albo właściwem2). Liczne doświadczenia nad rozcią­
ganiem i ściskaniem prętów sporządzonych z rozmaitych materjałów konstrukcyjnych wyka­
zały, iż dopóki naprężenia nie przekroczą pewnych granic (charakterystycznych dla każdego ma- 
terjału), można z dostateczną dokładnością przyjąć ich wielkość za proporcjonalną względem odpo­
wiedniego wydłużenia właściwego t. j.

p = Ee, albo e = Ł............................................................... (4)
r.... ’ E

Tę prostą zależność między naprężeniem i odpowiadającem mu wydłużeniem sformułował najpierw 
Hooke (czytaj Huk) w r. 1676.Ten angielski uczony znalazł doświadczalnie, że wydłużenie pręta jest

[To znaczy ciężar kilograma. 1 kglcm? jako jednostka naprężenia nosi także nazwę: „nowa atmosfera"]. 
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wprost proporcjonalne względem obciążającej siły i długości, a odwrotnie względem pola prze­
kroju poprzecznego, czyli

X- Pl
EF

. (5)

Stałą E nazywamy modułem sprężystości przy rozciąganiu’). Wielkość E będzie oczywiście 
dla różnych materjałów różna. Nawet dla jednego i tego samego materjału niema moduł sprę­
żystości wartości stałej, lecz waha się nieco w zależności od rozlicznych domieszek i pierwotnej 
obróbki. Są i takie materjały, w których wartość modułu sprężystości zależy od kierunku rozcią­
gania. Np. przy rozciąganiu kryształów zmienia się E w zależności od tego, do której z osi jest 
kierunek sił rozciągających równoległy. W dalszym ciągu będziemy się zajmować prawie wyłącznie 
odkształceniami takich ciał, w których własności sprężyste są we wszystkich kierunkach jednakowe. 
Takie ciała noszą nazwę izotropowych, albo równokierunkowych.

Oto szereg wartości modułu E:

Materjał E kglcm2

Żelazo spawalne....................................... 1,9 . 106 do 2,1 . 106
Żelazo zlewne i stal................................... 2,0 . 106 do 2,2 . 106
Glin wyciągany........................................... 7,5 . 105

„ odlewany........................................... 6,6 . 106
Miedź wyciągana....................................... 1,2’. 10,;

„ odlewana........................................... 1,1 . 10”
Nikiel.......................................................... 2,2 . 10,;
Cynk wyciągany................................... ... 4,1 . 106
Dębina wzdłuż włókien ........ 10,8 . 104
Sośnina „ „ ........................... 9,2 . 104
Surowiec szary........................................... 8,0 . 105 do 1,05 . 106

l) [Anglicy nazywają E „modułem Young’a“. W polskiej literaturze technicznej utarła się nazwa „spółczynnik
sprężystości", odpowiedniejsza raczej dla odwróconej wartości 1: E. Nie przypisując w tym przypadku kwestji nazw
przesadnej ważności (jak to np. czyni Bach), zaznaczymy jednak, że znaczenie stałej E określałaby najlepiej nazwa:
„moduł rozciągania sprężystego", 1 :E zaś: „spółczynnik rozciągania sprężystego"].

Prosty związek proporcjonalności między naprężeniem p, a odpowiadającem wydłużeniem e za­
chodzi, jak już nadmieniliśmy, tylko w pewnych granicach. Tę wartość p, przy której zaczynają 
się dostrzegalne zboczenia prawa Hooke’a, nazywają granicą proporcjonalności. Ta wielkość 
zależy nietylko od natury materjału, lecz także i od jego poprzedniej obróbki mechanicznej. Dla nie­
których materjałów jest granica proporcjonalności wcale wysoka, dla żelaza kowalnego np. równa 
się około 2000 kglcm* (dla stali jeszcze więcej), u innych zaś materjałów można już przy niewiel­
kich naprężeniach zauważyć zboczenia od prawa Hooke’a.

Przy doświadczeniach z rozciąganiem notuje się prócz granicy proporcjonalności drugą wiel­
kość charakteryzującą sprężyste własności materjału; jest nią granica sprężystości. Tak na­
zwano wartość naprężenia, względnie wydłużenia właściwego, po której przekroczeniu pojawiają się 
pierwsze odkształcenia trwałe, t. j. nie znikające po usunięciu działania siły rozciągającej. Dla 
naprężeń mniejszych od naprężenia na granicy sprężystości powinien materjał zachowywać się 
jako doskonale sprężysty (ob. § 1). Atoli obserwacja tak pojmowanej granicy sprężystości (teore­
tycznej granicy sprężystości) jest nader trudną i zależną od dokładności środków pomiaru. Z tego 
powodu przez granicę sprężystości rozumiemy zwykle tę wartość naprężenia, przy której trwałe 
odkształcenie jest pewną określoną częścią odkształcenia całkowitego (praktyczna gr. spr.). Wiel­
kość ta zależy zatem od umowy.
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Takie materjały, jak kamień, beton i żelazo lane posiadają bardzo niską granicę proporcjo­
nalności. Już przy stosunkowo niewielkich naprężeniach pojawiają się u nich zboczenia od prawa 
Hooke^1). Znalezioną doświadczalnie zależność między wydłużeniami, a odpowiedniemi napręże­
niami przedstawiamy z korzyścią wykresem, czyli diagramem. Na osi poziomej np. odcinamy 
wydłużenie jednostkowe e (rys. 3), a na osi pionowej odpowiadające im naprężenia p, wtedy każdy 
stan rozciąganego pręta przedstawia się na płaszczyźnie ep oddzielnym punktem, a cały proces 
rozciągania przedstawi się pewną linją Om'. Linja ta będzie oczywiście 
prostą Om, dopóki naprężenia są proporcjonalne względem wydłużeń, czyli 
dopóki nie przekroczono granicy sprężystości. Dla takich materjałów, jak 
żelazo lane, rosną następnie odkształcenia prędzej aniżeli naprężenia i otrzy­
mamy dalej krzywą mm', zwróconą wypukłością ku górze (ku osi p). Skoro 
przejdziemy od rozciągania do ściskania, to otrzymamy linję Om", która 
dla żelaza lanego przedstawia się podobnie, jak na rys. (3) i składa się 
z prostej wychodzącej z punktu O i krzywej zwróconej wypukłością w dół 
(ku osi p). Części prostolinjowe diagramu są często bardzo krótkie i wsku­
tek tego niedostrzegalne przy zwykłych doświadczeniach technicznych 
z żelazem łanem, w których stosujemy od razu dość znaczne naprężenia, 
atoli obiedwie części mają to samo nachylenie względem osi, czyli należą do jednej i tej samej 
prostej*). Postać linji m'm" można w każdym poszczególnym przypadku znaleźć doświadczalnie. 
Pożądanem byłoby niekiedy określić ją analitycznie. Istnieje nie mało formuł3) ogólnej postaci

2) [W przekładzie podkreślono to zdanie jeszcze silniej od autora, ponieważ w wielu nawet wybitnych książkach 
można się spotkać z odmiennem błędnem mniemaniem].

8) R. Mehmke: „Zum Gesetz der elastischen Dehnungen". Z. f. Math. u. Ph. 1897.
4) C. Bach: „Elastizitat u. Festigkeit“. Wyd. V, str. 81. Berlin 1905.
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e = f(p),
które z większą lub mniejszą dokładnością przedstawiają zależność między p i e. Każda z nich 
zawiera pewne stałe znalezione z doświadczeń. Im więcej takich stałych, tern większa oczywiście 
dokładność, z którą formuła odtwarza wyniki doświadczeń. Obecnie stosują najczęściej do żelaza 
lanego i kamieni formułę potęgową

e = apm,..........................................................................(6)
w której a i m przedstawiają stałe doświadczalne.

W przypadku m=l daje powyższy wzór prawo Hooke’a, a spółczynnik a, zwany spół- 
czynnikiem wydłużenia jest wówczas odwróconą wartością modułu sprężystości E. Gdy m > 1, to 
otrzymujemy krzywą zwróconą wypukłością do góry, podobnie jak krzywa rozciągania żelaza 
lanego, jeżeli zaś m < 1, to odpowiadająca krzywa zwraca się wklęsłością do góry, a naprężenia 
rosną prędzej niż wydłużenia. Ze zjawiskiem tego rodzaju spotykamy się np. przy rozciąganiu 
skórzanych pasów.

Jako przykład przytoczymy kilka formuł z doświadczeń Bacha:

e = iooLaa P1’083 dla rozciąganego żelaza lanego 
loooUUU

e = P^32 dla ściskanego granitu

e = —jL— p0’7 dla rozciąganej skóry (z pasów transmisyjnych). 
415

Doświadczenia wykazały 4), że przy dość wielkich wartościach naprężeń daje wzór potę­
gowy wyniki zupełnie zadawalające, a zależność (6) między e i p odpowiada, przy stosownym
—f;----------- ------ ——------------------------ -------- —

*) Przy bardzo małych naprężeniach można a priori spodziewać się, że każdy materjał podlegać musi prawu 
Hooke’a (P. t.).

Dla żelaza lanego potwierdziły to subtelne doświadczenia Griineisena przy naprężeniach 0 do 9 kg/cmK (Be- 
richte d. Deutschen phys. Gesellschaft. 1906).
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doborze stałych a i m, ze znaczną dokładnością rzeczywistości. Niezgodność formuły potęgo­
wej z doświadczeniem przy bardzo małych naprężeniach, objaśnia przytoczona powyżej rozprawa 
Griineisena ’).

§ 3. OPÓŹNIENIE SPRĘŻYSTE

Dotychczas przyjmowaliśmy, że każdej określonej wartości naprężenia rozciągającego odpowiada 
pewne względne wydłużenie e, które się wytwarza bardzo rychło podczas działania siły rozciąga­
jącej pręt. Dokładniejsze doświadczenia wykazują jednak, że na wielkość odkształcenia ma pewien 
wpływ czas nawet w . tych granicach, w których można je uważać za doskonale sprężyste. Odkształ­
cenie rośnie z czasem, coraz to wolniej, zbliżając się niejako asymptotycznie do określonej war­

tości, przy której dopiero zachodzi równowaga sił zewnętrznych i wewnętrznych. 
AP M f Podobnież nie znika zupełnie odkształcenie sprężyste natychmiast po usunięciu 

— sił zewnętrznych, lecz dopiero po pewnym czasie, przyczem prędkość zanikania 
szybko maleje. Zjawisko to nosi nazwę opóźnienia sprężystego. Gra ono 
ważną rolę przy odkształcaniu ciał pochodzenia organicznego, jak powrozów, 

--- >. rzemieni i t. p. U metali, w granicach naprężeń, dopuszczalnych przez technikę 
Rys 4 konstrukcyjną, niema opóźnienie sprężyste znaczenia praktycznego i inżynier nie 

potrzebuje się z niem liczyć2).
O wiele większą rolę gra to ciekawe zjawisko w dziedzinie fizyki, gdzie posiada już obszerną 

literaturę8)*  Badania wykazują, że opóźnienie sprężyste pojawia się w tym słabszym stopniu, im 
bardziej jednorodnym jest materjał. W kryształach kwarcu np., jeżeli zachodzi wogóle opóźnienie 
sprężyste, to tylko tak małe, że nie przekracza błędów przy najdokładniejszym pomiarze odształ- 
cenia. Prawda, że i w tym przypadku nie brak pewnych zmian wydłużenia z czasem, jednakowoż 

*) [Formuła potęgowa ma charakter doświadczalno-praktyczny i nie może mieć zgoła pretensji do miana „prawa“, 
któremi ją obdarzają niektóre nasze podręczniki pod wpływem pewnego odłamu niemieckiej literatury technicznej. Gdyby 
istniała formuła przedstawiająca uogólnienie prawa Hooke’a, to musiałaby przedewszystkiem, w granicach bardzo małych 
wartości e i p, dać się przekształcić na formułę Hooke’a, albo, co na jedno wychodzi, musiałaby krzywa przedstawiająca 
uogólnioną formułę mieć w początku spółrzędnych charakter linji prostej nachylonej pod kątem ostrym do obu osi. 
Dla każdego punktu na tej części miałby stosunek p: e wartość prawie stałą i określałby moduł sprężystości E w odpo­
wiednim przedziale małych naprężeń i odkształceń. Tymczasem wzór potęgowy (6) nie dopuszcza tego przekształcenia, 
gdyż krzywa, która go przedstawia, jest w początku spółrzędnych styczną do osi p w przypadku m > 1, zaś w przypadku 
m < 1 jest styczną do osi e, jak się łatwo przekonać przy pomocy różniczkowania. W pierwszym przypadku byłby zatem 
moduł sprężystości dla nieskończenie małych naprężeń nieskończenie wielki, w drugim zaś nieskończenie mały, co jest 
oczywistą niedorzecznością. Mimo to posiada formuła potęgowa pewne zalety praktyczne, które w znacznej części uspra- 
wiealiwiają jej rozpowszechnienie. Z pośród formuł z dwiema stałemi, pozwala ona najłatwiej obliczyć te stałe z danego 
szeregu doświadczeń, przy pomocy przekształcenia logarytmicznego

Zog p = log a + m log e, 
Punkty o spółrzędnych log e, log p leżą bowiem wtedy na linji prostej, której położenie względem osi określa wartość 
stałych log a i m. Nadto, o ile rńe chodzi o przedział małych naprężeń, nie mający zwykle znaczenia w nauce o wytrzy­
małości, zalicza się (według przytoczonej powyżej pracy Mehmke’go) formuła potęgowa do najdokładniejszych z pośród 
rozlicznych proponowanych wzorów z dwiema stałemi].

2) [O ile nie zajmuje się samodzielnem badaniem sprężystości i wytrzymałości materjałów].
3) A. Winkelmann: „Handbuch d. Physik". I. Bd. 1908. Str. 796.
4) A. J of f ć: „Elastische Nachwirkung im kristallinischen Quarz“. Rnn. d. Phys. IV Folgę. Bd. 20. J. 1906.

wielkość tego pozornego opóźnienia sprężystego i charakter zależności od czasu objaśniają się 
zupełnie, jeżeli uwzględnić termiczne i elektryczne zmiany ciała przy odkształceniu4).

§ 4. ENERGJA ODKSZTAŁCENIA PRZY ROZCIĄGANIU

Niechaj na dolny koniec pręta umocowanego górnym końcem w położeniu pionowem działa 
obciążenie, którego wielkość wzrasta stopniowo od zera do wartości P. Wtedy związek między 
całkowitem wydłużeniem X, a wielkością siły przedstawi w granicach ważności prawa Hooke’a 
prosta Oa (rys. 5).

Weźmy pod uwagę dowolny stan pręta określony punktem m. Jeżeli odpowiedniej wartości 
rozciągającej siły udzielimy nieskończenie małego przyrostu, to wydłużenie pręta wzrośnie o d
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i o tyleż obniży się obciążenie, wykonując przytem pracę elementarną równą iloczynowi siły 
i przesunięcia. Na rys. (5) przedstawia się ta praca polem zakreskowanego paska elementarnego. 
Przechodząc teraz kolejno od jednego stanu do stanu nieskończenie bliskiego, możemy obliczyć całko­
witą pracę T, wykonaną przez siłę obciążającą przy jej zmianie od zera do pewnej 
końcowej wartości P. Na rys. (5) wyobraża tę pracę pole trójkąta, a zatem

T _ Pa _ PH _ \9EF 
2 “ 2EF ~ 2/ ...... ........................ (7}

przy uwzględnieniu rów. (5).
Ażeby otrzymać wynik niezależny od rozmiarów badanego pręta, obli­

czymy pracę odniesioną do jednostki objętości. Zważywszy, że objętość pręta 0 
jest równa FI, znajdziemy:

T __ 1 P X _ 1 _ p8 
FI — 2 F l ~ 2 pe ~ 2E

Praca ta przekształca się widocznie na energję potencjalną odkształconego pręta i jeżeli jego 
materjał jest doskonale sprężysty, to przy zmiejszaniu obciążenia zamieni się energja potencjalna 
napowrót w pracę. Pominęliśmy przytem zmiany termiczne i elektryczne towarzyszące odkształce­
niu pręta, albowiem te interesujące zjawiska nie mają, jak dotąd, praktycznego znaczenia ‘).

Ażeby mieć wyobrażenie o ilości energji, jaka może być nagromadzona w rozciąganym pręcie 
w granicach stosowalności prawa Hooke’a, obliczymy ją w przypadku żelaza o granicy proporcjo­
nalności 2000 kglcm* i module sprężystości E = 2.10c kglcm*. Przy pomocy rów. (7) znajdziemy, 
że w jednym centymetrze sześciennym takiego żelaza można nagromadzić 1 kglcrn* energji. Dla 
kauczuku zaś można przyjąć E = 10 kglcm2, a granicę sprężystości 20 kglcm2, wobec czego energja 
nagromadzona w 1 cm3 kauczuku może osiągnąć wartość 20 kgjcm2.

2) Tablica zawiera średnie wartości z danych w „Handbuch d. Phys.“ Winkelmann’a. Nowsze bardzo dokładne
oznaczenia a przeprowadził Williams (Phil. Mag. 1912).

§ 5. ZMIANA ROZMIARÓW POPRZECZNYCH PRZY ROZCIĄGANIU

Rozciąganiu prętów towarzyszy zmniejszenie poprzecznych rozmiarów i do zupełnego scha­
rakteryzowania własności sprężystych ciała równokierunkowego nie wystarcza sam moduł sprę­
żystości E, lecz trzeba jeszcze podać wielkość określającą skurczenie poprzeczne przy rozciąganiu 
podłużnem.

Jeżeli przez e oznaczymy względne wydłużenie w kierunku rozciągania, to wielkością odpo­
wiadającego poprzecznego skurczenia jest oe, przyczem o jest ułamkiem właściwym, leżącym mię­
dzy granicami O a 0,5. Nazywamy go liczbą (stosunkiem) Poisson’a na cześć francuskiego ma­
tematyka, który spróbował oznaczyć oe drogą analityczną na podstawie molekularnej hipotezy budowy 
materji. Z obliczenia Poisson’a wynikło, że dla wszystkich ciał równokierunkowych powinno 
być ó stałe i równe |. Późniejsze bardzo liczne doświadczenia nie potwierdziły jednakże tego 
wniosku teoretycznego i okazały, że liczba Poisson’a jest dla różnych materjałów różna. Liczba ta 
jest obok E drugą stałą charakteryzującą sprężyste własności materjałów równokierunkowych. 
Oto wartości o dla niektórych materjałów8):

Materjał 5 Materjał g

Żelazo kowalne . . 0,28 Cynk....................... 0,27
Stal........................... 0,29 Brąz.......................0,36
Miedź....................... 0,34 Korek. . . . . . . 0,00
Nikiel....................... 0,33 Kauczuk . . . . . 0,47
Glin (aluminium). . 0,36 Parafina...... 0,50

*) W literaturze technicznej zajmuje się tą kwestją interesująca książka C. Kriemlera: „Einfiihrung in die ener- 
getische Baustatik". Berlin 1911.
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Znając wartość o można obliczyć zmianę objętości pręta przy rozciąganiu w granicach pro­
porcjonalności. Długość pręta powiększa się w stosunku (1 + e) : 1, a rozmiary poprzeczne zmniej­
szają się w stosunku (1 — ce) : 1. Objętość przy rozciągnięciu ma się przeto do objętości pierwotnej 
jak (1 + e) (1 — cre)2do 1. Zważywszy, że e i Ge są bardzo małemi ułamkami, można z pominięciem 
małych wyższego rzędu napisać:

(1 + e) (1 — oe)2 — 1 + e (1 — 2g), 
a zatem stosunek przyrostu i objętości przy rozciąganiu pręta do objętości pierwotnej będzie równy: 

[1+© (t — 2a) — 1]: l=e(l-2o).
Materjały, u których wartość g jest bliską 0,5, zmieniają, jak widzimy z powyższego wyrażenia, 

bardzo nieznacznie swoją objętość przy rozciąganiu. Nieprawdopodobnem jest, aby istniały ciała, 
dla których u > 0,5, gdyż w takim razie rozciąganie wywoływałoby zmniejszenie objętości ciała.

Przechodząc od rozciągania do ściskania prętów, otrzymamy spęcznienie (rozszerzenie) 
poprzeczne, przyczem w granicach proporcjonalności ma o tę samą wartość liczbową, j:o przy 
rozciąganiu.

U materjałów takich, jak żelazo i stal jest względne wydłużenie w granicach proporcjonalności 
bardzo małe, wskutek czego można nie uwzględniać zmiany przekroju poprzecznego przy obliczaniu 
naprężeń i modułu E, a wszystkie rachunki można odnosić do pierwotnego pola przekroju poprze­
cznego. Ale dla materjałów zdolnych do wielkich odształceń sprężystych, jak kauczuk, trzeba przy 
obliczeniu E wziąć pod uwagę i zmianę przekroju, co znacznie komplikuje rachunek').

ROZDZIAŁ II

ROZCIĄGANIE I ŚCISKANIE POZA GRANICAMI PROPORCJONALNOŚCI

§ 6. DIAGRAM ROZCIĄGANIA

Dotychczas zajmowaliśmy się rozpatrywaniem rozciągania i ściskania w granicach proporcjo­
nalności. Przy dalszym wzroście odkształcenia ustaje ważność prawa Hooke’a; między wydłuże­
niami a odpowiadającemi im naprężeniami zachodzi zależność bardziej złożona i dla różnych 
materjałów rozmaita. Tę zależność przedstawia się zwykle wykreślnie. Na jednej z osi prosto­
kątnego układu spółrzędnych odcinamy wielkości proporcjonalne względem wydłużeń, a na drugiej 
odpowiadające wartości naprężeń. Otrzymaną tym sposobem krzywą nazywamy diagramem, albo

wykresem rozciągania. Maszyny używane do badania ma­
terjałów przy rozciąganiu są zwykle zaopatrzone w aparat kre­
ślący diagram samoczynnie. Otrzymany z doświadczenia dia­
gram charakteryzuje wcale dobrze własności materjału i dlatego 
rozpatrzymy nieco szczegółowiej jego postać dla żelaza kowal- 
nego i stali, materjałów, z któremi najczęściej mamy do 
czynienia przy obliczeniach.

Na rys. (6) widzimy takie krzywe dla żelaza spawalnego, 
miękkiej i twardej stali. Wszytkie trzy diagramy mają część 
początkową prośtolinjową, bardzo słabo nachyloną względem osi 
rzędnych. Ta część odpowiada prawu Hooke’a.

Od granicy proporcjonalności (oznaczonej na krzywej 
dla żelaza spawalnego literą A) zaczynają odkształcenia 
wzrastać silniej aniżeli naprężenia, linja diagramu zakrzywia 
się, zwracając wypukłość ku górze. W dalszym ciągu po­

jawia się nagle szybko postępujące wydłużenie pręta bez jednoczesnego wzrostu siły rozcią­
gającej. Na diagramie odpowiada temu zjawisku mniej więcej prosta pozioma, zaczynająca się

*) O. Frank: „Die Analyse endlicher Dehnungen u. die Elastizitat d. Kautschuks". Ann. d. Phys. 1906. str. 602.
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w punkcie B1). Przy dalszem zwiększaniu obciążenia odzyskuje materjał ponownie odporność 
przeciw rozciągającej sile i rzędne wykresu znowu rosną tak długo, dopóki nie pojawi się na bada­
nym pręcie „szyjka", t j. miejscowe zwężenie przekroju mn 
(rys. 7). Od tej chwili koncentrują się dalsze odształcenia w oko­
licy szyjki. Ponieważ przy tem zmniejsza się znacznie przekrój 
poprzeczny, więc dalsze wydłużenie zachodzi przy zmniejszającej 
się sile. Całkowity diagram ma przeto wygląd przedstawiony 
na rys. (8).

L) Bardziej szczegółowe badania wykazują, że od tego punktu może odkształcenie wzrastać nawet przy zmniejszeniu 
się wartości rozciągającej siły. To zmniejszenie zaś jest tem znaczniejsze, im ostrożniej zbliżać się z wartością obciążenia 
do punktu krytycznego. Interesujące wyniki otrzymał w tej dziedzinie A. M. Dragomirow. Dokładne zdjęcie diagramu 
w okolicy punktu krytycznego uzyskał na drodze fotograficznej prof. W, E. Dalby: „Load-Extension diagrams obtained 
Photographically“. Engineering 1902. Str. 503.

2) [Nazwa „punkt krytyczny", używana w literaturze angielskiej, odpowiada niemieckiej „Fliessgrenze" albo „Streck- 
grenze", co tłumaczono u nas przez „granicę płynności", lub „granicę płynięcia" (w „Techniku" wprowadzono termin 
„granica ciastowatości"). Za odpowiedniejszą od tych ostatnich uważamy nazwę „gr. plastyczności"].

•) A. M. Smith: „The elastic breakdown of non-ferrous metals". Engineering 1909. Str. 593.
Mnóstwo danych doświadczalnych podaje Hartmann w książce: „Phćnomżnes qui accompagnent la dćformation 

permanente" 1900.
Ob. także W. Mason: Proc, of Phys. Soc. London 1911. 23, str. 305.
4) I. A. Ewing: „The strength of materials".
5) M. A. Woropajew: „Ob opredjelienij naprjażenij i deformacij wbrusiachbolsżoj kriwizny". Izw. Kiew.Pol. Inst. 1910.
*) Rejtó. >ncre peibung". 1897.

Kurs wytrzymałości materjałów 2

W diagramie wyróżniamy trzy ważne punkty: Punkt /I, od­
powiadający granicy proporcjonalności, punkt B, zwany punktem 
krytycznym2) i nakoniec punkt D, określający wielkość siły 
potrzebnej do rozerwania pręta. Poprzednio wprowadziliśmy już 
pojęcie (praktycznej) granicy sprężystości (ob. § 1). Rozumieliśmy 
przez nią tę wartość naprężenia rozciągającego, przy której trwałe 
odkształcenie osiąga pewną, ustaloną przez umowę, część odkształcenia całkowitego. U żelaza kowal- 
nego i stali są trwałe odkształcenia do punktu A nadzwyczaj małe, wskutek czego bardzo często mó­
wimy o granicy sprężystości, mając na myśli „granicę proporcjonalności" tych materjałów. Punkt 
krytyczny leży oczywiście powyżej granicy sprężystości. Zboczenia od prawa Hooke’a w części AB 
diagramu objaśniają zwykle niejednolitością budowy materiału i nierównomiernością rozkładu naprę­
żeń w przekrojach poprzecznych rozciąganego pręta3). Wskutek tych przyczyn powstają lokalne 
przeciążenia materjału towarzyszące miejscowym trwałym odkształceniom. Czem doskonalszy ma­
terjał, tem mniejsza część AB, tem bliżej siebie leżą granica proporcjonalności i punkt krytyczny.

Zjawiska, odpowiadające punktowi krytycznemu, wskazują na to, że w materjale zachodzą 
w owej chwili znaczne zmiany. Jeżeli powierzchnia rozciąganego pręta żelaznego jest polerowana, 
to przy zbliżaniu się do punktu krytycznego można dostrzec na niej pojawienie się linij nachylo­
nych do osi pręta. Nazywają je linjami Liiders’a od niemieckiego inżyniera, który je pierwszy 
zauważył. Do badania tych linij używa się specjalnego mikroskopu. Zaznaczyć wypada, że zasto­
sowanie mikroskopu do badania własności metali zajęło w ostatnich latach wielu badaczy i dopro­
wadziło do całego szeregu ciekawych odkryć. Ogół metod stosowanych przy tych badaniach należy 
do dziedziny metalografji.

Badania mikroskopowe wykazują, że takie materjały jak żelazo składają się z ziarn krysta­
licznych, rozdzielonych substancją o innym składzie, a linje Liidersa, przedstawiające się nieuzbro­
jonym oczom jako wąziutkie bruzdy z podniesionemi brzegami, okazują się pod mikroskopem jako 
zbiór kryształów, które doznały przesunięć w płaszczyznach spójności1)- Pierwsze linje Liidersa 
pojawiają się w postaci cieniuchnych kreseczek natychmiast po przekroczeniu granicy proporcjo­
nalności i są bardzo czułym objawem tego przekroczenia6). Przy dalszem rozciąganiu pojawiają 
się dwa układy linij przecinających się wzajemnie i nachylonych pod jednym i tym samym kątem 
do osi pręta. Kąt ten okazuje się charakterystycznym dla każdego metalu6). Na pojawienie się 
trwałych odkształceń wskazuje nadto, obok linji Liidersa, podwyższenie temperatury pręta. Dopóki 
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nie przekroczymy granicy sprężystości, towarzyszy odkształceniu obniżenie temperatury, czego 
można się było spodziewać na podstawie rozważań termodynamicznych. To obniżenie jest jednak 
bardzo małe i można je wykazać tylko przy pomocy termo-elementu f czułego galwanometru. Z po­
jawieniem się odkształceń trwałych zamienia się odpowiadająca praca odkształcenia za pośrednictwem 
„tarcia wewnętrznego" na ciepło i temperatura pręta podwyższa się silnieJ).

Pojawienie się trwałych odkształceń wywołuje także nagłą zmianę magnetycznej przenikliwości2).

2) L. Fraichet: Revue d’artillerie. Fevr. 1904.
3) I. A. Ewing: „The strength of materials".
4) I. A. Ewing: „On Certain Effects of Stress on soft Iron Wires*. Proc, of Roy. Soc. 1880.

§ 7. WPŁYW CZASU NA WYDŁUŻENIA
Przy rozpatrywaniu rozciągania w granicach proporcjonalności nadmieniliśmy już, że wydłu­

żenie rośnie nieco z czasem i nazwaliśmy to zjawisko opóźnieniem sprężystem. Po przekroczeniu 
granicy sprężystości staje się wpływ czasu daleko silniejszym. Mierząc wydłużenie przy pomocy 
rozpowszechnionego aparatu zwierciadełkowego, powiększającego wydłużenia 500 razy, można wy­
godnie obserwować powolny wzrost wydłużenia przy niezmiennem obciążeniu. W takim przypadku 
mówią, że materjał „płynie". Jeżeli obciążenie przekroczyło pewną granicę, to takie wydłużanie 
pręta może z czasem zakończyć się rozerwaniem.

Szczególnie silny wpływ czasu zachodzi u takich materjałów, jak 
cynk i ołów. Ogromne znaczenie ma dla nich prędkość, z jaką rośnie 
obciążenie. Le Chatelier zrobił w tym kierunku interesujące doświad­
czenie. Rozciągając pręty cynkowe przekonał się, że do rozerwania pręta 
w ciągu jednej minuty potrzeba było naprężenia 2400feg/cm2, zaś przy 
doświadczeniu trwającem całą godzinę wystarczało 1150&g/cm2. Jeżeli 
dalej przedłużyć trwanie doświadczenia, to można jeszcze nieco zmniej­
szyć wielkość naprężenia rozrywającego. Zauważymy nadto, że wpływ 
czasu objawia się najsilniej w pierwszej chwili działania obciążenia, 
poczem po pewnym przeciągu czasu staje się przyrost wydłużenia nie­
dostrzegalnym.

U takich materjałów jak żelazo kowalne i stal jest wpływ czasu 
daleko słabszy, wszelako diagramy rozciągania zmieniają się nieco, za­
leżnie od prędkości, z jaką rośnie obciążenie przy do- 

Rys’9 świadczeniu. Na rys. (9) przedstawiono diagramy, odpo­
wiadające rozrywaniu żelaznego drutu8). Linja pełna przedstawia wynik doświadcze­
nia dokonanego w przeciągu pięciu minut, kreskowana zaś — wynik doświadczenia 
5000 razy powolniejszego. Wpływ czasu okazuje się tutaj znacznie słabszy, jak 
w przypadku cynku i w praktyce można przyjąć, że wydłużenie żelaznego pręta, 
wywołane obciążeniem wzrastającem stopniowo w ciągu kilku minut nie zmieniłoby 
się przy dłuższem działaniu obciążenia.

Jeżeli, rozciągnąwszy pręt poza punkt krytyczny, pozwolimy obciążeniu działać 
nań przez dłuższy czas, to oprócz powiększenia wydłużenia możemy jeszcze stwier­
dzić istotne zmiany własności materjału. Okazuje się np., że po takiej operacji staje 
się żelazo twardszem, do rozerwania pręta potrzeba większego obciążenia niż pier­
wotnie, a całkowite przedłużenie przy rozerwaniu staje się mniejszem. [Mówiąc 
inaczej powiększa się wytrzymałość materjału, a zmniejsza jego plastyczność].

Na rys. (10) przedstawiono wyniki dwu doświadczeń nad wyżarzonym żela­
znym drutem4). Linja pełna przedstawia diagram rozciągania przy ciągłym wzro­
ście obciążenia. Przy drugiem doświadczeniu doprowadzono obciążenie do stanu odpowiadającego 
punktowi a diagramu i pozwolono obciążeniu działać odtąd stale przez 45’/2 godzin. Pod wpływem 
dalszego powiększenia obciążenia otrzymano następnie kreskowaną część diagramu a c d.

!) Hort: Zeit. d. V. d. Ing. 1906. Str. 1831.
R. Dinnik: „Opredielenie predieła uprugosti po izmienieniu temperatury tieła“. Izw. Kiew. Pol. Inst. 1909.
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§ 8. PODWYŻSZENIE PUNKTU KRYTYCZNEGO [CZYLI GRANICY PLASTYCZNOŚCI]

Przekroczeniu punktu krytycznego towarzyszą, jakeśmy widzieli, znaczne zmiany w materjale 
i dla praktyki jest rzeczą zasadniczej wagi wyjaśnić wpływ tych zmian na własności sprężyste 
i wytrzymałość materjału. Już Gerstner robił pierwsze doświadczenia w tym kierunku i prze­
konał się, że wydłużenie sprężyste, stanowiące poza punktem krytycznym niewielką część całko­
witego wydłużenia nie przestaje być proporcjonalnem względem obciążenia.

Jeżeli zmniejszamy obciążenie pręta po rozciągnięciu go do punktu A diagramu (rys. 11), 
to przy powrotnym przebiegu odkształceń otrzymamy np. prostą AB, równoległą do początkowej
prostej CD. W rezultacie pozostaje trwałe wydłużenie pręta określone odcin­
kiem CB. Tak rozciągnięty pręt objawia znaczną zmianę swoich własności. 
Przy powtórnem obciążeniu wywołują już bardzo nieznaczne siły wydłużenie 
trwałe, a na ich wielkość wywiera wielki wpływ czas. Takie obniżenie gra­
nicy sprężystości jest zwłaszcza widoczne, jeżeli powtarzamy obciążenie 
natychmiast po ukończeniu opisanego doświadczenia. Skoro pozwolimy prę­
towi „wypocząć" i powtórne doświadczenie robimy po upływie dłuższego 
czasu (np. po miesiącu), to można stwierdzić odzyskanie sprężystych wła­
sności materjału, który znowu podlega wcale dokładnie prawu Hooke’a. Gra­
nica proporcjonalności okazuje się przytem znacznie podwyższoną i może 
osiągnąć wartość tego naprężenia, które wywołało rozciągnięcie pręta przy 
poprzedniem doświadczeniu. Na diagramie przedstawia to prosta BF. Po­
cząwszy od punktu F otrzymujemy dalszą krzywą, która jest jakby prze­
dłużeniem krzywej DA. Nagła zmiana wydłużeń, zachodząca przy punkcie F, 
ma takiż sam charakter, jak w poprzedniem doświadczeniu przy punkcie C 
na rys. (6). Powodując znaczne wydłużenie pręta, osiągamy przeto przesu­ Rys. 11

nięcie punktu krytycznego w górę').
Jeżeli poprzednio rozciągnięty pręt poddamy wstrząśnieniom, albo ogrzejemy nieco (do 100° C), 

to pokazuje się, że własności sprężyste powracają znacznie prędzej. Dla ilustracji podamy wyniki 
kilku doświadczeń z prętem stalowym2). Na rys. (12) przedstawia diagram A pierwsze doświadczenie,

2) I. Muir: Phil. Trans, of. Roy. Soc. 1899.

zaś diagram B powtórne rozciąganie pręta po upływie 10 mi­
nut od ukończenia pierwszego. Widzimy tutaj znaczne zbo­
czenia od prawa Hooke’a już przy nieznacznych obciążeniach. 
Linję C nakoniec otrzymano dla tegoż pręta po ogrzewaniu 
go przy temperaturze 100° C przez cztery minuty.

Takie podgrzanie, jak widać z diagramu, przywróciło 
materjałowi całkowicie jego sprężyste własności. Dla wyra­
zistości rysunku przesunięto nieco punkty początkowe diagra­
mów względem siebie.

Pierwsze rozciągnięcie żelaznego pręta poza punkt kry­
tyczny podwyższa granicę proporcjonalności i zmniejsza jego 
rozciągliwość, a więc działa podobnie jak hartowanie na stal. 
Z tą okolicznością należy się liczyć w praktyce, albowiem 
żelazne elementy konstrukcyjne podlegają często obróbce „na 
zimno" i przy tern doznają znacznych odkształceń trwałych. 
Np. wskutek krajania blachy nożycami staje się narażona na 
obróbkę krawędź blachy twardszą i przy zginaniu takiej blachy 

pojawiają się często pęknięcia, ponieważ materjał utracił w tern miejscu znaczną część swej pla­
styczności, t. j. zdolności do znoszenia odkształceń trwałych. Podobne zjawisko można obser­
wować przy przebijaniu otworów na nity w żelaznych blachach. Brzeg otworu staje się twardszym

9 Objaśnienie mechanizmu tego zjawiska można znaleźć w interesującej książce W. Rosenhain’a: „An introduction 
to the Study of Physical Metallurgy“. II wyd. r. 1915, str. 247.

2*
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od reszty materjału. Przy rozciąganiu wstęgi, zaopatrzonej w otwory przebijane, nie może stwar­
dniała część materjału nadążyć za odkształceniem reszty i wskutek tego przenoszą się na nią 
większe naprężenia, wywołując łatwo rysy i pęknięcia.

Ażeby zapobiec szkodliwemu działaniu przebijania dziur, zastępuje się przebijanie kosztowniej- 
szem wierceniem. Dla oszczędności przebija się otwory mniejszym kalibrem, a następnie powiększa 
się świdrem do żądanej średnicy, usuwając przez to stwardniałą warstwę materjału z korzyścią dla 
trwałości konstrukcji.

Opisaną własnością twardnienia żelaza kowalnego, wskutek znacznych odkształceń, posługują 
się nierzadko w technice. Tak np. cylindry pras hydraulicznych poddaje się niekiedy najpierw 
ciśnieniu wewnętrznemu przekraczającemu znacznie to największe ciśnienie, przy którem prasa 
będzie pracować. Tym sposobem zapewnia się na przyszłość niezmienność średnicy cylindra 
i szczelne przyleganie tłoka. Przytem należy zauważyć, że podobna operacja osiąga cel i zwiększa 
trwałość konstrukcji tylko wtedy, gdy element poprzednio rozciągnięty będzie i nadal narażony 
wyłącznie na ciągnienie, Doświadczenia wykazały bowiemJ), że u prętów z żelaza kowalnego roz­
ciąganych poza punkt krytyczny pojawiają się przy ściskaniu jako oznaki osłabienia: trwałe 
odkształcenie i zboczenia od prawa Hooke’a, już przy stosunkowo niewielkich obciążeniach.

W tych przeto wypadkach, w których przygotowawcze odkształcenia mają na celu zabezpie­
czenie niezmienności konstrukcji, należy stosować odkształcenia tego samego rodzaju, co odkształ­
cenia, na które będzie narażona odnośna część konstrukcji podczas jej funkcjonowania, to znaczy: 
element można poprzednio narazić na znaczne rozciągnięcie, jeżeli na przyszłość będzie tylko 
ciągniony, zaś na skurczenie, jeżeli ma być nadal wyłącznie ściskany.

Żelazo narażone już raz na odkształcenia trwałe, może odzyskać pierwotną plastyczność przez 
wyżarzenie, t. j. ogrzewanie przy temperaturze czerwonego żaru (około 700° C) przez mniej 
więcej pół godziny i następne powolne ostudzenie. Badania mikroskopowe świadczą, że tą drogą 
wracają do pierwotnej postaci owe kryształki, które doznały trwałych odkształceń postaciowych przy 
przekroczeniu punktu krytycznego. W zwykłych warunkach walcowania żelaza i stali opuszcza 
materjał maszynę przy tak wysokiej temperaturze, że niknie prawie wpływ obróbki na wysokość 
punktu krytycznego [o ile produkt walcowania jest dość masywny. Cienkie blachy, wstęgi i kształ- 
tówki okazują tern większą wytrzymałość i mniejszą plastyczność, im są cieńsze]. Zwykłe targowe 
żelazo zachowuje się po wyżarzeniu prawie tak samo, jak w stanie naturalnym. Inna sprawa 
z obróbką żelaza na zimno; jej towarzyszy zawsze znaczne podwyższenie punktu krytycznego. 
Ażeby zapobiec szkodliwym następstwom twardości materjału, uciekamy się w praktyce często do 
wyżarzenia części, które podlegały obróbce na zimno.

§ 9. BADANIE METALI ZAPOMOGĄ „PRÓBY ROZRYWANIA”

Próba rozrywania jest podstawowem doświadczeniem przy badaniu wytrzymałości metali. 
Badanemu prętowi nadajemy przekrój kołowy (rys. 13) lub prostokątny (rys. 14). Najistotniejsze 
znaczenie przy tych doświadczeniach ma osiowe przeniesienie siły rozciągającej. Dla prętów wal-

Rys. 13 Rys. 11

cowych osiąga się to łatwo zapomocą specjalnych podkładek kulistych. W przypadku płaskich próbek, 
uchwyconych zwykle przy pomocy nasiekanych klinów, jest przeniesienie siły z natury rzeczy mniej 
doskonałe. To też prętów tego kształtu używa się tylko wtedy, gdy zachodzą szczególne trudności 
sporządzenia pręta okrągłego z danego materjału, np. przy badaniu blach i cienkich kształtówek.

x) Bauschinger: Mitt. aus d. mech, techn. Lab. in Munchen 1886.
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Ażeby zapewnić jak najbardziej równomierny rozkład naprężeń w przekroju poprzecznym 
i stworzyć warunki, w których pęknięcie powinno zajść w środkowej części pręta, nadaje się prę­
towi próbnemu postać uwidocznioną na rys. (13). Stały przekrój środkowej części zwiększa się 
łagodnie ku końcom opatrzonym „głowami". Ażeby przy oddzielnych doświadczeniach otrzymywać 
z pewnością wyniki porównywalne unormowano ściśle postać próbki. Środkowa część walcowa 
normalnego pręta ma grubość 2 cm i długość 22 cm. Przy doświadczeniach robi się pomiary tylko 
na środkowej długości 20 cm (długość rachunkowa). Nadmiar długości części walcowej służy 
do tego, aby uchylić wpływ zmiany przekroju w zgrubionych końcach na odkształcenia i naprę­
żenia w badanej części. Stosunek długości rachunkowej do grubości równa się zatem dla pręta 
normalnego 10. Związek ten można przedstawić w postaci:

1= 10d= 11,3 V^~da = 11,3 .............................................. (8)

Przy pomocy powyższego wzoru obliczamy długość rachunkową próbnych prętów o przekroju 
odmiennym od kołowego.

Przy próbie rozrywania notuje się:
1) Obciążenie odpowiadające punktowi krytycznemu;
2) największe obciążenie potrzebne do rozerwania, czyli „obciążenie rozrywające";
3) zwiększenie długości rachunkowej przy rozerwaniu i
4) zwężenie przekroju poprzecznego w miejscu wykształcenia się szyjki.
Dzieląc obciążenie rozrywające przez pole przekroju poprzecznego znajdujemy wielkość 

„naprężenia r o zrywa j ą c eg o". Będziemy je nazywać doraźną wytrzymałością mate- 
rjału przy rozrywaniu. Ta nader ważna technicznie stała waha się jednakże dla jednego i tego 
samego materjału w dość obszernych granicach, jak widać z następującej tablicy.

Doraź. wytrz. Wydłużenie
Materjał przy rozciąg. całkowite

w kglcm* w procentach

Żelazo spawalne na sworznie i nity........................................... 3500 do 4000 12 do 20
Żelazo spawalne w postaci blach w kier, walcowania .... 3300 „ 4000 8 „ 20
Żelazo zlewne . .............................................................................. 3300 „ 4500 25 „ 28
Stal zlewna [miękka]...................................................................... 4400 „ 6500 23 „ 27
Stal tyglowa [miękka]...................................................................... 5000 „ 5500 20 „ 25
Stal niklowa..................................................................................... 5500 „ 6500 22 „ 27
Stal niklowa hartowana.................................................................. 11000 „ 11500 8
Stal chromo-niklowa...................................................................... 6500 „ 7000 16 do 18

„ „ „ twarda.............................................. 11000 „ 13000 8 „ 10
Żelazo lane...................................................................................... 1200 „ 1800 —
Miedź w postaci blachy walcowanej....................................... 2000 „ 2300 35 do 38
Brąz [zwykły].................................................................................. 2000 6 „ 20
Metal delta, odlew.......................................................................... 3400 do 3700 6
Glin (aluminium) lany.................................................................. 930 „ 1000 8 do 13

„ walcowany lub kuty.............................................................. 1500 5

Pomiar całkowitego wydłużenia pręta służy do określenia stopnia plastyczności mate­
rjału. Długość rachunkową pręta dzieli się zwykle przed doświadczeniem na centymetry. Na tej 
podziałce można potem stwierdzić, że wydłużenia poszczególnych części bardzo się różnią od 
siebie; największe odkształcenia zachodzą w okolicy miejsca pęknięcia.
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Wydłużenie długości rachunkowej pręta wyraża się zwykle w odsetkach tejże długości. 
Jeżeli /i oznacza długość rachunkową pręta po rozerwaniu, a / długość pierwotną, to

Lzil. 100 
l

określa przedłużenie w odsetkach. [Doświadczenia pokazały, co zresztą można było przewidzieć 
a priori, że postać pręta próbnego miewa często znaczny wpływ na wyniki końcowe, t. j. na wiel­
kość naprężenia rozrywającego i wydłużenia przy rozerwaniu]. Ażeby przeto zapewnić porówny­
walność wyników różnych doświadczeń, należy używać prętów próbnych o jednej i tej samej 
postaci. Jeżeli zaś to nie jest możliwe, to przynajmniej trzeba zachować związek między długością 
rachunkową a przekrojem, określony wzorem (8).

Odstępstwa od tej reguły mogą doprowadzić do znacznych różnic zwłaszcza w wartości 
rozciągnięcia, t. j. całkowitego wydłużenia przy rozrywaniu prętów z tego samego materjału 
o różnej postaci. Główna przyczyna tkwi w tern, że nie wszystkie części pręta rozciągają się 
jednakowo; największe rozciągnięcie przypada na część odpowiadającą szyjce. Im dłuższa ta część 
w porównaniu do całej rachunkowej długości, tern większe wypadnie procentowe rozciągnięcie.

Nawzajem, przyczyny utrudniające wykształcenie szyjki, wywo- 
__ H ł I ZH' —. t łują zmniejszenie procentowego przedłużenia. Pręty np. z wyto- 
___M' L----- lol----- 1 czonem dokoła wyżłobieniem (rys. 15) rozciągają się mniej niż

Rys 15 pręty o stałym przekroju. Wpływ takich żłobków jest tern zna­
czniejszy, im mniejszą część długości pręta zajmują. Pęknięcie 

zachodzi oczywiście w osłabionym przekroju. Wytworzeniu się szyjki przeszkadzają przytem 
sąsiednie części pręta o większym przekroju.

Obok wartości rozciągnięcia używa się także do oceny plastyczności materjału skurczenia 
poprzecznego w szyjce. Jeżeli oznaczymy przez F pole przekroju pierwotnego, a przez Fi pole 
najmniejszego przekroju po rozerwaniu, to

F-F
F

. 100

określa procentowe skurczenie przekroju poprzecznego.
Wysoki stopień plastyczności objawia się jako bardzo cenna własność materjałów w tych 

przypadkach, kiedy jakaś konstrukcja podlega oprócz obciążeń statycznych • także działaniu uderzeń 
i wstrząśnień. Materjał kruchy, t. j. materjał o niskim stopniu pla­
styczności może sprowadzić w tych warunkach całkiem nieoczeki­
wane katastrofy.

Przy odbiorze większych partyj żelaza i stali z fabryk, ustana­
wia się pewne techniczne warunki, którym materjał winien czynić 
zadość. Zwykle poprzestaje się na żądaniu, aby doraźna wytrzymałość 
i procentowe rozciągnięcie nie były niższe od pewnych granic, obra­
nych zależnie od celu, do którego służyć będzie konstrukcja. Tak np. 
na mosty żąda się żelaza o rozciągliwości nie mniejszej jak 16do20°/0. 
Na kotły parowe używa się żelaza o jeszcze większej plastyczności, 
czyli, jak się wyrażają praktycy, jeszcze miększego. Należy zauważyć, 
że rozciągliwość i wytrzymałość zwykłego żelaza i stali, stoją ze 
sobą w dość ścisłym związku. Skoro podwyższyć wytrzymałość że­
laza kowalnego np. przez zwiększenie zawartości węgla, koniecznej, 
jak wiadomo, przymieszki w każdym żelazie technicznem, to jedno­
cześnie obniża się rozciągliwość. Związek tego rodzaju unaocznia 
rys (16) zawierający szereg diagramów rozciągania żelaza i stali. Za­

wartość węgla w odsetkach zaznaczona na każdym diagramie. [Istnieją także przymieszki, jak np. 
nikiel, wpływające korzystnie tak na wytrzymałość jak i plastyczność. Bliższe szczegóły należą 
do materjałoznawstwa i technologji].



23

§ 10. PRACA POTRZEBNA DO ROZERWANIA

Pokazaliśmy już pierwej (w § 4), że pole zawarte między krzywą diagramu, osią odciętych 
i końcową rzędną określa pracę wykonaną przy rozciąganiu. Wielkość tego pola można zawsze 
przedstawić wzorem (rys. 17):

T = n . OH . CD,
w którym oznacza OH rozciągnięcie pręta przy rozerwaniu, CD — największą wartość siły rozcią­
gającej, t) — t zw. „spółczynnik pełności". Ta liczba jest widocznie mniejsza od jedności 
i, jak wykazały doświadczenia L. Tetmajera, waha się dla jednego i tego samego materjału w tak 
ciasnych granicach, że praktycznie można ją uważać za stałą charakterystyczną dla materjału. Ażeby 
otrzymać wielkość niezależną od rozmiarów pręta, podzielimy pracę 
przez jego objętość. Znaleziona tą drogą „praca właściwa" ma­
terjału przedstawia się wyrażeniem

T OH CD
IF~^ l F “ ''6 Pmax

Tutaj oznacza e wydłużenie względne, a pmax — największe cią­
gnienie (naprężenie rozciągające). Właściwa praca wyłożona na ro­
zerwanie może do pewnego stopnia charakteryzować odporność ma­
terjału na uderzenia. Pod tym względem będzie materjał tern lepszy, 
im większą się okaże ta praca.

W budownictwie dopuszcza się nieraz żelazo o doraźnej wytrzy­
małości leżącej poniżej pewnej normy, jeżeli ten ubytek wynagradza 
większa rozciągliwość. Praktyczna możliwość takiej kompensaty wyraża się specjalnemi formu­
łami, w które wchodzi tak doraźna wytrzymałość R, jak i rozciągliwość e. Przy dostawach żelaza 
na mosty żądają np., aby był zachowany warunek

R + 2e 85,
w którym R ma być wyrażone w kglmm*, a e w odsetkach. A więc, dajmy na to, żelazo o roz­
ciągliwości 20% winno mieć doraźną wytrzymałość nie mniejszą od 45 kglmm*.

W tych przypadkach, w których nie rozporządzamy całkowitym diagramem, można wyznaczyć 
pracę przy rozrywaniu z trzech danych, odpowiadających obciążeniu na granicy proporcjonalności O/ł, 
największemu obciążeniu CD i całkowitemu wydłużeniu OH. Do tego służy przybliżony wzór

2
T - OH. OA+ ~ OH (DC - OH),

O

oparty na przyjęciu, że pole diagramu składa się z prostokąta 0AH'H i odcinka parabolicznego 
o podstawie OH i wysokości DC — AO. Wartość pracy właściwej potrzebnej do rozerwania niektó­
rych materjałów podajemy poniżej.

M ą t e r j a 1 Praca właśc. w cm1

Żelazo spawalne.................... 2 do 7
„ zlewne....................... 6 do 8

Miękka stal........................... 8 i więcej

§ ll. ŚCISKANIE

W granicach proporcjonalności jest związek między skróceniem pręta a siłą ściskającą zupełnie 
oznaczony wartością modułu sprężystości przy ściskaniu, który równa się zawsze modułowi sprę­
żystości przy rozciąganiu i dlatego będziemy go oznaczać tą samą literą E. Poza granicami pro­
porcjonalności staje się zależność między odkształceniami a naprężeniami bardziej złożoną i przed­
stawiamy ją zwykle wykreślnie. Diagramy ściskania wyglądają rozmaicie, zależnie od tego, czy 
badany materjał jest kruchy, czy też plastyczny. Dla materjałów kruchych, jak żelazo lane, kamień,
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beton i t. d. ma diagram postać uwidocznioną na rys. (18), który przedstawia wynik jednego 
z doświadczeń Bacha z granitem. Diagram ten można oczywiście zastąpić formułą analityczną. 

Zadowalając się przybliżeniem, jakie daje for­
muła potęgowa, możemy dla tegoż doświadczenia 
napisać

pV3
250000

Kilka diagramów dla materjałów plasty­
cznych zestawiono na rys. (19). U żelaza ko wal­
nego znajdujemy i tutaj punkt krytyczny [gra­
nicę plastyczności], cechujący się nagłą zmianą 
kierunku linji diagramu na poziomy, poczem 
znowu linja się podnosi i często wygina pó­
źniej wklęsłością ku osi rzędnych (osi naprę­
żeń), a więc przeciwnie jak przy rozciąganiu. Ta 
różnica jest jednak raczej pozorna i tłumaczy 
się łatwo rozszerzeniem poprzecznem przy ści­

skaniu, dzięki któremu staje się pole przekroju coraz większem i coraz większego potrzeba 
obciążenia nawet wówczas, gdyby ciśnienie na jednostkę pola miało pozostać stałem1).

Powtarzając ściskanie, można u żelaza kowalnego i stali dostrzec tak samo, jak przy 
powtórnem rozciąganiu, podwyższenie punktu krytycznego, zwiększenie twardości i wpływ czasu 

‘) [Dla materjałów o wysokim stopniu plastyczności, jak np. miedź, nie ma nawet linja diagramu granicy praktycznej, 
gdyż powiększając ciągle obciążenie, zamieniamy w końcu pierwotną postać słupka na cienki krążek o średnicy kilkakrotnie 
zwiększonej, a kontynuowaniu doświadczenia staje na przeszkodzie ograniczona siła maszyny. Gdybyśmy byli w stanie 
powiększać obciążenie bez granic, to i grubość krążka malałaby z pewnością dalej, a linja diagramu zbliżałaby się asympto­
tycznie do prostej równoległej do osi sił w odległości l od tejże (/ — pierwotna długość słupka)].
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przy obciążeniach przekraczających punkt krytyczny. Naprężenia, odpowiadające punktowi kry­
tycznemu, mają przytem w przybliżeniu tę samą wartość, co przy rozciąganiu *)•

Doświadczenia nad ściskaniem napotykają na szereg poważnych trudności. W celu zapew­
nienia równomiernego rozkładu naprężeń w płaszczyźnie przekroju poprzecznego jest pożądanem, 
aby obserwowana część ściskanego pręta była możliwie odległa od jego końców i dlatego nale­
żałoby używać dość długich prętów; wtedy jednak każda najmniejsza niedokładność w osiowem 
działaniu siły, najmniejsze początkowe skrzywienie pręta i najmniejsza niejednolitość materjału 
wywołują prędzej czy później wygięcie pręta, zwane w tym przypadku „wyboczeniem". Skoro 
zaś weźmiemy słupki dostatecznie niskie, aby wyboczenia uniknąć, to mamy z nową trudnością 
do czynienia. Maszyna do badania wywiera nacisk na podstawy słupka zapomocą starannie 
obrobionych płyt stalowych. Przy ściskaniu zwiększają się rozmiary poprzeczne słupka, ale 
u podstaw napotyka to rozszerzenie na przeszkodę w postaci sił tarcia w płaszczyźnie przy­
legania płyt do słupka. Siły te są oczywiście skierowane ku środkowi podstawy, wskutek czego 
mamy w pobliżu podstaw do czynienia nie z prostem ściskaniem, lecz ze zjawiskiem wielce 
złożonem. Z powodu tych trudności nie robi się zwykle doświadczeń nad ściskaniem dla metali. 
Dla oceny ich wytrzymałości i sprężystości przy ściskaniu wystarczają dane z doświadczeń 
przy rozciąganiu, jeżeli przyjmiemy (zgodnie z dotychczasowemi badaniami), że dla żelaza kowal- 
nego, stali i innych jeszcze metali odpowiadają granica proporcjonalności i punkt krytyczny przy 
ściskaniu naprężeniom tej samej wielkości co przy rozciąganiu. Co się tyczy doraźnej wytrzyma­
łości przy rozgniataniu, to dla materjałów plastycznych niepodobna podać jakichkolwiek określonych 
wartości, gdyż przy doświadczeniach nie można doprowadzić do wyraźnego zniweczenia spójności.

Przy badaniu materjałów kruchych rezygnujemy raczej z próby rozciągania na korzyść próby 
ściskania, którą przeprowadzamy aż do zupełnego pokonania spójności. Do tego używa się próbek 
o postaci kostek różnej wielkości [zależnie od siły maszyny, którą dysponujemy]. Z żelaza lanego 
robi się kostki o długości krawędzi 3 cm, z kamienia 5 lub 7 cm. Przy badaniu bardzo niejedno­
litych materjałów, jak np. beton, wypada stosować jeszcze większe rozmiary.

Przez doraźną wytrzymałość przy ściskaniu należy analogicznie do rozciągania rozumieć iloraz 
z obciążenia rozgniatającego przez pole przekroju, file wielkości tak obliczone na podstawie 
doświadczeń z kostkami nie będą właściwie określać takiej wytrzymałości, albowiem wpływ tarcia 
na podstawach kostki jest tak znaczny, że nie można uważać rozkładu ciśnień za równomierny. 
Wielkości „wytrzymałości kostkowe j“ mają tylko wzglę­
dne znaczenie i mogą w przybliżeniu określać stosunek wy- . ' *
trzymałości przy ściskaniu odpowiadających kruchych ma- 
terjałów. *

Wpływ tarcia na podstawach odbija się wyraźnie na 
sposobie, w jaki pęka i kruszy się materjał ściskanej kostki. 
Z kostki pozostaje po doświadczeniu część o postaci przed- 
stawionej na rys. (20). Materjał przylegający do płyt ma- 
szyny pozostaje całym, a odpadają tylko z bocznych ścian części 
wypchnięte niejako przez dwa przeciwległe ostrosłupowe kliny 
z materjału niepozbawionego spójności. Zupełnie inaczej wy- / . 
gląda zgnieciona kostka, jeżeli usunąć tarcie na podstawach 
przez posmarowanie parafiną2). Wtedy powstają pęknięcia ^***%I«M 
równoległe do ścian bocznych i dzielące kostkę na kilka czę- 
ści. Wartość otrzymanej przytem wytrzymałości jest znacznie Rys. 2o

2) Foppl: Mitt. aus d. mech, techn. Lab. in Miinchen. Heft 27.

mniejszą, niż przy zgniataniu kostki zwykłym sposobem. Dla 
zmniejszenia wpływu tarcia używają też czasem podkładek z miększego materjału, co jednakże 
przysparza nowe źródło błędów. Najracjonalniej byłoby nadać próbkom postać walców o tyle 
wysokich, ażeby wpływ tarcia w głowach na zgniecenie w środkowej części stał się możliwie

J) Moore: Buli. of. Univ. Illinois Nr. 68.
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mały, a zarazem nie tak wysokich, ażeby się pojawił zakłócający wpływ wyboczenia. Odpowiedni 
stosunek wysokości do średnicy słupka można znaleźć doświadczalnie 1).

*) Por. L. Prandtl und Rinne: Neues Jahrb. f. Mineralogie. 1907.
2) R. Baumann: „Die Festigkeitseigenschaften der Metalle in Warme und Kalte". 1907.

Na zakończenie podajemy tablicę wartości doraźnej wytrzymałości przy ściskaniu dla nie­
których materjałów.

§ 12. WPŁYW TEMPERATURY

Żelazo lane................................................... 5000 do 8000 kglcm*
Granit.......................................................... 800 „ 2000 „
Piaskowiec................................................... 500 „ 1800 „
Wapień.................•..................................... 400 „ 2000 „
Cegła.......................................................... 150 „ 300 „
Beton.......................................................... 60 „ 400 „
Sośnina 245
Dębina > w kierunku włókien .... 345
Buczyna ...............................................320

Podane powyżej wyniki doświadczeń nad wytrzymałością materjałów odnoszą się do badań 
w zwykłej temperaturze pokojowej. Ale w praktyce zachodzi niekiedy potrzeba oceny wytrzymałości 
także przy wysokiej temperaturze, na jaką np. są narażone kotły parowe, cylindry motorów wybu­
chowych i t. d. Przeprowadzone w tym kierunku badania2) wykazały, że znaczne podwyższenie

temperatura
Rys. 21

temperatury zmniejsza wogóle wytrzymałość, jakkolwiek u żelaza kowalnego i stali zachodzi 
maximum wytrzymałości przy temperaturze 200 do 300° C. Daleko wrażliwszą na podwyższenie 
temperatury jest jednakże rozciągliwość. Próbki odlewu stalowego np. okazują przy temperaturze 



27

około 200° tylko trzecią część tej rozciągliwości, jaką posiadają w zwykłej temperaturze. Dla brązu spada 
rozciągliwość przy 400° C prawie do zera; Podane poniżej diagramy (rys. 21 i 22) przedstawiają przej­
rzyście zmiany wytrzymałości i plastyczności ze wzrostem temperatury dla niektórych materjałów.

Rvs 22

Obniżeniu temperatury do — 80° C towarzyszy, jak wykazały doświadczenia, powiększenie 
wytrzymałości przy rozciąganiu i zmniejszenie rozciągliwości. Wyniki niektórych doświadczeń 
podaje poniższa tablica l)«

M a t e r j a ł Tempera­
tura °C

Doraź. 
wytrz.przy 

rozciąg. 
kg/cma

Całkowite 
wydłuże­

nie 
o/ /o

Skurcze­
nie prze­

kroju 
o/ /o

Żelazo zlewne................
- 80 4270 23,8 32,6
- 20 4170 26,2 34,9
4- 20 3970 27,7 39,9

- 80 4520 23,4 61,9
Miękka stal.................... - 20 4360 33,3 61,6

4- 20 4040 32,8 62,7

- 80 8440 10,9 23,8
Stal sprężynowa .... - 20 8420 14,0 24,1

4- 20 7720 16,0 28,8

Stal niklowa...................
4- 20 8800 10,7 60,8
4-200 9100 „8,7 60,0
4-400 7300 7,0 74,0

0 Szereg nowych danych można znaleźć w publikacji F. C. Lea. Engineering 1914. Str. 487.
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ROZDZIAŁ III

O NAPRĘŻENIACH PRZY ROZCIĄGANIU I ŚCISKANIU

Naprężenie

13. NAPRĘŻENIA W PRZYPADKU PROSTEGO ROZCIĄGANIA

w danym punkcie O odkształconego ciała określamy ogólnie w następujący sposób:
Prowadzimy przez punkt O przekrój powierzchnią mn (rys. 23), rozdzielającą dane ciało na dwie

Rys. 23

Wtedy przez
granicę stosunku

części A i B, i rozpatrujemy równowagę jednej z tych części np. /ł. Oprócz 
sił zewnętrznych (obciążeń) na nią działających, musimy teraz wziąć pod 
uwagę siły wewnętrzne, czyli napięcia w przekroju mn, określające działanie 
odciętej części B na część rozpatrywaną. Rozkład tych sił na powierzchni mn 
będzie wogóle nierównomiernym i ażeby określić ich natężenie w jakimkolwiek 
punkcie O, obierzemy element 8F należący do powierzchni mn i zawierający 
punkt O. Ten element leży oczywiście w płaszczyźnie stycznej do mn 
w punkcie O. Niech napięcia działające na element SF mają wypadkową 8P. 

wielkość naprężenia w danym punkcie O danego elementu dF rozumieć będziemy

^P
6F ’

a jako kierunek naprężenia weźmiemy kierunek wypadkowej 8P. Przez obrany punkt O można 
poprowadzić nieskończoną ilość płaskich elementów rozmaicie nachylonych. Każdemu z nich będzie 
odpowiadać pewne naprężenie. [Ogół tych naprężeń określa „stan napięcia" w rozpatrywanym
punkcie]. Łatwo zrozumieć, że naprężenia w poszczególnych elementach 
nie mogą być od siebie zupełnie niezależne. Prawo zmiany naprężenia 
w zależności od kierunku płaskiego elementu znajdziemy najpierw dla 
najprostszego stanu napięcia, jaki zachodzi przy rozciąganiu lub ściskaniu 
pryzmatycznych prętów. Rozkład naprężeń w przekroju prostopadłym 
do osi pręta rozpatrywaliśmy już powyżej (ob. § 1); teraz przejdziemy 
do przekrojów nachylonych do osi (rys. 24).

Odrzuciwszy w myśli górną część pręta odciętą przekrojem p q, 
weźmy pod uwagę część dolną. Kierunek płaszczyzny przekroju określimy 
kątem d, jaki tworzy jej normalna zewnętrzna n z osią pręta (osią X-ów). 
Pole przekroju pq równa się F:cos&. Siły zastępujące działanie odrzu­
conej części pręta na część rozpatrywaną sprowadzają się do wypadko­
wej P skierowanej ku górze. W płaszczyźnie pq rozkładają się naprężenia

Rys. 24

równomiernie, każde
bowiem włókno pręta doznaje takich samych odkształceń. Wielkość naprężenia p^ w dowolnym 
punkcie przekroju pę, znajdziemy, dzieląc wypadkową P przez pole przekroju; a zatem

P cos
Pt = —, F 

czyli wielkość naprężenia zależy od nachylenia przekroju pq. Kierunek zaś jest wido­
cznie identyczny z kierunkiem osi X-ów.

Rozłóżmy teraz naprężenie p^ na składową normalną pn i styczną pt. Z rys. (25)
//i

I

rrrrrrr

Rys. 25

wynika, że
P

pn = p^ COS 13 = COS2^ = p COS213,

P P . D .pt = Po sin = — sin £ cos £ = sm 2 3 = — sin 2Et ho F 2F 2

• (9)

jeżeli przez 
normalne

p oznaczymy naprężenie w przekroju prostopadłym do osi. A zatem naprężenia 
osiągają największą wartość p w przekrojach normalnych, a naprężenia sty-
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Czne w przekrojach nachylonych do osi pod kątem •d = 45°. Nadto widać ze znalezionych 
formuł, że

(Pt)max — 2 (Pn/max 2

Pomyślmy sobie dwa nieskończenie bliskie i równoległe przekroje pxq} i pq, (rys. 26) i dzia­
łajmy na przekrój p^ napięciami zastępującemi działanie części I na część II, 
cienka warstwa pqqiPi będzie pod wpływem tych sił w równowadze. Naprę­
żenia normalne dążą, jak widać z rysunku, do zwiększenia wzajemnej odle­
głości obu przekrojów; naprężenia styczne zaś do wzajemnego przesunięcia 
tychże. Te ostatnie nazywamy dlatego także naprężeniami przesuwaj ącemi, 
albo ścinającemi.

Porównajmy naprężenia w przekrojach wzajemnie prostopadłych (rys. 27). 
Jeżeli nachylenie jednego przekroju, np. pq, określa kąt to 270° + $ określi 
nachylenie drugiego (rs), a odpowiadające naprężenia składowe będą według (9):

p'n = pcos2 (270° + 3) = p sin2 3,

2) [Odwrotną umowę napotykamy w podręcznikach fizyki].

p\ = | sin (180° + 2 3) = - | sin 2 3.

A zatem: 
p'n + pn = p, pzt = — Pt-

Szczególnie ważną jest własność naprężeń ścinających przedstawiona drugiem z powyższych 
równań, które wyraża, że:

Naprężenia styczne w dwu przekrojach wzajemnie prostopa­
dłych są co do bezwzględnej wartości równe. [Różnica znaków alge­
braicznych wskazuje na to, że kierunki obu naprężeń nie są jednobieżne, t. zn., że 
idąc w myśli z biegiem strzałki jednego naprężenia po powierzchni rozpatrywanej 
części aż do krawędzi przecięcia się obu przekrojów i przechodząc następnie na 
przekrój drugi, napotykamy strzałkę o biegu przeciwnym].

Zaznaczymy nakoniec, że stosownie do równań (9) będzie dla 3 = 90°
pn = Pt = O,

to znaczy, że w przekrojach podłużnych pręta niema żadnych naprężeń, czyli, że 
sąsiednie podłużne elementy („włókna") pręta nie przenoszą na siebie nawzajem 
żadnych sił ‘).

Powyższe wywody dokonane na przypadku siły rozciągającej P zastosujemy 
także łatwo w przypadku siły ściskającej. Wystarczy tylko odwrócić kierunki naprężeń.

W dalszym ciągu umówimy się uważać naprężenia ciągnące, czyli ciągnienia, za dodatnie, 
a cisnące, czyli ciśnienia, za ujemne2).

X*

Rys. 27

§ 14. ROZKŁAD NAPRĘŻEŃ W PRZYPADKU ROZCIĄGANIA LUB ŚCISKANIA W DWU 
KIERUNKACH WZAJEMNIE PROSTOPADŁYCH [CZYLI W DWUWYMIAROWYM STANIE 

NAPIĘCIA]

Niechaj na dwie pary przeciwległych ścian prostopadłościennego pręta /IB (rys. 28) działają równo­
miernie rozłożone napięcia normalne o wypadkowych Px, Py równoległych odpowiednio do osi X, Y 
tegoż prostopadłościanu. Pola odpowiadających ścian prostopadłościanu oznaczymy przez Fx i Fy.

*) [Ten wniosek pozostaje oczywiście ważnym tylko tak długo, dopóki spełniają się założenia, z których wypływa 
równomierny rozkład naprężeń w każdym przekroju prostopadłym do osi pręta. Z chwilą np. tworzenia się szyjki przy 
rozrywaniu pręta, upadają te założenia i pojawia się wzajemne oddziaływanie włókien. Podobnież ma się rzecz w przy­
padkach prętów złożonych podłużnie z różnych materjałów, np. drutu miedzianego z „duszą" stalową i t. p.].
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Naprężenia w przekrojach prostopadłych do osi X, względnie Y będą oczywiście normalnemi
równaniami

P* . Py
P* ~ p 1 Py ~ p

i określą się

Obliczymy teraz naprężenia w przekroju m n, prostopadłym do płaszczyzny 
rysunku i wyznaczonym zapomocą kąta Przytem będziemy rozpatrywać dzia­
łanie górnej części pręta na część dolną. Całkowite naprężenia znajdziemy, jak 
łatwo zauważyć, sumując naprężenia wywołane ciągnieniem w kierunku osi X-ów 
i naprężenia wywołane ciągnieniem w kierunku osi Y-ów. Wyrażenia dla pierw­
szych otrzymaliśmy powyżej (rów. 9), trzeba w nich tylko zamiast P i F wsta­
wić P* i F

Dla otrzymania drugich wystarczy zastąpić w rów. (9) przez 
a P i F przez Py i Fy. W ten sposób znajdziemy

n _ P*
Pt~ 2

pn = px cos2 3 4- py sin2 .

sin 21) — sin 2 3 (P* ~ Py) sin 2 3

• (10)

• (U)

Z otrzymanych wzorów wynika z łatwością, że największe naprężenia styczne w przekrojach 
prostopadłych do płaszczyzny X Y są nachylone do osi pod kątem 45". Ich wielkość określa równanie:

(pt).„= ...............................................-(12)

Co się tyczy naprężeń normalnych, to, szukając w znany sposób krańcowych wartości prawej 
strony równania (10), znajdujemy, że pn osiąga największą, względnie najmniejszą wartość dla 
0 = 0 i d = 90". Jedna z nich jest zatem równa p*, a druga py. Jeżeli np. p* > py, to (pn)n>ax = px, 
a (Pn)min = Py; skoro zaś w szczególnym przypadku px = py, to i wszystkie pn są sobie równe, a pt== 0.

Łatwo wykazać, podobnie jak w poprzednim paragrafie, że naprężenia styczne w dwu wza­
jemnie prostopadłych przekrojach są sobie równe co do bezwzględnej wartości.

Rozpatrzyliśmy naprężenia w płaszczyznach prostopadłych do płaszczyzny XY. Jeżeli 
w szczególności zwrócimy uwagę na płaszczyzny równoległe do osi X lub Y, to naprężenia w nich 
będą określone temi samemi wzorami, co dla prostego rozciągania, albowiem siły rozciągające 
równoległe do płaszczyzny przekroju nie mogą w nim wywołać żadnych naprężeń.

W wywodach niniejszego paragrafu przyjęliśmy, że naprężenia px i py są ciągnieniami. Gdyby 
jedno z nich, albo obadwa były ciśnieniami, tp wystarczy oczywiście zmienić odpowiednio znaki 
algebraiczne, ażeby z uzyskanych formuł korzystać w każdym przypadku.

§ 15. ELIPSA NAPRĘŻEŃ
Prawo zmiany naprężenia w zależności od kąta £, wyrażone wzorami (10) i (11) można z ko­

rzyścią przedstawić wykreślnie.
Dla każdego płaskiego elementu m n, prostopadłego do płaszczyzny X Y i przechodzącego przez 

dany punkt O kreślimy odcinek O A, przedstawiający co do kierunku i wielkości naprężenie w ele­
mencie mn. Przy zmianie położenia elementu zmienia się oczywiście wielkość 
i kierunek odpowiadającego naprężenia, a punkt /I opisuje przytem pewną krzywą. 
Ażeby znaleźć jej równanie, ustawimy wyrażenia dla spółrzędnych x i y punktu /i. 
Z rys. (29) widać, że . . • ąJ ’ x = Pncos0 + Pt sm d,

y = pn sin £ — pt cos 
Po wstawieniu w powyższe równania zamiast p. i pt ich wartości (10) i (11) otrzymamy: 

x = px cos y — Py sin 0,
a rugując z tych równań kąt $ znajdziemy 

x2 + = 1
P** + Py2

czyli równanie elipsy o półosiach px i py. Nazywamy ją elipsą naprężeń. [Z tego geometry­
cznego obrazu widać odrazu, że dane naprężenia normalne px i py określają krańcowe wartości
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t. j. maximum lub minimum naprężeń w mnogości rozpatrywanych elementów. W przekrojach 
odpowiadających tym naprężeniom nie ma oczywiście naprężeń stycznych. Nazywają je prze­
krojami głównemi, a odpowiadające im naprężenia naprężeniami głównemi]. W przy­
padku, gdy jedno z naprężeń, np. py, staje się zerem, mamy do czynienia z prostem rozciąganiem 
w kierunku osi X-ów. Elipsa zamienia się wówczas w odcinek prostej. Jeżeli px = py, to elipsa staje się 
kołem, a zatem naprężenia we wszystkich rozpatrywanych elementach są równe i prostopadłe do 
elementów. Naprężenia styczne zaś znikają w tym przypadku, jak widać z wzoru (11). Mamy wtedy 
do czynienia z równomiernem [dwuwymiarowem] rozciąganiem w płaszczyźnie X Y.

§16. .PRZEDSTAWIENIE NAPRĘŻEŃ SPOSOBEM MOHR’A (KOŁO NAPRĘŻEŃ)

Wykreślona dla punktu O elipsa naprężeń nie pozwala jeszcze z samego rysunku odnaleźć 
łatwo kierunek naprężenia dla dowolnie obranego przekroju i naodwrót. Tej niedogodności nie 
posiada inny geometryczny obraz rozkładu naprężeń, polegający na 
przedstawieniu wykreślnem formuł (10) i (11).

Na osi X dowolnie obranego prostokątnego układu spółrzędnych 
odmierzamy odcinki O A i O A, przedstawiające w pewnej skali 
naprężenia px i py. Na rys. (30) przyjęto, że px > py > 0. Na 
odcinku A A = px — py, jako na średnicy, zakreślamy półkole. Spół- 
rzędne punktów tego półkola określają, jak łatwo okazać, wielkości 
naprężeń składowych pn i pt. Oznaczywszy bowiem przez O kąt, 
jaki tworzy z osią X na rys. (29) normalna zewnętrzna prze­
kroju elementarnego mn i odmierzywszy następnie jego dwukrotną wartość 2^ na rys. (30), 
jako kąt środkowy ACD nakreślonego koła, znajdujemy wartość rzędnej punktu D:

DE= DCsin2» = p- 2 Py sin2J, 
zaś wartość odciętej:

OE=OC — CE = P^Py - p'~^cos^-2^ =

— pxcos2 $ + py sin2^.
A zatem odcięta i rzędna punktu D przedstawiają odpowiednio wiel­
kości naprężenia normalnego i stycznego określone wzór. (10) i (11).

Jeżeli jedno z naprężeń danych np. py staje się zerem (proste rozciąganie), to koło naprężeń 
dotyka osi Y w początku O (rys. 31). Jeżeli zaś jedno z naprężeń będzie ciśnieniem, to odcinamy je w kie­
runku ujemnym na osi odciętych. Rys. (32) przedstawia szczególny przypadek, w którym px = — py.

§ 17. ZWIĄZEK MIĘDZY ODKSZTAŁCENIEM I NAPRĘŻENIEM W DWUWYMIAROWYM 
STANIE NAPIĘCIA

Niechaj na materjalny prostopadłościan A B rys. (33) działają naprężenia rozciągające px i py w kie­
runkach osi X i Y. Gdyby zachodziło tylko jedno z nich, np. px, to odpowiadającem wydłużeniem 

względnem w kierunku X byłoby , przyczem E oznacza moduł sprężystości 
przy rozciąganiu. Ale na wydłużenie w kierunku X ma także wpływ ciągnienie 
w kierunku Y, a mianowicie zmniejsza je o przyczem o jest liczbą Poisson’a.
Wypadkowe wydłużenie właściwe w kierunku osi-X określa przeto wzór:

ey = ^-6^-
E E 

jako wydłużenie względne w kierunku osi Y.

E E
. . . (13)

Analogicznie znajdujemy
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Wyraziwszy przy pomocy wzorów (13) i (14)naodwrót naprężenia przez odkształcenia otrzymamy!

P* „ (^x “F °£y)j
1 — c2

E , , 
Py = A------ T1 — O2

(15)

Ostatnie wzory pozwalają łatwo odpowiedzieć na następujące pytanie: Jak wielkie muszą być 
naprężenia py, któreby przeszkodziły prostopadłościanowi, rozciąganemu w kierunku X, skurczyć 
się w kierunku Y? Podstawiwszy w formułach (15) ey = 0, znajdziemy:

E Ep* =--------- e*, py - o --------- ex, a zatem
1 — G2 1 — G2

Py = tp*

§ 18. ROZKŁAD NAPRĘŻEŃ W TRÓJWYMIAROWYM STANIE NAPIĘCIA

Jeżeli na ściany materjalnego prostopadłościanu A B (rys. 34) działają równomiernie rozło­
żone napięcia P*, Py, Pz w trzech kierunkach równoległych do osi X Y i Z, natenczas mówimy 
o trójwymiarowym stanie napięcia. Odpowiadającemi naprężeniami w przekrojach prosto-

Rys 34

padłych do osi będą widocznie:

F ’ 1 y

„ _ Pz 
p,~ f' 

* z

Jeżeli weźmiemy pod uwagę przekroje równoległe do jednej z osi np. Z 
(a do innych dowolńie nachylone), to przynależne im naprężenia będą 
zależne tylko od sił prostopadłych do tejże osi, a więc od sił P^ i Py. 
Siły P7, jako równoległe do tych przekrojów, nie wywołają w nich żadnych 
naprężeń. W takim razie naprężenia normalne i styczne w tych przekrojach 
określą również formuły (10) i (11) w § 14. Zmianę tych naprężeń przy 
obrocie przekroju około osi Z przedstawia odpowiednie koło Mohr’a I (rys. 35) 
zakreślone na odcinku AB = px — py, jako na średnicy. Podobnem rozu­
mowaniem znajdziemy, że naprężenia w przekrojach równoległych do osi X, 

względnie Y, przedstawiają się kołami III, względnie II, o średnicach B C = pz — py i CA = px — pz.
Tą drogą można łatwo zbadać naprężenia dla trzech układów płaszczyzn. Co się tyczy przekrojów 
nachylonych do wszystkich trzech osi, to można dowieść, że odpowiadające im naprężenia przed­
stawiają się spółrzędnemi punktów leżących między trzeba półkolami w polu zakreskowanem na
rysunku. (Dowód można znaleźć np. w dziele A. Fó p p 1 a: „Vorl. 
iib. techn. Mech." Bd. V). Wykres wykonano przy założeniu, że 
px > pz> py > 0. W takim przypadku największe wogóle naprężenie 
normalne, odpowiadające najdłuższej odciętej, jest równe p*. Naj­
większe zaś naprężenie styczne mierzy się największą rzędną i od­
powiada punktowi Dna półkolu I. Z konstrukcji tego półkola wyni­
ka, że płaszczyzna największego naprężenia stycznego jest równo­
legła do osi Z-ów i połowi kąt między osiami X a Y. Nadto

(p>)„,„ = OD =

czyli największe naprężenie ścinające w trójwymiarowym stanie napięcia jest 
równe połowie różnicy między największem i najmniejszem naprężeniem nor­
malne m.

W szczególnym przypadku
Px = Py = Pz = P

zlewają się punkty A, B i C w jeden, np. O, a promienie wszystkich trzech kół stają się zerami. 
Punkt O określa wtedy w zupełności stan napięcia, a ponieważ leży na osi odciętych, więc naprę- 
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żenią styczne w każdym dowolnym przekroju są równe zeru, a normalne są wszystkie równe 
odciętej* punktu O, t. j*. p. W tym przypadku mielibyśmy do czynienia z wszechstronnem równo- 
miernem rozciąganiem. [Taki stan napięcia byłby niewątpliwie interesującym, gdyby się dał zreali­
zować. Natomiast bardzo łatwo wywołać wszechstronne równomierne ściskanie, zanurzywszy ciało 
jednolite w cieczy znajdującej się pod Wysokiem ciśnieniem].

§ 19. ODKSZTAŁCENIA PRZY TRÓJWYMIAROWYM STANIE NĄPIĘCIA

Ażeby otrzymać wydłużenie względne w kierunku jednej z osi spółrzędnych, np. osi X, należy 

wziąć pod uwagę nietylko wydłużenie —, wywołane naprężeniem px, lecz także skrócenia g — i g
E E E

wywołane naprężeniami rozciągającemi w kierunku osi Y i Z. Całkowite wydłużenie w kierunku 
osi X wyrazi się zatem formułą:

e, = — — a + -Ł.)
E \ E E'

Analogiczne wzory otrzymamy dla wydłużeń w kierunku Y i Z. Po prostem przekształceniu 
napiszemy wszystkie trzy formuły w postaci:

e. = 4r[Px-o(Py + Pz)J 

E

ey =-HPx-°(P«+ P«)1 

E

ez = ~[pz-^(p. +Py)] 
E

. (16)

W przypadku wszechstronnego równomiernego rozciągania lub ściskania, t. j. gdy
px = py = Pz = ± p, będzie .

ex = ey = ez = e = ±^(1 — 2 g)
Ł

Jeżeli v0 oznacza pierwotną objętość (przed odkształceniem), a d objętość odkształconego 
prostopadłościanu, to

d = v0 (1 + e)8,
albo z pominięciem wyrazów zawierających e2 i e8, ze względu na to, że e jest bardzo małe:

v = v0 (1 + 3e).
Względną zmianą objętości będzie przeto

= 3e = ± (1 - 2c).
Vo E

Przy prostem rozciąganiu nazwaliśmy modułem sprężystości (modułem Young’a) stosunek 
naprężenia rozciągającego do wywołanego niem względnego wydłużenia. Analogicznie będziemy 
nazywać modułem sprężystości przy odkształceniu objętościowem, t. zn. przy wszechstronnem roz­
ciąganiu lub ściskaniu, stosunek naprężenia p do odpowiadającego względnego rozszerzenia lub 
skurczenia objętości, czyli odkształcenia objętościowego właściwego. Oznaczywszy tę wielkość 
przez k, mamy tedy:

k=—2
3(1- 2g)

[Z ostatnich wzorów można,, podobnie jak w § (5) wywnioskować, że o musi być mniejsze od 0,5, 
albowiem w razie przeciwnym wywoływałoby wszechstronne rozciąganie zmniejszenie objętości, 
zaś ściskanie jej zwiększenie, co wypada uważać a priori za wykluczone].

Kurs wytrzymałości materiałów 3
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ROZDZIAŁ IV

ZASTOSOWANIA OTRZYMANYCH WYNIKÓW

§ 20. STOPIEŃ BEZPIECZEŃSTWA, CZYLI PEWNOŚĆ

Tak zwane obliczenie prętów, narażonych na rozciąganie lub ściskanie, polega na rozwiązaniu 
zadań dwojakiego rodzaju. W jednym przypadku trzeba znaleźć największe obciążenie pręta z danego 
materjału o danych rozmiarach, które ten pręt trwale wytrzymywać będzie. W drugim zaś jest 
obciążenie dane, a szukamy wymiarów pręta, odpowiadających warunkom jego wytrzymałości. Dla 
rozwiązania tych zadań należy najpierw odpowiedzieć na następujące pytanie: Jakie największe 
ciągnienie lub ciśnienie można dopuścić w danym materjale? Otóż na podstawie badań doświadczal­
nych nad rozciąganiem i ściskaniem, znamy granicę proporcjonalności, punkt krytyczny i doraźną 
wytrzymałość danego materjału. Stosownie do tych wyników należy ustalić tę wartość naprężenia, 
którą dla danego materjału uznajemy za bezpieczną (dopuszczalną)1), t. j. zapewniającą trwały 
użytek projektowanej konstrukcji. Widzieliśmy, że naprężenia przekraczające niewiele granicę pro­
porcjonalności, powodują trwałe odkształcenia u materjałów takich, jak żelazo kowalne i stal; te 
odkształcenia wzrastają z czasem i mogą doprowadzić do znacznych zmian postaci elementu kon­
strukcyjnego. To jest oczywiście niedopuszczalne, wobec czego musimy wymiary elementu kon­
strukcyjnego obierać tak, aby naprężenia nie przekraczały granicy proporcjonalności. Wogóle nie 
przekracza naprężenie, uznane za bezpieczne, wielokrotnej części doraźnej wytrzymałości danego 
materjału. Jeżeli przez R' oznaczymy doraźną wytrzymałość danego materjału, a przez R odpo­
wiadające naprężenie bezpieczne, to

R = — 
n'

przyczem n oznacza t. zw. stopień bezpieczeństwa, czyli pewność. Obiór stosownej war­
tości dla n, albo, co na jedno wychodzi, obiór wielkości naprężenia bezpiecznego, przedstawia nader 
ważne zadanie, albowiem trwałość i koszt konstrukcji zależy nietylko od dokładności obliczenia, 
lecz także od mniej lub więcej udatnego obioru naprężeń bezpiecznych. Obrawszy za wysokie war­
tości możemy w rezultacie otrzymać konstrukcję niedostatecznie trwałą; przy naprężeniach bez­
piecznych zbyt małych będzie bezpieczeństwo zapewnione, ale zato konstrukcja ciężka, nie­
ekonomiczna.

Przy różnorodności warunków, w których funkcjonują części składowe budowli i maszyn, 
tudzież przy wahaniu się wytrzymałości jednego i tego samego materjału, niepodobna raz na zawsze 
unormować naprężeń bezpiecznych. W każdym dziale techniki można napotkać swoiste normy, 
przeważnie ustalone praktyką. Tutaj zrobimy tylko parę ogólnych uwag, które trzeba mieć na 
względzie przy obiorze stopnia pewności.

W naszych rozważaniach uważaliśmy materjały za ciała jednolite i równokierunkowe, wskutek 
czego będą nasze wnioski tern dokładniejsze, im mniej zbacza materjał od przyjętych' warunków. 
Dla żelaza kowalnego i stali będą nasze wywody bardziej dokładne, niż np. dla drzewa lub kamienia. 
Stopień bezpieczeństwa, który w znacznej mierze zależy od stopnia dokładności obliczeń, powinien 
być przeto mniejszym w przypadku żelaza kowalnego i stali, a większym dla mniej doskonałych 
materjałów budowlanych. W praktyce obiera się często w pierwszym przypadku „czterokrotną* 
pewność, t. j. n = 4, w drugim zaś przyjmuje się n = 8 do 10.

Na obiór wielkości naprężenia bezpiecznego wpływa też w znacznym stopniu dokładność w okre­
śleniu sił zewnętrznych, działających na element, który obliczyć mamy. Niekiedy można te siły 
tylko w przybliżeniu ocenić, a niepewność oceny trzeba oczywiście pokryć powiększeniem stopnia bez­
pieczeństwa, nazywanym trafnie przez Rnglików „spółczynnikiem niewiadomości* (factor of ignorance).

0 [W znanym podręczniku: „Technik" użyto przymiotnika „dopuszczalny" wyłącznie na oznaczenie wielkości naprę­
żenia, unormowanej przepisami władz. Uznając pewną pożyteczność tego rozróżnienia pojęć, nie będziemy jednak prze­
strzegać go ściśle, gdyż niema obawy nieporozumienia].
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Sposób działania sił zewnętrznych ma także ogromny wpływ na wytrzymałość pręta. W przy­
toczonych dotąd doświadczeniach wzrastało obciążenie stopniowo od zera do końcowej wartości. 
W praktyce mamy często do czynienia z siłami działającemi nagle i obciążeniami zmiennemi. 
Poniżej postaramy się ocenić wpływ tych okoliczności na wytrzymałość materjału, a tymczasem 
przyjmiemy, że naprężenie bezpieczne /? obrano i rozwiążemy obadwa podstawowe zadania, napo­
tykane przy obliczaniu prętów narażonych na rozciąganie lub ściskanie.

Jeżeli danem jest pole przekroju poprzecznego F, to obciążenie bezpieczne P określa oczy­
wiście formuła:

P = F.R..................................................................(17)
Jeżeli dane jest obciążenie, to odpowiadające pole przekroju poprzecznego znajdziemy z wzoru:

f= ~..............................................................  (18)
K

Wzory (17) i (18) wyprowadzone dla prętów pryzmatycznych, przy założeniu równomiernego 
rozkładu obciążenia na końcu pręta, stosuje się często do prętów o przekroju zmiennym i do przy­
padków, w których siły zewnętrzne nie rozmieszczają się równomiernie na przekrojach końcowych. 
Zobaczymy poniżej, że ta okoliczność może doprowadzić do wielkich błędów w ocenieniu wielkości 
naprężeń.

[Zważywszy, że pojawienie się dostrzegalnych odkształceń trwałych pod wpływem pewnego obciążenia jest najczęściej 
już oznaką niebezpieczeństwa, zagrażającego elementowi konstrukcyjnemu, wypada uważać odpowiadające naprężenie za 
naprężenie niebezpieczne. Należałoby tedy określać stopień bezpieczeństwa nie w odniesieniu do naprężenia rozrywa­
jącego, lecz raczej do naprężenia na granicy plastyczności. Byłoby to racjonalniej jeszcze i z tego względu, ponieważ 
naprężenie na granicy plastyczności waha się dla jednego i tego samego materjału w ciaśniejszych granicach, aniżeli naprę­
żenie rozrywające (doraźna wytrzymałość). Tak pojmowany stopień pewności n będzie widocznie liczbą znacznie mniejszą, 
niż ta, która określa stopień pewności przeciw rozerwaniu. Dla żelaza kowalnego i stali otrzymamy np. H = 1,5 do 2, 
zamiast n = 4.

Ogólnemu rozpowszechnieniu tego sposobu określenia stopnia pewności stoi na przeszkodzie nie tyle może ta oko­
liczność, iż wiele materjałów konstrukcyjnych nie posiada wyraźnej granicy plastyczności, ile przyzwyczajenie inżynierów 
(zwłaszcza niemieckich, a za ich przykładem i naszych) do dawniejszego sposobu.

Z każdego z obu powyższych sposobów określenia stopnia bezpieczeństwa wypadałoby, że liczba ta, a zarazem 
i wartość naprężenia bezpiecznego powinna być dla jednego i tego samego materjału niezależną od bezwzględnej wielkości obcią­
żenia. Atoli w praktyce przedstawia się ta rzecz często inaczej. Dla mostów żelaznych np. przyjmuje się powszechnie naprę­
żenie bezpieczne tern większe, im większą jest rozpiętość, a ponieważ ze wzrostem rozpiętości wzrasta i ciężar własny kon­
strukcji, więc naprężenie bezpieczne rośnie wraz z obciążeniem. Objaśniają to zwykle t. zw. „spółczynnikiem dynamicznym", 
przez który mnoży się wielkość obciążenia ruchomego, aby skompensować niedokładności zwykłego obliczenia statycznego, 
przyjmującego obciążenie w spoczynku. Podczas ruchu obciążenia powstają bowiem naprężenia dodatkowe tern wyższe, im 
większe są ciężary ruchome w porównaniu do ciężaru stałego konstrukcji. To tłumaczenie wzrostu wartości naprężenia 
bezpiecznego z wzrostem stosunku obciążenia stałego do obciążenia ruchomego jest w przypadku mostów oczywiście słuszne, 
ale pomija wogóle jeszcze drugą ważną okoliczność, na którą do nu dawna, zdaje się, nie zwracano uwagi, a która polega 
na nieco odmiennem pojmowaniu stopnia bezpieczeństwa. Siła zewnętrzna, działająca na dany pręt, jako element kon­
strukcyjny, składa się zwykle z dwu części: stałej G, pochodzącej od ciężaru własnego konstrukcji i zmiennej P. 
Pierwsza jest ściśle określona, przynajmniej teoretycznie, wielkość zaś drugiej normuje się dość dowolnie, biorąc pod uwagę 
rozmaite możliwe w przyszłości obciążenia ruchome i ich położenie. Dla dachów np. uwzględnia się napór wiatru i obcią­
żenie śniegiem, dla mostów drogowych ciężar pojazdów, wałków parowych, tłumu ludzi, napór wiatru i obciążenie śniegiem. 
Jak widzimy, nie da się tutaj ściśle określić wielkość obciążenia zmiennego; możemy tylko na podstawie wieloletnich obser- 
wacyj i doświadczeń podać w przybliżeniu granicę, której takie obciążenie przekroczyć nie może. Zwykle jednakże nie bie- 
rzemy wartości tej granicy za podstawę obliczenia, albowiem ona odpowiada mało prawdopodobnym, chociaż możliwym 
obciążeniom. Przyjmujemy więc obciążenie mniejsze, bardziej zbliżone do zachodzących w rzeczywistości, licząc słusznie 
na to, że w razie wyjątkowego zajścia największego możliwego obciążenia, będzie trwałość konstrukcji zabezpieczona przez 
dość wysoki stopień pewności. Zważywszy, że ciężar własny zmienić się nie może, wystarczy w tym celu postawić żądanie, 
aby dopiero przy n-krotnem obciążeniu ruchomem, przyjętem za podstawę obliczenia, osiągnęło naprężenie p wartość nie­
bezpieczną. Wyrazimy to równaniem

G + nP^F.pn-eb

Tak pojmowany stopień pewności n prowadzi do naprężeń bezpiecznych, rosnących również wraz z stosunkiem G: P, jak 
się to praktykuje przy obliczaniu mostów. W samej rzeczy naprężenie pręta obliczonego przy pomocy powyższej formuły, 

t. j. p = —pnieb waha się teoretycznie między granicami pnieb (dla G = 0), a pnieb (dla P = 0) i jest 
F G + nP n

tern większe, im większą wartość ma stosunek G: P, t. j. obciążenia stałego do obciążenia zmiennego.
3*
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Jest rzeczą jasną, źe tak pojmowany stopień bezpieczeństwa musialaby określać liczba nieco większa od tej, którą 
go określano dotychczas, ale zarazem nie ulega wątpliwości, że nowe określenie pewności jest racjonalniejsze od dawnego, 
zakorzenionego silnie w umysłach inżynierów.

W odmiennych, niż budowle, warunkach znajdują się ruchome części składowe niektórych maszyn. Obciążeniem 
zmiennem są u nich siły bezwładności, proporcjonalne względem ciężaru własnego. Tutaj zatem wystarczy najczęściej 
dawne pojmowanie stopnia bezpieczeństwa, prowadzące do wartości naprężenia bezpiecznego, niezależnej od rozmiarów 
elementu.

Zwiększenie wartości naprężenia bezpiecznego, stosownie do nowego określenia pewności, ma dla wielkich konstrukcyj 
budowlanych ogromne znaczenie praktyczne, gdyż podwyższa granicę możliwych rozpiętości i zmniejsza koszta budowli].

§ 21. WPŁYW OBCIĄŻENIA DZIAŁAJĄCEGO NAGLE

Przy stopniowem wzrastaniu obciążenia przedstawia się zależność między wydłużeniami X 
a siłą P w granicach proporcjonalności linją prostą O a (rys. 36). Dla każdej wartości X znajdziemy 
z rysunku odpowiadającą wartość P. Pole trójkąta O ab, jak okazano powyżej (ob § 4), przedstawia 

energję potencjalną, nagromadzoną w pręcie przy odkształceniu. Każdej war­
tości X odpowiada zupełnie określona ilość energji V:

V = Er, po uwzględnieniu, ze — = — t.

Jeżeli obciążenie wzrasta stopniowo, to zachodzi ciągle równowaga między 
siłami zewnętrznemi i wewnętrznemi. Praca wykonana przez obciążenie prze­
kształca się całkowicie w energję odkształcenia. Przy nagłem działaniu obcią­
żenia zamienia się część pracy siły ciężkości w energję kinetyczną spadającego 

ciężaru, który nabywa pewnej prędkości i dzięki temu przekracza położenie równowagi. Pręt otrzy­
muje w pierwszej chwili wydłużenie większe, niż przy stopniowem wzrastaniu obciążenia, wskutek 
czego powstają drgania. Szczegółowo rozpatrzymy to zjawisko w części dynamicznej, tutaj poprze­
staniemy na wyznaczeniu wartości największego wydłużenia, co da się wykonać na podstawie naj- 
elementarniejszych rozważań.

Największe wydłużenie pręta zajdzie wówczas, kiedy prędkość opadającego ciężaru, a więc 
i jego energja kinetyczna stają się zerem. W owej chwili zamieniła się praca siły ciężkości zupełnie 
w energję potencjalną odkształconego pręta. Jeżeli przez X oznaczymy wartość największego wydłu­
żenia, to praca obciążenia P będzie równa PK Wartość energji potencjalnej, odpowiadającej sprę­
żystemu wydłużeniu o X wyrażono powyżej. Porównanie obu wielkości daje

PX = WEF
21

2PI 
z czego wynika X =------  

EF
albo wydłużenie względne

e = 2~, jeżeli p=?.................................................. (19)
Ł r

Widzimy przeto, że przy nagłem działaniu obciążenia P powstaje w pierwszej chwili wydłu­
żenie, a zatem i naprężenie dwa razy większe od odpowiadających wielkości, otrzymanych 
przy stopniowem wzrastaniu obciążenia, czyli innemi słowy, od wydłużenia i naprężenia przy 
obciążeniu statycznem tejże samej wielkości. [W dalszym ciągu wytwarzają się wahania około 
położenia równowagi, odpowiadającego obciążeniu statycznemu, które rychło ustają, czyli „wyga­
sają", wskutek tarcia wewnętrznego i innych oporów mniejszego znaczenia.

Analogicznem do powyższego rozumowaniem łatwo znaleźć, że, jeżeli odwrócimy nagle kie­
runek danego obciążenia statycznego, to powstaje w pierwszej chwili odkształcenie i naprężenie 
trzy razy większe od odpowiednich wielkości statycznych. Zauważyć jednak trzeba, że te 
wyniki nie są zupełnie ścisłe, gdyż przy rozpatrywaniu przemian energji, pominęliśmy bezwładność 
samego pręta. Popełniony błąd będzie widocznie tern mniejszy, im mniejszą wartość ma stosunek 
ciężaru własnego pręta do obciążenia].



37

Mając np. obliczyć przekrój pręta obciążonego stałą siłą Po i obciążeniem P, działającem nagle, 
użyjemy równania:

F= PO+2P
R

[Od obciążenia nagle działającego należy odróżnić obciążenia uderzające, których działanie 
rozpatrzymy później].

§ 22. ZNUŻENIE METALI

W różnorodnych konstrukcjach wszelkich gałęzi techniki mamy bardzo często do czynienia 
z obciążeniami zmiennemi. Siły wewnętrzne, wywołane niemi, w poszczególnych częściach składo­
wych mogą przytem doznawać znacznych wahnień swej wartości. Gdy np. przejeżdża pociąg kole­
jowy przez most, zwiększają się przeważnie siły wewnętrzne, wywołane już przedtem ciężarem 
własnym mostu, ale nierzadko zmniejszają się niektóre, a nawet zmieniają swój znak. Podczas 
ruchu maszyny parowej jest trzon tłokowy i korbowy narażony naprzemian na rozciąganie 
i ściskanie. Napięcia, lin i łańcuchów u maszyn do podnoszenia ciężarów zmieniają także swoją 
wielkość podczas pracy maszyn. Znacznym zmianom podlegają również siły wewnętrzne sprężyn 
różnego rodzaju, osi wozów drogowych i kolejowych, wałów motorów i t. p.

Już praktyka wykazała, że wahania wielkości sił wewnętrznych wywierają bardzo szkodliwy 
wpływ na trwałość materjału i że elementy, narażone na działanie wielokrotnie zmiennych obciążeń 
pękają niekiedy przy naprężeniach znacznie mniejszych od doraźnej wytrzymałości, a nawet mniej­
szych od granicy proporcjonalności danego materjału. To zjawisko, studjowane dotąd tylko na me­
talach, otrzymało nazwę znużenia metali. Zwykłe próby rozrywania, opisane powyżej (§ 9), 
nie wystarczają do osądzenia, o ile materjał okaże się wytrzymałym przy napięciach zmiennych. 
Jeżeli bowiem pręt żelazny, narażony przez dłuższy czas na działanie często zmieniających się 
obciążeń, spróbujemy rozerwać w zwykły sposób, to nie dostrzeżemy żadnego uszczerbku pierwotnej 
wytrzymałości. Procentowe wydłużenie i poprzeczne skurczenie nie doznają również zmiany. Inny 
wszakże wynik otrzymujemy, doprowadzając pręt do rozerwania przez wielokrotne powtarzanie 
zmian obciążenia. Pęknięcie posiada wówczas taki sam wygląd, jak dla materjału zupełnie kruchego.

Zanim przeprowadzono doświadczalne badania nad znużeniem metali, uwzględniali inżynie­
rowie szkodliwy wpływ zmiennych napięć, mnożąc obciążenie czynnikiem większym od jednostki. 
Pierwsze doświadczenia w tym kierunku wykonał W. Fairbairn, ale dopiero obszerne badania 
Wóhler’al) rzuciły więcej światła na kwestję znużenia metali.

§ 23. DOŚWIADCZENIA WOHLER’A

Najistotniejsze wyniki, do których doszedł Wóhler w ciągu dziesięcioletniej pracy doświadczalnej 
(1860 do 1870), są następujące:

1) Materjały, jak żelazo kowalne i stal, można doprowadzić do rozerwania naprężeniem 
mniejszem od doraźnej wytrzymałości, skoro tylko wielkość naprężenia zmienimy dostateczną 
ilość razy.

2) Liczba zmian naprężenia, potrzebna do rozerwania pręta, zależy nietylko od wielkości 
największego naprężenia, lecz także od różnicy między krańcowemi wartościami naprężeń.

3) Im ta różnica mniejsza, tem większej liczby wahań w wartości naprężenia potrzeba do 
wywołania pęknięcia materjału.

4) Można znaleźć taką graniczną wartość różnicy między największem a najmniejszem 
naprężeniem, przy której materjał wytrzymuje praktycznie dowolną liczbę zmian, [jeżeli jedna 
z granic, między któremi waha się naprężenie, jest daną].

5) Ta graniczna wartość różnicy naprężeń jest tem mniejsza, im wyższą wartość ma naj­
większe naprężenie.

9 Wóhler: „Ober die Festigkeitsversuche mit Eisen u. Stahl". Zeitschr. I, Bauw. 1870. Obacz także W. Ł. Kirpi- 
czew, Wiestnik Ob-stwa Technologów z 1914 r,
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Ażeby pokazać, jak się zmienia liczba potrzebnych do rozerwania wahnień przy zmianie 
różnicy między krańcowemi wartościami naprężeń, przytoczymy tablicę dla przypadku, w którym 
naprężenie wahało się między ciągnieniem a ciśnieniem o równej bezwzględnej wartości ’).

Najw. ciągnienie 
kg/cm2

Najw. ciśnienie 
kg/cm2

Różnica naprężeń 
kg/cm2

Liczba wahnień 
przed pęknięciem

+ 2400 — 2400 4800 56 430
2250 2250 4500 99 000
2100 2100 4200 183 145
1940 1940 3880 479 490
1810 1810 3620 909 840
1650 1650 3300 3 632 588
1510 1510 3020 4 917 992
1350 1350 2700 19 186 791
1200 1200 2400 /132 250 000 \

\bez pęknięcia/

2) Liczby wzięto z książki Unwin’a „Testing of Materials of construction".

Te doświadczenia wykonano na prętach z żelaza spawalnego firmy amerykańskiej Phoenix C^2). 
Doraźna wytrzymałość tego żelaza przy zwykłem rozrywaniu okazała się równą 3600 kg cm2, roz­
ciągliwość około 20%.

Dla lepszego przeglądu przedstawiono wyniki tych doświadczeń wykreślnie na rys. (37) 
Jako odcięte mamy tutaj liczbę wahań naprężenia w miljonach, jako rzędne zaś odpowiadające war-

Rys. 37

tości różnicy naprężeń w kg/cm2. 
Okazuje się, że punkty otrzymane 
z doświadczeń tworzą krzywą posia­
dającą asymptotę równoległą do osi 
odciętych, a odpowiadaj ącą tej grani­
cy różnicy naprężeń, której przekro­
czenie musi doprowadzić do roze­
rwania pręta po skończonej liczbie 
wahnień obciążenia. Ta granica rów­
na się tutaj 2400 kglcm\a odpo wiada- 
jące krańcowe wartości naprężenia 
są: + 1200kg/cm2i—1200&g/cm2. 
Te wartości leżą poniżej zwykłej 
granicy proporcjonalności żelaza 
spawalnego, a doraźna wytrzyma­
łość przewyższa je trzykrotnie.

Jeżeli naprężenie, nie zmieniając znaku, waha się między zerem a pewną wartością dodatnią, 
to dla doprowadzenia do pęknięcia potrzeba większych naprężeń. W tym przypadku dały doświadczenia 
z poprzednim materjałem wyniki następujące:

Najw. naprężenia 
(kg/cm2)

Najmn. naprężenia 
(kg/cm2)

Różnica naprężeń
(kg/cm2)

Liczba wahnień 
przed pęknięciem

+ 3600 0 3600 800
3300 0 3300 106 910

' 3000 0 3000 340 853
2700 0 2700 409 481
2400 0 2400 10 141 645
3300 1500 1800 2 373 424
3300 1800 1500 / 4000000. \ 

\bez pęknięcia/

0 Te wyniki otrzymano z doświadczeń nad zginaniem okrągłych prętów; bezpośrednie doświadczenia z prętami 
rozciąganemi i ściskanemi przeprowadził O. Reynolds (ob. § 24).
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Granica niższa naprężeń niebezpiecznych wypada tutaj 2400 kg/cm2, ma przeto wartość dwa razy większą, niż w poprzednim 
przypadku. Jeżeli minimum naprężenia obierzemy większe od zera, to ta granica będzie leżeć jeszcze wyżej, a odpowiada­
jąca różnica między maximum a minimum naprężenia zmniejszy się.

2) „On a Throw-Testing Machinę for Reversals ol Mean Stress". Phil. Trans. Roy. Soc. 1902.

W poniższej tablicy zestawiono te krańcowe wartości naprężeń, przy których pręt wytrzymywał dowolnie wielką 
liczbę wahań naprężenia.

Dla twardszego materjału wypadają nieco odmienne stosunki. Jako przykład przytoczymy wyniki doświadczeń 
Wóhlera ze stałą zlewną Kruppa o doraźnej wytrzymałości 77QQ kg/cm2 i rozciągliwości 12%.

Rodzaj obciążenia
Wyższa granica 
najw. naprężenia 

w kg /cm2

Wyższa granica 
różnicy naprężeń 

w kglcm2

Od ciągnienia do równego mu ciśnienia ...... + 1200 = |R' 2400

Od ciągnienia do zera.............................................. + 2400 = iR' 2400

Doraźna wytrzymałość.............................................. + 3600 = R' 0

Rodzaj obciążenia
Wyższa granica 
najw. naprężenia 

w kglcm2

Wyższa granica 
różpicy naprężeń 

w kglcm2

Od ciągnienia do równego mu ciśnienia............... 2250 = 0,29 R' 4500

Od ciągnienia do zera.............................................. 3750 = 0,49 R' 3750

Doraźna wytrzymałość.............................................. 77Ó0 0
W r. 1874 powtórzył Spangenberg doświadczenia Wóhlera i otrzymał mniej więcej te same wyniki. Takiemi samemi 

maszynami i sposobami badania posługiwali się B. Baker i Bauschinger. Początkowe doświadczenia Bauschingera potwier­
dziły rezultaty Wóhlera, ale dalsze badania ogłoszone przez A. Fóppla, dały w przypadku wahania się naprężeń między 
ciągnieniem a równem mu ciśnieniem, znacznie większe wartości granicy naprężeń od otrzymanych przez Wóhlera1)'

§. 24. DOŚWIADCZENIA O. REYNOLDS’A i J. H. SMITH’A2). [WPŁYW CZĘSTOŚCI WA­
HAŃ OBCIĄŻENIA NA GRANICĘ NAPRĘŻEŃ ROZRYWAJĄCYCH]

W tych doświadczeniach były pręty narażone naprzemian na ciągnienie i ciśnienie siłami bezwładności ciężaru poru­
szającego się do góry i na dół. Stosunek między wielkościami ciągnienia i ciśnienia zależny od prędkości ruchu maszyny

liczba obrotoio maszyny w selwach tysięcy
Rys. 38

*) Mitteil. aus d. mech, techn. Labor. in Miinchen. Hełt XIII u. XXV.
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wahał się przytem od 1,12 do 1,18. Podczas gdy u Wóhlera była częstość zmian niewielka, 60 do 80 na minutę, to maszyna 
Reynolds’a dawała 1300 do 2400 zmian na minutę, przyczem się pokazało, źe większa częstość obniża dalej wartość naprę­
żenia rozrywającego. Widać to dobrze z wykreślonego porównania wyników badań Reynolds’a i Smith’a z badaniami 
Wóhlera (rys. 38), odnoszącemi się do żelaza zlewnego o doraźnej wytrzymałości 4000kg/czn2 i rozciągliwości 29%1).

2) Liczby tej ostatniej kolumny odpowiadają wahaniom naprężeń między ciągnieniem i równem mu ciśnieniem; 
pierwszej np., t. j. 0,33, odpowiada ± 2450 kg jem2.

Szczególnie szkodliwy wpływ ma powiększenie częstości wahań na materjały kruche. Dla porównania przytaczamy poniżej 
wyniki doświadczeń z żelazem zlewnem o doraźnej wytrzymałości 38C0 kg/cm2, punkcie krytycznym 2700 kg/cm2 i rozcią­
gliwości 29°/o, a stalą zlewną o doraźnej wytrzymałości 9100 kg/cm*, punkcie krytycznym 6200 kg/cm2 i rozciągliwości 3,8%.

Żelazo zlewne

Różnica naprężeń (kg/cm2) 
niezbędna dla rozerwania 

po 1 miljonie wahnień
Częstość wahnień 

na minutę
Stosunek różnicy naprężeń 
do naprężenia w punkcie 

krytycznym

3800 (Wóhler) 60 do 80 —
3300 1337 1,22
3000 1516 1,12
2400 1744 0,89
1940 1917 0,72

Stal zlewna

Różnica naprężeń (kg/cm2) 
niezbędna dla rozerwania 

po 1 miljonie wahnień
Częstość wahnień 

na minutę
Stosunek różnicy naprężeń 
do naprężenia w punkcie 

krytycznym

4270 (Wóhler) 60 do 80 —
3150 1320 0,50
2880 1660 0,46
2630 1820 0,42
2060 1990 0,33

W przeciwstawieniu do doświadczeń Wóhlera przy małej częstości, okazuje się przy bardzo wielkiej częstości wahnień 
wytrzymałość badanej stali nie większa od żelaza zlewnego, jakkolwiek doraźna wytrzymałość przewyższa przeszło dwu­
krotnie takąż wytrzymałość żelaza zlewnego.

§ 25. DOŚWIADCZENIA STANTON’A I BAIRSTOWA
W tych doświadczeniach badano zwykłe gatunki żelaza kowalnego i stali, napotykane w praktyce. Pręty do do­

świadczeń brano w ich naturalnym stanie i nie poddawano ich wyżarzeniu. Maszyna, służąca do badania, była zbudowana 
na tej samej zasadzie, co maszyna O. Reynolds’a i wykonywała normalnie 800 obrotów na minutę. Pokazało się, że przy 
takiej częstości zbliżają się wyniki doświadczeń bardziej do wyników Wóhler’a niż Reynolds’a. Z doświadczeń Stanton’a 
i Bairstow’a wynika nawet, źe zmiana częstości od 60 do 800 na minutę nie ma istotnego wpływu na graniczną wartość 
różnicy naprężeń. Dzięki specjalnym urządzeniom można było przy doświadczeniach zmieniać stosunek największego 
ciągnienia do ciśnienia między granicami 1,40 a 0,72. Przy tych zmianach okazała się graniczna różnica naprężeń stałą. 
Stosunek granicznej różnicy naprężeń do granicy proporcjonalności podaje dla niektórych materjałów tablica następująca:

Mater jał
Granica 
proporc.

Punkt 
krytyczny

Doraźna 
wytrzyma­

łość
Rozciągli­
wość w %

Stosunek granicznej 
różnicy naprężeń

do granicy do doraźnej
w kg/cm2 proporc. wytrzym.2)

Bessem. stal Nr. 3 . . 4340 4560 7470 12,9 1,13 0,33
„ „ Nr. 2. . 3930 4400 6860 17,0 1,21 0,35
„ . „ Nr. 1 . . 3360 3730 4480 22,8 1,25 —

Żel. zlewne Nr. 2 . . 2250 2480 4440 24,6 1,80 0,46
„ „ Nr. 1 . . 1670 2100 3430 28,0 1,76 0,43

Żel.spawalne Nr. 2 . . 2100 2300 4020 23,8 1,44 0,37
„ „ Nr. 1 . . 2240 2580 3730 27,0 1,51 0,45

*) A. Morley: „Strength of materials“. 1908. Str. 75.
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W najnowszych czasach przeprowadził B. Hopkinson bardzo interesujące doświadczenia nad działaniem zmiennych 
napięć przy wielkiej częstości wahań. Przy pomocy elektromagnesu udało mu się doprowadzić częstość wahnień do 7000 
na minutę, przyczem się pokazało, że graniczna różnica między ciągnieniem a równem mu ciśnieniem jest przy takiej 
częstości znacznie większa, aniżeli przy częstości 1000 do 2000 na minutę. B. Hopkinson przypisuje ten wynik okoliczności, 
że przy bardzo krótkiem działaniu obciążenia jest granica sprężystości wyższą, niż w przypadku działania statycznego1)-

*) Proc. of. the Roy. Soc. A. Vol. 74; Vol. 86, r. 1912.
2) A. Morley: „Strength of materials®, 1908, str. 79.
Stromeyer (Engineering 1914, str. 421) podaje metodę oznaczenia zdolności materjału do wytrzymywania prze­

miennych obciążeń z doświadczeń krótkotrwałych.

§ 26. NAPRĘŻENIA BEZPIECZNE PRZY ZMIENNYCH NAPIĘCIACH

Jak widać z przytoczonych doświadczeń, poprzestawano przy badaniu znużenia metali głównie 
na dwu wartościach stosunku największego naprężenia do najmniejszego. W jednym przypadku 
zmieniało się naprężenie od zera do pewnej wartości dodatniej, w drugim zaś było naprężenie 
naprzemian ciągnieniem i ciśnieniem o tej samej bezwzględnej wartości. W praktyce mamy jednak 
do czynienia z najróżnorodniejszemi stosunkami między największem a najmniejszem naprężeniem, 
ażeby więc przy obliczeniu zużytkować dane doświadczalne, wypada interpolować hipotetycznie 
odpowiednie wartości największego naprężenia, które pręt zniesie przy dowolnie wielkiej liczbie 
wahań naprężenia. Najdogodniej wykonać to wykreślnie w sposób następujący2):

Obieramy prostą e'a (rys. 40), dowolnie nachyloną do osi odciętych, której rzędne uważamy 
za pmin. Gdybyśmy od każdego punktu tej prostej odcięli w kierunku osi rzędnych graniczne war­
tości różnicy naprężeń △, to otrzymalibyśmy krzywą, wystarczającą do obliczenia w każdym przy­
padku. Z doświadczeń znamy tylko parę punktów tej krzywej, ale dzięki samemu tylko prze­

świadczeniu o regularności jej przebiegu możemy ją wykreślić z wystarczającą dla praktyki dokła­
dnością. Wykres można zastąpić równaniem analitycznem, oczywiście możliwie najprostszem. 
Przytoczymy jedną postać tego równania rozpowszechnioną w praktyce, a przystosowaną do wyni­
ków Wóhlera dla żelaza kowalnego i miękkiej stali:

P».. = 4R'(1+V—).................................................. (20)
3'2 Pmax '
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R' oznacza tutaj, jak poprzednio, doraźną wytrzymałość materjału. Krzywa, określona tem równa- 
równaniem, jest, jak łatwo zauważyć, parabolą. W przypadku pmin = pma*> t. j. gdy obciążenie się 
nie zmienia, wypada z formuły (20) istotnie pmax = R', jak być powinno. Jeżeli pmln = 0, t. j. gdy 

2naprężenie zmienia się od zera do pewnej wartości dodatniej, daje formuła pmax = — R'. Nakoniec 

w przypadku, gdy naprężenie waha się między ciągnieniem, a równem mu ciśnieniem, czyli 

Pmax=—Pmin, znajdziemy z formuły pmax = — R'.

Obiedwie ostatnie wartości szczególne odpowiadają przytoczonym powyżej wynikom doświad­
czeń Wóhlera. Dla trzech sposobów działania obciążenia mają się do siebie krańcowe wartości 
naprężeń jak 3:2:1. Taki sam stosunek należy oczywiście zachować między naprężeniami bez- 
piecznemi. Na podstawie tych rozważań zestawiono poniżej umieszczoną tablicę naprężeń bezpie­
cznych przyjmowanych przy obliczaniu elementów maszynowych ‘)- Podane w niej normy dla 
naprężeń bezpiecznych przedstawiają pewne średnie .wartości, od których można znacznie odstąpić 
w szczególnych przypadkach. Bardziej szczegółowe dane, odnoszące się do naprężeń dopuszczal­
nych, można znaleźć w odpowiednich działach konstrukcji maszyn2).

2) W książce P. Stephan’a: „Die Festigkeitseigenschaften der Konstruktionsmaterialien des Maschinenbaues®, 
Berlin, r. 1911, można znaleźć wiele danych co do naprężeń dopuszczalnych w budowie maszyn.

3) [Niższe normy naprężeń bezpiecznych dla konstrukcyj maszynowych podyktowała inżynierom praktyka jeszcze 
z tego powodu, ponieważ wymogi sztywności konstrukcyj są z natury rzeczy wogóle większe dla maszyn, aniżeli dla kon­
strukcji budowlano-mżynierskich].

Materjał
Naprężenia dopuszczalne w kg/cm2

Obc. stałe Obc. waha się 
od 0 do +

Obc. waha się 
od — do +

Żelazo spawalne .... 900 600 300
„ zlewne............... 900 do 1200 600 do 800 300 dó 400

Stal zlewna................... 1200 do 1500 800 do 1000 400 do 500
Żelazo lane ....... 300 200 100
Odlew stalowy .... 600 do 900 400 do 600 200 do 300
Stal sprężynowa .... 7500 5000 —

Naprężenia bezpieczne w konstrukcjach inżyniersko-budowlanych przyjmuje się zwykle zna­
cznie wyższe. Tak np. dopuszczają nowe normy niemieckie dla konstrukcyj żelaznych w więza- 
rach dachowych do 1600 kglcm*, a w mostach do 1400 kgjcm2. Tak wysokie naprężenia tłumaczą 
się poczęści mniejszym stopniem zmienności obciążenia; nadto większa prostota konstrukcyj inży­
nierskich pozwala stosować formuły obliczenia z większą dokładnością3).

§ 27. PRZYCZYNY ZJAWISKA ZNUŻENIA METALI

Mimo bardzo liczne doświadczenia nie można uważać zjawiska znużenia metali za zupełnie 
zbadane. Najistotniejszą rolę gra tutaj zapewne ta okoliczność, że nawet najdoskonalsze materjały kon­
strukcyjne, jak żelazo kowalne i stal, nie są ciałami doskonale sprężystemi i po usunięciu obcią­
żenia nie powracają zupełnie dokładnie do pierwotnego stanu. Te zboczenia od doskonałej sprę­
żystości, niedostrzegalne przy doraźnem badaniu rozciągania, sumują się powoli i stają się wido­
czne po większej liczbie zmian obciążenia.

Ten fakt, że przy nieustannych zmianach nietylko wielkości, lecz także i znaku naprężenia, 
zachodzi pęknięcie nawet przy naprężeniach niższych od granicy proporcjonalności, objaśniają

Ł) C. Bach: „Die Maschinen-Elemente", 1908.
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doraźnem podwyższeniem tej granicy podczas zwykłego rozciągania; takie rozciąganie bowiem nie 
jest niczem innem, jak tylko rodzajem obróbki na zimno, która, jak wiadomo, podwyższa wogóle 
granicę proporcjonalności. Jeżeli jednak rozciąganie i ściskanie następują naprzemian wielokrotnie, 
to, jak wykazały badania Bauschingera obniża się granica proporcjonalności, dążąc jednakże do 
pewnej granicznej wartości, którą nazwano naturalną granicą sprężystości. Ażeby zatem nie­
ustanne wahania się napięcia między dodatnią i równą jej ujemną wartością nie doprowadziły do 
pęknięcia, powinno naprężenie nie przekraczać tej naturalnej granicy sprężystości2).

Mitteil. aus d. mech.-techn. Laborat. in Munchen. Heft XIII.
2) T. Stanton and L. Bairstow: „On the Resistance of Iron and Steel to reversals ol direct Stress“. Min. of 

Proc. Civ. eng. 1906.
8) I. A. Ewing: „The strength, of materials". str. 55.
4) Frolowskij: „Gisterezis".
B. Hopkinson: „The elastic Hysteresis of steel“. Engineering, r. 1912, str. 827.
5) H. Le Chatelier: „Sur 1’essai des mćtaux par amortissement des mouvements vibratoires“. Revue de Mć- 

tallurgie, r. 1909.
M. A. Guiller: „Intervention de 1’amortissement dans 1’essais de fer“. Tamże, r. 1909.

W bardzo ścisłym związku ze znużeniem metali stoi zjawisko histerezy. Dokładne badania 
wykazały, że nawet przy niewielkich odkształceniach, nie dochodzących do granicy proporcjonal­
ności, zachodzą pewne procesy o charakterze nieodwracalnym, tak, jakby każde działanie sił pozo­
stawiało pewien ślad na własnościach materjału. W danej chwili okazują się te własności funkcjami 
wszystkich poprzednich stanów materjału. Do takich nieodwracalnych procesów należą zmiany 
własności magnetycznych i termo-elektrycznych3), a także zjawiska cieplne. Przy odkształceniu 
zmienia się temperatura badanego ciała i zaczyna się wymiana ciepła między ciałem, a środowiskiem 
otaczającem. Taki proces bywa zwykle nieodwracalnym i jest połączony z rozpraszaniem energji 
cieplnej. Nieodwracalność warunkują nadto, oprócz wyliczonych przyczyn, niedoskonała sprężystość 
materjału i naprężenia początkowe, które w nim powstały pod wpływem pierwotnej obróbki.

Dla wyznaczenia energji, rozprószonej przy odkształceniu, posługujemy się najdogodniej 
diagramem (rys. 41). Przy odkształceniu wskutek siły wzrastającej od zera do pewnej wartości
otrzymujemy linję O ca, zwykle bardzo mało różniącą się od prostej. Jeżeli następnie 
zmniejszamy stopniowo siłę aż do zera i otrzymamy linję ac'b, nie nakrywającą 
poprzedniej, to pole Ocac'b określa tę część energji, która przyjęła postać nie­
odwracalną, czyli rozprószyła się. Tak się objawia histereza sprężysta. Czem 
mniejsze pole diagramu histerezy, tembardziej zbliża się materjał do ciała idealnie 
sprężystego i tern mniejszego wpływu można oczekiwać od powtórnych obciążeń. 
Na tej zasadzie zrobiono próbę ocenienia zdolności materjału do znoszenia prze­
miennych obciążeń przy pomocy diagramu odpowiadającego jednemu obciążeniu 
i odciążeniu próbnego pręta4).

Rys. 41

Jeszcze jaśniejszy obraz rozpraszania energji przy odkształceniach otrzymamy, obserwując 
drgania wywołane siłami sprężystości. Skoro pobudzimy pręt do drgań, to po niedługim czasie 
zauważymy zmniejszanie się amplitudy; wahania stopniowo „wygasają" (zamierają). Jak wykazały 
badania doświadczalne, nie wystarczają do objaśnienia tego zjawiska opory zewnętrzne; ono wska­
zuje wyraźnie na powstawanie w materjale pręta obok sił sprężystości, mających potencjał, jeszcze 
innych sił wewnętrznych, rozpraszających energję, czyli, innemi słowy, wskazuje na istnienie 
t. zw. tarcia wewnętrznego. Studjum wygasania drgań może rzucić pewne światło na zjawisko 
znużenia metali5).

Lord Kelvin zauważył, że jeżeli zmusić pręt do drgań przez dłuższy przeciąg czasu, np. kilka 
dni, to zamieranie drgań staje się szybszem, jak gdyby tarcie wewnętrzne się wzmogło. To samo 
zjawisko częściowej zamiany energji na pracę wewnętrzną będzie zachodzić przy wielokrotnie 
powtarzanem obciążeniu. Im ta praca większa, im szybsze wygasanie drgań, tern bliżej do poko­
nania spójności materjału, tern wyraźniejsze oznaki znużenia.

Do wyjaśnienia zjawiska znużenia metali przyczyniło się znacznie zastosowanie badania 
mikroskopowego. Okazało się, że niespodziewane złamania elementów, narażonych na działanie 
przemiennych obciążeń, dadzą sie w wielu przypadkach objaśnić obecnością mikroskopijnych 
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szczelin w materjale *). Takie szczeliny powoduj znaczne nierównomierności w rozkładzie naprężeń 
[w otoczeniu szczelin powstają, jak zobaczymy poniżej, naprężenia o wiele większe od tych, jakieby 
powstały bez szczelin], a rozwijając się stopniowo, doprowadzają ostatecznie pręt do pęknięcia.

Proces stopniowego zniweczenia spójności u kryształków żelaza pod działaniem przemiennych 
napięć badał szczegółowo prof. I. A. Ewing2). Do doświadczeń służyło szwedzkie żelazo o doraźnej 
wytrzymałości 3700 kglcm* i rozciągliwości 27%. Przy pomocy mikroskopu śledzono zmiany, zacho­
dzące w oddzielnych kryształach wskutek wahania naprężeń od ciągnienia do równego mu ciśnienia. 
Już przy stosunkowo niewielkich naprężeniach ± 1100 kglcm* można było dostrzec, po dostatecznej 
liczbie wahań, że niektóre kryształy w najbardziej narażonych częściach pręta pokrywały się rysami. 
Badanie mikroskopowe wykazało, że te rysy są zewnętrznym objawem przesunięć zachodzących 
w płaszczyznach spójności poszczególnych kryształów. Przedłużając działanie przemiennych obcią­
żeń na obserwowany element, można było widzieć, jak niektóre z tych przesunięć, przekształcały 
się stopniowo na szczelinki. Przy dalszych powtarzaniach wahnień naprężenia zużywa się nieod­
wracalna część pracy odkształcenia przeważnie na zniszczenie spójności materjału około tworzącej 
się szczeliny. Wskazuje na to produkt zniszczenia — delikatny pyłek, pojawiający się na brzegach 
szczeliny. Ta okoliczność, że cała praca niszcząca koncentruje się w określonym przekroju, wy­
jaśnia, dlaczego nie zmieniają się plastyczne własności pozostałej masy pręta i dlaczego charakter 
złomu, uwarunkowany rozwojem początkowej szczeliny, jest taki sam, jak u materjałów kruchych.

2) „On the fracture of metals under repeated alternations of stress. Phil. Trans, of Roy. Soc., r. 1903.
Ob. także: W. Ł. Kirpiczew: „Ob ustałosti metałłow w zwiazi s ich kristalliczeskim strojeniem®. Wiest. Obszcz. 

Technologów r. 1914.
M. A. Woropajew: „Ob ustałosti czuguna®. Izw. Riew. Pol. Inst. 1914.
Stromeyer: Engineering 1914, str. 421,

§ 28. ROZCIĄGANIE I ŚCISKANIE PRĘTÓW O ZMIENNYM PRZEKROJU
Wzory do obliczeń, oznaczone powyżej liczbami (17) i (18), stosuje się często do prętów 

o przekroju zmiennym, jakkolwiek wyprowadziliśmy je dla przypadku stałego przekroju. Otrzy­
mane przytem wyniki mogą być zadowalające, o ile niema w pręcie nagłych zmian przekroju. 
W przeciwnym razie staje się niezbędnem uzupełniające badanie rozkładu naprężeń w miejscach, 
gdzie nagłe zmiany przekroju zachodzą. Zagadnienie jest wielce złożone i nie dopuszcza elemen­

tarnego rozwiązania. Poprzestaniemy przeto na przytoczeniu ostatecznych wyników 
dla kilku ważniejszych prostych przypadków. Te wyniki pozwolą nam wysnuć szereg 
ogólnych wniosków, mających ważne znaczenie praktyczne.

Jako pierwszy przykład rozważymy rozciąganie pręta AB (rys. 42), o szero­
kości linjowo zmiennej, a grubości stałej. W dowolnym przekroju poprzecznym mn 
będzie rozkład ciągnień wcale nierównomiernym, a stopień tej nierównomierności za­
leży od wielkości kąta y. Pewnego wyobrażenia o prawie rozkładu naprężeń można 
nabrać przy obserwacji odkształceń. W tym celu należy sporządzić model pręta 
z miękkiego kauczuku i opatrzyć go na ścianach bocznych układem linij równoległych 
do mn. Przy rozciąganiu siłą P zakrzywiają się te linje, a odległość między nimi

zwiększa się niejednakowo w różnych punktach. Największe odkształcenie, odpo­
wiadające największym ciągnieniom, powstaną w osi pręta, najmniejsze na brzegach. 
Dokładne badania wykazały, że różnica między największem, a średniem naprę­
żeniem przy wartości y = 10°, nie przekracza 1,3%. W tym przypadku można zatem 
z dostateczną dokładnością posługiwać się wzorami, wyprowadzonemi dla prętów 
pryzmatycznych. Przy y = 30° osiąga różnica między największem naprężeniem 
a jego średnią wartością już 13%. Dalsze zwiększenie kąta y pociąga za sobą 
oczywiście jeszcze większą nierównomierność w rozkładzie naprężeń.

O wiele większe znaczenie praktyczne posiada drugi przykład, a mianowicie 
rozciąganie wstęgi, osłabionej okrągłym otworem w środku (rys. 43). W płaszczyźnie przekroju poprze­
cznego m n, przechodzącego przez środek otworu rozłożą się naprężenia najbardziej nierównomiernie.

1
I

Rys. 43

*) T. Andrews: „Microscopic internal flaws inducing fracture in Steel". Engineering, r. 1896, str. 35.
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Ten rozkład można znaleźć drogą analityczną, jeżeli średnica otworu 2r jest mała w porównaniu doszerokości wstęgi. 
Wtedy określa naprężenie p' w dowolnym punkcie B rozpatrywanego przekroju, wzór1):

4) Kirsch: Zeitschriłt d. V. deutsch. Ing. r. 1898.
S. Timoszenko: „O wlianij krugłych otwierstij na raspredjelienie napriażenij w płastinkach". Izw. Kiew. Polit. 

Inst. r. 1907.
2) C. E. Inglis: Engineering, 1913, str. 415.
G. Kołosow: „Płoskaja zadacza teorij uprugosti", 1909.
8) A. Leon: „Ueber die Spannungsverteilung in der Umgebung einer halbkreisfórmigen Kerbe“.Mitt. d. mech. tech. 

Labor. Wien, 1908.
4) A. Fóppl: „Festigkeitsłehre*, 1905. Str. 9.

n / r2 r4 \p' = ^-(2 + —+ 3—),
2 k p2 PV

w którym p oznacza odległość punktu B od środka otworu, a p średnią wartość naprężenia.

Na rysunku przedstawiono prawo rozkładu naprężeń zakreskowańym diagramem. Na brzegu 
otworu, gdzie p = r, znajdujemy:

P' = 3p, 
czyli największe naprężenie ma potrójną wartość tego, które obliczamy zwykłą formułą, wypro­
wadzoną dla prętów pryzmatycznych. Jeżeli otwór okrągły zastąpimy eliptycznym o osi dłuższej, 
skierowanej prostopadle do rozciągającej siły, to przewyżka naprężenia na brzegach otworu będzie 
jeszcze większą. Stopień nierównomierności w rozkładzie naprężeń wzrasta wraz ze stosunkiem 
osi wielkiej do osi małej elipsy *)• Z tego widać, że wąska szczelina, prostopadła do kierunku Toz- 
ciągającej siły, wywołuje olbrzymie lokalne naprężenia w materjale; skoro zaś szczelina ma kieru­
nek do siły równoległy, to nie ma prawie wpływu na rozkład naprężeń.

[Podczas gdy pierwsza szczelina pręt rozciągany bardzo osłabia, to druga nie ma na jego wytrzymałość żadnego 
wpływu. Nie trudno zrozumieć, że całkiem przeciwnie będzie się rzecz miała w przypadku ściskania pręta. Naprężenia 
na koń' ach poprzecznej szczeliny będą wprawdzie w pierwszej chwili działania obciążenia bardzo wielkie w stosunku 
do średniej wartości, jakkolwiek jeszcze małe w porównaniu do Wartości niebezpiecznej, atoli w miarę powiększania obcią­
żenia szczelina się zwiera i dalszy wzrost naprężeń będzie już równomierny. W rezultacie zatem nie dostrzeżemy zmniej­
szenia doraźnej wytrzymałości, jeżeli tylko szczelina była dostatecznie wąska. Natomiast szczeliny podłużne w większej 
ilości mogą bardzo osłabić pręt ściskany, gdyż takie szczeliny mają w przypadku ściskania tendencję do otwierania się. 
To objaśnia prawie zupełnie małą wytrzymałość, jaką okazuje drewno, zwłaszcza z drzew szpilkowych, przy ściskaniu siłą 
równoległą do włókien, w porównaniu do wytrzymałości przy rozciąganiu w tymże kierunku].

Przyjmijmy teraz, że osłabienie wstęgi uskuteczniono zapomocą półkolistych wycięć na 
brzegach (rys. 44). Przybliżony rozkład naprężeń w przekroju najbardziej zwężonym mn przed­
stawia zakreskowany diagram. Jeżeli promień wycięć jest 
wstęgi, to naprężenia w punktach /i /I są dwa razy większe 
od średniej wartości naprężenia s)« Nadając wycięciom postać 
wydłużoną, w kierunku prostopadłym do siły działającej, 
otrzymamy naprężenia jeszcze większe.

„Ostre" zmiany przekroju poprzecznego napotykamy 
w praktyce bardzo często. Do badania wytrzymałości zaprawy 
cementowej używa się np. próbek w postaci ósemki (rys. 45), 
które rozciągane w kierunku długości siłą P, pękają oczywi­
ście w przekroju osłabionym mn. Iloraz z siły rozrywającej 
przez pole osłabionego przekroju uważa się za wartość dora­
źnej wytrzymałości zaprawy cementowej. Ta wartość będzie 
jednak niewątpliwie mniejszą od rzeczywistej wytrzymałości, 
którąbyśmy znaleźli rozrywając pręt pryzmatyczny z tego 
samego materjału, albowiem wskutek ostrej zmiany przeki 
naprężeń w przekroju mn równomiernym, a pęknięcie rozpocznie się w najsilniej naprężonych 
miejscach, na brzegach zwężonego przekroju.

Ażeby ocenić stopień nierównomierności w rozkładzie naprężeń, robił A. Fóppl doświadczenia z modelem gumo­
wym4). Proste równoległe aa i bb, wykreślone na płaskich ścianach modelu, zamieniały się przy Rozciąganiu na krzywe, 
zwrócone ku sobie wypukłością. Odkształcenia na brzegach okazały się przytem około cztery razy większe niż w środku.

mały w porównaniu do szerokości

Rys. 44 Rys. 45

poprzecznego, nie będzie rozkład
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Te doświadczenia nie mogły oczywiście posłużyć do ilościowego znaczenia największych naprężeń, co powiodło się później 
Coker’owi przy zastosowaniu próbek ze szkła i badania rozkładu naprężeń przy pomocy spolaryzowanego światła1). 
Pokazało się, że największe naprężenia na brzegach zwężonego przekroju są około 1,75 razy większe od średniej war­
tości naprężenia.

‘) Coker: Engineering, 1912.
2) C. Bach: „Elastizitat u. Fcstigkeit".
8) Fil on: Phil. Trans, of Roy. Soc. Vol. 198.

[Stąd możnaby łatwo wysnuć wniosek, źe badanie próbek pryzmatycznych z takiej samej zaprawy cementowej 
powinno dać znacznie większe (około 1,75 razy) wartości doraźnej wytrzymałości. Atoli doświadczenie nie potwier­
dziło na razie tego wniosku. Na podstawie swoich doświadczeń twierdzi nawet Bach2), że raczej ma się rzecz przeciwnie, 
jednakże musimy to twierdzenie uważać co najmniej za przedwczesne. W swoich doświadczeniach używał Bach prętów 
pryzmatycznych o znacznie większych rozmiarach przekroju od przekroju zwykłych próbek ósemkowatych. Inne zaś doświadcze­
nia wykazały niejednokrotnie, że ten sam cement objawia tern większą doraźną wytrzymałość, im mniejsze są rozmiary próbki. 
Jedni tłómaczą to zjawisko innemi warunkami procesu tężenia zaprawy cementowej w wielkiej masie, niż w małej; są jednak 
tacy, jak np. znakomity fizyk W. Voigt, którzy wogóle nie posiadają tej wiary zakorzenionej głęboko w umysłach inży­
nierów, żg niebezpieczeństwo pęknięcia lub przekroczenia granicy sprężystości zależy w danym materjale jedynie od wiel­
kości naprężeń i od pewnych stałych, właściwych materjałowi. Istotnie przeczą temu liczne fakty, na które bądźto nie zwra­
cano. dotąd uwagi w kołach techników, bądź też błędnie je tłumaczono. Ci drudzy twierdzą przeto, źe warunki wytrzy­
małości zależą wogóle nietylko od wielkości naprężeń i od stałych charakterystycznych dla materjału, lecz także od rozmiarów 
ciała, a nawet od rozmieszczenia naprężeń. Powrócimy jeszcze do tej interesującej i ważnej kwestji w odpowiedniem 
miejscu; tutaj nadmienimy tylko, źe w naszym przypadku są prawdopodobnie obadwa poglądy potrzebne do obja­
śnienia zjawiska].

To samo zjawisko miejscowego powiększenia naprężeń spotykamy przy rozciąganiu zwykłego 
sworznia (rys. 46, fig. a). W przekroju mn, oddalonym od miejsca działania sił zewnętrznych, 

można przyjąć równomierny rozkład naprężeń, ale dla przekroju aa przy 
główce sworznia będzie takie założenie bardzo dalekiem od rzeczywistości. 
Największe naprężenia powstaną na konturze przekroju, najmniejsze w jego 
środku. Stopień nierównomierności w rozkładzie naprężeń będzie zależeć 
od krzywizny powierzchni łączących główkę z trzonem sworznia. Im większa 
ta krzywizna, tern większą będzie nadwyżka naprężenia. Gdy niema zupełnie 
powierzchni przejściowej (fig. b), to teoretyczne rozwiązanie daje nieskończenie 
wielkie naprężenia na konturze3).

Jako ogólny wniosek możemy wygłosić regułę następującą: Zmiany
wielkości przekroju poprzecznego wywołują zawsze nierównomierny rozkład 
naprężeń; stopień nierównomierności jest tern wyższy, im ostrzejsza zmiana 
przekroju.

§ 29. ROZRYWANIE PRĘTÓW O ZMIENNYM PRZEKROJU

Wnioski, odnoszące się do wpływu ostrych zmian przekroju na rozkład naprężeń, są prawdziwe 
tylko tak długo, dopóki materjał podlega prawu Hooke’a. Skoro tylko w jakiemkolwiek miejscu 
naprężenie przekroczy granicę proporcjonalności, to prawo rozkładu naprężeń zmienia się. Z chwilą 
pojawienia się odkształceń trwałych zaczynają wogóle naprężenia rozkładać się bardziej równo­
miernie, a ostatecznie będzie wpływ ostrych zmian przekroju na wielkość obciążenia rozrywającego 
rozmaity, zależnie od zdolności materjału do odkształceń plastycznych. W materjałach o znacznej 
rozciągliwości, jak np. żelazo kowalne, miedź, miękka stal i t. p., wywołują ostre zmiany przekroju 
zwiększenie doraźnej wytrzymałości (mierzonej ilorazem siły rozrywającej przez pole najmniejszego 
przekroju). Łatwo to objaśnić, mając na względzie dwie okoliczności, wpływające różnie na wielkość 
doraźnej wytrzymałości:

1) Dzięki obecności ostrych zwężeń przekroju poprzecznego będzie rozkład naprężeń w miejscu 
osłabionem nierównomiernym.

2) Przy rozciąganiu pręta aż do przerwania będzie wytworzenie szyjki utrudnione wskutek 
obecności zgrubionych części pręta w sąsiedztwie miejsca pęknięcia.
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Pierwsza okoliczność powinna wywołać zmniejszenie obciążenia rozrywającego, ale jej wpływ 
staje się niewielkim w przypadku materjałów plastycznych. Po przekroczeniu granicy proporcjonal­
ności będą naprężenia w najbardziej narażonych miejscach wzrastać powolniej, niż odkształcenia 
i podczas dalszego rozciągania wygładzają się coraz bardziej nierówności w rozkładzie naprężeń.

Druga okoliczność musi natomiast sprzyjać powiększeniu doraźnej wytrzymałości, a jej wpływ, 
jak pokazuje doświadczenie, przeważa przy rozrywaniu prętów z żelaza kowalnego i miedzi.

Dla przykładu przytoczymy wyniki doświadczeń Bacha nad żelaznemi prętami z wytoczonem wyżłobieniem (rys. 47).

Postać pręta
Doraźna wytrzy­

małość 
(kglcm2)

Skurczenie poprze­
czne przekroju 

w %

Walcowa (bez żłóbka) 4250 66
Fig- a 4420 63
Fig. b 5020 55
Fig. c 5890 50

2) Mitteil. aus d. mech.-techn. Laborat. Munchen, Heft 31.

Inne wyniki otrzymamy dla materjałów kruchych. Tutaj przeważające znaczenie ma pierwsza 
przyczyna. Materjał nie znosi większych odkształceń trwałych i dlatego nierównomierność rozkładu 
naprężeń zachowuje się do chwili pęknięcia.

Doświadczenia nad prętami szklannemi z okrągłym otworem (rys. 43) wykazały np. ') doraźną 
wytrzymałość o 40% mniejszą niż u prętów pryzmatycznych.

Na podstawie wszelkich dotychczasowych doświadczeń można wyprowadzić wniosek, że ostre 
zmiany przekroju, wywołujące znaczne nadwyżki naprężenia, nie okazują szkodliwego wpływu na 
wytrzymałość, jeżeli obciążenie zachowuje wartość stałą, a materjał jest niezbyt 
kruchy. Zupełnie inaczej przedstawia się rzecz, gdy pręt podlega działaniu obciążeń zmiennych. 
W tym przypadku może, jak wiadomo, nastąpić pęknięcie przy naprężeniach mniejszych od zwykłej 
granicy proporcjonalności, a więc kiedy wszelkie wnioski, odnoszące się do nierównomierności 
rozkładu naprężeń, pozostają ważne. Doświadczenia przeprowadzone w tym kierunku przez A. Fóp-
pl’a2) wykazały istotnie, że ostre zmiany przekroju poprzecznego, znacznie 
pomniejszają wytrzymałość prętów na obciążenia powtarzające się wielo­
krotnie.

Pokazało się np., że wytrzymałość prętów, przedstawionych na rys. (48) i rozerwa­
nych przy jednej i tej samej, lecz niewielkiej liczbie zmian obciążenia, mają się do siebie 
kolejno jak 100 : 70 : 89. Gdyby dobrać wielkości naprężeń tak, aby pęknięcie prętów na­
stąpiło dopiero po kilku miljonach wahnień obciążenia, to różnice wytrzymałości byłyby jeszcze 
większe.

Jest rzeczą ciekawą, że taki sam stosunek między wytrzymałościami daje doraźne rozry­
wanie prętów o tych samych rozmiarach, ale sporządzonych ze szkła. Widzimy przeto, że 
w przypadku przemiennego obciążenia grają ostre zmiany przekroju taką samą rolę u materjałów plastycznych, co przy 
doraźnem obciążeniu u materjałów zupełnie kruchych, zmniejszając znacznie wytrzymałość prętów.

*) A. Leon: „Uber die Zerstórungen in tunnelartig gelochten Gesteinen“. Mitteil. aus d. mech.-techn. Labor. 
Wien 1910.

— „Kerbgrósse u. Kerbwirkung", Wien 1902.
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§ 30. WPŁYW CIĘŻARU WŁASNEGO. PRĘTY O RÓWNOMIERNEJ WYTRZYMAŁOŚCI 
PRZY ROZCIĄGANIU

Dotychczas braliśmy pod uwagę przy obliczeniu naprężeń tylko siły zewnętrzne, działające 
na końce pręta, ale niekiedy trzeba się liczyć z jego własnym ciężarem. Niechaj np. na pręt AB 

rYs* 49), utwierdzony pionowo w górnym końcu, działa siła P^ rozłożona równomiernie) 
j n na k0^cu dolnym. W dolnym przekroju będzie oczywiście panować naprężenie

w górnym zaś będą naprężenia większe, gdyż muszą równoważyć nietylko siłę P, lecz 
także ciężar własny pręta. Oznaczywszy przez y ciężar jednostki objętości, znajdziemy

B zatem naprężenie w górnym przekroju:
P + F/y , ..

. P1=------— =P + /y-
F

Przy obliczeniu ze względu na wytrzymałość należy wziąć pod uwagę górny przekrój, 
jako przekrój niebezpieczny. Tutaj naprężenie powinno nie przekraczać wartości dopuszczal­
nej R, a zatem:

P + F/y _r

Stąd obliczymy niezbędną wielkość pola przekroju pręta:

Z otrzymanej formuły widać, że wpływ ciężaru własnego rośnie szybko wraz z długością 
R

pręta. Gdy było / = —, to znaleźlibyśmy F = t. zn. nie można skonstruować pręta czyniącego 

zadość żądanemu warunkowi wytrzymałości, jeżeli jego długość równa się ilorazowi z naprężenia 
dopuszczalnego przez ciężar właściwy pręta.

Gdyby /y = R', t. j. doraźnej wytrzymałości materjału, to pręt przerwie się pod samym 
własnym ciężarem. [Odpowiadającą długość l = R' : y nazywamy długością zerwania danego 
materjału].

Ażeby ocenić, przy jakiej długości ma wpływ ciężaru własnego praktyczne znaczenie, obli­
czymy tę długość graniczną, przy której np. pręt żelazny może unieść bezpiecznie tylko swój 
własny ciężar. Kładąc R = 1000 kgjcm2, ciężar właściwy żelaza (kowalnego) y = 7,6 kgfdm3 = 
= 0,0076 kgjcm3, znajdujemy

, R 1000/ = — =---------cm = 1316m.
y 0,0076

[Przy długości kilku a nawet kilkunastu metrów, można zatem najczęściej pominąć przy obli­
czeniu ciężar własny pręta wiszącego pionowo].

Teoretycznie można znaleźć taką postać pręta o przekroju zmiennym, ażeby w każdym 
przekroju było* naprężenie jednakowe i równe dopuszczalnemu; będzie to oczywiście zarazem 
pręt o najmniejszym ciężarze przy danych warunkach wytrzymałości. Dolny przekrój pręta Fo znaj­
dziemy z równania:

Nazwijmy pole przekroju odległego o x od końca przez Fx, a przez Qx ciężar odpowiedniej
dolnej części pręta, natenczas F*R = P + Qx (a)
W przekroju nieskończenie bliskim, t. j. odległym od końca o x + dx, będzie:

(Fx + dFx) P = P + Qx + Fxydx....................................................... (b)
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Ostatni wyraz po prawej stronie przedstawia ciężar elementu zakreskowanego na rys. (51). 
Ódjąwsży rów. (a) ód równania (b) znajdziemy

RdF, = F^dx, albo —— = -Xdx. 
F, R

Stąd po zcałkowaniu otrzymamy

_ Y K K
log rx = — x + C, albo K = e = Co e

R
Stała dowolna Co = ec powinna czynić zadość warunkowi krańcowemu, t. j. dla x = 0 ma być 
Fx = Fo. A zatem Co = Fo i ostatecznie równanie

R
Fx = Foe

. (22)

określa analitycznie postać pręta o równomiernej wytrzymałości.
W praktyce stosuje się często dla łatwiejszego wykonania, zamiast ciągłej zmiany prze­

kroju, zmianę stopniami (rys. 52). Przy wyznaczeniu następujących po sobie przekrojów poprze­
cznych łatwo dojść do formuły ogólnej. Pole F} przekroju najniższej części o długości znaj­
dziemy przy pomocy formuły (21):

Rys. 52

1 R-la ’
Przechodząc do części drugiej od dołu możemy do wyznaczenia F2 użyć 

tego samego wzoru, jeżeli zamiast siły obciążającej wstawimy siłę wewnętrzną 
przeniesioną przez część pierwszą, t. j. FtR. A zatem

F = F.R PR
2 R-12y {R — {R — 12y) ’

Analogicznie mamy dla n-tej części
F = ^-xR =P/?-1

9 Wiele wskazówek co do literatury przedmiotu i tablic dla obliczeń przewodów elektrycznych znajdzie czytelnik 
w książce R. Weil’a: „Beanspruchung u. Durchhang von Freileitungen* 1910.

2) Nazwa wprowadzona przez Komitet Redakcyjny „Technika*.
Kur* wytrzymałości materjałów

" R-lnX (/? —/1Y) (B —/2y) •••(/? —/nY)

Jeżeli = Z2 to
n

f = Ł .______ 1______
R f.L. ...................................(23)

V n ’ RJ
Obliczenie przekrojów poprzecznych poszczególnych części pręta nie przedstawia teraz 

żadnych trudności. Przy zwiększaniu liczby części n w nieskończoność przechodzi na granicy 
wzór (23) w formułę (22).

§ 31. OBLICZENIE ROZPIĘTYCH CIĘGIEN1)

[Sznury, liny, giętkie druty, łańcuchy i t. p. elementy konstrukcyjne zdolne do przeniesienia 
w kierunku swej długości tylko sił rozciągających nazywamy wogóle cięgnami2). Cięgna miewają 
najczęściej przekrój stały i są obciążone własnym ciężarem].

Rozpatrzmy cięgno w równowadze zawieszone końcami na dwu stałych punktach A i B (rys. 53). 
Chodzi o znalezienie postaci równowagi cięgna i wielkości napięcia w każdym punkcie. Obierzmy 
początek spółrzędnych O w najniższym punkcie cięgna. Styczna pozioma w tym punkcie niech



50

będzie osią X-ów; zaś normalna skierowana w górę osią Y-ów.. Napiszmy warunki równowagi dla
części cięgna wydzielonej przekrojami OY

w
i kg. Oznaczywszy przez H napięcie w najniższym 
punkcie, a przez T napięcie w przekroju k g (oba na­
pięcia uważamy za styczne do krzywej zwisania), znaj­
dziemy z warunku rzutów na oś X-ów:

H = T cos a

-x —
~-----------/?

Rys. 53

Przy ustawieniu warunku rzutów na oś Y-ów wystę­
puje także ciężar własny cięgna. Jeżeli się ograni­
czymy do przypadków najczęstszych w praktyce, 
w których łuk utworzony przez cięgno jest bardzo 
„płaski*, to ciężar wydzielonej części można w przy­
bliżeniu przyjąć równy qx, przyczem q oznacza cię-

żar jednostki długości cięgna. (Długość łuku zastąpiono tutaj długością jego rzutu). A zatem: 
q x = T sin a......................................................• (b)

^'1

. (a)

Z podzielenia równań (a) i (b) wypada:
. dy gxtga = - = ~—,s dx H

a po zcałkowaniu
y = ——f c.y 2H

Z warunku y = 0 dla x = 0 wynika, że stała C = Q. R zatem 
qx* 

y = ——
2H

jest przybliżonem równaniem postaci równowagi cięgna.
Wstawiwszy za x kolejno wartości odpowiadające punktom zawieszenia, t. j. x = — m i X = Tl,

znajdziemy rzędne
gm* 
2H ’

• (c)f = 9n2
h 2H

Gdy punkty zawieszenia leżą w równej wysokości, to fx= f2 = f, m — n a więc

z qP ik rr ql2f = ——, albo H = -—.......................................' 8H Sf • (24)

Ta formuła pozwala obliczyć napięcie cięgna z danej, strzałki zwisania f i rozpiętości 1.
W ogólniejszym przypadku nierównej wysokości punktów zawieszenia A i B znajdziemy

A - A = * = - m)2n 2n
uwzględniając, że m + n = l. Stąd

l , Hhn = + —
2 ql

l Hh m =------------
2 ql

Podstawiając otrzymane wartości dla m i n w formuły (c), będziemy mogli obliczyć napięcie H 
przy danej wartości h.

[Do obliczenia H można jeszcze użyć następującego rachunku: Z równań (c) znajdziemy z łatwością

—, a zatem , 
9m

m + n =

H 2 (24a)

Tym wzorem będziemy obliczać napięcie, jeżeli są dane wielkości fi, i l, np. z pomiaru na wykonanej konstrukcji].
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[Czasami może zajść potrzeba obliczenia wartości H, jeżeli dane są tylko punkty zawieszenia, a więc h i l, a nadto 
rzeczywista długość cięgna s uważanego w pierwszem przybliżeniu za nierozciągliwe. W tym celu musimy najpierw wyrazić 
długość łuku krzywej przez spółrzędne jej punktów końcowych. Długość łuku OB:

Przy założeniu zrobionem poprzednio, że łuk jest bardzo płaski, a więc bardzo małe, możemy rozwinąć wyraże­

nie pod znakiem całkowania w szereg i opuściwszy wyrazy małe tych wyższych rzędów napisać 

albo po wykonaniu całkowania

Podobnież będzie:

Zważywszy, że m + n =■ l znajdziemy po dodaniu obu powyższych równań i łatwem przekształceniu:
1 o®5,4-52=5 = / 4- -^-^(/8 —3/mn),

z czego wypływa:

H. zatem wielkości m i n są pierwiastkami kwadratowego równania

Uwzględniając, że założenie f, > £ pociąga za sobą nierówność n > m, znajdziemy stąd

=------i/ 2 —___- —__- l2 V l 12

2 1 j,
1 q2 12 ’

a po wstawieniu tych wartości w równanie uzyskane przez odjęcie od siebie równań (c)

h
qi s-l FP

l q* 12 I8

Rozwiązawszy to również względem H otrzymamy nakoniec formułę

(24b)

pozwalającą obliczyć napięcie cięgna o danym ciężarze jednostkowym q, długości s, rozpiętości l i różnicy wysokości 
punktów zawieszenia h, pod warunkiem, że łuk utworzony przez cięgno jest dostatecznie płaski, aby przedsięwzięte uprosz­
czenia dały wystarczającą dokładność.

W rzeczywistości zmieni się wskutek napięcia H długość cięgna s w przybliżeniu na

(24 c)

jeżeli pominiemy niewielką zmienność napięcia wzdłuż cięgna. Po wstawieniu tej wartości we wzór (24b) i uporządkowaniu 
względem niewiadomej H, otrzymalibyśmy równanie stopnia trzeciego niedogodne do rozwiązania. Zwykle dojdziemy prę­
dzej do celu drogą kolejnych przybliżeń, to znaczy, obliczymy najpierw H z formuły (24 b), potem odpowiadające s' z (24 c), 
a podstawiwszy s' na miejscu s w formule (24 b) obliczymy nową wartość napięcia, dajmy na to, H', przy pomocy której 
możemy znaleźć dokładniejszą wartość s" długości łuku i t. d. Niekiedy będzie H' już dostatecznie przybliżoną wartością 
napięcia, co nietrudno poznać po małej wartości różnicy H — H'].

4*

§ 32. WPŁYW TEMPERATURY
Długość cięgna zmienia się także wskutek zmiany temperatury i jakkolwiek ta zmiana jest nieznaczna, to jednak 

może mieć ogromny wpływ na wielkość napięcia, względnie na zwisanie, jeżeli łuk utworzony przez cięgno jest bardzo 
płaski. Oznaczmy przez /0 strzałkę cięgna przy temperaturze t0 i szukajmy napięcia i strzałki przy temperaturze t. W tym 
celu wyprowadzimy najpierw wzór wyrażający długość cięgna s przez jego rozpiętość / i strzałkę f, przy założeniu, że
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punkty zawieszenia leżą w równej wysokości. W poprzednim paragrafie otrzymaliśmy w przypadku bardzo płaskiego łuku
G 4 f x^zwisania y= -j-, albo na podstawie formuły (24): y=—...—. Długość łuku s obliczymy według wzoru: 2/1 l

albo, rozwijając funkcję pod znakiem całkowania w szereg i pomijając wyrazy małe wyższych rzędów, znajdziemy:

"O
Otrzymaną formułę będziemy w dalszym ciągu stosować przy badaniu zgięcia belek; w zagadnieniu zajmującem 

nas obecnie, mamy według niej: (Q 
1 + 4 

o
Podwyższeniu temperatury od /0 do t odpowiadać będzie zwiększenie długości cięgna o

Za(t —10),
przyczem a oznacza spółczynnik wydłużenia termicznego materjału cięgna. Ponieważ przedłużeniu towarzyszy zwiększenie 
strzałki zwisania, więc napięcie przewodu musi się zmniejszyć z wartości na pewną wartość H (przez H oznaczyliśmy 
wprawdzie napięcie w najniższym punkcie, ale przy małych strzałkach można z wielką dokładnością uważać napięcie 
wzdłuż cięgna za stałe). Długością cięgna przy nowej temperaturze t będzie tedy:

s = s0 + la(t — t0) + H
E r

Ostatni wyraz w tej formule przedstawia sprężyste skrócenie cięgna wywołane zmniej­
szeniem napięcia. Wstawiwszy zamiast s i So, H i wyrażenia tych wielkości przez 
strzałki zwisania / i /b, znajdziemy:

z czego dla wyznaczenia f otrzymamy równanie trzeciego stopnia:
p _ r [ A Al _l a (t_ M Al A p___ Ł .91*. = o (26)
' 'L3 P + 8EF 8 64 EF ' ( '

Obliczywszy stąd f, znajdziemy nader łatwo i H.
Niekiedy dogodniej otrzymać wielkość f nie w postaci funkcji pierwotnej strzałki /0, 

jęcz jako funkcję pierwotnego napięcia H^. Wówczas przekształcimy rów. (26) przy 
pomocy (24) na następujące:

7 ^24’H02 + EFi8l MEF ’ *

To równanie można jeszcze nieco uprościć, wprowadzając zamiast Ho pierwotne naprę- 

źenie p0 = -£■ i zamiast ciężaru jednostki długości cięgna q, ciężar jednostki objętości

Y=jL. W ten sposób otrzymamy:

Podobnież można rozwiązać zadanie obliczenia napięcia cięgna wskutek dodatkowego obciążenia, które np. zachodzi 
u przewodów elektrycznych wskutek powłoki lodowej, naporu wiatru i t. d.

Równania (27) i (27') mają postać
f = af+b,

jeżeli a i b oznaczają dane wielkości. Pierwiastki tego równania znajduje się najprościej wykreślnie (rys. 54). W tym celu 
odmierzamy wartość / na osi odciętych i kreślimy krzywą OR o równaniu y = fa. Punkt przecięcia R tej krzywej 
z prostą mn, określoną równaniem y = af + b, wyznaczy szukaną wartość ON strzałki f.

[§ 32 a. DOKŁADNIEJSZA TEORJA ROZPIĘTYCH CIĘGIEN]
[Jeżeli cięgno zwisa znacznie w stosunku do rozpiętości, to przybliżone obliczenie paragrafu (31) może nie być 

wystarczające, fiżeby znaleźć dokładną postać równowagi cięgna, musimy przybliżony warunek równowagi, określony 
równaniem (b) (§ 31), zastąpić ścisłym

qs = Tsin a, 
z którego przez różniczkowanie otrzymamy:

qds — d (Tsin a).
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Ponieważ T =------- (rów. (a) w § 31), więc zamiast powyższego równania możemy napisać
qds = d(Htga),

a podstawiwszy za ds i tg a ich analityczne wartości, znajdziemy stąd:

q r \dx' dx2
Ogólną całką tego równania różniczkowego jest

1 H (X + C) JT (X 4- C) 
e + e + c,

o czem się łatwo przekonać przez dwukrotne różniczkowanie i rugowanie stałych dowolnych C i C. Przy naszym obiorze
dyukładu spółrzędnych (rys. 53) wypływa z warunku = 0 dla

HC =------. A zatem równanie
<7

* = 0, że C = 0; zaś z warunku y = 0 dla a —0 wynika

1 H “-R-\ H e ------
/ q

. (a)

określa dokładnie postać równowagi cięgna (krzywa łańcuszkowa). Jeżeli początek spółrzędnych obniżymy o dłu- 
Hgość —, zwaną parametrem łańcuszkowej, to równanie uprości się jeszcze i przybierze formę najpowszechniej używaną:

1 H H e

Dla długości łuku łańcuszkowej pomiędzy początkiem spółrzędnych a dowolnym punktem (x,y) znajdziemy w znany 
sposób wzór:

1 H
2 q e

qx _ qx 
H H — e (P)

Celem porównania z przybliżoną formułą paragrafu (31) zastąpimy funkcje wykładnicze przez rozwinięcie

? = 1 ± • (^)’± j4-= (^)’+'...................

a znajdziemy:

* VT 6 H* T 120 H‘ T /
Zatrzymując dwa pierwsze wyrazy w szeregu po prawej stronie otrzymamy formułę przybliżoną, której dokładność 

będzie widocznie o tyle wystarczającą, o ile
qx . H.— < 1, czyli x < —•H q

Długość łuku łańcuszkowej da się z korzyścią wyrazić przez rzędną y punktu końcowego. Napiszmy w tym celu 
rów. (a) w postaci

podnieśmy je obustronnie do kwadratu i odejmijmy następnie kwadraty obu stron równania ((3), natenczas znajdziemy

z czego po uproszczeniu i rozwiązaniu względem sx wynika:

^ = /3'(3’ + 2v).................................................................M

Skoro obliczymy według tego wzoru długość obu części łańcuszkowej OA i OB (rys. 53) i dodamy je do siebie, to 
otrzymamy całkowitą długość cięgna

5 = Ka (a + 2 t) + Vh (A + 2 f)...................................................(6)

Rozwiązując to równanie względem — znajdziemy: 

.w

przyczem, jak powyżej h — fi —f^
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Znaleziona formuła może posłużyć do obliczenia napięcia w najniższym punkcie, jeżeli są dane s, /i, i q. Dla 
obliczenia największego napięcia w górnym końcu cięgna należy wyznaczyć kierunek stycznej w tym punkcie. Otóż

. dy 1 / h h \
~e )’

albo uwzględniając rów. (p):

Stąd cos a
V1 + tg2a

1 H= — —— ■ = , a zatem1

T~-  ̂= VH,‘+q>sl 
cos a n

Wstawiwszy nakoniec wartość s z rów. (y) otrzymamy
T=H+qy.

Największe napięcie (w punkcie zawieszenia B)
Ta = H+qfi...................................................................................

jest zatem większe od poziomej składowej H o ciężar własny kawałka cięgna o długości /j.
W praktyce wystąpią zwykle jako wielkości dane, przedewszystkiem l i h, a następnie q i H, a raczej T^. Jeżeli 

h, l, q i H przyjmiemy jako dane, to do obliczenia s nie może posłużyć równanie (8), gdyż zawiera jeszcze inne niewia­
dome fi i f2. Połóżmy dla uproszczenia -A = c, ^~— = f', ft—f' — ~, f^ ~ f' + A i rozwiążmy rów. (e) względem f', 

a otrzymamy

Długości Sj, s2 obu części cięgna OA i OB określają według (y) równania:

Si=/A(A.+ 2c), s2 = ł^/2 (h + 2 c),
albo według (P) równania:

1
~ 2 C

A zatem
m - m

c\=Vhih + 2ć},

n
1 / cycfe —e = /A(/.+ 2c),

Rozwiązawszy pierwsze z tych równań względem m, a drugie względem n i dodawszy wyniki znajdziemy:

/ = m + n=clog[{l + A ++ (1+ .............................. .(*)

Podstawmy tutaj według (q) wartości

A I 2 s r s3 — h2 + 4 c 2 *

s2 j_ z s^y 1 h_ 
s3-h3 + 4 U + 2 C

To równanie należałoby rozwiązać względem s, a następnie obliczyć fi i przy pomocy formuł (1). Nie da się to zrobić 
ogólnie, jak łatwo zauważyć, w rachunku zaś liczbowym możemy pierwszą przybliżoną wartość s znaleść z formuły

A = /' + y = s]/- c + y ’
a otrzymamy równanie:

4 - 1Qg IU + - 01

W

W
przyczem

s2 £ z^y 1_ h_ 
s3-h3 + 4 2 C

^2 =

s = l [ł + ipy+i
2 W / T 24 0’]
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otrzymanej przez rozwiązanie równania (24 b) względem s, a w razie potrzeby poprawić ją przy pomocy (k) jakąkolwiek 
. h l . smetodą przybliżenia. Zważywszy, że rów. (k) wyraża związek między trzema wielkościami —, — i —, nie trudno zresztą

ułożyć tablicę uproszczającą znakomicie znalezienie dokładnej wartości s.
W szczególnym przypadku równej wysokości punktów zawieszenia, t. j. gdy h = 0, fi = = f, przekształcają się 

wzory (e), (rj), (i) i (k) na następujące:

............................................................................................................

|=2iog[i+4+K4 (4+2)]-................................... w
- 2 log [y y + ]A + | (7) ] ,.............................................................

przyczem c = —, jak poprzednio.

Ostatnia formuła (k7) jest odwróceniem następującej:

2 c/ 2 c s = c e — e (?')

Co się tyczy wpływu zmiany temperatury, to dokładne obliczenia nie dają wyników praktycznych wskutek zbytniej 
zawiłości równań, nie dopuszczających ogólnego rozwiązania względem niewiadomych. Na szczęście nie są takie obliczenia 
i potrzebne, gdyż wpływ temperatury jest znaczny tylko przy małych strzałkach zwisania, a wtedy wzory przybliżone do 
poprzedniego paragrafu dają dokładność zupełnie zadowalającą].

§ 33. OBLICZENIE LIN DRUCIANYCH
Z obliczeniem lin drucianych mamy do czynienia przy projektowaniu kolei linowych, transmisyj, wind górniczych 

i t. p. O wytrzymałości takich lin wyrokuje się zwykle na podstawie danych doświadczalnych, jakkolwiek teorja może 
dostarczyć pewnych ważnych wskazówek, odnoszących się do rozkładu naprężeń i to drogą bardzo prostych rozważań *)• Tutaj 
ograniczymy się do najprostszego przypadku, w którym lina składa się z prostego drutu środkowego, t. zw. „duszy*

Rys. 55

i nawiniętych na niej drutów zewnętrznych. Jeżeli przyjmiemy, że każdy płaski przekrój poprzeczny liny pozostaje płaskim 
podczas jej rozciągania, to, pomijając poprzeczne skurczenie przy rozciąganiu, znajdziemy łatwo zależność pomiędzy odpo- 
wiedniemi wydłużeniami duszy i drutów zewnętrznych. Obierzmy dwa przekroje poprzeczne liny mn

i m' n' (rys. 55) w odległości wzajemnej L. Z drutów zewnętrznych odcinają te przekroje długość ”os — ’ 

jeżeli cp oznacza kąt nachylenia drutu do osi liny. Wskutek rozciągania zwiększy się odległość prze­
krojów o AL, co uwydatniliśmy na rysunku przesunięciem przekroju mn w położenie m"n". Punkt a 
drutu zewnętrznego, przedstawionego linją Oa przesunie się równolegle do osi liny i zajmie poło­
żenie c, przyczem ac = AL. Z bardzo małego trójkąta prostokątnego abc znajdziemy wydłużenie 
rozpatrywanej części drutu zewnętrznego

bc = A^cosep,

przyczem pomijamy bardzo małą zmianę kąta cp wywołaną wydłużeniem liny. Dzieląc tę wielkość przez pierwotną 

długość — znajdziemy względne wydłużenie drutu zewnętrznego

a r L 2e< = A L cos cp :-------- = —;— cos2 cp.1 cos cp L

Jeżeli wszystkie druty są z tego samego materjału, to z prawa Hooke’a wynika jako wielkość napięcia w duszy

so = £FĄŁ,
L

a w nawiniętym drucie
St — EF . -^^-cos2cp.

L

H. Benndorf: „Beitrage zur Theorie der Drahtseile". Żeitschr. d. óst. Ing. u. Arch. Ver. 1904.
[Ob. także książkę inż. K. Miłkowskiego p. t. „Prowołocznyj kanat w tieorij i gornoj praktikie". Charków 

1898—1904].
[W polskiej literaturze posiadamy obszerne opracowanie teorji lin inż. H. Czopowskiego p. t. „Obliczenie lin 

drucianych". Przegląd techn. z r. 1905].
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Niech będzie n liczbą drutów zewnętrznych. Rzutując wszystkie napięcia w przekroju na kierunek siły rozciąga 
jącej P otrzymamy warunek równowagi w postaci:

So + n Si cos <p — EF (1 + n cos3 <p) = P,Li
stąd znajdziemy

S = P , c = Pcosźcp
0 l + ncos8<p ’ 1 1 + ncos3cp

L. Tetmajer: „Die angewandte Elastizitats u. Festigkeitslehre“. Wien 1905.
2) Fizyk G. Quincke, technolog K. Karmarsch.

Odpowiadające naprężenia w drutach określą zatem formuły
_ P 1 _  P cos2<p

Po F 1 + n cos3 <p P1 F 1 + n cos3 <p

Na podstawie tych wyników można wywnioskować, że lina druciana ma wytrzymałość mniejszą od sumy wytrzy­
małości drutów, z których się składa, gdyż o ile kąt cp jest różny od zera, to

P
F(n+1) < P1 < Po'

Wytrzymałość zależy od kąta <p i ubywa, gdy ten kąt wzrasta. [Wydłużenie sprężyste liny okazuje się natomiast 
większe od wydłużenia pręta o tym samym przekroju i z tego samego materjału, albowiem

ĄL _ P P 1.
L EF(1 + ncos3cp) EF(n+1)J

Doświadczenia potwierdzają z dostateczną dokładnością te wyniki rozważań teoretycznych. Według badań doświadczal­
nych Tetmajera1) waha się zmniejszenie wytrzymałości zależnie od konstrukcji od 8,4°/0 do 13,7%.

[Mimo to może lina okazać się znacznie wytrzymalszą od jednego pręta z tego samego materjału o przekroju równym 
sumie przekrojów wszystkich drutów liny. Doświadczenie bowiem poucza, że doraźna wytrzymałość drutu z danego materjału 
jest tem większa, im drut jest cieńszy. Spostrzeżono to już dawno2) i ustanowiono formułę empiryczną dla doraźnej 
wytrzymałości drutów:

R' = R'0 + -^ ... ......................................................(a)

w której d oznacza grubość drutu, a R'o i c stałe charakterystyczne dla materjału. Inżynierowie objaśniają to zjawisko 
znanym im dobrze wpływem obróbki na zimno, która w tym przypadku polega na przeciąganiu przez drutownicę. Atoli 
to tłumaczy tylko mniej istotną część zjawiska, gdyż wyżarzenie nie zmienia formy zależności R' od d, wywołując tylko 
pewne obniżenie wartości stałych R'o i c. Wobec tego twierdzą specjaliści-technologowie, że przyczyną większej wytrzy­
małości cieńszych drutów jest ich szybsze ostyganie po wyżarzeniu. Takie objaśnienia dyktuje technikom zakorzeniona 
głęboko wiara w prostotę zjawisk wytrzymałości (por. uwagi na końcu § 28), wiara poparta pozornie ogromną ilością 
doświadczeń. Zwykłe doświadczenia nad ciałami dość dużych rozmiarów pozwalają rzeczywiście sądzić, że np. wartość 
ilorazu z siły rozrywającej przez przekrój pręta jest niezależna od wielkości i postaci przekroju, że zatem wartość ta określa 
stałą właściwą materjałowi, którą dlatego nazwano wytrzymałością materjału. Skoro jednakże przejdziemy do ciał 
o wyjątkowo małych rozmiarach, to, jak widzimy na przykładzie cienkich drutów, sprawa przedstawia się całkiem inaczej. 
Mniemana stała R' okazuje się zależną od grubości drutu, a więc od linjowych rozmiarów przekroju poprzecznego. Dla­
czegóż nie zauważono tego na grubych prętach, używanych w zwykłych doświadczeniach? Odpowiedź bardzo prosta: Bo

cwskutek małej rzeczywistej wartości stałej c w wyrażeniu (a) dla R' znika praktycznie wartość wyrazu — wobec R'o, 

jeżeli tylko d jest dostatecznie wielkie.
Zwiększenie wytrzymałości cienkich drutów jest najprawdopodobniej objawem t. zw. wytrzymałości powierz­

chniowej, to znaczy tych zjawisk spójności, które zachodzą na swobodnej powierzchni ciał, a właściwie w bardzo cien­
kiej molekularnej warstwie zewnętrznej ciał. Fizycy wiedzą od dawna, że ta warstwa powierzchowna objawia spójność zna­
cznie większą niż wnętrze ciała, dla którego miarą spójności jest t. zw. wytrzymałość objętościowa. W szczególnie 
uderzającej postaci występuje to zjawisko u cieczy, które, nie posiadając prawie żadnej wytrzymałości objętościowej, obja­
wiają, jak wiadomo z nauki o włoskowatości, pewną dającą się dobrze zmierzyć wytrzymałość powierzchniową. Przyjmując 
analogiczne zjawisko u ciał stałych możemy teoretycznie uzasadnić formułę (a) dla wytrzymałości drutów. W tym celu 
oznaczymy wytrzymałość objętościową przez R'o, a wytrzymałość powierzchownej warstwy o grubości A przez R\. 
Wtedy siła rozrywająca Pw rozdziela się na dwie części, z których jedna działa na zmniejszony przekrój drutu o polu 
(d —2A)2-^-, a druga na przekrój warstwy powierzchownej, którego pole równa się -------” . A zatem:

p»=(d-2Ap j/r, + [A-

d^Dzieląc obustronnie przez F = otrzymamy wytrzymałość drutu
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Wielkość A będzie bardzo małą tego samego rzędu, co odległości międzycząsteczkowe, a więc w przypadku naj- 
/ a P Ącieńszych nawet drutów technicznych można pominąć wobec Wskutek tego przybiera nasza formuła postać

= + .................................................................... (c)

zgodną z empirycznym wzorem (a), przyczem okazuje się, że stała
c = 4A(K'1-7?'o), 

określająca wytrzymałość powierzchniową, jest zależna od grubości warstwy powierzchownej i różnicy między wytrzyma­
łością tej warstwy, a wytrzymałością wnętrza.

Wzór (c), względnie (a), stałby się oczywiście bardzo niedokładnym, gdyby wartość d zbliżała się do W takim 
jednak przypadku, nie mającym na razie praktycznego znaczenia, lecz nader interesującym ze stanowiska ogólno-nauko- 
wego, należałoby zastosować nieuproszczoną formułę teoretyczną (b), która, co prawda, wymaga jeszcze doświadczalnego 
sprawdzenia].

§ 34. ZAGADNIENIA STATYCZNIE NIEWYZNACZALNE
Przy obliczaniu prętów narażonych na rozciąganie lub ściskanie napotykamy niekiedy przy­

padki, w których siła wewnętrzna w pręcie jest niewiadomą, nie dającą się oznaczyć przy pomocy 
samych tylko ogólnych warunków równowagi. Takie przypadki nazywamy statycznie nie- 
wyznaczalnemi. Dla znalezienia niewiadomych sił trzeba wziąć pod uwagę odkształcenia prętów 
i dlatego ostateczne wartości sił będą wogóle zależne od rozmiarów i sprężystych własności prętów.

Jako przykład rozpatrzymy najpierw przypadek przedstawiony na rys. (56). Na trzech równo­
ległych prętach I, II, III wisi ciężar P. Do obliczenia sił wewnętrznych w prętach 
dostarcza statyka w tym przypadku tylko dwu równań; w celu ustawienia trzeciego trzeba 
się uciec do rozważania sprężystych odkształceń. Dla uproszczenia przyjmiemy, że 
cały układ jest symetryczny względem linji działania siły P; wydłużenia wszystkich / II III 
trzech prętów będą wtedy równe (jeżeli samo ciało obciążające P uważamy za 
sztywne). A zatem: „, o e :- S3 Z X I

/ - E.F, “ E2F2 ” E3F.....................................JJLl ♦
Z powodu założenia symetrji będzie El = E3i F^F^, a więc S^Sg. Warunek —i—

równowagi daje: S, + S2 + Ss = 2S, + S2 = P...........................................(b) ?
1 2 d 1 2 V 7 Rys. 56

Z równań (a) i (b) łatwo teraz obliczyć niewiadome Sj i S2.
Podobny przypadek zachodzi przy obliczeniu prętów złożonych z różnych materjałów, jak

li fi

m Blllin

Rys. 57

np. słupów żelazno-betonowych (rys. 57). Jeżeli środek pola przekroju żelaznych wkładek 
i środek pola przekroju betonowego leżą w tym samym punkcie na linji działania siły 
ściskającej P, to można widocznie przyjąć równomierny rozkład odkształceń w całym 
przekroju. Zakładając nadto ważność prawa Hooke’a i odróżniając odpowiednio wielkości 
odnoszące się do żelaza i betonu wskaźnikami f i b, mamy:

z czego wynika: Pi ' Pb = Ei : Eb = n.
A zatem stosunek naprężeń żelaza i betonu nie zależy od wielkości 
przekrojów, lecz tylko od wartości n stosunku modułów sprężystości 
tych materjałów1). Diagram rozkładu naprężeń jest na rysunku uwidoczniony 
przez zakreskowanie.

[Do obliczenia bezwzględnej wartości naprężeń posłuży jak poprzednio równanie równowagi:
P = Fb pb + Fi pt = Fb pb ± n Fi pb, z czego 

_ P
Pb Fb + n Fi

9 [Zważywszy, że beton okazuje znaczne zboczenia od prawa Hooke’a, należy w powyźszem rozważaniu rozumieć 
przez Eb pewną średnią wartość stosunku naprężenia do odpowiadającego mu względnego wydłużenia, czyli t. zw. średni 
moduł sprężystości. Liczba n będzie zatem określać stosunek modułu sprężystości żelaza do średniego modułu sprężystości 
betonu i będzie się wahać w dość obszernych granicach zależnie od wartości naprężenia. W praktyce przyjmuje się n = 10 do 15].
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Powyższe wyniki wyrażają następujące proste prawidła obliczenia:
Naprężenie betonu jest równe naprężeniu, któreby powstało w słupie betonowym litym, 

o przekroju równym sumie przekroju betonu i ji-krotnego przekroju żelaza w danym słupie. 
N apr ę ż e ni e z a ś ź e I a z a jest ji-krotnem naprężeniem betonu.

Przekrój o polu Fb + n_Ff nazywamy krótko sprowadzonym (zredukowanym) przekrojem betonu].
W poprzednim wywodzie przyjęliśmy, że pręt żelazny wewnątrz betonu jest narażony na 

proste ściskanie. Toby było słuszne tylko wtedy, gdyby beton nie przeszkadzał rozszerzeniu po­
przecznemu żelaza, t. j. jeżeliby liczba Poisson’a g miała tę samą wartość dla betonu, co dla żelaza.

[W rzeczywistości jest o betonu znacznie mniejsze od o żelaza, wskutek czego doznaje żelazo poprzecznego ściskania 
od otaczającego betonu. Nawzajem wywierają wkładki żelazne na beton ciśnienie działające podobnie, jak ciśnienie cieczy, 
zamkniętej w grubościennej rurze, działa na tę rurę. Wielkość tego ciśnienia da się nawet wyznaczyć teoretycznie, ale 
tylko w przypadku, gdy odległość okrągłego pręta od konturu przekroju betonu jest znaczna w porównaniu do jego gru­
bości 1). Łatwo zrozumieć, że działanie rozsadzające żelaznych prętów może być dla betonu niebezpieczne tylko w prze­
ciwnym skrajnym przypadku małej odległości tych prętów od zewnętrznej powierzchni słupa. Jak dotąd, zapobiega się 
temu przestrzeganiem pewnych reguł praktycznych bez naukowego uzasadnienia].

W układach statycznie niewyznaczalnych nie może długość któregokolwiek pręta zmieniać się 
niezależnie od długości innych prętów, wskutek czego błędy w długości, popełnione przy sporzą­
dzeniu prętów, albo zmiany długości, wywołane ogrzaniem, mogą wywołać znaczne siły wewnętrzne 
bez udziału obciążeń. Powracając do poprzedniego naszego przykładu (rys. 56), przyjmijmy dla 
uproszczenia rozważań, że wszystkie pręty są zrobione z jednego i tego samego materjału i mają 
jednakowe przekroje o polu F. Jeżeli np. pręt środkowy sporządzono nieco dłuższy od skrajnych, 
to przy zestawieniu (montowaniu) układu wypadnie go nieco ścisnąć i dopiero wstawić na przezna­
czone miejsce. Dążność pręta II do odzyskania pierwotnej długości wywoła oczywiście napięcia 
rozciągające w prętach I i III.

Jeżeli oznaczymy przez X siłę ściskającą w pręcie II, to siły rozciągające w prętach I i III 
będą równe Wielkość X znajdziemy łatwo z warunku równej długości pręta środkowego i prę­
tów zewnętrznych po zestawieniu. Niech 8/ oznacza nadwyżkę długości pręta II; jego długość 
zatem równa się 

l + EF ,
a długości prętów skrajnych

XI 
2EF'

Warunek równości daje przeto:
.... Xł XI

2EF ’
z czego wynika: 

X 2 81 „
P^ = ^ = ^-~r^

jako wartość naprężenia w pręcie II wywołanego niedokładnością wykonania. (Naprężenie 
z e s t a w c z e).

Ażeby nabyć wyobrażenia o wielkości takich naprężeń obliczymy je np. dla przypadku, w któ­
rym nadwyżka długości żelaznego pręta równa się 0,001 długości projektowanej. Wtedy

px = ~ . 0,001 . 2 . 106 kglcm*  = 1333 kglcm*.  O

*) Por. M. T. Hub er: „Obliczenie wymiarów belek betonowych obustronnie uzbrojonych". Czasop. techniczne. 
1906. Ust. 2: „Działanie uzbrojenia ściskanego®.

Naprężenia prętów skrajnych są dwa razy mniejsze. Przy działaniu obciążenia P sumują się 
naprężenia wywołane błędami wykonania z naprężeniami wywołanemi obciążeniem.

Z takiem samem zadaniem mamy do czynienia przy podwyższeniu temperatury środkowego 
pręta z /0 na / stopni. Swobodnemu wydłużeniu pręta II przeszkadzają inne pręty i w rezultacie 
powstanie w pręcie II ciśnienie, a w I i III ciągnienie. Dla wyznaczenia tych naprężeń, które 
nazwiemy krótko termicznemi, można użyć poprzednich wywodów, wstawiwszy tylko na
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miejsce 81 wartość termicznego wydłużenia pręta a (t — t0)l, przyczem a oznacza spółczynnik 
wydłużenia termicznego.

Silny wpływ niedokładności w rozmiarach i różnic temperatury na wielkość naprężeń, wywo­
łuje znaczne trudności przy zestawianiu konstrukcyj statycznie niewyznaczalnych i obniża stopień 
dokładności obliczeń, co wypada kompensować obniżeniem norm dla naprężeń dopuszczalnych.

§ 35. O NAPRĘŻENIACH W ŚCIANACH NACZYŃ ‘)

Tutaj zajmiemy się tylko takiemi zagadnieniami, w których grubość ścianki jest bardzo mała 
w porównaniu do rozmiarów naczynia i do promieni krzywizny powierzchni zewnętrznych. Te 
zadania nasuwają się przy obliczeniu zbiorników dla wody, gazu, kotłów parowych i t. d. Naczy­
niom tego rodzaju nadaj e się zwykle postać powierzchni obrotowych i obiera się rozmiary tak, 
aby odkształcenia wywołane naporem płynu na ściany były małe. W takim przypadku można 
pominąć zmiany krzywizny ścian, ich wygięcia i przyjąć równomierny rozkład naprężeń przez 
całą grubość ścianki. (Miejsca, do których się to założenie nie stosuje, zaznaczymy w rozdz. XVII).

8
Będziemy oznaczać przez 
grubość ścianki naczynia (w cm), 
ciśnienie na ściankę (w kg/cm*),

Pi p2 główne promienie krzywizny powierzchni połowiącej grubość ścianki (w cm), przyczem p2 jest 
promieniem odpowiadającym przekrojowi południkowemu.
Dla ustawienia podstawowego równania równowagi wytniemy ze ścianki element nieskoń­

czenie bliskiemi przekrojami południkowemi i dwoma przekrojami normalnemi do południka 
(rys. 58). Niech oznaczają ds2 i ds^ długości boków 
wyciętego elementu leżące odpowiednio wzdłuż połu­
dnika i w kierunku doń prostopadłym. Kąty między po- 
prowadzonemi przekrojami będą oczywiście odpowiednio 
, ds. . ds2 XT i i,równe —- i —Naprężenia normalne w tych prze- 

Pl P2
krojach px i p2 określają siły zewnętrzne działające na 
brzegi elementu o polach 8 . ds2 i 8 . ds,.

Wielkości tych sił są zatem równe: 
Pi ds2 . 8 i p2 dSi . 6. 

(Naprężenia styczne na brzegach są wykluczone przez 
symetrję). Oprócz tego działa na powierzchnię elementu 
ciśnienie płynu q, dające siłę qdstds2. (Ciężar własny 
można najczęściej pominąć). Napiszmy teraz warunek 
równowagi rzutując wszystkie siły na kierunek normalnej 
do powierzchni elementu (wystawionej w środku). Każda 
z sił Pi ds2 . 8, działających na przeciwległe brzegi ele­
mentu o długościach ds2, tworzy z płaszczyzną styczną 

1 ds do jego powierzchni kąt ----- L a zatem rzut jednej siły 
* Pi

na normalną jest z pominięciem nieskończenie małych wyższego 

zaś suma algebraiczna rzutów obu sił

= 8 . dst . ds2.
Pi

Rys. 58

rzędu równy
1 ds^
2 pŁ

Pi ds2 . 8,

*) L. Forchheimer: „Die Berechnung ebener u. gekriimmter Behalterbóden". Berlin 1909. 
Brauer: „Festigkeitslehre®. Str. 128.
F. Bleich: „Die Eisenkonstr. im stadt. Gaswerk Wien-Leopoldau“. Eisenbau 1913. Str. 51.
H. Lorenz: „Technische Elastizitatslehre". Str. 26.
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Podobnież będzie sumą rzutów obu sił, działających na brzegi elementu o długościach ds^.

8 . ~dsi . ds2. 
P2

Przy kierunkach sił przyjętych na rysunku, będzie przeto warunkiem równowagi równanie:

8 . -1ds1ds2 + 8 . ^dSi ds2 = qdst ds2, 
Pi P2

czyli — + — = ~.................................................................. (28)
J Pi P2 8

Łatwo zauważyć, źe w rozpatrywanym elemencie powstaje jeszcze trzecie naprężenie o kierunku prostopadłym do 
tamtych dwu, które na powierzchni stykającej się z płynem ma wartość ciśnienia q tego płynu i zmniejsza się idąc w głąb 
ścianki ku powierzchni zewnętrznej aż do zera, względnie do wartości ciśnienia zewnętrznego. Atoli to naprężenie jest 
przy poczynionych założeniach zawsze bardzo małe w porównaniu do Pi i p2, wobec czego można je pominąć.

Otrzymane równanie zastosujemy do niektórych szczególnych przypadków.
1) Naczynie kuliste, podlegające działaniu równomiernie rozłożonego wewnętrznego 

ciśnienia q, rozszerzy się nieco, zachowując jednakże postać kulistą. Z symetrji wynika, że 

a rów. (28) da nam
Pi = P2 = P,

. (29)

albo, gdy mamy obliczyć grubość ścianki przy dopuszczalnej wartości R naprężenia p:

8 = QP 
2R (29 a)

Jeżeli naczynie kuliste jest narażone na (równomiernie rozłożone) ciśnienie zewnętrzne, to 
trzeba tylko zmienić znak we wzorze (29). Zamiast ciągnień powstaną w ściance ciśnienia.

2) Kocioł walcowy (rys. 59) jest narażony na zewnętrzne stałe ciśnienie q. Rozpatrzymy 
osobno naprężenia w punktach walcowej części kotła, a osobno naprężenia w dnach, przyczem

Rys. 59

otrzymamy

przyjmiemy, że rozważane punkty są dość odległe od miejsca połączenia den 
z częścią walcową. Dla punktów części walcowej jest p2 = a z rów. (28)

nPi 6 • (30)

Tutaj pj oznacza oznacza oczywiście promień walca. Naprężenia p{ dążą do 
rozerwania kotła wzdłuż tworzącej walca. Nazwiemy je naprężeniami obwo- 

dowemi. Rżeby znaleźć naprężenia podłużne, czyli ciągnienia p2, przetnijmy kocioł płaszczyzną 
prostopadłą do osi walca i rozpatrzmy warunek równowagi jednej części. Naprężenia p2 rozmiesz­
czone równomiernie na pierścieniowem polu przekroju, dadzą siłę wypadkową

P = 2?tp18. p2, 
działającą w osi walca. Tę siłę równoważy napór pary na dno kotła o wielkości np^p. A zatem: 

2^8 . p2 = xpSq,

skąd .................................................................. (31)

Naprężenia podłużne są przeto dwa razy mniejsze od naprężeń obwodowych.
Co się tyczy naprężeń w dnach, to w przypadku ich kulistej formy można zastosować wprost 

wzór (29) wyprowadzony dla naczynia kulistego. Przy innej postaci den wypadnie udać się na 
drogę ogólną, wskazaną w następnym przykładzie.

3) Naczynie napełnione wodą doznaje w każdym punkcie ściany ciśnienia proporcjonal­
nego względem głębokości y. Ciśnienie to q = yy, jeżeli y oznacza ciężar jednostki objętości wody (lub 
innej cieczy). Wywołany temi ciśnieniami całkowity napór na naczynie równa się oczywiście 
ciężarowi wody w naczyniu. Dajmy na to, że ciężar ten jest zrównoważony naprężeniami p2 
rozmieszczonemi równomiernie na swobodnej krawędzi naczynia, którego przekrój południkowy
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przedstawia rys. (60). Oś symetrji naczynia jest przytem pionowa. Kierunek naprężeń p2 będzie 
stycznym do linji przekroju południkowego. Obliczmy teraz naprężenia odpowiadające punktom 
dowolnego równoleżnika m n o promieniu r i głębokości y (mierzonej od zwierciadła wody). Naprę­
żenia południkowe p2 znajdziemy podobnie, jak w poprzedniem zada­
niu. Przez równoleżnik mn poprowadzimy przekrój pobocznicą stożka 
mkn. Naprężenia p2 rozmieszczone równomiernie w tym przekroju, 
sprowadzają się do wypadkowej siły działającej w kierunku osi Y 
(w górę). Jej wielkość

P = 2 itr. 6.p2 cos cp.
Siła P równoważy się z ciężarem wody Q o objętości ograniczonej 
pobocznicą walca mtqn i dnem danego naczynia. Ten ciężar określa 
łatwa do wyprowadzenia formuła:

A zatem
O

Y 1 Cr 
p, =^~--------- \ xydx,

i u wierzchołka stożka. W przekrojach pośrednich zmieniają się według

diagramu parabolicznego i osiągają największą wartość dla y^-^, gdzie 
(n ) _ ^hi fga ■
'-rl^tnax 45 COS CC

Naprężenia południkowe p2 (działające w przekroju równoleżnikowym) obliczymy przy pomocy ogólnej formuły (a):

Pi = s----- ’ — \ x(h — X cotg a) dx = ---- cotg aj.
™ 8 cos ar) 8 cos a \ 2 3 /Jo

Ze względu na to, że promień r wyraża się przez y wzorem 
r = (/i — y) tg a

A zatem i to naprężenie zmienia się z głębokością według diagramu parabolicznego i staje się zerem dla y = h, t. j. w wierz- 

chołku stożka, a osiąga największą wartość dla y = •

= 3 tga .
tr2/max 15 § COS a

Jeżeli postać naczynia jest tego rodzaju, że przekrój południkowy posiada 
załom (rys. 62), to promień krzywizny p2 staje się w tern miejscu zerem, a pod­
stawowe równanie przybiera postać:

Pr. P.
Pt 0 8’

z której wynikałoby pr = o ile p2 nie jest przypadkowo zerem.
Ażeby w tym przypadku umożliwić równowagę w rozpatrywanem miejscu, 

przy poczynionych na wstępie założeniach co do naprężeń, trzeba widocznie na 
równoleżnik załomu działać odpowiedniemi napięciami S. Gdyby tych napięć nie 
było, to w miejscu załomu powstałyby wielkie odkształcenia wywołane zgięciem ścianki. Dla uni­
knięcia tych odkształceń wzmacnia się zwykle w praktyce równoleżnik załomu osobnym pierścieniem.

Scoscp r Rys. 60• (a)

skąd na podstawie równania przekroju południkowego możemy wyznaczyć wielkość p2. Do obli­
czenia Pt posłuży rów. (28).

Szczegółowo wykonamy obliczenie w prostym przypadku, gdy naczynie ma postać stożka (rys. 61). Wówczas jeden 
z promieni krzywizny staje się nieskończenie wielkim, drugi zaś równa się

L.
y
Rys. 61

,n

। h—y L In =------— tg acos a
Podstawowe równanie (28) przybierze postać:

Naprężenia równoleżnikowe Pi znikają przeto w zwierciedle wody

otrzymamy
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Jako przykład przedstawiono na rys. (63) zwykły typ zbiornika na wodę w kolejowych wodo­
ciągach. Kuliste dno jest połączone ze ścianką walcową za pośrednictwem kątówek, których profil 

uwidoczniono w punktach /ł i D. Te kątówki tworzą pierścień dość 
sztywny, aby przeszkodzić niepożądanym odkształceniom ścianki. Po­
damy tutaj przybliżone obliczenie pierścienia podporowego, oparte na 
założeniu ścianek idealnie gibkich. W danym przypadku przyjmiemy więc, 
że ścianki mogą być narażone tylko na rozciąganie. Ciągnienia p2 powsta­
jące w dnie zbiornika pod wpływem naporu wody, a nachylone w miejscu 
załomu pod kątem a do poziomu, rozkładamy na poziomą i pionową 
składową (fig b). Ta ostatnia przenosi się bezpośrednio na podporę ścianki 
bocznej, pierwsza zaś wywołuje ściskanie pierścienia podporowego [po­
dobnie, jak napięcie sprych koła rowerowego, wywołuje ściskanie w obrę­
czy]. Składowa pozioma, przypadająca na jednostkę długości pierścienia 
ma wartość

S = p 8. cos a.
Dla wyznaczenia naprężeń ściskających w pierścieniu rozpatrzymy 
icienia odciętej przekrojem średnicowym (rys. 64). Na każdy element

pierścienia, odpowiadający kątowi środkowemu dcp, przypada zewnętrzny nacisk pó .cosa. p. dcp. 
Jeżeli przez P oznaczymy siłę wewnętrzną w pierścieniu, zastępującą działanie 
odciętej części na część rozpatrywaną, to rzutując wszystkie siły na kierunek P 
otrzymamy: 

n 
T

S p sin <p. d cp = 2 S p, 
a zatem D ” Rys. W

b’ = 5p = pó.p cos cc.
Dzieląc wielkość napięcia P przez pole przekroju pierścienia, znajdziemy wartość ciśnienia 
w pierścieniu.

Kwestję stateczności ściskanego pierścienia rozważymy w rozdziale poświęconym stateczności 
układów sprężystych.

Rys. 63 

równowagę połowy

2P = 2

§ 36. O TEORJACH WYTRZYMAŁOŚCI
Przy obliczeniu prętów rozciąganych lub ściskanych rozwiązuje się kwestja wytrzymałości 

bez szczególnych trudności. Posiadamy poddostatkiem danych doświadczalnych co do granicy pro­
porcjonalności, punktu krytycznego i doraźnej wytrzymałości dla rozmaitych materjałów konstrukcyj­
nych, posiadamy także wskazówki co do granicznych naprężeń przy powtarzających się obciążeniach. 
Według tych danych oznacza się w każdym poszczególnym przypadku wielkości naprężeń dopuszczal­
nych R. Skoro jednak przejdziemy do bardziej złożonych zadań rozciągania lub ściskania w dwu 
kierunkach wzajemnie prostopadłych [dwuwymiarowy stan napięcia], z jakiemi np. mieliśmy do 
czynienia przy obliczaniu ścianek naczyń, albo do jeszcze ogólniejszych przypadków rozciągania 
i ściskania w trzech kierunkach wzajemnie prostopadłych (rys. 34), to zauważymy przedewszyst- 
kiem możliwość nieskończonej rozmaitości stosunków, zachodzących między wartościami naprę­
żeń px, py i pz (naprężeń składowych). Ażeby w tych przypadkach zawyrokować o wytrzyma­
łości, trzebaby, biorąc ściśle, dla każdej z osobna wartości stosunku naprężeń składowych przepro­
wadzić szereg doświadczeń celem wyznaczenia granicy proporcjonalności, punktu krytycznego 
i doraźnej wytrzymałości. Pomimo wielką ważność takich badań, posiadamy dotychczas bardzo 
niewiele danych doświadczalnych w tym kierunku i dlatego w przypadkach złożonego stanu na­
pięcia musimy wyrokować o wytrzymałości na podstawie doświadczeń nad prostem rozciąga­
niem i ściskaniem.

W dalszym ciągu będziemy uważać dwa jakiekolwiek przypadki stanu napięcia za przypadki 
równej wytrzymałości, jeżeli przy proporcjonalnem powiększeniu naprężeń (składowych) dojdziemy 
w obu przypadkach razem do granicy niebezpiecznej. Jako taką można uważać albo punkt 
krytyczny, albo pęknięcie. Zdecydujemy się na obiór punktu krytycznego [gr. plastyczności] za 
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granicą niebezpieczną, a tylko dla materjałów, które tego punktu nie posiadają, będziemy przez 
granicę niebezpieczną rozumieć granicę proporcjonalności. U takich bowiem materjałów jak żelazo 
kowalne i miękka stal, pojawiają się po przekroczeniu punktu krytycznego znaczne odkształcenia 
trwałe, niedopuszczalne w konstrukcjach.

Rys. (65) przedstawia dwa przypadki stanu napięcia, a mianowicie proste rozciąganie przy 
naprężeniu p (fig. a) i trójwymiarowy stan napięcia o naprężeniach p*, py i pz, przyczem przyjęto, 
że px > py > pz. Stosownie do umowy zrobionej powyżej będziemy mówić o równej wytrzymałości
[albo o równej pewności] w obu przypadkach, jeżeli dla osiągnięcia punktu 
krytycznego trzeba tak p, jakoteż px, py i pz, powiększyć w tym samym 
stosunku.

Mamy dość danych doświadczalnych, aby ocenić wytrzymałość [wzglę­
dnie stopień bezpieczeństwa] w przypadku, przedstawionym na fig. (a), nie 
mając jednak najczęściej takich danych dla przypadku na fig. (b), musimy 
się uciec do jakiejś hipotezy określającej te czynniki, które mają decydu­
jący wpływ na pojawienie się odkształceń trwałych lub na pęknięcie. Naj­
prostsza możliwa hipoteza polegałaby na przyjęciu, że sama tylko wielkość 
naprężenia rozstrzyga o wytrzymałości, że zatem w obu naszych przy­

fig. (a) fig. (b)

Rys. 65

padkach zajdzie punkt krytyczny przy jednem i tern samem największem ciągnieniu (p = px).
To zapatrywanie wygłoszone już przez Galileusza, fundatora nauki o wytrzymałości, podzielały 
i później liczne powagi w dziedzinie teorji sprężystości i wytrzymałości materjałów. Przyjąwszy 
tę hipotezę (hipotezę największego naprężenia), doszlibyśmy do wniosku, że i w drugim 
przypadku należy obrać tę samą wartość naprężenia dopuszczalnego, co i w pierwszym, a obli­
czenia wytrzymałości należałoby wogóle wykonywać na podstawie największego naprężenia. Takie 
założenie uprościłoby bez wątpienia obliczenie, wszelako doświadczenie wskazuje dobitnie na to, 
że wielkość naprężenia nie może służyć do określenia wytrzymałości materjału przy ogólnym 
stanie napięcia [czyli inaczej do określenia wytężenia („die Rnstrengung") materjału]1)* W sa­
mej rzeczy wykazały doświadczenia A. Fóppl’a2), że przy wszechstronnem równomiernem ściskaniu 
znosi materjał bez uszkodzeń naprężenia przewyższające wielokrotnie wartość jego doraźnej wytrzy­

x) [Było to zresztą do przewidzenia, albowiem niepodobna sobie wyobrazić, aby wszechstronne ciśnienie o dowolnej 
wielkości mogło być wogóle niebezpiecznem dla materjału dostatecznie jednolitego].

2) A. Fóppl: „Die Abhangigkeit der Bruchgefahr von der Art des Spannungszustandes". Mitt. aus d. mech.- 
techn. Lab. Munchen 1910.

małości przy prostem ściskaniu.
Obok hipotezy Galileusza, rozpowszechnionej zwłaszcza wśród inżynierów angielskich i ame­

rykańskich, powstała we Francji (Poncelet, de Saint-Venant) druga teorja wytrzymałości, 
wedle której określa wytężenie materjału nie wielkość naprężenia, lecz wielkość wydłużenia wła­
ściwego (hipoteza największego wydłużenia). Z punktu widzenia tej teorji wypadałoby 
w rozpatrywanych powyżej przypadkach (rys. 65) uważać wytężenia za równe wtedy, gdy wiel­
kości największych wydłużeń są w obu jednakowe. Ustaliwszy R jako wielkość naprężenia bez­
piecznego przy prostem rozciąganiu, określamy temsamem wielkość dopuszczalnego wydłuże­
nia e = R : E. Największe wydłużenie w drugim przypadku (fig. b) określa oczywiście (przy zało­
żeniu Px> py>Pz) formuła

-g-[Px — °(Py + P.)l-

Stosownie do drugiej hipotezy miałby zatem warunek równego wytężenia w obu przypadkach
postać:

e = ex, czyli px — a (py + pz) = R . (32)
Wielkość px — o(Py + pz) zowią naprężeniem sprowadzonem albo zredukowanem.
Jeżeli py + pz jest dodatnie, to jak widać z otrzymanej formuły px > R. Rozciąganie w pewnym 

kierunku stawałoby się tedy mniej niebezpiecznem, jeżeli mu towarzyszą ciągnienia w kierunkach 
poprzecznych.
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Stąd wynikałoby także, że wartość naprężenia bezpiecznego dla ścianki kotła walcowego 
można przyjąć większą, niż w przypadku prostego rozciągania. Wielkość dopuszczalnego ciągnienia 
obwodowego pt (§ 35) należałoby wyznaczyć z formuły:

Pi — <sp2 = R,

czyli, ze względu na to, że p1 = 2p2 w walcowej części kotła:

Przy o=l:3 otrzymalibyśmy dopuszczalną wartość pL o 20% większą od R. Atoli doświadczenia 
nie potwierdzają tych wniosków1), domagając się raczej zmniejszenia dopuszczalnej wartości pv 
Mimo to będziemy w dalszym ciągu podawać formuły oparte na drugiej hipotezie obok formuł 
poprawniejszych, wynikających z trzeciej nowszej hipotezy, aby ułatwić czytelnikowi zrozumienie 
wzorów dotąd ogólnie rozpowszechnionych i wykazać odpowiadające różnice. [Powstające przez to 
obciążenie książki nie da się uniknąć tak długo, aż znikną z praktycznych podręczników formuły 
oparte na hipotezie największego wydłużenia zastąpione racjonalniejszemi].

ł) Wehage: Mitt. d. techn. Yersuchsanstalten zu Berlin. 1888, str. 89.
[Druga hipoteza nie odpowiada również wynikom doświadczeń nad wszechstronnem ściskaniem, lecz dzięki roz­

powszechnieniu na całym prawie kontynencie Europy, jeszcze przed doświadczalnem sprawdzeniem, króluje po dziś dzień 
w przeważającej liczbie książek o wytrzymałości materjałów, nawet takich, których autorowie są przeświadczeni o błędności 
hipotezy. Wielką rolę gra tutaj siła przyzwyczajenia praktycznych inżynierów, którzy posługują się zwykle gotowemi wzo­
rami obliczeń, przedrukowanemi przez innych praktyków w coraz to nowych wydaniach znanych podręczników techni­
cznych, jak np. „Hiitte" i t. p.].

2) J. J. Guest: „On the Strength of ductile materials under combined Stress". Phil. Mag. 1900. V. 50.
C. fi. Smith: „Some experiments on solid Steel bars under combined Stress". Engineering, Vol. LXXXYIII.
W. fi. Scoble: „Ductile materials under combined Stress". Phil. Mag. 1906 i 1910.
L. B. Turner: „The elastic breakdown of materials submitted to compound Stresses". Engineering. Vol. LXXXVI.

•S. P. Timoszenko: „Formuły słożnago soprotiwlenja s toczki zrjenja razlicznych teorij procznosti". Izw. Peb 
Pólit. Inst. 1905.

T. Kńrmón: „Festigkeitsversuche unter allseitigem Druck". Z. d. V. d. I. 1911.

Trzecia teorja, zapoczątkowana już przez Coulomb’a, a czyniąca zadość licznym nowszym 
doświadczeniom zwłaszcza z plastycznemi metalami2), przyjmuje, że o wytrzymałości materjału 
decyduje wartość największych naprężeń ścinających. Z punktu widzenia tej teorji będzie wytężenie 
w obu przypadkach przedstawionych na rys. (65) to samo, jeżeli największe naprężenia ścinające 
są w obu przypadkach równe. Obrawszy dla naprężenia bezpiecznego przy prostem rozciąganiu 
lub ściskaniu wartość R, przyjmujemy tern samem jako wartość bezpieczną naprężenia ścinają­
cego 0,5/?, gdyż przy linjowym stanie napięcia jest (pt)max = (§ 13). Co się tyczy naprężeń
w przypadku przedstawionym na fig. (b), to, jak wiadomo z § (18), jest największe naprężenie 
ścinające równe połowie różnicy między największem a najmniejszem naprężeniem normalnem. 
Warunek równego wytężenia materjału w obu przypadkach otrzyma przeto postać:

4 = czyli Px _ Py = /?.......................................... (33)
W w

Ta formuła wyraża, że w ogólnym stanie napięcia powinna różnica między największem (alge­
braicznie) a najmniejszem naprężeniem normalnem równać się naprężeniu dopuszczalnemu przy 
prostem rozciąganiu.

Przy dwuwymiarowym stanie napięcia, jaki np. panuje w (przybliżeniu) w ściankach naczyń, 
jest trzecie naprężenie równe zeru, jeżeli więc py > p2 > 0, to formuła (33) przybierze postać

Pi — 0 = R, czyli Pi = R.
W tym więc przypadku wynik trzeciej hipotezy zgadza się z wynikiem pierwszej. Przy rozciąganiu 
w dwu kierunkach wzajemnie prostopadłych określa wytężenie materjału wartość większego z obu 
naprężeń.

[Jak już zaznaczono powyżej, stosują się wyniki doświadczeń nad metalami plastycznemi wcale dobrze do trzeciej hipo­
tezy, która jest także w zupełnej zgodzie z przewidywaną „a priori" nieograniczoną wytrzymałością przy równomiernem 
wszechstronnem ściskaniu. Wtedy bowiem różnica między największem a najmniejszem naprężeniem staje się zerem, czyli 
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żadna dowolnie wielka wartość ciśnienia nie staje się niebezpieczną dla materjału. Ale ten sam wynik otrzymalibyśmy 
przy wszechstronnem równomiernem rozciąganiu, co już nie przemawia do przekonania i raczej budzi pewne wątpliwości. 
Prawda, źe taki stan napięcia nie da się praktycznie urzeczywistnić, że zatem zarzuty tego rodzaju nie obniżają wielkiej 
praktycznej wartości trzeciej hipotezy, wszelako napominają one do ostrożności w uogólnianiu wyników doświadczeń nad 
wytrzymałością i wskazują na właściwą rolę owej hipotezy jako ważnej reguły praktycznej. Można ją stosować z całem 
zaufaniem tylko do tych materjałów, jakie były przedmiotem doświadczeń i do tych stosunków naprężeń (składowych), 
które niezbyt wiele się różnią od badanych doświadczalnie. Weźmy np. taki materjał, jak szkło, w porównaniu z metalami techni- 
cznemi nadzwyczaj jednolity, równokierunkowy i podlegający w bardzo obszernych granicach prawu Hooke’a. Tymczasem 
trzecia hipoteza nie stosuje się zupełnie do szkła, gdyż pociąga za sobą widocznie równość naprężeń bezpiecznych przy 
rozciąganiu i ściskaniu, podczas gdy wytrzymałość przy ściskaniu szkła jest kilkakrotnie większą od wytrzymałości przy 
rozciąganiu. Na szkle można także obserwować objawy wytrzymałości powierzchniowej występujące tutaj jeszcze jaskrawiej 
niż na drutach metalowych.

Z tych i innych jeszcze faktów doświadczalnych, o których będzie mowa przy innej sposobności, okazuje się, że zja­
wiska wytrzymałości są bez porównania bardziej złożone od zjawisk sprężystości i prawdopodobnie nawet nie dadzą się 
określić ściśle stałemi charakterystycznemi dla materjału, analogicznie do stałych sprężystości. Dlatego też nie muszą 
liczyć na trwałe powodzenie i inne proste hipotezy o jednej lub dwu stały ch, jakie napotykamy w nowszej literaturze1), 
jakkolwiek mogą również dostarczyć pożytecznych reguł praktycznych].

*) O. Mohr: „Welche Umstande bedingen die Elastizitatsgrenze..." Z. d. V. d. I. 1910, str. 1524.
M. T. Huber: „Właściwa praca odkształcenia jako miara wytężenia materjału". Czasop. techn. 1904. Ob. także:
A. Fóppl u. L. Fóppl: „Drang u. Zwang", tom I, r. 1920, str. 50.
Roth: „Die Festigkeitstheorien und....“, Zeitschr. f. Math. u. Ph. 48. 1902.
ł) Ogólne rozwiązanie odnośnego zagadnienia teorji sprężystości znalazł w r. 1882 H. Hertz. Ob. Gesamm. Werke. 

Bd. I. „Ueber die Beriihrung fester elastischer Kórper u. iiber die Harte“. Opracowaniem szczegółów ważnych zwłaszcza 
dla zastosowań technicznych zajmują się następujące rozprawy:

M. T. Huber: „Zur Theorie der Beriihrung fester elastischer Kórper", Ann. d. Phys. 1904.
Th. Friesendorf: „Teorja sżatja soprikasajuszczich sia twiordych tieł". Petersburg 1905.
A. N. Dinnik: „Udar i sżatje uprugich tjeł". Izw. Kiew. Pol. Inst. 1909.
S. Fuchs: „Hauptspannungstrajektorien....". Phys. Zeitschr. 14. 1913.
M. T. Huber u. S. Fuchs: „Spannungsverteilung bei der Ber. zw. elast. Zylinder. Phys. Zeitschr. 15. 1914.
•) Wywód formuł znajdzie czytelnik także w dziele autora p. t. „Kurs teorij uprugosti". Część L 1914. str. 221.

e 
Kurs wytrzymałości materjałów

§ 37. ŚCISKANIE KUL I WALCÓW

Z przypadkami ściskania kul i walców spotykamy się tak w konstrukcji maszyn (łożyska kulowe i wałkowe), jak 
i w budowlach inżynierskich (łożyska podporowe mostów, przeguby wielkich sklepień i t. p.). Rozkład naprężeń w otocze­
niu miejsca stykania się jest wielce skomplikowany i nie da się znaleźć drogą elementarną2). Ograniczymy się zatem do 
podania wyników, któremi można się posługiwać przy obliczeniach8).

Przy ściskaniu dwu kul z siłą P (rys. 66) powstanie wskutek odkształceń powierzchnia stykania mn, ograniczona 
konturem kołowym o promieniu a bardzo małym w porównaniu do promieni rt i r2 obu kul. Wielkość tego promienia 
określa wzór: 3- 

a = 1,111/ P--------------- .............................................................(34) In
£ Fi + Fj 

otrzymany z ogólnego, podanego przez Hertz’a po podstawieniu wartości liczby Poissona o = 0,3. Na / [ \
powierzchni stykania rozkładają się ciśnienia nierównomiernie, a największe ciśnienie w środku oblicza ( j
się z formuły AZ

pmax = 0,388 ...................................... (35) Z [ \
\ Fj r2 / na2 |

\ । 2 /W szczególnym przypadku przyciskania kuli do płaskiej ściany, t. j. gdy rt = r, r2 = oo, przeksztacą \ । /
się powyższe formuły na następujące:

3 _____ 3 ____  t?

a = 1,111/ £ r . . (34/ pmax = 0,388 ]/ 2^1 . . (35)' Rys. 66
' £, r*

W ostatnim wzorze można zauważyć wybitną cechę, odróżniającą go od wzorów dla naprężeń otrzymywanych 
poprzednio. W rozpatrywanych dotąd przypadkach była zależność naprężenia od siły zewnętrznej zawsze iinjowa, wskutek 
czego naprężenia pi i p2, wywołane odpowiednio siłami i P% działającemi każda zosobna, sumowały się w przypadku 
jednoczesnego działania obu sił. Przy ściskaniu dwu kul nie sumują się działania sił zewnętrznych, albowiem naprężenie 
zmienia się proporcjonalnie względem trzeciego pierwiastka z siły. Aby np. wywołać naprężenie dwa 
razy większe, trzeba użyć 8 razy większej siły, oczywiście przy założeniu, że nie przekroczymy przytem nigdzie granicy 
proporcjonalności. [Stopień pewności n, określony stosunkiem obciążenia niebezpiecznego do obciążenia dopuszczalnego, 
będzie zarazem równy stosunkowi sześcianów naprężenia niebezpiecznego i dopuszczalnego].
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Jeżeli przyjmiemy dla pmax oznaczoną wartość, to, jak widać z rów. (35)', określimy temsamem wartość stosunku 
P: r2 w przypadku przyciskania kuli do płaskiej ściany. Wówczas możemy także napisać

2) [To było powodem, że nawet wybitni inżynierowie-badacze, stojący na tradycyjnym gruncie drugiej hipotezy, stra­
cili zaufanie do wzorów teoretycznych, niewątpliwie bardzo dokładnych, dopóki promień koła zetknięcia jest mały wobec
promienia kuli (jedno z głównych założeń teorji Hertz'a), albowiem sprawdzonych przez liczne bardzo staranne doświadcze­
nia. Zamiast szukać objaśnienia dla olbrzymich wartości naprężeń bezpiecznych przez rewizję podstaw teorji wytrzyma­
łości — jedynie racjonalną drogą — odrzucili poprostu formuły dokładne, zastępując je przybliżonemi, zbudowanemi tak,
aby wypadała ta sama wartość naprężenia bezpiecznego, co w przypadku prostego rozciągania lub ściskania. Taką metodę
należy stanowczo, jako nienaukową, odrzucić. Nie pojawiłaby się ona zapewne, gdyby nie zakorzeniona w umysłach inży­
nierów wiara w prostotę zjawisk wytrzymałości, o której pisaliśmy już poprzednio. Dla ilustracji może posłużyć znany 
podręcznik C. Bach’a „Elastizitat u. Festigkeit“].

P^kd^.
przyczem d oznacza średnicę kuli, a stała k da się wyrazić przez E i przyjętą wartość pmax. Wartość k da się także ozna­
czyć bezpośrednio drogą doświadczalną1), a stąd można obliczyć odpowiednią wartość bezpieczną dla pmax. Tą drogą zna­
leziono np. dla kulek łożyskowych z hartowanej stali o granicy proporcjonalności około 10000 kg/cm2 i E = 2120000 kg/cm1, 
jako graniczną wartość k — 50 kg/cm\ co odpowiada według formuły (35)' pmax = 37 450 kg/cm*.

Do tak olbrzymich wartości może zatem dojść naprężenie w środku powierzchni zetknięcia bez niebezpieczeństwa 
dla materjału dzięki tej okoliczności, że element podlegający .temu naprężeniu jest zarazem, jak uczy teorja, ściskany 
poprzecznie z obu stron naprężeniami o wielkości około 0,8 pmax- Stan napięcia lego elementu uzmysławia rys. (67). Wskutek 
tego mierzy się wytężenie materjału w myśl trzecitj hipotezy różnicą pmax — 0,8 pmax = 0,2 pmax, której wartość w naszym 

przypadku równa się 7490 kg/cm2. [Toby odpowiadało nawet dość znacznej pewności prze­
ciw osiągnięciu granicy proporcjonalności materjału

100008

jest widocznie wartością tej pewności].
Teorja wskazuje jednak jeszcze na inne miejsce'^ niebezpieczne na powierzchni sty­

kania, a mianowicie na obwodzie koła zetknięcia, gdzie różnica między największem i naj- 
mniejszem naprężeniem jest równa 0,267 pmax, co odpowiada w naszym przypadku wartości 
wytężenia równej około 10000 kg/cm2, a więc granicy proporcjonalności. Trzecia hipoteza 
nadaje się przeto i tutaj wcale dobrze, podczas gdy pierwsza i druga zupełnie zawodzi2).

Jeżeli kula o promieniu dotyka wydrążonej powierzchni kulistej o promieniu ra (rys. 68), 
to można również posługiwać się wzorami (34) i (35), uważając jednak w nich r2 za ujemne. Łatwo 
zauważyć, że kula wytrzyma w tym przypadku większy nacisk. [Tutaj może się także zdarzyć, 
że a nie wypadnie małe w porównaniu do Fj, jak przyjęto w teorji. Doświadczenie poucza jednak 
(por. przytoczoną powyżej pracę Stribeck’a), że główne wyniki, t. j. wielkość a i całkowite odkształ­
cenie w kierunku działającego nacisku, względnie zbliżenie środków kul, dogadzają wzorom teore-

Rys. 68

tycznym bardzo dobrze aż do a =r, jakkolwiek nie ulega wątpliwości, że w pobliżu obwodu O
koła zetknięcia będzie rzeczywisty stan napięcia różnić się coraz bardziej od teoretycznego w miarę 
wzrostu a i to na korzyść bezpieczeństwa. Dzięki temu można przy nieco większych wartościach a 
zadowolnić się obliczeniem według wytężenia w środku koła zetknięcia. Przytem należy pamiętać, że jeżeli R oznacza
wartość bezpieczną naprężenia przy prostem rozciąganiu lub ściskaniu dla materjału kul, a R' doraźną wytrzymałość, to 
dla otrzymania tego samego stopnia bezpieczeństwa n = R': R trzeba przyjąć w obliczeniu kul według formuły (35) jako 
wartość naprężenia dopuszczalnego

3^ 3?

A zatem
3

R* — 0,2 Pmax

z czego obliczymy dopuszczalne ociążenie przy n-krotnej pewności:
21403 / rtra V 

nE* \r<±rJ

2P,

. (35 a)

Podane formuły teoretyczne dają jeszcze jedną cenną wskazówkę dla praktyki, a mianowicie zalecają bardzo wymownie 
używanie na kulki łożyskowe materjału o jak najwyższej wytrzymałości, względnie najwyższej granicy sprężystości, albo­
wiem podwyższenie tej granicy do 2, 3,... m-krotnej wartości zwiększa dopuszczalne obciążenie kulki 8, 27,... m* — razy. 
Ogromne znaczenie wysokiej granicy sprężystości materjału na kulki łożyskowe i pierścienie je obejmujące wyłoniło się 
powoli z doświadczeń praktycznych bez udziału teorji, ale ile trudu, kosztów i zawodów możnaby było oszczędzić, gdyby 
wcześniej zajęto się zastosowaniem teorji, oceni każdy inżynier, znający historję rozwoju łożysk kulkowych].

*) Stribeck: „Kugellager fur beliebige Belastungen“. Z. d. V. d. I. 1901.
Schwinning: „Versuche iiber die zulassige Belastung von Kugel- und Rollenlagern". Z. d. V. d. I. 1901.
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Przechodząc do ściskania walców ograniczymy się do przypadku, w którym walce dotykają się wzdłuż two­
rzących (rys. 69). Obciążenie przypadające na jednostkę długości walca oznaczymy przez P' i przyjmiemy, że długość 
walca jest wielka w porównaniu do średnicy. Wtedy szerokość paska zetknięcia, wytworzonego przy wzajemnym nacisku 
walców, określa formuła:

b = 3,041/^-- r*r* .............................. ....... (36) Jl H I W H L'
r E rt + r2 Z>X . .. ~

Największe ciśnienia zachodzą w linji środkowej paska zetknięcia. Ich wielkość obli- k 1 J ■ ■ - -
czarny wzorem: ___________ ' ■' ' '

p„„=0,418'j/’p-E.A±i...................................... (37) / 1 A --------~
r r2 / , 4 Ą ----------

Kładąc w powyższych formułach rt = r, = oo, otrzymamy odpowiednie wzory dla przy- V j J ■ - —
ciskania walca o promieniu r do płaskiej ściany, a mianowicie: ।
b = 3,04l<57- • • (36)' pm„ = 0,418 ]/H . . . (37)' *

E r Rys. 69

[Z odwrócenia formuł (37) i (37)' widać, że obciążenie walców odpowiadające
danej wartości największego naprężenia jest proporcjonalne względem kwadratu tej wartości. 
Zwiększając zatem 2, 3,... n-krotnie wartość naprężenia bezpiecznego, powiększamy zarazem odpowiednie obciążenie bez­
pieczne walca 4, 9.... n2-razy. Ten ważny wynik wskazuje podobnie, jak powyżej dla kul, na praktyczne znaczenie wysokiej 
granicy sprężystości materjału. Stosując np. wałki łożyskowe z twardej stali, zamiast o wiele tańszego żelaza lanego, można 
dzięki tej okoliczności zmniejszyć koszt łożyska belek mostowych].

Przy danej wartości pmax jest obciążenie Pr proporcjonalne względem promienia walca przyciskanego do płaskiej 
ściany, czyli, co na jedno wychodzi, obciążenie odniesione do jednostki przekroju osiowego P:d.l jest stałe (d średnica, 
l długość wałka). Dla wałków z twardej stali dopuszczają w konstrukcji łożysk mostowych ciśnienia 6000 do 7000 kg/cm2 
co odpowiada wartości P: dl = 50 do 70 kg/cm2.

Normy urzędowe [w tym przypadku przesadnie ostrożne] dopuszczają np. w Rosji tylko P:dl= 30 do 35kglcm\ 
[Stosownie do trzeciej hipotezy, która oddała tak dobre usługi w przypadku kul, okaże się i w przypadku walców 

wartość bezpieczna największego ciśnienia wyższą od naprężenia dopuszczalnego R przy prostem ściskaniu, albowiem 
w środku paska zetknięcia doznaje materjał trójwymiarowego stanu napięcia określonego naprężeniami px (o kierunku 
równoległym od osi walca), py (o kierunku prostopadłym do tej osi i do kierunku nacisku) i pz (o kierunku działania 
nacisku P'). Wszystkie trzy naprężenia są ciśnieniami, przyczem py = pz = pmax, zaś px = 0,6pmax.

Wytężenie materjału określi według trzeciej hipotezy różnica
Pmax — 0,6 Pmax — 0,4 Pmax

i ta wielkość ma być równa wartości bezpiecznej naprężenia R, czyli
Pmax = 2,5 R.

Obciążenie walców, przy którem jest ten warunek spełniony, można uważać za bezpieczne].

5*



CZĘŚĆ II

ŚCINANIE I SKRĘCANIE

ROZDZIAŁ V

ŚCINANIE

§ 38. PROSTE ŚCINANIE

Przy rozpatrywaniu jednoczesnego działania rozciągania i ściskania w dwu wzajemnie prosto­
padłych kierunkach otrzymaliśmy wzory (10) i (11) dla naprężeń pn i pt w przekroju wyznaczo­
nym kątem Teraz zatrzymamy się przy szczególnym przypadku, w którym

px = — py = p,
t. j. gdy mamy ciągnienie wzdłuż osi A-ów i równe mu ciśnienie w kierunku osi T-ów. Naj­
większe naprężenia styczne zachodzą w przekrojach nachylonych do osi X i Y pod kątem 45°. 
Jeżeli takiemi przekrojami wydzielimy z ciała element mnpq (rys. 70) i zastąpimy działanie reszty 
ciała na ten element siłami, to na ściany elementu będą działać tylko naprężenia ścinające. Naprę­

żenia normalne, jak widać z formuły (10), stają się zerami. Wielkością naprę-
V żeń stycznych będzie

y jest to więc ta sama wielkość, jaką posiadają obadwa naprężenia w kie­
runku X i Y. Stan napięcia, w jakim się znajduje element mnpq, nazwiemy 
prostem (albo czystem) ścinaniem. Pod wpływem naprężeń stycznych, 
działających na ściany elementu mnpq zamieniają się proste kąty elementu na 
ukośne. Jeżeli podstawa mnpq była pierwotnie kwadratem, to po odkształceniu 
zamieni się na romb. Przekątna pionowa n q wydłuży się, a pozioma m p skróci 

się o tę samą wielkość, a ponieważ wydłużenia i skrócenia są wielkościami bardzo małemi, więc długość 
boku rombu będzie, z pominięciem małych wyższego rzędu, równa pierwotnej długości boku kwadratu

Niechaj mnpq (rys. 71) przedstawia kwadratową podstawę elementu przed 
odkształceniem, a mn'p'q romb otrzymamy z kwadratu wskutek działania naprężeń 
stycznych p^, odpowiadających prostemu ścinaniu. Ten romb obrócono na rysunku 
w taki sposób, że jeden z jego boków zlewa się z bokiem mq kwadratu mnpq. 
Odcinek mn' nazywa się bezwzględnem posunięciem krawędzi np wzglę­
dem krawędzi mq. Stosunek

n n’ P p

Rys. 71
tan . n 
------ — tgB, mn 6 ’

określający odkształcenie przy prostem ścinaniu, nazywamy posunięciem względnem, albo 
w ł a ś c i w e m. Zważywszy, że mamy do czynienia tylko z bardzo małemi odkształceniami, możemy 
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podstawić w przybliżeniu kąt 3 zamiast tg^, czyli przyjąć, że posunięcie względne równa się 
zmianie kąta pierwotnie prostego.

Podobnie jak przy prostem rozciąganiu ustanowiliśmy związek między wydłużeniem wzglę- 
dnem, a odpowiadającem mu ciągnieniem, tak ustawimy teraz zależność między posunięciem wzglę- 
dnem p a odpowiadającem mu naprężeniem stycznem pt.

Przy rozpatrywaniu rozciągania i ściskania w dwu wzajemnie prostopadłych kierunkach 
ustawiliśmy następujący związek między naprężeniami px i py a odpowiadającemi odkształ­
ceniami ex i ey:

ex E o E , ey E o E 

W przypadku czystego ścinania jest
Px=-py = Pt,

a zatem
e, = — ey = e = (1 + a).

Dla ustawienia szukanego związku między [i i pt trzeba tylko wyrazić [5 przez e. Z rys. (72) 
czytamy:

*M Op' = Op(l-e) = 
g\4 2/ On' On(l + e)

1 — e
1 + e

Ze względu na to, że p i e są bardzo małe, można pominąwszy wiel­
kości małe wyższych rzędów napisać:

^7-^2 = Lii=i
l+tg~tgl

-—e = 1
1 + e

2
a zatem

1 - p = 1 - 2e i p = 2e . . (38)
t. j. posunięcie względne równa się co do wartości bezwzględnej podwójnemu wydłużeniu wzglę­
dnemu jednej przekątnej, albo podwójnemu skróceniu względnemu drugiej. Wyraziwszy e przez ph
otrzymamy:

2(1 + c)
E Pi-

Otrzymana formuła daje szukany związek między naprężeniami stycznemi przy czystem 
ścinaniu a wielkością posunięcia względnego. Posunięcie względne jest zatem proporcjonalne wzglę­
dem odpowiadającego naprężenia ścinającego. Oznaczywszy 

możemy to wyrazić równaniem:
P = ^-..................................................................(40)

Zależność p od pt jest przeto taka sama, jak zależność e od p przy prostem rozciąganiu lub 
ściskaniu, tylko zamiast modułu sprężystości E mamy tutaj wielkość analogiczną G, którą będziemy 
nazywać modułem sprężystości przy prostem ścinaniu [albo krócej modułem sprę­
żystości postaciowej. Ostatnia nazwa tłumaczy się tern, że proste ścinanie jest tym szcze­
gólnym rodzajem odkształcenia, które nie zmienia objętości elementu, lecz tylko jego postać geome­
tryczną]. Skoro znamy wielkości E i o, to możemy obliczyć G ze wzoru (40); przy o = -i- wypada

Jak zobaczymy poniżej, łatwiej znaleźć doświadczalnie G, aniżeli o, wobec czego zwykle 
oblicza się o z formuły (40).
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§ 39. ENERGJA POTENCJALNA ŚCINANIA

Wyobraźmy sobie kostkę o krawędzi l, na której ściany prostopadłe do płaszczyzny rysunku 
działają siły styczne równomiernie rozłożone i rosnące podczas działania w sposób ciągły od zera 
do końcowej wartości Q. Pod działaniem tych sił kostka się odkształci i jeżeli np. przyjmiemy 
podstawę AD za unieruchomioną, to ściana widoczna przybierze postać rombu ABCD. Siły 
zewnętrzne wykonują przytem pracę, zamieniającą się w energję potencjalną odkształcenia. Aby ją 
obliczyć postąpimy najprościej tak, jak to czyniliśmy w przypadku prostego rozciągania (ob. § 4). 
Na osi odciętych odmierzymy posunięcie bezwzględne S ściany B C w odniesieniu do ściany A D, 
a na osi rzędnych — odpowiadające wartości sił ścinających. W granicach proporcjonalności 
otrzymamy linjową zależność między temi wielkościami. Pracę sił działających na ścianę B C 
przedstawi, jak przy rozciąganiu, pole trójkąta i praca ta będzie się równać

T_ QS.
2

Co się tyczy sił działających na ściany boczne, to ich praca przy rozpatrywanem odkształ­
ceniu jest równa zeru, gdyż przesunięcia są prostopadłe do kierunku sił.

Zważywszy, że
S = $l = ^, 

r u
przyczem F oznacza pole ściany, możemy pracę sił zewnętrznych przy prostem ścinaniu przed­
stawić w jednej z dwu form następujących:

r_ Q2/ _ mT~ 2FG “ 2 FG '

Jeżeli ten wynik podzielimy przez objętość kostki F/, to znajdziemy energję potencjalną odnie­
sioną do jednostki objętości, czyli „właściwą pracę odkształcenia*:

r = 32g
FI “ 2G “ 2 • (41)

§ 40. O NAPRĘŻENIACH BEZPIECZNYCH PRZY ŚCINANIU

Wielkość naprężeń dopuszczalnych, względnie „stopień bezpieczeństwa*, zależy w znacznej 
mierze od stopnia pewności obliczeń i od sposobu działania sił zewnętrznych, wobec czego nie 
możemy podać tutaj określonych wielkości naprężeń bezpiecznych dla poszczególnych materjałów. 
Stosowniejszem na to miejscem są działy konstrukcyjne nauk technicznych. W ogólnym wykładzie 
nauki o wytrzymałości, na podstawie danych doświadczalnych i opartych na nich teoryj wytrzyma­
łości, można odpowiedzieć tylko na pytanie: Jaki stosunek powinien zachodzić między napręże­
niami bezpiecznemi przy prostem rozciąganiu i czystem ścinaniu, jeżeli w obu przypadkach dadzą 
się naprężenia dokładnie wyznaczyć?

Wychodząc z pierwszej hipotezy (por. § 36) doszlibyśmy do wniosku, że dla zapewnienia 
tego samego stopnia bezpieczeństwa przy czystem ścinaniu powinny dopuszczalne naprężenia ści­
nające być równe naprężeniom dopuszczalnym przy prostem rozciąganiu. Takiego wniosku 
doświadczenie nie potwierdza i w praktyce już od dawna używają niższych norm dla naprężeń 
ścinających niż dla ciągnień.

Na podstawie drugiej hipotezy, t. j. hipotezy największego wydłużenia określałoby wartość 
bezpieczną Rt naprężenia ścinającego równanie:

Rt (1 + o) _ R 
E ~ E’ 

przedstawiające warunek równych wydłużeń w obu przypadkach. R oznacza przytem, jak poprze­
dnio, wartość dopuszczalną ciągnienia. Z tegoby wynikało:

/? RRt 1 + a (42)
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Przy wartości c> = 0,25 do 0,33 wypada
Rt = 0,8 R do 0,75 R.

Druga hipoteza poleca przeto przyjąć Rt mniejsze od R, jednakże stosunek Rt: R określa jeszcze 
liczbą znacznie większą od tej, którą dały liczne doświadczenia z metalami plastycznemi, t. j. 0,5. 
Mimo to są powyższe wartości stosunku Rt: R rozpowszechnione w podręcznikach i w praktyce.

Nakoniec trzecia hipoteza daje R — 0 5 R (43)

albowiem prostemu rozciąganiu towarzyszy największe naprężenie ścinające równe połowie ciągnie­
nia. Ten wynik jest zupełnie zgodny z doświadczeniami nad plastycznemi metalami, należy go 
zatem stosować przedewszystkiem do żelaza kowalnego i stali. Dla żelaza lanego i kamieni nie 
może być rów. (43) ważnem już z tego powodu, ponieważ wytrzymałość tych materjałów przy 
ściskaniu jest kilkakrotnie większą od wytrzymałości przy rozciąganiu ). W materjałach takich jak 
drewno, będzie wytrzymałość na ścinanie zależna od położenia przekroju względem kierunku włó­
kien. Najmniejsze naprężenie ścinające znosi drewno w kierunkach równoległych do włókien, 
a więc i w kierunkach do nich prostopadłych; [największe zaś w płaszczyznach nachylonych do 
włókien pod kątem 45°. Tutaj posiadamy stosunkowo mało danych doświadczalnych, głównie dla­
tego, ponieważ konstrukcje drewniane nie nadają się z natury rzeczy do tak dokładnych obliczeń, 
jak żelazne, a nawet kamienne].

§41. ZASTOSOWANIA
Czyste ścinanie w takiej postaci, jaką przyjmowaliśmy dotychczas, nie zdarza się w praktyce 

i nie da się nawet urzeczywistnić doświadczalnie, gdyż niepodobna działać na ściany prostopadło­
ścianu równomiernie rozłożonemi naprężeniami stycznemi bez wywołania przytem naprężeń nor­
malnych. Praktyczne znaczenie czystego ścinania jest po części związane z odkształceniami przy 
skręcaniu i zginaniu, które rozpatrzymy poniżej, w części zaś z obliczeniem niektórych szczegółów 
konstrukcyjnych, służących do połączenia części maszyn i konstrukcyj inżyniersko budowlanych. 
Jakkolwiek te obliczenia są bardzo niedoskonałe z teoretycznego punktu widzenia, to jednak zatrzy­
mamy się na kilku przykładach, napotykanych często w praktyce.

Obliczenie sworznia. Pod działaniem sił rozciągających P (rys. 74) może zajść trwałe 
rozdzielenie sworznia /IB w płaszczyznach m n i m' n', nazwane w praktyce ścięciem w tych
płaszczyznach. Przy obliczeniu trzeba średnicę sworznia oznaczyć z wa­
runku, aby największe naprężenie ścinające nie przekroczyło danej war­
tości bezpiecznej Rt. Te największe naprężenia powstają niewątpliwie 
w punktach leżących, jeżeli nie na owych przekrojach, to w każdym 
razie bardzo blisko nich; nie znając jednakże prawa rozkładu naprężeń, 
nie możemy znaleźć dokładnie ich wartości. Praktyka przecina tę trudność, 
przyjmując w obliczeniu równomierny rozkład naprężeń ścinających, co 
prowadzi do formuły

Ścisłe rozwiązanie pewnych zadań z teorji sprężystości2) wykazuje, 
że rozkład naprężeń w przekrojach, narażonych na ścięcie, jest dalekim 
od równomiernego. Szczególnie wielkie są naprężenia w miejscach działania sił ścinających, a więc 
w naszym przypadku w punktach m m' n i n'. (W elementarnych sposobach obliczenia, wyłożonych

‘) [Przy braku danych doświadczalnych można dla takich materjałów przyjąć Rt równe średniej wartości z połowy do­
puszczalnego ciągnienia /?+ i dopuszczalnego ciśnienia R , czyli

Rt = ^-(R+ + R_)............................................................................... (43 a)

lub jeszcze lepiej według Mohra .
Rt = ..................................................... ....... (43b)

W przypadku /?_|_ = R— przechodzą obie formuły widocznie w formułę (43)].
’) Ob. Fil on. Phil. Trans. Roy. Soc. (ser. H.). Vol. 201. 1903.
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poniżej w rozdziale o zgięciu, dochodzi się właśnie w tych miejscach do naprężeń ścinających 
równych zeru). Zadanie komplikuje jeszcze ta okoliczność, iż pod działaniem sił zewnętrznych 
sworzeń zgina się nieco i w płaszczyznach mn i m'n' powstaną nie tylko styczne, ale i normalne 
naprężenia. Te wszystkie komplikujące okoliczności pomija się przy zwykłych obliczeniach w prak­
tyce i stosuje się do obliczenia / równanie napisane powyżej. Jest to na razie usprawiedliwione, 
dopóki sprawdzona przez doświadczenie ściślejsza teorja nie dostarczy formuł dokładniejszych. 
Niedokładność obliczenia wypada skompensować zmniejszeniem wartości naprężenia dopuszczalnego.

Obliczenie nitów. Nity są narażone głównie na ścięcie w płaszczyznach przylegania nito­
wanych części (rys. 75). Zadanie jest tutaj widocznie jeszcze bardziej złożone, niż w przypadku 
jednego sworznia, gdyż nie tylko nie znamy prawa rozkładu naprężeń w przekrojach nitów, lecz 
także rozkładu siły P, działającej na połączenia, na poszczególne nity. W praktyce postępuje się

Rys. 75

zatem podobnie jak w poprzednim przykładzie, t. j. przyjmuje 
się równomierny rozkład siły ha wszystkie nity. Stąd formuła 
obliczenia: 

P:n~ = R,

w której n oznacza liczbę przekrojów nitów narażonych na 
ścinanie, a d grubość nitu. W przypadku przedstawionym na 
rys. (75) jest widocznie n = 8.

W rzeczywistości nawet średnia wartość naprężenia ści­
nającego w nitach różni się znacznie od tej, jakaby wypadła 

z podzielenia siły przez n-krotny przekrój nitu, albowiem znaczną część siły P równoważy tarcie 
w płaszczyźnie stykania połączonych części. Tarcie powstaje dzięki temu, że nity zakłada się na 
gorąco; po ostygnięciu nity się kurczą i przyciskają silnie do siebie łączone blachy1). [Rzeczywiste 
średnie naprężenia będą zatem mniejsze od obliczonych, wobec czego możnaby wartość Rt przyjąć 
większą niż przy obliczeniu sworzni. Jak widzimy są nity wogóle narażone nietylko na ścinanie 
i zginanie lecz nadto na rozciąganie w kierunku swej osi. Zaznaczymy jeszcze, że średnica nitu
jest w pewnym związku z grubością łączonych części. Związek ten 
wynika po części z wymogów konstrukcyjnych, w części zaś z wa­
runku racjonalnego wyzyskania wytrzymałości materjału. Zajmiemy 
się nim na innem miejscu].

Ścinanie w połączeniach belek drewnianych.
W przykładzie przedstawionym na rys. (76) jest drewno narażone Rys 76
na ścięcie w płaszczyznach mn i m1 nt równoległych do sił zewnę­
trznych P. Tutaj oczywiście będzie rozkład naprężeń również nierównomierny. Największe naprę­
żenia powstaną koło punktów m i n^. Mimo to rachuje się w praktyce według formuły:

PŚrednie naprężenie =

ROZDZIAŁ VI

SKRĘCANIE

§ 42. SKRĘCANIE PRĘTA OKRĄGŁEGO
Przy doświadczalnem badaniu skręcenia utwierdza się zwykle jeden koniec pręta, a na drugi 

działa się parą sił leżącą w płaszczyźnie prostopadłej do osi pręta. Doświadczenie poucza, że 
dopóki moment pary skręcającej nie przekracza pewnej granicy, to kąt skręcenia, czyli kąt obrotu

Bach. Z. d. V. d. Ing. 1912.
Rudeloff: „Yersuche mit Nietverbindungen... Berlin 1912. Ostatnia praca oświetla fundamentalną rolę tarcia 

przy prawidłowem działaniu połączeń nitowych.
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swobodnego końca względem utwierdzonego, jest proporcjonalny względem tego momentu. Przy 
powiększeniu długości pręta zwiększa się kąt skręcenia proporcjonalnie względem długości. Gdy 
zwiększamy grubość pręta, to kąt skręcenia zmniejsza się nader szybko. Jak wykazały doświadczenia 
IVertheim’a jest kąt skręcenia odwrotnie proporcjonalny względem czwartej potęgi średnicy pręta. 
Wyniki doświadczeń można przedstawić formułą: 

Rys. 77

w której oznaczaj — kąt skręcenia, M — moment skręcający, / — długość pręta, d — jego 
średnicę, wreszcie k — spółczynnik zależny od sprężystych własności materjału.

Wzór dla kąta skręcenia da się łatwo wyprowadzić drogą analityczną. W tym celu zrobimy 
założenie odpowiadające kołowej symetrji naszego przypadku, że przekroje poprzeczne pręta nie 
doznają wskutek skręcenia żadnego odkształcenia, a tylko obracają się około osi pręta. W tych 
warunkach będą elementy pręta narażone na czyste ścinanie. Jakoż wyobraźmy sobie na po­
wierzchni bocznej pręta sieć kwadratów elementarnych, utworzoną przez kontury kołowe prze­
krojów poprzecznych o wzajemnej odległości dx i tworzące walca (rys. 77). Weźmy pod uwagę 
element, którego ścianę zewnętrzną tworzy kwadracik mnpq. Przy skrę­
caniu przesunie się ściana mu elementu względem pq i zajmie nowe poło­
żenie m'n'. Bezwzględną wielkością posunięcia będzie mm', a posunięcie 
względne p określi formuła:

R _ mm' 
[ ~dJT’

Jeżeli przez 9 oznaczymy kąt obrotu jakiegokolwiek przekroju poprze­
cznego względem pewnego obranego przekroju, np. leżącego na utwierdzo­
nym końcu pręta, to różnica kątów obrotu dwu nieskończenie bliskich prze­
krojów ab i a'b' będzie dy, a zatem posunięcie względne 

a*
przyczem r oznacza promień przekroju kołowego. Gdy zamiast elementu 
na walcowej powierzchni pręta weżmiemy element leżący wewnątrz pręta na walcu współosiowym 
o promieniu p < r, to ten element będzie również narażonym na czyste ścinanie, a odpowiadające 
mu posunięcie względne określi widocznie formuła

* Rys. 78

Stosownie bowiem do naszego założenia pozostanie każdy promień przekroju i po skręceniu prostym, 
a tylko obróci się względem pierwotnego położenia o kąt cp.

Znając wielkość kąta p, obliczymy wielkość odpowiadającego naprężenia ścinającego pt, mno­
żąc p przez moduł sprężystości postaciowej G, czyli

P‘ = GpdT
Te naprężenia będą oczywiście działać nietylko na ściany elementu leżące na przekrojach poprze­
cznych, lecz także na ściany do nich prostopadłe i leżące na przekrojach osiowych. (Pierwsze 

mają kierunek prostopadły, drugie zaś równoległy do osi pręta). Niech rys. (78) 
przedstawia przekrój ab skręconego pręta. Naprężenie w dowolnym elemencie 
pola dF tego przekroju jest prostopadłe do promienia OM i według powyższej 
formuły proporcjonalne względem p, t. j. względem odległości elementu od środka 
przekroju. Największe zatem naprężenia ścinające wystąpią na obwodzie przekroju; 
ich wartością będzie

(pt)max = Gr -jj-- •

Wykreśliwszy w każdym punkcie dowolnego promienia ON przekroju poprze­
cznego wektor przedstawiający naprężenie w tym punkcie, widzimy, że końce 

leżą na prostej OK. W ten sposób, prżez rozpatrywanie odkształceń pręta zna­
leźliśmy prawo rozkładu naprężeń w płaszczyźnie przekroju poprzecznego. Do oznaczenia wielkości 
tych wektorów
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naprężeń potrzeba jeszcze jednego równania, którego nam dostarczy statyka. Ponieważ siły zewnę­
trzne działające na koniec skręconego pręta tworzą parę sił o momencie M, leżącą w płaszczyźnie 
prostopadłej do osi pręta, więc siły sprężystości w dowolnym przekroju poprzecznym ab, określa­
jące działanie górnej części pręta na dolną, muszą się także sprowadzać do pary sił równoważącej 
tamtą. Mając ogólne wyrażenie dla naprężenia w dowolnym punkcie przekroju, możemy obliczyć 
moment pary wypadkowej sił wewnętrznych względem środka przekroju O. Moment siły ptdF, 
działającej na element pola dF, położony w odległości p od środka O, jest widocznie równy

p.dF. p^Opp dF. p.
U X

Sumowanie momentów, odpowiadających wszystkim elementom pola leżącym między okręgami 
o promieniu p i p + dp, przedstawia się w bardzo prosty sposób, albowiem pt. p jest dla tych 
elementów stałe, czyli p P

\pt. p . dF = ptp\ dF.

Tutaj oznacza pole pierścienia utworzonego przez okręgi o promieniach p i p + dp. Wielkość 

tego pola, z pominięciem nieskończenie małych wyższych rzędów, równa się 2npdp, a zatem sumą 
momentów sił wewnętrznych odpowiadających polu tego pierścienia jest

2«p*G.^dp.
dx

r F-f d®p»dp=_G_7.
W celu otrzymania ogólnej sumy momentów dla całego przekroju, trzeba powyższe wyrażenie 

zcałkować w granicach p = 0 i p = r. H zatem moment skręcający:
M = ^np^G^dp = —

Jo dx dx
Stąd d? = M

. dx „ nr* 
G'~T

Przez całkowanie otrzymujemy wyrażenie dla kąta skręcenia

Px r
G' 2 

Jeżeli x będziemy mierzyć od przekroju utwierdzonego,

wiwszy dla przekroju końcowego x = l i 
władności koła przekroju, znajdziemy

[Na otrzymanej formule teoretycznej dla

^=1 t 
2 p

Ml

kąta skręca

c.

to <p = 0 przy x = 0, a więc C = 0. Podsta- 

j. biegunowemu momentowi bez-

..................................................................(44)

a widzimy jasno zupełną zgodność z przy- 
32toczonym powyżej wzorem empirycznym, jeżeli stałej k nadamy znaczenie - & . Nasze założenie 

okazało się przeto słusznem].
Po podstawieniu wartości znalezionej powyżej, w wyrażenie dla pt otrzymamy ogólną 

formułę dla naprężenia ścinającego w skręcanym pręcie:

z której dla p — r znajdziemy: w
(p^ = ^........................................................................ (45)

Wzorami (44) i (45) posługujemy się przy obliczeniu okrągłych wałów. Wzór (44) pozwala 
rozwiązać dwa ważne zadania techniczne:

I. Z danego momentu skręcającego i rozmiarów wału znaleźć kąt skręcenia.
II. Z obserwowanego kąta skręcenia i danych rozmiarów wału znaleźć wielkość momentu 

skręcającego.
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Z tem zagadnieniem spotykamy się przy wyznaczeniu dzielności (pracy na sekundę) maszyny 
na podstawie pomiaru kąta skręcenia ‘).

Formuła (44) pozwala nadto wyznaczyć drogą doświadczalną moduł sprężystości postaciowej G 
[zwany też modułem skręcenia]. Wystarczy w tym celu zmierzyć kąt skręcenia, odpowiadający 
danemu momentowi skręcającemu i rozmiary pręta, a we wzorze (44) pozostanie tylko jedna niewia­
doma G. Stosując do pomiaru kąta aparat zwierciadłowy, możemy znaleźć G ze znaczną dokładnością.

Otrzymane formuły teoretyczne dadzą się łatwo uogólnić dla przekroju pierścieniowego. W po­
bliżu osi panują, jak widzieliśmy, bardzo małe naprężenia, wobec czego możemy z korzyścią dla 
ciężaru własnego wału, a także dla jego sztywności, zastosować wał wydrążony. W praktyce napo­
tykamy wały wydrążone u większych maszyn parowych, gdzie ich średnica dosięga nierzadko 50 cm, 
a także w motorach lotniczych i w motorach DieseFa. Przy wyprowadzeniu podstawowej formuły należy 
tylko zmienić granice całkowania. Jeżeli r0 i fj oznaczają wewnętrzny i zewnętrzny promień wału, to

M = a-G-^-^pW,

z czego 4 nrć
dx \ 2

Dla naprężeń w wydrążonych wałach otrzymamy zaś wyrażenie: 

fD i _ —^11__ - MLl

2 2

§ 43. SKRĘCANIE PRĘTÓW O PRZEKROJU PROSTOKĄTNYM
Naprężenie powstające przy skręcaniu prętów nieokrągłych nie dadzą się wyznaczyć drogą elementarną. Zagadnienie 

komplikuje się w tym przypadku wielce z powodu nieuniknionego zakrzywienia przekrojów poprzecznych. Widzimy je np. na 
załączonej fotograhi (rys. 79) zdjętej z silnie skręconego prostokątnego pr^ta, na którym poprzednio nakreślono sieć kwadra­
tów. Jak łatwo dostrzefc, odkształcają się postaciowo najsilniej kwadraciki odpowiadające środko­
wym punktom boków prostokątnego przekroju. Tam więc powstaną największe naprężenia ścinające. 
Natomiast u wierzchołków prostokąta, t. j. na bocznych krawędziach pręta, nie doznają kwadraciki 
dostrzegalnej zmiany, t. zn., że naprężenia styczne w tych miejscach są równe zeru.

[Ten ostatni wynik łatwo przewidzieć z teoretycznego rozważania. Wogóle przy skręcaniu 
zwykłym sposobem nie mogą istnieć skończone naprężenia ścinające w wierzchołkach dowolnego 
przekroju pręta, jeżeli kąt wewnętrzny w tych wierzchołkach jest mniejszy od n. Gdyby 
bowiem takie naprężenie zachodziło w płaszczyźnie przekroju poprzecznego, to miałoby w roz­
patrywanym wierzchołku różną od zera składową p't prostopadłą przynajmniej do jednej z obu 
stycznych konturu, wychodzących z tego wierzchołka. To zaś być nie może, albowiem według 
prawa równości odpowiadających naprężeń stycznych w dwu przekrojach wzajemnie prosto­
padłych, wystąpiłoby naprężenie styczne o tej samej wielkości p\ i na swobodnej ścianie pręta, 
wolnej wogóle od sił powierzchniowych (z wyjątkiem tych miejsc, w których pręt jest uchwy-

kY

Rys. 80

eony odpowiadającemi elementami konstrukcyjnemi, służącemi do przeniesienia 
sił). Inaczej ma się rzecz w przypadku, gdy kąt wewnętrzny jest większy 
od a. W takim wierzchołku powstają, jak zobaczymy poniżej, napięcia styczne 
wogóle tem większe, im bardziej ten kąt przewyższa «].

Nie wdając się tutaj w przybliżone sposoby obliczenia naprężeń, ogra­
niczymy się do podania wyników ścisłego rozwiązania, które można znaleźć 
w wykładach teorji sprężystości2). Rys. (80) przedstawia przekrój poprzeczny 
pręta. Największe naprężenia zachodzą w środkach dłuższych boków prosto­
kąta /i i B. Ich wielkość określa formuła

2) Znalazł je najpierw Barrć de Saint-Yenant; por. dodatek do § 156kursu Navier'a: „La resistance descorps 
solides*, 1864.

( pt )max = —£ 2..........................................(46)
p DC*

Rys. 79

w której p oznacza spółczynnik liczbowy zależny jeszcze od stosunku b: c boków prostokąta. Szereg wartości p podaje 
poniżej tablica /l, którą z wystarczająca dla praktyki dokładnością można zastąpić przybliżonym wzorem:

M(pt)max = (3 b + 1,8 C) ’

J) Wskazówki co do aparatów do pomiaru kąta skręcania znajdzie czytelnik w Z. d. V. d. Ing. 1914, str. 615.
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TABLICA A.

b = 
c 1 1,5 1,75 2 2,50 3 4 10 oo

P- = 0,208 0,231 0,239 0,246 0,258 0,267 0,282 0,312 0,333
a — 0,141 0,196 0,214 0,229 0,249 0,263 0,281 0,312 0,333
Y = 1 0,572 0,469 — 0,307 — 0,186 0,074 0

Do obliczenia kąta skręcenia <p służy wzór:

Wartość spółczynnika liczbowego a podaje również tablica A.
Niekiedy wypada obliczyć naprężenia styczne w innych jeszcze punktach obwodu przekroju prostokątnego. Do tego 

można użyć dalszych wyników liczbowych znalezionych przez de Saint-Venant'a. Naprężenie w punkcie odpowiadającym 
środkowi krótszego boku prostokąta otrzymamy przy pomocy trzeciego wiersza tablicy A, gdzie y oznacza stosunek tego 
naprężenia do największego, określonego wzorem (46).

§ 44. SKRĘCANIE W PRZYPADKACH INNYCH POSTACI PRZEKROJU
De Saint-Venant rozwiązał zagadnienie skręcenia jeszcze dla wielu innych przekrojów, nie mających przeważnie 

dotąd zastosowania praktycznego. Dlatego poprzestaniemy na przedstawieniu teoretycznych wyników dla przypadku prze­
kroju eliptycznego. Oznaczywszy odpowiednio przez 2 a i 2b wielką i małą oś elipsy, mamy następujące wyrażenie dla 
kąta skręcenia:

= 4^/4 (48)
F^G............................................................................ '

3^ i? a— ----- 1----- — biegunowy moment bezwładności elipsy,

t. j. całkę postaci \ p2dF. Największe naprężenia ścinające zachodzą na końcach osi małej. Ich wielkość określa formuła: 
J(F)

• ............................................................................ (49)W)max- n a y V ’

= M/(a2+b2) 
T ~ nGa3b3

przyczem F—abn oznacza pole przekroju poprzecznego, a /p =

która dla a = b przybiera postać wyprowadzoną powyżej dla przekroju kołowego.
Co się tyczy innych postaci przekroju poprzecznego, to zaznaczymy, że wyrażenie dla kąta skręcenia da się zawsze 

przedstawić w formie:

^-c
C oznacza tutaj stałą zależną od sprężystych własności materjału, tudzież od rozmiarów i kształtu przekroju. Będziemy ją 
nazywać sztywnością skręcania. De S.-Venant okazał dla całego szeregu konturów, że można otrzymać dość do­

kładną wartość C, jeżeli dany przekrój zastąpić eliptycznym o równem polu i równym momencie 
bezwładności I?. Dodać jednak trzeba ważny warunek, aby dany przekrój był pełny. Wtedy można 
się przeto posługiwać formułą (48). Dla przekrojów z otworami traci wzór de S. Yenaunfa zu­
pełnie swą ważność.

Przejrzysty obraz rozkładu naprężeń można otrzymać przy pomocy pewnej analogji, na 
którą zwrócił uwagę prof. Prandtl1). Jeżeli otwór o tym samym konturze, co dany przekrój, 
nakryjemy cienką sprężystą błoną i obciążymy ją równomiernie rozłożonem ciśnieniem, to po­
wierzchnia ugięcia błony posłuży do poznania prawa rozmieszczenia naprężeń stycznych w płasz­
czyźnie poprzecznego przekroju.

Przeciąwszy ową powierzchnię układem płaszczyzn równo odległych i równoległych do 
płaszczyzny konturu, otrzymujemy układ krzywych o własnościach następujących:

1) Styczna w dowolnym punkcie krzywej wskazuje kierunek naprężenia ścinającego w tymże 
punkcie. z

2) Gęstość krzywych charakteryzująca nachylenie powierzchni błony jest proporcjonalna 
względem wielkości naprężeń stycznych.

3) Objętość V zawarta między płaszczyzną konturu a powierzchnią ugięcia jest proporcjo­
nalna względem sztywności skręcenia pręta C, a mianowicie:

Rys. 81
c =

p
Tutaj oznacza S — napięcie błony odniesione do jednostki długości konturu, a p — ciśnienie wywarte na błonę. 

Te trzy twierdzenia umożliwiają ożnaczenie rozkładu naprężeń przy najróżnorodniejszych konturach przekroju poprze-

x) Jahresb. d. deutschen Math.-Yereinigung. 1904, str. 32. 
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cznego1). Rys. (81) przedstawia układ krzywych określających w powyższy sposób stan odkształcenia błony, a zarazem 
stan napięcia w przekroju skręconego pręta, dla przypadku konturu prostokątnego. Widzimy tutaj największą gęstość 
krzywych w środku dłuższych boków, t. j. tam, gdzie zachodzą największe naprężenia ścinające; w wierzchołkach zaś 
te naprężenia znikają2).

§ 45. ZASTOSOWANIA
Przy obliczeniu wałów występuje zwykle jako wielkość dana, nie moment skręcający M, lecz 

dzielność (moc) maszyny, t. j. praca przeniesiona przez wał w jednej sekundzie. Z tego można 
oznaczyć moment, jeżeli znamy ilość obrotów wału na minutę n. Wtedy bowiem robi wał w jednej sekun­

dzie obrotów, czyli obraca się o kąt 'p = 2 n a zatem moment pary M wykonuje pracę = ~ Mn.

Jeżeli N oznacza dzielność maszyny w „koniach parowych", to 75 W będzie wyrażać dzielność 
w kgmjsek, a 75.100. N w kgcmlsek. Łącząc oba wyrażenia na pracę w równanie

^Mn = 7500N,

znajdziemy stąd moment skręcający M, a wstawiwszy jego wartość we wzór (45) otrzymamy:
_ 7500 . 30 . N _ N 

(Pt)max — .
36 . 105 

jt2d3

*) Ob. Anthes. Dinglers poi. Journal. 1906, str. 342.
2) Wyznaczeniem naprężeń przy skręcaniu prętów rurowych zajmuje się cenna praca R. Bredfa w Zeitschr. d. V.

d. Ing. 1896, a nadto podręcznik H. Lorenza: „Technische Elastizitatslehre" str. 101. Ob. także S. P. Timoszenko!
„Teorja uprugosti", cz. I, str. 162, wyd. z r. 1914.

8) Zeitsch. d. V. d. Ing. 1906, str. 1032.

(kgcnr).

Tutaj oznacza d średnicę obliczanego wału. Ażeby grubość wału czyniła zadość warunkowi wytrzy- 
łości, trzeba za (pt)max wstawić Rt i rozwiązać równanie względem d. Do obliczenia wałów nara­
żonych wyłącznie na skręcanie posłuży przeto formuła:

N 36 . 105 = ~ ]X A JLJ 
' n ‘ rr2Rt ' n Rt

. (50)

Co się tyczy wielkości naprężeń dopuszczalnych, to ona zależy w znacznej mierze od spo­
sobu działania sił zewnętrznych i od stopnia zmienności momentu skręcającego. Stała wartość 
momentu jest w praktyce prawie wykluczona. Najczęściej zmienia się moment skręcający w dość 
obszernych granicach wskutek niejednostajności biegu maszyn i sił bezwładności kół osadzonych 
na wale. Tę kwestję rozpatrzymy szczegółowo w przedostatniej części, poświęconej zagadnieniom 
dynamiki. Tutaj zaznaczymy tylko, że naprężenia bezpieczne wypada obniżyć znacznie w przy­
padkach większej niejednostajności momentu skręcającego.

Oprócz przyczyn dynamicznych zniewalają do obniżenia naprężeń dopuszczalnych przy zasto­
sowaniu rów. (50) także naprężenia dodatkowe (nadwyżki naprężeń) w miejscach zmiany grubości 
wału (rys. 83). W takich miejscach rozkład naprężeń, jakkolwiek oczywiście kołowo symetryczny,
różni się znacznie od rozkładu znalezionego dla wału o sta­
łym przekroju. Ta okoliczność ma ważne znaczenie prakty­
czne, albowiem wały posiadają bardzo często miejscowe 
zmiany przekroju wedłu fig. (a) i (b), a wtedy wartość naj­
większych naprężeń zależy w wysokim stopniu od promie­
nia p krzywej przejściowej, łączącej w osiowym przekroju 
obadwa przekroje wału. Prof. A. Fóppl8) zwrócił pierwszy 

Rys. 83

uwagę na rolę krzywizny powierzchni wału w miejscu zmiany w przekroju i okazał, że w przy­
padku przedstawionym na fig. (a) pracuje przeważnie zewnętrzna część materjału. Obliczenie spro­
wadza się w przybliżeniu do oznaczenia naprężeń w wale wydrążonym, którego średnica zewnętrzna 
równa się 2r, a grubość ściany 1,5 p.
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Dalszem opracowaniem tego tematu zajął się Willers1), który przy pomocy metod wykreślnych, roztrząsnął cały 
szereg przypadków i podał sposób dokładniejszego obliczenia. Ograniczymy się do przytoczenia następujących wyników: 

W przypadku przedstawionym na fig. (b) zachodzą największe naprężenia w miejscach m i n, gdzie promień wału 
jest równy R — p. Jeżeli p jest małe wobec R, to te naprężenia mają dwukrotną wartość naprężeń obliczonych dla wału 
o stałym przekroju według formuły (45). W przypadku przedstawionym na fig. (a) komplikuje się zadanie przez to, że 
wartość największych naprężeń zależy nietylko od stosunku R : r, lecz także od promienia p krzywej przejściowej. Im ten 
promień jest mniejszy, tem gwałtowniejsze przejście od jednego przekroju wału do drugiego i tem większe powstaną nad­
wyżki naprężeń. Najistotniejsze wyniki przedstawiają diagramy na rys. (84) i (85). Pierwszy z nich odpowiada stałej war­
tości stosunku p:r = 0,1, a jego rzędne wyznaczają wartość największego naprężenia ścinającego w zależności od wartości

a_________ _______________

R-r
- ■ ■ । । । | 1 "I 1 1--  ł «.
O (U 02 0,3 0/4 0,5 0,6 0.7 0,8 0.9 t

Rys. 85Rys. 84

stosunku {R — r) : r odmierzonego na osi odciętych. Rzędne prostej ab przedstawiają wartość naprężenia na powierzchni 
cieńszej części wału w znacznej odległości od miejsca zmiany przekroju. Jak widać z rysunku, otrzymujemy tem większą 
nadwyżkę naprężenia, im większy jest promień R w porównaniu do r. Wielkość nadwyżki zbliża się przytem asympto­
tycznie do wartości odpowiadającej wałowi z krążkiem, gdy R staje się bardzo wielkiem wobec r. Drugi diagram odpo­
wiada stałej wartości stosunku r:R = 3:4 i określa rzędnemi wartość największego naprężenia ścinającego w zależności 
od stosunku p : r. Jak należało oczekiwać, objawia się zmniejszenie promienia p powiększeniem nadwyżki naprężenia.

Na podstawie wykonanych obliczeń dochodzi Willers do wniosku, że przy używanych zwykle stosunkach przy przej­
ściu z cieńszej do grubszej części wału można przyjąć dla największych naprężeń wartość równą 1,75 największego naprę­
żenia w wale o stałym promieniu r, czyli rachować według wzoru

, . . ,c M 28(pt)max = 1,75 --- - —
1 a 51
2 nr

M 
d*

*) Larmour: Phil. Mag. 1892, str. 76.
G. Filon: Lond. Phil. Trans. 193 (1900), str. 309.

(51)

Oprócz zmian grubości, mogą być przyczyną zwiększenia naprężeń w wałach podłużne wykroje, np. żłobki na kliny 
i t. p. Teoretyczne badania wykazały2), że w przypadku półokrągłego wykroju (rys. 86, fig. a) jest naprężenie na dnie 

żłobka dwa razy większe od tego, któreby zachodziło na powierzchni wału bez żłobka, pod wa­
runkiem, że promień żłobka jest mały w porównaniu do promienia wału. Jeżeli kontur żłobka po­
siada kąty wklęsłe, jak np. w żłobku prostokątnym na fig. (b), to naprężenia w wierzchołkach 
tych kątów rosną teoretycznie w nieskończoność. [Znaczy to praktycznie, że w tych miejscach 
zajdą odkształcenia trwałe, oczywiście na bardzo małym obszarze przekroju, już przy bardzo 
małych siłach zewnętrznych]. Podwyższenie naprężeń mogą także wywołać otwory podłużne, jakie 
się trafiają jako błędy w materjale. Nieskończenie mały otwór walcowy uzmysłowiony kółeczkiem m 
na rys. (86), fig. (b), wywołuje teoretycznie podwojenie wartości naprężeń w punkcie konturu 
leżącym najbliżej powierzchni wału, jeżeli otwór leży blisko tej powierzchni.

Wszystkie wyliczone przypadki podwyższenia naprężeń mają charakter czysto miejscowy i trudnoby je było obser­
wować przy zwykłych próbach wytrzymałości prętów na skręcanie.

Jeżeli badamy doświadczalnie pręt z żelaza kowalnego, miękkiej*  stali, lub innego materjału 
zdolnego do znacznych odkształceń trwałych, to takie odkształcenia powstaną najpierw w owych 
miejscach, narażonych na lokalne nadwyżki naprężeń, wskutek czego przy dalszem zwiększaniu 
momentu skręcającego, będzie rozkład naprężeń w tych miejscach i w ich otoczeniu różnić się 
znacznie od teoretycznego. [Różnica polega mianowicie na bez porównania większej równomier-

*) Zeitschr. f. Math. u. Ph. 1907, str. 325.
Ob. także: A. Timpe, Math. Ann. T. 71, 1911, str. 480. 
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ności rzeczywistego rozkładu miejscowego od znalezionego drogą analityczną przy założeniu nie­
ograniczonej ważności prawa Hooke’a]. Ta okoliczność wyjaśnia bardzo dobrze, dlaczego czynniki 
wywołujące miejscowe nadwerężenia materjału nie mają dostrzegalnego wpływu na wielkość do­
raźnej wytrzymałości przy skręcaniu prętów ’)• Aby nadwyżki naprężeń stwierdzić doświadczalnie, 
trzebaby używać prętów z materjału kruchego, np. ze szkła, albo wykonywać doświadczenia przy 
powtarzającem się obciążeniu2). Przy zmiennych napięciach może w miejscach przeciążonych roz­
począć się zniszczenie spójności, jako objaw znużenia materjału. Ta ostatnia okoliczność ma szcze­
gólne znaczenie dla konstrukcji maszyn, gdzie mamy przeważnie do czynienia ze zmiennemi na­
pięciami. [Tern też tłumaczy się częściowo, dlaczego przy zwykłych sposobach obliczenia przyjmuje 
praktyka znacznie mniejsze naprężenia dopuszczalne w konstrukcji maszyn, aniżeli w budowlach 
inżynierskich].

2) H. Fóppl. Mitt. aus d. mech. Lab. Miinchen. Heft 31, 1909.

§ 46. ENERGJA POTENCJALNA PRZY SKRĘCANIU
Jeżeli na swobodny koniec pręta utwierdzonego drugim końcem działa para skręcaj ącą, której 

moment wzrasta w sposób ciągły, to siły pary wykonują podczas odkształcenia pręta pracę, zamie­
niającą się w energję potencjalną tego pręta. Dla wyznaczenia energji potencjalnej zastosujemy 
znowu (podobnie jak w § 4) wykreślne przedstawienie pracy. Na osi odciętych odmierzamy kąty skrę­
cenia <p, a jako rzędne odpowiadające wartości momentu skręcającego. W ten sposób otrzymamy
pochyłą prostą O A (rys. 87), przyjmując naturalnie, że przy odkształceniu 
nie przekraczają naprężenia nigdzie granicy proporcjonalności. Weźmy jaki­
kolwiek chwilowy stan pręta, określony punktem m. Aby od tego punktu przejść 
do nieskończenie bliskiego mi, trzeba momentowi skręcającemu udzielić 
przyrostu dM, przyczem kąt skręcenia wzrośnie o dy. Praca sił zewnę­
trznych przy obrocie o kąt d cp przedstawi się polem zakreskowanego paska 
diagramu. Całkowitą zaś pracę sił wewnętrznych przy zmianie kąta skrę­
cenia od O do cp wyznaczy pole trójkąta O AB, albo wyrażenie

M cp
2 ‘ Rys. 87

Przy pomocy związku między M a cp można energję potencjalną wyrazić jako funkcję jednej 
lub drugiej z tych wielkości. Wstawiwszy za cp wartość z (44) otrzymamy dla pręta okrągłego:

zaś w zależności od cp przedstawi się energja potencjalna wyrażeniem: 
V=-^<P!.(53)

Dla dowolnej postaci przekroju poprzecznego mieliśmy 
Ml 

¥ = -c— 
a zatem energja skręcenia

V= ‘ .............................................................. (54)
Ł O

W poszczególnych przypadkach trzeba tylko wstawić odpowiednią wartość sztywności przy 
skręcaniu C.

§ 47. OBLICZENIE SPRĘŻYN ŚRUBOWYCH
Przyjmijmy, że oba końce sprężyny O, O (rys. 88) leżą w osi walca, na którym zresztą two­

rzy oś (linja środkowa) sprężyny linję śrubową. Niechaj górny koniec będzie utwierdzony, a dolny 
obciążony siłą P. Przy obliczeniu chodzi nietylko o wielkość naprężeń, lecz także o wydłużenie

ł) H. Moore. Univ. of Illinois Buli. Vol. VII. 1909. Nr. 42.
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całej sprężyny pod wpływem danego obciążenia. Dla uproszczenia przyjmiemy, że kąt a, jaki two­
rzy styczna do linji śrubowej z poziomem jest tak mały, że siłę P można w przybliżeniu uważać 
za prostopadłą do tej stycznej 9- Wówczas będzie każdy element długości drutu tworzącego sprę­

żynę narażony głównie na skręcanie momentem P , R, o czem się łatwo 
przekonać w sposób następujący: Przecinamy sprężynę w punkcie m płasz­
czyzną przechodzącą przez oś walca 00' i rozpatrujemy warunek równo­
wagi górnej części. Aby zachować jej równowagę, trzeba na przekrój dzia­
łać siłami zewnętrznemi, zastępującemi działanie na nią części odciętej. Na 
odciętą część dolną sprężyny działa tylko siła P leżąca w płaszczyźnie 
poprowadzonego przekroju w odległości R od jego środka. Nie zmienimy 
warunków równowagi, jeżeli w środku przekroju umieścimy jeszcze dwie 
siły P (fig b) znoszące się nawzajem, z których jedna jest geometrycznie 
równa danemu obciążeniu; wtedy działanie odciętej części na górną spro­
wadza się do siły P działającej na środek przeprowadzonego przekroju i do 
pary sił o momencie P . R, działającej w płaszczyźnie w przybliżeniu pro­
stopadłej do linji śrubowej, a więc do pary skręcającej. [O ile grubość 2r

Rys. 88 drutu, z którego sporządzono sprężynę, jest mała w porównaniu do pro­
mienia R, to para skręcająca wywoła w przekroju sprężyny prawie taki

sam rozkład naprężeń ścinających, jak przy skręcaniu prostego pręta]. Co się tyczy siły P działa­
jącej na środek przekroju, to ona może wywołać tylko naprężenia ścinające, które dla uproszczenia 
będziemy w pierwszem przybliżeniu uważać za rozłożone równomiernie. Największe naprężenie 
wypadkowe zajdzie zatem w punkcie a i obliczymy je wzorem:

, . _ PR p _ p i^R(Pt)max- t nr* (2 r + M-
2%r

Ponieważ według zaznaczonego powyżej założenia jest 2R:r liczbą dość wielką, więc dodaj- 
nik 1 po prawej stronie można wobec niej opuścić, czyli można pominąć wpływ siły ścinającej P 
wobec działania momentu skręcającego PR. Stąd formuła praktyczna do obliczenia wytrzymałości 
sprężyny: _~2PR

(Pt)max — ~ ^3

W podobny sposób można obliczyć sprężyny stożkowo-śrubowe2). Kilka przykładów obliczenia 
znajdzie czytelnik w wydanym przez autora zbiorze zadań3).

Ażeby obliczyć wydłużenie sprężyny użyjemy wyrażenia dla energji potencjalnej, przyczem 
weźmiemy pod uwagę tylko odkształcenia wywołane skręceniem, inne bowiem grają tylko drugo­
rzędną rolę. W takim razie możemy zastosować wzór (52), w którym za / trzeba podstawić dłu­
gość drutu równą w przybliżeniu n . 2 Rn, jeżeli n oznacza liczbę zwojów. A zatem

v_ P*R* . n . 2nR
2GIP

Z drugiej strony jest praca odkształcenia, t. j. praca sił zewnętrznych równa P\ jeżeli X ozna­

cza całkowite wydłużenie sprężyny. Dopóki bowiem naprężenia nie przekroczą granic proporcjo­
nalności, będą odkształcenia sprężyny wzrastać proporcjonalnie względem wielkości siły, a praca 
przedstawi się polem trójkątnego diagramu, podobnie jak w przypadkach rozciągania lub skręcania 
prostego pręta. Warunek równości pracy sił zewnętrznych i energji potencjalnej w przypadku 
odkształceń zupełnie sprężystych daje:

PX P2R3n
2 ” * ‘ G/p ’

*) Doświadczalne sprawdzenie przybliżonych wzorów do obliczenia sprężyn śrubowych znajduje się w pracy Za­
ch arias’a: „Untersuch. an zylindr. Schraubenfedern". Mitt u. Forschungsarb. Heit 106.

’) Ob. V. Meyer. Zeitschr. d. V. d. Ing. 1900, str. 1791, a także Engineering, 1912, str. 207.
8) S. P. Timoszenko; „Sbornik zadacz“. Wyd. 3-cie 1915.
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z czego znajdziemy:
ĄnR*
W

. (55)X = P .

Podobnie można znaleźć wzory dla sprężyn o przekroju prostokątnym lub kwadratowym, posłu­
gując się ogólną formułą (54). Po sporządzeniu podlegają sprężyny zwykle hartowaniu, a ponie­
waż hartowana stal posiada bardzo wysoką granicę proporcjonalności, więc normy naprężeń bez­
piecznych dla sprężyn są bardzo wysokie: Rt waha się w granicach 4000 do 8000 kglcm*.

Kurs wytrzymałości materiałów



CZĘŚĆ III

ZGINANIE PROSTYCH PRĘTÓW1)

ROZDZIAŁ VIII 

WEWNĘTRZNE SIŁY SPRĘŻYSTOŚCI PRZY ZGINANIU PRĘTÓW PRYZMA­
TYCZNYCH

§ 54. POJĘCIE ZGINANIA

Zjawisko zginania charakteryzuje się wogóle tem, że przekroje poprzeczne pręta prostego, 
pierwotnie równoległe, nachylają się względem siebie, przyczem oś pręta się zakrzywia. Dla wyzna­
czenia wewnętrznych sił sprężystości przy zginaniu, zastosujemy poprzednią metodę. Rozcinamy 
zginany pręt na dwie części i rozpatrujemy równowagę jednej z nich. Działanie drugiej części na 
część rozpatrywaną zastępujemy przytem siłami wewnętrznemi rozłożonemi w poprowadzonym prze­
kroju w sposób ciągły. W przypadku rozciągania sprowadzały się te siły do wypadkowej działającej 
wzdłuż osi pręta. Przy ścinaniu sprowadzały się do siły leżącej w płaszczyźnie przekroju. Przy 
rozpatrywaniu skręcania sprowadzaliśmy wszystkie siły wewnętrzne działające w płaszczyźnie prze­
kroju do pary sił leżącej w płaszczyźnie prostopadłej do osi pręta. Przy badaniu zginania otrzy­
mujemy wogóle złożony układ sił, lecz na razie ograniczymy się do prostszego przypadku „czy­
stego zginania", w którym siły wewnętrzne, działające na przekrój jakiejkolwiek odciętej części 
pręta, sprowadzają się do pary leżącej w płaszczyźnie osi pręta, a więc prostopadłej do przekroju. 
Siły zewnętrzne działające na część odciętą sprowadzają się wówczas również do takiejże pary. 
Taki przypadek bardzo łatwo zrealizować w sposób przedstawiony na rys. (104). Belka wystająta 

poza podpory Ti i B jest obciążona symetrycznie na końcach siłami P. 
Wtedy już z warunku symetrji wynika, że reakcje podpór są także równe P. 
Dla jakiegokolwiek przekroju leżącego między podporami tworzą siły 
zewnętrzne odciętej części parę o momencie równym Pa. Możemy jeszcze 
uprościć nasze zadanie, zakładając symetrję przekroju względem płaszczy­
zny rysunku, która jest zarazem płaszczyzną obciążenia. W takich wa- 

w tejże płaszczyźnie, a siły wewnętrzne w przekroju poprzecznym spro­
wadzą się do pary leżącej w tej płaszczyźnie. Co się tyczy prawa rozkładu naprężeń w przekroju, 
to kwestja ta nie da się rozwiązać przy pomocy samej statyki, do tego potrzeba pewnych uzupeł­
niających założeń, opartych po części na doświadczeniu, a po części na pewnych przypuszczeniach. 
Słuszność przypuszczeń wynika z tego, że doświadczenie potwierdza osnute na nich wywody. 
Te przypuszczenia stwierdzono także ścisłemi badaniami teoretycznemi, podawanemi w wykładach 
teorji sprężystości.

r) W tej części opuszczono w przekładzie rozdział VII, traktujący o momentach bezwładności figur płaskich, ponie­
waż te rzeczy można znaleźć w książkach poświęconych statyce wykreślnej, lub mechanice ogólnej.

Rys. 104 

runkach zajdzie zgięcie
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§ 55. DANE DOŚWIADCZALNE

Przy doświadczalnem badaniu zgięcia można obserwować przesunięcia poszczególnych punktów 
pręta (ich ugięcia) i odkształcenia oddzielnych elementów. Przy obserwacji ugięć przedstawia się 
ich zależność od wielkości sił zewnętrznych najdogodniej wykreślnie. Odmierzając na osi odciętych 
wielkości ugięcia f, a na osi rzędnych odpowiadające wartości sił zginających P, znajdziemy, że
dla materjałów podlegających prawu Hooke’a zachodzi w pewnych granicach 
zależność linjowa między / i P. Diagramem będzie wtedy odcinek prostej AB 
(rys. 105) nachylonej do osi spółrzędnych. Przy dalszym wzroście sił powstają 
odkształcenia trwałe i linja diagramu zakrzywi się wypukłością do góry. Po­
dobnie jak przy rozciąganiu można tutaj zauważyć zjawisko podwyższenia gra­
nicy proporcjonalności i wpływ powtarzających się obciążeń.

Co się tyczy odkształceń poszczególnych elementów zginanego pręta, czyli 
belki, to widać odrazu, że po stronie wypukłej są elementy narażone na roz­
ciąganie, a po stronie wklęsłej na ściskanie (rys. 106). To całkiem oczywiste 
założenie nie odrazu weszło do teorji zgięcia. Sławny Galileusz, fundator nauki

o wytrzymałości materjałów'), nie zwracał wcale uwagi przy badaniu zgięcia 
na zmianę postaci belki i rozpatrywał ją jako ciało idealnie' sztywne. Następni 
badacze zauważyli, że elementy po stronie wypukłej belki są rozciągane, a do­
piero znacznie później przekonano się o ściskaniu elementów po stronie wklę­
słej. Rozstrzygające znaczenie miało w tym kierunku doświadczenie wykonane
przez Duhamera. W tern doświadczeniu obciążono środek drewnianej belki,

Rys‘10 podpartej w obu końcach (rys. 107), siłą P. Górną część belki naderżnięto
w kilku miejscach piłą do połowy jej grubości i szpary w ten sposób utwo­
rzone wypełniono przylegającemi szczelnie deszczułkami. Jeżeliby oddzielne 
włókna zginanej belki były narażone tylko na rozciąganie, to taka operacja 
osłabiłaby znacznie belkę, która wytrzymałaby zatem o wiele mniejsze obcią­
żenie, niż belka cała. Jeżeli zaś w górnej części belki zachodzi ściskanie włó-

Rys. 107

kien, to szczelne wypełnienie naderżnięć powinno znieść ich wpływ na zmniej­
szenie wytrzymałości przy zginaniu, co właśnie potwierdziły doświadczenia 
DuhameFa.

Nasuwa się teraz kwestja rozkładu naprężeń na wysokości belki. Skoro 
belkę o przekroju poprzecznym prostokątnym opatrzymy na bocznych ścia­
nach prostokątną siatką (rys. 108) i obciążymy w sposób przedstawiony na 
rys. (104), t. j. narazimy na czyste zginanie, to po zgięciu można dostrzec, 
że proste ab i cd, pierwotnie prostopadłe do osi belki, pozostają prostemi 
i prostopadłemi do zgiętej osi. Elementarne prostokąty siatki skrzywiają się, 
ale ich kąty wierzchołkowe pozostają proste. Jeżeli zrobimy bardzo prawdo­
podobne przypuszczenie, że takie same odkształcenia zachodzą i wewnątrz 
belki, to przekroje poprzeczne pozostają przy odkształceniu płaskiemi, a zgię­
cie belki polega na tern, że każdy przekrój obraca się względem sąsiedniego 
o pewien kąt elementarny 8 a. Ponieważ górne włókna są rozciągane a dolne 
ściskane, więc musi między niemi leżeć warstwa pierwotnie płaska i pozioma, 
której włókna nie zmieniają swej długości. Nazywamy ją warstwą obo­
jętną. Ślad tej warstwy na płaszczyźnie rysunku naznaczono linją MN. Po­
wyższe przyjęcia wystarczają do ustawienia prawa rozkładu naprężeń w prze­

krojach poprzecznych belki. Niech będzie p promieniem krzywizny linji MN, a ds wzajemną odle­
głością przekrojów ab i cd przed zgięciem. Zważywszy, że długość ds odpowiednich części włó­
kien warstwy obojętnej nie zmieni się wskutek zginania, możemy napisać

d s = p d a.

*) W przedmowie do dzieła Navier’a „Rćsumś des leęons sur la rćsistance des corps solides", Paris 1864, umieścił 
de S.-Venant interesujący szkic historyczny rozwoju nauki o wytrzymałości materjałów.

6*
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Długości odcinków innych włókien leżących między obranemi przekrojami zamieniają się widocznie 
na długości proporcjonalne względem odległości od środka krzywizny. Oznaczmy zmianę długości 
włókna przez Ads, a odległość włókna od warstwy obojętnej przez z (obiedwie wielkości będziemy 
pojmować jako algebraiczne). Po zgięciu będzie p + z odległością włókna o długości ds + Ads od 
środka krzywizny, a zatem

ds 4- ^ds _ p + z 
ds ~ p 

czyli
e=Ads=A........................................................................ (61)

ds p
Ten wynik wyraża, że względne wydłużenia włókien są proporcjonalne wzglę­

dem ich odległości od warstwy obojętnej. Największych zatem wydłużeń doznają włó­
kna skrajne, t. zn. najbardziej oddalone od warstwy obojętnej. Mierząc te wydłużenia podczas 
doświadczenia możemy oczywiście oznaczyć położenie warstwy obojętnej. W naszym przypadku 
wykazały liczne doświadczenia, że warstwa obojętna leży w połowie wysokości prostokątnego prze­
kroju belki. [Przekonamy się niebawem, że ten wynik jest konsekwencją linjowego rozkładu wy­
dłużeń, prawa Hooke’a i warunków równowagi].

Wydłużeniom i skróceniom włókien zginanej belki muszą widocznie towarzyszyć linjowe 
odkształcenia poprzeczne. Najoczywistszem jest to dla włókien leżących na powierzchni belki, na 
którą żadne siły zewnętrzne nie działają. Rozszerzenia, względnie skurczenia poprzeczne włókien 
będą, jak wiadomo z § (5), równe o . e, jeżeli o oznacza liczbę Poisson’a. Rozdzieliwszy w myśli 
belkę na poprzeczne włókna poziome, widzimy, że takie włókna doznają powyżej warstwy obo­
jętnej skróceń, a poniżej wydłużeń. Gdyby włókna podłużne nie przeszkadzały sobie wzajemnie 
przy odkształceniu poprzecznem, co zajdzie niewątpliwie w przypadku przekroju bardzo wąskiego 
w stosunku do wysokości, to odkształcenia poprzeczne byłyby również proporcjonalne względem 
odległości od warstwy obojętnej i przedstawiałyby się wyrażeniem

e'=oe = <5“—..........................................................(bla)
P

Wówczas powstałoby niejako zgięcie przekroju poprzecznego do krzywizny o bezwzględnej war­

tości = 0 • a o kierunku promienia wprost przeciwnym kierunkowi promienia krzywizny 

zgiętej osi pręta. Górna powierzchnia belki byłaby poprzecznie wklęsła, a dolna wypukła (rys. 109). 
Doświadczenia okazały, że takie odkształcenie zachodzi istotnie nawet przy sto­
sunkowo znacznej szerokości przekroju prostokątnegoT). Gołem okiem można 
je dostrzec przy zginaniu prętów z miękkiego kauczuku. U belek metalowych 
można wyznaczyć poprzeczne zgięcie przekroju (w jego płaszczyźnie) przy po­
mocy dokładnych aparatów zwierciadełkowych.

[Z tego doświadczalnego faktu możemy wysnuć wniosek, że podłużne włókna belki nie wy­
wierają na siebie nawzajem żadnego uw?gi godnego działania przy czystem zgięciu. To jednak będzie 
prawdziwem o tyle, o ile szerokość przekroju nie jest zbyt wielka w porównaniu do jego wysokości. 
Wogóle nie trudno się przekonać, przy pomocy geometrycznych rozważań, że związek (61 a) jest 
w przypadku większych odkształceń tylko mniej lub więcej przybliżony. W samej rzeczy poprzeczne 

zakrzywienie warstwy środkowej, którą nazwaliśmy warstwą obojętną, nie jest możliwe bez jednoczesnych odkształceń 
podłużnych tej warstwy i, co zatem idzie, bez naprężeń podłużnych. Te naprężenia musiałyby być w punktach p i q (rys. 109) 
ciągnieniami, gdyż promień krzywizny odpowiednith włókien podłużnych jest widocznie nieco większy od promienia włókna 
środkowego (przy założeniu zgięcia głównego wypukłością do góry), które wskutek tego byłoby nawzajem podłużnie ści­
skane. To nie może pozostać bez wpływu na zależność e' od z, ale ten wpływ będzie tak długo znikomo mały, dopóki 
szerokość prostokątnego przekroju jest mała w porównaniu do promieni krzywizny, przy tej samej wysokości, albo dopóki 
szerokość przekroju nie jest wielka wobec jego wysokośch Łatwo to zrozumieć biorąc pod uwagę przypadek skrajny bar­
dzo wielkiej szerokości. Wyobraźmy sobie np. czyste zginanie prostokątnego kawałka blachy. Wtedy można gołem okiem 
dostrzec zakrzywienie w płaszczyźnie zginania, natomiast zakrzywienie poprzeczne jest zgołą niewidoczne, i dopiero przy 
użyciu subtelnych aparatów dałoby się stwierdzić na brzegach blachy. Przeważająca Część środkowa blachy nie bierze 
udziału w poprzecznem zakrzywieniu i przybiera postać pobocznicy walca].

9 Cornu. C. R. 1869, T. 64, str. 333.
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warstwy obojętnej

§ 56. O NAPRĘŻENIACH W PRZYPADKU CZYSTEGO ZGINANIA

Wskutek przyjęcia, że poprzeczne przekroje pręta pozostają płaskiemi, a włókna podłużne 
nie uciskają siebie nawzajem, sprowadza się zjawisko czystego zginania do rozciągania i ściskania* 
włókien belki. Mając we wzorze (61) wyrażenie dla wydłużenia 
względnego, otrzymamy zaraz odpowiadające naprężenie pz,   
mnożąc je przez moduł sprężystości E. A zatem y

p, = E-p-...................................(62) °

To równanie wyraża linjowe prawo rozkładu naprężeń Rys. no
w przekroju i przedstawia się wykreślnie diagramem złożonym

z dwu trójkątów (rys. 110). Zauważymy przytem, że dodatnie wartości z rachu­
jemy od warstwy obojętnej w kierunku od środka krzywizny.

Otrzymawszy prawo rozkładu naprężeń, oznaczymy ich wielkość przy 
pomocy równań statyki. Niechaj rys. (111) przedstawia jeden z poprzecznych 
przekrojów belki. Obierzmy środek ciężkości przekroju za początek prosto­
kątnego układu spółrzędnych, którego oś A-ów jest osią belki, a oś Z-ów 
leży w płaszczyźnie pary zginającej (płaszczyźnie obciążenia). Według uczy­
nionego powyżej założenia będzie oś Z osią symetrji przekroju, a zatem 
płaszczyzna XZ będzie płaszczyzną symetrji belki. Ze symetrji wnosimy, 
że ta płaszczyzna będzie zarazem płaszczyzną zginania, a przeto ślad 
na płaszczyźnie rysunku, który nazwiemy osią obojętną, musi być 
Y. Siły zewnętrzne, działające na rozpatrywaną część belki, sprowadzają się 

do pary sił, leżącej w płaszczyźnie ZX. Dla równowagi trzeba, aby siły wewnętrzne w po­
prowadzonym przekroju sprowadzały się także do pary o momencie tej samej wielkości, lecz 
przeciwnego znaku. Jeżeli dF oznacza element pola przekroju poprzecznego, to przypadające nań 
napięcie przedstawi wyrażenie:

p.dF = E z dF,
P 

a rzutując wszystkie napięcia na osie spółrzędnych, otrzymamy
X = ^p,dF= ^[zdF, y=0, Z = 0.

Ażeby napięcia w płaszczyźnie poprzecznego przekroju sprowadzały się do pary sił musi być 
*

\zdF=0;

a zatem, przyjąwszy hipotezę płaskich przekrojów, doszliśmy z warunków równowagi do wniosku, 
że oś obojętna przechodzi przez środek ciężkości przekroju. Ten wynik stwier­
dzono doświadczeniami *).

Dowiedziemy teraz, że para wypadkowa napięć w przekroju leży w płaszczyźnie ZX, czyli, 
że ich momenty względem osi X i Z są równe zeru. Otóż moment pary wypadkowej względem 
osi X jest równy zeru, ponieważ wszystkie napięcia są do tej osi równoległe. Dla oznaczenia mo- 

2 mentów względem osi Z-ów, trzeba każde napięcie elementarne E—dF pomnożyć przez odpo- 
P

wiadające ramię y i zesumować otrzymane iloczyny elementarne. Szukanym momentem będzie tedy: 
EC EIzyM.= -yydF= —

Ale oś Z jest według założenia osią symetrji przekroju, a zatem osie Y i Z są głównemi 
osiami bezwładności, a /zy = 0. Wskutek tego znika widocznie i ogólny moment napięć względem

r) [Oczywiście w granicach ważności prawa Hooke’a; poza temi granicami wychodzi oś obojętna ze środka prze­
kroju, a wielkość i kierunek jej przesunięcia zależą od postaci przekroju i od diagramu wydłużeń materjału].
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osi Z-ów. W ten sposób okazaliśmy, że siły wewnętrzne sprowadzają się do pary leżącej w płasz­
czyźnie ZX działania sił zewnętrznych.

Zanim przejdziemy do wyznaczenia naprężeń, uogólnimy nieco nasz dowód. Dotychczas wy­
chodziliśmy dla prostoty z założenia, że oś Z-ów jest osią symetrji poprzecznego przekroju belki. 
To nam pozwoliło wywnioskować, że płaszczyzna zginania schodzi się z płaszczyzną działania sił, 
że zatem oś obojętna O Y jest prostopadła do tej płaszczyzny. Otóż warunek prostopadłości osi 
obojętnej do płaszczyzny działania sił spełnia się i w ogólniejszym przypadku zgięcia. Jak bowiem 
łatwo zauważyć, stosowaliśmy w poprzednim wywodzie warunek symetrji tylko raz, a mianowicie 
przy obliczeniu momentu Mz i dowiedliśmy, że ten moment równa się zeru, ponieważ /yz = 0. Rle 
moment odśrodkowy /yz staje się zerem nietylko dla przekrojów symetrycznych, lecz także dla 
przekrojów o dowolnej postaci, jeżeli tylko osie Y i Z są głównemi osiami bezwładności przekroju. 
Z tego wynika, że przy działaniu par zginających w płaszczyźnie ZX, przechodzącej przez jedną 
z głównych osi bezwładności przekroju poprzecznego, będzie druga oś główna służyć jako oś obo­
jętna, ponieważ tylko pod tym warunkiem mogą wewnętrzne siły sprężystości zrównoważyć parę 
sił zewnętrznych o momencie M.

Płaszczyzny, przechodzące przez oś belki i jedną z głównych osi bezwładności przekroju po­
przecznego, będziemy nazywać płaszczyznami głównemi. (W dalszym ciągu przyjmujemy 
zawsze, że kierunek głównych osi nie zmienia się wzdłuż belki). Na podstawie powyższych wywo­
dów możemy wysłowić twierdzenie następujące:

Przy działaniu par zginających w jednej z głównych płaszczyzn belki, 
zachodzi zgięcie w tejże płaszczyźnie.

Ten przypadek zginania jest praktycznie najważniejszy. Ogólniejszy przypadek, w którym 
płaszczyzna par zginających jest nachylona do płaszczyzn głównych, rozpatrzymy poniżej.

Do wyznaczenia naprężeń pz posłuży drugi rodzaj warunków równowagi, t. j. warunek momen­
tów. Jeżeli oś obojętną (oś Y-ów) obierzemy za oś momentów, to ogólny moment sił zginających 
względem tej osi równa się oczywiście momentowi pary M, zaś sumą algebraiczną momentów sił 
wewnętrznych pz dF będzie ^zpzdF. Wstawiwszy za pz wartość z rów. (62) i przyrównawszy 

otrzymane wyrażenie do M znajdziemy
E C— \z2dF — M,
P J 

albo, ponieważ całka po lewej stronie określa geometryczny moment bezwładności przekroju poprze­
cznego względem osi Y, który oznaczymy przez /y, więc

1 = ^-............................... . (63)
p ^/y

Ta formuła pozwala z danej wartości M i rozmiarów belki obliczyć p. Krzywizna -i- jest od­

wrotnie proporcjonalna względem iloczynu EIy. Wielkości EIy i Elz będziemy w dalszym ciągu 
nazywać głównemi sztywnościami belki i oznaczać odpowiednio przez By i Bz. Znając 
krzywiznę, możemy obliczyć naprężenie w dowolnem włóknie, odległem o z od osi obojętnej, zapo- 
mocą rów. (62), które po wstawieniu wartości p z (63) przybierze postać:

Pz —
Mz . (64)

Krańcowe wartości naprężeń zajdą oczywiście we włóknach najbardziej oddalonych od osi 
obojętnej, czyli krótko we włóknach skrajnych. Oznaczywszy przez hr i h2 odległości włó­
kien skrajnych od osi obojętnej (rys. 111) otrzymamy:

_ Mh. _ Mh,
Pmax — . ’ Pmin r

h *y
Każdą z dwu czysto geometrycznych wielkości

. (65)
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nazwiemy modułem przekroju ’)• Naprężenia skrajne będą równe, jeżeli hi = h2, a więc i W, = IV2 = W. 
Przekroje czyniące zadość temu warunkowi będą najodpowiedniejsze dla belek z materjałów o równej 
wytrzymałości przy rozciąganiu i przy ściskaniu. Wogóle możemy napisać zamiast (65)

.........................................................................(W)

gdyż to równanie pozwala obliczyć każde z dwu naprężeń krańcowych, jeżeli znamy odpowia­
dającą wartość modułu przekroju W.

§ 57. ZGIĘCIE UKOŚNE
Zgięcie nazywamy ukośnem, gdy płaszczyzna pary zginającej nie jest zarazem płaszczyzną główną 

belki. Okażemy przedewszystkiem, że wtedy płaszczyzna zgięcia nie będzie się schodzić z płaszczyzną 
działania sił i że wskutek tego oś obojętna nie będzie prostopadłą do płaszczyzny obciążenia.

Niechaj rys. (112) przedstawia poprzeczny przekrój belki, na którym układ spółrzędnych YZ 
odpowiada głównym centralnym osiom bezwładności przekroju. U U niech będzie śladem płaszczyzny
pary zginającej. Przypuśćmy, że i w danym przypadku płaszczyzna zgię­
cia schodzi się z płaszczyzną działania sił, a wtedy osią obojętną byłaby 
prosta W prostopadła do U U. Gdyby to przyjęcie było słuszne, to odpo­
wiadające wewnętrzne siły sprężystości sprowadziłyby się do pary sił, 
leżącej w płaszczyźnie UD, a ich moment względem UU powinienby być 
równym zeru. Znajdziemy wyrażenie dla tego momentu Mu.

Na podstawie formuły (62) będzie napięcie, przypadające na element 
pola dF, położony w odległości u od osi obojętnej W, równe

E—dF. RysH2
P

Dla obliczenia momentu Mu trzeba każde napięcie elementarne pomnożyć przez odpowiada­
jące ramię v i następnie otrzymane iloczyny zesumować* A zatem:

., E f , „ EjMu — — \ ud dF — — /uv.
P ? P

Otóż ta wielkość nie staje się zerem, ponieważ osie U i V nie są, według założenia, głównemi 
osiami bezwładności przekroju poprzecznego (ob. § 50). Nasze przypuszczenie, że oś obojętna jest 
prostopadłą do płaszczyzny działania sił, nie odpowiada przeto rzeczywistości.

Oznaczmy przez 
dzy DU (płaszczyzną

Rys. 113

a kąt, jaki tworzy oś obojętna nn z osią Y (rys. 113), a przez 'p kąt mię- 
pary zginającej) i osią Z. Niechaj kierunek momentu zginającego będzie 
taki, że po prawej stronie n n powstają w przekroju ciśnienia, a po lewej 
ciągnienia. Moment pary zginającej M, przedstawiony na rysunku wekto­
rem Ok, prostopadłym do płaszczyzny U U, da się rozłożyć na składowe: 

Mz = M sin -p; My = M cos <p.
Te składowe działają w płaszczyznach XY i XZ, które są głównemi 

płaszczyznami zginanej belki; naprężenia wywołane przez My i Mz można 
zatem obliczyć według formuły (64) poprzedniego paragrafu. Całkowite na­
prężenie w jakimkolwiek punkcie przekroju znajdziemy, sumując napręże­
nia, obliczone oddzielnie dla My i Mz. Przy tem sumowaniu trzeba oczy 
wiście uwzględnić i znak naprężenia. Z naszego założenia co do kierunku 

momentu M wynika, że My wywołuje ciągnienia w I i II ćwiartce przekroju, a ciśnienia w III i IV 
ćwiartce. Moment zaś Mz wywołuje w II i III ćwiartce ciągnienia, a w I i IV ciśnienia. Całkowite 
naprężenie w dowolnym punkcie M o spółrzędnych y i z będzie przeto równe:

Myz _ Mzy = / z cos _ ysin?\.
Ty Iz 1 ly Ir, '

To naprężenie jest linjową funkcją spółrzędnych punktu.

x) Używają też niezbyt szczęśliwej nazwy: „moment oporu".
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Jeżeli w każdym punkcie przekroju przedstawić naprężenie wektorem, oczywiście prostopadłym 
do płaszczyzny przekroju, to końce tych wektorów będą leżeć w jednej płaszczyźnie. Lin ja prze­
cięcia tej płaszczyzny z płaszczyzną przekroju poprzecznego będzie osią obojętną, albowiem w tej 
linji są naprężenia równe zeru. Równanie osi obojętnej otrzymamy, przyrównywując powyższe 
wyrażenie dla naprężeń do zera, czyli:

z cos <p  y siny _ 0
/y L

Kąt nachylenia tej prostej względem osi Y wyznaczy równanie:

tg a = y = ytg?.......................................................... (68)

Gdy w szczególności
Iy = h, 

t. j. gdy elipsa bezwładności staje się kołem, a każdą parę osi wzajemnie prostopadłych można 
uważać za osi główne, to

tga = tgy, 
czyli płaszczyzna zgięcia schodzi się z płaszczyzną zginającej pary.

Przy pomocy elipsy bezwładności można znaleźć łatwą konstrukcję osi obojętnej. Niech będzie 
/y=Fry2; Iz = Frzi;

przyczem ry i r2 oznaczają główne promienie bezwładności przekroju poprzecznego. Rów. (68) da 
się teraz napisać w postaci

................................ (68)' 
* z

Napiszmy jeszcze równanie stycznej do elipsy bezwładności w dowolnym punkcie y0, z0 tej 
elipsy, a mianowicie:

r 2 + r 2 K 
f z ' y

Tangens kąta nachylenia tej stycznej do osi Y równa się
. LĆ.

Zo Fz2
'Jeżeli punkt yozo obierzemy w miejscu przecięcia się prostej U U z elipsą bezwładności, to

~- = - tg<p,
z0

a tang, kąta nachylenia stycznej do elipsy w tym punkcie równa się
r 2
1 z

Porównawszy ten wynik z wyrażeniem dla tg a w formule (68)', widzimy, że oś obojętna jest 
równoległa do stycznej, poprowadzonej w punkcie przecięcia się płaszczyzny pary zginającej z elipsą 
bezwładności przekroju. Możemy to wyrazić jeszcze w sposób następujący:

Kierunek płaszczyzny pary zginającej i kierunek odpowiadającej osi obo­
jętnej są kierunkami sprzężonemi względem centralnej elipsy bezwładności 
przekroju.

To twierdzenie, znalezione jednocześnie przez Bresse’a i de Saint-V en ant’a, pozwala 
wyznaczyć wykreślnie kierunek osi obojętnej z wielką łatwością. Z rys. (113) widać dobrze, że 
im większa różnica obu promieni bezwładności, tem bardziej zbliża się płaszczyzna zgięcia do 
płaszczyzny najmniejszej sztywności belki. Co się tyczy największych naprężeń rozcią­
gających i ściskających, to oczywiście zajdą one w punktach najbardziej oddalonych od osi obojętnej.

[Przy nieco zawilszej postaci przekroju najdogodniej znaleźć te punkty drogą wykreślną. Dla przekroju prostoką­
tnego np. leżą punkty największych naprężeń zawsze w wierzchołkach prostokąta].

Wielkość naprężeń wyznaczamy, sumując naprężenia wywołane każdym z momentów skła­
dowych My i Mz zosobna.
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§ 58. ZGINANIE BELKI SIŁAMI PROSTOPADŁEMI DO OSI
Zatrzymamy się teraz na przypadku najczęściej spotykanym, w którym siły zginające leżą 

w jednej z głównych płaszczyzn belki. Niechaj rys. (114) przedstawia układ sił w równowadze
Pn P2,...P5, działających na belkę A B. Poprowadźmy dowolny prze­
krój poprzeczny ab i rozpatrzmy warunki równowagi jednej części 
belki, np. prawej. Ażeby zachować jej równowagę, trzeba na przekrój a b 
działać napięciami, zastępuj ącemi wpływ odrzuconej części na część 
rozpatrywaną. Te napięcia tworzą oczywiście układ równoważny ukła­
dowi sił zewnętrznych Pn P2 i P3, działających na odrzuconą lewą 
część belki. Można je sprowadzić do jednej siły pionowej Q działa-

CL

B X

Rys. 114

P<

jącej w środku przekroju ab i do pary sił o momencie M. Siła Q jest według prawideł statyki 
równa sumie algebraicznej sił danych, t. j.

Q = Pt P2 3>

a moment pary równa się sumie algebraicznej momentów sił działających na część odciętą wzglę-
dem środka przekroju, czyli ;W = PJ. — P.J, — P

Za dodatni kierunek siły będziemy przytem uważać taki, przy którym siła dąży do przesu­
nięcia lewej części belki z dołu do góry. Kierunek momentów zaś przyjmiemy jako dodatni, jeżeli 
dąży do obrotu lewej części belki w kierunku wskazówki zegara. Siłę Q nazywamy siłą poprze­
czną albo ścinającą, wielkość M zaś momentem zginającym. [A zatem: Siła poprze- 
czna Q, działająca w pewnym przekroju belki jest geometrycznie równa wy­
padkowej wszystkich sił zewnętrznych, działających na lewą część belki 
odciętą danym przekrojem. Moment zginający M w danym przekroju belki jest 
sumą algebraiczną momentów wszystkich sił zewnętrznych, działa j ących na 
lewą część b.elki odciętą owym przekrojem, względem środka tego przekroju].

Gdybyśmy zredukowali w ten sam sposób siły działające na prawą część belki, to otrzyma­
libyśmy widocznie siłę i parę M', tej samej wielkości co Q i M, ale przeciwnego kierunku, 
gdyż wszystkie siły działające na prawą i lewą część muszą czynić zadość warunkom równowagi, 
czyli Q + Q'= O i M +M' = 0. Często okaże się dogodniejszem obliczenie dla części prawej niż 
dla lewej, ażeby więc nie popaść w sprzeczność, trzeba przy obliczeniu dla prawej części trzymać 
się odwrotnej umowy co do znaków.

Siły wewnętrzne w rozpatrywanym przekroju będą określać naprężenia w elementach jego 
pola. Te siły wewnętrzne i odpowiadające im naprężenia rozkładamy, jak zwykle, na styczne i nor­
malne. Wszystkie siły wewnętrzne muszą być w równowadze z siłami zewnętrznemi, działającemi 
na część odciętą, z czego wynika, że siła poprzeczna Q równoważy się z samemi stycznemi siłami 
wewnętrznemi, a normalne siły wewnętrzne równoważą zosobna moment zginający M. Wyrażamy to 
krócej słowami: Siła poprzeczna wywołuje naprężenia ścinające, a moment zginający wywołuje naprę­
żenia normalne w rozpatrywanym przekroju. Te ostatnie znajdziemy zatem tak samo, jak w przypadku 
czystego zgięcia momentem M. Pozostaje jeszcze zająć się wyznaczeniem naprężeń ścinających. 
Do tego dostarcza statyka tylko jedno równanie, które powiada: Suma algebraiczna rzutów napięć 
we wszystkich elementach przekroju na oś pionową równa się sile poprzecznej Q. Prawo rozkładu 
naprężeń ścinających będzie można znaleźć na podstawie pewnych przypuszczeń. Poświęcimy temu 
następny paragraf, a tutaj wyprowadzimy jeszcze pewien związek między M a Q, który gra ważną 
rolę przy obliczaniu belek.

Przesuńmy przekrój ab (rys. 114) w kierunku X o element długości belki dx. Jeżeli nad 
przekrojem nie było siły skupionej, to takie przesunięcie nie wywoła zmiany siły poprzecznej Q, 
natomiast moment M przyrośnie o wielkość dM, określoną widocznie równaniem:

z którego wynika
dM = Ptdx — P2dx — P3dx — Qdx, 

dx
• (69)

czyli pochodna momentu zginającego względem x [t j. zmiana momentu w pewnem 
miejscu belki, odniesiona do jednostki długości] równa się sile poprzecznej Q.
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§ 59. NAPRĘŻENIE ŚCINAJĄCE PRZY ZGINANIU
Ażeby otrzymać prawo rozkładu naprężeń ścinających, zwrócimy się do rozpatrzenia odpo­

wiadających odkształceń. Wiemy, że naprężenia styczne, działające na ściany elementu prostopadło- 
ściennego, wywołują jego odkształcenie postaciowe. Wskutek odkształceń tego rodzaju, włókna mn

a a_ c, c

Rys. 115

i pq zginanej belki (rys. 115), pierwotnie normalne do płaszczyzn przekrojów 
poprzecznych ab i cd, tworzą po zgięciu z odpowiadającemi płaszczyznami 
przekrojów poprzecznych kąty ukośne. Element mnpq przybiera postać 
miniPiQi' Ponieważ zmiana kątów jest w różnych punktach przekroju 
różna, więc musi jej towarzyszyć zakrzywienie przekroju. Linję a^^ i cidi 
przedstawiają na rys. (115) przybliżoną postać tych zakrzywionych prze­
krojów. Największe odkształcenie postaciowe elementów zachodzi tutaj w war­
stwie obojętnej. Na górnej i dolnej ścianie belki w punktach alcl i

nie ulegają kąty proste elementów żadnej zmianie. Opisane zjawisko łatwo zaobserwować zginając 
pręty z kauczuku. W tym celu trzeba tylko boczną ścianę pręta pokryć siecią małych kwadratów.

Dla takich materjałów, jak żelazo kowalne i stal, są zakrzywienia przekrojów bardzo małe 
i nie zwracano na nie długo żadnej uwagi; przyjmowano poprostu, że we wszystkich przypadkach 
zginania pozostają przekroje płaskiemi, jak przy „czystem zgięciu*. Dopiero przez zbadanie zakrzy­
wienia przekrojów poprzecznych udało się S. Venant’owi ustalić prawo rozkładu naprężeń stycznych. 
Pokazało się, że zakrzywienia przekrojów nie wpływają na wielkości wydłużeń i skróceń podłużnych 
włókien belki. Elementy mn i pq, otrzymujące wydłużenia przy obrocie przekroju ab względem cd, 
nie zmieniają swej długości przy zakrzywieniu przekrojów poprzecznych, lecz zajmują tylko nowe 
położenia i prfi. Z tego powodu ciągnienia i ciśnienia, uwarunkowane obrotem przekro­
jów ab i cd, a zależne od wielkości momentu zginającego, nie zmienią się przy zakrzywieniu 
przekrojów, zależnem od wielkości napięć stycznych, a więc i od siły poprzecznej.

Przy elementarnem wyprowadzeniu prawa rozkładu naprężeń stycznych przyjmiemy, że prze­
krój poprzeczny jest prostokątem. W dalszym ciągu będzie można wywód uogólnić i dla innych 
postaci przekroju. Niechaj ab (rys. 116) przedstawia przekrój poprzeczny belki. Odrzucamy lewą 
część belki, a jej działanie na część prawą zastępujemy siłami sprężystości. Naprężenia normalne
(ciągnienia i ciśnienia) są równoważne momentowi zgi­
nającemu M, zaś naprężenia styczne muszą być równo­
ważne sile poprzecznej Q, wobec czego przyjmiemy je 
jako równoległe do osi Z-ów. Przyjmiemy nadto, że 
wielkość naprężenia stycznego w jakimkolwiek punkcie 
poprzecznego przekroju zależy tylko od odległości tego 
punktu od osi obojętnej O Y. W takim razie naprężenia 
styczne we wszystkich elementach, leżących na jakiej­
kolwiek prostej ppA równoległej do O Y, będą wielkością 
stałą, a zatem będzie stałą i zmiana kątów u tychże 

Rys. 116

elementów, czyli przekrój poprzeczny zakrzywi się podług powierzchni walcowej. Tworzące tej 
powierzchni będą równoległe do osi Y-ów. Powyższe przypuszczenia co do kierunku i rozkładu 
naprężeń stycznych są, jak wykazuje dokładne rozwiązanie tegoż zadania w teorji sprężystości, 
bardzo bliskie rzeczywistości. W przypadku kwadratowego przekroju poprzecznego nie przekraczają 
zboczenia 6°/0, w przypadku przekroju prostokątnego o stosunku wysokości do podstawy równym 2, 
nie przekracza błąd 2%. Przy węższych prostokątach jest błąd jeszcze mniejszy. Zauważymy, że 
wyznaczenie naprężeń stycznych ma największe praktyczne znaczenie właśnie dla wąskich prze­
krojów poprzecznych.

Wykażemy teraz, że naprężenia styczne w płaszczyźnie przekroju poprzecznego warunkują 
pojawienie się naprężeń stycznych i w płaszczyznach równoległych do warstwy obojętnej. W tym 
celu pomiędzy dwoma bliskiemi przekrojami ab i cd (rys. 116) wydzielimy przez całą szerokość 
belki elementarny prostopadłościan mnpq o ścianach mn i pq równoległych do warstwy obojętnej. 
Weźmiemy pod uwagę naprężenia styczne, działające na ściany wydzielonego elementu. Na 
ścianę m p działa naprężenie styczne p^., skierowane w górę, które zastępuje działanie lewej odciętej
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części belki na prawą, naprężenie styczne zaś na ścianie nq będzie mieć kierunek wprost prze­
ciwny, ponieważ ono przedstawia działanie prawej części belki na lewą. Wielkość tego naprężenia 
różni się bardzo mało od naprężenia na ścianie mp, gdyż przekroje ab i cd obrano bardzo blisko 
siebie. Przy zbliżaniu tych przekrojów muszą naprężenia na ścianach mp i nq zdążać w granicy 
oczywiście do działania i równego mu przeciwdziałania. Napięcia styczne na ścianach mp i nq 
sprowadzają się do pary sił [o momencie]:

b . pi . dx . dz.
Tutaj oznaczyliśmy przez b wymiar wydzielonego prostopadłościanu w kierunku osi Y, t. j. 

szerokość belki. Ażeby wydzielony element był w równowadze, musimy przyjąć, że na ścia­
nach mn i pq, równoległych do warstwy obojętnej, także działają naprężenia styczne, równoległe 
do osi X-ów. Jeżeli p\ jest wielkością tych naprężeń, to ich momentem będzie:

b . p\ . dx . dz.
Warunek równowagi wydzielonego elementu daje:

bptdxdz = bpt'dxdz, skąd pt = p\ ,
czyli: naprężenie styczne w jakimkolwiek elemencie poprzecznego przekroju równa się naprężeniu 
stycznemu w płaskim elemencie, przesuniętym przez tenże sam punkt równolegle do warstwy obo­
jętnej. O istnieniu naprężeń stycznych w płaskich elementach, równoległych do warstwy obojętnej, 
można się przekonać drogą doświadczalną. Jeżeli dwa jednakowe pręty o przekroju prostokątnym 
złożymy i zginamy siłą działającą w środku ich rozpiętości, to przy zakrzywieniu odkształca się 
każdy pręt samoistnie; dolne włókna każdego pręta rozciągają się, górne ściskają, a końcowe prze­
kroje, leżące pierwotnie w jednej płaszczyźnie, obracają się (i przesuwają 
względem siebie), jak pokazano na rys. (117). W powierzchni przylegania 
ścian mn i mtnx obu prętów, zachodzi przytem oczywiście ślizganie. 
Ażeby temu ślizganiu przeszkodzić i zmusić pręty do działania jako 
całość, muszą w powierzchni przylegania działać napięcia styczne 
o kierunkach wskazanych na rysunku. W praktyce osiągamy tego 
rodzaju wzajemne połączenie dwu belek (drewnianych) przy pomocy 
klinów lub klocków, przedstawionych na rys. (118). Przy zgięciu są be ki

Rys. 117

__ IŁa b

Aś-
Rys. 118

na prostej pq równoległej do 
prężenia będą co do wielkości

osi

narażone na działanie sił ścinających. [Na rys. (118), fig. (b) przed­
stawiono siły Q, działające na klocek c i dążące do ścięcia klocka 
w płaszczyźnie p q]. Po tych przygotowawczych uwagach można 
bez szczególnych trudności znaleść prawo rozkładu naprężeń 
stycznych w płaszczyźnie przekroju poprzecznego.

Niechaj M oznacza wielkość momentu zginającego w do­
wolnie obranym przekroju ae belki przedstawionej na rys. (119). 
Szukajmy naprężeń stycznych dla punktów przekroju poprze­
cznego, leżących w odległości z od warstwy obojętnej, czyli

obojętnej przekroju. Te na-
równe naprężeniom stycznym

w płaszczyźnie cc1} równoległej do warstwy obojętnej i prze­
chodzącej przez prostą pq. Ażeby znaleść ich wartość, roz­
patrzymy warunek równowagi elementu aat cci, ograniczonego 
dwoma nieskończenie bliskiemi przekrojami poprzecznemi ae 
i a1e1, płaszczyzną cct i zewnętrzną powierzchnią belki. Je­
żeli na tą powierzchnię pomiędzy przekrojami i ae nie 
działają żadne siły zewnętrzne, to wypadnie nam rozpatrzyć 
ściany ac, a1c1 i cCi wydzielonego elementu. Na ściany a c i at Cj

Z
ty

Rys. 119

tylko napięcia, działające na 
będą działać, obok naprężeń nor-

malnych, zależnych od wielkości momentu zginającego M, także i naprężenia styczne. Na ścianę 
cct działają tylko naprężenia styczne pt, których wielkości szukamy. Zestawmy rzuty na oś X-ów 
wszystkich sił, działających na element aa^cc^ Napięcia styczne w płaszczyźnie cct jako równo­
ległe do osi X-ów, dadzą przy rzutowaniu siłę:

b . dx . pt,
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jeżeli b jest szerokością przekroju poprzecznego belki. Napięcia styczne na ścianach ac i a}cr 
dadzą przy rzutowaniu zero, ponieważ zakrzywienie przekrojów przy zgięciu jest bardzo małe, wobec 
czego można kierunek tych napięć uważać za prostopadły do osi X-ów. Co się tyczy naprężeń 
normalnych na tychże ścianach, to prawo ich rozkładu jest nam znane. W jakimkolwiek punkcie 
przekroju ac, leżącym w odległości z} od osi obojętnej, mamy:

Znak minus napisaliśmy dlatego, ponieważ przy obranym na rysunku kierunku osi Z-ów odpo­
wiada dodatnim wartościom M i z, ciśnienie p21. Jeżeli ze ściany ac wydzielimy pasek o szero­
kości dz}, to przypadające nań normalne siły wewnętrzne dają wypadkową o wielkości

—,— bdz^

Rzutując na oś X-ów napięcia normalne, działające na ścianę ac, otrzymamy siłę:

— f ztbdz^.

W tenże sam sposób znajdziemy rzut na oś X-ów napięć normalnych na ścianie a1 ct. Jeżeli 
wielkość momentu zginającego w przekroju a^, nieskończenie bliskim ae, oznaczymy przez 
M + dM, to sumą rzutów odpowiadających napięć normalnych będzie:

4 .z
Na podstawie .tych wyników napiszemy jako warunek równowagi elementu aca^c^. 

h h

M + dMC2 , , ,_ —------ \ z}bdz{ + . \ ZybdZi + optdx = 0.
F . Z F .z

z czego: Ł
p2

dM V' bdZi _ USZ.................................................. (70)
p' dx /yb Iy-b

Tutaj zużytkowaliśmy formułę (69), a oprócz tego oznaczyliśmy dla uproszczenia literą Sz wiel- 
h

p2

kość \ zrbdzA, przedstawiającą moment statyczny części przekroju powyżej pq, względem osi 
J z

obojętnej. Dla prostokąta jest o _ b / h2 2\
- yu—

Wstawiwszy tę wartość w (70) znajdziemy, że wielkość naprężeń stycznych w płaszczyźnie prze­
kroju zmienia się według prawa parabolicznego:

b (h* 2\
“ Iyb 2 \4 Z/

Rys. 120

Q
2/y (a)

Największą wartość osiągają te naprężenia w warstwie obojętnej, t. j. dla z = 0,
a mianowicie: W _ Qh* _ 3 Q

(pt)max- 8/y 2 F . (71)

przyczem^F — bh oznacza pole prostokątnego przekroju poprzecznego.
Z formuły (71) wnosimy, że największe naprężenie styczne przekracza 

1 ^-krotnie jego średnią wartość. W elementach przekroju najbardziej oddalonych
od osi obojętnej, czyli przy 

t h . , „z = ± y jest pt = 0.

Gdy wykreślimy pionowy odcinek AB = h, t. j. wysokości belki (rys. 120) i w każdym jego punkcie 
wystawimy poziome odcinki, równe odpowiadającym wartościom pt, to oczywiście otrzymamy para-
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bolę. Jej osią symetrji będzie OX. Pole tej paraboli, pomnożone przez szerokość belki b, określi 
wypadkową wszystkich napięć stycznych. Ta wypadkowa musi się równać sile poprzecznej Q, co 
łatwo sprawdzić. W samej rzeczy pole naszej paraboli równa się:

W 2 Q
8/y * 3 b

a mnożąc tę wielkość przez b, otrzymujemy Q.

§ 60. ROZKŁAD NAPRĘŻEŃ ŚCINAJĄCYCH W PRZEKROJU KOŁOWYM

W przypadku kołowego przekroju poprzecznego nie można żadną miarą uzasadnić przyjęcia, 
że naprężenia styczne mają kierunek osi OZ, leżącej w płaszczyźnie działania sił zginających. Jeżeli 
weźmiemy prostą pq (rys. 121), odległą o z od osi obojętnej, to w różnych punktach tej prostej
będzie nachylenie naprężeń stycznych względem osi OZ roz­
maite. Atoli z warunku symetrji można wywnioskować, że kie­
runek naprężenia stycznego w punkcie c schodzi się z kierun­
kiem OZ. W punktach zaś p i q muszą naprężenia styczne 
mieć kierunek stycznych pr i qr do obwodu przekroju. Nie­
chaj bowiem mnqs (fig. b) przedstawia prostokątny element 
pola przekroju poprzecznego, obrany przy konturze AB. Wy­
dzielmy z belki prostopadłościenny element o podstawie m n q s 
i ścianie bocznej mn, należącej do zewnętrznej powierzchni 
belki. Gdyby naprężenie styczne w elemencie przekroju m n q s 
miało kierunek O D, różny od kierunku m n stycznego do kon­
turu przekroju, to możnaby je rozłożyć na składowe: OE, równo­
legle do mn i OF prostopadle do mn. Rozważając równowagę 
elementarnego prostopadłościanu, przekonaliśmy się już nie­
jednokrotnie (ob str. 91), że istnienie naprężenia stycznego pt na pewnej ścianie tego prostopadło­
ścianu pociąga za sobą istnienie naprężeń stycznych tejże samej wielkości i na ścianach prosto­
padłych do p^ W naszym przypadku zatem widzimy, że istnienie naprężenia OF wymaga istnienia 
takiegoż naprężenia na ścianie mn, leżącej na powierzchni belki. Jeżeli ta powierzchnia [jak to 
najczęściej bywa] jest wolna od sił zewnętrznych, to OF musi się równać zeru i, co zatem idzie, 
naprężenia styczne w punktach leżących na konturze przekroju muszą mieć kierunek stycznych 
do konturu. W ten sposób ustaliliśmy kierunek naprężenia stycznego w punktach p, q i c. Ponieważ 
te trzy kierunki schodzą się w jednym punkcie, przeto przyjmuje się, że kierunki naprężeń w innych 
punktach prostej pq przechodzą również przez ten punkt r. Dla wyznaczenia wielkości naprężeń 
wypadnie uczynić jeszcze jedno przyjęcie, podobne jak w przypadku przekroju prostokątnego, 
a mianowicie, że pionowe składowe naprężeń stycznych we wszystkich punktach prostej pq mają 
wielkość stałą, zależną tylko od odległości z. Na podstawie powyższych dwu założeń możemy teraz bez 
trudności znaleźć wielkość pionowej składowej naprężenia, idąc tą samą drogą, co w przypadku 
przekroju prostokątnego. Wyprowadzone tam równanie równowagi pozostaje w mocy; podobnież 
zachowa swą ważność i formuła (70) dla wielkości naprężeń, tylko będzie określać nie wielkość 
całego naprężenia, lecz wielkość jego składowej pionowej. Składową poziomą, a zatem i całkowitą 
wielkość naprężenia stycznego łatwo już wtedy znaleźć, ponieważ kierunek naprężenia jest znany. 
Ażeby wykazać o ile powyższe upraszczające założenia są zbliżone do prawdy, zauważymy, że 
wartość największych naprężeń stycznych, obliczona na podstawie tych założeń dla przekroju koło­
wego, różni się od wyników ścisłego rozwiązania teorji sprężystości o 5°/0. Taką dokładność można 
uważać za wystarczającą do praktycznych celów.

Obliczmy wielkość naprężeń stycznych w punktach prostej pq (rys. 122). Pionową składową 
naprężeń będzie, na podstawie formuły (70):

QSZ . (70)'
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Tutaj podstawiliśmy długość odcinka pq zamiast szerokości belki b; Sz oznacza moment sta­
tyczny części przekroju, leżącej powyżej pq, względem osi obojętnej. Dla obliczenia Sz rozłożymy 
odpowiadającą część przekroju na elementy prostemi równoległemi do pq; niech będzie mn jednym 
z elementarnych pasków. Dla wygody rachunku obierzemy kąt a za zmienną niezależną; wtedy dłu-

gość paska m n równa się 2 r sin a, szerokość paska — d(r cos a) = r sin a da, 
odległość paska od osi OY równa się r cosa, a zatem:

pp 2r3
Sz — \ 2 r sin a . r sin a d a . r cos a = 2 r3 \ sin2 a d (sin a) = —sin8 cp.

Jo Jo 3
Wstawiwszy to w wyrażenie (70)' i zważywszy, że 

p q = 2 r sin <p, 
znajdziemy dla pionowej składowej naprężenia stycznego wielkość:

Qr2sin2q> 
3/v 3/y

cos2 cp) _ Q (r2 —
3/y

• (72)

Pozioma składowa naprężenia stycznego będzie mieć różną wartość w różnych punktach prostej p q; 
największą osiągnie widocznie w p i q (rys. 121), a mianowicie [na podstawie formuły (72)]:

Q r2 sin2 cp
3/y Ctgy'

Wielkością całkowitego naprężenia stycznego w punktach p i q będzie przeto:
Qr2sin2q> —j-r- Qr2sincp

37T-
Największą wartość osiągają naprężenia styczne na osi obojętnej OY, t. j. dla CP = ^> a mia-

nowicie: _ Qr2 _ Qr2 _ 4 Q
(^—~ 3/y ~ 3 ” 3 F ’

4
• (73)

Tutaj oznacza F pole przekroju poprzecznego. Otrzymana formuła poucza, że największa war-
4

tość naprężenia stycznego równa się jego wartości średniej. O

§61. ROZKŁAD NAPRĘŻEŃ ŚCINAJĄCYCH W PRZEKROJU DWUTEOWYM

Rys. 123

Belkom żelaznym nadaje się często przekrój dwuteowy, przedstawiony na rys. (123), [zwany 
także przekrojem I]. Zalety takiego przekroju wykażemy poniżej. Przy obliczeniu naprężeń stycznych 
używa się tych samych założeń, co w przypadku przekroj-u prosto­
kątnego, czyli przyjmuje się, że te naprężenia są równoległe do osi Z 
i że one są równe dla wszystkich punktów, równoodległych od osi Y.
Wielkość naprężeń określi zatem formuła: 

= , QSZ_________
/y. (szerokość przekroju)

Przy obliczeniu naprężenia w jakimkolwiek punkcie wąskiej części 
przekroju (ścianka belki) trzeba wziąć szerokość br, a dla rozszerzonej 
części przekroju (stopka belki) szerokość b.

Zauważymy, że powyższa formuła daje bardzo dokładne wyniki 
dla punktów oddalonych od stopek, natomiast w miejscach połączenia 
stopek ze ścianką jest zupełnie niezadowalającą. Obliczając bowiem naprężenia dla punktów 
prostej (rys. 123), leżącej nieco powyżej miejsca połączenia, wypada brać w rachunek szero­
kość stopki b, zaś dla punktów prostej cd, leżącej nieco poniżej miejsca połączenia, trzeba podstawić 
dla szerokości przekroju wartość b^, nasza formuła prowadzi tedy do nagłej zmiany wielkości naprę­
żenia w rozpatrywanem miejscu połączenia. W rzeczywistości zmieniają się naprężenia w sposób 
ciągły, a prawo ich rozkładu w owem miejscu różni się znacznie od tego, które wyraża formuła.
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Jeżeli prawo rozkładu naprężeń stycznych na wysokości przekroju przedstawimy wykreślnie, 
jak to uczyniliśmy dla przekroju prostokątnego, to otrzymamy fig. (b) (rys. 123). Prawo zmienności 
naprężeń stycznych w stopkach wypada takież samo, jak prostokąta, a mianowicie [formuła (a)]:

Odpowiadającą temu równaniu parabolę wykropkowano na fig. (b) w środkowej części. Dla 
punktów ścianki określi wielkość naprężeń stycznych formuła:

QSZ Q [bh2 bh.2 M Ł
p'~ bj? ~ btI,l 6 8 " b ' 01 2 J’

która przedstawia również paraboliczne prawo rozkładu naprężeń na wysokości przekroju. Naj­
większe i najmniejsze naprężenie styczne w ściance belki otrzymamy, podstawiając odpowiednio:L

z = 0 i z

Wtedy:
_ Qbh2 r /MM _M|“ 8bJy L1 ' h ) '1 b ll

. _ Qbh2 / hi2 \

Gdy bi jest małe w porównaniu do b, to wielkości pmax i pmin różnią się od siebie niewiele. 
Zauważymy jeszcze jedną okoliczność, mającą praktyczne znaczenie. Jak widać z rys. (123) i z for­
muł dla naprężeń stycznych, przenosi się na stopki belki tylko nieznaczna część siły ścinającej Q, 
a przeważna jej część przypada na ściankę belki. Wziąwszy np.:

b = 12 cm, bt = 1,2 cm, h = 30cm, = 26 cm, ly = 11200 cm4, 
znajdziemy dla ścianki

(pt)max = 0,0326 Q, (pt)min = 0,0250 Q.
Na samą ściankę przenosi się 0,94 Q ’).

§ 62. O NAPRĘŻENIACH GŁÓWNYCH W ZGINANEJ BELCE

Posługując się formułami poprzednich paragrafów, możemy znaleźć wielkość naprężeń normalnych 
i ścinających w płaszczyźnie dowolnego przekroju poprzecznego zginanej belki. W praktycznych 
obliczeniach poprzestaje się zwykle na tem; z wielkości znalezionych tym sposobem naprężeń 
wyrokuje się o wytrzymałości obliczanej belki. [Jest to najczęściej dopuszczalne dzięki tej okoli­
czności, że w miejscach największych naprężeń normalnych niema z reguły naprężeń ścinających
i nawzajem, tam, gdzie naprężenia ścinające osiągają największą wartość, niema 
malnych, albo też te naprężenia grają podrzędną rolę]. Są jednakże przypadki, gdzie 
nie wystarcza i trzeba dokładnie określić miejsce niebezpieczne i panujący w niem
Rozpatrzmy stan napięcia w dowolnym punkcie 71 przekroju belki (rys. 124). Tutaj 
znamy naprężenia w elemencie /I m przekroju poprzecznego i w elemencie Zł n 
poziomego przekroju. Jeżeli przez ten punkt poprowadzimy przekroje elemen­
tarne nachylone do poprzednich i prostopadłe do płaszczyzny ZX, to naprę-

naprężeń nor- 
taki rachunek 
stan napięcia.

A
żenią w tych przekrojach będą zależne od ich kierunku. Niechaj pq będzie - > $ 
jednym z tych przekrojów. Zamiast szukać naprężeń w tym przekroju, > 
możemy przejść do nieskończenie bliskiego przekroju równoległego mn. Na- M 
prężenia w pq i m n będą się widocznie różnić od siebie nieskończenie mało, 
gdyż naprężenia zmieniają się wogóle od punktu do punktu w sposób ciągły.

■7

Rys. 124

Naprężenia w płaskim elemencie mn można łatwo znaleźć z warunków równowagi trój graniastego 
elementu o podstawie 21 m n. Długość krawędzi tego elementu, prostopadłych do płaszczyzny rysunku

9 [Dokładniejsze rozwiązania dla niektórych praktycznie ważnych przekrojów znajdzie czytelnik w pracy Dr. Z. 
Fuchs’a p. t. „Zur Berechnung der Schubspannungen in gebogenen Staben". Z. d. V. d. Ing., r. 1914, str. 1330].
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przyjmiemy równą 1. Niechaj Amn (rys. 125) przedstawia nasz element w większej skali. Na 
ścianę pionową działa naprężenie normalne pn i styczne pt, zaś na ścianę poziomą tylko naprę­

żenie styczne pt. Nieznane naprężenia na ścianie mn oznaczymy 
przez p'n (normalne) i p\ (styczne). Co się tyczy znaków algebrai­
cznych naprężeń, to umówimy się uważać kierunki obrane na ry­
sunku za dodatnie. Niechaj F oznacza pole ściany mn, nachylonej 
do ściany poziomej An pod kątem a. Wtedy pola ścian Am i An 
będą odpowiednio równe Fsin a i Fcosa. Wielkości napięć, przy­
padających na każdą ze ścian elementu, otrzymamy, mnożąc naprę­
żenia przez odpowiadające pola.

Mamy tutaj do czynienia z płaskim układem sił, a więc z trzema 
analitycznemi warunkami równowagi: dwa warunki rzutów i jeden 

warunek momentów. Do znalezienia dwu niewiadomych pzn i p\ wystarczą dwa równania, wobec 
czego napiszemy tylko obadwa warunki rzutów. Jako kierunki osi rzutów obierzemy przytem kie­
runki niewiadomych naprężeń p'n i p't, gdyż wtedy każde z otrzymanych równań będzie zawierać 
tylko jedną niewiadomą. Rzutując na kierunek p'n mamy:

p'nF + pt F cos a sin a 4- pt Fsin a cos a — pnFsin8 a = 0,
zaś rzutowanie na kierunek p't daje:

p\ F + pt Fcos2 a — pt Fsin8 a — pn Fsin a cos a-O, 
z czego otrzymujemy:

p'n = pnsin*a — pt sin 2 a = ~ (l — cos2a)—pt sin 2 a,

. sin 2 a
p t = Pn---- ~--------pt cos 2 a.

(74)

Znalezione równania określają zależność naprężeń p'n i p\ od kąta a. Szukajmy ich wartości 
krańcowych w znany analityczny sposób. Dla p'n mamy warunek:

= pn sin 2 a — 2 pt cos 2 a,da r
sk«d tg2«=-^..................................................................(75)

Pn
To równanie daje w obrębie 360° dwie wartości dla a, różniące się od siebie o 90°, gdyż 
tg 2 a = tg (2 a 4- 180°) = tg 2 (a 4- 90°). Jednej z nich odpowiadać będzie widocznie maximum, a dru­
giej minknum, ponieważ druga pochodna:

d^ d' = 2 pn cos 2 a + 4 pt sm 2 a
aa8

zmienia swój znak przy zmianie & na a 4-90°. Przy pomocy rów. (75) otrzymujemy:

Ki + tg8 2 a Vp^ 4- 4pt2

1 = ± Pn
Ki 4-tg8 2 a Kpn* 4-4pt2

(76)

Obrawszy przy sin i cos najpierw znak —, a potem 4-, i wstawiwszy w pierwszą z formuł (74), 
otrzymamy następujące krańcowe wartości naprężeń normalnych:

f _ Pa fi । Pn \ j_____ Z Pt_____ _  Pn i i /" „ , «p™ - y (1 + ; P .2 4 Pt, - 2 + 2 VPn +4Pl ,

p'm» = - 4- TP"’ + 4 Pi2 • 
M W

(77)

Naprężenia pmax i pmin nazywamy naprężeniami głównemi, a odpowiadające im kierunki, 

określone równaniem (75), kierunkami głównemi. Porównywując równanie warunkowe = 0 
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z wyrażeniem dla p\ (rów. 74), widzimy, że gdy =0, to i p\ = 0, czyli, że w przekro­

jach głó wn ych (gdzie pn jest max. albo min.) niema naprężeń ścinających. [Rozpatrzony 
tutaj stan napięcia nie jest przeto ogólniejszym od tego, którym się zajmowaliśmy w § 14]. Wy- 
ciąwszy w rozpatrywanem miejscu belki płaszczyznami o kierunkach głównych element prosto- 
padłościenny, otrzymamy przypadek jednoczesnego rozciągania lub ściskania w dwu wzajemnie 
prostopadłych kierunkach. Z tego można od razu wywnioskować, że największe naprężenia ścina­
jące zachodzą w płaszczyznach nachylonych do kierunków głównych pod kątem 45° (ob. § 14). 
Wartością największych naprężeń stycznych będzie zaś połowa różnicy największego i najmniej­
szego z naprężeń normalnych, czyli na podstawie formuł (77):

(Pt)max = y]/Pn 2 + 4 Pt 2.................................................. (78)

Ażeby pokazać, jak się wyznacza wielkość i kierunek naprężeń głównych, przerobimy przy­
kład liczbowy.

Pręt o przekroju prostokątnym 10x20 cm2, lewym końcem utwierdzony, jest narażony na zgi­
nanie obciążeniem P = lQQ0kg swobodnego prawego końca (rys. 126). Znajdziemy wielkość i kie­
runek głównych naprężeń w punkcie A, oddalonym od warstwy obo­
jętnej o-^ = 5 cm, a od siły P o 1 m. Naprężenie normalne w ele- 

4
mencie Am ma wartość:

Mz 1000 . 100 . 5 . 12 . 2Pn = J g 10 -------= 75 kg/cm2.

Naprężenia styczne w elementach Am i An wyznaczymy z formuły: 
QSZ 1000 . 10 . 5 . 7,5 . 12 _ , 2

Pl “ Tb =------- 10 .10 . 20’ = 5’b3kKcn' • Rys. 126

Obadwa naprężenia opatrzymy znakiem + , zgodnie z umową, którą zrobiliśmy przy wywodzie 
formuł (75) i (77), gdyż z warunków równowagi prawej części belki wypadają kierunki oznaczone 
strzałkami na. rys. (126). Formuła (75) daje:

tg2a= 2pt =0,1501,
6 Pn 75 ’ ’

skąd 2a = 8° 32', albo 2a = 188°32z;
a zatem: a = 4° 16', albo a = 94° 16'.
Znajdujemy tedy dwa wzajemnie prostopadłe elementy, którym odpowiadają główne naprężenia. 
Wielkościami głównych naprężeń będą:

pm„ = ^ + yKP^ + = 37,5 + 2 I 75- • 4,5,h3* -75,42 kg/cm2,

Pm,. = y — | p„2 + 4 pi2 = — 0,42 kg cm2.
*

Ażeby wyznaczyć, któremu z powyżej znalezionych elementów odpowiada pmax, a któremu 
pmin, zauważymy, że przy wywodzie otrzymaliśmy pmax, biorąc wyrażenia (76) dla sin 2 a i cos 2 a 
ze znakiem —. Przy naszych danych są pn i pt wielkościami dodatniemi, przeto odpowiadający 
kąt 2 u będzie leżeć w III-ciej ćwiartce (sin i cos ujemne), a znalezione naprężenie pmax = 75,42 kg cm2 
będzie działać w elemencie płaskim, nachylonym pod kątem a = 94° 16'. Przytem trzeba oczywiście 
kąt a odmierzać tak, jak to przyjęto przy wyprowadzeniu podstawowych formuł, co uwidoczniono 
na rys. (126), gdzie ten element przedstawia prosta pę.

Znajdziemy teraz kierunki i wielkości naprężeń głównych w punkcie At leżącym 5 cm poni­
żej warstwy obojętnej. Wielkość i znak pt pozostaje bez zmiany, natomiast pn zmienia swój znak 
na przeciwny. A więc:

pn= — 75 kg/cm2, Pt = + 5,63 kg/cm2;

tg2a = — -0,1501, 2 a = 180° — 8° 32'= 171° 28'i o
Kurs wytrzymałości materjałów 7
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albo
czyli

2 ot = 360° — 8°32'= 351°28', 
a = 85° 44', albo et =175° 44". 

Pmax = — + y (“5) + 5,632 = + 0,42 kg/cm2.

To naprężenie odpowiada elementowi płaskiemu, dla którego

sin 2 o, = 2 pt _ _ 5,63 
Tpn2 + 4 pt 2 37,9

o Pn 37,5cos 2 a = — A —-—- = +
/pn2 + 4pt2 37,9

Ponieważ sin 2 a jest ujemne, a cos 2 a dodatnie, więc 2 a leży w IV-ej ćwiartce i odpowiadająca 
wartość a= 175°44z. Na rys. (126) przedstawia p'q' element płaski o tern nachyleniu.

Największe naprężenia styczne w punktach 71 i 71 i mają wielkość wspólną i równą:

(pt)max = (y) + 5,632 = ~ 37,9 kg/cm2.

Jeżeli weźmiemy punkty najbardziej odległe od warstwy obojętnej, to odpowiadające naprę­
żenia styczne stają się zerem, a zatem naprężenie normalne pn będzie jednem z naprężeń głównych; 
drugie naprężenie główne równa się oczywiście zeru. W punktach leżących w warstwie obojętnej 
znikają naprężenia normalne pn, a naprężenia główne, jak widać z formuł (77), będą równej wiel­
kości i przeciwnego znaku. W tych punktach mamy zatem do czynienia ze stanem napięcia, odpo- 

wiadającem czystemu ścinaniu.
"y Naprężenie główne znajdujemy najdogodniej wykreślnie przy pomocy

Pm a* koła Mohr’a. Znając naprężenie normalne i styczne, możemy wyznaczyć
: dwa punkty koła Mohr’a, odpowiadające naprężeniom w dwu wzajemnie
\ z prostopadłych elementach płaskich. Niech będą Di temi punktami 

(rys. 127). Ponieważ te punkty przedstawiają naprężenia w dwu wza- 
\^:/ jemnie prostopadłych przekrojach elementarnych, więc promienie, popro- 

: \ wadzone do nich ze środka koła Mohr’a, muszą tworzyć kąt 180°, czyli
---- ' punkty D i muszą leżeć na średnicy koła. Łącząc je prostą DDn znaj- 

dujemy środek koła C, jako punkt przecięcia się tej prostej z osią odcię- 
Rys 127 tych. Po opisaniu koła promieniem DC, otrzymamy na osi odciętych od­

cinki O A i OB, równe co do wielkości naprężeniom głównym pmax i pmin.
[Promień koła określa wartość (pt)max, zaś kąty OCD 
i 0CDl przedstawiają podwójną wartość kątów, jakie 
tworzą kierunki główne z przekrojem An na rys. (125) 
lub (126)].

Znalazłszy dla jakiegokolwiek punktu pmax, Pmin 

i odmierzywszy od tego punktu odcinki, przedstawia­
jące te naprężenia tak co do wielkości jak i kierunku, 
wykreślimy łatwo odpowiadającą elipsę naprężeń. Na 
rys. (128) uwidoczniono elipsy naprężeń dla kilku 
punktów przekroju ab. Elipsy odpowiadające naj­
wyższemu i najniższemu punktowi przekroju prze­
kształcają się na odcinki prostych poziomych, ponie­
waż jedno z głównych naprężeń staje się zerem. We t
warstwie obojętnej, gdzie główne naprężenia są co Rys 128
do wielkości równe, przekształca się elipsa na koło.
W różnych punktach zginanej belki mają naprężenia główne różne kierunki. Rys. (128) uzmy­
sławia jeszcze dwa układy krzywych, mających tę własność, że styczna w dowolnym punkcie 
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każdej krzywej wskazuje kierunek naprężenia głównego w punkcie styczności. W naszym przy­
padku daje jeden układ krzywych kie­
runki ciągnień głównych, a drugi kie­
runki ciśnień głównych. Takie krzywe 
nazywają się trajektorjami naprę­
żeń. Na rys. (129) przedstawiono roz­
kład naprężeń w przypadku zgięcia belki 
o przekroju prostokątnym, w obu koń­
cach podpartej i obciążonej ciężarem ql, 
rozłożonym równomiernie na całej dłu­
gości. Fig. (6) przedstawia dla różnych 
przekrojów belki linjowy rozkład naprę­
żeń normalnych i paraboliczny rozkład 
naprężeń stycznych. Naprężenia normal­
ne rosną ku środkowi rozpiętości; od­
wrotnie zachowują się naprężenia sty- Rys. 129

czne, które osiągają największą wartość na podporach. Fig. (a) przedstawia trajektorje naprężeń 
dla tejże belki1).

J) Parę interesujących konstrukcyj znajdzie czytelnik w artykule J. Wagner’a: „Kurven reiner Schubbeanspruchung 
der geraden Balkentrager mit rechteckigem Querschnitt“. Zeitschr. d. óst. Ing. u. firch. Ver. 1911, str. 615.

2) Ób. I. Lewin: „Wiestnik Inżenierów 1915“.

§ 63. O NAPRĘŻENIACH MIEJSCOWYCH
Formuły otrzymane powyżej dla naprężeń normalnych i stycznych przy zginaniu, można uważać za zupełnie zado­

walające dla punktów, których odległość od miejsca działania sił zewnętrznych nie przekracza największego wymiaru poprze­
cznego przekroju belki2}- Dlatego dalsze wywody będą tern pewniejsze, im mniejsze są poprzeczne wymiary w porównaniu 
do długości pręta. W pobliżu miejsc bezpośrednio obciążonych powstają miejscowe naprężenia, które mogą w znacznym 
stopniu zmodyfikować wyprowadzone dotychczas prawa rozkładu naprężeń. W przypadku sił skupionych przedstawia się 
wyznaczenie naprężeń miejscowych, jako zadanie złożone, nie dające się rozwiąząć drogą elementarną. Pewne wyobrażenie 
o rozkładzie naprężeń w miejscu działania siły skupionej może dać rozwiązanie zadania o rozkładzie naprężeń w następu-

jącym przypadku: Na prostolinjowy brzeg ab nieograniczonej cienkiej płyty działa 
[prostopadle do brzegu] siła P, leżąca w płaszczyźnie płyty (rys. 130). Ścisłe rozwią­
zanie pokazuje, że w danym przypadku zachodzi radjalny rozkład ciśnień. W każdym 
punkcie płyty panuje proste ciśnienie w kierunku promienia r, łączącego rozpatry­
wany punkt z punktem O, w którym działa siła P. Wielkość naprężenia określa
formuła: 2P cos 8

P = - • (79)

belki prostokątnej, można miejscowe naprężenia obliczyć w przy­
bliżeniu drogą elementarną. W tym celu rozpatrzymy równo­
wagę elementu belki mnpq (rys. 131), ograniczonego dwoma prze­
krojami poprzecznemi o wzajemnej odległości dx i przekrojem po­
ziomym, oddalonym o z od warstwy obojętnej. W tym ostatnim 
przekroju powstaną ciśnienia p'z, wywołane obciążeniem na gór­

nej powierzchni belki, które oczywiście dla z = T muszą mieć

Tutaj oznacza 8 grubość płyty, a 8 kąt nachylenia promienia r do kierunku siły P. 
Jak widać, naprężenia maleją szybko w miarę oddalania się elementu płyty od punktu 
działania siły.

W przypadku obciążenia, rozłożonego równomiernie na górnej powierzchni

wartość 9 
b

i,p
........ »
'WWT

12

Rys.^131
zaś dla z — —■

dziemy ich wartość z warunku 
sił zewnętrznych działających

wartość 0. Dla dowolnego z znaj- 

rzutów na oś pionową wszystkich
na rozpatrywany element. W tym warunku wystąpią widocznie tylko następujące

1° Obciążenie qdx górnej podstawy elementu ze znakiem —.
2° Wypadkowa z ciśnieniem p'z na dolną podstawę, t. j. + p'zbdx.

siły:

h
2

7*
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3° Wypadkowa z naprężęń ścinających pi na ścianie mp, t. j. + \ ptdF i

4° Wypadkowa z naprężeń ścinających ^pt + ) na ścianie nq, t. j.

— ( pt+ dx \ dF. 
]\. dx /

Jak wiadomo ^^zi ^pt , ^zi dQ
' Pt — r-, , a zatem - — dx = -7—r" • j— dx,Iyb dx Iy b dx

zważywszy zaś, że siła poprzeczna zmniejsza się o qdx przy przejściu od przekroju x do x+ dx, napiszęmy =

Rzędną dowolnego punktu ścian bocznych oznaczymy przytem przez z^. Stosownie do tego będzie pole dF paska elemen­
tarnego ściany bocznej mp lub nq równać się bdzp Po podstawieniu tych wartości w powyższe całki otrzymamy:

Rys. 132

ft »_
C n f 2 ( O_ n d x f\p(dF ^ y \ s^dz}; \(Pt + dp^dF------ -------\ Szdz^
J /y .'z iy Jz

Warunek równowagi przybiera tedy postać:
L L

p'z b dx — qdx + \ Sz dz —Sz dz — 0.iy 1 1 1 ly 1 1 1

z czego wynika:

Wstawiwszy w miejsce momentu statycznego SZ( i momentu bezwładności Iy ich wartości:

.  bh*
znajdziemy po wykonaniu całkowania i uproszczeniu:

Prawo rozmieszczenia naprężeń p'z wzdłuż wysokości przekroju przedstawia wykreślnie rys. (132).

ROZDZIAŁ IX

OBLICZENIE BELEK

§ 64. WYZNACZENIE REAKCYJ PODPOROWYCH

Wyłożywszy metody wyznaczenia naprężeń w belkach zginanych, przejdziemy do zastosowań 
praktycznych. Obliczenie takich belek musimy rozpoczęć od wyznaczenia sił zewnętrznych, które 
można podzielić na dwie grupy: Do pierwszej należą obciążenia, jakie belka ma dźwigać. Te są 
zazwyczaj zgóry dane i należą do kategorji sił czynnych. Belka przenosi obciążenia na podpory, 
wywierając na nie naciski i doznając nawzajem reakcyj, równych i wprost przeciwnych naciskom 
podporowym. Reakcje podpór, jako siły bierne, stanowią drugą grupę sił zewnętrznych. Ogół sił 
zewnętrznych, t. j. obciążenie i reakcje danej belki, musi czynić zadość ogólnym warunkom równo­
wagi, to też te warunki posłużą przedewszystkiem do obliczenia nieznanych reakcyj. Jeżeli liczba wa­
runków do tego nie wystarcza, to mamy do czynienia z zagadnieniem statycznie niewyznaczalnem. 
Brakujące równania warunkowe ustawiamy wówczas na podstawie rozpatrywania odkształceń belki. 
Ograniczając się do przypadków, w których wszystkie siły zewnętrzne leżą w jednej płaszczyźnie, 
otrzymamy trzy analityczne warunki równowagi'):

2X = 0, SY-0, . XM = 0,

’) W dalszym ciągu przyjęto płaszczyznę działania sił za płaszczyznę X Y, oś belki za oś X-ów, a oś Y-ów skiero­
wano pionowo w górę.
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z których dadzą się wyznaczyć trzy niewiadome. Dla statycznej wyznaczalności potrzeba zatem, 
aby reakcje sprowadzały się do trzech elementów, czyli dały się określić trzema wielkościami 
algebraicznemi. Rozróżniamy następujące sposoby podparcia belki:

a) Utwierdzenie. Mówimy, że belka jest zupełnie utwierdzoną w punkcie O jej osi (rys. 133), 
jeżeli przekrój poprzeczny ab, odpowiadający temu punktowi, nie zmienia swego położenia i kie­
runku przy zgięciu belki. Układ sił wewnętrznych w przekroju

jego środek ciężkości i do jednej pary o momencie M. W ten ŁI W ~ ~ 1
sposób sprowadza się wyznaczenie reakcyj podporowych w przy-
padku zupełnego utwierdzenia końca belki do znalezienia trzech 7 7 A
elementów: 1) wielkości momentu utwierdzenia M, 2) wiel- Rys< 133
kości reakcji R i 3) kierunku siły R. Wyznaczenie wielkości
i kierunku R można oczywiście zastąpić wyznaczeniem dwu składowych siły R, wziętych w kie­
runkach osi spółrzędnych.

[Utwierdzenie realizuje się w praktyce przez zamurowanie końca belki, przyśrubowanie i t. p. Utwierdzenie może być 
niezupełnem w dwojakiem znaczeniu: 1) Przekrój podporowy, a z nim cała belka, może się przesuwać w kierunku osi belki. 
Wtedy reakcja R musi być, przy pominięciu tarcia, prostopadłą do osi i tworzy przeto jeden element niewiadomy. Drugim 
jest oczywiście moment utwierdzenia M. 2) Przekrój podporowy może się obrócić około osi prostopadłej do płaszczyzny 
rysunku o pewien mały kąt a0. Liczba niewiadomych elementów nie zmniejsza się wtedy i równa się znowu 3].

b) Podparcie stałe (rys. 134) w punkcie O osi belki zachodzi wówczas, gdy punkt O jest 
unieruchomiony, ale odpowiadający mu przekrój może się obracać 

Z71______________ około tego punktu. Reakcje podporowe przedstawia w tym przypadku
------- ------------- -  ~ jedna siła R, przechodząca przez punkt O. Jako niewiadome wystę- 

pują: 1) wielkość R i 2) kierunek siły R, albo też dwie składowe tej 
Rys. 134--------------------siły wzięte w kierunku osi spółrzędnych.

[Stałe podparcie urzeczywistnia się w praktyce najdoskonalej przy pomocy prze­
gubu, umieszczanego, co prawda, nie zawsze w osi belki. To tłómaczy jasno sposób schematycznego oznaczenia stałego 
punktu podparcia, zastosowany na rys. (134) i innych].

c) Podparcie ruchome zachodzi wtedy w punkcie O osi belki (rys. 135), jeżeli ten punkt 
ma jeden stopień swobody, t. j. może się przesuwać tylko w je­
dnym kierunku. Zwykle nim bywa kierunek osi belki, ale wogóle 
można przepisać każdy inny kierunek. Odpowiadający przekrój 0^__________ -______
może przytem obracać się około punktu O. Reakcja R musi tutaj g 
widocznie przechodzić przez punkt O i być prostopadłą do kie-
runku możliwego przesunięcia (z pominięciem tarcia), a zatem do Rys. 135

jej określenia wystarcza jeden element, t. j. wielkość R.
[Podparcie ruchome wykonywa się w praktyce najdoskonalej przez przymocowanie przegubu do płyty opartej na 

wałkach równoległych, mogących się toczyć na nieruchomej podstawie (łożysko wałkowe). Stąd schematyczny rys. (135)].
Z powyższych rozważań wynika, że belka będzie statycznie wyznaczalną tylko w następują­

Rys. 136

cych trzech przypadkach:
I. Belka jednym końcem utwierdzona (rys. 136). Moment utwierdzenia oblicza się 

z warunku momentów:
M=

Reakcja R w punkcie O jest pionowa, bo nie ma danych sił 
zewnętrznych poziomych. Z warunku rzutów wypada:

R — P1 + P2 + P3.
II. Belka na dwu podporach: stałej i ruchomej. 

Najczęściej mamy do czynienia z przypadkami szczególnemi, 
a kierunek przesunięcia ruchomej podpory równoległy do osi 
podpór muszą być dla równowagi prostopadłe do osi belki. Ich 

wartość znajdujemy najdogodniej z warunku momentów, obierając za środek momentów naprzemian 
to jeden, to drugi punkt podparcia. Oznaczywszy odległość podpór, czyli rozpiętość belki 

w których siły są prostopadłe, 
belki (rys. 137). Wtedy reakcje



102

przez /, a reakcje temi samemi literami, które posłużyły do oznaczenia punktów podparcia, otrzy­
mamy w odniesieniu do rys. (137) warunek momentów względem punktu A:

Rys. 137

Bl + Ptl} + P2l2 + P3l3 - 0, 
z czego wypada

_ P^+P^+P^D- /

Znak minus wskazuje, że kierunek reakcji B jest przeciwny 
kierunkowi sił danych.

III. Belka na trzech podporach ruchomych 
rys. (139). W tym przypadku, mającym raczej teoretyczne

znaczenie, przedstawia każda reakcja podporowa jeden niewia­
domy element, a mianowicie wielkość reakcji. Z trzech równań 
równowagi dadzą się te wielkości wyznaczyć z łatwością, wy­
jąwszy osobliwy przypadek, w którym wszystkie trzy reakcje 
przecinają się w jednym punkcie, mogącym leżeć także w nie­
skończoności. Wtedy bowiem nie jest belka ustaloną w płasz
czyźnie działania sił, lecz może się obrócić około owego punktu Kys- 139
o nieskończenie mały kąt. Odpowiadające warunki równowagi przestają być równaniami od siebie 
niezależnemi, wskutek czego niewiadome przedstawiają się w postaci nieoznaczonej.

Powracając jeszcze do przypadku Ii-go, zauważymy, że w praktyce konstruuje się jedną 
z podpór jako ruchomą tylko dla belek o znacznej rozpiętości. Mniejsze belki kładzie się zwykle 
na podporach nieruchomych. Przy zgięciu takich belek pod wpływem obciążenia siłami pionowemi 

i j „ pojawiają się nietylko reakcje pionowe /I i B, lecz także
r „ i poziome H (rys. 138), zapobiegające zbliżeniu końców 

------- Ł.............. belki. Wywołane temi siłami podłużne ciągnienia są przy 
......——zwykłych rozmiarach belek małe i można je pominąć 

.......[ —----------* w porównaniu z naprężeniami wskutek zginania. Przeko­
namy się o tem zapomocą następującego rozważania: Je- 

Rys 138--------------------- żęliby jedna z podpór była ruchomą, to przy zgięciu zbli­
żyłyby się podpory nawzajem o długość 8 /, równą różnicy między długością zakrzywionej osi belki, 
a długością jej rzutu poziomego. Przy małych ugięciach można w przybliżeniu linję ugięcia
o strzałce / zastąpić parabolą, której długość łuku różni się od długości cięciwy, jak wiadomo z § (32), o

8/ = 8 /’
3 Z

(25)

Przy nieruchomych podporach muszą mieć siły podłużne H widocznie taką wielkość, aby wywo­
łane niemi przedłużenie belki było dokładnie równe znalezionemu powyżej zbliżeniu podpór. Odpo­
wiadające wydłużenie względne i ciągnienie wyrażają zatem formuły:

dl 8 P 8 P
e~ r~ 3 i** p~ 3 pE'

§ 65. DIAGRAM MOMENTÓW ZGINAJĄCYCH I DIAGRAM SIŁ POPRZECZNYCH
Przy obliczeniach belek wypada wyznaczać wielkość naprężeń normalnych i stycznych 

w różnych przekrojach poprzecznych. W tym celu, jak okazano powyżej, trzeba znać wielkość 
momentu zginającego M i siły poprzecznej Q w odpowiadających przekrojach. Ażeby uprościć 
szukanie przekrojów niebezpiecznych, przedstawiamy wykreślnie zmienność momentu zgi-

W żelaznych konstrukcjach np. nie dopuszcza się zwykle ugięć większych nad l. 
Wstawiwszy tę wartość i wartość E = 2.10Gkg/cm2, znajdziemy p=~21kg/cm2. Jest to wielkość 
kość bardzo mała w porównaniu do naprężenia dopuszczalnego, wobec czego można śmiało pomi­
nąć podłużne ciągnienia przy obliczeniu takich belek. Zato w przypadku zginania cienkich prętów 
i blach mogą te ciągnienia, jak zobaczymy później, odegrać ważniejszą rolę.
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zginającego i siły poprzecznej wzdłuż osi belki, obierając tę oś za oś odciętych i odmierzając jako 
rzędne odpowiadające wartości M, względnie Q. W ten sposób otrzymujemy t. zw. wykresy, 
czyli diagramy momentów zginających i sił poprzecznych. Konstrukcję tych diagra­
mów przedstawimy najdogodniej na szczegółowych przykładach.

Obraną za oś X-ów oś belki ustawimy w myśli poziomo, a oś T-ów skierujemy pionowo 
w dół. Moment zginający będziemy uważać za dodatni, jeżeli odpowiadająca para sił zewnętrznych
obracałaby lewą odciętą część belki w kierunku wskazówki na 
zegarze, czyli, jeżeli wywołane tym momentem wygięcie osi jest 
skierowane wypukłością w dół (rys. 140). Siłę poprzeczną zaś 
przyjmiemy za dodatnią, jeżeli wyznaczona z sił zewnętrznych 
lewej odciętej części belki jest skierowana w górę.

Belka jednym końcem utwierdzona, a na drugim 
swobodnym obciążona siłą P (rys. 141). Moment zgina­
jący M w jakimkolwiek przekroju ab, odległym o x od końca

utwierdzonego, obliczymy najdogodniej sprowadzając do środka prze­
kroju siły działające na prawą odciętą część belki. A zatem:

/yppn

Rys. 141

p

M = - P (/ - x).
Temu równaniu odpowiada trójkątny diagram momentów wyznaczony 
wartościami

M(X = i) = 0 i M(x—o) =—P/.
Wykres sił poprzecznych przedstawia się jako prostokąt o wysokości P, 
gdyż uwzględniwszy umowę co do znaku siły poprzecznej, znajdu­
jemy w dowolnym przekroju Q = P. To samo wynika na podstawie 
formuły (69).

Jeżeli belka jest obciążona układem sił skupionych 
Pn P>,... (rys. 142), to w każdym przedziale między dwiema sąsie-

dniemi siłami będzie określać moment inne wyrażenie i tak w I-szym 
przedziale (licząc od strony prawej):

Mi = - P. (I, - x), 
w II-gim:

M„ = - (/t - x) - P2 (/2 - x),
w III-cim zaś:

Mni = - P, (l. - x) - P2 (/2 - x) + P. (I, - x).
W obrębie każdego przedziału zmienia się moment zginający linjowo. 
Przy przejściu z jednego przedziału w drugi zmienia się nachylenie 
prostej diagramu, który przedstawia się przeto jako wielobok (fig. a). 
Siła poprzeczna jest w każdym przedziale stała, a więc jej diagram 
składa się z prostokątów (fig. b). I w tym przypadku łatwo sprawdzić 
formułę (69), różniczkując wyrażenia dla momentów zginających 
w różnych przedziałach. Wielkość tych pochodnych daje widocznie 
tang, kąta nachylenia prostej diagramu momentów w odpowiadającym 
przedziale. Zauważymy jeszcze, że w miejscach działania sił skupio­
nych zmieniają się analityczne wyrażenia dla momentów, a po­
chodne, dające wielkość siły poprzecznej zrywają ciągłość. Rozkład 

Rys. 142 

naprężeń w tych miejscach
(ob. formułę 79) nie da się określić na podstawie zwykłych formuł dla naprężeń stycznych i nor­
malnych.

Belka w obu końcach podparta i obciążona siłą skupioną P (rys. 113). Z wa­
runku momentów względem prawego i lewego punktu podparcia znajdziemy reakcje:

^7
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Moment zginający w dowolnym przekroju po lewej stronie siły P przedstawi formuła:

Rys. 143

P(l-C) ivii — H--------J-----  A.

po prawej zaś

x - P(x -c)= x).

Moment zmienia się zatem linjowo w każdym z obu prze­
działów i jest wszędzie dodatni. Największą wartość osiąga 
moment zginający w przekroju pod siłą P, t. j. dla X = c, 
a mianowicie:

_ Pc(l-c) 
max — j

Diagram momentów ma postać linji łamanej MNP, która 
z osią X-ów tworzy trójkąt. Siła poprzeczna w przedziale po 
lewej stronie siły P jest dodatnia i równa reakcji 71, czyli:

0. = ^.

Przy przejściu na prawą stronę siły P zmienia siła poprzeczna zarazem wielkość i znak, gdyż 
od reakcji 71 trzeba odjąć P, czyli:

Qn = ^)_p^_Pc.

Diagram sił poprzecznych przedstawia się jako linja łamana RSTU, tworząca z osią X-ów dwa prostokąty.
Jeżeli na belkę w obu końcach podpartą działa 

układ ciężarów skupionych Pls P2,... (rys. 144), to łatwo znaleźć tą 
samą drogą wieloboczny diagram momentów ACDEB i schodko- 
watą linję sił poprzecznych MNPCIRSTU. Największą wartość 
osiąga moment widocznie pod jednym z ciężarów. (W obranym przy­
kładzie pod ciężarem P2). W przekroju, gdzie zachodzi Mmax, zmie­
nia siła poprzeczna swój znak, czyli linja sił poprzecznych przecina 
oś X-ów. To wynika bezpośrednio ze związku

Q=dM-
dx

Przy pomocy twierdzenia, wyrażonego tern równaniem, można upro­
ścić szukanie przekroju niebezpiecznego. Wystarczy w tym celu 
wykreślić linję sił poprzecznych, a tam, gdzie ona przecina oś 
X-ów, leży przekrój niebezpieczny.

A[
D E

111.

Rys. 144

i

A

Belka w obu końcach podparta i obciążona równo­
miernie na całej rozpiętości (rys. 145). Jeżeli q oznacza 
obciążenie jednostki długości belki, to całkowite obciążenie równa 
się ql. Obie reakcje są oczywiście równe | qL Moment zginający 
w dowolnym przekroju belki m n znajdziemy, biorąc moment wszyst­
kich sił leżących po jednej stronie (np. lewej) rozpatrywanego prze­
kroju względem jego środka. Moment reakcji A będzie równy

Ty*’ w
zaś moment obciążenia ciągłego na przestrzeni x jest równy

x
-V*- 2 =

A zatem moment zginający

£i £

qx*
T~

qx(l — x)2
Rys. 145



105

Odpowiadający diagram jest parabolą. Maximum momentu zginającego zachodzi, jak się łatwo prze­

konać w środku rozpiętości, czyli dla x = i ma wartość:

M -—al*

Jeżeliby obciążenie ql skupić w środku rozpiętości, to M^ byłoby dwa razy większe. Siłą po­
przeczną w przekroju mn jest widocznie:

q = qx

Linja sił poprzecznych jest zatem prostą, przecinającą oś X-ów 
gdzie zachodzi Mmax.

Gdy obciążenie ciągłe jest rozłożone równo­
miernie tylko na pewnej części rozpiętości (rys. 146), 
to położenie przekroju niebezpiecznego znajdziemy najłatwiej 
kreśląc linję sił poprzecznych. Z warunku momentów względem 
prawej podpory znajdziemy reakcję:

71= .
2/

Reakcją prawej podpory będzie zaś:
B = qc-A = qc-^{ = ^(2l-c).

Siła poprzeczna na lewej nieobciążonej części belki będzie widocznie 
równa reakcji lewej podpory. Odpowiadającą część linji sił poprze­
cznych przedstawi odcinek prostej M N równoległej do osi X-ów. 
W dowolnym przekroju m n części obciążonej będzie siłą poprzeczną:

Q = — q(x + c — /).

Temu wyrażeniu odpowiada prosta nachylona WP (fig. b). Jej 
punkt przecięcia z osią X-ów określa położenie przekroju, w któ­
rym zachodzi Mmax. Co się tyczy linji momentów zginających, to 
dla nieobciążonej części belki będzie nią prosta nachylona wzglę- 
dem osi X-ów, gdyż moment zginający zmienia się według prawa:

Mi = Ąx =^21 x‘

W części obciążonej zaś zmienia się ten moment według prawa 
parabolicznego:

Mn = X — | (X + C — /)’.

Przekrój, który odpowiada największemu momentowi zginającemu, 
znajdziemy z warunku:

skąd _ (/ — c)’ 4- P
x “ 2 /

Diagram momentów zginających przedstawiono na fig. (c).
Jeżeli na belkę działa jednocześnie obciążenie 

ciągłe i układ ciężarów skupionych (rys. 147), to w celu 
wykreślnego przedstawienia zmienności momentu zginającego 
wzdłuż belki najdogodniej skonstruować osobno diagram momen-Rys. 147
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tów wywołanych obciążeniem ciągiem, a osobno dla sił skupionych. Odmierzając rzędne

liiiiM

A

A:

A

Rys. 148

- 4-...-
A*.-------- ------- =

A.#

pierwszego diagramu na dół, a drugiego do góry od osi 
X-ów (fig. b), otrzymamy widocznie żądany wykres mo­
mentów wywołanych obciążeniem całkowitem. Tak samo
można postąpić i przy konstrukcji diagramu sił 
cznych (fig. c).

Jeżeli podpory nie leżą na końcach belki, to 
linji momentów i sił poprzecznych nie ulegnie żadnej

poprze-

szukanie 
zasadni-

czej zmianie. Pewne właściwości tego przypadku przedsta­
wimy na przykładzie belki wystającej, czyli wsporni­
kowej (rys. 148), obciążonej dwiema siłami skupionemi P} 
i P2. Z warunku momentów względem punktu podparcia /I 
znajdujemy reakcję prawej podpory:

R + P2 ^2 
~ l

skierowaną widocznie w górę.* Natomiast wartość reakcji lewej 
podpory, t. j.

A = + P2 - B =

może wypaść dodatnia albo ujemna. W tym ostatnim przy­
padku będzie reakcja skierowana z góry na dół, a odpowia­
dające diagramy momentów i sił poprzecznych przedstawiają 
figury (b) i (c). W przypadku reakcji A skierowanej w górę 
przecina linja sił poprzecznych dwa razy oś (fig. c') w punk­
tach, gdzie moment zgięcia osiąga największą dodatnią i ujemną 
wartość.

§ 66. OBLICZENIE NAPRĘŻEŃ NIEBEZPIECZNYCH
Mając diagramy momentów i sił poprzecznych znajdziemy łatwo te przekroje, w których na­

leży oczekiwać szczególnie wielkich, a właściwie niebezpiecznych naprężeń, czyli przekroje 
niebezpieczne. Największe ciągnienia i ciśnienia otrzymamy oczywiście w przekrojach, gdzie 
moment zginający osiąga największą wartość. Największe zaś naprężenia ścinające będą odpowiadać 
przekrojom o największej wartości siły poprzecznej Q. Jakkolwiek naprężenia ścinające panują 
także i w przekrojach ukośnych włókien skrajnych, to jednak w obliczeniach technicznych ograni­
czają się zwykle do rozpatrzenia naprężeń w elementach leżących w płaszczyźnie przekroju po­
przecznego i przyjąwszy pewną postać przekroju obierają jego wymiary tak, aby te naprężenia nie 
przekraczały ustalonych norm. Wtedy formuły obliczenia mają postać następującą:

M OSJUmax o n

W<’ Ib
Tutaj wielkości I i W odnoszą się do głównej osi bezwładności przekroju, która jest zarazem osią 
obojętną, a b oznacza szerokość przekroju.

Dla naprężenia dopuszczalnego R przyjmuje się tę samą wartość, co przy prostem rozcią­
ganiu, względnie ściskaniu. Co się tyczy stycznego naprężenia dopuszczalnego Rt, to dla metali 
plastycznych wypada wziąć Rt = 0,5 R (zob. § 36), dla innych zaś materjałów, stosownie do szcze­
gółowych danych doświadczalnych.

[Nadto należałoby uwzględnić, zależnie od postaci przekroju i sposobu działania sił, stopień niedokładności for­
muły dla pt].

Jeżeli zachodzi działanie obciążeń zmiennych, to trzeba odpowiednio zmienić dopuszczalną 
wielkość naprężeń, przyczem należy się kierować wywodami, otrzymanemi przy rozpatrywaniu 
zjawiska znużenia metali.
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Łatwo zrozumieć, że powyższy sposób obliczenia wystarczy w przypadkach przekrojów o zwar­
tej postaci, jak np. prostokątnego i kołowego, wtedy bowiem widać od razu, że w miejscach, gdzie 
naprężenia normalne mogą osiągnąć wartość niebezpieczną, nie grają żadnej roli naprężenia styczne 
i nawzajem. Skoro jednakże mamy do czynienia z przekrojami smukłemi, jak np. przekrój J (teowy), 
lub I (dwuteowy) walcowanych kształtówek, to, o ile w danym przekroju poprzecznym schodzą się 
razem znaczne wartości momentu zginającego i siły poprzecznej, można w nim znaleźć miejsca, 
gdzie jednocześnie obadwa rodzaje naprężeń osiągają wyjątkowo wielkie 
wartości, gdzie zatem wypadnie obliczyć naprężenia główne, ażeby można 
określić wytężenie materjału na podstawie jednej z teoryj wytrzymałości, 
przedstawionych w § 36. Takiem miejscem będzie np. w belce I (rys. 149) 
punkt /In lub B}, gdyż tam naprężenia normalne są mało co mniejsze od 
wartości skrajnych, a naprężenia ścinające również mało się różnią od naj­
większej wartości, jaką osiągają w osi obojętnej. Tam też powstają naprę­
żenia główne

pmax = y + yp P«2 + 4P‘2> P™ = V ~ 9 | P»2 + 4Pt2, 

(por. § 62), które mogą być niebezpieczniejsze dla materjału od naprę­
żeń we włóknach skrajnych i środkowych.

Dajmy na to, że w rozpatrywanym przekroju m n (rys. 149) panuje moment zginający i siła poprzeczna o wartościach: 
M = 5 . 105 kgcm, Q — 15 . 103 kg.

Wtedy najw. naprężenie w punkcie A będzie (wymiary przekroju wzięto z przykładu w § 61 i przyjęto, że w A zachodzi 
rozciąganie, a w B ściskanie):

M 5 . 105 . 15 .
P"=W” H20Ó ' "“W®-.

Dla punktu A, zaś są naprężenia normalne i styczne odpowiednio równe:

pn = ~ ~ 580 kg/cm2, pt = 375 kg/cm2.

Naprężenia główne, obliczone według formuł powyżej przytoczonych, mają tutaj następujące wartości:

Pmax = + 2 5802 + 4.3752 = + 764 kg/cm2,

Pmin = - y 580‘2 + 4'3752 - 184 kg/cm<

Ich różnica, (określająca wytężenie materjału według III hipotezy), t. j. pmax Pmin — 948 kg/cm2, jest o wiele większą od 
odpowiadających różnic we włóknach skrajnych 
(670 kg/cm2) i włóknie środkowem (2 . 375 = 750 
kg/cm2). Także przy zastosowaniu I lub II hipo­
tezy otrzymalibyśmy największe wytężenie ma­
terjału w punkcie A{. Ocenę wytrzymałości ta­
kiej belki należy przeto oprzeć na obliczeniu na­
prężeń głównych w miejscu Aj.

Rys. (150) przedstawia rozmieszczenie na­
prężeń ścinających, normalnych i głównych na 
wysokości przekroju I o rozmiarach uwidocznio­
nych na rysunku, przy założeniu, że Q = 40.108 kg, 
M = 203.104 kgcm. I w tym przypadku znajdu­
jemy największe wartości naprężeń głównych 
w miejscach połączenia stopek ze ścianką belki.

Hżeby ustawić ogólne wzory do obli­
czeń praktycznych, musimy się oprzeć

na którejś z teoryj wytrzymałości. Każda z nich prowadzi oczywiście do odmiennych formuł. Ze 
względu na to, że smukłe przekroje stosujemy tylko do belek walcowanych z żelaza kowalnego 
i stali, okazuje się jedynie racjonalną teorja III, według której o wytrzymałości decyduje największa 
różnica naprężeń głównych. Warunek wytrzymałości będzie mieć przeto postać:

Pmax — Pmin - ( p? + 4pt 2 R........................................................ (83)

Kys. 150
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Dla porównania napiszemy jeszcze warunek wytrzymałości na podstawie II-giej hipotezy, 
która uważa największe wydłużenie za miarę wytężenia materjału. Będzie nim widocznie:

pmax Pmin

albo, po wyrażeniu naprężeń głównych przez pn i pt w płaszczyźnie przekroju i wstawieniu er = 0,3 
(dla żel. kowalnego i stali):

0,35p„ + 0,65 (Zp„3 +4p,-R') ....................................................... (82)

W naszych obliczeniach nie uwzględniliśmy jeszcze trzeciej kategorji naprężeń, t. j. ciśnień 
pionowych, wywołanych bezpośredniem działaniem obciążenia. Te ciśnienia mogą także grać ważną 
rolę przy wyznaczeniu wytężenia materjału, niestety jednak dadzą się tylko w szczególnych przy­
padkach oznaczyć z jaką taką dokładnością. W § 63 obliczyliśmy je dla belki prostokątnej, obcią­
żonej równomiernie.

[Przy takiemże obciążeniu można ciśnienia pionowe obliczyć i dla belki T, gdzie one osiągają widocznie największą 
wartość w ściance tuż pod górną stopką. W przypadku obciążeń skupionych musimy poprzestać na ocenie zgrubsza wiel­
kości tych naprężeń, biorąc do pomocy doświadczenie i zastępując ciężar skupiony obciążeniem rozłożonem równomiernie 
na odpowiedniej długości. Wszystkich rachunków tego rodzaju niepodobna najczęściej ująć w ogólne formuły, z którychby 
np. można obliczyć wymiary przekroju o danym kształcie, jeżeli są dane obciążenia, a więc M i Q, tudzież wartość naprężenia 
dopuszczalnego. Zwykle wypadnie obrać przekrój na razie tak, aby dogadzał tylko jednemu z warunków, a mianowicie, 
aby naprężenie normalne we włóknach skrajnych, wywołane największym momentem zginającym nie przekraczało przyjętej 
wielkości dopuszczalnej, a dopiero potem wyszukać miejsca niebezpieczne, obliczyć w nich naprężenia główne z uwzględnie­
niem wszystkich wpływów i sprawdzić, czy największa różnica naprężeń głównych nie przekracza również dopuszczalnej 
wartości naprężenia przy prostem rozciąganiu. Jasnem jest przytem, że norma dla naprężenia dopuszczalnego powinna być 
tern wyższą, im dalej idziemy w uwzględnieniu rozmaitych wpływów, czyli im dokładniej wyznaczamy wytężenie materjału. 
Gdybyśmy byli w stanie obliczyć ściśle wartość naprężeń niebezpiecznych we wszelkich warunkach, jakim w przyszłości 
podlegać będzie dany element konstrukcyjny, to nieby nie przeszkadzało podejść z wartością naprężenia dopuszczalnego 
blisko naturalnej granicy sprężystości].

Na zakończenie zaznaczymy, że przy obliczeniu wysokich belek dwuteowych nie wolno się 
ograniczyć do sprawdzenia warunków wytrzymałości, lecz trzeba zwrócić szczególną uwagę na sto­
pień stateczności konstrukcji. Niewystarczająca stateczność zniewala niekiedy do obniżenia wartości 
naprężenia dopuszczalnego. Do tej kwestji powrócimy przy ogólnem badaniu stateczności układów 
sprężystych.

§ 67. OBLICZENIE BELEK NITOWANYCH KSZTAŁTU J

W konstrukcjach żelaznych mają bardzo obszerne zastosowanie belki dwuteowe, złożone z pio­
nowej ścianki, czterech kątówek i jednej lub kilku par nakładek, połączonych nitami w jedną całość. 
Nitowanie odbywa się przy wysokiej temperaturze nitu, wskutek czego nity ściskają po ostygnięciu 
części połączone tak silnie, że belka zachowuje się jak lita. Atoli obecność otworów na nity może 
w znacznej mierze zmodyfikować prawo rozkładu naprężeń w przekroju, jakie otrzymaliśmy d^a 
belki litej. Jak pokazały badania teoretyczne i doświadczalne, może wielkość naprężeń wzróść zna­
cznie w pobliżu otworów. Przy rozciąganiu blach zwiększają otwory wartość naprężenia w trój- 
nasób (§ 28); przy czystem ścinaniu, które zachodzi w warstwie obojętnej belki, rosną naprężenia 
na brzegach otworów nawet w czwórnasób2). Te wyniki odnoszą się, co prawda, do otworów nie- 
zapełnionych. Jeżeli otwór jest wypełniony nitem, to rozkład naprężeń będzie oczywiście odmienny 
[i, jak się zdaje, znacznie korzystniejszy]. Warto także zapamiętać, że szczególnie szkodliwy wpływ 
na wytrzymałość belki wywierają podłużne otwory, umieszczone wzdłuż warstwy obojętnej ) [oczy­
wiście, jeżeli w przekroju przechodzącym przez otwór zachodzi znaczna siła poprzeczna przy sto-

x) [Ten wzór najbardziej rozpowszechniony w podręcznikach, jest nietyłko nieracjonalny, ale nawet, jak widzimy, 
bardziej złożony od uzasadnionego doświadczalnie wzoru (83). Z tego powodu tłumacz wysunął na pierwszy plan wzór (83), 
oparty na trzeciej teorji wytrzymałości, pomijając nadto w głównym tekście najprostszy wzór:

Pmax R • • • • ■ • • • • • • • ($0
wypływający z hipotezy największego naprężenia, również nie potwierdzonej przez doświadczenie].

2) S. P. Timoszenko: „O wlianij krugłych otwierstij...“, Izw. Kij. Pol. Inst. 1907.
3) Pfleiderer. „Der Einfluss von Lbchern oder Schlitzen...“. Mitt. u. Forschungsarbeiten, Heft 97, 1911.
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sunkowo małym momencie zginającym]. Oprócz otworów mogą znacznie osłabić belkę nacięcia na 
jej powierzchni. Pewne wyobrażenie o powstających przytem nadwyżkach naprężeń można nabyć 
na podstawie tego, co powiedziano poprzednio o prętach z wytoczonym żłóbkiem (karbem). Szcze­
gólnie szkodliwe działanie takich naprężeń miejscowych okaże się przy obciążeniach powtarzają­
cych się i w przypadku belek z materjałów kruchych. W praktyce, jak dotąd, mało się liczą z wy- 
liczonemi przypadkami przeciążenia materjału, a wpływ osłabienia przekroju uwzglę 
dniają z gruba, wstawiając np. zamiast /y w formule:

Mz
Pz - J

Jy

moment bezwładności „netto", jaki otrzymamy po odjęciu momentu bezwładności 
otworów od momentu bezwładności całego przekroju.

Co się tyczy naprężeń stycznych w ściance, to ich wartość powiększa się 
wskutek otworów na nity. Siła poprzeczna przenosi się, jak wiadomo, prawie cał­
kowicie na ściankę, a ponieważ szereg otworów na nity w odstępach e zmniejsza 

e — dpole przekroju ścianki w stosunku , jeżeli d oznacza średnicę nitów (rys. 151),

6więc średnia wartość naprężeń ścinających wzrośnie w stosunku ~Dlatego 

używają do oznaczenia największych naprężeń ścinających w belkach nitowanych 
następującej formuły:

?.... ................................................. (84)lPdmax Ib e-d Rys. 151

Tutaj oznacza I moment bezwładności całego przekroju względem osi obojętnej, S moment sta­
tyczny połowy przekroju wzglęm tej osi, zaś b grubość ścianki. / i S oblicza się przytem zwykle 
bez potrącenia otworów na nity.

Przedstawimy teraz te przybliżone sposoby, jakich używają w praktyce do obliczenia odstępu 
nitów e. Grubość nitów stosuje się do grubości łączonych części, ale zależność tę rozpatrzymy na

Rys. 152

innem miejscu. Przy obliczeniu nitów służących do połą­
czenia kątówek ze ścianką, które będziemy nazywać krótko 
nitami „poziomemi" (rys. 152), przyjmuje się najniekorzy 
stniejsze warunki, pomijając tarcie między połączonemi- 
częściami i przyjmując możliwość ścięcia nitów w płaszczy­
źnie przylegania kątówek do ścianek. Ażeby oznaczyć 
wielkość siły przypadającej na jeden nit, rozpatrzymy dwa 
przekroje poprzeczne ab i a' b', połowiące odstęp między 
środkami nitów. Przy zgięciu belki przenosi się na nit A 
różnica naprężeń normalnych, przypadających na pola 
przekrojów kątówek i nakładek. Na element pola dF le­

wego i prawego przekroju działają odpowiednio napięcia zdF i zdF, jeżeli przyjmiemy, 

że rozkład naprężeń jest taki sam, jak dla belki litej. To przyjęcie jest równoważne z przypuszcze­
niem, że nity łączące (tak poziome, jak i pionowe) zachowują się jak zupełnie sztywne i wskutek 
tego nie zachodzą względne przesunięcia nakładek, kątówek i ścianki. Biorąc pod uwagę odkształ­
cenie nitów znaleźlibyśmy, że belka nitowana jest nieco słabsza od litej. To osłabienie nie prze­
kracza jednakże w zwykłych warunkach 6% x). Sumując teraz różnicę naprężeń bezwzględnych 
M — M .
----- .------zdF na całem polu F, otrzymamy jako wartość siły T przeniesionej na nit:

Ą
M — C , r M — Mi o,

*y J <y

9 Por. ArnovleviS, Zeitschr. f. Rrch. u. Ing.-wesen. 1910, str. 57. 



Przez S' oznaczyliśmy tutaj moment statyczny przekrojów kątówek i nakładek względem osi obo-
• Ł tt i j • • M — . . , , . ... . . dM n j ujętnej OY. Uwzględniając, ze ------ — jest średnią wartością stosunku = U między obra-

nemi przekrojami, czyli M — Ml=eQ„ znajdziemy dla T wzór: 

T = OeS'.(85)
A

Ponieważ nity poziome są narażone na ścięcie w dwu płaszczyznach (po obu stronach ścianki), 
więc średnią wartość naprężenia ścinającego w nicie obliczymy z wzoru:

2T 2QeS'
p> nd* Hd^

To równanie pozwala obliczyć odstęp nitów e z danych wartości d i naprężenia dopuszczalnego.
Przy obliczeniu belek dwuteowych litych wskazaliśmy już na ważność wyznaczenia naprężeń 

głównych w punktach przekroju odpowiadających przejściu ścianki w stopkę. Z tą samą okoliczno­
ścią wypada się liczyć i przy obrachowaniu belek nitowanych. W najniekorzystniejszych warun­
kach okażą się tutaj punkty leżące na wysokości nitów poziomych, gdyż według naszych przy­
puszczeń (pominięcie tarcia) oprócz naprężeń ścinających p", odpowiadających ogólnemu odkształ­
ceniu samej ścianki, przenoszą się w tem miejscu na ściankę siły T za pośrednictwem nitów. Te 
siły dążą do ścięcia ścianki w płaszczyźnie przechodzącej przez środki nitów. Przyjmując równo­
mierny rozkład naprężeń ścinających, znajdziemy ich wartości z równania:

T
P> - (e — d)b ’

albo po podstawieniu za T wartości z (85):
, _ QSZ e 

P‘ “ Tb ' e - d '
Do obliczonych naprężeń p/ trzeba dołączyć jeszcze wymienione powyżej naprężenia p", powsta­
jące w ściance pod wpływem siły poprzecznej Q. Określi je formuła:

„ Q,S" e
~ Ib e — d’

w której S" oznacza moment statyczny części ścianki, leżącej powyżej linji środków nitów, wzglę­
dem osi obojętnej. Tę część uwidoczniono na rys. (152) gęstszem zakreskowaniem. Oznaczywszy 
przez S = S' 4- S" moment statyczny gęsto zakreskowanej części całego przekroju, przedstawimy 
naprężenie wypadkowe wzorem:

P^PZ + P."- n ^d’ • • • • • • • *87)

który w połączeniu ze zwykłą formułą:
Mz 

Pn — i

dla naprężenia normalnego pozwoli obliczyć naprężenia główne według wzoru:

p-t=^±/(Ęy+^;
^min I \ Z /

[Powyższe rachunki wydają się na pierwszy rzut oka jako bardzo niepewne, gdyż z jednej strony 
zaniedbują tarcie między nitowanemi częściami, które, jak wykazały doświadczenia, gra/dominu­
jącą rolę, a z drugiej strony nie liczą się zupełnie z nierównomiernościami rozkładu naprężeń, 
wywołanemi przez otwory. Ale błędy wywołane temi obiema niedokładnościami mają znaki przeciwne 
i zdarzyć się może, że się nawzajem zniosą, tak iż przybliżony zgruba rachunek będzie wcale 
dobrze odpowiadać rzeczywistości. Praktyka, jak się zdaje, przemawia za tem, że w tym przypadku 
nie zawiodła inżynierów intuicja. W każdym jednak razie ostrożność nie zawadzi i przy obliczeniu 
w powyższy sposób belek nitowanych będzie wskazanem obniżyć naprężenia dopuszczalne w po­
równaniu do wartości uznanych za bezpieczne dla belek litych].



Mowsze doświadczenia z nitowanemi belkami T pokazują, że ich złamanie zachodzi zwykle 
wskutek niewystarczającej stateczności pasa ściskanego, albo niestateczności stosunkowo cienkiej 
ścianki pionowej1).

*) Ob. F. Moore. University of Illinois Bulletin 68, 1913.
2) Według doświadczeń prof. E. Kidwell’a (Michigan College of Mines) równa się wytrzymałość belki złożonej 75°/0

wytrzymałości odpowiadającej belki litej przy zastosowaniu klinów dębowych, a 8O°/o przy klinach żelaznych.

§ 68. OBLICZENIE ZŁOŻONYCH BELEK DREWNIANYCH
W przypadkach wielkich momentów zginających używa się dla lepszego wyzyskania materjału 

belek złożonych z dwu, a wrazie potrzeby z trzech, przyczem najczęściej łączy się je klinami 
(dyblami) i śrubami w sposób przedstawiony na rys. (153). Działanie klinów objaśniliśmy już w § 59. 
Śruby zaś mają widocznie głównie konstrukcyjne znaczenie. Rozpatrzmy przypadek belki podwójnej 
o szerokości b i wysokości 2h. Jeżeli e oznacza odstęp klinów, to siła ścinająca T, przypadająca 
na jeden klin, będzie równa wypadkowej z naprężeń ścinających pt, jakieby działały w poziomym
środkowym przekroju o polu b . e, gdyby belka była litą, czyli 

T = bept.
A ponieważ

QS _ 3 Q
Pl - Ib “ 2 2bh’

więc o n
1 = ł .(88)

4 h
Rys. 15)

Przy obliczeniu klinów przyjmuje się zwykle głębokość wrębu (3 do 4 cm) i oznacza się szerokość 
a z warunku, aby opór przeciwko zgnieceniu włókien wrębu był równy oporowi klina przeciwko 
ścięciu. Znając wymiary klina, a zatem i wartość siły T, którą może znieść z żądanym stopniem 
bezpieczeństwa, możemy obliczyć odstęp klinów e z formuły (88). Ten odstęp nie będzie wogóle 
stałym, lecz zmienia się odwrotnie proporcjonalnie względem wartości siły poprzecznej Q. Wskutek 
osłabienia belek wrębami wstawia się we wzór dla obliczenia największych naprężeń normalnych

z \ max
tPn)max

wartość _ ^(2c)3 i • h
12 I •

W miejscach, gdzie przypadają śruby łączące, trzeba nadto uwzględnić osłabienie przekroju przez 
otwór na śrubę. Prócz tego zmniejsza się naprężenie dopuszczalne w porównaniu do tego, jakie 
przyjmujemy dla belek litych o 30 %8).

§ 69. OBLICZENIE PŁATWI
Belki poziome, leżące na pochyłej połaci dachu i podtrzymujące jego pokrycie, nazywamy 

płatwiami (1. p. płatew). Zwykle działają one jako belki w obu koń­
cach podparte i równomiernie obciążone, obliczamy je więc według 
największego momentu

M = — al* J«max --  8 ’
Ze względu na występujący tutaj przypadek zgięcia ukośnego, znajdujemy 
najdogodniej wartość największego naprężenia normalnego, rozłożywszy 
moment na momenty składowe, działające w płaszczyznach głównych 
belki. Jeżeli przekrój jest prostokątem (rys. 155) o podstawie b i wysoko­
ści h, nachylonej do pionu pod kątem a, to największe naprężenie nor­

malne powstaje widocznie w pukcie A. Łatwo okazać, że jego wielkość określa formuła:
_ 6 M cos a ( 6 M sin a 

p" - Th7 + ~~b^h



iiż

Ze względu na to, że
b cos a + h sin a — c, 

przyczem c jest sumą rzutów boków b i h na poziom, da się powyższa formuła napisać w postaci:

Pk~ b*h2 ’
Na płatwie żelazne używa się z korzyścią kształtówek Z (rys. 156), których przekrój ma osie główne nachylone do 

ścianki i stopki. Ponieważ stopki leżą w płaszczyźnie połaci dachu, nachylonej do poziomu pod kątem a, więc może się
zdarzyć, że płaszczyzna główna płatwi będzie zorjentowana pionowo i że, 
powstanie zgięcie w tejże płaszczyźnie. Zajdzie to oczywiście przy kącie 
nachylenia dachu równym kątowi nachylenia osi Y (fig. a) przekroju do 
stopki. Wtedy płaszczyzna zginania będzie odpowiadać największej sztywno­
ści przekroju, czyli płatew będzie pracować w najkorzystniejszych warunkach 
których, praktycznie biorąc, nie zmienią małe odchylenia wartości kąta a.

W przypadku obciążenia belki siłami prostopadłemi do 
jej osi, a nie leżącemi w jednej płaszczyźnie, rozkładamy 
każdą siłę na dwie składowe, leżące w głównych płaszczy­
znach belki i badamy zgięcie w każdej płaszczyźnie 

zosobna. Weźmy np. belkę AB (rys. 157, fig. a) w obu końcach podpartą i obciążoną siłami
Ptf P2, P%. Niech będą XY i XZ płaszczyznami głównemi belki. Znając kąty nachylenia a, (fig. b) 
danych sił względem płaszczyzny XY, łatwo obliczyć ich składowe. W płaszczyźnie XY zachodzi zgię­
cie pod wpływem sił P\ = Pt cos a, = P2 cosO = P^, 
P\ = P. cosp; zaś w płaszczyźnie XZ będą siłami zginające- 
mi: P'\ = Pt sin a, P"2 = P, sinO = 0, P ^ = P3 sin Dla tych 
sił łatwo skonstruować diagramy momentów zginających abede 
i a'b'cfdf. Przekrój niebezpieczny będzie widocznie leżeć 
w miejscu działania jednej z sił, jednakowoż niekoniecznie 
w przekroju, gdzie moment ma największą wartość, albowiem 
naprężenia zależą nietylko od wielkości momentu, lecz także 
od kąta nachylenia płaszczyzny momentu względem płaszczyzn 
głównych. Przy wyznaczeniu naprężeń trzeba sumować na­
prężenia wywołane zgięciem w każdej z płaszczyzn głównych 
zosobna. Jeżeli momenty w płaszczyznach XY i XZ ozna­
czymy odpowiednio przez Mz i My, to naprężenia normalne p 
w dowolnym punkcie przekroju poprzecznego określi wzór:

_ M,y My z
P" 1, I, '

Znaki algebraiczne należy przytem obrać w zależności od kie­
Rys. 157runku momentów.

§ 70. OBCIĄŻENIE RUCHOME
W przypadku obciążeń ruchomych, jaki zachodzi np. u mostów, żurawi i t. p., komplikuje się zadanie przez to, że 

dla każdego rozpatrywanego przekroju belki trzeba najpierw znaleźć najniekorzystniejsze położenie ruchomego obciążenia, 
W najprostszych przypadkach można kwestję rozwiązać bez wszelkich trudności drogą analityczną. Weźmy np. belkę o roz­
piętości / (rys. 158), obciążoną jednym ciężarem ruchomym P. Przy wszelkiem położeniu ciężaru będzie diagram momen- 
tó,w zginających mieć postać trójkąta. Wierzchołek trójkąta, odpowiadający największemu momentowi zginającemu, leży pod

A B

Rys. 158

ciężarem, a wielkość tego momentu określa równanie:
_Px(l-x}

M4nax — j----- - ~ •

Przy przesunięciu ciężaru zmienia się Mmax według prawa paraboli i osiąga naj­

większą wartość przy x = ~. Co się tyczy siły poprzecznej, to przy dowolnem położeniu

ciężaru ma siła poprzeczna po każdej jego stronie wartość stałą i równą odpowiadającej reakcji podporowej, flżeby otrzy­
mać największą wartość reakcji, trzeba ciężar przysunąć do jednej z podpór; a zatem

Qmax — P'
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Jeżeli na belkę działa układ dwu ciężarów o stałej wzajemnej odległości d (rys. 159), to diagram momentów zgięcia 
;est czworokątem. Dajmy na to, że > P%, natenczas najkorzystniejszem będzie to położenie, któremu odpowiada maximum 
momentu pod ciężarem Pi. Oznaczywszy przez x odległość tego ciężaru od lewej podpory, znajdziemy jako wartość mo­
mentu w przekroju x:

M-~lP,(l-x) + P,(l-x-d)].

Z warunku = 0 otrzymamy:

x “ y (l~d ■ Pi + Pi) ’

a po wstawieniu tej wartości w wyrażenie dla M, znajdziemy największy moment zgi­
nający. Dla otrzymania największej wartości siły poprzecznej trzeba oczywiście przy­
sunąć ciężary całkiem do lewej podpory.

Rys. 159

Metodę analityczną można zastosować do poszukiwania położeń niekorzystnych także wtedy, gdy ruchomy układ 
ciężarów składa się z większej ich liczby, ale prostsze i bardziej przejrzyste rozwiązanie otrzymamy, stosując metodę wy- 
kreślną. W tym celu naznaczamy na belce szereg przekrojów i dla każdego z nich wyszukujemy te położenia obciążeń, 
przy których Q i M przybierają największe wartości. Dajmy na to, źe chodzi o przekrój mn (rys. 160). Ażeby odpowie-

.m

\D 
a

A'

Rys. 160

dzieć na pytanie, jak trzeba rozmieścić obciążenie dla otrzymania w tym przekroju Qmax, 
rozpatrzymy najpierw działanie jednego ciężaru o wielkości 1. Przy położeniu uwido- 
cznionem na rysunku, siła poprzeczna w przekroju mn jest równa lewej reakcji podpo-

1 . X . ,rowej —’—. Prawo jej zmienności przy przesuwaniu ciężaru przedstawiają rzędne po­

chyłej prostej C B' (fig. b), odcinającej nad lewą podporą rzędną równą 1 (jednostce siły). 
Kiedy ciężar, równy 1, znajduje się na lewo od przekroju mn, to siłę poprzeczną w tym 
przekroju otrzymamy, odejmując od reakcji lewej - podpory jednostkę siły. Na fig. (b) 
wykonano to odejmowanie wykreślnie przez poprowadzenie prostej A'D'/IB'C'. Ujemne 
rzędne tej prostej na przestrzeni lewej części belki określą zmianę siły poprzecznej 
w przekroju mn przy przesuwaniu jednostki ciężaru na tejże części. Całkowity obraz 
zmienności siły poprzecznej w przekroju mn przedstawią zakreskowane pola (fig. b), 
przyczem znaki obrano według przyjętej umowy. Odcinki prostych C' B' i ZTD', ogra­
niczające zakreskowane pola, przedstawiają linję wpływową dla siły poprzecznej 
w przekroju mn. Przy jej pomocy łatwo obliczyć Q dla dowolnego układu obciążeń. 
Gdy mamy jeden ciężar P, położony w jakimkolwiek przekroju belki, to trzeba zmierzyć 
rzędnę linji wpływowej w tym przekroju, a jej wielkość y, przedstawiającą siłę poprze-

czną, powstałą pod wpływem obciążenia równego jednostce, pomnożyć przez wielkość ciężaru P. Jeżeli zaś mamy układ
ciężarów Pit Pi,..., to siłę poprzeczną przedstawi wyrażenie:

Q-Piyi +P*yi + ••• (a)

D

A

Dla otrzymania największej dodatniej wartości Q trzeba obciążyć prawą część rozpiętości i ustawić ciężary tak, aby 
suma (a) przybrała największą wartość. Największą ujemną wartość Q znajdziemy obciążywszy lewą część rozpiętości.

Skonstruujemy teraz linję wpływową dla momentu zginającego w przekroju mn. Jeżeli ciężar 1 leży na prawej części
1 . X . . ...belki (fig. a), to momentem w przekroju mn będzie: —j—at. To wyrażenie określa rzędne prostej B"C", odcinającej 

u lewej podpory rzędną równą Skoro przesuniemy ciężar na lewą część belki, to moment w przekroju mn będzie 
równy * * —— a i przedstawią go rzędne prostej A"C", odcinającej u podpory B" rzędną równą a. Linja wpływowa

A" C" B" daje nam prawo zmienności momentu w mn przy przesuwaniu ciężaru równego 1. W przypadku obciążenia 
danym ruchomym układem ciężarów Pt, Pi,... znajdziemy wielkość momentu zginającego w przekroju mn, mierząc odpo­
wiadające rzędne yt, yi,... i obliczając sumę

Pi Ti + Pi Ja + • ■ • O3)
Przy badaniu wytrzymałości w przekroju mn trzeba ciężary ustawić tak, aby suma (b) przybrała największą wartość.

§ 71. PORÓWNANIE PRZEKROJÓW POPRZECZNYCH O RÓŻNEJ POSTACI

Mając dane siły zginającej i rozmiary przekroju poprzecznego, możemy oznaczyć stan napięcia 
w dowolnym punkcie i zarazem ocenić stopień bezpieczeństwa belki. Przy projektowaniu mamy 
jednak przed sobą zagadnienie odwrotne; chodzi mianowicie o to, aby znaleźć przekrój poprzeczny 
dla belki, czyniący zadość nietylko warunkowi wytrzymałości, lecz także warunkowi ekonomji. 
Innemi słowy należy przy danych własnościach materjału nadać taką postać przekrojowi poprze­
cznemu, ażeby belka była nietylko dostatecznie wytrzymałą, lecz także, aby jej ciężar był możliwie 
mały. W różnych dziedzinach techniki wypracowała praktyka najodpowiedniejsze typy przekrojów 
poprzecznych. Tutaj zwrócimy uwagę na główniejsze własności typów najwięcej używanych.
Kurs wytrzymałości materjałów 8
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Przy czystem zginaniu mają warunki wytrzymałości postać: 
M h2_ p

r 7 n2J
= R i

przyczem h} i h2 oznaczają odpowiednio oddalenia rozciąganych i ściskanych włókien skrajnych 
od osi obojętnej, a i R2 wartości dopuszczalnego ciągnienia i ciśnienia. Jeżeli materjał jest 
tego rodzaju, że R^ = R2, to powinno być ht = h2i a zatem

J_=L = iv.
h, h2

Warunki wytrzymałości sprowadzają się wówczas do jednego następującego:

Z tego warunku wyznaczamy potrzebną wielkość modułu przekroju W. Ponieważ ciężar belki jest 
proporcjonalny względem pola przekroju F, więc przekrój będzie tern korzystniejszy, im większy 
jest stosunek W: F. 3

[Ten stosunek ma wymiar długości, wobec czego jeszcze dogodniej będzie użyć stosunku IV: F^ 
jako miary „wydatności“ przekroju, ponieważ jego wymiarem jest zero].

Postaramy się oświetlić związek między modułem a polem F przekroju poprzecznego 
w kilku szczególnych przypadkach.

a) Prostokąt o podstawie b i wysokości h; W ^ ^ bh2, F bh.

Stąd W h p ~ — 0,167 h,

IV _ i V h 1/Ti 
J-p T=°’167V T ■

czyli przekrój tern korzystniejszy im większe h w porównaniu do b. Powiększenie wysokości h 
ogranicza jednak warunek stateczności, który rozpatrzymy później (§ 56).

b) Koło. W = ^, F= ^r8, a więc ~ = 0,125 d.

Porównajmy wartości stosunku W: F dla przekroju kwadratowego i kołowego o tej samej 
wielkości pola. Wtedy bok kwadratu h jest ze średnicą koła związany równaniem:

h dy~x 
h

a zatem dla tego kwadratu będzie
W h

6 0,147 d.

Porównywując tę wartość z odpowiadającym wynikiem dla przekroju kołowego, widzimy, 
że przekrój kwadratowy jest korzystniejszy.

3 j
[Stosunek W:F2 posiada dla koła wartość----0,141. Porównywując ją z odpowiadającą wartością dla prosto- 

4K ir
kąta, znajdziemy łatwo, że dla wszelkich wartości dogadzających warunkowi

h: b > 0,713 
jest przekrój prostokątny korzystniejszy od kołowego].

Przekrój prostokątny i kołowy napotykamy przeważnie w przypadku belek drewnianych. Bel­
kom żelaznym nadaje się racjonalniejsze przekroje poprzeczne. Zważywszy, że przy zginaniu jest 
wytrzymałość materjału należycie wyzyskaną tylko we włóknach skrajnych, wypada przy projekto­
waniu przekroju skupiać materjał jak najdalej od osi obojętnej. Jeżeliby wszystek materjał był roz-
mieszczony w dwu cienkich paskach o wzajemnej odległości h (wysokość belki), to 

byłoby to najkorzystniejszem. Moment bezwładności w tym przypadku 1 = F , 

przekroju IV = 1: . Stosunek IV: F otrzymałby wartość 0,5 h. W praktyce 

teoretycznie 

zaś moduł

muszą obie
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części przekroju być połączone ścianką, a grubość ścianki musi być wystarczająca, aby wytrzymać 
naprężenia styczne, uwarunkowane siłą poprzeczną. W ten sposób dochodzimy do przekroju dwu- 
teowego (przekroju I).

c) Belki dwuteowe bywają nitowane i walcowane. W ostatnim przypadku zachodzi między 
modułem a polem przekroju dość stały stosunek

W: F = od 0,31 h do 0,30h.
Ten stosunek łatwo znaleźć przy pomocy tablic dla belek J, które zawierają wartości W, F i h. 
Belki dwuteowe mąją jeszcze tę wyższość nad wysokiemi belkami prostokątnemi, iż są sztywniejsze 
w kierunku prostopadłym do płaszczyzny ścianki.

[I tutaj oczywiście nie można iść zbyt daleko z powiększeniem smukłości przekroju, już to z powodu niebezpieczeń­
stwa naprężeń miejscowych, już też ze względu na warunek stateczności. Belki nitowane miewają kształty smuklejsze, ale 
za to wzmacnia się i usztywnia ich ściankę t. zw. żebramij.

d) Przekroje rurowe (rys. 161). Już Galileusz zwrócił uwagę na korzyści zastosowania 
przekrojów wydrążonych zamiast pełnych. Pierwsze mosty żelazne 
o większej rozpiętości wykonano jako belki rurowe. Później zastą­
piono cienkie ścianki pionowe kratą i tak powstały spółczesne typy 
belek kratowych.

e)O przekrojach poprzecznych geometrycznie po­
dobnych. Skoro przekrój poprzeczny belki zmienimy na geometry­
cznie podobny, to pole przekroju F, moduł W i moment bezwładności / 
zmienią się odpowiednio jak kwadrat, sześcian i czwarta potęga linjo- 
wych wymiarów przekroju. Oznaczywszy przez Fo, Wo i /0 wielkości 
nego profilu, otrzymamy przy n-krotnem powiększeniu jego wymiaru linjowego wielkości:

F=n*F0, W=nsW0, 1 = ^1.,
Z tego można wysnuć kilka wniosków mających praktyczne znaczenie. Przyjmijmy np., że 

belka zgina się pod wpływem obciążenia rozłożonego równomiernie na powierzchni. Jak się zmie­
nią naprężenia przy proporcjonalnem powiększeniu wszystkich wymiarów belki, jeżeli natężenie 
obciążenia pozostaje bez zmiany? Całkowite obciążenie rośnie przytem widocznie jak kwadrat wy­
miarów linjowych, a więc moment zginający będzie wzrastać proporcjonalnie względem sześcianu 
tychże wymiarów. Ponieważ moduł przekroju wzrasta w tymże samym stosunku, przeto największe 
naprężenia zginające nie ulegną widocznie zmianie. Belki geometrycznie podobne będą przy wy- 
mienionem obciążeniu równowytrzymałemi.

Skoro obciążenie rośnie proporcjonalnie względem sześcianu linjowych wymiarów, jak np. 
ciężar własny belki, to moment zginający będzie wzrastać przy proporcjonalnem zwiększeniu wszyst­
kich wymiarów jak czwarta potęga wymiaru linjowego, podczas gdy moduł przekroju rośnie pro­
porcjonalnie względem sześcianu tegoż wymiaru. Naprężenia, wywołane ciężarem własnym, wzra­
stają zatem, w przypadku belek geometrycznie podobnych, proporcjonalnie względem rozpiętości. 
Znaczenie naprężeń wskutek ciężaru własnego rośnie z rozmiarami konstrukcji. Dla belki określo­
nego typu, przy danej wytrzymałości materjału, można łatwo znaleźć tę graniczną rozpiętość, przy 
której naprężenia wskutek ciężaru własnego osiągają wartości naprężeń dopuszczalnych użytego 
materjału. Dalsze zwiększenie rozpiętości staje się możebnem tylko przez powiększenie wytrzyma­
łości materjału. Ogromne rozpiętości, jakie napotykamy teraz w budownictwie mostów i znaczne 
długości spółczesnych wielkich okrętów stały się możliwemi tylko przez zastosowanie wyborowego 
materjału, np. stali o wysokiej wytrzymałości.

Jeżeli poprzeczne przekroje belek są geometrycznie podobne, to między polem F i modułem 
przekroju W zajdzie związek: 2

F=aW\..................................................................(a)
przyczem wielkość liczbowego spółczynnika a zależy jedynie od postaci przekroju, czyli jest dla 
danej postaci stałą. Przy obiorze rozmiarów poprzecznych wychodzimy z formuły:

8*
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w której M jest wielkością największego momentu zgięcia, a R naprężeniem dopuszczalnem. Wtedy 
pole przekroju poprzecznego wyrazimy, na podstawie (a), wzorem:

zaś dla ciężaru własnego belki otrzymamy wyrażenie:
2_

ni iFiy = •

Tutaj oznacza y ciężar jednostki objętości materjału. Ciężar belek o geometrycznie podobnych prze- 
2

krojach, rośnie przeto przy tej samej rozpiętości proporcjonalnie względem M\
Jeżeli belkę w obu końcach podpartą i równomiernie obciążoną zastąpimy dwiema belkami 

o rozpiętości dwa razy mniejszej, to wskutek tego moment zginający zmniejszy się cztery razy, 
2

a ciężar dwu belek będzie mniejszy od ciężaru pierwotnej belki 43 = 2,52 razy.
Gdy trzeba jakąkolwiek przestrzeń o rzucie poziomym prostokątnym nakryć układem równo­

odległych belek, położonych równolegle do jednego z boków prostokąta, a obciążenie przeniesione na 
belki jest rozłożone równomiernie na polu tegoż prostokąta, to przy zmniejszeniu liczby belek n-razy 
zwiększa się tyleż razy obciążenie przypadające na każdą z belek, a zarazem i wielkość momentu 

2
zginającego. Ciężar każdej belki wzrośnie n^-razy, a ponieważ liczba belek jest n-razy mniejsza, 

i
więc ogólny ciężar belek zmniejszy się w stosunku 1 : nŁ

Przy doborze przekroju wypada często kierować się nietylko warunkami wytrzymałości, lecz 
także warunkiem dostatecznej sztywności belki, scharakteryzowanej wielkością El. Nierzadko ogra­
niczamy wartość strzałki ugięcia, jaką belka może otrzymać pod wpływem danych obciążeń. Łatwo 
się przekonać, że zadowalając warunki wytrzymałości nie zawsze czynimy jednocześnie zadość 
warunkowi sztywności. Przy tych samych największych naprężeniach normalnych uginają się belki 
o rozmaitych przekrojach poprzecznych niejednakowo. Jeżeli p jest promieniem krzywizny w prze­
kroju niebezpiecznym, a h wysokością przekroju, to wartość największych wydłużeń i skróceń, 

ha zarazem i wartość odpowiadających naprężeń, jest określona stosunkiem -y: p (form. 61). Przy 

stałej wartości tego stosunku, czyli przy stałem największem naprężeniu normalnem, będzie pro-

Rys. 162

mień krzywizny tem większy, a zatem ugięcia tem mniejsze, im większa jest 
wysokość belki h.

f) Przekrój szyny kolejowej (rys. 162) jest niesymetryczny wzglę­
dem osi obojętnej, jednakże zwykle tak ukształtowany, aby hi = h2.

[Oprócz wielu względów konstrukcyjnych decydowały tutaj o kształcie wymogi znacznej 
sztywności we wszystkich kierunkach przy dostatecznej wytrzymałości, przyczem uwzględniono 
także naprężenia miejscowe i ścieranie główki szyny wskutek ruchu pociągów).

g) Przekrój teowy (J) i przekrój przedstawiony obok niego na rys.(163) 
są używane przy budowie okrętów. Te przekroje nie są widocznie tak korzystne, 
jak przekrój I,tak z powodu rozmieszczenia materjału, jak i nierówności skraj­
nych naprężeń. Skoro za miarę wydatności tych przekrojów przyjmiemy znowu

stosunek modułu do pola przekroju, to dla używanych w praktyce 
profilów ostatniego przekroju będzie:

IV
' - od 0,23 h do 0,22 h.
F

Obiór podobnych przekrojów dla żelaza kowalnego usprawiedliwiają 
tylko względy konstrukcyjne. Inaczej ma się rzecz, jeżeli materjał
belki ma różną wytrzymałość przy rozciąganiu i ściskaniu (np. że- Rys'1
lazo lane). Wtedy będzie odpowiedniejszą postać przekroju niesymetryczna względem osi obojętnej 
i tak dobrana, aby naprężenia we włóknach skrajnych były proporcjonalne względem odpowiednich 
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wartości naprężeń dopuszczalnych przy rozciąganiu i ściskaniu. Z tego wynika, że stosunek : h2 
powinien być równy stosunkowi naprężeń bezpiecznych. Weźmy np. przekrój U (rys. 164). Przy
rozmiarach uwidocznionych na rysunku jest środek ciężkości przekroju 
odległy o 3 cm od osi 00. Jeżeli dolne włókna skrajne są rozciągane, 
a górne ściskane, to największe wartości ciśnień i ciągnień mają się do 
siebie jak 7:3. Zmieniając wymiary ramion i podstawy (ścianki) profilu, 
można dojść do każdej dowolnej wartości stosunku największego ciągnie­
nia do największego ciśnienia.

Rys.'164

Na zakończenie zwrócimy uwagę jeszcze na jedną okoliczność, mającą niekiedy praktyczne znaczenie. Moduł prze­
kroju W określa wielkości największych naprężeń normalnych przy zgięciu; należy jednak pamiętać, że moduł przekroju nie 
zawsze się zmniejsza ze zmniejszeniem pola przekroju. Bywają przypadki, w których przez odcięcie pewnych części przekroju 
można W powiększyć. Tak się zachowują przekroje, u których warstwa włókien skrajnych jest wąska w porównaniu do 
szerokości środkowych części przekroju. Dla przekrojów takich np. jak kwadratowy przy zginaniu w płaszczyźnie prze­
kątnej, kołowy, trójkątny i t. p., powiększa się zrazu W, jeżeli niewielką grubość włókien skrajnych usuniemy. U pierwszego 
z wymienionych przekrojów można w ten sposób wywołać zwiększenie IV, dochodzące do 5%, co łatwo okazać następu­
jącym rachunkiem: 4

Momentem bezwładności kwadratu o boku a (rys. 165) względem przekątnej jest 1= > a odpowiedni moduł prze-

D
Rys. 165

<4 C l~

a3V^2
kroju IV = —12—. Odetnijmy z przekroju zakreskowane trójkąty cięciwami równemi i równo- 

ległemi do osi obojętnej AB. Przyjmijmy mC ~ m'D = ... = aa i obliczmy moment bezwładności 
obciętego przekroju, rozłożywszy go na kwadrat Ambm' o boku a(l — a) i dwa równoległo- 
boki bmnB i bBn'm'. W ten sposób otrzymamy:

a4 (1 —
12 (1 +3 a),

a zatem moduł przekroju
... a‘(l-a)'(l + 3a)/2 

. 12a(l-«)-------
Jak się łatwo przekonać, osiągnie W maximum przy a — Po wstawieniu tej wartości w wy- 

wyrażenie dla IV znajdziemy wartość Wmax o 5% większą od wartości odpowiadającej przekrojowi pierwotnemu. Że ścięcie 

warstwy skrajnej powiększa w tym przypadku zrazu wartość W, zrozumieć łatwo, zważywszy, że lV=/:-2-, a ubytek I 

wskutek ścięcia jest zrazu stosunkowo mniejszy, niż ubytek wysokości h.

ROZDZIAŁ X

L1NJA UGIĘCIA BELKI

§ 72. RÓWNANIE LINJI UGIĘCIA
Przy obliczeniach zachodzi często potrzeba wyznaczenia nietylko wielkości naprężeń, wywo­

łanych w belce działaniem danych obciążeń, lecz także i wielkości odpowiadających odkształceń. 
Niekiedy wymaga się, aby wartość największego ugięcia belki (strzałka ugięcia) nie przekraczała 
danej części rozpiętości /. Od kwestji postaci ugiętej osi rozpoczynamy rozwiązanie takich zaga­
dnień, przy których ogólne warunki równowagi nie wystarczają do znalezienia reakcji podporo­
wych. Zbyteczne podparcia określają warunki dodatkowe dla zgiętej osi i temi warunkami posłu­
gujemy się w celu wyznaczenia reakcji.

Obierzmy pierwotną oś belki (ustawioną poziomo) za oś X-ów, a oś Y-ów skierujmy pionowo 
w górę. Zakrzywiona postać belki będzie zupełnie określona równaniem zgiętej osi o postaci ogól­
nej y = f(x). Tego równania dostarczy znaleziona poprzednio formuła (63)x):

±_ JL
P “ El ’

x) Tę formułę otrzymaliśmy dla przypadku czystego zgięcia. O ile zmienia się krzywizna osi wskutek naprężeń ści­
nających objaśnimy poniżej (ob. § 81). Wpływ tych naprężeń (uwarunkowanych siłą poprzeczną) jest zwykle niewielki 
i dlatego pomijamy go przy rozwiązywaniu zadań praktycznych.
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skoro w niej zastąpimy krzywiznę 1 : p znanem wyrażeniem różniczkowem. W ten sposób otrzymamy
równanie różniczkowe ugiętej osi, czyli linji ugięcia w ogólnej postaci1):

Rys. 166

d2y

(89)

Zamiast tego równania będziemy używać prawie wyłącznie uproszczo­
nej przybliżonej formy, która powstaje z powyższej przez opuszczenie

/ d v \2w mianowniku wyrazu • Najczęściej bowiem mamy do czynienia z ugięciami bardzo ma- 

łemi w porównaniu do rozmiarów belki, przyczem i wartość d v jest bardzo małym ułamkiem,

tem bardziej zatem można pominąć kwadrat tej wielkości wobec jednostki. Przybliżone równanie 
linji ugięcia ma przeto postać:

EI^^±M.........................................(90)
Co do znaków zauważymy, że w § 58 umówiliśmy się uważać moment zginający za dodatni, 
jeżeli on dąży do obrotu odciętej lewej części belki w kierunku wskazówek zegara. Ten moment 
wywołuje widocznie w rozpatrywanym przekroju zakrzywienie osi belki, skierowane wypukłością

w stronę ujemnych Y-ów (rys. 166). Przy takiem zakrzywieniu rośnie wartość pochodnej ze

wzrostem x, a przeto druga pochodna jest dodatnia i w naszem równaniu (90) trzeba zatrzymać 
znak plus.

Przy zmianie położenia osi spółrzędnych, albo przy odmiennej umowie co do znaków mo­
mentu zginającego, może się zmienić i znak w rów. (90), wobec czego przy rozwiązywaniu szcze­
gółowych zadań lepiej ustalać znak za każdym razem zosobna, obierając go w ten sposób, aby 
obie części równania (90) były tego samego znaku*).

§ 73. UGIĘCIE BELKI JEDNYM KQŃCEM UTWIERDZONEJ

Niech obciążenie belki składa się z siły skupionej P, działającej na jej swobodny koniec 
i ciężaru ql, rozłożonego równomiernie na całej długości / belki (rys. 167). Momentem zginającym 
w przekroju mn będzie z uwzględnieniem prawidła znaków, przyjętego 
w § 65:

M = -

Równanie linji ugięcia przybierze tedy postać:

El^=-p^-^^- ■
Całkując obustronnie raz, otrzymamy:

= ■ ■ ■ • wU <A- ' w * w ' O '

*) Krzywizną odpowiadającą elementowi belki o długości ds będzie-^- = -^(rys. 166).Ponieważ tgcp = , a więc:

1 d(are,8sj)

Wykonawszy różniczkowanie, dojdziemy do wyrażenia po lewej stronie, rów. (89).
2) [W bardzo wielu książkach przyjmują stale, że dodatnia oś Y-ów jest skierowana pionowo w dół, a dodatni moment M 

zgina belkę wklęsłością ku górze. Tej umowie odpowiada oczywiście znak — po prawej stronie rów. (90). Natomiast kierunkowi 
dodatnich Y-ów, przyjętemu na rys. (166), odpowiada (przy tej samej umowie co do znaku M) znak + po prawej stronie rów. (90)]. 
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przyczem C oznacza dowolną stałą całkowania. Oznaczymy ją łatwo z warunku podparcia belki. 
Lewy koniec belki jest w naszym przypadku utwierdzony, a więc odpowiadający mu przekrój 
poprzeczny O nie obraca się przy ugięciu, czyli zakrzywiona oś belki będzie styczną do osi OX 
w punkcie O. Napiszemy przeto:

Dla x = 0 jest = 0.J dx
Z tego warunku wynika, że w rów. (a) trzeba przyjąć C = 0. Podstawiając teraz w tern równaniu 
x -1, obliczymy kąt nachylenia stycznej na prawym końcu belki, a mianowicie:

= ...............................................(91)
\dxJ*=I 2EI bEl

Pierwszy wyraz po prawej stronie daje nam kąt nachylenia stycznej wywołany siłą P, drugi 
zaś kąt wywołany obciążeniem q l. Ażeby otrzymać ugięcia belki y, trzeba zcałkować znowu równa­
nie (a). Uwzględniając, że C = 0, znajdziemy:

............................ (b)

Stałą dowolną D wyznaczymy z drugiego warunku podparcia, który powiada, że lewy utwier­
dzony koniec belki jest nieruchomy, t. j.:

y = 0 przy x = 0.
Temu warunkowi czyni widocznie zadość wartość D = 0. Rów. (b) pozwala wyznaczyć wielkość 

ugięcia y w dowolnym przekroju, czyli jest równaniem linji ugięcia. Największe ugięcie zajdzie 
oczywiście u prawego końca belki; znajdziłmy je podstawiając x = l, a więc:

3 8 •

Stąd: ...............................................(92)
3EI 8EI

Pierwszy człon tego wyrażenia przedstawia ugięcie wskutek siły skupionej P, drugi zaś ugięcie 
wskutek obciążenia ql. Jeżeli P = ql, to te ugięcia mają się do siebie jak 8:3. Znak ugięcia wy­
pad! ujemny, ponieważ belka ugina się w stronę ujemnych T-ów.

§ 74. UGIĘCIE BELKI W OBU KOŃCACH PODPARTEJ

Skoro belkę AB (rys. 168) zgina siła skupiona P, działająca w środku rozpiętości i równo­
miernie rozłożone obciążenie q 1, to największe ugięcie zajdzie widocznie w środku C. Wielkość
tego ugięcia można znaleźć przy pomocy wyników 
poprzedniego paragrafu. Krzywa ugięcia będzie oczy­
wiście symetryczna względem środka C, a styczna 
do niej w tym punkcie będzie równoległa do osi X. 
Każda połowa belki znajduje się zupełnie w tych 
samych warunkach, co poprzednio rozpatrywana 
belka, jednym końcem utwierdzona. Jeżeli weźmiemy 
pod uwagę prawą połowę belki BC, to można ją

uważać za belkę

Rys. 168

P qlutwierdzoną końcem C i obciążoną na końcu B siłą y + ~~, skierowaną w górę.

Tę siłę przedstawia reakcja podporbwa belki AB. Prócz tego działa na rozpatrywaną belkę BC 
obciążenie równomiernie rozłożone o kierunku przeciwnym owej reakcji. Na podstawie formuły (92) 
wyznaczymy wywołane temi siłami ugięcie końca B, t. j.

/ ^ , / M2 iM4
I.T+2/'2) * 2 I PI3 5 ql*

3EI 8 El ~48El+ 384 El . (93)
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Ugięcie belki w przekroju C przedstawi oczywiście również wyrażenie (93), tylko z przeciwnym 
znakiem. Pierwszy wyraz określa ugięcie, wywołane siłę P, drugi zaś ugięcie wskutek obciążenia 
równomiernie rozłożonego ąl.

Jeżeli siła skupiona obciąża belkę nie w środku rozpiętości (rys. 169), to szu­
kanie równania linji ugięcia komplikuje się nieco. Zależnie od tego, po której stronie ciężaru P 
obieramy przekrój, wypadają dwa różne wyrażenia analityczne dla momentu zginającego i dlatego 
równanie różniczkowe linji ugięcia ma odmienną postać dla każdej z obu części belki. Dla lewej

Rys. 169

części będzie niem:
d2y Pc

Edx2~ lx‘

Całkując raz, znajdziemy prawo zmienności kąta na­
chylenia stycznej w postaci:

przyczem D oznacza dowolną stałą całkowania. Powtórne całkowanie daje: 
P c v®

EIy +

jako równanie linji ugięcia lewej części belki. Nową stałą dowolną łatwo wyznaczyć z warunku, 
że lewy koniec belki jest podparty, a więc ugięcie tego końca równa się zeru, czyli:

y = 0 przy x = 0.
Temu warunkowi czyni zadość D{ = 0. Wyznaczenie stałej D jest możliwe tylko po rozpatrzeniu 
równania linji ugięcia dla prawej części belki.

Wyznaczenie wartości stałych całkowania można znacznie uprościć przy pomocy następują­
cego sposobu. Wyraziwszy moment zginający w dowolnym przekroju prawej części belki przez siły 
leżące po lewej części tego przekroju, otrzymamy równanie różniczkowe linji ugięcia prawej 
części w postaci:

>V = —j X~ P(x—C,).dx2 l v 17
Wynik pierwszego i drugiego całkowania można przedstawić w następującej formie:

dy Pc x2 P(x-cl)2
dx " 12 2

Pc x3 P(x — C.)2
EIy = — y-------6 ~ + C* + C,-

Otrzymaliśmy tedy cztery stałe dowolne: D, D{ dla lewej części belki i C, C± dla prawej, 
atoli dzięki powyższej formie równania linji ugięcia prawej części belki sprowadza się liczba stałych 
do dwu. W samej rzeczy, w miejscu działania siły P, t. j. dla x = cn muszą obie gałęzie linji ugięcia 
mieć wspólną styczną i wspólną rzędną, a zatem:

Pc x2 n _ Pc x2 P(x — ej2 
TT + P x-c,~ TT 2 +

^•tDx+Di =^_p^y+Cx+Ct .
I 6 x = ct l 6 6 x = Ci

Stąd wynika: C — D i C\ = Dt,
Sprowadziwszy liczbę stałych do dwu, możemy je zńaleźć z warunków na końcach belki. 

Z warunku podporowego na lewym końcu wynika, jak widzieliśmy, że Dt = = 0. Na prawym 
końcu jest ugięcie także równe zeru, a więc kładąc x = l w równaniu prawej gałęzi linji ugięcia, 
otrzymamy, dla wyznaczenia stałych C i D, równanie:

Pc P
/ 6 6
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Uwzględniając, że l — = c, znajdziemy:
Pc(c>-/»)

G U “ 61

Równaniem linji ugięcia dla lewej części belki będzie przeto:

• (94)

Przedstawiony sposób można stosować i w ogólniejszym przypadku zginania belki układem sił skupio­
nych. Ustawiając dla każdej części belki między dwiema sąsiedniemi siłami odpowiadające równanie różniczkowe i cał­
kując je, znajdziemy, że ogólna liczba stałych dowolnych jest równa dwukrotnej liczbie owych części. Skoro jednakże 
przedstawimy wyniki całkowania w takiej postaci, jak to uczyniliśmy powyżej w przypadku obciążenia belki jedną siłą 
skupioną, to liczbę stałych całkowania sprowadzimy do dwu. Oznaczywszy przez R lewą reakcję podporową, Pl} P2,P3,... 
siły zginające, Ci, c2, c3)... ich odległości od lewej podpory i nakoniec przez l rozpiętość belki, otrzymamy następujące 
równania różniczkowe linji ugięcia w kolejnych przedziałach belki, rozpoczynając od lewej podpory:

d2 vI. EI^Ą^Rx, 
dx2 
d2 vII. EI^ = Rx-Pi(x-ci), 

d2 vIII. EI^^ Rx — Pi(x — ej — P2 (x — c2),

Pierwsze całki tych równań przedstawimy w postaci;

I. EI^ = ^ + C. 
dx 2

ii Rfdy Rx'! p^-ciY" ‘:x l----------- >

ii Fidy Rx" Pi^—c^2U. = ----- 2------ -2---+ c„

Całkując powtórnie otrzymamy wyrażenia:

Rx3I. EIy-= * + Cx + D, 
b

r Rxs Pi(x— ej8 „ nII. Ely= —-------- —-- + Ci x + Di.b b
III. EIy=^~ + P^X:Z^ + C2x + D2,

Z warunku, że na granicy I-go i Ii-go przedziału, t. j. przy x=Ci, muszą obadwa odpowiadające równania dać tę samą 
wartość ugięcia i nachylenia stycznej, wynika:

C = Ci i D = Di.
Podobnież z równości ugięć i kątów nachylenia stycznych dla X = c2, na granicy Ii-go i Iii-go przedziału, wnosimy, że:

Ct - C2 i Di =D2.
Powtarzając to rozumowanie dla każdej pary sąsiednich przedziałów, znajdziemy:

C = Ci=C2 = C3=---; D = D1=D2=D3 = ...
Pozostaje zatem rzeczywiście wyznaczyć tylko dwie stałe dowolne, bez względu na ilość przedziałów. Z warunków podparcia 
obu końców belki otrzymamy:

n n n n • r - r - r - X Pn(/-Cn)a|D — Di — D2 — • • • = 0 i C — Ci - C2— . ,+ 2, , I •
* 1 0 n=l,2, 3... 0 J

Te wyniki znajdujemy, przyrównywując do zera ugięcia lewego i prawego podpartego końca belki. Wyznaczywszy 
stałe, napiszemy łatwo równania linji ugięcia dla każdego przedziału belki. Tym sposobem można się posługiwać także 
w przypadku, gdy, oprócz sił skupionych, działa na belkę i obciążenie piągłe. Trzeba tylko, aby prawo zmienności obcią­
żenia wzdłuż belki dało się przedstawić jedną i tą samą funkcją x we wszystkich przedziałach. Tak się rzecz ma np. przy 
obciążeniu równomiernie rozłożonem, lub zmieniającem się linjowo ńa całej długości belki.
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Powrócimy teraz do zgięcia belki jedną siłą skupioną i roztrząśnFemy równanie (94). 
Przy położeniu obciążenia przyjętem na rysunku (169), t. j. gdy c < zachodzi największe ugięcie 
oczywiście w lewym przedziale belki. Przyrównywując pochodną wyrażenia (94) do zera, znajdziemy: 

x = V^(l2—c!).(95)

jako wartość odciętej odpowiadającej największemu ugięciu. Odpowiadająca wartość ugięcia 

...................................... . ■(96)

Zauważyć wypada, że przekrój, w którym zachodzi największe ugięcie, leży zawsze blisko środka 
rozpiętości belki. Gdy ciężar P działa w środku belki, to największe ugięcie powstaje w obciążo­
nym przekroju. Odsuwając P od środka coraz dalej, otrzymamy w granicy c = 0, a położenie prze­
kroju odpowiadające największemu ugięciu określi według wzoru (95) odcięta:

X = = 0,577 /.

W ten sposób odległość przekroju o największem ugięciu od środka belki nie przekracza nigdy 
0,077 /. Zważywszy, że około miejsca największego ugięcia zmienia się ugięcie mało ze zmianą 
odciętej x (własność funkcji w pobliżu max. lub min.), dochodzimy do następującego wniosku: 
W przypadku obciążenia belki siłą skupioną, można z dostateczną dokładnością przyjąć, że ugięcie 
belki w środku rozpiętości równa się największemu ugięciu; popełniony przytem błąd, jak zoba­
czymy dalej, nie przekracza w najniekorzystniejszym przypadku 2,5%. Podstawiwszy w rów. (94)

zamiast x wielkość otrzymamy ugięcie środka belki: w
Pc 

ic'}.......................... (97)

Oprócz zgięcia belki wypadnie niekiedy wyznaczyć kąty obrotu przekrojów końcowych. Po­

nieważ te kąty są małe, więc będziemy je mierzyć bezwzględną wartością pochodnej ~wkońcach dx
belki. Przy pomocy rów. (94) znajdziemy kąt obrotu lewego końca belki, kładąc X = 0 w równaniu:

dy _ Pcx* _Pc(P-c8) 
dx ~ 21 61

A zatem:
P c (l2 — c2) 

6£7/
(98)

Wartość wypadła ujemna, albowiem przy obranym układzie spółrzędnych (rys. 170) jest po- 

chodna ujemna. W dalszym ciągu umówimy się, aby kąt mierzyć od osi OX w kierunku

wskazówki zegara i dlatego będziemy opuszczać znak — w formule (98). Ta formuła dostarczy 
nam także wartości kąta obrotu ^2, jeżeli w niej c zastą­
pimy przez l — c, czyli:

Pc(l-c)(2l-c) 
6 EU

Kąt będziemy mierzyć od osi belki w kierunku 
przeciwnym wskazówce zegara. Gdy ciężar P znaj­

duje się w środku belki, t. j. c = to w
......................................................................................(100)

Rozpatrzymy teraz szczegółowo przypadek krańcowy, w którym c dąży do zera, czyli siła P 
zbliża się do prawej podpory. Jeżeli przytem siłę P będziemy powiększać według takiego prawa, 
aby Pc pozostawało stałem, to otrzymamy w granicy zginanie belki parą sił o momencie M = Pc, 
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działającą na praw^ koniec belki. Równanie zgiętej osi znajdziemy dla tego przypadku, kładąc 
w wyrażeniu (94) c = 0 i Pc = M. A zatem:

E/y = ^(x>-Z2).......................................................... (101)

Różniczkując to równanie wyznaczymy kąt nachylenia stycznej:

..........................................................002)

Największe ugięcie zajdzie w przekroju, gdzie styczna jest pozioma, czyli = 0. Wtedy
3 x2 — /2 — 0, a stąd P = 0,577l.’ /3
Wstawiwszy znalezioną wartość x w wyrażenie (101), otrzymamy największe ugięcie:

, MP AA£y11 MP 
f = —7=— = 0,0641 ~, • ' 9/3. El El

Ugięcie w środku równa się
Ml' Ml*
wei = °’O(>25-ei • (103)

jest więc około 2,5°/0 mniejsze od f.
Podstawiając w wyrażenie (102) wartości x = 0 i x = l, znajdujemy kąty nachylenia stycznych

końcowych: Ml . ą Ml 
f>EI 1 2 = 3E1 . (104)

Tymi wzorami wypadnie nam często posługiwać się przy rozpatrywaniu statycznie niewyznaczal- 
nych przypadków zgięcia belek.

§ 75. UGIĘCIE BELKI W OBU KOŃCACH PODPARTEJ POD WPŁYWEM OBCIĄŻENIA 
RÓWNOMIERNIE ROZŁOŻONEGO. (Rys. 171)

Jeżeli q oznacza obciążenie jednostki długości belki, to reakcje podporowe będą:
A = B = ^, 

• w
a moment zginający w dowolnym przekroju mn:

w Ci
Równanie różniczkowe linji ugięcia ma zatem postać:

Rys. 171

d*y _ ql qx2 
~dx*~~Tx T*

Po zcałkowaniu otrzymamy:

dx 4 6 (a)

Stałą C można wyznaczyć z warunku symetrji linji ugięcia względem środka belki, t. zn. z warunku:
dy 
dx dla

Odpowiadającem równaniem warunkowem jest:
sf_^+c=°, ast,d C=-^.

Podstawiwszy otrzymaną wartość C w rów. (a) i wykonawszy powtórne całkowanie, znajdziemy:

Ely = 12 24
ql3x
24 + Ct.

= 0 X - 2
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Stała dowolna Ct musi być równa zeru, ponieważ dla x = 0 jest y — 0. Ostatdbznie napiszemy dla 
danego przypadku równanie linji ugięcia belki w następującej postaci:

ql3 
24E7 * 1-24- + \ z2 (b)y =

Największe ugięcie zajdzie widocznie w środku rozpiętości; znajdziemy je z rów. (b), podsta-
l „ ,wiając w mem x = . A zatem:w ___ 5qT_ ■ (c)

Kąty obrotu końcowych przekrojów belki będą co do wielkości równe, a wyznaczymy je 
o/3 •z rów. (a), kładąc C = — i x = 0. W ten sposób otrzymamy:24

, I1’
1 " 24EI 

§ 76. SKŁADANIE SKUTKÓW DZIAŁANIA SIŁ
Rozpatrzyliśmy powyżej przypadki działania na belkę siły skupionej, obciążenia równomiernie 

rozłożonego i pary sił. Przy pomocy otrzymanych wyników można znacznie uprościć obliczenie 
ugięć i kątów obrotu końców belki, powstałych pod działaniem obciążeń bardziej złożonych, posłu­
gując się zasadą składania skutków działania sił, czyli zasadą superpozycji. Dopóki 
odkształcenia są małe, a rozkład sił taki, że ich działanie nie zależy od odkształceń 9, można prze­
sunięcie każdego punktu odkształconego ciała otrzymać jako sumę przesunięć, wywołanych poszcze- 
gólnemi siłami zosobna.

Dajmy na to, że na belkę, w obu końcach podpartą, działa układ sił skupionych. Przy 
obliczeniu ugięcia w środku można zastosować form. (97). Dla wszystkich sił leżących na prawej 
połowie belki będzie oznaczać c odległość od prawej podpory, zaś dla sił działających na lewą 
połowę będzie c odległością od lewej podpory. Całkowite ugięcie otrzymamy przez sumowanie ugięć, 
powstających pod wpływem oddzielnych sił. W przypadku obciążenia ruchomego będzie ugięcie 
w środku tem większe, im bliżej środka znajduje się obciążenie. Jeżeli nad osią belki wykreślić 
krzywą, której rzędne, odpowiadające odciętym c na prawej połowie belki, równają się (ob. form. 97):

i przedłużyć ją symetrycznie nad lewą połową, to obliczenie ugięcia, wywołanego w środku belki 
danym układem sił, upraszcza się znacznie. Wystarcza każdą z sił pomnożyć przez odpowiednią 

rzędnę krzywej (rys. 172) i dodać otrzymane wyniki. Rzędna 
krzywej w dowolnym punkcie belki C określa w obranej po- 
działce ugięcie środka belki, wywołane jednostką obciążenia, 
umieszczoną w tymże punkcie C. Nasza krzywa jest zatem t. zw. 
lin ją wpływową dla ugięcia belki.

Od układu sił skupionych łatwo przejść do obciążenia cią­
głego, równomiernie rozłożonego. Jeżeli qdc jest obciążeniem

elementu długości belki d c, położonego w odstępie c od prawej podpory (0 < c < , to odpowia-

dającem ugięciem w środku będzie: ,

Całkowite ugięcie znajdziemy, sumując ugięcia wywołane obciążeniami elementarnemi, a więc: 

^pQcdc 5 ql*
f 2J0 48E/^3 4c’~ 384 El'

Gdy obciążenie jest rozłożone równomiernie tylko na pewnej części rozpiętości, to przy obliczeniu 
ugięcia, trzeba tylko zmienić w odpowiedni sposób granice całkowania.

9 Przypadki, w których przesunięcia punktów pręta, wywołane odkształceniem, okazują istotny wpływ na działanie 
sił, rozpatrzymy w rozdz. XV.
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Jako przykład bardziej złożony rozpatrzymy zgięcie belki wspornikowej (z wystającemi końcami) pod wpły­
wem sił skupionych P^ i P^ (rys. 173). Dajmy na to, że chodzi o znalezienie ugięcia na końcu C i w środku rozpię­
tości F. Przy rozwiązaniu zadania ogólnym sposobem, należałoby dla 
każdego z czterech przedziałów belki CA, AF, FB i BD napisać osobne 
równanie różniczkowe, potem zcałkować wszystkie równania i wyznaczyć 
dowolne stałe z warunków krańcowych. Rozwiązanie uprościmy znacznie 
przez zastosowanie zasady superpozycji. Jakoż weźmy pod uwagę ugięcie 
w punkcie F. Wpływ siły Pi i P^ na to ugięcie jest widocznie odpowiednio 
równoważny z wpływem momentu zginającego — Pi c15 w przekroju podpo­
rowym A i momentu —P^c^ w przekroju B. Same wielkości sił Pf i P2 
nie grają tutaj roli. Od nich zależą tylko reakcje podpór i siły poprzeczne w wystających częściach belki (wspornikach).
Ugięcie wywołane parami sił, działającemi w przekrojach podporowych, obliczymy przy pomocy wzoru (103). Ugięcie zaś 
wskutek siły P określi wzór (97). A zatem ugięcie wypadkowe punktu F przedstawi wyrażenie:

Pc P, c, P P2c2P 
16E7 '

Podobnież znajdziemy przy pomocy wzorów (98) i (104) kąt nachylenia ■d1 zgiętej osi w punkcie A, a mianowicie:
Pc P-c2 PlCll P.c2l

1 6EI’ l 3EI hEl ’
Dla wyznaczenia ugięcia punktu C rozważymy zginanie wspornika AC. Jeżeliby styczna do linji ugięcia w punkcie A była 
poziomą, to szukane ugięcie określiłaby (bez względu na znak) formuła:

Pi ci8
3EI ‘

Ale przekrój A obrócił się o kąt fy, wskutek czego zajdą dodatkowe przesunięcia punktów wspornika. Dla punktu C jest 
to przesunięcie (co do bezwzględnej wartości) równe c^^, a zatem ugięcie wypadkowe punktu C równa się:

Pozostaje jeszcze wstawić w miejsce wartość znalezioną powyżej.
Szereg przykładów zastosowania zasady superpozycji, będziemy mieli poniżej przy rozpatiywaniu statycznie nie- 

wyznaczalnych przypadków zgięcia.

§ 77. LINJA UGIĘCIA JAKO KRZYWA SZNUROWA

Dla znalezienia linji ugięcia wypada, jak widzieliśmy, całkować równanie:

To całkowanie można także wykonać wykreślnie. Dla objaśnienia metody wykreślnej, przedsta­

Rys. 174

wimy konstrukcję, którą się posługują przy szukaniu 
momentów zginających w belce obciążonej w sposób 
ciągły.

Niechaj mn (rys. 175) przedstawia linję obciąże­
nia belki /IB. Jej rzędnym należy przypisać wymiar siły 
podzielonej przez długość, aby pole paska elementar­
nego qdx określało obciążenie przypadające na element 
długości belki dx. Dla znalezienia momentów zginających 
dzielimy pole (powierzchnię) obciążenia rzędnemi 
(wykropkowanemi na rys. 175) na kilka części i zastępu­
jemy każdą część siłą skupioną w jej środku ciężkości. 
Jeżeli dla otrzymanego w ten sposób układu sił skupio­
nych wykreślimy wielobok sznurowy, to rzędne tego wie- 
loboku, odpowiadające punktom podziału, określą dokładnie 
wielkości momentów zginających w tych punktach. Te
wielkości znajdujemy, jak wiadomo, mnożąc owe rzędne, 

mierzone w podziałce długości, przez odległość biegunową H, mierzoną w podziałce 
sił. W innych punktach są momenty, przedstawione rzędnemi wieloboku, widocznie nieco większe 
od momentów, odpowiadających danemu obciążeniu ciągłemu. Powiększając liczbę części, na które 
podzieliliśmy powierzchnię obciążenia, zwiększymy zarazem liczbę boków odpowiadającego wielo- 
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boku sznurowego, a zmniejszymy różnicę między momentami, określonemi przez rzędne wieloboku, 
a momentami odpowiadającemi danemu obciążeniu. W granicy zamieni się przeto wielobok sznu­
rowy na krzywą sznurową, przedstawiającą ściśle diagram momentów zginających przy danem 
obciążeniu ciągiem1).

Ustawimy teraz równanie różniczkowe naszej krzywej sznurowej. Styczna do krzywej 
w jakimkolwiek punkcie /V tworzy z osią X kąt cp. Poprowadźmy w wieloboku sił odpowiadający 
promień OF, to dla kąta nachylenia stycznej otrzymamy:

dx “ OL
(a)

jeżeli OL oznacza promień poziomy o wielkości H. Przy przejściu od punktu N do nieskończe­
nie bliskiego punktu Ni zmienia styczna swój kierunek. Jeżeli stycznej w odpowiada promień 
OK, natenczas dla tang, kąta nachylenia stycznej w można napisać wyrażenie:

+ = .................... w
dx \dx J OL

Odejmując od (b) równość (a), otrzymamy:
dy\ FK _ qdx*) 

a\dx) ~ OL~ H ’
a zatem równaniem różniczkowem krzywej sznurowej będzie:

=« ■...................................................... (*05)

Wykreślna konstrukcja linji ugięcia polega na zupełnej zgodności tego równania z równaniem
d^ vróżniczkowem zgiętej osi belki El,* = M. Natężeniu obcią- U

żenią q odpowiada w równaniu linji ugięcia wielkość momentu 
zginającego M, zaś odległości biegunowej H — wielkość sztyw­
ności belki przy zginaniu EL Dla wykreślenia linji ugięcia 
trzeba sobie przedstawić belkę pod wpływem pewnego fikcyj­
nego obciążenia ciągłego, zmieniającego się według tego samego 
prawa, co i moment zginający M i skonstruować dla tego obcią­
żenia krzywą sznurową, przyjąwszy za odległość biegunową 
wielkość EL Przy tej konstrukcji wypadnie pole obciążenia po­
dzielić na części, obliczyć pole każdej części, a wielkość tego 
pola odciąć w pewnej podziałce na wieloboku sił. Ponieważ wy­
miarem rzędnych linji obciążenia jest w danym przypadku: 
siła X długość (moment), więc pola będą mieć wymiar siła X (dłu­
gość)8. Jest to zarazem i wymiar sztywności belki EL Obrawszy 
teraz pewną podziałkę dla wielkości o wymiarze: siła X (dłu­
gość)2, będziemy w tej podziałce odcinać elementy pola obcią­
żenia na wieloboku sił, jakoteż odległość biegunową. Odpowia­
dająca krzywa sznurowa będzie mieć równanie różniczkowe 
identyczne z równaniem różniczkowem linji ugięcia belki. Dla 
otrzymania przy pomocy tej krzywej ugięć belki, trzeba popro­

wadzić bok zamykający tak, aby uczynić zadość warunkom na końcach belki i od tego boku mie­
rzyć rzędne. Objaśnimy to bliżej na szczegółowych przykładach.

I. Belka w obu końcach podparta. Przy obciążeniu siłą skupioną P w środku belki 
przedstawia się diagram momentów jako trójkąt równoramienny MNP (rys. 175, fig. a) o wyso-

x) [Tę krzywą kreślimy w praktyce z dostateczną dokładnością, wpisując w otrzymany wielobok sznurowy luki para­
boliczne, styczne do boków w punktach, odpowiadających rzędnym, któremi podzieliliśmy obciążenie na części].

2; FK = qdx, ponieważ odcinek wyznaczony dwoma promieniami na wieloboku sił musi się równać wypadkowej 
wszystkich sił między odpowiadającemi bokami wieloboku sznurowego. W rozpatrywanym przypadku jest ta wypadkowa 
równa obciążeniu qdx między przekrojami, przechodzącemi przez N i Nt.
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PIkości —r . Ten trójkąt uważamy za powierzchnię obciążenia i dzieląc go np. na 4 części o tej sa- 4
mej szerokości równej -j-, kreślimy odpowiadający wielobok sznurowy dla odległości biegunowej 4
H=EI, a następnie wpisujemy w wielobok krzywą sznurową. Odległość biegunową odmierzamy 
przytem oczywiście w podziałce fikcyjnych sił, których wymiarem jest: siła X (długość)2. Równa­
niem różniczkowem lewej części tej krzywej będzie:

..............................w
Gdybyśmy mierzyli rzędne y od dowolnej prostej x'x' (fig a) w płaszczyźnie X Y, zamiast od 
osi X-ów, to i te rzędne czyniłyby zadość równaniu (c), Zmiana położenia osi, od której mierzymy 
rzędne, jest bowiem równoznaczna z podstawieniem w rów. (c) wielkości yt = y — ax — b zamiast 
wielkości y. Aby otrzymać ugięcia belki będziemy mierzyć rzędne krzywej sznurowej od linji za­
mykającej S T, łączącej punkty przecięcia krzywej z pionowemi, przechodzącemi przez podpory 
belki/I iB. Przy takim obiorze boku zamykającego nietylko czynimy zadość równaniu (c) lecz także 
i warunkom podporowym; y staje się zerem przy x = 0 i x = l. W przekrojach pośrednich będzie 
przeto y dawać rzeczywiste ugięcie belki i to w tej samej skali, w której wykonano rysunek belki. Taka 
konstrukcja nie dałaby się jednak najczęściej wykonać, albowiem dopuszczalne ugięcia nie przekra­

czają do —rozpiętości. Dlatego zwiększamy podziałkę 

ugięć wielokrotnie zapomocą stosownego zmniejszenia odległości 
biegunowej. Skoro np. zamiast H = El odmierzymy jako odle­

głość biegunową E/, to otrzymamy rzędne linji ugięcia 100 ra­

zy większe. Dla pewnego pomyślanego obciążenia pozostaje bo­
wiem moment określony iloczynem z odległości biegunowej H 
i rzędnej krzywej sznurowej stałym, jakiekolwiek obierzemy H.

II. Belka jednym końcem utwierdzona. Przy 
obciążeniu siłą P działającą na swobodny koniec belki (rys. 176) 
przedstawia się linja momentów jako prosta CB nachylona 
względem osi X. Przyjąwszy pole trójkąta A CB za powierzchnię 
obciążenia fikcyjnego, kreślimy dla tego obciążenia krzywą 
sznurową MNPO,, której równanie różniczkowe ma postać:

Ażeby otrzymać ugięcia belki, należy rzędne y mierzyć od prostej M R, stycznej do krzywej sznu­
rowej w punkcie x = 0, odpowiadającym miejscu utwierdzenia. Przy takim obiorze linji zamyka­
jącej czynimy zadość warunkowi krańcowemu u lewej podpory, a mianowicie: (y)x==j=O. Drugi 

) = 0, będzie również spełniony, ponieważ biegun O obraliśmy tak, aby linja 
UX / x=0

zamykająca MR\\0G wypadła pozioma.

§ 78. WYKREŚLNO-ANALITYCZNY SPOSÓB WYZNACZENIA UGIĘCIA BELEK

Zważywszy, że ugięcie belki określają rzędne wieloboku sznurowego, wykreślonego dla linji 
momentów jako linji obciążenia, możemy zastąpić konstrukcję krzywej sznurowej obliczeniem 
momentów dla tego fikcyjnego obciążenia i tą drogą znaleźć ugięcia. Kombinując w ten sposób 
przejrzysty obraz geometryczny linji momentów z prostym rachunkiem, omijającym najczęściej 
całkowanie, możemy dojść do celu nawet prędzej, niż metodą ogólną. Do objaśnienia sposobu 
posłużą następujące przykłady:

I. Belka AB w obu końcach swobodnie podparta i obciążona w środku siłą P 
PI(rys. 177). Linja momentów przedstawia się jako trójkąt ńCB o wysokości -z-. Uważając go za linję4
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PI 1 PI2
obciążenia otrzymujemy całkowitą wartość fikcyjnego obciążenia 4 gT’ a za^cm fikcyjna

P l*reakcja równa się . Ażeby wyznaczyć ugięcie belki, wystarczy obliczyć moment M, wywołany 

fikcyjnem obciążeniem i podzielić go przez odległość biegunową, która się równa sztywności belki EL
A zatem ugięcie w dowolnym punkcie: 

M
y~ El ’ '

PI2 l PI* 1W środku belki jest M = -77- • -------- 77 • 71 16 2 16 3
a zatem strzałka ugięcia

f 1 PI3
El' 48 ’

. (106)

l PI3 
2 " 48 ’

Tangens kąta nachylenia 
równania (106), czyli:

stycznej
co otrzymaliśmy już poprzednio (wzór 93) drogą ogólną, 
do linji ugięcia znajdziemy teraz przez różniczkowanie

(107)dy _ 1 dM _ 
dx ~ El dx ~ El

przyczem Q oznacza siłę poprzeczną, powstała wskutek fikcyjnego obciążenia. Zastosujemy tę for­
mułę do obliczenia kątów nachylenia stycznych do linji ugięcia na podporach. Tutaj siła poprzeczna 

PI*jest co do wielkości równa reakcji a zatem szukane kąty:
PI*

Aby wartości kątów zgadzały się i co do znaku z reakcjami podporowemi, wywołanemi fikcyjnem 
obciążeniem, przyjmiemy za dodatnie: obrót lewego końca belki w kierunku wskazówki zegara, 
a prawego w kierunku przeciwnym.

II. Belka AB w obu końcach swobodnie podparta i zginana obciążeniem 
rozłożonem równomiernie o wielkości gkgjm (rys. 178). Diagram momentów jest para­

bolą A C B, której rzędna wierzchołkowa równa się q l*. 

Odpowiadające całkowite obciążenie fikcyjne równa się 
2 ql* , . . , . . . ql* .l, a reakcje podporowe równają się Kątyna- 3 8 ĆA
chylenia linji ugięcia na podporach wypadają z wzoru (107),
a mianowicie:

*1-*2~24E/ . (108)

W celu obliczenia strzałki ugięcia zaznaczymy, że środki ciężkości wycinków parabolicznych ACD 
5

i BCD leżą w odległości 16 / od pionowych podporowych1). Fikcyjnym momentem zginającym 

w środku belki będzie przeto:

l

.. ql3 l ql3 31 5 u ... . . f M 5 qP
24 2-“24”16 = 384 a S‘rZałka UgI?C'a /= E7 = 384 'ET

*) Według znanego wzoru dla środka ciężkości ligur płaskich mamy:

o

dx
o

= — l.
16
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III. Belka w obu końcach swobodnie podparta i obciążona siłą skupioną P 
w dowolnym przekroju (rys. 179). Diagram momentów przedstawia się jako trójkąt A! C B'.
Ażeby znaleźć ugięcia, przyjmiemy linję A' C B' za linję obciążenia ciągłego, którego wielkość równa 
się polu trójkąta A'C' B'. Dla znalezienia reakcji podporowych, wywołanych pomyślanem obciążeniem, 
wyznaczymy położenie środka ciężkości O trójkąta A'C'B'. Odległość 
pionowej, przechodzącej przez O, od prawego końca B' będzie równa
- (b + /). Reakcje podpór otrzymają przeto wartości:

n, Pab b + l 1 Pab(b + .l)
A 2 ’3 ' / 6/ ’

o, Pab a + l 1 Pab(a + l) 
’T“ T

Kąty obrotu końców belki określą wzory:
Pab(b+l) Pab(a + l)

61 El ’ 2 61 El
hys. 179

Ugięcie obciążonego przekroju znajdziemy, utworzywszy dla tego miejsca wyrażenie na moment M 
wskutek pomyślanego obciążenia:

Pab(b + 1) Pa2b a
” 61 ' 2/3

Pa*b* t Pa*b*
’ z czeg0 "hei-

Ugięcie jakiegokolwiek przekroju lewej części belki w odległości x od lewej podpory:
1 i Pab(b + l) Px~b x i Pbx(P — '2 — X2) 

y' = TT 1 6/ ■ X 2~r ' 3” I “ 6ZE7

Rys. 180

Dla dowolnego przekroju po prawej stronie siły P będzie ugięcie w odległości xt od prawej podpory: 
Pax. (P— a2 — x2) 
----- blEl~ ■

Otrzymane wyniki łatwo doprowadzić do zgodności z tern, co znaleziono poprzednio przez całko­
wanie równania różniczkowego.

IV. Posługując się metodą wykreślno-analityczną, łatwo otrzymać formuły dla kątów i 
(rys. 180) przy zgięciu belki parą sił, działającą na jej koniec, np. A. Reakcjami podpo- 

rowemi będą w tym wypadku:
A = - M , B=+

Diagram momentów zginających przedstawia się jako trójkąt 
A' C' B'. Uważając U B' za linję obciążenia, znajdziemy dla od­
powiadających fikcyjnych reakcyj wartości:

a/ 2 .W/ . o 1 Ml
“ 3 2 1 3 2 '

Szukane kąty obrotu stycznych końcowych określą przeto wzory: 
„ Ml 

1 $Er 
końcem utwierdzona, 

a na drugim swobodnym obciążona siłą P (rys. 181). 
Diagram momentów ma postać trójkąta prostokątnego A' C'B' 
o wysokości PI, równej momentowi utwierdzającemu. Uwa­
żając ten diagram za linję obciążenia, otrzymamy ugięcia z for­
muły (106), jeżeli obliczymy fikcyjne momenty; Do tego 
potrzebna jest znajomość fikcyjnych reakcyj, które muszą czynić 
zadość warunkom podporowym. W poprzednich przykładach 
belek obu końcami swobodnie podpartych wyznaczaliśmy 
i fikcyjne reakcje tak, jak dla belki w obu końcach podpartej, 
ponieważ ugięcia na podporach, a więc i fikcyjne momenty

V. Belka AB iednvm

3 2 6EI

Rys 181

9Kurs wytrzymałości materjałów 
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w tych punktach, muszą być równe zeru. Tutaj jednakże w miejscu utwierdzenia A jest 0

i 
ax

0, a więc fikcyjny moment i siła poprzeczna muszą być równe zeru, co wymaga przy­

jęcia, że koniec A! jest swobodny, a fikcyjna reakcja i moment utwierdzenia wystąpią na końcu
pp . PP

Pierwsza ma widocznie wielkość B = y- , moment utwierdzenia zaś M = - _ /. Ugięcie koń- O
ca B (strzałka ugięcia) przedstawia zatem wyrażenie:

f_ M _ PP 
El “ 3EI ’

, . , , . . . , . B' 1 PPzas tangens kąta nachylenia stycznej równa się - y

VI. Belka wystająca (wspornikowa), swobodnie podparta na końcu A i w punkcie B, 
a obciążona na drugim końcu C siłą skupioną P (rys. 182). Momenty zginające, przedstawione 
trójkątnym diagramem A'D'C' są widocznie ujemne. Uważając je za fikcyjne obciążenie rozpa­
trzymy odpowiadające warunki podporowe. Reakcje podporowe można przyjąć tylko w punktach 
A' i C'; gdybyśmy bowiem umieścili reakcję w jakimkolwiek pośrednim punkcie, to fikcyjna siła 

poprzeczna doznałaby w tem miejscu nagłej zmiany, którejby odpo­
wiadał załom w linji ugięcia. Taki zaś załom jest oczywiście 
wykluczony. Ponieważ ugięcie w punkcie A jest równe zeru, więc 
w punkcie A' należy umieścić tylko reakcję. W punkcie zaś C trzeba 
nadto działać momentem podporowym, odpowiadającym ugięciu f 
w tym punkcie. Wielkość reakcji A' znajdziemy z warunku, że mo­
ment zginający wskutek fikcyjnego obciążenia w przekroju B jest 
równy zeru, bo ugięcie jest zerem. A zatem:

ar, Pcl / af Pcl= zczeg0 /i = --T-.

Wtedy reakcja C' wypadnie z równania:
Pc(l+C) .. 1 iC\A + C — \ ’ CZyh c - — Pe ( _-+ y 1 •

Moment podporowy M w punkcie C' znajdziemy jako moment wszystkich sił fikcyjnych, działają­
cych na belkę A'C', względem punktu C', a więc:

Pc(l + c) l + 2c _ Pcl } Pc'(l + c) 
M - - 2 3 6 ' ’ ~ 3

Teraz możemy bez trudności wyznaczyć ugięcia i kąty nachylenia stycznych w różnych przekro­
jach belki. Dzieląc np. wielkości A' i M przez El, otrzymamy:

Pcl Pc^l + c)
1 6 El’ Tc 3 El

Też same wyniki można otrzymać prościej, posługując się zasadą superpozycji.

§ 79. BELKI O RÓWNOMIERNEJ WYTRZYMAŁOŚCI PRZY ZGINANIU
Dotąd przyjmowaliśmy zawsze, że pręty narażone na zginanie mają postać symetryczną. 

Rozmiary pręta obieraliśmy w ten sposób, aby w przekroju niebezpiecznym, t. j. w przekroju, gdzie 
moment zginający ma największą wartość, uczynić zadość warunkowi wytrzymałości. Rzecz jasna, 
że wyznaczone w ten sposób rozmiary przekroju poprzecznego będą dla wszystkich innych prze­
krojów, z wyjątkiem przekroju niebezpiecznego, zbytecznie wielkie. Moglibyśmy je zmniejszyć bez 
uszczerbku dla wytrzymałości, dobierając wymiary każdego przekroju stosownie do zachodzącego 
w nim momentu zginającego i siły ppprzecznej. Wtedy w każdym przekroju otrzymamy wytężenie 
materjału równe dopuszczalnemu i dalej nie można pójść ze zmniejszeniem rozmiarów bez osła­
bienia belki. Otrzymana takim sposobem postać pręta nosi nazwę belki o równomiernej wytrzy­
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małości. W licznych przypadkach, kiedy można pominąć wpływ sił poprzecznych, wyprowadzamy 
ogólny warunek, któremu powinna czynić zadość taka postać belki z podstawowej formuły

M zmienia się wzdłuż belki i według tego samego prawa należy zmieniać moduł przekroju W. 
Przyjmujemy przytem, że wzór powyższy, wyprowadzony dla prętów pryzmatycznych, można z do- 
statecznem przybliżeniem zastosować do prętów o przekroju zmiennym. Będzie to niewątpliwie 
słusznem, o ile zmiany przekroju są dość łagodne.

Dla porównania przytoczymy dokładne rozwiązanie zadania w przypadku, przedstawionym na rys. (183). Belka jednym
końcem utwierdzona, a na drugim obciążona siłą P, ma postać klina o stałej grubości 
w kierunku prostopadłym do płaszczyzny rysunku. W dowolnym punkcie B przekroju mn 
określają naprężenie normalne i styczne wzory następujące r):_ , 4{1 „ = v ’5in<,,.

1 \ a ! ’ ‘ I \ a /
Tutaj oznacza I moment bezwładności przekroju mn, y rzędną punktu B, kąt, jaki two­
rzy wektor AB z kierunkiem siły i 2 a kąt wierzchołkowy klina. Przy małej wartości kąta << 
różni się czynnik j sin4 >> mało od jednostki, wobec czego rozkład naprężeń normal­

nych różni się bardzo mało od linjowego rozkładu w przypadku stałego przekroju. Znaczna na­
tomiast różnica zachodzi w rozkładzie naprężeń stycznych, które stają się zerem dla y=0, 

3P .gają największą wartość około —p- , t. )• trzy razy większą od wartości średniej2).

a we włóknach skrajnych osią-

Rozpatrzymy teraz parę przykładów belek o równomiernej wytrzymałości.
Belka jednym końcem utwierdzona i obciążona na drugim, swobodnym, siłą

skupioną P (rys. 184). Moment

Rys. 184

zginający w dowolnym przekroju o odciętej x, mierzonej od 
końca B, jest bez względu na znak, równy Px. A zatem przy 
postaci równej wytrzymałości musi IV czynić zadość warunkowi: 

P x = const. = R . . . (a)

Zadanie jest widocznie jeszcze nieoznaczone nawet wtedy, gdy 
obierzemy jako postać przekroju, dajmy na to prostokąt. Ozna 
czonem staje się zagadnienie dopiero, gdy postawimy waru­

nek dodatkowy, że np. podstawa prostokąta ma być stałą. Wówczas 
wysokość y będzie się zmieniać według równania:

W by2 ’

jeżeli przez h oznaczymy wysokość przekroju w miejscu utwierdze­
nia. Stąd:

czyli kontur belki otrzyma w widoku postać paraboli, której wierzchoł­

kiem jest swobodny koniec belki (rys. 185). Ponieważ pole paraboli równa się ■ pola O opisanego

prostokąta hl, więc znaleziona postać równomiernej wytrzymałości dałaby okrągło 33% oszczę­
dności na materjalea).

9*

*) Ob. S. P. Timoszenko; „Tieorja uprugosti*. 1914, str. 130.
2) [Ten wynik prowadzi napozór do sprzeczności ze znanym rozkładem parabolicznym w przypadku stałego prze­

kroju prostokątnego. W rzeczywistości jednak ta sprzeczność nie zachodzi, ponieważ, przy określonej wielkości przekroju mn, 
i danym momencie M w tymże przekroju, sprowadza się przedstawione rozwiązanie dla a = 0 do szczególnego przypadku 
czystego zginania. W istocie, gdy a staje się zerem, to punkt działania siły P oddala się do nieskończoności, a więc siła P, 
określająca wartość siły poprzecznej znika wobec momentu M].

3) [Przy założeniu, że ciężar własny belki jest znikomy w porównaniu do obciążenia P].
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[W rzeczywistości trzeba ze względu na siłę poprzeczną zmodyfikować nieco otrzymany kształt belki. Na swobodnym 
końcu belki jest wprawdzie moment zerem, ale siła poprzeczna ma tę samą wartość, co w innych przekrojach, wskutek 
czego musi przekrój na końcu belki mieć wartość skończoną. Wywołane przez to zwiększenie ilości materjału będzie wi­
docznie nieznaczne, o ile stosunek l: h jest dość wielki].

Co się tyczy ugięcia belki o równomiernej wytrzymałości, to oczywiście będzie ono większe, aniżeli dla belki o sta­
łym przekroju i da się obliczyć przy pomocy równania różniczkowego linji ugięcia z tem samem mniej więcej przybliże­
niem, do jakiego prowadzi przyjęcie linjowego rozkładu naprężeń dla belki o zmiennym przekroju. Łatwo zrozumieć, że to 
przybliżenie będzie tem znaczniejsze, im łagodniejsza zmiana przekroju wzdłuż belki, czyli im mniejsze kąty nachylenia 
tworzą z osią belki styczne do jej przekrojów południkowych. Przeprowadzając rachunek dla naszego przypadku, musimy 
w równaniu różniczkowem linji ugięcia

El i=Px dx2
uważać l za zmienne i wstawić zań wartość

. _ bh^ / xp
12 \ 1 / ’

zatem * 3 3 _ i 3
d^y = 12PxP 12P^X ? dy = 12PP |
dx‘2 i ’ ’ dx Ebha +

Ebh3x^
Stałą dowolną C wyznaczymy z warunku, aby dla x = / był kąt nachylenia stycznej równy zeru. Stąd:

24PP _ 2PP
C~ Ebh 3 ~ E l. '

bh*. ...... . .przyczem /0 = jest momentem bezwładności przekroju w miejscu utwierdzenia. Powtórne całkowanie daje:
3

12PP 3 | 24P12 ,
y = T X------- CLL< X + Cl .J Ebh* 4 Ebh*

Z warunku: dla x=l jest y = 0, znajdujemy wartość stałej

1 Ebh*'
Ta stała określa zarazem ugięcie swobodnego końca belki, t. j.:

2PP
' 3EI0 ’

które przeto wypada dwa razy większe, niż u belki o stałym przekroju bh. Oszczędność matcjjału jest okupiona zmniej­
szeniem sztywności pręta.

Jeżeli przyjmiemy jako warunek dodatkowy dla określenia postaci belki o równomiernej wy­
trzymałości, że wysokość prostokątnego przekroju pozo sta je stałą, natenczas zmienna 
szerokość, którą oznaczymy przez y, dogadza równaniu:

6Px 6PI
= const.,h2y bh2

przyczem b oznacza szerokość przekroju utwierdzonego. Stąd
b

czyli szerokość zmienia się linjowo. Ilość materjału na taką belkę jest widocznie dwa razy mniej­
sza, aniżeli w belce o stałym przekroju bh.

Linja ugięcia naszej belki jest lukiem koła, albowiem
M 12Px \2Pxl PI

pp El " Eh>y Ebh‘x El.. “ const’

czyli krzywizna jest stałą. Stąd łatwo znaleźć strzałkę ugięcia f (rys. 186), posługując
Rys. 186 się proporcj ą f: / /: (2 f > /),

z której po opuszczeniu małej wielkości P w obec 2pf wypadnie:
P _l* PI _ PP 

Z 2p ~ 2 El. ~ 2EI.

Ugięcie jest zatem o 50% większe, aniżeli w przypadku stałego przekroju o momencie bez­
władności I..
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Znaleziony kształt belki o równomiernej wytrzymałości ma oddawna zastosowanie praktyczne 
do gibkich sprężyn. Niechaj ABC przedstawia rzut poziomy sprężyny (rys. 187). Przy znacznej 
wielkości zginającej siły wypada szerokość AC w miejscu utwierdzenia bardzo wielka i wskutek 
tego niewygodna. Tę trudność omija się w sposób następujący: Wyobraźmy sobie sprężynę ABC 
pociętą na parzystą liczbę pasków w sposób przedstawiony na górnej figurze rys. (187). Jeżeli te 
paski ułożymy na sobie tak, jak to uwidoczniono na figurze dolnej (w dwu rzutach) i zapewnimy 
wzajemne przyleganie pasków podczas zginania, to z pominięciem tarcia, będzie tak przekształcona 
sprężyna działać w warunkach bardzo zbliżonych do poprzednich. W prakty- 
cznem wykonaniu tworzą każde dwa paski leżące obok siebie jedną całość, co 
jednakże nie wpływa zupełnie na działanie sprężyny. Łatwo zauważyć, że giętkość 
sprężyny zależy w tych samych zresztą warunkach od grubości h. Z warunku 
wytrzymałości wypada bowiem dla przekroju utwierdzonego: 

Plh 
2R

Rys. 187

W Pl ł /W„ - , a zatem /0 = y

Wstawiwszy tę wartość we wzór dla f, otrzymamy:
„ Rl*
' Eh ’

czyli strzałka ugięcia jest odwrotnie proporcjonalną względem grubości 11. Im cieńsze są wstęgi,
z których sprężyna jest złożona, tern większa będzie giętkość (podatność) sprężyny ')•

Belka w obu końcach podparta i obciążona równomiernie na całej długości l rys. (188). Przyj- 
miemy przekrój prostokątny o stałej szerokości b. Momentem zginającym w dowolnym przekroju mn będzie:

M~ 2 x- 2 - • 
Jeżeli zmienną wysokość belki oznaczymy przez y, to dla jej obliczenia mamy

8bhv
równanie: ąx2 j

2) [Tak dokładne dobranie przekroju udaje się rzadko, gdyż wymiary ścianki i nakładek określają okrągłe liczby mm, wzglę­
dnie cm. Zwykle zatem wypadnie przyjąć przekrój o nieco większej wartości W, od wymaganej przez warunek wytrzymałości].

2 I = const-. by2

Rys. 188

przyczem h oznacza wysokość przekroju w środku rozpiętości. Stąd: 

y*= (lx-x>).
czyli kontur belki w widoku jest elipsa o osi wielkiej /, a małej h.

Przy szukaniu postaci belki o równomiernej wytrzymałości nie braliśmy dotychczas pod uwagę 
naprężeń ścinających. Tern się tłumaczy, że np. dla belek jednym końcem utwierdzonych otrzy­
maliśmy kształty, u których pole przekroju poprzecznego na drugim końcu, obciążonym siłą sku­
pioną, staje się zerem. Skoro uwzględnimy ścinanie, to wypadnie przekrój poprzeczny skończony 
i należy go dobrać tak, aby największe naprężenie styczne nie przekroczyło dopuszczalnej wartości.

Belki nitowane kształtu J.
U belek nitowanych osiąga się zmienność przekroju zapomocą różnej ilości nakładek o stałej

grubości. Wskutek tego przekrój nie może się zmieniać 
rachunku przedstawimy na liczbowym przykładzie belki 
o rozpiętości 10 m, niosącej równomiernie rozłożone 
obciążenie 5Q00kglm. Rozmiary belki wyznaczymy tak, 
aby największe naprężenia normalne nie przekraczały 
1000 kglcm*.

Paraboliczny diagram momentów przedstawia ry­
sunek (189). Największemu momentowi w środku belki

a " 
so"

.1 M
Mmax — -a 5000.102 kgm = 625.104 kgcm odpowiada W—= 8 K
= 6250 cm3. Przekrój z trzema nakładkami o rozmiarach 

w sposób ciągły, lecz stopniami. Tok

Rys ^189

uwidocznionych na fig. (t>). posiada, po
odliczeniu otworów na nity moduł Wj 6250 cm3, w sam raz odpowiadający Mmax

*) Kilka interesujących przypadków belek o zmiennym przekroju rozpatrzył H. Błasi u s wart. „Trager kleinster 
Durchbiegung und Stabe grósster Knickfestigkeit bei gegebenem Materiały erbrauch*- Z. f. Math. 
u. Phys. Bd. 62. Str. 182.
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Zdjąwszy po jednej nakładce, otrzymujemy przekrój o module IV., 4980 cm3. Dopuszczal­
nym momentem zginającym dla tego przekroju będzie M2 4980.1000 = 498.104 kgcm.

Po zdjęciu dwu nakładek mamy IV :i 3640 cm’, a odpowiadający moment M3=364.104kgcm.
Nakoniec przekrój bez nakładek, złożony ze ścianki i czterech kątówek ma W4 - 2280 cm3, 

a M4= 228. 104 kgcm.
Ażeby teraz wyznaczyć długość nakładek, kreślimy na diagramie momentów (fig. a) proste 

równoległe do osi belki /IB, których rzędne przedstawiają wielkości momentów M2, M2 i M 
Odpowiadające im cięciwy paraboli określają widocznie teoretycznie potrzebne długości nakła­
dek. Tę długość należy powiększyć o wielkość konieczną dla połączenia nitami z zewnętrznemi 
częściami belki. Otrzymany w ten sposób kształt belki zbliża się dość dobrze do teoretycznej po­
staci równomiernej wytrzymałości i daje znaczną oszczędność materjału. Zato ugięcie takiej belki 
będzie większe niżby było, gdybyśmy obrali przekrój wszędzie stały.

Linję ugięcia możnaby wyznaczyć analitycznie, podzieliwszy belkę na części o przekroju sta­
łym, ale o wiele prościej dochodzimy do celu drogą wykreślną, wskazaną w § 77. Zmianie prze­
kroju w oddzielnych częściach odpowiada zmiana odległości biegunowej H ~ El. Niechaj np- 
części Li 5 diagramu momentów (rys. 190) odpowiadają przekrojom z jedną nakładką, części 2 i 4

przekrojom z dwiema nakładkami, a część 3 
przekrojowi o trzech nakładkach. Wy­
kreślmy wielobok sił fikcyjnych 1, 2, 3, 
4, 5 (fig. b), których wielkość przedstawia 
w znanej skali odpowiednie pola powierz­
chni momentów, uważanej za powierzchnię 
obciążenia. Obierzmy biegun O w odle­
głości H, równej największej sztywności 
belki i poprowadźmy zeń dwa promienie 
ograniczające odcinek 3, odpowiadający 
części belki z trzema nakładkami. Dla wy­

kreślenia następnych promieni obieramy bieguny w odległości H., równej sztywności belki
przy dwu nakładkach i z tych biegunów prowadzimy promienie do początku odcinka 2 i końca 
odcinka 4. Nakoniec dla odcinków skrajnych obieramy bieguny O2, O2 w odległości H2, odpowiada­
jącej sztywności belki przy jednej nakładce i kreślimy promienie skrajne. Wykreśliwszy teraz wie­
lobok sznurowy o bokach równoległych do odpowiednich promieni i wpisawszy weń w znany spo­
sób krzywą sznurową, otrzymamy linję ugięcia belki w skali 
rysunku belki, jeżeli odległości biegunowe odmierzyliśmy w skali 
n-razy mniejszej od skali sił fikcyjnych 1, 2, ...5.

Zamiast zmieniać odległość biegunową dla wykreślenia 
wieloboku sznurowego, można przekształcić stosownie powierz­
chnię momentów, jako powierzchnię fikcyjnego obciążenia. 
W tym celu zatrzymujemy np. część środkową (rys. 190, fig. a), 
odpowiadającą przekrojom o momencie bezwładności It, a rzę­
dne części 2 i 4 powiększamy w stosunku :I2, jeżeli /2 ozna­
cza moment bezwładności przekroju w tych częściach. Tak 

n-razy większej od skali długości

Rys. 191

samo zwiększamy rzędne części 1 i 5, w których momentem bezwładności przekroju jest /3, a mia­
nowicie w stosunku I :73. Kreśląc dla tak przekształconej powierzchni fikcyjnego obciążenia krzywą 
sznurową przy odległości biegunowej H El}, otrzymamy również linję ugięcia belki, albowiem

47
wartość krzywizny określa ułamek , a zamiast zmiejszać jego mianownik, kładąc kolejno 

po Ą wartość 12 i Ą, można to samo osiągnąć przez zwiększenie licznika M w stosunku Ij:l2 
i Ir:l3. Rys. (191) przedstawia przekształconą w ten sposób powierzchnię momentów z rys. (189), 
odpowiadającą rozpatrywanemu powyżej przykładowi liczbowemu.
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§ 30. WPŁYW SPOSOBU ROZŁOŻENIA OBCIĄŻEŃ NA WIELKOŚĆ MOMENTU ZGINAJĄ­
CEGO I STRZAŁKĘ UGIĘCIA BELEK

Przy obliczeniu belek wypada nieraz zastąpić dane obciążenie, rozłożone na niewielkiej części rozpiętości, innem 
obciążeniem temuż statycznie równoważnem. Często np. zastępujemy obciążenie, rozmieszczone na niewielkim odcinku b

Rys. 192

(rys. 192) jedną siłą skupioną w środku ciężkości powierzchni obciążenia. Jak się 
odbija taka zamiana obciążenia na wielkości największego momentu zginającego, na 
wielkości ugięcia i kątach obrotu końców belki? Aby odpowiedzieć na to pytanie 
zastosujemy z korzyścią sposób wykreślno-analityczny. Zastąpienie obciążenia cią­
głego siłą skupioną wywołuje zmianę diagramu momentów tylko na długości b obcią­
żonej części (fig. b). Zamiast linji łamanej ACB, odpowiadającej sile skupionej, 
otrzymamy przy rozłożeniu obciążenia na odcinku b krzywolinjowy kontur mnp. 
Różnice momentów przy dwu różnych sposobach obciążenia będą się zmieniać wi­
docznie według tego samego prawa, co wielkości momentów zginających dla be- 
leczki mi (fig. ć) o długości b, podpartej w punkcie D, który leży na pionowej 
środka ciężkości powierzchni obciążenia miPięiHt. Największa różnica momentów 
przy obciążeniach mających ten sam kierunek zajdzie w punkcie D.

Jeżeli obciążenie jest rozłożone równomiernie na odcinku b, to
gb = P, 

a największa różnica momentów równa się: 
gb2 Pb za

' 8 “ 8 ' ’ ................................................ )
Zmienność różnicy momentów przedstawiono na rys. (193). Zważywszy, że p} i pj są łukami parabol, sty­

cznych w mi i nt, znajdziemy, że pole zakreskowanej powierzchni momentów równa się:
1 g b2 ,_g b" _ Pb2 
3 ~8 b ~ 24 = ~24~.............................................

Gdy obciążenie odcinka b zmienia się według prawa trójkąta (rys. 194), to

p =
2 Rys. 193

Różnice momentów na obciążonej długości b są identyczne z momentami zginającemi dla beleczki mi Dni tejże długości, 
podpartej w D. Największą różnicą, odpowiadającą punktowi D jest:

qnb b Pb 
4*612

Pole powierzchni momentów, zakreskowanej na fig. (b), równa się: 
l

x gobs _ Pb2
2 \ b ’ 2 ’ 3 96 48 ...................................... 1 j

'0
Jeżeli założymy, że wszystkie siły obciążające odcinek b (rys. 192) mają jeden i ten sam 

kierunek, to największe różnice momentów przy przejściu od siły skupionej do innego układu sił, 
rozmieszczonych na długości b, powstaną w przypadku, gdy łuk mnp stanie się linją prostą, 
t. j. gdy siłę P zastąpimy dwiema siłami Pi i P^, działającemi po końcach odcinka b. Zmiana 
ż odcinka b, da się wówczas przedstawić momentami zginającemi 

dla belki, wyobrażonej na rys. (195). Największa różnica odpowiada punktowi D i równa się 
P P b 1-~ . W szczególnym przypadku

mamy różnicę równą
Pb 
4 

a odpowiadające pole powierzchni momentów, zakreskowane na rys. (195), równa się

W podobny sposób można zbadać różnice momentów, wywołane przez wszelkie inne zastąpienie obciążenia na od­
cinku b obciążeniem statycznie równoważnem. W najogólniejszym przypadku da się wartość największej różnicy, czyli 
błąd wielkości momentu, przedstawić formułą:

bM = k~b^,....................................................................................... (g)
4

w której P oznacza wypadkową obciążenia odcinka b, k zaś spółczynnik, zależny od rozkładu obciążenia. Przy zastąpieniu 
siły skupionej P dwiema równemi siłami (jak powyżej) będzie ten spółczynnik równy 1. W przypadku zastąpienia siły P

obciążeniem równomiernem gb jest k . Nakoniec, przy obciążeniu według prawa trójkąta (rys. 194), wypada k- • £ o
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Dla oceny względnego błędu wielkości momentów zginających, porównamy znalezione powyżej wartości 8A7 z war- 
p c ctością momentu pod ciężarem P, działającym w punkcie D (rys. 192). Ten moment równa się —j-- , a zatem względny 

błąd momentu można przedstawić wyrażeniem:
Pb . Pcci _ kbl 

* 4 ~ ~ 46^ (h)

Jeżeli odcinek b nie leży blisko podpór, czyli, gdy c i q są tego samego rzędu, co rozpiętość /, to względny błąd będzie rzędu - -.

Rozpatrzmy teraz, jak te zamiany obciążeń odbiją się na wielkości ugięć belki. Ażeby znaleźć ugięcia belki w obu koń­
cach podpartej, trzeba wyobrazić sobie tę belkę obciążoną powierzchnią momentów. Moment zginający wskutek otrzyma­
nego tą drogą fikcyjnego obciążenia, podzielony przez sztywność belki El, da nam szukane ugięcie w dowolnym przekroju 
belki. Skoro część belki b (rys. 192) jest równomiernie obciążona, to przy zastąpieniu tego obciążenia siłą P skupioną 

Pb2w punkcie D, zmniejszamy powierzchnię momentów o wielkość —(formuła b). Reakcja lewej podpory, wywołana fikcyj-
• . Pb2 cnem obciążeniem, zmniejszy się o -- • — ’ co spowoduje zmniejszenie momentu zginającego (wskutek tegoż fikcyjnego 

Pbccobciążenia) w przekroju D, w przybliżeniu, o wielkość • Dzieląc ten wynik przez El, otrzymamy zmniejszenie

ugięcia, uwarunkowane przez zastąpienie siły skupionej obciążeniem równomiernem na długości b, Zastępując siłę skupioną
Pb2obciążeniem trójkątnem (rys. 194), zmniejszamy powierzchnię momentów o wielkość - (wzór d). Temu odpowiada

zmniejszenie ugięcia równe Pb2 cci 
48 lEI ‘

p
Skoro siłę skupioną zastąpimy dwiema siłami równemi Px — P —, to otrzymamy zmniejszenie powie: zchni momentów

Pb2
równe —$— , a odpowiadające zmniejszenie ugięcia będzie równe

Pb2 ccf
”8" ' TeT '

W najogólniejszym przypadku można to zmniejszenie przedstawić wzorem:

Porównywując ten wynik z ugięciem
f =

Pb2 cci
1 ~8~ ’ lEI

Pc2cx2
T/ET’

wywołanem siłą skupioną w miejscu jej działania, znajdziemy
b2

CCi
jal*o wyrażenie dla względnego błędu ugięcia.

Gdy wielkości c i ct są tego samego rzędu, co l, to względny błąd ugięcia- będzie rzędu

do jednej z podpór, względny błąd (j) rośnie, zbliżając się do wielkości j & rzędu —

b2
. Z przybliżeniem siły P

Znalezione wyniki pozwalają łatwo ocenić yzpływ, jaki wywiera na 
żenią, rozpostartego na całej rozpiętości belki, lub na znacznej części 

równoważnem).
Jako przykład weźmiemy belkę

ugięcie belki zastąpienie jakiegokolwiek obcią- 
tejże, dowolnem innem obciążeniem (statycznie

Rys. 196

równomiernie obciążoną (rys. 196). Zastępując
na każdym odcinku o długości b obciążenie równomierne siłą skupioną P — qb, zwiększamy 

Pb2 lpole powierzchni momentów o —(form. b). Reakcje podporowe, wywołane od-

Pb2 lpowiadającem fikcyjnem obciążeniem, powiększą się o —— • Utworzywszy wyra­

żenie dla odpowiadającej zmiany momentu zgięcia, powstałego wskutek obciążenia fikcyj-
nego i podzieliwszy je przez EI, znajdziemy następujący wzór dla zmiany ugięcia 8 f 
w dowolnym przekroju mn:

Pb2
2b Ci 24

Ci 
b

qP b2 
~ ^EI ' P 1- • (k)

Rys 197
PJeżelibyśmy obciążenie równomierne każdego odcinka zastąpili dwiema siłami-—-

/

f 8

działającemi na końcach odcinka, to doszlibyśmy do obciążenia przedstawionego na rys. (197). Takiej zamianie towarzyszy 
zmniejszenie powierzchni momentów, a zatem i zmniejszenie ugięć. Z formuł (b) i (f) wynika, że zmniejszenie powierzchni 

I Pb2 Pb2 \ l Pb2 l
momentów równa się —----- b = ]2 b ’ wz^r przybierze przeto w danym przypadku postać:

gi* b* Ci / ct\ 
24EI l2 ' l \ I I
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Jako drugi przykład weźmiemy przypadek obciążenia belki, przedstawiony na rys. (198). Przy zastąpieniu tego obcią-

żenią siłami skupionemi P^ ,

• u • Pb*wierzchni momentów o • 48

działającemi w środkach ciężkości każdego z trójkątów, otrzymamy zwiększenie po- 

(ob. wzór d), a więc zamiast formuły (k) ma-

my teraz:
q^ b2

192EI F • (rn)
Rys. 198Skoro zaś obciążenie, przedstawione na rys. (198), zastąpimy obciążeniem równo-

miernie rozłożonem q—- ~ , to zmniejszy się powierzchnia momentów, a z nią i ugięcie belki. Zmniejszenie pola mo­

mentów równa się na podstawie wzorów (b) i (d):
Pb'2
24

PłM /
48 7 b ’

a zatem zamiast formuły (k) otrzymamy:

192 El
b2 
P

W podobny sposób można zbadać i inne przypadki zastąpienia jednego obciążenia innem statycznie równoważnem 
pierwszemu.

§ 81. WPŁYW NAPRĘŻEŃ ŚCINAJĄCYCH NA UGIĘCIE BELEK
Przy wywodzie podstawowego równania różniczkowego dla zgiętej osi belki (rów. 90) uwzględniliśmy tylko działanie 

momentu zginającego M. Zakrzywienie osi przedstawiało się jako skutek rozciągania podłużnych włókien po jednej stronie 
warstwy obojętnej i ściskania takichże włókien po drugiej stronie. Przy tern założeniu poprzeczne przekroje belki pozostają 
płaskiemi i prostopadłemi do zgiętej osi. W ogólniejszym przypadku zginania belki działają w płaszczyźnie przekroju po­
przecznego oprócz naprężeń normalnych jeszcze i naprężenia styczne, [uwarunkowane wielkością siły poprzecznej QJ. Wy­
wołane niemi odkształcenia mogą w pewnych warunkach okazać istotny wpływ na ugięcie belki. Ten wpływ ocenimy w na­
stępujący sposób:

Przez yt oznaczymy ugięcia, uwarunkowane działaniem samych momentów zginających, a przez y2 ugięcia wywo­
łane siłą poprzeczną; natenczas będzie całkowitem ugięciem w jakimkolwiek przekroju

y^yi+y*-
Stosownie do tego przedstawi krzywiznę linji ugięcia wyrażenie:

d-y _ d^
dx2 dx‘

d2y2 
dx2

Pierwszy wyraz po prawej stronie przedstawia krzywiznę określoną równaniem (90), drugi zaś daje krzywiznę wywołaną 
ścinaniem. Ponieważ chodzi o wyznaczenie krzywizny osi belki, więc trzeba wziąć pod uwagę naprężenia ścinające w ele­
mentach położonych w środkach ciężkości przekroju. Dla tych elementów da się kąt odkształcenia postaciowego [3 przed- 
stawić wzorem: = kQ = k dM 

' - FG FG dx ’ 
w którym k jest spółczynnikiem, zależnym od postaci przekroju poprzecznego (ob. wzory 71 i 73). Gdy nie zmienia się 
wzdłuż belki, to ścinanie nie wywoła oczywiście zakrzywienia osi, a dodatkowe ugięcie y2 będzie wyrażać linjowa funkcja x.
Krzywizna “^ ^2 ’ uwarunkowana zmianą kąta (3 wzdłuż osi belki, jest z tym kątem związana równaniem:

d2y2_ 
dx2

d|3 
dx

Znak minus pochodzi stąd, ponieważ dodatnim wartościom pochodnej odpowiada widocznie zakrzywienie osi wypukło- 

d^yścią ku górze, a więc przeciwnie, niż przy dodatnich wartościach ^2. [Układ spółrzędnych obrano jak powyżej w § 72

i następnych]. Uwzględniwszy powyższe równanie, jakoteż związek między i M, określony podstawowem równaniem (90)
otrzymamy:

d2^ = 
dx*

k d2M kEJ d2
FG dx2 FG ' dx*! \ dx2 I

Równaniem różniczkowem linji ugięcia belki będzie przeto:
EI / O2J = d2y kE£ d'2M

\ dx2 dx2' dx2 FG dx2 . (a)

Jako przykład rozpatrzymy zgięcie belki jednym końcem utwierdzonej pod obciążeniem złożonem 
z równomiernie rozłożonego ql i skupionego na swobodnym końcu P (rys. 167). Moment zginający określi w tym przy­
padku wyrażenie: 

M = — P(l — x) — q (l-x)2.
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Równanie różniczkowe (a) linji ucięcia belki przybierze postać:

£/d4
dx'

P(l-x)- q (1 12 I

Całkując je, znajdujemy:
Eiy=~p(lx2 4- 9X~ _i_ Cy _i_ dFG 2 + ‘3

Stała dowolna D ma wartość 0, ponieważ ugięcie utwierdzonego końca belki równa się 0. Co się tyczy stałej C, to ona
jest co do wielkości równa kątowi nachylenia względem osi X stycznej do linji ugięcia w utwierdzonym końcu belki. Ten 
kąt równa się zeru, jeżeli ustalenie końca jest tego rodzaju, że nie dopuszcza obrotu elementu osi belki przy zgięciu, 

atoli równa się k . » jeżeli ustalenie nie pozwala tylko na obrót elementu pola, wydzielonego z przekroju poprze­

cznego w jego środku ciężkości. W tym ostatnim bowiem przypadku element osi belki, położony u przekroju utwierdzo­
nego, tworzy z osią X-ów kąt, równy kątowi odkształcenia postaciowego wskutek siły poprzecznej P-\-ql, a zatem

' dx /x_o FG
Zależnie od sposobu utwierdzenia będzie tedy równanie linji ugięcia mieć jedną z następujących postaci:

l^3 , x4 \ El qx2
3 ' 12 I FG 2 ’

c4\ El q x2 P + ql
11 FG 2 FG3

W przypadku obciążenia samą,siłą skupioną P, określi całkowitą strzałkę ugięcia przy drugim sposobie 
utwierdzenia1) wzór:

PI3 I 3kE r;\
3EI '1-+ G FI ’

przyczem r oznacza promień bezwładności przekroju. Drugi wyraz w nawiasie odpowiada ugięciu, uwarunkowanemu dzia­
łaniem siły poprzecznej. Dla takich przekrojów, jak prostokąt i koło, jest to dodatkowe ugięcie niewielkie i można je naj­
częściej pominąć. Tak np. dla belki o przekroju prostokątnym i stosunku rozpiętości do wysokości

/ =0,1,
f4 h2 1 E

mamy: = 12/2 Y2QQ ’ k = 1,S’ Ti = 2^ + o) — ~ 2,6,

wobec czego ugięcie dodatkowe wynosi mniej niż 1% ugięcia głównego (uwarunkowanego samemi momentami zgięcia). Zato 
dla przekroju T może wpływ naprężeń stycznych być znacznie większym, jak to się okaże z następnego przykładu.

W przypadku belki w obu końcach podpartej i równomiernie obciążonej napiszemy równanie różniczkowe (a) 
zgiętej osi w postaci:

qx2 
2

, kEI
+ FG <FEl-^ 

dx'
= ql 

2
Jego całką ogólną będzie:

T 4EIy ~ 12
qx4 kEI
24 + FG 2

Z warunku, że ugięcia na końcach belki t. j. dla ^“0 i x = l stają się zerem, znajdujemy:

D^O; qF _ kEI ql
24 ‘ FG 2

Dodatkowe ugięcie, uwarunkowane naprężeniami ścinającemi, określi przeto równanie: 
k i qxi 

y- ~ FG ' 2
kM
FG

z którego czytamy, że dodatkowe ugięcia są proporcjonalne względem rzędnych diagramu momen­
tów. Ten wniosek pozostaje ważnym i dla innych przypadków obciążenia belki w obu końcach podpartej, z wyjątkiem 
przypadku zginania parą sił Mo, działającą na jeden koniec belki. Wówczas bowiem określi kąt [3 równanie

Mo
1 FG ’ l ’

czyli f3 pozostaje wzdłuż belki stałem. Wobec tego nie mogą naprężenia styczne przyczynić się do zakrzywienia osi belki, 
a ponieważ jej końce spoczywają na podporach o stałej wysokości, więc nie będzie wcale dodatkowego ugięcia wskutek 
naprężeń ścinających.

Powróciwszy teraz do belki równomiernie obciążonej, znajdziemy ugięcie jej środka, które będzie zarazem strzałką 
ugięcia, w postaci:

5 ql4 k qP
1 384 El ' FG ' 8 ’

9 [Tylko ten sposób odpowiada dość dobrze praktycznym sposobom utwierdzenia w przypadkach, gdy zachodzą 
siły poprzeczne].
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Tutaj drugi wyraz przedstawia dodatkowe ugięcie wskutek naprężeń ścinających. Szukamy wielkości tego dodatkowego 
ugięcia dla belki T, dobranej w ten sposób, aby największe naprężenia styczne i normalne były dokładnie równe odpo­
wiadającym naprężeniom dopuszczalnym Ri i R. Wówczas

a zatem

k Qmax _  kql _
F “ TT = ™

5 qE _5RP
384 ‘ EI~24Eh

Afmax   q F h ~ 
”W~ 87 ~2 = ’

k qP _ Ril 
FG 8 4G '

Stosunek strzałki ugięcia wskutek sił poprzecznych do strzałki ugięcia wskutek momentów będzie:
_ RU 5 RE _ 6 Ri E h

4G : 24 ‘ Eh 5 R G l '
Przy wartościach /?t — 0,5 R i E = 2,6 G staje się ten stosunek równym:

h :h = 1,56 , ■

Widać z tego, że u krótkich belek może wpływ naprężeń ścinających na ugięcie osiągnąć znaczną wartość i nie 
należy go zaniedbywać 7- Zauważymy wszelako, że w praktyce wypada zwykle obierać większą grubość ścianki od po­
trzebnej ze względu na wytrzymałość, dla zapewnienia wystarczającej stateczności ścianki. Nadto zmniejsza się przekrój 
pasów belki od środka ku podporom. Obie te okoliczności zmniejszają wartość stosunku f2: i nieco usprawiedliwiają 
praktykowany zwykle sposób obliczenia ugięć, przy którym poprzestaje się na wyznaczeniu 7 z pominięciem f2.

ROZDZIAŁ XI

STATYCZNIE niewyznaczalne przypadki zgięcia belek

§ 82. ZBĘDNE USTALENIA
Przy rozpatrywaniu różnych sposobów podparcia wyjaśniliśmy, w jakich warunkach wystar­

czają równania równowagi do wyznaczenia reakcyj podporowych. Jeżeli liczba niewiadomych, przed­
stawiających reakcje, jest większa od liczby równań równowagi, to zagadnienie staje się statycznie 
niewyznaczalnem i dla znalezienia reakcji trzeba się uciec do rozważań odkształcenia belki. W przy­
padku belek spoczywająch na dwu podporach rozróżniamy dwa główne sposoby ustalenia końców 
prowadzące do statycznej niewyznaczalności reakcji, a mia­
nowicie :

I. Oba końce belki utwierdzone (rys. 199, 
fig. a), wskutek czego obadwa przekroje podporowe m n 
i są unieruchomione.

II. Jeden koniec utwierdzony, a drugi pod­
party (fig. b), czyli na jednym końcu unieruchomiony 
przekrój, a na drugim środek przekroju 2).

Przy pierwszym sposobie ustalenia końców belki 
sprowadza się znajdywanie reakcyj do określenia sześciu 
niewiadomych wielkości: dwu momentów utwierdzenia M 
i dwu składowych pionowych reakcyj Y, Yx i dwu 
składowych poziomych reakcyj X, XP

W drugim przypadku mamy pięć niewiadomych elementów reakcyj podporowych, gdyż =0. 
Przy działaniu samych obciążeń pionowych dają warunki równowagi przedewszystkiem X = — Xt, 
czyli reakcje poziome są co do wielkości równe, a wprost przeciwne co do kierunku. Okazaliśmy

7 Bardziej szczegółowe studjum kwestji wpływu naprężeń stycznych na zginanie można znaleźć w kursie I. G. Bu- 
bnowa: Stroitielnaja mechanika korablja. Część I, str. 308.

J) [Biorąc ściśle, należałoby w drugim sposobie odróżnić jeszcze dwa możliwe przypadki podparcia drugiego końca, 
t. j. podparcie ruchome i stałe. Podobnież może być i utwierdzenie stałe lub ruchome. Pierwsze odpowiada zupełnemu 
unieruchomieniu przekroju, drugie zaś ustala tylko kierunek płaszczyzny przekroju, pozwalając jednocześnie na przesu­
nięcia w kierunku osi belki. Wobec tego ilość statycznie niewyznaczalnych przypadków belki z ustalonemi końcami będzie 
właściwie znacznie większą. Mimo to wystarczy rozpatrzyć tylko powyższe dwa przypadki, jako praktycznie najważniejsze 
i typowe. Poznawszy je, może czytelnik załatwić bez trudności LinneJ.
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już pierwej (§ 64), że przy tak małych ugięciach, jakie dopuszczamy najczęściej w praktyce, można 
siły podłużne X pominąć i przyjąć, że obciążeniom pionowym odpowiadają tylko pionowe reakcje 
Z i Y15 Wtedy pozostają przy pierwszym sposobie ustalenia cztery niewiadome: M, M}, Y i Y,, 
a tylko dwa równania równowagi; dwie przeto niewiadome są statycznie niewyznaczalne, czyli 
zbędne (zbyteczne, nadliczbowe), gdyż odpowiadają zbędnym ustaleniom końców belki. Przy 
drugim sposobie ustalenia będziemy mieć tylko jedną wielkość statycznie niewyznaczalną.

Jako zbędne ustalenia w obu rozpatrywanych przypadkach I i II wypada uważać utwierdzenia. 
Gdyby ich nie było, otrzymalibyśmy belki w obu końcach podparte, a więc statycznie wyznaczalne. 
Wprowadzając dodatkowe ustalenia nakładamy wogóle na zgięcie belki warunki uzupełniające, któ- 
remi możemy się posłużyć do znalezienia zbędnych niewiadomych. Wprowadzając np. utwierdzenie 
zapobiegające obrotowi końca belki, wprowadzamy temsamem jako zbędną niewiadomą moment 
pary utwierdzającej, czyli moment utwierdzenia. Skoro zatem koniec belki nie może się obracać, 
to styczna do linji ugięcia belki w utwierdzonym przekroju musi mieć pierwotny kierunek osi belki. 
Z tego warunku uzupełniającego możemy obliczyć moment utwierdzenia. Tym sposobem można, 
przy rozpatrywaniu statycznie niewyznaczalnych przypadków zgięcia, ustawić zawsze tyle równań 
uzupełniających, ile mamy zbędnych niewiadomych Te uzupełniające równania układa się naj­
prościej przy pomocy zasady superpozycji. Będziemy przeto stosować następujące postępowanie: 
Najpierw usuniemy wszystkie zbędne ustalenia i sprowadzimy w ten sposób dane zadanie do zada­
nia statycznie wyznaczalnego. Łatwo teraz znaleźć ugięcie belki i kąt nachylenia stycznej w dowol­
nym przekroju. Potem dobieramy zbędne niewiadome tak, aby dogodzić warunkom ustalenia.

§ 83. ZGIĘCIE BELKI RÓWNOMIERNIE OBCIĄŻONEJ, W JEDNYM KOŃCU UTWIERDZO­
NEJ, A W DRUGIM PODPARTEJ (rys. 200)

Usunąwszy utwierdzenie, odpowiadające zbędnej niewiadomej, otrzymujemy belkę w obu koń­
cach podpartą, dla której w § 75 znaleźliśmy równanie linji ugięcia:

q l3 / Q x2 xs \ 24E/v 2x/2+xą)

i kąty obrotu końców:

Ą
qls

24 El'

nie ugiętej osi i kąt obrotu lewego 
zamiast x wstawimy (Z — x), czyli:

Przyjmijmy teraz, że na tą samą belkę działa w 
końcu tylko para sił o momencie M. Odpowiednie 

końca ÓĄ, otrzymamy z formuł (101) i (104), jeżeli

lewym 
równa- 
w nich

M i x2 x3 lx \ Ml
y El ' 2 f>l > h ' 3EI

Mamy tedy rozwiązane dwa elementarne przypadki zgięcia przedstawione figurami (a) i (b) na
rys. 201. Składając je znaleźlibyśmy rozwiązanie naszego 
nia M był znany. Pozostaje przeto jeszcze dobrać wartość 
porowym lewego końca. Otóż ten koniec nie może się 
obrócić, a zatem kąt uwarunkowany ciągiem obciąże­
niem, musi być co do wielkości równy, a co do znaku 
przeciwny kątowi 3^. Porównywując otrzymane powyżej 
wyrażenia dla tych kątów, znajdziemy:

zagadnienia, gdyby moment utwierdze- 
M tak, aby dogadzała warunkom pod-

^Z8 Ml
24 El 3EI

Stąd
M^ ql2

“ 8 '
. . (109) Rys. 201

Prawo zmienności momentu zginającego wzdłuż belki otrzymamy, jeżeli od rzędnych paraboli, jako 
diagramu momentów dla obciążenia równomiernego belki w obu końcach podpartej, odejmiemy rzędne
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prostej BD (rys. 202), przedstawiający momenty wywołane parą sił M, działającą na lewy koniec 
belki. Różnica rzędnych jest uwidoczniona na rysunku zakreskowaniem. Największa wartość mo­

mentu, równa ~ql*, zachodzi w miejscu utwierdzenia. Tu o
leży zatem przekrój niebezpieczny ')•

Reakcje podpór A i B otrzymamy sumując reakcje 
wskutek obciążenia ciągłego z reakcjami wskutek pary sił 
o momencie M. Pierwszemu układowi obciążeń odpowiadają

równe reakcje o wielkości skierowane w górę. Dzia­
Rys. 202łaniu pary sił M odpowiada na lewej podporze reakcja

M 
r

ql 
8 ’

skierowana również w górę, na prawej zaś reakcja tej samej wielkości, lecz skierowana

w dół. A zatem:

i94+ sql’ if q! q^ • • • ■ (h°)

’) [Jest to ta sama wartość, jaką ma największy moment w środku belki w obu końcach podpartej i tak samo obcią­
żonej. W tym przypadku zatem nie wpływa utwierdzenie końca na zwiększenie odporności belki].

Zoo Zoo

W przekroju C, gdzie moment zmieniając swój znak staje się zerem, zmienia swój znak i krzy­
wizna linji ugięcia, czyli powstaje punkt przegięcia. Położenie punktu C znajdziemy z warunku, 
że momenty wywołane obciążeniem ciągiem i parą M, znoszą się nawzajem. Oznaczywszy przez a 
odległość przekroju C od prawej podpory, otrzymamy:

1 1 = . a stad a- 3 /
8 . a - 2 a 2 ’ 1 a 4 ''

Nakoniec znajdziemy ugięcia belki superponując ugięcia, wywołane zosobna obciążeniem ciągiem 
i parą sił o momencie M, a mianowicie:

v_ I1* lY ?YX\rx3\ q^ x3 lx i _ ql / J 5 \
24E1\ l2 l3 ! 8EM2 6/ 3/ 24E1\ 2 P 2 /3 El

i i?
Dla znalezienia strzałki ugięcia przyrównamy do zera pochodną i z tego warunku, uproszczo­

nego do postaci □

otrzymamy i
x (15 - 1 33) = 0,579/.16

Podstawiwszy tę wartość w wyrażenie dla y, mamy strzałkę ugięcia
qE

\85E1 ‘
Przy rozwiązaniu naszego zadania przyjęliśmy moment pary utwierdzającej jako „zbędną nie­

wiadomą". Odpowiadającem zbędnem ustaleniem" okazuje się to, które przeszkadza obrotowi lewego 
końca. Możnaby jednak iść inną drogą, a mianowicie przyjąć za zbędną niewiadomą reakcję pod-

Rys. 2(3

porową prawego końca belki. Wtedy zbędnem ustaleniem 
byłoby oczywiście to, które przeszkadza swobodnemu ugię­
ciu tego końca. Odrzucając zbędne ustalenie, dochodzimy 
znowu do statycznie wyznaczalnego przypadku zgięcia, a mia­
nowicie do zginania belki jednym końcem utwierdzonej (rys. 203, 
fig. a). Pod działaniem obciążenia ciągłego ugiąłby się koniec 
belki B o

qE 
ŹE1
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W rzeczywistości jest ten koniec podparty, a więc jego ugięcie jest równe zeru; reakcja B musi 
przeto mieć taką wielkość, aby wywołane przez nią ugięcie (fig. b)

h 3 El
było równe co do wielkości Stąd równanie

qP _ BP
8 El 3 El'

którego rozwiązanie względem B daje:
B^ql, 

zgodnie z wynikiem (110). Mając reakcję B, znajdziemy resztę niewiadomych, t. j. moment utwier­
dzenia i reakcję /i z równań równowagi.

Rozwiążemy jeszcze to zadanie z uwzględnieniem wpływu naprężeń ścinających na zgięcie. Usuwając prawą pod­
porę i zastępując jej działanie siłą B, skierowaną ku górze, dobieramy wielkość tej siły tak, aby ostateczne ugięcie prawego końca 
belki było równe zeru. Skoro przyjmiemy, że w miejscu utwierdzenia nie obraca się element przekroju, to element osi
obraca się o kąt Mg/—B)

FG ’
a ugięcie końca belki, przy jednoczesnem działaniu siły B i obciążeniu ql, przedstawi się (ob. § 81) wyrażeniem:

BP / 3kE r1] qf / 4kE r2] 
3EI ' h g PI 8EI V + . G PI ‘

3 El 61 El ’

Mając wyrażenie dla momentu utwierdzającego, możemy wielkości 
reakcyj podporowych A i B znaleźć z warunków równowagi. Reakcję B znajdziemy np. z warunku 
momentów względem punktu A t. j.

.. P(l-cr(2l + c)
2 Z3

Przyrównawszy je do zera i wprowadziwszy dla skrócenia wielkość

8=r:,
dojdziemy do następującego wyrażenia dla prawej reakcji podporowej:

s' I 3--

§ 84. ZGIĘCIE BELKI JEDNYM KOŃCEM UTWIERDZONEJ A DRUGIM PODPARTEJ POD 
DZIAŁANIEM SIŁY SKUPIONEJ

Jako wielkość statycznie niewyznaczalną obierzemy moment utwierdzający M, który zapobiega 
obrotowi lewego końca belki (rys. 204, fig. a). Usunąwszy zbędne ustalenie, otrzymamy belkę w obu 
końcach podpartą (fig. b). Lewy koniec obróci się przytem o kąt 0,, określony wzorem (98):

m____
//# GL .

fig- b

61 El
Moment utwierdzenia M musi mieć taką wielkość, aby wywołany 
nim samym kąt obrotu (fig. :)

v _ Ml 
' 1 3 El

był co do wielkości równy, a co do znaku przeciwny kątowi 9,.
Do wyznaczenia M otrzymujemy więc równanie:

MZ _ Pc(P~c2)

z którego
m - £2)

2 Z2Rys. 204

Stad
• (H2)
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Równanie linji ugięcia otrzymamy dodawszy do ugięć, wywołanych siłą skupioną, ugięcia 
powstałe wskutek pary utwierdzającej.

Z wyrażenia (111) widać, jak się zmienia wielkość momentu utwierdzającego w zależności od c, t. j. 
od położenia obciążenia. Dla c = 0 i c = l jest M O. Największa wartość M odpowiada położeniu cię­

żaru, które znajdziemy łatwo z warunku = 0

0,192 PI...................................................(H3)
3V 3

c (l2 — c*)Jeżeli dla każdej wartości c wystawimy rzędne o wielkości /2—to otrzymana w ten 

, czyli P — 3c2 0. H zatem dla c= y— jest

sposób krzywa (rys. 205) pozwala znaleźć łatwo wielkość momentu utwierdzającego przy układzie
sił skupionych np. Pr, P2, Ps, P^. Niech będzie yx rzędną krzy­
wej odpowiadającą położeniu ciężaru Pr; wtedy iloczyn

jest niczem innem, jak wielkością momentu utwierdzenia wy­
wołanego ciężarem P}. Przy jednoczesnem działaniu cięża­
rów P<, P.>, Pi,... będzie moment utwierdzający

+ p^ + ••• -Py-
Krzywa ACB jest łinją wpływową dla momentu utwier­
dzającego. Rzędna tej linji w dowolnym przekroju belki określa 
widocznie wielkość momentu zginającego, jaki powstaje wskutek obciążenia owego przekroju jednostką 
siły. Przy pomocy linji wpływowej łatwo znaleźć wielkość momentu utwierdzającego i dla przy- 

Qpadku obciążenia równomiernie rozłożonego, określonego wielkością q-- . Obierzmy w odległo­

Rys. 2C6

ści c od prawej podpory element długości belki dc, to przypadające nań obciążenie będzie równe qdc. 
To obciążenie, uważane za skupione, wywołuje moment utwierdzenia:

,.. c(P — (?) ,dM - v 2/2 qdc.

Dla otrzymania momentu utwierdzającego, wywołanego obciążeniem całkowitem, trzeba złożyć dzia­
łania obciążeń elementarnych, a zatem:

M _C' - c^gdc _ql*

Zarazem widzimy, że moment utwierdzający M równa się iloczynowi pola ograniczonego linją 
wpływową i osią belki przez g.

Rozpatrzmy teraz zmianę momentu zginającego wzdłuż belki. W tym celu trzeba momenty, 
uwarunkowane działaniem siły P, składać z momentami wywołanemi parą utwierdzającą M. Uwzglę­

dniając znaki momentów znajdziemy łatwo, że prawo zmien­
ności momentów zginających wzdłuż belki przedstawiają pio­
nowe odcinki w zakreskowanej powierzchni na rys. 206. 
Największy moment zachodzi widocznie albo na utwierdzo­
nym końcu belki, gdzie

y ,
2P 

albo też w przekroju obciążonym, gdzie
Mc = P^-^ - (/ - c)* (2 Z + <) . (114)

Skoro w szczególności c 
3

M - PI

a przekrój niebezpieczny znajduje się w miejscu utwierdzenia.
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Największy moment dodatni odpowiada warunkowi --^7- - 0, z którego znajdziemy

c --/(I 3 — 1) — 0,366 Z.

Odpowiadającą wartością największego momentu jest

!max
^-(2f3-3)Pl^ 0,mPl.
o

W przypadku działania 
(rys. 207) wystawimy rzędne o

obciążeń ruchomych najdogodniej posługiwać się linjami wpływowemi. Jeżeli na osi AB 
wielkości (wz. 112):

A

<^3

B,

~ a^j.

1 (/-*)* (2 / +*)
2/8 ’

to otrzymana w ten sposób krzywa ABt przedstawia linję wpływową dla reakcji pod­
porowej B. (Odciętą c przekroju obciążonego zastąpiliśmy we wzorze (112) wielkością 
mierzoną tak samo od prawej podpory). Rzędna krzywej A Bt, w dowolnym przekroju przed­
stawia wielkość reakcji B, wywołanej jednostką ciężaru, umieszczoną w tymże przekroju-

Siła poprzeczna w przekroju mn, przy działaniu obciążenia po lewej stronie od 
tego przekroju, równa się reakcji B, wobec czego część linji A Bi na lewo od prze­
kroju mn może służyć za linję wpływową dla siły poprzecznej w mn. Z przejściem 
ciężaru na prawą stronę belki staje się siła poprzeczna równą reakcji B mniej wielkość 
ciężaru, czyli B— 1. Tę różnicę przedstawia lin ja At B równoległa do AB^. Linja AnmB 
ograniczająca wraz z osią belki zakreskowaną powierzchnię jest zatem linją wpły­
wową dla sił poprzecznych Q. Przy obciążeniu układem sił skupionych będzie
siłę poprzeczną określać suma P{ + P%y\ +• • . •, przyczem y1? y^,... oznaczają rzędne 
linji wpływowej z odpowiedniemi znakami

Szukajmy teraz linji wpływowej dla momenlu zginającego w przekroju mn. Do­
póki ciężar znajduje się po lewej stronie przekroju, równa się moment zginający mo­
mentowi reakcji B i przedstawia się wyrażeniem:

1 . (/-x)U2/+£)
2/8 a..............................................

Kiedy ciężar przejdzie na prawą stronę przekroju, to moment zginający będzie równy:
1« - 1 • («-*)- BP - a (3P -«•)) . • (b)

Krzywe /ł" C" i C"B" (fig. b), których rzędne określają wyrażenia (a) i (b), są
Rys. 207 linjami wpływowemi dla momentu zginającego w przekroju mn. Na fig. (b) przedsta-

wiono także linje wpływowe dla momentów w dwu innych przekrojach, przyczem po- 
działkę rzędnych obrano trzy razy większą od podziałki odciętych.

§. 85. ZGIĘCIE BELKI OBU KOŃCAMI UTWIERDZONEJ

Przy takiem ustaleniu belki mamy dwie wielkości statycznie niewyznaczalne. Jako takie obie- 
rzemy momenty utwierdzające Ma i Mb (rys. 208), które zapobiegają obrotowi końców belki przy
zginaniu. Usunąwszy odpowiadające „zbędne ustalenia" 
otrzymamy przypadek statycznie wyznaczalny belki w obu 
końcach podpartej. Pod działaniem siły skupionej P obraca 
się lewy koniec belki o kąt (form. 98):

„ _ Pc(l*-c 
61E1 Rys. 208

z.-

< A__

Ponieważ ten koniec jest utwierdzony, więc momenty podporowe 
Ma i MB (rys. 209, fig. b i c) muszą być takie, aby wywołane niemi kąty 
obrotu (form. 104):

Ma.I 
3 El 1

MBl
6EI

dały w sumie kąt równy co do wielkości, a co do znaku przeciwny 
kątowi >11. Stąd równanie warunkowe:

Rys. 2(9 Pc^~ c2) l 
blEI bEl

. B
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W podobny sposób ustawimy i drugie równanie odnoszące się do prawego końca belki (wz. 99):
Pc(l — c)(2l — c) 

61EI + MĄ

Rozwiązawszy je, znajdziemy:
• (H5)

Wyznaczywszy Mb i Mb z warunków odkształcenia belki, obliczymy reakcje podporowe /I i B 
z warunków równowagi. Warunek momentów względem punktu podparcia B daje:

m= -Mh + Pc + Mb,
Z czeg0 „ Pc , -MR + MB Pc , Pc(/ —c)(2c —/)

^ = — +------- )------- = — +------------ p-----------
. . . . (116)

B p P(/-c) Pc(l—c)(2c—D 

l . pW przypadku szczególnym obciążenia w środku belki, t. j. dla c = -y, będzie A = B = —,

Mr = Mb = -^.......................................................... (117)
o

Posługując się wzorami (115) łatwo przedstawić wykreślnie zależność momentów podporowych od
położenia ciężaru. Wykreślmy krzywą dla momentu Mb, odmierzając w każdym przekroju rzędnę
wielkości c2(/— c):/8, a otrzymamy linję wpływową dla mo­
mentu podporowego Mb (rys. 210). Maximum momentu zachc- 

2 . .dzi dla c = -y /. Przy obciążeniu układem ciężarów skupionych O
będzie
MR = Plyi + P2y2 + P3y3 + ...

Jeżeli belka dźwiga ciężar równomiernie rozłożony q kglm, to 
odpowiadające momenty podporowe są równe, a ich wielkości 
znajdziemy mnożąc pole wpływowe ACB przez q. Moment pod­
porowy d Mb, powstający pod działaniem obciążenia elementarnego q d c, leżącego w odległości c od
prawej podpory, będzie bowiem:

a moment Mb wskutek całego obciążenia otrzymamy przez sumowanie elementów dMB’
M _ f'c*(/-c)dc _ qP.......................................... (H8)

i* “ 12
Zmianę momentu zginającego wzdłuż belki przy danem położeniu ciężaru P znajdziemy, złożywszy 

momenty uwarunkowane silą P (działającą na belkę 
w obu końcach podpartą) z momentami wywołanemi 
działaniem na belkę każdej z par Mb i Mb z osobna. 
Biorąc pod uwagę znaki momentów, otrzymamy dia­
gram momentów przedstawiony na rysunku (211) za- 
kreskowaną powierzchnią. Największy moment ujemny 
odpowiada jednej z podpór, dodatni zaś przekrojowi 
bezpośrednio obciążonemu. Ostatnią wielkość łatwo

obliczyć przy pomocy rysunku, a mianowicie:
_ Pc(l-c) Pctl-cy l — c Pc^l-c) c_2Pca(/-c)» fll9) 

c / p ■ l p ■ l p

Największą wartość będzie mieć Mc przy c= ? , t. j.

(McU=+y......................................  (120)

Kurs wytrzymałości materjałów 10
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Diagram momentów dla obciążenia równomiernie rozłożonego przedstawia na rys. (212) zakresko-
n

wana powierzchnia. Parabola HCBo największej rzędnej daje 

wielkości momentów zginających w przypadku podparcia obu koń­
ców, zaś prosta DE równoległa do osi belki i odcinająca rzędne 

o Eo wielkości przedstawia momenty zginające wskutek obu par

utwierdzających (wz. 118). Zważywszy, że te momenty są ujemne, 
należy rzędne prostej DE odjąć od rzędnych paraboli ACB.

Przy działaniu obciążeń ruchomych najdogodniej przeprowadzić obliczenie belki zapomocą linij wpływowych. Odmie­
rzywszy od osi belki wielkości:

1 . x 1 . x(l — x) (2l)
— +------------- p-------------

otrzymamy krzywą (rys. 213) przedstawiającą linję wpływową dla reakcji 71 
(wz. 116). Siła poprzeczna Q w dowolnym przekroju belki równa się reakcji A, 
dopóki jednostka ciężaru leży po prawej stronie przekroju. Z przejściem ciężaru 
na lewą stronę trzeba przy obliczeniu Q odjąć od reakcji jednostkę ciężaru, 
wskutek czego linja wpływowa dla Q przedstawi się odcinkami dwu krzywych 
równoległych AtB i Prawej części belki odpowiada krzywa Ai B, lewej zaś 
krzywa A Bi.

Ażeby skonstruować linję wpływową dla momentu zginającego M w do­
wolnym przekroju mn, zauważymy, że dopóki ciężar znajduje się na prawej 
części belki, to

„ „ [ 1 .x 1 .x(l — x)(2x— l) 1 l.x2(ł —x)M = + A ax - a t [ — +------------- jP---------]------------- ,

skoro zaś ciężar przejdzie na lewą stronę przekroju, to

M = B a + AfB .

Na rysunku (214) wykreślono linję wpływowe dla przekrojów położonych 
. 1 2 3 11 .w odległości — l, — l, — l, Z i Z od prawej podpory. Podziałka rzędnych 

jest cztery razy większa od podziałki odciętych *)•
W przypadku dowolnego obciążenia stałego znajdujemy 

momenty podporowe najprościej sposobem wykreślno-anality- 
cznym (por. § 78). W tym celu usuwamy zbyteczne ustalenia 
i badamy zgięcie belki w obu końcach podpartej. Niechaj 
ADB (rys. 215) przedstawia diagram momentów zginających

dla danego obciążenia. Oznaczywszy przez Q pole diagramu, 
pola znajdziemy kąty obrotu końców belki z wzorów:

1 IEI ~ IEI'
Momenty podporowe należy tak dobrać, aby wywołane niemi 
obroty końców znosiły się z powyższemi. Stosując gotowe 
wzory (104) dla zgięcia belki momentem działającym na jej 
koniec otrzymamy równania:

Mi\ l Mb / _ O b Mb / Mr / _ O a
ITT + TTT~ ~iet TTT^TTT~ ~1TT'

Stąd: 20 20MR=-~-(2b-a), MB = -^-(2a-b) .(121)

a przez C środek ciężkości tego

Rys. 215

Znalazłszy w ten sposób wielkości statycznie niewyznaczalne, wyznaczymy łatwo inne elementy 
zgięcia, posługując się zasadą superpozycji.

Powyższa metoda da się łatwo uogólnić w przypadkach zmiennego przekroju belki. Okaza­
liśmy już w § 79, że zginanie belek o przekroju zmiennym sprowadza się do zginania belek

x) Szczegółowe tablice linij wpływowych dla belki w obu końcach utwierdzonej można znaleźć w książce A. Lede- 
rer’a: „Analytische Ermittl. u. Anwend. v. Einllusslinien".
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pryzmatycznych, jeżeli rzędne powierzchni momentów zredukujemy zapomocą czynnika -y, przy­
czem / oznacza moment bezwładności rozpatrywanego przekroju belki, a /0 stały moment bez­
władności pewnego przekroju, obranego zresztą dowolnie. Uważając zredukowaną powierzchnię 
momentów za powierzchnię obciążenia, znajdziemy kąty obrotu końców, podzieliwszy przez EE 
reakcje podporowe wywołane fikcyjnem obciążeniem. Ponieważ te kąty są dzięki utwierdzeniu równe 
zeru, więc trzeba reakcje podporowe wskutek fikcyjnego obciążenia przyrównać do zera, aby otrzy­
mać dwa równania o niewiadomych Mk i Mb- Ich postać ogólną znajdziemy w następujący sposób: 

Jeżeli oznaczymy przez M*  moment zginający dla belki w obu końcach podpartej (rys. 216)

*) [Biorąc ściśle, nie mamy w rzeczywistości nigdy do czynienia z utwierdzeniem zupełnem, gdyż wszelki materjał, 
otaczający nawet najdokładniej koniec utwierdzony, doznaje odkształceń pod działaniem sił zewnętrznych i wskutek tego 
dozwala na pewien obrót tego końca. Mówimy wtedy o utwierdzeniu niezupełnem, albo niedoskonałemj.

Wskazówki co do różnych sposobów ustalenia końców, stosowanych do belek żelaznych, tudzież co do stopnia 
sztywności tych ustaleń, znajdzie czytelnik w książce F. Pietzker’a: „Festigkeit der SchiHe“. Berlin 1911, str. 21.

i uwzględnimy, że powierzchnie momentów odpowiadające 
parom utwierdzającym Mb i Mb są trójkątami AC Bi ADB, 
to całkowitym momentem zgięcia w dowolnym przekroju x 
będzie: /—x x

i /
Rzędne zredukowanej powierzchni momentów określi za­
tem wyrażenie:

Rys. 216

a reakcję podporową B wskutek fikcyjnego obciążenia przedstawi wzór: 
D M*xdx  , Mb V(l~x)xdx , Mb C' x2dx"| n99l

+ -i • • • (122)

Analogiczne równanie można napisać i dla reakcji A. Wyraziwszy I jako funkcję x, wykonawszy całko­
wanie i przyrównawszy do zera wyrażenia dla A i B, otrzymamy szukane równania do obliczenia Mb i Mb .

§ 85. BELKI Z KOŃCAMI SPRĘŻYŚCIE UTWIERDZONEMI
W powyższych przykładach można było zauważyć, że utwierdzenie końców belki wywołuje 

zmniejszenie ugięcia, a zwykle i zmniejszenie naprężeń. Ażeby jednak formuły wyprowadzone 
dla belek utwierdzonych, można było stosować z zupełnem zaufaniem w jakimkolwiek danym przy­
padku, trzeba koniecznie sprawdzić, czy utwierdzenie jest zupełne, czyli doskonałe, to znaczy, 
czy istotnie wyklucza obrót końców belki. W tych bowiem przypadkach, w których pod działaniem 
sił zewnętrznych zajdzie choćby bardzo mały obrót końców belki, skutek utwierdzenia widocznie 
się zmniejsza, a działanie belki zbliża się do działania w warunkach zwykłego podparcia końców1). 
Częstokroć można przyjąć kąt obrotu jako proporcjonalny względem momentu działającego na 
utwierdzony koniec i jeżeli po usunięciu sił zewnętrznych odkształcenia znikają, to mówimy 
o utwierdzeniu sprężystem. Oznaczmy przez cp kąt obrotu końca pod wpływem momentu 
zginającego /W, natenczas przy utwierdzeniu sprężystem y = kM. Spółczynnik k charakteryzuje 
stopień sztywności utwierdzenia. Doskonałemu utwierdzeniu odpowiada k = 0, swobodnemu pod­

parciu k = ^. Jeżeli wartość k jest znana, to zagadnienie 
p belki jest zupełnie określone.

—y------------ pr—Jak° przykład znajdziemy wielkość momentów podpo-
yy ' " Ź7 rowych dla przypadku przedstawionego na rys. (217). Siła

Rys 217 skupiona P dziada na środek rozpiętości belki o sprężyście
utwierdzonych końcach A i B, Pod wpływem tego obciąże­

nia obrócą się końce belki o jeden i ten sam kąt (przy założeniu równej sztywności utwierdzenia na 
obu końcach). Oznaczmy przez M wielkość powstających przy tem momentów podporowych; natenczas:

k

10*
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Gdyby końce belki były podparte i mogły obracać się zupełnie swobodnie, to wskutek obciążenia 
siłą P obróciłyby się o kąt: pp

$ = , przyczem widocznie £ >

Różnica —^=(p jest właśnie tym kątem, o jaki obracają się końce wskutek działania momentów 
podporowych M. Ponieważ te momenty są co do wielkości równe, a co do kierunku wprost prze­
ciwne, więc kąty obrotu końców mają wartości:

Ml Ml Ml 
3 El + 6 El 2 El • (123)

R zatem dla <p możemy napisać:
* —~ ~2ET'

Podstawiwszy tu zamiast i £ ich wartości, otrzymamy:

Przy wartości k = 0, znajdziemy stąd M = —, a więc jak w przypadku doskonałego utwier­

dzenia; dla k = ^ otrzymamy M = 0, t. j. swobodne podparcie końców.
W szczególnie prosty sposób da się określić wartość spółczynnika k w przypadkach, gdy 

końce zginanego pręta są przytwierdzone do prętów o znanych wymiarach. Zadania tego typu 
napotykamy przy obliczeniu ram z sztywnemi węzłami1).

L. Herzka, Eisenbau z r. 1915, str. 27.
G. Kaufmann; tamże w r. 1913, str. 266.

Rys. 218

Weźmy np. ramę prostokątną (rys. 218), obciążoną siłami P, działającemi na 
środki prętów BC i AD. Każdy z prętów ramy zachowuje się jak belka w obu koń­
cach sprężyście utwierdzona i obliczenie sprowadza się widocznie do wyznaczenia mo­
mentów utwierdzenia, t. j. momentów zginających w węzłach ramy. Dla uproszczenia 
przyjmiemy, że pręty przeciwległe mają ten sam przekrój. Odkształcenie ramy będzie 
wtedy symetryczne względem linji działania sił P i będzie wyglądać mniej więcej w spo­
sób przedstawiony na rysunku; momenty węzłowe zaś będą oczywiście równe. Wy­
dzielmy z ramy pręt poziomy BC, to na jego końce musimy dla równowagi działać

. Ppionowemi reakcjami, równemi — i momentami węzłowemi M (rys. 218). Takie same
Pmomenty będą zginać pręty pionowe, u których pionowe reakcje — występują jako siły 

rozciągające. [Reakcje poziome u tych prętów są oczywiście wykluczone, ponieważ nie­
ma sił zewnętrznych, któreby się z niemi równoważyły]. Dzięki sztywności węzłów obrócą 
się końce prętów, schodzące się w jednym węźle, o jeden i ten sam kąt <p. Weźmy pod 
uwagę koniec C pręta BC. Gdyby ten pręt był swobodnie podparty na końcach, to te 

Pa2końce obróciłyby się o kąt ’ momenty M wywołają jednak obrót w stronę prze-
Af aciwną o kąt -yp-y-, a wypadkowym kątem obrotu będzie:

Pa2 Ma
9 16E/ 2EI '

Pręt pionowy CD zakrzywia się tylko pod działaniem momentu M(wpływ siły podłu- 
Pżnej -g- jest przy małych zakrzywieniach znikomy; będziemy się z nim liczyć w przy­

padkach prętów bardzo smukłych, o czem później). Odpowiadający kąt obrotu końco­
wych przekrojów &

= Te^ ‘
Z sztywności połączeń węzłowych wynika warunek 'p = cpn czyli

Pa2 Ma Mb .. Pa 1
16EI 2EI ~ 2Elt; “ Sąd M~ 8 . b I ' ' ' (,24)

l+TT
*) Szczegółowe badanie ram różnego rodzaju można znaleźć w książce Bjórnstad’a: „Die Berechnungv. steifen Rahmen".
Ob. także książkę Kleinlogefa, poświęconą tej samej kwestji.
Kilka interesujących przykładów obliczenia ram znajduje się w artykułach:
W. Andrće, Zeitschr. f. Briickenbau z r. 1915, str. 35 i 105.
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Wartość momentu węzłowego, czyli momentu podporowego dla każdego z prętów ramy, zależy, jak widzimy, od stosunków 

długości i sztywności prętów poziomych do pionowych. Gdy /t staje się bardzo wielkiem wobec I, to ułamek -------- r—»— 
1+T7T

Pa staje się równym jedności, a moment podporowy dąży do warlości -y, którą znaleźliśmy dla przypadku zupełnego utwier­

dzenia końców. Przy giętkich prętach pionowych ma powyższy ułamek małą wartość i moment podporowy M będzie mały.
Znając wartość M, możemy bez trudności obliczyć ugięcia prętów i wielkości naprężeń.

Rozważymy jeszcze jedno zadanie, jakie napotyka się przy obliczeniu mostów. Na prostokątną ramę AB CD, pod­
partą w punktach A i D, działa siła pozioma H (rys. 219). Rozmiary ramy, 
sztywności poszczególnych prętów i przybliżona postać odkształcenia są uwi­
docznione na rysunku. Wskutek sztywności węzłów powstaną w nich momenty 
M i o kierunkach oznaczonych strzałkami. Jeżeli nadto przyjmiemy, że siła H 
rozdziela się po połowie na węzły Bi C1), to wszystkie siły zewnętrzne, działa­
jące na każdy z prętów, będą określone. Rozpora BC będzie się zginać jak 
belka w obu końcach podparta. Na podstawie znanych wzorów znajdziemy 
kąt obrotu lewego końca

*) To przypuszczenie odpowiada pominięciu skrócenia rozpory BC i zbliżenia się jej końców przy zgięciu w po­
równaniu z przesunięciami punktów B i C.

2) Ten wynik otrzymamy, zważywszy, że para sił, działająca na pręt jednym końcem utwierdzony, wywołuje zgięcie
Mw łuk koła. Krzywizna będzie równa , a kąt obrotu drugiego końca znajdziemy, pomnożywszy krzywiznę przez dłu­

gość łuku h.

_ Mb Mb _ Mb
3Eh 6Eh ~ bEh '

Podobnież będzie dla rozpory AD

Rozpatrując pręt AB jako belkę dolnym końcem utwierdzoną możemy ustawić 
związek między kątami <p i Ti- Na wytworzenie kąta <p składają się trzy przy­
czyny: a) obrót pręta w płaszczyźnie utwierdzenia o kąt <Pj, b) zgięcie pręta siłą
H H h2—, działająca na górny koniec, które wywołuje obrót tego końca o kąt y • 

i wreszcie c) działanie momentu zginającego M, które wywołuje obrót górnego
, , Mh2) n końca w przeciwną stronę o kąt . A zatem:

, Hh2 Mh
'P -^1 + 4Eh Eh

albo, po wstawieniu wartości za cp i :
Hhi Mh

6EI2 6EIo + 4EĄ Eh Rys. 219

Drugie równanie między M i Mt otrzymamy z warunku momentów sił zewnętrznych pręta AB, a mianowicie:

M + Mi = .............................................................................(b)

Z obu równań (a) i (b) znajdziemy: 
bh h2

M^H____ ^2___ ...................... (125)
b b 2h

3Eh + 3 Eh + Eh

W szczególnym przypadku bardzo sztywnej rozpory dolnej, otrzymamy, kładąc E /0 = oo:

.................................................................... (126)
1 + 6h l.

Wielkość momentu M zależy wówczas od stosunku h’h- Przy 12 = 0, t. i- przy bardzo giętkiej rozporze górnej, wypada 
M — 0. Każdy ze słupów (prętów pionowych) będzie się zachowywać, jak belka dolnym końcem utwierdzona. Jeżeli zaś 
górna rozpora jest również bardzo sztywna w porównaniu do słupów, to podstawiwszy h = oo mamy:
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W tym przypadku będą słupy narażone na zgięcie i rozciąganie w sposób przedstawiony na rys. (220). Siła rozciągająca
2Mo wartości —y- odpowiada reakcji podporowej rozpory BC.

Ostatni wynik można zastosować do ocenienia wpływu podługowatych otworów, wyciętych w war­
stwie obojętnej zginanych belek. Rys. (221) przedstawia belkę jednym końcem utwierdzoną i zginaną 
siłą P. W warstwie obojętnej znajduje się podługowaty otwór o długości /j i szerokości 8. Poprowadźmy 
na końcach otworu przekroje TMi, BBj (rys. 222) i rozpatrzmy siły zewnętrzne wydzielonej niemi 
części belki. Działanie usuniętej lewej części sprowadza się do pary sił o momencie M0 ^=Pli, wywo­
łującej ciągnienia i ciśnienia w przekroju, tudzież do siły P. Wpływ tej siły da się ocenić przy pomocy 
formuł wyprowadzonych dla ramy z doskonale sztywnemi rozporami. Części FiBEF i A^BiEF będą

PInarażone dodatkowo na zginanie momentami . działającemi w przekrojach końcowych i na siły

Ph Phpodłużne o wielkości 2 -y: 2 a = . Przytem oznacza a odległość środków ciężkości przekrojów

Rys. 220 obu cz§ści od środka pierwotnego całego przekroju, przyjętego jako symetryczny względem osi obo­
jętnej. Oznaczywszy oprócz tego przez W moduł przekroju poprzecznego belki, a przez Wt i Ft moduł 

i pole przekroju każdej z części ABEF i A^BiEF, znajdziemy wartość największych naprężeń uwarunkowanych siłą P
zapomocą wzoru:

n Pl' I PI*

*) Ob. przytoczony powyżej (str. 147) artykuł Pf lei der er’a.

Pi 4aF^4Wt

Do tego trzeba dołączyć naprężenia wywołane zginaniem całej belki przez moment Mo. Ze względu na to, że istnienie

Rys. 221 Rys. 222

otworu modyfikuje znacznie rozkład tych naprężeń, weźmiemy dla pewności ich największą wartość jako dodajnik 
Mt. j. Pi — • Największe całkowite naprężenia określi zatem wzór:

P W'4 \aF Wt . (128)

potwierdzony z dostateczną dokładnością doświadczeniami*).

§ 87. BELKA DWUPRZĘSŁOWA

Belkę spoczywającą na więcej niż dwu podporach nazywamy ciągłą albo wielo przę­
śl ową. Część belki ciągłej leżącej między dwiema po sobie następującemi podporami nazywa się 
przęsłem. W dalszym ciągu przyjmiemy, że jedna z podpór jest nieruchomą, a inne mogą się 
przesuwać w kierunku osi belki, mającej zwykle położenie poziome. Wtedy pod wpływem obciążeń 
pionowych powstaną tylko pionowe reakcje. Równania równowagi sprowadzają się w danym przy­
padku do dwóch, z których można wyznaczyć dwie niewiadome. Pozostałe niewiadome 
występują jako „zbyteczne" i do ich wyznaczenia trzeba zastosować metodę, jaką posługiwaliśmy 
się przy szukaniu momentów podporowych belek z utwierdzonemi końcami. Zaczniemy od naj­
prostszego przypadku belki spoczywającej na trzech podporach. Jako wielkość statycznie niewyzna- 
czalną przyjmiemy reakcję środkowej podpory. Ta podpora stanowi „zbędne ustalenie", zapobiega­
jące pionowemu przesunięciu pewnego przekroju belki. Usunąwszy środkową podporę otrzymamy 
belkę w obu końcach swobodnie podpartą. Dla takiej belki znajdziemy bez trudności ugięcie wskutek 
danego obciążenia w dowolnym przekroju poprzecznym, a zatem i w przekroju odpowiadającym 
środkowej podporze. Następnie obliczymy osobno ugięcie, jakieby wywołała siła pionowa dowolnej 
wielkości, działająca na przekrój nad środkową podporą. Jeżeli wielkość i kierunek tej siły wyzna­
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czymy z warunku, aby wywołane nią ugięcie owego przekroju zniosło się z ugięciem powstałem 
wskutek danego obciążenia, to znajdziemy zarazem reakcję środkowej podpory.

Jako przykład rozpatrzymy najpierw przypadek belki równoprzęsłowej, dźwigającej 
równomiernie rozłożone obciążenie q Po usunięciu środkowej podpory B (rys. 223) 
belka się ugnie, a odpowiadającem ugięciem przekroju B jest 
podług wzoru (93): 

f_ 5 q(2iy 
1 384 El

Jeżeli na ten sam przekrój będzie działać siła pionowa B, skie­
rowana do góry, to ona wywoła ugięcie przeciwnego znaku 
o wartości bezwzględnej

~ 48 El

Pozostaje teraz dobrać wartość P tak, aby oba ugięcia się 
5 ę(2/)4 _ B(2iy

384' El “ 48 El

Rys. 223

zniosły, czyli aby było:

jeżeli przez Q oznaczymy całkowite obciążenie belki. Znaleziona tym sposobem siła B daje nam 
wielkość szukanej reakcji środkowej podpory. Reakcje podpór skrajnych będą z powodu symetrji 
równe, a więc ich wspólną wartością będzie

Mając reakcję środkowej podpory, znajdziemy z łatwością diagram momentów zginających. Linja 
momentów wywołanych obciążeniem równomiernie rozłożonem po usunięciu środkowej podpory 
jest parabolą RDC. Wskutek siły skupionej B powstają momenty przedstawione diagramem trój­
kątnym AEC. Przy jednoczesnem działaniu obciążenia i reakcji B określi momenty zginające 
różnica rzędnych obu diagramów, uwidoczniona na rys. (223) przez zakreskowanie. Moment zgi­
nający w dowolnym przekroju, odległym o x od lewej podpory, określi formuła:

3 qx*M = *16 2

3Ten moment osiąga największą wartość dodatnią dla x =

9Mm^ = ^qP................................................................(130)
IZO

zaś największą wartość ujemną nad środkową podporą:

................................................................(130

Weźmy teraz pod uwagę przypadek obciążenia siłą skupioną P, odległą o b od prawej pod­
pory skrajnej (rys. 224). Dla większej ogólności wywodów 
przyjmiemy, że rozpiętości przęseł / i /t są nierówne. Gdy 
usuniemy zbyteczną środkową podporę, to pod działaniem 
siły P obniży się przekrój B, a odpowiadające ugięcie określi 
wz. (94), a mianowicie:

f=Pbl (l + l^-b*-l* 
bElU + lJ

RyS. 224 Teraz obierzemy dla reakcji środkowej podpory taką wiel­
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kość B, któraby zniosła ugięcie wywołane siłą P. Wskutek siły B ugnie się jej punkt działania
o wielkość BPI 2

= SEltl + TJ
(por. § 78, przykład III). Dla wyznaczenia B otrzymamy przeto równania:

_Pbl[(l + li)>-b>-P] zktóregoB_PN(2/ + M/,-fe8] . (132)
3E/(/ + Z,) bE/G + ZJ , z Którego d 2(j|1

W szczególnym przypadku równych przęseł (1 = 1^ będzie: 
PbB = -^(3P-b>)..........................................................(133)

Mając reakcję środkowej podpory, znajdziemy łatwo inne elementy zgięcia przy pomocy zasady 
superpozycji. Zmianę momentu zginającego wzdłuż belki, przedstawia na rysunku zakreskowane pole.

§ 88. WPŁYW PODWYŻSZENIA LUB OBNIŻENIA ŚRODKOWEJ PODPORY
Przy wywodach poprzedniego paragrafu zakładaliśmy, że wszystkie trzy podpory leżą dokładnie w tej samej wyso­

kości. Tutaj rozpatrzymy na prostych przykładach, jaki wpływ na nasze obliczenia może wywrzeć obniżenie, lub podwyż­
szenie środkowej podpory. Weźmy znowu przypadek dwu równych przęseł obciążonych równomiernie i przypuśćmy, że 
środkowa podpora jest niższa od skrajnych o wielkość 8. Wtedy równanie dla wyznaczenia B przybierze postać:

5 Q(2Z)8 _ B(2Z)8
384 ■ El + a stąd: 6EI.?> 

P
. (134)

Reakcje podpór skrajnych będą równe:
16* Z8

Moment zginający nad środkową podporą zmniejszy się i będzie równy:

3E7.8\ qP = qp i
l3 P 2 8 U

24E78 1 
qP /

. (135)

Drugi wyraz w nawiasie przedstawia wpływ obniżenia 8 na wielkość momentu podporowego M. Weźmy np. belką żelazną 
(E = 2.106 kg/cm2) o wysokości h = 0,ll. Dajmy na to, że największe naprężenia w belce, obliczone przy założeniu równej 
wysokości podpór są równe:

M qP h onnu^i , Pmax = = -jy- . y = 800 kgicm*.

*) To równanie ustawił pierwszy inż. Ber to t (Compfes rendus de la Socićtć des Ing. civils; 1855, str. 278). Dalszy 
rozwój teorji belek ciągłych zawdzięczamy głównie następującym autorom:

Mohr: „Abh. aus d. Gcbiete der techn.Mechanik".
Winkler: „Beitr. z. Theorie d. kontin. Briickentrager". Ziviling. 1862.
Weyrauch: „Hllg. Theorie der kontin. u. einf. Trager“. Leipzig 1873.
Miiller-Breslau: „Die graph. Statik d. Baukonstruktionen*. T. II, cz. 2-ga.

W takim przypadku
24E78 _ 3Eh6 _ 300 8 

qP ~2PpMSX~ 8 h ’

Jak widać, wystarcza obniżenie środkowej podpory o 8 = 0,01 h, aby naprężenia zmieniły się prawie o 40°/0. Ta okoliczność 
obniża w znacznym stopniu pewność wszelkich rachunków, odnoszących się do belek ciągłych i zniewala w takich przy­
padkach do obniżenia normy naprężeń dopuszczalnych.

§ 89. RÓWNANIE TRZECH MOMENTÓW1)

Sposób, przyjęty powyżej dla wyznaczenia reakcji środkowej podpory belki dwuprzęsłowej, 
można także zastosować przy dowolnej liczbie podpór pośrednich. Naprzykład w przypadku belki 
na czterech podporach usuniemy dwie podpory środkowe i znajdziemy ugięcia w odpowiadających 
im przekrojach, jakie powstają pod wpływem danych obciążeń. Potem w punktach podparcia dzia­
łamy dwiema siłami pionowemi o takiej wielkości i kierunku, aby wywołane niemi ugięcia zniosły 
się z ugięciami wskutek obciążeń danych. Te siły będą właśnie szukanemi reakcjami podpór. Przy 
większej liczbie podpór staje się jednak taka metoda niedogodną, albowiem każde z otrzymanych 
równań zawiera wszystkie niewiadome. Zadanie upraszcza się, jeżeli obierzemy jako wielkości sta­
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tycznie niewyznaczalne, nie reakcje, lecz momenty podporowe, t. j. momenty zginające w prze­
krojach leżących nad podporami. Rys. (225) przedstawia dwa po sobie następujące przęsła belki cią­
głej. Przez A'o, A' n Tl^,... oznaczy­
my kolejne punkty podparcia, przez 

rozpiętości przęseł. Wyobra­
źmy sobie naszą belkę wieloprzę- 
słową, przeciętą przekrojami podporo- 
wemi. Każde z przęseł można wów­
czas uważać za belkę w obu końcach 
częściowo utwierdzoną. Momenty pod­
porowe będą momentami utwierdza- 
jącemi. Jeżeli potrafimy je obliczyć, 
to wyznaczymy następnie z łatwością 
momenty zginające, siły poprzeczne 
w dowolnym przekroju i reakcje pod­
pór belki ciągłej. Niechaj krzywa 
Au-" Cn An" przedstawia taką linję 
momentów M° wydzielonego przęsła 
belki, jakaby powstała, gdyby nie było 
momentów podporowych, czyli w przy­
padku swobodnego podparcia obu końców przęsła. Diagram momentów wywołanych oddzielnie 
samemi tylko momentami utwierdzającemi A/n; i Ma, działającemi na swobodnie podparte końce 
rozpatrywanego przęsła, przedstawia się jako trapez An-i"BFAn". Przyjąwszy znak tych momen­
tów zgięcia, jak to zwykłe bywa, za przeciwny znakowi momentów wskutek obciążeń, otrzymamy 
diagram momentów wypadkowych, przez odejmowanie rzędnych obu diagramów. Na rysunku przed­
stawia go zakreskowana powierzchnia. Wielkość momentów w jakimkolwiek przekroju odległym o x 
od lewej podpory /In-/' określi przeto wyrażenie:

Mx=jw:+Afn_A=-+M„4-).......................................... (136)
*n *n

*) Przy obiorze znaków momentów kierujemy się poprzedniem prawidłem, t. j. bierzemy momenty podporowe Mn—1 
i Ma ze znakiem +, jeżeli one wywołują zgięcie belki wypukłością w dół.

Stąd znajdziemy siłę poprzeczną w tymże przekroju: 
n dM* dM° — no. Mn—Mn_i 

------ Ł------------------------- T
Tutaj oznacza Q° siłę ścinającą, jakaby powstała przy swobodnem podparciu obu końców przęsła. 
Oznaczywszy wartość dla x = 0 przez An) zaś dla x = ln przez — Bn, widzimy, że An i Bn nie 
są niczem innem, jak reakcjami belki w obu końcach podpartej i dźwigającej to samo obciążenie, 
co n-te przęsło. Wtedy siła poprzeczna po obu końcach n-go przęsła wyrazi się wzorami (według 137): 

[0=0 = + ■ • • (138)

Otrzymane formuły można zastosować do dowolnego przęsła, wstawiając tylko odpowiednią war­
tość za n. Zużytkujemy je dla znalezienia reakcji podpory A/, jako różnicy wartości siły poprze­
cznej w przekrojach nieskończenie bliskich po prawej i lewej stronie podpory. Siła poprzeczna 
z lewej strony 

[ ’<Zx ] x=ln — ----- On H---------------] ’

zaś po stronie prawej: n Mn+1----Mn
x—0 — H------------- j----------

A zatem reakcja n-tej podpory:
• • (139)

In + 1 *n
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Jeżeli jaki ciężar skupiony znajduje się nad samą podporą, to należy go oczywiście dołączyć do 
reakcji obliczonej według formuły (139).

Przy pomocy wzorów (136), (137) i (139) można wszystkie potrzebne do obliczeń elementy 
wyrazić przez momenty podporowe. Pozostaje jeszcze ustawić dostateczną liczbę równań dla obli­
czenia tych momentów. Do tego posłuży warunek ciągłości kierunku stycznej do linji ugięcia, zasto­
sowany w punktach podparcia. Linję ugięcia sąsiednich przęseł muszą w punkcie podparcia mieć 
wspólną styczną. Otrzymamy stąd tyle równań, ile jest niewiadomych momentów podporowych. 
Dla uproszczenia rachunku przyjmiemy, że przekrój belki jest stały, a wszystkie podpory są w równej 
wysokości. Do obliczenia kątów nachylenia stycznych do linji ugięcia, użyjemy metody wykreślno- 
analitycznej (§ 78). Uważając powierzchnię momentów za powierzchnię obciążenia, znajdziemy kąt 
nachylenia jako iloraz z reakcji, powstałej wskutek fikcyjnego obciążenia, przez sztywność belki. 
W ten sposób otrzymamy dla prawego końca n-go przęsła:

„ 1 / Mnln Mn—iln an \

przyczem Qn oznacza wielkość powierzchni momentów Aa~i" C„Aa" (rys. 225), odpowiadającej 
obciążeniu n-go przęsła, zaś an odciętą środka ciężkości tego pola. Podobnież będzie dla lewego 
końca (n + l)-go przęsła:

q / 1 / Mn /n + 1 . Mn + i /n + 1 . + 1 + I \
= ejL 3 +—6— + -

Obie części linji ugięcia będą mieć w punkcie podparcia /!,/ wspólną styczną, jeżeli = — O/, czyli
•^n L . Mn — 1 In ■ ^n 3n __ Afn /n 4~ 1 + 1 /n + 1 ^n 1 4" 1___ + _ + _____ _ _ _ __ ,

/n + 2<(/„ + /„+,) + <+',/„+, = -. .(140)
*n *n  4- I

*) W sprawie uproszczeń przy rozwiązywaniu tego układu równań ob. pracę P. M. Frandsen’a w „Eisenbau* 1913, 
str. 440.

Znalezione równanie zawiera wielkości trzech po sobie następujących momentów podporowych. 
Napisawszy analogiczne równania dla każdej pary sąsiednich przęseł, otrzymamy tyle równań, ile 
jest pośrednich podpór, a zatem tyle, ile jest niewiadomych momentów podporowych ‘)«

Jeżeli jeden, albo oba końce belki są utwierdzone, to do równań postaci (140) trzeba dołączyć
warunki utwierdzenia. Dajmy na to, że lewy koniec belki nie może się obracać, natenczas związek 
między momentem Af0 w przekroju utwierdzonym, a momentem podporowym znajdziemy jako
warunek, że kąt

_ 1 / Af0\ _+1~ + -/7J -

Takież równanie można ustawić i w przypadku utwierdzenia prawego końca. Te równania wraz 
z równaniami (s 40) posłużą do wyznaczenia momentów podporowych w miejscach utwierdzenia.

Równania, wyrażające związek między trzema po sobie następującemi momentami podporowemi, można łatwo uogól­
nić w przypadku nierównej wysokości podpór. Oznaczmy przez pn i pn+i kąty nachyląpia prostych, łączących punkty 

podparcia w n-tem i (n+l)-szem przęśle (rys. 226); wtedy kąty, jakie koń­
cowe styczne tworzą z poziomem, zależą nietylko od obciążenia przęsła i mo­
mentów podporowych, lecz także od wielkości pn, Pn+1 ,. •• Wzór dla kąta , 
utworzonego z poziomem przez styczną do linji ugięcia w puncie /In, przy- 
bierze teraz postać:

1 / Mnln . Afn — 1 In . Sn \ o
Rys. 226 ^2 = -Fy -----5---- + -------z------- + -- j— - Pn .

Zupełnie w ten sam sposób otrzymamy dla lewego końca n + l)-go przęsła: 
„ , 1 IMnln-j-l . Mn-|-1 In-p! . On—f-1 &n-f-l ) Q
* • “ El H 3~ +--~ + ^,+7“/ “ l n+l •

Warunek $s = — 4/ prowadzi do równania:

Mn-llnm^nU+O + . (141)
in *n —f—1
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Wielkość momentów podporowych zależy tedy od położenia podpór. Wpływ obniżenia podpory jest tem większy, im większą 
jest sztywność belki El.

W powyższym wywodzie przyjęliśmy, że położenie podpór, a więc i kąty pn, Pn+1, są z góry dane; stąd jednak 
nietrudno przejść do przypadku, w którym nierówna wysokość podpór jest uwarunkowana ich sprężystem „osiadaniem" pod 
działaniem odpowiadających nacisków podporowych. Przyjmijmy, że podatność wszystkich podpór jest jednaka i że jej wiel­
kość określa nacisk D potrzebny do osiadania podpory o jednostkę długości; natenczas wielkość osiadania n-tej podpory 
pod wpływem nacisku na nią działającego (wz. 139) określi wyrażenie:

h 1 /n ...id -l- ^n+l—Mn-l \ / x

Podobne wyrażenie możemy ustawić dla wszystkich podpór i, jeżeli podpory leżały pierwotnie na równej wysokości, to dla 
kątów p, wchodzących w rów. (I4l), otrzymamy oczywiście wyrażenia:

„ hn — hn-l n hn+l— hn
Pn=------ ,-------- , =-----In »n-|-l

Wstawiwszy te wartości kątów w rów. (I4l) i zastąpiwszy w nich wielkości osiadania podpór h odpowiadającemi wyraże­
niami (a), dojdziemy do równań dla belki ciągłej, spoczywającej na sprężystych podporach. Łatwo zauważyć, że te równa­
nia będą zawierały już nie trzy, lecz pięć po sobie następujących momentów podporowychl).

J) Zastosowanie tych równań do obliczenia mostów o belkach ciągłych i mostów pontonowych znajdzie czytelnik 
w przytoczonej powyżej książce Muller-Br eslau’a, t. II 2.

2) Dla obciążeń, zmieniających się według prawa trójkąta, trapezu i paraboli, podano odpowiadające wzory w Be­
ton u. Eisen z r. 1915, str. 209.

§ 90. SZCZEGÓŁOWE PRZYPADKI OBCIĄŻENIA BELKI CIĄGŁEJ
W poprzednim paragrafie sprowadziliśmy obliczenie belki wieloprzęsłowej do rozwiązania 

układu równań linjowych. Zadanie można jeszcze uprościć obliczywszy wprzód wyrażenia —
O bi —jja najCZęściej napotykanych przypadków obciążenia2). Tutaj podamy dwa najprostsze 

przykłady takiego rachunku.
I. Obciążenie rozłożone równomiernie na całej belce (qkglm). Linje momentów 

są w tym przypadku parabolami. Wielkość pola Qn określa formuła:
2 I 2 
o o 

a równanie (140) przybierze postać:
M,-,/. + 2Jlf.(/. + U) + ^ki = -T(Ł, + W • ■ • -(142)

W przypadku dwu przęseł równych i końców podpartych będzie AL AŁ O, zaś moment nad 
podporą środkową wypadnie z rów. (142):

ql2

Ten sam wynik otrzymaliśmy już poprzednio inną drogą (wz. 131). W przypadku trzech równych 
przęseł będzie:

Wielkość M znajdziemy z równania:

2M.2l + Ml = —^2l‘.
4 

Stąd

Rys. 227

j podporowych:

Diagram momentów zginających przedstawia 
rysunek (227). Posługując się wzorem (139) 
znajdziemy zaraz następujące wielkości reaki

^=^=^ + 4* “ę/, A = ± (391 2^9l)=0,49l-
1U lv w IV

Do wykreślenia linji sił poprzecznych, przedstawionej na fig. (b), użyjemy wzoru (137).
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Jeżeli liczba podpór jest wielka, a przęsła równe i obciążenie, jak powyżej, stałe na całej dłu-
gości belki, to dla podpór środkowych, dość odległych od 
równe, czyli napisać: «„_, = «„ = M,+1 = M
Wtedy otrzymamy z rów. (142):

końców, można uważać momenty za

6AfZ=— M= — 12
Momenty podporowe mają zatem tę samą wielkość, co momenty utwierdzenia belki w obu koń­
cach poziomo utwierdzonej. (Można to było przewidzieć już na podstawie tej okoliczności, że sty­
czne do linji ugięcia na podporach belki o nieskończenie wielu równych przęsłach muszą być, 
przy powyżej przyjętem obciążeniu, poziome). Dla przypadku obciążenia rozłożonego równomiernie, 
istnieją tablice wartości momentów i reakcyj podporowych ’). Przy ich pomocy można bez trudności 
dokonać obliczenia belek wieloprzęsłowych.

II. Obciążenie siłami skupionemi w n-tem i (n 4- l)-szem przęśle. Pola Qn i £2n+1 
(rys. 228) mają teraz postać trójkątów ^n-iCn^n i ^nCn+i^n+i. Rzędne ich wierzchołków mają 

wartość:
Pn^ndn • Pn-|-l Cn-f-l ®^n4~ 1

z. u;
a zatem pola trójkątów określą wzory:

On 2 n ’ On-j-< "2" Pn-f-l Cr-1

Położenie środków ciężkości On i tych pól 
wyznaczą odcięte:

M—1 /n 4" 2 Afn(/n 4- Zn-^-l) + M-f-t /n4-l =

j.
3 bn-f*! ”1” Cln-j-l)’

Równanie (140) przybierze przeto postać:
Pn Cn dn (/n 4“ Cn ) Pn-f-i dn-|-l (^n-f-1 4“ Cłn4*0 (143)

§ 91. RÓWNANIE DWÓCH MOMENTÓW8)
Przy pomocy równania trzech momentów sprowadzamy obliczenie belki ciągłej do rozwiązania 

układu równań linjowych. To rozwiązanie da się łatwo wykonać tylko w przypadku niewielkiej 
liczby przęseł. Z rosnącą liczbą podpór wzrasta i liczba równań, a razem z nią praktyczne tru­
dności obliczenia, wobec czego wypada szukać sposobów upraszczających zadanie. Najprędzej pro­
wadzi do celu sposób osnuty na t. zw. twierdzeniu o dwóch momentach. Przy jego zastosowaniu 
unikamy rozwiązywania układu równań i mamy do czynienia tylko z rozwiązywaniem oddzielnych 
równań o jednej niewiadomej. Patrząc na wykres momentów (rys. 225), łatwo zauważyć, że mo­
ment w dowolnym przekroju jakiegokolwiek przęsła można znaleźć, jeżeli znamy momenty zgina­
jące w dwu jakichkolwiek punktach tego przęsła. Diagram momentów jest bowiem ograniczony 
krzywą, zupełnie określoną obciążeniem rozpatrywanego przęsła, tudzież prostą, której położenie 
zależy od momentów podporowych. Znając wartości momentów w dowolnych dwu punktach, znaj­
dziemy dwa punkty tej prostej, a tern samem i cały diagram momentów. Odpowiednią konstrukcję 
wykonano na rys. (225) dla n-go przęsła przy założeniu, że dane są momenty zginające w prze­
krojach, odpowiadających punktom Cn i Hn. Według danego obciążenia wykreślono krzywą 
Aa-i" CnAn". Od punktów Cn i Hn odmierzono na rzędnych odcinki CnCn' i HnHn', przedstawia­
jące dane momenty. Prosta DF, przechodząca przez otrzymane punkty Cn' i HJ, określa wraz 
z krzywą An-" CnAn" prawo zmienności momentu zginającego na długości rozpatrywanego przę­
sła. Skoro dokonamy tej konstrukcji dla n-go przęsła, to dla jej przeprowadzenia w sąsiedniem

9 Ob. „Hiitte", cz. 1, str. 452 (VII wyd. z r. 1909).
Bardziej szczegółowe tablice znajdują się w książce: A. Cart et L. Portes: „Calcul des ponts mćtaliąues par la 

mćthode des lignes d’influence“.
2) To równanie wyprowadził Maurice Lćvy. Ob. „La statique graphique“. II partie, Paris 1866.
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(n+l)-szem przęśle wystarcza znajomość momentu zginającego tylko w jednym dowolnie obranym 
punkcie; drugi jest określony wartością momentu Afn, wspólnego dla n-go i (n+l)-go przęsła. 
Przechodząc w ten sposób od przęsła do przęsła, otrzymamy zupełny diagram momentów belki ciągłej.

W jakimkolwiek przekroju x (rys. 225) n-go przęsła i w przekroju przęsła (n + l)-go wyra­
żają się momenty zginające odpowiednio równaniami:

(według wz. 136). Obliczywszy z powyższych równań Mn_i, M41 i wstawiwszy ich wartości 
w równanie trzech momentów:

Z„ + 2 M, (l„ + /„+,) + M„+, /n+, = - 6 -5^ _ 6 ^±Ł^±L,

otrzymamy:
(AfXj

*1

(Mx-M°)ln*
—+ 4- Mn | 2 (/n + Ai-h)

X ln (/n-f-1 6 On 6On+lbn-f-l

/n—X Xj ' /„ /n+1

W to równanie wchodzi, prócz momentów M* i AfXi, jeszcze moment podporowy Mn. Można 
go jednak wyrugować, obrawszy wielkości x i xt tak, aby spółczynnik przy Mn stał się zerem, 
czyli, aby się spełnił warunek:

2(Zn +/„+,)- 7^- - 0.......................................... (144)
/n X

Wtedy otrzymamy między Mx i Mx zależność:
_ (MX1 ~MX») la+^ _ __ 6Qn an _ 6Qn+i bn+i . (145)

/n X X । Zn Zn-1-1

która nosi nazwę równania dwu momentów. Momenty Mx° i w przekrojach x i xt są 
tutaj wielkościami znanemi, obliczonemi jak dla belki w obu końcach podpartej. Przekroje x i x1, zwią­
zane równaniem (144), będziemy nazywać przekrojami „odpowiadającemu w sąsiednich przęsłach.

W przypadku belki ciągłej z końcami swobodnie podpartemi, mamy dwa przekroje, w których 
momenty są znane, a mianowicie przekroje po obu końcach belki, gdzie te momenty stają się 
zerami. Zacznijmy od lewej podpory 71/ (rys. 229). Odpowiadający przekrój w drugiem przęśle 
znajdziemy przy pomocy rów. (144). 
Przyjmując w niem x = 0, otrzy­
mamy:

2(z,+z2)-^^=^=o.

A zatem punkt F2 odpowiadający 
71/,dzieli drugie przęsło w stosunku: 
^2 xi_ ____ 2(/t + /2) (146)

X, 2 Z2 Rys. 229

Wstawiając znalezioną takim sposobem wartość xt w rów. (145) i kładąc w niem x = 0 i Mx = 0, 
wyznaczymy wielkość MX1 momentu zginającego w przekroju F2. Od przekroju F2 przechodzimy 
do odpowiadającego mu przekroju F3 w trzeciem przęśle. Położenie przekroju wyznaczymy znowu 

/ —xna podstawie rów. (144). Uwzględniając oznaczenie przez k2 wartości stosunku n - dla drugiego

przęsła i oznaczając przez k3 stosunek podziału trzeciego przęsła przez F3, możemy rów. (144) 
napisać w postaci:

2(4+ 4)-^-*,4=0, skąd = 2 + ^-(2 —^-) • • • (147)

Wyznaczywszy w ten sposób położenie F3 i wstawiwszy w równ. (145) zamiast Mx wielkość mo­
mentu w F2, znajdziemy moment w przekroju F3. Tak postępując dalej, znajdziemy momenty w prze­
krojach F4, F3... Przy przejściu od przekroju Fn do Fn+i określimy położenie Fn_j.i stosunkiem kn^. 
Wielkość jest związana z kn równaniem (144), które można napisać w postaci:

2(Z„+Z„+i)-4-fe»+iUi = 0. Stąd kn+l = 2 + -i^-{2-^\ ■ ■ (148)
Kn ' Kn ’
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Wyznaczenie momentu zginającego w każdem nowem przęśle wymaga przeto rozwiązania dwu 
równań, z których każde zawiera tylko jedną niewiadomą. Tą drogą unikamy rozwiązywania zło­
żonego układu równań, do których prowadzi często posługiwanie się równaniem trzech momentów. 
Znalazłszy momenty zginające w F2, F3, F4, -. i uwzględniwszy, że na końcach belki są momenty 
równe zeru, mamy wielkości momentów w dwu przekrojach prawego skrajnego przęsła (prze­
kroje 714' i F, na rys. 229) i w jednym przekroju każdego z pozostałych przęseł. To zaś wystarczy, 
jak wykazaliśmy, do przeprowadzenia linji łamanej 7J0' C2 C3 A/, a zatem i do konstrukcji dia­
gramu momentów.

§ 92. WPŁYW OBCIĄŻENIA JEDNEGO PRZĘSŁA
Jeżeli w jakiemkolwiek przęśle nie ma obciążenia, to odpowiadające pole momentów przedstawia dla tego przęsła 

linja prosta. Weźmy jako przykład belkę siedmioprzęsłową i przyjmijmy, że tylko przęsło środkowe jest obciążone (rys. 230)

Rys. 230

i to równomiernie. Przy swobodnem podparciu końców belki będą momenty podporowe
Mo = 0.

Dla wyznaczenia pozostałych momentów zastosujemy rów. (140) do każdej pary sąsiednich przęseł, zaczynając od lewej 
podpory Dla pierwszych dwu przęseł otrzymamy:

2Mi(Ji + M + Mil3=0, czyli i =  UL+Al = _

Momenty podporowe i mają zatem znaki przeciwne. Linja momentów w drugiem przęśle przedstawia się jako 
prosta Bi B^, przecinająca oś w punkcie N3. Położenie tego punktu jest zupełnie określone stosunkiem k2 i nie zależy wcale 
od sposobu obciążenia przęseł, leżących na prawo od rozpatrywanego. Przy jakiemkolwiek obciążeniu tych przęseł będzie 
moment zginający w N2 zerem i tam powstanie punkt przegięcia. Łatwo zauważyć, że otrzymany punkt N3 jest identyczny 
z punktem FJ( znalezionym powyżej przy zastosowaniu równania dwu momentów (por. wz. 146).

Rozpatrzmy teraz przęsło drugie i trzecie. Rów. (140) przyjmuje dla nich postać:

Stąd, uwzględniając znalezioną wartość stosunku otrzymamy:

M, 2(/2 + /3) , l3 h
l3 l3 ' 2U+4)

Ponieważ —jest widocznie liczbą ujemną, więc M3 i A72 mają znaki różne. Prosta B3B3, nachylona do osi, jest linją 
momentów dla trzeciego przęsła. Punkt N3 odpowiada w tem przęśle punktowi przegięcia przy dowolnem obciążeniu wszyst­
kich przęseł leżących na prawo. Jego położenie określa w zupełności wielkość k3; jest ono identyczne z położeniem 
punktu F3 znalezionego poprzednio (wz. 147). Takąż drogą znaleźlibyśmy dalsze stałe punkty N4, N6, • • • jako punkty prze­
gięcia, gdyby były obciążone tylko przęsła leżące na prawo od rozpatrywanych. Wielkości k2, k3, k^, -- nie zależą od 
owych obciążeń i są zupełnie określone stosunkiem rozpiętości przęseł. Wartość kn+1 wyraża się przez kn zapomocą ogól 
nej tormuły (148). W przypadku równych rozpiętości znajdziemy łatwo:

k2 = 4, /?3 — 3,75, kt = k5 = ■. • 3,73.
Jeżelibyśmy szli od prawego końca belki, to zupełnie takim samym sposobem znaleźlibyśmy stałe punkty 0$, O^, O^--- 
jako punkty przegięcia przy obciążeniu belki po lewej stronie rozpatrywanego przęsła. Wprowadziwszy dla tego przypadku 
oznaczenie:
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otrzymamy do obliczenia k'n ogólne równanie:

k n —= 2 । Jh+L
/n

1
k n-|-l

(148)'2

Określiwszy położenie stałych punktów N^, N3,-" 06, możemy łatwo wykreślić diagram momentów zginających, 
gdy znane są wartości momentów podporowych M3 i A/4, odpowiadające przęsłu obciążonemu. Do tego trzeba będzie tylko 
poprowadzić przez stałe punkty linję łamane B3B3Bi Ao i B5 B& A7. Ażeby znaleźć M3 i M4, ustawimy równania trzech 
momentów, biorąc pod uwagę najpierw przęsło trzecie i czwarte, a następnie czwarte i piąte. Te równania mają postać: 

+ 2M3 (l3 + /4) + M4/4 = - 6-^-,

^3 /4 + 2M4 (/4 + /6) + M5 /6 = — 6 * —- ,

którą łatwo przekształcić na następującą:

+ f (2 + ^-)] = -6^L,

M8(4 + Ml42 + A(2 + i)] = -6ĄŁ.

Zważywszy, że _ 1 . _ 1
M, k, 1 M, )r6 ’

możemy przy pomocy wzorów (148) i (148)' przedstawić powyższe równania w prostszej postaci:

. . . a * i z 6 O4 bi - - , aa . . f 6 ^4 a4/4 + M3 /4 =------- .---- , Ma Z4 4- /4 k 4 =-------- .---- ?
h /4

Sl,d u  6O.(b,k’t-a.)

W najogólniejszej formie, przy obciążeniu n-go przęsła, napiszemy dla odpowiadających momentów podporowych wyrażenia:
.. __  6 On (&n fe'n — Sn )

1 Pn ( 1 - fen fe'n ) ~ ’
_ 6 On ( Sn fen — bn ) 

” ~ Pn ( 1 - fen fe'n ) • (149)

W ten sposób obliczenie belki ciągłej przy obciążeniu jednego przęsła sprowadza się do wyznaczenia stałych fe2, fe3, • • • fe'2, fe'3, • • • 
na podstawie wzorów (148) i (148)', oraz do obliczenia Mn—1 i Mn według wz. (149). Liczby fe2, fe3, ••• fe^, fe'3)--- są zawsze 
większe od 2, a zatem momenty podporowe maleją szybko w miarę oddalenia od obciążonego przęsła.

Przyjmijmy np., że wszystkie przęsła belki, przedstawionej na»rys. (230), są równe, a na środkowym przęśle znaj­
duje się równomiernie rozłożone obciążenie qkg/m; wtedy:

fe2 = 4, fe3 = 3,75, fe4 = 3,73, fe'6 = 4, fe'5 = 3,75, fe'4 = 3,73,

A zatem (według wz. 149):

10,7 O,fO

Tak szybkie zmniejszanie się momentów podporowych pozwala przy obliczeniu belek o wielkiej liczbie przęseł pomijać 
zupełnie wpływ przęseł bardziej oddalonych od przęsła rozpatrywanego. Gdyby w naszym przykładzie wziąć pod uwagę 
tylko przęsła sąsiadujące bezpośrednio z obciążonem przęsłem czwartem, to otrzymalibyśmy

m2 = m6=0,

Wartości M3 i M4 różnią się tylko o 5% od znalezionych powyżej. Skoro odrzucimy przęsła skrajne i rozpatrzymy belkę 

pięcioprzęsłową, to wypadnie M3 = M4 =---- wielkość różni się od rzeczywistej, w przybliżeniu o % %.

§ 93. NAJNIEKORZYSTNIEJSZE OBCIĄŻENIE BELKI CIĄGŁEJ
Jeżeli na belkę ciągłą działają oprócz stałych sił jeszcze obciążenia ruchome, to przy obliczeniu zachodzi kwestja 

najniekorzystniejszego położenia obciążenia. W obliczeniach belek mostowych zastępuje się zwykle obciążenia ruchome 
obciążeniem równoważnem, rozło^onem równomiernie na poszczególnych przęsłach belki. Nie trudno wybrać te przęsła, 
które należy obciążyć w każdym szczególnym przypadku, skoro uwzględnimy wyniki poprzedniego §-u, odnoszące się do 
wpływu obciążenia jednego przęsła. Zacz niemy od rozpatrzenia tego położenia obciążeń, któremu odpowiada największa 
wartość momentu zginającego. Dajmy na to, że chodzi o przekrój nad n-tą podporą. Ażeby otrzymać największą
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ujemną wartość Mn, trzeba obciążyć przedewszystkiem przęsło n-te i (n + l)-sze, a z dalszych przęseł należy obciążyć 
co drugie, jak to uwidoczniono na fig. (a) (rys. 231). Taki rozkład obciążenia tłumaczy się jasno tą okolicznością, że na 
końcach obciążonego przęsła powstają momenty ujemne, a znaki dalszych momentów podporowych zmieniają się kolejno. Dla 
otrzymania zaś największej dodatniej wartości Mn trzeba obciążenia rozmieścić oczywiście w sposób przedstawiony na fig. (b).

n-4 n-3 n-z
fi&cl

■■■ „MMn-i n n+t n+2

IIIIIIIIIIIIIIII IIIIIIIIIIIIIIIUII

(^TTr^ma/r

n-4 n-3 n-t n-t n

Rys. 231 Rys. 232

liiimMl

Rozpatrzymy teraz rozmaite przekroje na długości n-go przęsła. Rys. (232) przedstawia diagram momentów, odpo­
wiadający obciążeniu tego przęsła (pozostałe przęsła wolne od obciążenia). Będziemy w niem rozróżniać trzy przedziały. 
Jeżeli rozpatrywany przekrój leży pomiędzy (n—l)-szą podporą, a przekrojem mn (rys. 232), to obciążenie, spoczywające 
na n-tem przęśle, wywoła w niem moment zginający ujemny. Moment tego samego znaku powstanie także w przekroju 
wskutek obciążenia wszystkich tych przęseł, którym odpowiada ujemny moment podporowy Mn-1. Dla otrzymania naj­
większej wartości momentu ujemnego w rozpatrywanym przekroju, należy przeto rozmieścić obciążenie w sposób, przed

ffiiiiiiiiiiiiiMMmiihiiiw
^n-4 ^n-3 an-2 ^ni ri ^n^e

figa.

Rys. 234

stawiony na fig. (a) (rys. 233). Największemu zaś momentowi dodatniemu odpowiada rozmieszczenie obciążenia według 
fig. (b). Przejdźmy teraz do przekrojów leżących w przedziale między przekrojem mn, a stałym punktem Nn. Obcią­
żenie rozmieszczone na n-tem przęśle wywoła w tyc(i przekrojach moment zginający dodatni. Dla otrzymania największego 
momentu ujemnego musi n-te przęsło pozostać nieobciążone, z innych zaś przęseł trzeba obciążyć te, którym odpowiada 
ujemny moment podporowy Mn—'. Rozkład obciążeń przedstawia fig. (a) na rys. (234). Na fig. (b) uwidoczniono rozmieszcze­
nie obciążeń, odpowiadające największemu dodatniemu momentowi zginającemu w tychże przekrojach. Jeżeli rozpatrywany 
przekrój leży w przedziale NnOn, t. j. między punktami stałemi, to wskutek obciążenia n-go przęsła powstanie w niem 

UHL___ MM)^n-4 ^n-j ^n-2
IIIIIIIIIIIIIIII
n-i n-2

IIIIIIIIIIIIIIII
n-4 n-3

Rys. 235

___ _ ««
n-4 n-3 n-2 n-i\ n nn Ln-a n-3 n-*

fig. a.

& Qmin

fi^ł^ n

Rys. 236

moment zginający dodatni. Aby otrzymać jego największą wartość należy oprócz n-go przęsła obciążyć po lewej stronie wszystkie 
te przęsła, którym odpowiada dodatnia wartość momentu podporowego Mn-i; po prawej zaś wszystkie przęsła, którym od­
powiada dodatnia wartość Mn. Rozmieszczenie obciążeń przedstawiono na fig. (a) (rys. 235). Dla otrzymania największej 
wartości momentu ujemnego trzeba rozmieścić obciążenie według fig. (b).

Przejdziemy nakoniec do rozpatrzenia najniekorzystniejszego obciążenia belki ciągłej ze względu na siły poprzeczne 
w dowolnym przekroju n-go przęsła. Z wzoru (137) wnosimy, że na n-tem przęśle trzeba rozmieścić obciążenie tak samo, 
jak na belce w obu końcach podpartej. Co się tyczy innych przęseł, to dla otrzymania Qmax należy obciążyć te z nich, 
którym odpowiadają dodatnie wartości Mn, a ujemne wartości Mn—1. Ażeby zaś otrzymać £)min trzeba widocznie obciążyć 
te przęsła, które poprzednio były nieobciążone. Ogólne rozmieszczenie obciążeń przedstawiono na rys. (236).
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§ 94. LINJE WPŁYWOWE DLA BELEK CIĄGŁYCH
Zastąpienie ruchomego układu ciężarów skupionych równoważnem obciążeniem ciągiem, rozłoźonem równomiernie, 

upraszcza znacznie obliczenie belek ciągłych, ale, posługując się tą metodą, można niekiedy popełnić znaczne błędy w obli­
czeniu największych wartości wielkości statycznych. Ażeby dokładniej zbadać działanie ruchomych ciężarów skupionych, 
wypada uciec się do linji wpływowych. Jako przykład rozpatrzymy konstrukcję tych linij dla najprostszego przypadku belki 
o dwu równych przęsłach (rys. 237). Zaczniemy od linji wpływowej dla momentu podporowego Mt, odpowiadającego pod­
porze Tli. Przyjąwszy jednostkę ciężaru w przekroju x lewego przęsła i zastosowawszy ogólny wz. (143), znajdziemy:

_ l.x(i2—JC2)
~ 4 l2

. (150)

Rys. 237

Odcinając dla każdej wartości x odpowiadające wartości Mi jako rzędne, 
otrzymamy linję wpływową dla Mi w lewem przęśle. Dla prawego przęsła 
otrzymamy takąż samą krzywą, położoną symetrycznie względem Tli (rys. 237). 
(Rzędne linji wpływowej, jako ujemne, odmierzyliśmy w dół). Przyrównawszy 

pochodną do zera, znajdziemy, że największa rzędna odpowiada war­

tości x l

Szukajmy teraz linji wpływowej dla momentu zginającego w jakimkolwiek przekroju pierwszego przęsła, w odległości a 
od lewej podpory. Na podstawie wzoru (136) mamy:

Ma = Ma« + M1~.

Linja wpływowa dla pierwszego przęsła będzie mieć dwie gałęzie. Dopóki ciężar znajduje się na lewo od rozpatrywanego
przekroju (x < a),

„n 1.(Z — x)a , , . l.x(/ —a)Ma° = ——j— ------ 1. (a — x) =-------j------ -

Po przejściu ciężaru na prawą część przęsła (x > a), otrzymamy:

Odpowiadające równanie linji wpływowej będzie miało dla lewej części postać:

.. l.x(l-a) l.x(P —x2) a L 5 x3 aM. =-------1-------------------------------W-nJ+łFl'

zaś dla części prawej postać:

1.(1—x)a l.x(P— x2) a a / 5 x3 \
">= t------------ z?—T=7V-4x+^i-r

Na lig. (a) i (b) (rys. 288) przedstawiono linje wpływowe dla dwu położeń
4

przekroju. W pierwszym przypadku a < -y /, a linja wpływowa nie przecina 

osi X-ów; wszystkie rzędne w pierwszem przęśle są dodatnie. W drugim przy­
padku przecina linja wpływowa oś X-ów w punkcie, którego odciętą x łatwo 
znaleźć z równania:

* o.\ 4 11 Ą: ł l

Mając takie linje wpływowe, nie trudno obrać położenie obciążenia w pierwszem 
przęśle tak, aby w danym przekroju zaszło Mmax. Przy obciążeniu prawego przęsła ma moment zginający w rozpatrywa­
nym przekroju przęsła lewego wartość:

Ma = Mt y .

Linja pływowa ma przeto w drugiem przęśle tę samą postać co linja wpływowa dla momentu podporowego Mj, tylko jej 
rzędne są zmniejszone w stosunku a: l.

Reakcja lewej podpory
n r_  n ।

jeżeli przez /Iu oznaczymy reakcję, obliczoną jak dla belki w obu końcach podpartej. Dopóki jednostka ciężaru znajduje 
się na lewem przęśle w odległości x od lewej podpory, otrzymamy:

1.(1—x) l.x(/s — x2)
“ Z 4P

Kurs wytrzymałości materiałów 11
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Odpowiadającą linję wpływową Ai Ć wykreślono na rys. (239). Gdy ciężar przechodzi na prawe przęsło, to:

A' Mt 
~ /

a odpowiadająca linja wpływowa ma takąż postać, jak dla Mt. Dla jej wykreślenia trzeba tylko rzędne linji wpływowej dla
Mi, mierzone w podziałce momentów, podzielić przez długość /.

Posługując się linją wpływową dla reakcji Aq łatwo skonstruować linję 
wpływową dla siły poprzecznej w jakimkolwiek przekroju mn. Dopóki jednostka 
ciężaru znajduje się na prawo od przekroju mn, siła poprzeczna równa się 
reakcji Ao'. Po przejściu obciążenia na lewą stronę przekroju, trzeba od 
reakcji Ao' odjąć jednostkę ciężaru, aby otrzymać siłę poprzeczną. W ten spo­
sób wykreślono na rys. (239) linję wpływową dla siły poprzecznej, ogranicza­
jącą zakreskowane pole.

W przypadku belek wieloprzęsłowych rozpoczniemy od obliczenia liczb 
k i k', określających punkty stałe N i O. Następnie dzielimy każde przęsło 
na kilka równych części i umieszczamy jednostkę ciężaru kolejno w każdym 
punkcie podziału. Umieściwszy ciężar, obliczamy najbliższe momenty podpo­
rowe według wzorów (149). Pozostałe momenty podporowe znajdujemy przy 
pomocy liczb k i k'. Teraz można wyznaczyć w każdym przekroju moment 
zginający i siłę poprzeczną zapomocą wz. (136) i (137). Skoro dokonamy 

wszystkich tych obliczeń dla określonego położenia jednostki ciężaru, przenosimy ciężar na przekrój następujący i powta­
rzamy rachunek. Wykonawszy obliczenia dla wszystkich naznaczonych przekrojów, będziemy mieć dostateczną ilość danych 
do konstrukcji linji wpływowej. Żmudne rachunki można przytem znacznie skrócić przez użycie gotowych tablic1), poda­
jących rzędne linij wpływowych w różnych przekrojach belki.

*) Szczegółowe tablice dla belek równoprzęsłowych na trzech i czterech podporach wydał Lederer p. t „Analyt. 
Ermiłtel. u. Anwend. v. Einflusslinien“.

Liczne tablice dla belek wieloprzęsłowych znajdują się w przytoczonej poprzednio książce: A. Cart et L. Port es, 
tudzież w artykule Dupuy et Guenot w Annales d. Ponts et Chausćes, 1897.

2) Ob. Koechlin’a: „Applications de la statique graphique, r. 1889, str. 343.

§ 95. BELKI CIĘGLE O PRZEKROJU ZMIENNYM

We wszystkich naszych wywodach przyjmowaliśmy dotąd, że sztywność belki jest na całej 
długości stała. Atoli w praktyce mamy prawie zawsze do czynienia z belkami o przekroju zmien­
nym, jakkolwiek dla uproszczenia obliczeń przyjmuje się i w tych przypadkach stałą wartość El. 
Powstałe wskutek tego błędy, jak można wnosić z rachunków szczegółowych dla kilku szczegól­
nych przypadków2), są, wogóle mówiąc, niewielkie. Jeżeli większa dokładność jest pożądaną, to 
postępujemy drogą kolejnych przybliżeń w sposób następujący: Dla danych obciążeń i rozpiętości 
przęseł obliczamy momenty i reakcje podporowe, jak dla belki o stałym przekroju. Stosownie do 
tych wielkości dobieramy następnie wymiary przekrojów poprzecznych. Dla otrzymanej w ten spo­
sób belki o przekroju zmiennym, będą momenty podporowe widocznie różne od obliczonych po­
przednio i dlatego wypadnie powtórzyć rachunek uwzględniając obrane wymiary. Na znalezionych 
z drugiego obliczenia wartościach momentów i reakcyj podporowych można już poprzestać i według 
nich obrać ostateczne rozmiary przekrojów poprzecznych. Dalsze powtarzania obliczeń są zbyteczne, 
gdyż one zmieniłyby bardzo mało wyniki drugiego rachunku. Przy powtórnem obliczeniu trzeba, 
jak widzimy, wyznaczyć momenty podporowe i reakcje dla belki o zmiennym przekroju. Można 
tego dokonać albo obierając za wielkości statycznie niewyznaczalne reakcje podpór, jak to uczy­
niliśmy w przypadku belki dwuprzęsłowej (§ 87), albo też posługując się równaniem trzech mo­
mentów, które należy teraz uogólnić dla belki o przekroju zmiennym. Związek między trzema po 
sobie następującemi momentami podporowemi znajdziemy tak, jak w przypadku przekroju stałego, 
jeżeli weźmiemy pod uwagę, że dwa sąsiednie przęsła mają na środkowej podporze wspólną styczną 
do linji ugięcia. Jeżeli oznacza kąt obrotu prawego końca n-go przęsła, a 3/ kąt obrotu lewego 
końca (n + l)-go przęsła, to równanie trzech momentów wyrazi warunek

'$2 = — ..............................................................................................(a)
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Kąty i i/j otrzymamy najprościej sposobem wykreślno-analityczńym, wyznaczając je jako 
M reakcje podporowe wskutek fikcyjnego obciążenia ciągłego, zmieniającego się według prawa ^.Wsta­

wiwszy w miejsce M jego wartość, znajdziemy dla n-go przęsła:
M M0,n , Ma-lln-x) Mnx
EI ~ EF+ EIln Eli/

Dla (n + l)-go przęsła otrzymamy analogicznie:
M _ M0,n+i , Mn(ln+1-x) Mn+ix
El ~~ El + EIln^ EIln+/

W obu powyższych równaniach oznacza x odciętą, mierzoną od lewego końca odpowiadającego 
przęsła. Nacisk na środkową podporę A, wywołany fikcyjnem obciążeniem lewego przęsła będzie:

1
^2 =

ClnMonxdx Mn-! C ”

} ) El
o 0

Mn ęln x2dx

2) Odnośne zadanie opracował najpierw Winkler w książce: „Die Lehre v. d. Elastizitat u. Festigkeit* z r. 1867. 
Ob. także: Miiller-Breslau, die graph. Statik. d. Baukonstr. T. II, cz. 2-ga, str. 229.
S. P. Timoszenko: „Kurs tieorij uprugosti", cz. II, str. 4, wyd. z r. 1916.
Szereg zadań z dziedziny obliczenia nawierzchni kolejowej znajduje się w książce Zimmermann’a: „Die Berechnung 

d. Eisenbahn-Oberbaues®, r. 1888.
3) A. Foppl: „Mitt. aus d. Mech, techn. Labor.“. Miinchen, Heft 27. R. 1900.

1/ ) El 
Ł o

Podobnież będzie nacisk na tę samą podporę wskutek fikcyjnego obciążenia prawego przęsła:

”+1 M„
El . ^+Z„+i

'"+l (l„+,-xydx M„+i C'nH (Z„+, - x)xdx
El + Z.., ' El 

□ o

Wykonawszy całkowanie i wstawiwszy wyniki w rów. (a), otrzymamy szukany związek między 
trzema momentami *).

§ 96. ZGIĘCIE BELEK, SPOCZYWAJĄCYCH NR SPRĘŻYSTEM PODŁOŻU

W całym szeregu zadań technicznych mamy do czynienia ze zgięciem belek, podpartych 
sprężyście na całej swej długości2). W tych warunkach znajdują się np. podkłady kolejowe, podłużnice 
podparte gęsto ułożonemi poprzecznicami i t. p. Rżeby w każdym z tych przypadków otrzymać 
rozwiązanie zadania, musimy znać dokładnie sprężyste własności podłoża i ustawić zależność mię­
dzy naciskami a odpowiadającemi im osiadaniami tego podłoża. Przyjmiemy, że poddanie się 
podłoża jest w dowolnym punkcie proporcjonalne względem ciśnienia wywartego na podłoże. Takie 
przypuszczenie nie może być oczywiście ścisłe, ale jest najprostsze i jak dotąd, daje wyniki zado­
walające8). Założywszy nadto, że zginany pręt jest 
złączony z podłożem w ten sposób, że w płasz­
czyźnie stykania mogą się pojawić nietylko ciśnie­
nia, ale i ciągnienia, rozpoczniemy od następują­
cego przypadku:

Na bardzo długi pręt działa w środku siła sku­
piona P (rys. 240). Umieśćmy początek spółrzę­
dnych w punkcie działania siły i skierujmy oś Y-ów, 

m

Rys. 240

leżącą w osi pręta na prawo, a oś Y-ów pionowo w górę. Pod działaniem siły P wygnie się pręt 
tak, że linja ugięcia będzie zwrócona w punkcie O wypukłością w kierunku ujemnych Y-ów. 
Równaniem zgiętej osi pręta będzie:

El M. dx2

0 Obliczeniem belek ciągłych o zmiennym przekroju zajmuje się nowa książka Suter’a (Berlin 1916).

11*
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Weźmy pod uwagę przekrój poprzeczny mn i oznaczmy 
żyste podłoże na belkę, odniesiony do jednostki długości 
w przekroju mn, to w sąsiednim przekroju, odległym o 
Q + = Q + a zatem:

przez p nacisk wywarty przez sprę- 
bełki. Jeżeli Q jest siłą poprzeczną 
dx od mn będzie siłą poprzeczną

Różniczkując dwa razy równanie linji ugięcia i uwzględniając, że
dM d*M _ dQ
dx ’ a dx2 dx

otrzymamy:
El^ = p, ...........................................................(151)

U A

Według przyjęcia, uczynionego powyżej, jest nacisk p w dowolnym punkcie proporcjonalny wzglę­
dem osiadania podłoża, czyli proporcjonalny względem ugięcia pręta. Oznaczywszy spółczynnik 
proporcjonalności przez k, możemy rów. (151) napisać w postaci:

£/S=- .̂......................................................... (151)'

Znak — po prawej stronie znaku równości pochodzi stąd, ponieważ dodatnim ugięciom y odpowia­
dają ujemne naciski podłoża (skierowane w dół). Otrzymaliśmy tedy równanie różniczkowe linjowe 
ze stałemi spółczynnikami. Ogólna całka tego równania zawiera cztery stałe dowolne, które trzeba 
wyznaczyć z warunków krańcowych pręta. Wprowadziwszy oznaczenie:

możemy ogólną całkę przedstawić w formie1):

y = CiC^cosar + C2eaxsincxx + C3e~axcos«x + C4e~aJCsinax . . (153)

W naszem zadaniu wystarczy wyznaczyć wartość stałych dla jednej, np. prawej gałęzi linji ugięcia 
druga bowiem gałąź będzie do niej symetryczną. Wartość ugięcia w przekrojach bardzo oddalonych 
od miejsca obciążonego dąży oczywiście do zera. Zważywszy, że jednocześnie dąży wartość eax do 
nieskończoności, widzimy, że dla spełnienia powyższego warunku należy przyjąć = C2 — 0. 
Wtedy równanie linji ugięcia dla prawej połowy nieskończenie długiej belki przybierze postać:

y = e—a*(C3 cosax + C4 sinax).

Do wyznaczenia stałych C3 i C4 posłużą warunki w punkcie działania siły P. Tutaj z powodu
symetrji jest styczna pozioma, czyli

(a)

Pzaś siła poprzeczna po prawej stronie przybiera dla X-0 wartość —czyli:

r i __Z
L dx’Jx=0 2 • (b)

*) Zważywszy, źe
4--- ---- 4------

V -Tp-f • V — 1, otrzymamy cztery pierwiastki równania pomocniczego:

a(l + i), a(l — i), a(—1+i), a(—1— i). Odpowiadające całki szczególne równania (151)' będą przeto:
a(l + i)x a(i-i)x a(-i + 0* a(-l-i)jct? j J ę «

Uwzględniając, że eaxi + e a*1 = 2 cos azaś eaxi — e 2 i sina x, dochodzimy do ogólnej całki (153). 
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Ponieważ y = ae ux[ CA (cosax 4- sinax) + C4 (cosax — sinax)], więc z warunku (a) wypływa
C3 = C4, a y można przedstawić wyrażeniem:

y — Ce ax(cosax + sinax), 
z czego dalej wynika:

y' = — 2 C a e a x sin a x,

y" = 2Caie~ax (sina* — cosax),

y =4Cade cosax.

Stosownie do znalezionego wyrażenia dla trzeciej pochodnej napiszemy warunek (b) w postaci: 
p PI

4Ca8 = —skąd C = “ yg/ ' ’

Szukanem równaniem linji ugięcia pręta będzie przeto: 
P 1 - ax . p

y = 8 E/ <r 6 (cos «x + sin «x) = - s F/ . (154)

Przy pomocy wyrażeń dla y" i y'", łatwo ustawić następujące wzory dla momentu zginającego M 
i siły poprzecznej Q w dowolnym przekroju belki:

.. P —. PM----- i—e (sina* — cosax) — — q4,4a 4a
P — ax P

Q = —a e cos a x *12 •w

Największe ugięcie zachodzi w punkcie x = 0i ma wartość:

-  P 1   Pa
' 8EI as 2/? ‘

(154)'

Jak widać z rów. (154) ma linja ugięcia kształt falisty. Długość fali odpowiada zmianie kąta ux o 2n 
i równa się:

2L = ^=2n]^^.............................................. (155)
a «

Wysokość fał maleje szybko w miarę oddalenia od miejsca obciążonego, dzięki czynnikowi e 
Na rys. (241) przedstawiono linję ugięcia (w przesadnej podziałce wysokości), a w tablicy niżej

umieszczonej podano wartości funkcji i), i i)2, określających zmianę ugięcia, momentu 
i siły poprzecznej wzdłuż belki.
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Tablica wartości funkcji i], r|t, q2.

ax 9 9t 92 ax 9 9i 92

0,0 1,0000 1,0000 -1,0000 3,6 - 0,03659 -0,01241 0,02450
0,1 0,9907 0 8100 -0,9003 3,7 -0,03407 —0,00787 0,02097
0,2 0,9651 0,6398 —0,8024 3,8 —0,03138 - 0,00401 0,01770
0,3 0,9267 0,4888 -0,7077 3,9 - 0,02862 -0,00077 0,01469
0,4 0,8784 0,3564 -0,6174 —0,02786 0,00000 0 01393

0,5 0,8231 0,2415 0,5323 4,0 -0,02583 0,00189 0,01197

0,6 0,7628 0,1431 0,4530 4,1 - 0,02309 0,00403 0,00953
0,7 0,6997 0,0599 0,3798 4,2 -0,02042 0,00572 0,00735

1Ił 0,6448 0,0000 -0,3224 4,3 - 0,01787 0,00699 0,00544
0,8 0,6354 - 0,0093 -0,3131 4,4 - 0,01546 0,00791 0,00377
0,9 0,5712 - 0,0657 -0,2527

4,5 -0,01320 0,00852 0,00234
1,0 0,5083 -0,1108 — 0,1988

4,6 - 0,01112 0,00786 0,00113
1,1 0,4476 -0,1457 —0,1510 4,7 - 0,00921 0,00898 0,00011
1,2 0,3899 -0,1716 -0,1091 (’/4^ 0,00898 0.00898 0,00000
1,3 0,3355 -0,1897 0,0729 4,8 - 0,00748 0,00892 - 0,00072
1,4 0,2849 0,2011 —0,0419 4,9 -0,00593 0,00870 -0,00139

1,5 0,2384 0,2068 - 0,0158 5,0 -0,00455 0,00837 -0,00191

1,6
0,2079 - 0,2079 0,0000 5,1 0,00334 0,00795 -0,00230
0,1959 0,2077 0,0059 5,2 -0,00229 0,00746 0,00259

1,7 0,1576 -0,2047 0,0235 5,3 -0,00139 0,00692 -0,00277
1,8 0,1234 - 0,1985 0,0376 5,4 - 0,00063 0,00636 -0,00287
1,9 0,0932 -0,1899 0,0484 7/4 7l 0,00000 0,00579 - 0,00290

2,0 0,0667 -0,1794 0,0563 5,5 0,00001 0,00578 —0,00290

2,1 0,0439 0,1675 0,0618 5,6 0,00053 0,00520 —0,00287
2,2 0,0244 - 0,1548 0,0652 5,7 0,00095 0,00464 -0,00279
2,3 0,0080 -0,1416 0,0668 5,8 0,00127 0,00409 -0,00268

3/W 0,0000 — 0,1340 0,0670 5,9 0,00152 0,00356 -0,00254
2,4 -0,0056 — 0,1282 0,0669

6,0 0,00169 0,00307 —0,00238
2,5 -0,0166 —0,1149 0,0658

6,1 0,00180 0,00261 -0,00221
2,6 -0,0254 - 0,1019 0,0636 6,2 0,00185 0,00219 -0,00202
2,7 -0,0320 -0,0895 0,0608 0,00187 0,00187 —0,00187
2,8 -0,0369 -0,0777 0,0573 6,3 0,00187 0,00181 -0,00184
2,9 -0,0403 - 0,0666 0,0534 6,4 0,00184 0,00146 —0,00165

3,0 -0,04226 -0,05632 0,04929 6,5 0,00179 0,00115 —0,00147

3,1 —0,04314 .—0,04688 0,04501 6,6 0,00172 0,00087 -0,00129
% - 0,04321 — 0,04321 0,04321 6,7 0,00162 0,00063 -0,00113

3,2 —0,04307 -0,03831 0,04069 . 6,8 0,00152 0,00042 -0,00097
3,3 -0,04224 -0,03060 0,03642 6,9 0,00141 0,00024 -0,00082
3,4 -0,04079 -0,02374 0,03227

7,0 0,00129 0,00009 -0,00069
3,5 —0,03887 0,01769 0,02828

0,00120 0,00000 - 0,00060



167

Posługując się tą tablicą i zasadą superpozycji, można łatwo obliczyć długą belkę, spoczy­
wającą na sprężystem podłożu i obciążoną dowolnym układem sił. Trzeba tylko, aby siły były 
dość odległe od końców belki.

Im większa jest sztywność belki i podatność podłoża (im mniejsze k), tern większa wypada 
długość fali 2L, tern dłuższy zatem powinien być pręt, aby go można było uważać za nieskoń­
czenie długi, jak w powyższem rozwiązaniu. Ten abstrakcyjny przypadek jest najprostszy ze 
względu na wyznaczenie stałych całkowania, a otrzymane wyniki można z dostateczną dokładnością 
zastosować do rzeczywistych prętów, jeżeli ich długość l > 4 L. W przypadku krótszych prętów, trzeba 
oczywiście zmienić warunki krańcowe. Nie można już przyjmować, że poddanie się podłoża na 
końcach pręta jest równe zeru, natomiast należy przyjąć, że tam znika moment zginający i siła 
poprzeczna. Ostatecznie mamy następujące warunki dla wyznaczenia stałych dowolnych:

1) y" - 0 przy x = y;

3) y' = 0 orzy x = 0;

2) y'" = 0 przy x = y;

p
4) y'" = - przy x = 0.

Rozwiązanie tego zadania można zastosować np. do badania rozkładu ciśnień płyty łożyskowej na 
mur (uważając płytę za pręt na sprężystem podłożu). Stopień nierównomierności w rozkładzie 

ciśnień wzrasta z długością pręta. Gdy /= , to ciśnienie i ugięcie na końcach stają się zerem.

Ugięcie zaś w środku równa się 9:
1,09^..................................................................... (156)

2r

W podobny sposób szuka się rozkładu 
mentowej2).

2) Zastosowanieteorji do obliczenia fundamentu doków znajdzie czytelnik w Zeitschr. f. Bauwesen z r. 1908, str. 477.
s) To zadanie traktuje szczegółowo Zimmermann w książce przytoczonej powyżej, a także D. Bobylew w „Sborn. 

Inst. Inż. Put. Soobszcz." z r. 1902.

Bardziej złożonem jest zagadnienie

patrywać dwie części linji ugięcia: jedna

ciśnień na grunt w przypadku betonowej płyty funda-

zgięcia podkładu kolejowego (rys. 242). Tutaj trzeba roz- 

od x = ~ do x = ~— a, a druga między środkami szyn, U Zw 
które pośredniczą w działaniu ciężarów P. Do każdej części stosuje się ogólna całka (153), ale 
stałe dowolne trzeba wyznaczyć dla każdej części zosobna. W tym celu wypadnie ustawić 8 równań 
dla znalezienia tyluż stałych dowolnych. Na końcach podkładu moment zginający i siła poprzeczna
są równe zeru, a zatem napiszemy dwa równania 
warunkowe:

y'' = 0 i y"' = 0 przy x = -yw
W środku podkładu jest styczna do linji ugięcia z po­
wodu symetrji pozioma, a siła poprzeczna równa się 
zeru. Otrzymamy więc jeszcze dwa równania nastę­
pujące:

y' = 0 i y'" = 0 dla x = 0.

:__ j
Rys. 242

Pozostałe cztery równania można ustawić na podstawie warunków na granicy obu części. Obiedwie 
części linji ugięcia mają tutaj widocznie: 1) jednakie ugięcie y, 2) wspólną styczną, czyli równe 
wartości y', 3) te same wartości momentu zginającego, a zatem równe wartości y" i 4) siła poprze­
czna przy przejściu z jednej części do drugiej zmienia się o wielkość P, co wyraża równanie:

I i/" I _P 11 y ' Jx=4- El ■

Rozwiązanie otrzymanych w ten sposób ośmiu równań nie przedstawia zasadniczych trudności, 
ale wymaga uciążliwych rachunków8).

*) Ob. Winkler’a: „Theorie d. Briicken", str. 184.
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§ 97. BELKI NA SPRĘŻYSTYCH PODPORACH
Przy pomocy wyników poprzedzającego paragrafu można znaleźć przybliżone rozwiązanie dla 

przypadku zgięcia belki, spoczywającej na szeregu podpór sprężystych.
Przyjmiemy, że belka AB (rys. 243) spoczywa na podporach o jednakowej podatności, które 

leżą w równych odstępach na jednym poziomie. Taki przypadek zachodzi np., jeżeli rozpatrywana
p belka jest podparta układem jednakowych belek poprzecznych. Przy do-

■—,—,—  statecznej gęstości podpór, nacisk wywarty na belkę AB jakimkolwiek 
ciężarem skupionym P, będzie się rozkładać na kilka poprzecznie i wa­
runki zgięcia belki będą w przybliżeniu takie, jak w przypadku ciągłego 
sprężystego podłoża. Ażeby mieć możność zastosowania otrzymanych 
powyżej formuł (154)' i (156) dla ugięcia, trzeba określić wartość wiel­
kości k, charakteryzującej podatność podłoża. Niech będą Ri,R2,... 
naciskami, przeniesionemi przez belkę A B na poszczególne poprzecznice.

Te naciski będą proporcjonalne względem odpowiadających ugięć, a spółczynnik proporcjonalności 
można bez trudności znaleźć w każdym szczególnym przypadku.

Przypuśćmy np., że poprzecznice są w obu końcach podparte, a belka podłużna spoczywa na 
środku poprzecznie (rys. 244). Obniżenie punktu podparcia wywołane ugięciem poprzecznicy
równa się:

RF

Rys. 244przyczem oznacza / rozpiętość poprzecznicy, a E'l' jej sztywność.
Jeżeli, jak to bywa u mostów, dwie belki podłużne, obciążone jednakowo, spoczywają na po- 

przecznicach CD (rys. 245) w równej odległości od jej podpór, to ugięcie poprzecznie pod belkami
podłużnemi będzie:

Rys. 245

c2(3Z —4ę) 
6E'F

Najprościej można to wykazać metodą wykreślno-analityczną. Wyobraźmy 
sobie poprzecznicę obciążoną powierzchnią momentów CEFD. Wskutek tego 
fikcyjnego obciążenia powstaną reakcje podporowe: 

C = D =

i momenty zginające w przekrojach pod belkami podłużnemi:
Rc(l — c) Rc* c _ c*(3/ —4c) 

2 C 2 ‘ 3“ 6
Podzieliwszy znalezioną wartość Mc przez sztywność belki E'F, otrzymamy powyższe wyrażenie 
dla ugięcia. Z wzorów dla ugięcia znajdziemy w pierwszym przypadku:

p _ 48ET , 
— p n

w drugim zaś 6121'
R =

Zastąpmy teraz reakcję R, jako siłę zewnętrzną belki podłużnej, obciążeniem, rozłożonem równomiernie 
na długości a, równej odległości podpór (rys. 246). Wielkość tego obciążenia 
określi wyrażenie:

P=T‘
Wtedy belka będzie pod działaniem obciążenia ciągłego, przedstawionego 
linją schodkowatą. Im większą jest liczba podpór, na które się przenosi 
nacisk wskutek ciężaru P, tern bardziej zbliży się to obciążenie do obciążenia zmieniającego się 
w sposób ciągły według prawa: 

Rys. 246



169

jeżeli y oznacza ugięcie belki podłużnej w rozpatrywanym przekroju. Dla rozważanych powyżej 
szczególnych przypadków ma spółczynnik k wartości następujące:

I) = 7 a/8
II) k = ,^1' ,

7 ac8(3/ —4c)
(157)

Wyznaczywszy k i sprowadziwszy w ten sposób nasze zadanie do zginania belki na sprężystem 
podłożu, możemy wielkość ugięcia w obciążonem miejscu obliczyć według wzoru (154)', albo (156). 
Od ugięcia łatwo przejść do nacisku, którego doznaje jakakolwiek poprzecznica od belki podłużnej. 
W tym celu trzeba pomnożyć ciśnienie ky przez odstęp podpór a. Wstawiając zamiast y wartość 
największego ugięcia (wz. 154'), otrzymamy:

, _ Paa
max — q . (158)

dla przypadku, w którym belka podłużna jest przymocowana do poprzecznie, a (stosownie do wz. 156)
= 1,09-^ . (158)'

dla przypadku, gdy końce belki podłużnej mogą się swobodnie podnieść.
Jeżeli nacisk belki podłużnej przenosi się na niewielką liczbę poprzecznie, to do wyznaczenia 

reakcji R można użyć warunku, że w miejscach skrzyżowania się jest ugięcie belki podłużnej 
i poprzecznej wspólne. Ogólny tok rachunku objaśnimy na najprostszym przykładzie. Dwie belki 
podłużne, obciążone w środku siłami skupionemi P, spoczywają na trzech poprzecznicach (rys. 247). 
Przy założeniu symetrji będą reakcje podpór skrajnych równe i na podstawie statyki można
napisać: P = R, + 2R2
Oprócz tego wypada z poprzednio wyprowadzonego wzoru:

_ c2(3/— 4c) D f c2(3/ —4c)
” 6E7' 15 '2 ” 6 ET

Rys. 247
a stąd:

Tę samą wielkość f możemy znaleźć drugą drogą, rozpatrując ugięcie belki podłużnej. Linja ugięcia 
tej belki będzie mieć z powodu symetrji styczną poziomą nad środkową podporą, wobec czego 
można każdą połowę belki traktować jako belkę jednym końcem utwierdzoną i zginaną siłą R2, 
działającą na drugi koniec. Wówczas:

R as f f __ H o «

przyczem oznacza a odstęp poprzecznie, zaś El sztywność belki podłużnej. Z porównania obu 
wyrażeń dla fi — f2 otrzymamy:

Ra — R2=2yR2..................................................................(b)
jeżeli oznaczymy

_ 1 a3 6E'l' 
Y “ 2 3 El ’ c2(3Z—4 c) ’

Rozwiązując układ równań (a) i (b), znajdujemy:

r'=4tIvp’ r--3T2Fp ■ ■ • (159)
Podobną drogą łatwo rozwiązać zadanie rozkładu obciążenia na 5 po­

przecznie (rys. 248). Wzory dla wyznaczenia reakcji będą następujące:Rys. 248

p _ 1 T 18 y + 7 72 p R —___ 1 4-11Y _  p p 1 5 Y p / <5 + 34y + 7y’P’ 5 + 34y + 7y2 ’ 5 + 34y + 7Y2 }

Przy wartości y > v otrzymujemy R^ ujemne, skoro zatem belka podłużna nie jest przymoco- O
wana do poprzecznicy, to obciążenie przeniesie się tylko na 3 poprzecznice. Przy powiększeniu 
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liczby poprzecznie, na które się przenosi obciążenie, staje się wskazana droga do rozwiązania 
dość długą l).

9 Ob. Proskurjakow: „Strojitielnaja miechanika", cz. I, str. 265.
2) Ob. S. Timoszenko: „K’ woprosu o procznosti rels“. Sborn. Inst. Inż. Put. Soobszcz. r. 1915.
[Pokrewne zadania rozpatrują następujące prace:
K. Skibiński: „Beitrag zur Berechnung des Querschwellenoberbaues“, Zeit, d. óst. Ing. u. Hrch. Ver. 1899.
Dr. K. Wątorek: Nawierzchnia poprzeczna pod działaniem sił pionowych". Czas, techn. 1908].
s) Ob. interesującą pracę: Eugen Meyer. „Die Berechnung d. Durchbiegung von Staben, dereń Materiał d.

Hooke’schen Gesetze nicht folgt". Ph. Z. r. 1907.

Dla porównania obu metod obliczenia weźmiemy następujący przykład liczbowy: Szyna o sztywności El = 2.109kg.cm2 
przenosi obciążenie na 3 drewniane podkłady, mające sztywność E'I' = 23.108/?g.cm2. Odstęp między osiami poprzecznie 
a = 50cm, długość poprzecznicy l = 210cm, odstęp między szynami l —2c = 170 cm. Na podstawie znalezionych wzorów
otrzymamy:

a3 F' I'
= °’653;Ele2 (31 — 4c)

Jeżeli reakcje skupione zastąpimy rozmieszczonemi w sposób ciągły i obliczymy środkową reakcję z formuły (158)', to 
wypadnie: k = 1250kglcm2, a = 0,0199, Rt = 0,54P. Jeżeli szyny o tej samej sztywności przenoszą nacisk wywołany cię­
żarem P na 5 poprzecznie o sztywności E'I' = 12.108 kg.cm2 i wzajemnej odległości a = 40 cm, to k — 819 kg/cm2, a = 0,0179, 
a według wzoru (158)' reakcja środkowej popory Ri=0,39P. Obliczenie tejże reakcji według formuły (160) daje taki sam 
wynik Rx = 0,39 P. Z przytoczonych przykładów widać, że wz. (158)' daje, nawet przy niewielkiej liczbie podpór, zadowa­
lające wyniki i należy się nim posługiwać przy obliczaniu poprzecznie mostowych. Do tegoż wniosku dochodzimy przy 
zastosowaniu metody przybliżonej do obliczania szyn2).

ROZDZIAŁ XII

ZGINANIE BELEK Z MATERJAŁU NIEPODLEGAJĄCEGO PRAWU HOOKE’A

§ 98. WYZNACZENIE NAPRĘŻEŃ NORMALNYCH SPOSOBEM ANALITYCZNYM

Przy wyprowadzeniu podstawowych formuł teorji zgięcia polegaliśmy na założeniu, że płaskie 
przekroje poprzeczne pręta pozostają i po zgięciu płaskiemi. W takim przypadku wydłużenia i skró­
cenia podłużnych elementów zginanego pręta są proporcjonalne względem ich odległości z od war­
stwy obojętnej. Przyjąwszy, że materjał podlega prawu Hooke’a, przeszliśmy od odkształceń do 

05

Z

Rys. 249

w a rsłwa

A A

naprężeń i znaleźliśmy, że te ostatnie zmieniają się 
również linjowo w zależności od z. Wyniki otrzymane 
tą drogą można stosować z wielką dokładnością przy 
obliczaniu belek z żelaza kowalnego i stali, o ile od­
kształcenia nie przekraczają granic sprężystości. Takie 
materjały, jak żelazo lane, kamień i beton, okazują, jak 
wiądomo, znaczne zboczenia od prawa Hooke’a i kwestja 
rozmieszczenia naprężeń komplikuje się u nich znacznie. 
Z doświadczeń okazało się, że i w tym przypadku płaskie 
przekroje poprzeczne pozostają po zgięciu płaskiemi3) 
lecz linjowemu rozkładowi odkształceń odpowiada bar­
dziej złożone prawo rozkładu naprężeń. Dla znalezienia 
tego prawa trzeba najpierw z doświadczeń nad rozcią­
ganiem i ściskaniem określić zależność między odkształ­
ceniami i naprężeniami. Wiemy już, że u takich ma­
terjałów, jak żelazo lane lub kamień, rosną naprężenia 
wolniej od odkształceń; dlatego też linja przedstawia­
jąca zmianę naprężeń normalnych na wysokości prze­
kroju belki ma kształt uzmysłowiony na rys. (249).

Zamiast prostej fYB', odpowiadającej rozkładowi naprężeń w przypadku ważności prawa Hooke’a, 
otrzymujemy esowatą krzywą ROB, przecinającą oś Z-ów po tej stronie środka ciężkości przekroju, 
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gdzie leżę włókna ściskane. Można wyznaczyć położenie punktu O, odpowiadającego osi obojętnej 
przekroju i obliczyć naprężenia, jeżeli wpierw wyrazimy analitycznie związek między odkształce­
niami i naprężeniami.

Przyjąwszy dla tego związku (przybliżoną) formułę potęgową (6)!) otrzymamy dla względnego wydłużenia e włókien, 
rozciąganych (górnych na rys. 249) wyrażenie:

i
m \ m .e = a.p i =—, z czego p =------- *,p \ aj p /

dla ściskanych zaś: ...................................... (a)

111 • i Z \ m „-e^a2p2 = -; a więc p= — —— 2.
P ' a2 P '

Wielkości als a2, mi, m2 SQ przytem stałemi sprężystości materjału, p promieniem krzywizny warstwy obojętnej, 
a p oznacza bezwzględną wartość naprężenia. Gdy zamiast z weźmiemy odległości hi i h2 włókien skrajnych, to na pod­
stawie powyższego otrzymamy dla największych ciągnień Pi i największych ciśnień p2 wzory następujące:

1 ' 1
p, = (_*!_)». i ..................................................... (b)

\ at p / \ a2 p /
Stąd

..................................................................................(161)
p2m2 “i h2

Z porównania formuł (a) i (b) znajdziemy:

P™1 z ; pin2 z................................................................ (c)
ptmi h2

t. j, m-te potęgi ciągnień lub ciśnień mają się do siebie, jak odległości odpowiadających włókien od osi obojętnej. Przy 
mi = m2 — 1 dochodzimy do linjowego rozkładu naprężeń.

Przejdziemy teraz do wyznaczenia położenia osi obojętnej, tudzież wielkości pt i p2. Do tego posłużą równania równo­
wagi. Przy zginaniu pręta parami sił o momencie M, muszą wewnętrzne siły sprężystości sprowadzać się także do pary sił, 
a zatem rzuty wszystkich napięć normalnych na oś X-ów dadzą w sumie zero, ich moment ogólny zaś będzie równy M. (Dla 
uproszczenia zakładamy, że płaszczyzna działania sił jest zarazem płaszczyzną symetrji przekroju). Z tego wynikają równania:

hi
pdF = 

o

h2 
pdF;

o
pdF .z + 2pdF.(—z) = M 

b
. (d)

Wstawiwszy tutaj zamiast p wartości z (c) i dołączywszy rów. (161), oraz równanie: hi -h2 h, otrzymamy dostateczną 
liczbę warunków, do znalezienia niewiadomych hi, h2, pr i p2.

W szczególnym przypadku przekroju prostokątnego o szerokości b, napiszemy równ. (d) w postaci:

h. 1 ---- , p h. 1 ~|-----1 m i • b P* \ % m „ , , .z 1 dz H------ 2 z 2dz = M.
— ■ Jo

. * h

Po wykonaniu kwadratur przybierze pierwsze z tych równań postać:

mi 
mt + l hi Pt m2 u „ _n 

-----nr “2 Pi — m2 + l
(162)

’) Badaniem zgięcia na podstawie formuły potęgowej zajął się najpierw C. Bach. Ob. jego: „Elastizitat u. Festigkeit", 
wyd. z r. 1905, str. 224, a nadto:

W. Schule, Dinglers polyt. Journ. r. 1902, str. 149.
Tiraspolskij, Biulet. Polit. Obszczestwa z r. 1902.
M. T. Huber, Z teorji zgięcia belki prostokątnej na podstawie „prawa potęgowego". Wiad. mat. 1903.
Pinegin, Mitteil. iiber Forschungsarb., Zeszyt 48, str. 43.
H. Herbert, Diss. Góttingen, r. 1909.
I. Petermann, Diss. Berlin, r. 1914.
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Przyjąwszy jakąkolwiek określoną wartość dla plf znajdziemy na podstawie (161) wyrażenie dla p2. Po wstawieniu go 
hw rów. (162) będziemy mogli znaleźć stosunek i tem samem wyznaczyć położenie osi obojętnej. Dla znalezienia war- 
“2

tości M skorzystamy z drugiego z równań (d)'. Wykonawszy całkowania otrzymamy:

-2^+T = M......................................................... <163’

Ponieważ wielkości hi i h2 są już znane, więc otrzymane równanie pozwala z wielkości p^ znaleźć odpowiadającą wartość M. 

Jeżeli materjał podlega prawu Hooke’a, to mi=mi = 1, ai = a2, hi = h2 = a rów. (163) upraszcza się do postaci: 

bph2 bph*  „ .. .. bhz

*) [Wyznaczenie naprężeń z równań wyprowadzonych w poprzednim paragrafie prowadzi nawet w najprostszym przy­
padku przekroju prostokątnego do rachunków zbyt zawiłych dla praktycznych zastosowań. Zważywszy nadto, że stałe sprę­
żystości materjału niepodlegającego prawu Hooke’a nie dają się łatwo wyznaczyć i wahają się w dość obszernych grani­
cach, możemy często poprzestać na obliczeniu przybliżonemj.

—-----1-----= M, z której p = M: .Id IZ o

Dochodzimy tedy do znanej formuły dla naprężeń we włóknach skrajnych.

§ 99. PRZYBLIŻONY SPOSÓB WYZNACZENIA NAPRĘŻEŃ NORMALNYCH 9

Przybliżony sposób obliczenia naprężeń normalnych polega na tem, że zamiast rozkładu naprężeń, przedstawionego 
krzywą AOB (rys. 249), przyjmuje się tak w części belki rozciąganej, jak i ściskanej rozkład linjowy, określony prostemi 
0B2 i O7I2. Takie przyjęcie jest równoznaczne z przypuszczeniem, że materjał podlega prawu Hooke’a tak przy rozciąganiu, 
jak i ściskaniu, ale spółczynnik sprężystości części rozciąganej jest różny od spółczynnika sprężystości E2 części 
ściskanej. Wtedy największe ciągnienia pi i ciśnienia p2 określą widocznie wzory:

Przeprowadzimy obliczenie tych naprężeń dla przekroju prostokątnego o szerokości b. Łatwo okazać, że w tym przypadku 
przedstawią wypadkową z ciągnień i wypadkową z ciśnień Nz formuły:

Ponieważ siły wewnętrzne w przekroju sprowadzają się do pary sił, więc
M = /v2,

Wstawiwszy za Pi i p2 wyrażenia (a), otrzymamy:
E^^E^,

czyli piht = p2h2

albo : h22 = E2: Ej.

..................................................... (b)

Uwzględniając, że hi + h2 = h, znajdziemy tedy:

(164)

Te formuły określają położenie osi obojętnej w zależności od stosunku spółczynników sprężystości przy rozciąganiu i ściska- ♦ 
niu. Utwórzmy teraz moment wszystkich sił wewnętrznych w przekroju. Zważywszy, że te siły sprowadzają się do pary, 
znajdziemy ich ogólny moment, mnożąc wypadkową N (lub Nr) sił zgodnie skierowanych przez ramię pary, równe, jak 

2widać z rysunku, -^-h. R zatem: O

a stąd:

2 h = Pibhih = pibh* __^Et
‘3 3 3 fĘ + y-Ę

.....................................................................«

Posługując się tym wzorem można przy danym momencie sił zewnętrznych znaleźć wartość największych ciągnień. 
Jeżeli przyjmiemy Ei = E2, to otrzymamy formułę (66), wyprowadzoną dla materjałów podlegających prawu Hooke’a.

W dalszym ciągu będzie nam jeszcze potrzebny związek między M a promieniem krzywizny p. Otrzymamy go naj­
prościej, wstawiwszy w rów. (c) zamiast pt wyrażenie (a). R zatem:

M Ethjbh*  VE. _ 1 bhs 4EtE2
3p ' YEi+Ye, P 12 ’ (yĘ+yEj*
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Otrzymany wzór można doprowadzić do zgodności z wz. (63), wyprowadzonym dla materjałów podlegających prawu
Hooke’a, oznaczywszy przez

E' = 4EiEt

(Te, + /E,)’
,sprowadzony moduł sprężystości". Wtedy rów. (166) przybierze postać:

„ E' bh3
p 12 . (166)'

Wielkość E' zależy od stosunku Ex :E2; np. dla Ei : E^ = 0,5 jest E' — 0,68 E,; dla Ej :E2 = 0,l wypada E' — 0,23Er

§ 100. WYKREŚLNĄ METODA WYZNACZENIA NAPRĘŻEŃ NORMALNYCH
Gdy nie znamy zależności między naprężeniami i odkształceniami w formie analitycznej, ale z doświadczeń posia-

damy diagramy dla rozciągania i ściskania danego materjału, to rozkład naprężeń 
trudności znaleźć drogę wykreślną. Wychodząc z hipo­
tezy płaskich przekrojów, znajdziemy, że wydłużenie
jest proporcjonalne 
obojętnej, czyli

względem odległości od warstwy

Wielkość jest c°

z
e = - = e0P
do liczbowej wartości równa wy­

dłużeniu włókna, oddalonego o jednostkę długości od 
warstwy obojętnej. Odcinając na osi Z-ów wielkości 
wydłużeń, a w kierunku poziomym odpowiadające war­
tości naprężeń p, wzięte z uprzednich doświadczeń, 
otrzymamy krzywą ^Ob^ (rys. 250), przedstawiającą 
prawo zmienności naprężeń normalnych na wysokości 
belki (ciągnienia odpowiadają dolnej części rysunku). 
Przy wyznaczeniu wielkości naprężeń normalnych i po­
łożenia osi obojętnej wyjdziemy z równań (d) w § (98). 
Jeżeli uwzględnimy, że

e . . dez = — 1 dz = —, 
^0 eo

to te równania przybiorą dla prostokątnego przekroju 
postać:

Cei fe»
\ pde=\ pde...
Jo Jo

1 P* 1
pede -J- \ pede 

Jo '
(b)

normalnych przy zginaniu można bez

Pierwsze z tych równań wyraża widocznie warunek równości pól 0^ bt i Oa^by, który pozwala znaleźć położenie osi 
obojętnej. W tym celu przyjmiemy wartość największych ciągnień p{ i znajdziemy odpowiadającą wartość największego 
wydłużenia a zatem i wielkość pola ajObi. Dla wyznaczenia p-i trzeba teraz poprowadzić prostą poziomą a^b^ tak, 
aby zachodziła równość a10bi=a20b2.
Znalazłszy tym sposobem wielkości i mamy dla wyznaczenia odległości h\ i h2 włókien skrajnych od warstwy obojętnej:

. . hi ht ej

Stąd: h __ j, ©1 ; _ __  el _ ®1 “F ^5
nj — il . 1 • — *

et + e2 K h . (c)

Dla wyznaczenia momentu wewnętrznych sił sprężystości zużytkujemy rów. (b). Łatwo zauważyć, że czynnik, ujęty w na­
wias, jest momentem statycznym obu pól Oaib^ i Oa^bi względem osi X. (Moment statyczny każdego z obu pól wypada 
tutaj uważać za dodatni). Ten moment łatwo znaleźć wykreślnie (§ 53), kreśląc odpowiadającą krzywą sznurową S1O2S2 
(rys. 250). Styczne w punktach si i odpowiadających skrajnym rzędnym ai bt i 52 &2, odetną na osi X-ów długość u, 
proporcjonalną względem szukanego momentu statycznego. Aby otrzymać jego wielkość, trzeba odcinek u, mierzony w tejże 
podziałce, co e, pomnożyć przez odległość biegunową H, mierzoną w podziałce, obranej dla wielkości N, równej polu at Ob^ 
Ponieważ e ma wymiar liczby oderwanej, więc pole aiObi, a z niem i wielkość H. u, mają wymiar naprężenia, 
t* i' długość** Wstawiwszy znalezioną wartość momentu statycznego w rów. (b) i uwzględniwszy wyrażenie (c), otrzymamy: 

bh* --------------Hu —M.(ei -f- e2)2
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Wyłożony sposób badania rozkładu naprężeń da się łatwo uogólnić dla przypadku przekrojów złożonych ż prosto­
kątów, jak np. przekroje T lub J. W przypadku przekroju T (rys. 251) przyjmie podstawowe rów. (a) postać:

Rys. 251

znajdziemy szukaną grubość stopki:

e' p e2
p de + \ n p de = \ pde.

0 Je JO

Tutaj oznaczyliśmy przez e' wydłużenie włókien w miejscu połączenia ścianki ze 
stopką, a przez n stosunek szerokości stopki do grubości ścianki. Napisane rów­
nanie wyraża równość pól a^Obz i aiOb' b"b"i. Na przestrzeni a’ ai zwiększono 
rzędne krzywej Ob'bi n-krotnie. Dla przekroju T możemy dobrać grubość 
stopki hi — h' (h' = Oa') w ten sposób, aby stosunek największego ciągnienia do 
największego ciśnienia miał określoną wartość. Na podstawie danych doświad­
czalnych kreślimy krzywą biObz i według niej krzywą b" b"i o n-razy większych 
rzędnych. Skoro przyjmiemy zgóry wielkości pi i pa, to wyznaczymy tern samem 
pole ściskania Oazb*.  Teraz pozostaje tylko poprowadzić prostą a'b" tak, aby 
pole rozciągania równało się polu ściskania. Zważywszy, że

*) Ob. przytoczoną powyżej (§ 98) pracę E. Meyer’a.

a' ai = ei — e' ~ e0 (hi — h'),

hi — h' ei — e , ei — e---- = h —■—.e0 ei + 62

Metoda wykreślna pozwala badać zgięcie prętów z żelaza kowalnego poza granicami sprężystości. Weżmy np. pręt 
o poprzecznym przekroju prostokątnym. Dopóki wartość największych naprężeń nie przekracza granicy proporcjonalności, 
to naprężenia normalne rozkładają się linjowo (fig. a, rys. 252) Z wzrostem momentu zginającego pojawiają się odkształ­
cenia trwałe, zrazu w warstwach zewnętrznych o małej grubości (fig. b); potem obszar odkształceń trwałych ciągle wzrasta, 
a wskutek tego staje się rozkład naprężeń wzdłuż wysokości przekroju krzywolinjowym (fig. ć): Wielkość naprężeń skraj­
nych pi i pz będzie widocznie mniejsza, aniżeli wypada ze zwykłego 
wzoru, odpowiadającego linjowemu rozkładowi naprężeń, przedstawionemu 
prostą biOb'.

Mając wielkości największych odkształceń ei, 62 i uwzględniając, że

. h61 -4- 62 — —,
P

możemy wyznaczyć p i w ten sposób przejść do badania linji ugięcia 
belki. Wskutek złożonego prawa rozkładu naprężeń poza granicami sprę­
żystości, prowadzi obliczenie ugięcia nawet przy najprostszych sposobach

Rys. 252obciążenia do uciążliwych rachunków ')•

§ 101. WYZNACZENIE NAPRĘŻEŃ NORMALNYCH W BELKACH ŻELAZNO-BETONOWYCH
Beton wytrzymuje, jak wiadomo, daleko większe ciśnienia niż ciągnienia, i dlatego przy zginaniu betonowej belki 

o przekroju prostokątnym pojawia się pęknięcie po stronie włókien rozciąganych. Umieściwszy pośród włókien rozciąga­
nych pręty żelazne AB (rys. 253), osiągamy znaczne wzmocnienie belki przy bardzo korzystnych warunkach, dzięki nader 
silnemu przyleganiu („przyczepności") żelaza do otaczającego je betonu po jego skrzepnięciu. W belce, tym sposobem 
wzmocnionej, można wyzyskać zupełnie wytrzymałość betonu na ściskanie kosztem stosunkowo małej ilości droższego że­
laza, chroniąc zarazem żelazo od wpływów atmosferycznych. Konstrukcje żelazno-betonowe, stanowiące odrębną dziedzinę 
techniki budowlanej, mają obszerną literaturę specjalną, która obejmuje i metody obliczenia tak elementów, jakoteż całych 
budowli z żel.-betonu Tutaj ograniczymy się do przedstawienia najprostszych zadań, aby objaśnić na przykładzie podsta­

wowe założenia, na których polega obliczenie. Przy wyznacze­
niu naprężeń normalnych wychodzimy z hipotezy płaskich 
przekrojów. Według niej będą odkształcenia włókien podłu­
żnych proporcjonalne względem ich odległości od osi oboję­
tnej nn, a zatem naprężenie w żelazie ma się tak do naprę­
żenia w betonie doń przylegającym, jak spółczynnik spręży­
stości żelaza do spółczynnika sprężystości betonu. Ażeby 
wedle możności wyzyskać wytrzymałość żelaza, dopuszcza 
się w niem naprężenia takiej wielkości, iż odpowiadające im 
ciągnienia w betonie mają już wartość niebezpieczną. Z tego 
powodu nie liczy się zupełnie na wytrzymałość rozciąganych 
włókien betonu i przyjmuje się schematyczny rozkład naprę­
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żeń uwidoczniony na rys. (253Ł). Zważywszy, że pole przekroju żelaza F. jest małe w porównaniu do przekroju betonu, 
możemy pominąć zmiany naprężenia w żelazie na wysokości belki i uważać naprężenie w żelazie pi za równomiernie 
rozłożone. Oznaczmy prócz tego przez c odległość osi prętów żelaznych od spodu belki, a przez hi odległość osi obojętnej 
od wierzchu belki (h = hi + hi). Ponieważ normalne siły wewnętrzne przekroju sprowadzają się do pary sił o momencie M, 
więc: „ bhi n P

Pb -y — Pi n

Z tego warunku znajdziemy położenie osi obojętnej. W tym celu wstawimy wyrażenia dla naprężeń
Eh hi F; (hi — c) Ff (h — hi — c) p = -------, p{ =--------------=--------------------- _

P P P
w rów. (a), a rozwiązawszy je względem hi otrzymamy:

hi = n^L [ - / +]/; ................ (167)
b L nF^ I

przyczem n = E{ : Eb.
Wyznaczywszy położenie osi obojętnej, znajdziemy ramię pary, do której się sprowadzają siły wewnętrzne:

Momentem tej pary będzie:

Stąd:

2 . , , a = y hi + ht — c.

bhi „M - y pb • a = Pi Fi a.

_ 2M _ M 
Pb a bhi' Pi Fi a i 168)

określony wartością ilorazu różniczkowego = Eb , 

sprężystości żelaza do spółczynnika sprężystości betonu,

maleje w miarę wzrostu naprężenia p; stosunek spółczynnika
Eft. j. n = będzie przeto wzrastać razem z p. Wobec tego
Łb

wypadnie przyjąć większą wartość tego stosunku w fazie II niż w fazie I. Polegając na dotychczasowym materjale doświad­
czalnym możemy zalecić jako średnią wartość n~10 dla fazy I, a n = 15 dla fazy IŁ (Por. M. T. Huber: „W sprawie 
racjonalnego oznaczania wymiarów belek żel.-betonowych", „Obliczenie belek żel.'betonowych typu Hennebique’a“, „Obli­
czenie wymiarów belek betonowych obustronnie uzbrojonych". Czasop. techn. 1905 i 1906. Nadto: „Działanie uzbrojenia 
w betonie". Czasop. techn. 1920, nr. 11 i 12)].

Ł) [Obliczone w ten sposób największe ciśnienia w betonie i ciągnienia w żelazie będą wogóle różnić się znacznie 
od rzeczywistych, wszelako taka metoda obliczenia okazała sią w praktyce najracjonalniejszą z następujących powodów:

Przedewszystkiem okazuje beton znaczne zboczenia od prawa Hooke’a, a stałe sprężystości rozmaitych kawałków 
betonu, sporządzonych tak samo z takich samych materjałów, wykazują zwykle dość wielkie różnice. O ścisłem obliczeniu 
naprężeń nie może być zatem mowy. Powtóre, gdyby nawet własności sprężyste betonu były bardziej ustalone, to wskutek 
wielkich zboczeń od prawa Hooke’a prowadzi „dokładne" obliczenie do tak zawiłych formuł, że ich zastosowanie prakty­
czne jest w ogólności wykluczone. Nakoniec trzeba zwrócić uwagę na to, że o wytrzymałości belki żel -betonowej, nara­
żonej na zginanie, nie decyduje wielkość ciągnień w betonie, lecz tylko wartości naprężeń w żelazie i w skrajnych ściska­
nych włóknach betonu. Jak bowiem wykazały doświadczenia, osiąga moment zginający wartość niebezpieczną dopiero 
wówczas, gdy przekraczamy granicę sprężystości wkładki żelaznej, a bo osiągamy granicę wytrzymałości ściskanych włó­
kien betonu. Rozkład naprężeń w betonie przedstawia się wtedy mniej więcej tak, jak to pokazuje fig. (b) na rys. (253 A).
Pęknięcia, jakie mogą się już przedtem pojawić w rozciąganych warstwach betonu, 
a które pojawić się muszą z chwilą przekroczenia granicy sprężystości w żelazie, mają 
tylko ten skutek, że rolę rozciąganych warstw betonu biorą na siebie pręty żelazne. 
Natomiast rozkład naprężeń, przedstawiony na fig. (a), odpowiada małym wartościom 
momentu zginającego. Przy coraz mniejszej wartości momentu, będzie rozkład naprężeń 
zbliżać się coraz bardziej do linjowego Doświadczenia okazują nadto, że oś obojętna 
zmienia swoje położenie z wzrostem momentu zginającego i mianowicie zbliża się do 
włókien ściskanych, gdy moment rośnie. Łatwo teraz spostrzec, że stan przedstawiony 
na fig. (a) da się z pewnem przybliżeniem ująć w rachunek przez przyjęcie linjowego 
rozkładu naprężeń w całym przekroju, zaś stan odpowiadający fig. (b) — przez przy­
jęcie linjowego rozkładu w warstwach ściskanych z pominięciem ciągnień w betonie, Rys- 253 A
co prowadzi do schematycznego rozkładu naprężeń na rys. (253). Dla wygody w wysło­
wieniu nazywają stan odpowiadający fig. (a) Łszą fazą, zaś stan uzmysłowiony na fig. (b) H~gą fazą zgięcia belki żel.- 
betonowej. (Por. M. Thullie „Teorja żelbetu". Lwów 1915). Przy obliczeniu wytrzymałości należy oczywiście przyjąć fazę II, 
jeżeli zaś chodzi o wielkość ugięcia, lub wielkości statycznie niewyznaczalne, to racjonalniejszem będzie przyjęcie fazy I, 
albowiem wymienione wielkości zależą od odkształceń we wszystkich przekrojach belki, a w przypadkach praktycznych 
zachodzi Il-ga faza jednocześnie tylko lokalnie, a mianowicie w najbliższem sąsiedztwie przekrojów, odpowiadających naj­
większym wartościom momentu zginającego. Z diagramu odkształceń dla betonu widać, że jego spółczynnik sprężystości,
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Przy zastosowaniu wzorów (167) i (168) do obliczenia naprężeń w danej belce żel.-betonowej, trzeba pamiętać o przyjętym 
warunku upraszczającym, że wkładki żelazne zajmują tylko małą część wysokości belki.

[W przypadku wzmocnienia belki betonowej żelazną kształtówką i t. p. wypadłoby ustawić ogólniejsze wzory lub 
uciec się do metody wykrcślnej, podobnie jak w § 100].

§ 102. ROZKŁAD NAPRĘŻEŃ STYCZNYCH (ŚCINAJĄCYCH)
Po rozpatrzeniu kwestji rozkładu naprężeń normalnych na wysokości belki (w §§ 98 do 100) można łatwo obliczyć 

i naprężenia styczne. Obrawszy dwa nieskończenie bliskie przekroje poprzeczne np. AB i A'B' (rys. 254), pomiędzy któ- 
remi niema sił zewnętrznych na belkę działających, znajdziemy siłę styczną w płaszczyźnie poziomej mn, oddzielającej 

element amnai, jako różnicę napięć normalnych, przy­
padających na ściany am i atn tegoż elementu. 
Oznaczmy odpowiednio przez N i N' wypadkowe na­
pięć normalnych w obu częściach przekroju, leżących 
poniżej i powyżej osi obojętnej, a ich wzajemną odle­
głość przez a. Największe naprężenia styczne powstaną 
widocznie w warstwie obojętnej OOi, i mają wartość

, A dN'(Pt)max b(]x

Zważywszy, że adN' = dM=Qdx, gdzie Q oznacza 
siłę poprzeczną, znajdziemy:

Ry’-H“ . (169)U U
Ten wzór stosuje się do belki prostokątnej z jakiegokolwiek materjału nie podlegającego prawu Hooke’a. W odniesieniu 

do belki żel.-betonowej (rys. 253) będzie a — h-----j— c, a zatem

............................... .... •(170)
Oprócz tych naprężeń przy obliczaniu belek żel.-betonowych grają ważną rolę naprężenia styczne na powierzchni przyle­
gania betonu do żelaza. Gdy weźmiemy, jak powyżej, dwa nieskończenie bliskie przekroje poprzeczne belki, to różnica wy­
padkowych sił wewnętrznych w żelaznych prętach będzie:

dN — a
Oznaczywszy przez S wielkość powierzchni prętów żelaznych, przypadającą na jednostkę długości belki i przyjąwszy 
równomierny rozkład naprężeń stycznych na tej powierzchni, otrzymamy:

, . Qdx ..(pt)b,f Sdx = —---- , z czego wynika: cl
(pt)b,f = = (3h_3®_hi}s .....................................................(171)

Stosunek naprężeń ścinających w warstwie obojętnej do takichże naprężeń na powierzchni żelaza równa się:
(pt)max S

(pt)b,f b . (172)

ROZDZIAŁ XIII

WYTRZYMAŁOŚĆ ZŁOŻONA

§ 103. ZGIĘCIE W POŁĄCZENIU Z ROZCIĄGANIEM LUB ŚCISKANIEM
Dotąd zajmowaliśmy się tylko takiemi przypadkami zgięcia, w których siły zewnętrzne prze­

cinały oś pręta pod kątem prostym. W tych przypadkach sprowadzały się wewnętrzne siły sprę­
żystości, działające w jakimkolwiek przekroju poprzecznym, do pary sił i do siły poprzecznej, 
leżącej w płaszczyźnie przekroju. Teraz rozpatrzymy zadanie ogólniejsze, w którem siły zewnę­
trzne, działające na belkę, przecinają jej oś pod dowolnemi kątami. Każdą z tych sił możemy roz­
łożyć na dwie składowe: jedną skierowaną wzdłuż osi pręta, a drugą do niej prostopadłą. Te osta­
tnie zginają pręt, pierwsze zaś, zwane siłami podłużnemi, wywołują przedewszystkiem rozcią-
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ganię lub ściskanie. Ich wpływ na zginanie będzie znikomy, dopóki rozmiary poprzeczne pręta są 
niezbyt małe w porównaniu do jego długości. (Wpływ sił podłużnych na zgięcie cienkich a gięt­
kich prętów będzie zbadany w rozdz. XV). Pomijając wpływ sił podłużnych na zgięcie, możemy 
obliczyć naprężenie w jakimkolwiek punkcie /I przekroju poprzecznego (rys. 255), sumując naprę­
żenie, wywołane siłą podłużną i naprężenie wskutek zginania siłami prostopa- 
dłemi. Jeżeli oznaczymy przez P wypadkową wszystkich sił podłużnych, leżą­
cych po jednej stronie rozpatrywanego przekroju, a przez My i momenty sił 
zewnętrznych, działających na rozpatrywaną część belki, względem osi Y i Z, 
to naprężeniem normalnem w punkcie /I będzie:

n_Ł + M?z + M*y
P F L ~ 4 . (173)

Znaki w tym wzorze należy obrać stosownie do kierunku momentów.
Zastanowimy się teraz szczegółowo nad przypadkiem, kiedy jednoczesne zginanie i rozciąga­

nie lub ściskanie pręta jest wywołane mimośrodkowem działaniem siły podłużnej. Niechaj dwie 
równoważące się siły P (rys. 256) działają na końcowe przekroje pręta w punktach A, leżących 
na głównej osi bezwładności OY przekroju poprzecznego. Przez e oznaczymy mimośród obciąże­
nia, t. j. odległość linji działania siły od osi pręta. Zastąpmy daną siłę P układem statycznie rów- 

~ noważnym, złożonym z siły P, działającej w środku ciężkości przekroju i pary sił 
o momencie Pe. Ta para wywoła widocznie zgięcie w płaszczyźnie a siła osiowa P 

p\ wywoła rozciąganie pręta. Naprężenie w dowolnym punkcie B przekroju poprzecznego 
i określi, przy obranym układzie spółrzędnych, wzór:

P Mzy_P
P f+ 1 F 

Z Z

w którym rz oznacza odpowiadający promień bezwładności. Rozkład 
zatem linjowy. Jeżeli weźmiemy przekrój poprzeczny prostokątny 
otrzymamy największe i najmniejsze wartości naprężeń, wstawiając

• • (174)

naprężeń jest 
(rys. 257), to

we wzór (174)

>ł Ip
przeto

Rys. 256

“ 2 ’
Mamy więc:

albo ponieważ dla prostokąta

rz =

Pmax — 
min

z

ab3 = *b
12ab 2VT

(175)

bDopóki e < powstają w całym przekroju naprężenia Z

tego samego znaku; ich rozkład uwidoczniono na fig. (b). Skoro e > y, 

to naprężenia skrajne pmax i pmin mają znaki różne, a rozkład naprężeń 

przedstawia fig. (c). W szczególnym przypadku, gdy e = -^, jest 

2P
pmax — p< , 3 Pmin — 0, czyli największa wartość naprężenia jest dwa 

razy większa od wartości, jakąbyśmy otrzymali przy środkowem działa­
niu siły P. Diagram trójkątny na fig. (d) daje w rozpatrywanym przy­
padku rozkład naprężeń.

Gdy P jest siłą ściskającą, to otrzymamy analogiczne wyniki. Do­
póki siła ściskająca działa w środku przekroju poprzecznego, to naprę­
żenia rozkładają się w przekroju równomiernie; im bardziej oddala się siła 
od środka, tem większą staje się różnica między naprężeniami skrajnemi. 
Kurs wytrzymałości materjałów

Pr 'i

Q

ź.

fis- c

Pr -
Fi —

y

Rys. 257

12
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W przypadku pręta o przekroju prostokątnym, ściskanego siłą P, która przecina kierunek jednej 
z głównych osi bezwładności (rys. 257), zajdzie największe ciśnienie w skrajnych elementach tej 

części przekroju, która leży po stronie działania siły. Przy mimośrodzie e~^ będzie najwięk- 

. . . . 2Psze ciśnienie mieć wartość -p-, zaś naprężenie skrajne po stronie przeciwnej staje się zerem.

Przy mimośrodzie e > ~ powstaną po przeciwnej stronie ciągnienia. Ta okoliczność ma szcze­

gólne znaczenie w przypadku materjałów o małej wytrzymałości przy rozciąganiu, jak np. w przy-
b

Rys. 258

padku słupów i ścian murowanych. Ażeby w murze nie powstały ciągnienia, 
musi wypadkowa z obciążeń pionowych trafiać środkową trzecią część grubości

muru (rys. 258), wtedy bowiem

Przejdźmy teraz do ogólniejszego przypadku obciążenia mimośrodkowego, 
kiedy kierunek siły nie przecina żadnej z głównych osi bezwładności przekroju 
poprzecznego. Niechaj (m, n) oznaczają spółrzędne środka obciążenia A 
(rys. 259), odniesione do głównych osi bezwładności przekroju OY i OZ. 

• Siła P, działająca w punkcie A, da się zastąpić takąż siłą, działającą 
w środku O i parą sił o ramieniu O A i momencie P . ÓA. Ta para leży 
w płaszczyźnie O A, przechodzącej przez oś pręta, i można ją rozłożyć na 
dwie składowe, działające w głównych płaszczyznach belki, przechodzących

przez OY i OZ. Momenty tych par składowych będą odpowiednio 
równe P. m i P . n. Naprężenie p w dowolnym elemencie pola d F 
o spółrzędnych y, z znajdziemy jako sumę algebraiczną naprężeń, 
wywołanych oddzielnie przez proste ściskanie i zginanie w obu płasz­
czyznach głównych. A zatem:

P , Pmy . Pnz

Podstawiwszy w miejsce momentów bezwładności iloczyny pola 
przekroju przez kwadraty odpowiadających promieni bezwładności, spro­
wadzimy powyższe wyrażenie do postaci:

my 
r9z

Ażeby znaleźć oś obojętną wystarczy przyrównać prawą stronę tego równania do zera. Otrzy­
mamy tedy

^+^+1=0 
r r 'z y

(176)

jako równanie osi obojętnej. Położenie tej prostej można określić zapomocą odcinków s i q, jakie 
ona wyznacza na osiach Y i Z. Z rów. (176) znajdziemy, podstawiając kolejno y=0 i z = 0:

r 2 r 2COy=o = q = (y)z=0 = s = -
n m

Łatwo zauważyć, że między spółrzędnemi m i n środka obciążenia, a odcinkami s i q, wy- 
znaczonemi przez oś obojętną, zachodzi związek tego rodzaju: Jeżeli środek obciążenia ma nawza­
jem spółrzędne s i q, to oś obojętna wyznacza odcinki m i n. Dla każdego środka obciążenia A 
możemy znaleźć odpowiadającą oś obojętną. Skoro przemieszczamy środek obciążenia, to odpowia­
dająca oś obojętna będzie także zmieniać położenie. Okażemy, że gdy A porusza się po linji pro­
stej, to odpowiadająca oś obojętna obraca się około stałego punktu, który nawzajem odpowiada jako 
środek obciążenia owej prostej, jako osi obojętnej. Niech będzie AtA2 prostą, po której porusza 
się środek obciążenia (rys. 260). Dla każdego położenia punktu A na tej linji można siłę P zastą­
pić dwiema siłami jej równoległemi, działającemi w punktach AtA2, leżących na głównych osiach 
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bezwładności przekroju poprzecznego. Prosta MM, odpowiadająca jako oś obojętna środkowi ob­
ciążenia Alf będzie równoległa do osi Y-ów. Jej odległością od osi będzie

r 2

Podobnież znajdziemy oś NN, odpowiadającą punktowi 712 jako środkowi obciążenia. W punk­
cie C przecięcia się linji MM i NN będzie naprężenie zerem przy dowolnem położeniu punktu 71
na prostej T^T^, przez ten punkt przejdą zatem osie obojętne, 
odpowiadające wszelkim położeniom środka /I na prostej TIjT^, 
czyli przy przesuwaniu się środka obciążenia po prostej, obraca się 
odpowiednio oś obojętna około stałego punktu C. Spółrzędne 
punktu C wyznaczamy według takich samych wzorów, jak i spół­
rzędne środka obciążenia, odpowiadającego prostej At A2 jako osi 
obojętnej, z czego wnosimy nawzajem, że:

Skoro oś obojętna obraca sięokołostałegopunktu, 
to odpowiadający środek obciążenia posuwa się po 
prostej, która jest nawzajem osią obojętną dla środka 
obrotu jako środka obciążenia.

A 4

Rys. 260

§ 104. RDZEŃ CZYLI JĘDRO PRZEKROJU
W słupach murowanych, ściskanych mimośrodkowo siłą P, jest często niepożądanem poja­

wienie się ciągnień, które zachodzi, jak wiadomo, przy większych mimośrodach obciążenia. Nasuwa 
się tedy pytanie, przy jakich położeniach środka obciążenia powstaną w całym przekroju tylko 

ciśnienia. Miejscem geometrycznem takich środków obciążenia będzie pole 
pewnej figury, zwanej rdzeniem, czyli jądrem danego przekroju. Ażeby 
znaleźć kontur rdzenia wystarczy widocznie poprowadzić wszystkie proste, 
dotykające kontur przekroju, a nie przecinające go i uważając je za osie obo­
jętne wyszukać odpowiadające środki obciążenia. Te środki tworzą kontur 
rdzenia. Skoro środek obciążenia wyjdzie poza obręb otrzymanego rdzenia, 
to odpowiadająca oś obojętna zbliży się do środka ciężkości przekroju po­

Rys. 261

przecznego i przetnie figurę przekroju, przyczem powstaną 
naprężenia o różnych znakach. Jeżeli figura przekroju jest 
jakimkolwiek wielobokiem, to łatwo okazać, że kontur

2?
odpowiadającego rdzenia będzie także wielobokiem. Niech będzie ABCDE danym 
przekrojem poprzecznym (rys. 261). Bokom wieloboku, jako osiom obojętnym, 
odpowiadają punkty a, b, c, d, e konturu rdzenia, jako środki obciążenia. Jeżeli 
obciążenie działa w punkcie a, względnie b, to odpowiednią osią obojętną 
jest AB, względnie BC. Ażeby przejść z położenia AB w położenie BC, należy 
oś obojętną obrócić około wierzchołka B. Ale obrotowi osi obojętnej odpowiada, 
jak dowiedliśmy, przesunięcie środka obciążenia po linji prostej, łączącej 

punkty a i b. Odcinek ab jest zatem jednym z bo­ Rys. 262

y
a

A D

yy

a

ków wielokąta abcde, tworzącego rdzeń przekroju. Wierzchołkom kon­
turu przekroju będą odpowiadać boki konturu rdzenia.

W przypadku przekroju prostokątnego odpowiadają bokom 
prostokąta, jako osiom obojętnym, środki obciążenia, leżące na osiach OY 

b ai OZ (rys. 262) w odległości względnie , od środka przekroju. Ten

wynik znaleźliśmy już w poprzednim paragrafie. Łącząc otrzymane cztery 
wierzchołki prostemi, otrzymamy romb a b a' b', przedstawiający rdzeń prosto- 

a bkątnego przekroju. Przekątne tego rombu mają odpowiednio długości _ iO o
Dla przekroju dwuteowego (przekroju I) (rys. 263) będzie rdzeń 

mieć również postać rombu, albowiem proste, dotykające konturu prze­Rys. 263

12*
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kroju, a nie przecinające go, t. j. proste MM, M'M' i NN, N'N', tworzą prostokąt opisany. Aby 
wyznaczyć np. punkt a, odpowiadający prostej NN, użyjemy wzoru (174), podstawiając

w nim y = —i przyrównując prawą stronę do zera. Stąd wypadnie 
p h ---- 2r 2^=1, czyli e=Oa = ^. 

Z V
W ten sam sposób znajdziemy położenie punktu b), a mianowicie:

___ ?r2y
a

W przypadku przekroju kołowego (rys. 264) musi być rdzeń kołem, 
którego promień znajdziemy z wzoru (174), a mianowicie:

___ rz2
Oa = e = -^, przyczem R oznacza promień danego koła.

kR* R2
PonieWaż dla koła jest = więc promień kołowego rdzenia:

Dla przekroju pierścieniowego, stosowanego np. do kominów, będzie rdzeń z powodu 
symetrji także kołem. Jego promień znajdziemy według tego samego wzoru, co poprzednio, wsta­
wiwszy tylko w miejsce promienia bezwładności rz odpowiednie wyrażenie dla pierścienia kołowego. 
Jeżeli oznaczymy przez R i r odpowiednio promień zewnętrzny i wewnętrzny pierścienia, to jego 
moment bezwładności będzie równy

Jt (R4 — r4)
4 ’

Odpowiadający promień bezwładności obliczymy z formuły:
2 _ x(R* — r4) _ R2 + r2 

fz — 4?t(R2—r2j~ 4

Promieniem rdzenia przekroju będzie zatem:
rz2 _ R2 + r2
R 4R ‘

W szczególności dla r = 0 otrzymamy: e = —, jak poprzednio; dla R = r, t. j. dla pierścienia nie- 4
skończenie wąskiego: e =

Rdzenia przekroju można użyć z korzyścią przy obliczeniu 
naprężeń w przypadku ukośnego zgięcia (§ 57). Weźmy 
np. przekrój prostokątny (rys. 265). Na rysunku uwidoczniono 
elipsę bezwładności i rdzeń przekroju. Jeżeli moment zgięcia działa 
w płaszczyźnie, przecinającej przekrój poprzeczny w linji BB, to 
odpowiadająca oś obojętna NN będzie średnicą elipsy bezwładności, 
sprzężoną z kierunkiem BB. Naprężenia zmieniają się linjowo i, je­
żeli przez oznaczymy wielkość naprężenia w punktach najbardziej 
oddalonych w odstępie e od osi obojętnej, to w odległości z od osi 
obojętnej będzie naprężeniem normalnem:

Jeżeli przez M oznaczymy wielkość momentu zginającego w rozpa­
trywanym przekroju, a przez a kąt między płaszczyzną momentu 
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a warstwą obojętną, to, ustawiając równanie momentów wszystkich sił wewnętrznych i zewnę­
trznych względem NN, dojdziemy do równania:

M sin a = ~\^z . z dF== ~ a stąd: 

Afesina 
Pi =------j------  IN • (177)

Przez /N oznaczyliśmy tutaj moment bezwładności przekroju względem osi obojętnej. Obliczenie P\ 
upraszcza się przy pomocy własności rdzenia przekroju. Umieśćmy w punkcie A siłę ściskającą P, 
wtedy M = P k, przyczem k oznacza odpowiedni promień rdzenia O A. Osią obojętną będzie pro­
sta N'N\ równoległa do NN. Dla punktów prostej N'N' będą ciągnienia, wywołane zginaniem, 

p
a obliczone według wzoru (177), równe ciśnieniom wywołanym siłą P, działającą w środku,

a zatem: p Pkesina esina 1
F IK ’ z czeg0 /N FF

Wstawiwszy to we wz. (177), otrzymamy:
M

P1 Fk . (178)

Uogólnijmy nasze pierwotne określenie modułu przekroju (momentu oporu) przyjmując W=Fk
natenczas M

Pi - w . (178)'

Że to uogólnienie nie stoi w sprzeczności z określeniem W, przyj ętem poprzednio, łatwo się prze­
konać, umieściwszy środek obciążenia na jednej z głównych osi bezwładności przekroju. Skoro 
w rozpatrywanym przypadku przyj mierny środek obciążenia w b', to k = a więc W= Fk = \

co się zgadza z wartością modułu przekroju, odpowiadającego zgięciu w płaszczyźnie głównej. 
Zastosowanie wzoru (178) uprościłoby się znakomicie, gdyby tablice profilów normalnych zawie­
rały także i rysunek odpowiadającego rdzenia.

§ 105. ZGINANIE I SKRĘCANIE

Jednoczesnemu działaniu zginania i skręcania podlegają szczególnie często wały maszyn. 
Tutaj, oprócz sił przecinających oś wału, jak np. ciężar własny lub ciężar kół, osadzonych na 
wale, działają takie siły, jak napięcie cięgien transmisyjnych, nacisk przeniesiony przez trzon me­
chanizmu korbowego i t. d. Linję działania tych sił nie przecinają osi wału, wobec czego zginaniu 
będzie towarzyszyć skręcenie. Rys. (266) przedstawia jedno z kół wału transmisyjnego. Oznaczmy 
przez 2P napięcie we wchodzącej części AB cięgna, a przez P napięcie w części CD. Działanie
tego ostatniego napięcia można widocznie sprowadzić do momentu skręca­
jącego = PR o kierunku, przeciwnym wskazówce zegara i do siły P, 
działającej na środek ciężkości O przekroju wału. Podobnież da się działa­
nie napięcia 2P w części AB cięgna zastąpić momentem skręcającym 
M2 = 2 PR o kierunku zgodnym z wskazówką zegara i siłą 2P, działającą 
na punkt O. W ten sposób sprowadza się działanie napięć obu części cięgna 
do siły P -j- 2 P = 3 P, zginającej wał, i do pary o momencie M=PR, 
dążącej do obrotu wału w kierunku wskazówki zegara. Jeżeli na wale znaj­
duje się większa liczba kół, to, idąc powyższą drogą, dojdziemy zawsze do 
układu sił, przecinających oś wału pod kątem prostym i do par skręcają­
cych. Dla wyznaczenia naprężeń w dowolnym przekroju wału należy zna­
leźć wielkości momentu zginającego i skręcającego. Siły zginające mogą 

Rys. 266

leżeć nie w jednej płaszczyźnie, wobec czego wypadnie rozłożyć te siły na składowe, leżące 
w dwu wzajemnie prostopadłych płaszczyznach, przechodzących przez oś wału. Skoro przez Mt i M2 
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oznaczymy składowe momenty zgięcia w rozpatrywanym przekroju, odpowiadające tym płaszczy­
znom, natenczas wypadkowym momentem zginającym będzie

W przypadku przekroju okrągłego będzie każda oś główną, zgięcie zajdzie przeto w płaszczy­
źnie momentu Afzg, a wartością największych naprężeń normalnych będzie:

n  Afzgr 4Mzg / x
Pmax j .......................................................................................... W

przyczem r oznacza promień wału. Oprócz naprężeń normalnych działają w płaszczyźnie prze­
kroju poprzecznego naprężenia styczne, wywołane siłą poprzeczną i momentem skręcającym. 
U wałów mogą decydować o wytrzymałości tylko naprężenia ścinające wskutek . skręcania, albo­
wiem ich największe wartości schodzą się z największemi. wartościami naprężeń normalnych, wy­
wołanych we włóknach skrajnych momentem zginającym. Tam osiągają naprężenia skręcające
wartość . Msk.r 2Msk

lp “ nr3 (b)

styczne wyrażone

przyczem Msk oznacza moment skręcający.
Jeżeli w rozpatrywanym przekroju mn weźmiemy na powierzchni wału punkt 71, odpowiada­

jący największemu naprężeniu normalnemu (rys. 267), to w elemencie przekroju mn, przechodzą­
cym przez ten punkt, działa tak naprężenie normalne określone wzorem (a), jakoteż naprężenie 

wzorem (b). W przechodzącym zaś przez Z1 elemencie przekroju podłużnego 
osiowego będą działać tylko naprężenia styczne. Zupełnie w ten sam sposób, 
jak przy wyznaczeniu największych naprężeń w przypadku ogólnego zgina­
nia, można tutaj wyszukać dwie płaszczyzny, przechodzące przez /I i mające 
tę własność, że w nich działają tylko naprężenia normalne. Nazwiemy je 
płaszczyznami głównemi, a odpowiadające im naprężenia — naprężeniami 
głównemi. Ich wielkości będą na podstawie wzorów (77):

Pmax = + y+ 4P‘2 ’ P™" 2^2^•

wartość pn i Pt, wyrażone wzorami (a) i (b), otrzymamy:

. (179) 
min W ' '

Rys. 267

Wstawiwszy tutaj

Przez W oznaczyliśmy przytem moduł przekroju poprzecznego. Otrzymany wzór da się interpre­
tować w ten sposób, że największe naprężenie, wywołane jednoczesnem zginaniem i skręcaniem 
okrągłych wałów, jest takie same, jakieby powstało przy czystem zginaniu fikcyjnym momentem
o wielkości M = 1 + V ) •

Wyznaczywszy wielkości największego i najmniejszego naprężenia i przyjąwszy stosownie do wa­
runków pracy wału wielkość naprężeń bezpiecznych R, możemy przejść do ustawienia wzoru dla 
obliczenia średnicy wału. Postać wzoru będzie rozmaita, zależnie od tego, jaka teorja wytrzyma­
łości będzie służyć za podstawę wywodu. Skoro jako miarę wytężenia materjału przyjmiemy naj­
większe wydłużenie względne (Il-ga teorja), to rozmiary wału należałoby obrać tak, aby

Pmax ^Pmin^.^?,

czyli, po wstawieniu zamiast pmax i pmjn ich wartości (179), i podstawieniu g = 0,3 [w przypadku 
żelaza kowalnego lub stali]:

0,35 M2S +0,65 ................................... (180)

Ten wzór, noszący nazwę wzoru de S.-Venant’a, stosują często przy obliczeniu wałów maszyno­
wych. Przeciwko temu podniesiono w ostatnich czasach niemało 'zarzutów, osobliwie ze strony 
inżynierów angielskich, a praktyka przechodzi powoli do wzoru, osnutego na Ill-ciej teorji wy­
trzymałości, która zaleca wyznaczać wymiary konstrukcji według wartości największych naprężeń
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stycznych 9- Posługując się wyrażeniami dla pmax i pmin, możemy odpowiadający wzór przedstawić
w postaci:

Pmax — Pmin = M^2 + ^R................................... (181)

l) [Bardzo u nas rozpowszechnione podręczniki niemieckie tego rodzaju, jak „Hiitte“ (w polskiem wydaniu „Te­
chnik “) i t. p., ignorują niestety po dziś dzień postępy nauki i umieszczają wciąż wyłącznie wzory, oparte na niezgodnej 
z doświadczeniem II-giej teorji].

2) Ob. pracę G. Diiffing’a: „Beitrage zur Bestimmung der Formanderungen gekrópfter Kurbelwellen". Berlin, 1906.
3) Ob. pracę M. A. Woropajewa: „Izłom koronnych wałów dwigatielej“. Izw. Kijewsk. Pol. Inst. z r. 1911.

Tego wzoru należy używać przy obliczeniu wałów, albowiem on jest oparty na hipotezie, potwier­
dzonej doświadczalnie [dla metali plastycznych}.

Co się tyczy obioru wielkości R, to wypada powtórzyć to samo, co powiedziano w rozdziale 
o skręcaniu. Wielkość naprężenia dopuszczalnego zależy od sposobu działania sił zewnętrznych 
i od ukształtowania miejsc zmiany przekroju części wału o różnych grubościach. Im raptowniej 
zmieniają się przekroje wału, tem większe będą nadwyżki naprężeń, które trzeba mieć na względzie.

§ 106. OBLICZENIE WAŁU KORBOWEGO WYGINANEGO

Zagadnienie rozmieszczenia naprężeń w wyginanym wale korbowym, jakkolwiek praktycznie 
bardzo ważne, nie posiada dotąd rozwiązania zupełnie zadowalającego. Brak dotychczas pewnych 
danych co do rozkładu ciśnień wzdłuż czopa i nie mamy formuł do obliczenia naprężeń w miej­
scach złączenia oddzielnych części wału, W zwykłych obliczeniach upraszcza się zadanie, zakła­
dając: 1) że podpory wału leżą w środkach panewek, 2) że kąty między osiami poszczególnych 
części wału nie zmieniają się przy jego odkształceniu, a do każdej z części można zastosować 
wzory wyprowadzone dla prętów pryzmatycznych2). Rozwiązanie zadania, oparte na takich zało­
żeniach, będzie naturalnie pierwszem przybliżeniem, ale o dalszem udoskonaleniu obliczeń drogą 
czysto teoretyczną trudno pomyśleć. Przy tych wymiarach wałów, z jakiemi się spotykamy w prak­
tyce, muszą grać ogromną rolę rozmaite przypadkowe przyczyny, jak np. niedokładności w roz­
mieszczeniu podpór, nieregularne zużycie panewek i t. d., a jaśniejsze wyobrażenie o charakterze 
i wielkości naprężeń możemy otrzymać tylko na podstawie badań doświadczalnych3).

Jeżeli wał jest osadzony na dwu łożyskach, to przy założeniach przedstawionych powyżej 
znajdziemy bez trudności reakcje podporowe i wyznaczymy dla każdego przekroju poprzecznego 
wielkość momentu zginającego i skręcającego. Grubość wału można następnie obliczyć z wzoru (181).
W przypadku wału podpartego trzema lub więcej łożyskami, staje się zadanie obliczenia reakcji 
statycznie niewyznaczalnem i dla jego rozwiązania musimy rozpatrywać odkształcenie wału, co
wykonamy najdogodniej przy pomocy metody wykreślno-ana- 
litycznej. Jako najprostszy przykład weźmiemy wał wyginany 
JłCDEFB (rys. 268) o stałej sztywności zginania El, spoczy­
wający na dwu podporach 4, B i obciążony siłą P, działającą 
w płaszczyźnie linji środkowej korby CDEF. Linja ugięcia 
wału będzie miała postać uwidocznioną na fig. (b). Wzdłuż 
części AC, DE i FB będą momenty zginające, a zatem i krzy­
wizna linji ugięcia, takie same jak dla prostego pręta o dłu­
gości l i sztywności El, obciążonego w odpowiadającym prze­
kroju siłą P. Co się tyczy części CD i FE, to na długości 
każdej z nich pozostaje moment zginający stałym. Weźmy np. 
część CD. Dla każdego przekroju poprzecznego tej części 
będzie moment zginający równy reakcji podporowej Ą pomnożonej przez ramię AC. Wskutek 
działania stałego momentu zegnie się oś części CD w łuk koła o promieniu

El
Mc 
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jeżeli przez Afc oznaczymy moment w przekroju C. Styczne do linji ugięcia w punktach C i D
zawierają kąt: (6 cp)c = Mcr

EI (a)

Wskutek zgięcia korb CD i FE nie będzie linja ugięcia części DE, podniesiona do wysokości CF, 
łączyć się gładko z częściami /ł C i FB. W punktach C i F otrzymamy nagłe zmiany kąta na­
chylenia stycznych o wielkości (ócp)c i (S<p)D. Dzięki temu ugnie się wał więcej, niż odpowiadający

Rys. 269

prosty pręt o tej samej sztywności, a dla otrzymania wielkości 
ugięcia trzeba wał zastąpić prętem, opatrzonym w punktach C i F 
nagłem osłabieniem przekroju (rys. 269). Wskutek tych osłabień 
powiększy się silnie krzywizna zgiętej osi pręta w miejscach C i F. 
Zmniejszając długość osłabionych części i wielkość odpowiada­
jącej im sztywności dojdziemy w granicy do załomu linji ugięcia, 
zakładając oczywiście, że odkształcenie zachodzi w granicach 
proporcjonalności. Rozmiary części osłabionej można zawsze tak 
obrać, aby otrzymać kąty załamania równe (6<p)c i (Scp)D; wtedy 
ugięcie pręta zastępczego będzie identyczne z ugięciem naszego 
wału. Jeżeli przez EIt oznaczymy sztywność ze względu na zgi­
nanie w miejscu osłabionem, to równaniem linji ugięcia na dłu­
gości osłabienia będzie

EI, 1 dx2 ’
a kąt między stycznemi do linji ugięcia, poprowadzonemi w końcach osłabionej części, obliczymy 
wzorem: dy Mdx

\ dxl EIt '
Ażeby wpływ osłabienia był równoważny wpływowi zginania korb CD i EF, trzeba przyjąć 
równości: Mc&x _ Mcr . MDS x _ MDr

El, EI 1 EI, EI ’
z czego wypada:

* EI
..................................w

Im mniejsze jest El^, tern mniejszą będzie i długość osłabionych części. Sprowadzając w ten spo­
sób zgięcie wału do zgięcia osłabionego pręta, możemy znaleźć ugięcie drogą wykreślno-anality- 
czną. W tym celu wyobraźmy sobie belkę pod działaniem fikcyjnego obciążenia trójkątnego AHB, 
przedstawiającego powierzchnię momentów dla obciążenia siłą P. Na długości osłabionych części 
należy widocznie powiększyć rzędne diagramu momentów w stosunku EI:EIi> Zmniejszając 
długość 8x, musimy w tym samym stosunku zmniejszyć i EI^ (wzór b). Wielkość zakreskowa- 
nych pól CC' i FF' pozostaje przytem niezmienioną i równa się:

Sc — t>x.CC=-^-Mc.~=^Mcr i SD — 6x. EF' = MDr . . . (c)

Te pola można zastąpić w granicy siłami skupionemi o wielkości wyrażonej wzorami (c); wtedy 
ugięcie w jakimkolwiek przekroju wału będzie proporcjonalne względem odpowiedniego momentu 
zginającego wskutek fikcyjnego obciążenia ciągłego AHB i fikcyjnych sił skupionych Sc i SD 
(rys. 269). Dla uproszczenia rozważań przyjęliśmy dotąd stałą sztywność EI we wszystkich czę­
ściach wału. W przypadku zmiennego przekroju można wszystkie części sprowadzić także do 
pewnej stałej sztywności EI0, trzeba tylko w diagramie momentów na długości każdej części 
zmienić rzędne w stosunku EI^ : EI, przyczem EI oznacza sztywność, odpowiadającą rozpatry­
wanej części. To samo należy uczynić z wielkością fikcyjnych sił skupionych.

Rys. (270) przedstawia wał wyginany wsparty na dwu łożyskach A i B. Wymiary i momenty 
bezwładności przekrojów podane w centymetrach. Dla wyznaczenia ugięcia sprowadzono wał do 
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przekroju stałego, odpowiadającego części AC (/— 531 cm4). Wskutek tego na długości C'F' zwięk­
szono rzędne powierzchni momentów w stosunku 531:490. W części F' G' zmienia się powięk- 

531 531szenie rzędnych od do Nakoniec w części G' B' zwiększono rzędne w stosunku 531 :64.

Co się tyczy fikcyjnych sił skupionych Sc i Sd, to obliczono je według wzorów:
531 531

Sc = Mc 25 . kg. cm2, SD = MD. 25 -=-y kg. cm2. W 1 M O 1 W
W przypadku, kiedy siła zginająca jest prostopadła do płaszczyzny korby CDEF (rys. 271), można 
ugięcie wału znaleźć takim samym sposobem. Trzeba tylko uwzględnić, że części CD i EF będą 
teraz narażone na zginanie i skrę­
canie. Kąty załamania (6cp)c i (Md 

będą określone wielkością skręcenia. 
Biorąc pod uwagę, że momenty skrę­
cające części CD i EF są dokła­
dnie równe momentom zginającym 
Mc i Md, które występowały w po- 
przedniem zadaniu, otrzymamy:

_ . Mcr . MDr
(Mc = i (Md = c •

Cała różnica od wyników poprze­
dniego zadania polega na tern, że 
zamiast sztywności zginania dla czę­
ści CD i EF wchodzi we wzory 
sztywność skręcenia C. Mając te wy­
niki, łatwo rozwiązać zagadnienie 
zgięcia wału korbowego przy dowol- 
nem nachyleniu siły do płaszczyzny 
korby; trzeba tylko tę siłę rozłożyć 
na dwie składowe i badać zginanie 
wskutek każdej składowej zosobna.
W przypadku podparcia wału na trzech lub więcej łożyskach, możemy tym samym sposobem, 
co poprzednio, sprowadzić zadanie do zgięcia prostego pręta z osłabionemi przekrojami. Jako

Rys. 271

wielkości statycznie niewyznaczalne najdogodniej przyjąć reakcje 
। łożysk środkowych. Najpierw usuwamy środkowe podpory i ba- 

damy zgięcie wału spoczywającego na dwu podporach skrajnych, 
B poczem dobieramy wielkości statycznie niewyznaczalne, tak, aby 

one zniosły ugięcie wału w przekrojach odpowiadających łoży­
skom środkowym.



CZĘŚĆ IV

PRACA WEWNĘTRZNYCH SIŁ SPRĘŻYSTOŚCI1)

ROZDZIAŁ XIV

OGÓLNE METODY OBLICZENIA UKŁADÓW STATYCZNIE 
NIEWYZNACZALNYCH

§ 107. UKŁADY STATYCZNIE NIEWYZNACZALNE

Statycznie niewyznaczalnemi nazywamy te układy, dla których ogólne warunki równowagi 
nie wystarczają do wyznaczenia sił wewnętrznych lub reakcyj podporowych. Do tej kategorji zali­
czają się roztrząśnięte powyżej przypadki zgięcia belek wieloprzęsłowych i belek ze zbędnemi usta­
leniami, a także w pewnych warunkach i układy złożone z prętów, czyli kratownice. Te osta­
tnie zyskały obszerne zastosowanie, zwłaszcza w konstrukcji mostów i dachów żelaznych. Przy

Rys. 272

obliczeniu kratownic przyjmuje się zwykle, że pręty łączą 
się w węzłach idealnemi przegubami bez tarcia. W tych 
warunkach siły zewnętrzne, działające tylko na węzły 
układu (rys. 272), wywołują wyłącznie rozciąganie lub ści­
skanie prętów. Skoro wydzielimy w myśli jakikolwiek 
węzeł fig. b), to dla jego równowagi mamy 2, względnie 
3 równania warunkowe, zależnie od tego, czy pręty leżą 
w jednej płaszczyźnie czy też nie. Dla kratownicy, mają­
cej n węzłów, można przeto napisać odpowiednio 2n lub 
3n równań. Jeżeli liczba równań zgadza się z liczbą nie­

wiadomych sił, do których zaliczamy tak siły wewnętrzne, jak i reakcje podporowe, a nadto układ 
jest geometrycznie niezmiennym, to wszystkie niewiadome dadzą się znaleźć z warunków równo­
wagi. Obliczenie takich kratownic jest przedmiotem wykładów statyki wykreślnej. Jeżeli zaś liczba 
niewiadomych jest większa od liczby równań, to mamy do czynienia z układem statycznie niewy- 
znaczalnym. Dla znalezienia sił wewnętrznych w prętach „zbędnych" lub dla wyznaczenia „zbę­
dnych" reakcyj podporowych, trzeba do równań statyki dołączyć warunki uzupełniające, ustawione 
na podstawie rozpatrzenia odkształceń układu. Jeszcze bardziej złożone układy statycznie niewy-

x) Przy opracowaniu niniejszego rozdziału autor posługiwał się następującemi dziełami:
W. Ł. Kir pic ze w. „Lisznija nieizwiestnyja w stroitielnoj mechanikie".
O. Mohr. „Abhandl. a. d. Gebiete der techn. Mechanik".
A. Fóppl. „Vorlesungen ii. techn. Mechanik". Bd. II, III u. V.
H. Muller-Br es la u. „Die neueren Methoden der Festigkeitslehre". 1904.
A. Castigliano. „Theorie des Gleichgewichtes elastischer Systeme".
Literaturę przedmiotu i historję rozwoju metod obliczenia układów statycznie niewyznaczalnych opracował szczegó­

łowo M. Griining w „Encyklopadie d. Math. Wissensch.". Bd. lV2ii, str. 419.
[Powyższy odsyłacz odnosi się do rozdziału XIV, gdyż rozdz. XV zawiera głównie wyniki własnej pracy autora]. 
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znaczalne powstaną, skoro uwzględnimy sztywność połączeń węzłowych. Wtedy do niewiadomych 
sił wewnętrznych rozciągających lub ściskających przybywają niewiadome momenty zginające, 
a liczba zbytecznych niewiadomych silnie wzrasta, co znacznie komplikuje i utrudnia rozwiązanie 
zadania. W dalszym ciągu spotkamy się z bardzo różnorodnemi zadaniami i jako „zbyteczne" nie­
wiadome wypadnie obrać najróżnorodniejsze wielkości. Ażeby nasze wywody uogólnić i umożliwić 
ich zastosowanie we wszelkich przypadkach, będziemy się posługiwać najogólniejszą zasadą statyki, 
t. j. zasadą prac przygotowanych i ogólną własnością układów sprężystych, jaką jest zdol­
ność nagromadzenia przy odkształceniu energji w postaci odwracalnej.

§ 108. ENERGJA POTENCJALNA UKŁADU SPRĘŻYSTEGO

Wszelkie techniczne konstrukcje przedstawiają się zwykle jako układy sprężyste, które się 
odkształcają pod wpływem obciążeń. Praca, wykonana przytem przez siły zewnętrzne, zamienia się 
na energję potencjalną układu. Ilość energji jest zupełnie określona końcową zmianą postaci i nie 
zależy od tego, według jakiego prawa wzrastały odkształcenia. Dla obliczenia ilości energji nagro­
madzonej w układzie sprężystym przyjmiemy, że obciążenia, wywołujące odkształcenie układu, 
wzrastają w sposób ciągły od zera do swojej wartości końcowej. To wzrastanie ma być przytem 
tak powolne, że siły bezwładności poruszających się mas można zupełnie pominąć. W tych wa­
runkach będziemy mieli w ciągu całego odkształcenia równowagę między siłami zewnętrznemi 
a wewnętrznemi siłami sprężystości. Cała praca sił zewnętrznych zamieni się na energję poten­
cjalną układu (jeżeli pominiemy tarcie, jakie zajść może w miejscach podparcia). Zadanie wyzna­
czenia energji odkształcenia sprowadza się w ten sposób do obliczenia pracy sił zewnętrznych. 
Taką samą wartość bezwzględną, jak praca sił zewnętrznych, ma i praca wewnętrznych sił sprę­
żystości, albowiem podczas odkształcenia w przyjętych warunkach, zachodzi zawsze równowaga 
obu układów sił. Praca sił wewnętrznych będzie więc różnić się tylko znakiem od energji poten­
cjalnej, nagromadzonej przy odkształceniu układu.

W rozpatrzonych poprzednio przypadkach rozciągania lub ściskania, ścinania i skręcania prę­
tów pryzmatycznych, okazaliśmy, że końcowa wartość energji, nagromadzonej w pręcie przy od­
kształceniu jest równa połowie iloczynu z końcowej wartości siły przez składową przesunięcia 
punktu działania siły, wziętą w kierunku jej działania (ob. §§ 4, 21, 39, 46). Tenże sam wynik 
można otrzymać i w ogólnym przypadku, jako konsekwencję prawa Hooke a. Wyobraźmy sobie 
że wszystkie siły, działające na dany układ, wzrastają od zera do swych końcowych wartości tak, 
że ich wzajemny stosunek jest w każdej chwili ten sam, co między końcowemi wartościami sił. 
Jeżeli materjał układu podlega przytem prawu Hooke’a, a działania sił są od siebie nawzajem nie­
zależne, to przesunięcia punktów działania sił będą w każdej chwili proporcjonalne względem ich 
wielkości, a praca każdej z sił będzie równa iloczynowi końcowej wartości siły przez odpowiada­
jące przesunięcie (ob. §§ 21, 46 i 47). Ten wynik otrzymał już Clapeyron, który znalazł także 
ogólne wyrażenie dla energji potencjalnej odkształconego ciała. Lamę, w swoim kursie teorji sprę­
żystości x), podkreśla szczególne znaczenie twierdzenia Clapeyrona dla statyki konstrukcyj techni­
cznych i stosuje je do obliczenia kratownic. Gdy w jakimkolwiek węźle kratownicy działa siła Q, 
a f jest przesunięciem punktu działania siły w kierunku tejże siły, to przy wzroście od zera aż 
do wartości końcowej Q wykona siła pracę

x) Ob. „Leęons sur la theorie mathćmatique de 1’ćlasticitć...* 2-gie wyd. z r. 1866, str. 79.

r = Qf 
2 ‘

Z drugiej strony praca ta równa się energji potencjalnej układu. Jeżeli F. i A oznaczają odpo­
wiednio siłę wewnętrzną, pole przekroju poprzecznego i długość dowolnego pręta układu, to ener- 
gją potencjalną tego pręta (wz. 7) będzie:

SM,
2EE '
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a całkowitą energję układu określi formuła:
SH

V= S ’ —
2EF . (182)

w której sumowanie odnosi się do wszystkich prętów układu. Przyrównywując tę wartość energji 
potencjalnej do pracy sił zewnętrznych, otrzymał Lamę równanie:

S.2Z

z którego można znaleźć ugięcie £ skoro na podstawie równań statyki wyznaczyliśmy najpierw 
wartości S..1

§ 109. ENERGJA POTENCJALNA PRZY ZGINANIU

W przypadku czystego zgięcia momentem M nastąpi względny obrót dwu przekrojów mn i pq 
(rys. 273) o kąt

l IM 
'p_ P “ ~EI'

Wyobraźmy sobie, że przy odkształceniu pozostaje przekrój mn nieruchomym i że moment wzra­
sta od zera do swej końcowej wartości M, to praca momentu będzie równa energji potencjalnej 
rozpatrywanej części pręta (§ 46):

My _ M*l y*El 
V 2 ~ 2E1 ~ 2/ (183)

Przy ogólnem zgięciu zmienia się moment wzdłuż pręta i powstdją oprócz normalnych jeszcze

Rys. 273

naprężenia styczne. Wpływ naprężeń stycznych staje się znaczniejszym tylko 
w przypadku krótkich prętów, i dlatego przy obliczeniu energji zgięcia pomija 
się zwykle pracę naprężeń stycznych. Wziąwszy pod uwagę element belki, 
ograniczony dwoma przekrojami poprzecznemi o wzajemnej odległości dx, 
możemy przy obliczeniu energji d V, w nim nagromadzonej, uważać moment 
zginający za stały i napisać na podstawie rów. (183):

.1Z Msdx „ ,lz El (dy)2 dV = albodV=T.^ . (184)

Kąt między dwoma nieskończenie bliskiemi przekrojami 

albo w przybliżeniu, o ile promień krzywizny p jest dostatecznie wielki w porównaniu do długo­
ści belki

, d2y . d*=~dźdx

Wstawiwszy to w wyrażenie dla d V i wykonawszy sumowanie na całej długości pręta, znajdziemy
całkowitą energję potencjalną zgiętego pręta:

V= alb0 V= dx ■ ■

Tutaj występuje M jako wielkość zmienna, zależna od rozmiesz- -----  
czenia sił zewnętrznych.

Jako przykład rozpatrzymy przypadek zgięcia belki, Rys. 274

jednym końcem utwierdzonej, siłą P, obciążającą drugi jej koniec (rys. 274). 
W przekroju mn, leżącym w odległości x od obciążonego końca jest moment zginający: M = Px.
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Wstawiwszy tę wartość w pierwszą z formuł (184), otrzymamy:

P2/8
6E1'

Przyrównanie tego wyrażenia do pracy siły zewnętrznej P daje:

Pf_ P*l* 
2 “ ^Er

z czego znajdziemy wzór dla strzałki ugięcia f, zgodny ze znalezionym poprzednio inną drogą.
Wzory (184) można zastosować i w tym przypadku, kiedy przekrój zmienia się wzdłuż pręta. 

Sztywność El będzie wówczas funkcją x.
Zajmiemy się teraz oceną wpływu naprężeń ścinających na ugięcie belki iw tym 

celu ustawimy najpierw odpowiednie wyrażenie dla energji potencjalnej. Energję, nagromadzoną 
w elemencie narażonym na proste ścinanie, określa wyprowadzony powyżej wz. (41). Stosując go 
do warstwy elementarnej belki, ograniczonej dwoma przekrojami o wzajemnej odległości dx, którą 
to warstwę podzielimy na elementy o objętości dF. dx, przyczem dF oznacza element pola prze­
kroju, otrzymany przez całkowanie na obszarze pola przekroju:

C p.2dFdx 
dV' = }f 2

jako wyrażenie energji, nagromadzonej w warstwie elementarnej o grubości dx przez działanie 
naprężeń ścinających pt. Jeżeli zamiast naprężenia pt wstawimy jego wartość wyrażoną przez siłę 
poprzeczną Q (wz. 70) i zcałkujemy wzdłuż osi belki, natenczas całkowita energja ścinania, na­
gromadzona w belce, przedstawi się wzorem:

V,
V. f fQS\2dFV jf ib) 2a-

W przypadku prostokątnego przekroju poprzecznego, o podstawie b i wyso­
kości h, będzie wielkość S dla jakiegokolwiek punktu, leżącego w odległości z od osi obojętnej, 
równa (§ 59):

Wstawiwszy to w poprzednie równanie i przyjąwszy dF—bdz, znajdziemy po zcałkowaniu

3 VQ*dx
5 J9 b h G

. (185)

W podobny sposób można znaleźć odpowiednie wyrażenia i dla innych postaci przekroju poprze­
cznego. Ogólnie możemy napisać:

V=k' 1 Q2 dx 
q2F G

. (186)

przyczem k' oznacza liczbę stałą, zależną od postaci przekroju.
Dla przekroju prostokątnego znaleźliśmy właśnie k' = 1,2. W przypadku przekroju dwuteowego 

(przekroju J) zmienia się k' od 2 (dla wysokości 50 cm) do 2,4 (dla wysokości 8 cm). Całkowite 
wyrażenie dla energji potencjalnej ogólnego zgięcia otrzymamy, sumując wartość energji, odpowia­
dającej działaniu momentu zgięcia, z powyżej znalezionem wyrażeniem dla energji ścinania. A zatem:

C1 M2 dx ,rV O2 dx
Jo 2EI + Jo 2F~G . (187)

To sumowanie jest uzasadnione niezależnością działania momentu i siły poprzecznej. Przy odkształ­
ceniu postaciowem, wywołanem naprężeniami ścinającemi, nie wykonują naprężenia normalne, jako
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prostopadłe do kierunku przesunięcia, żadnej pracy. Nawzajem nie wykonują widocznie pracy 
i naprężenia ścinające przy wydłużeniu elementów wskutek naprężeń normalnych. Siła poprzeczna 
nie wywołuje przeto żadnych zmian w pracy wykonanej przez moment zginający i nawzajem. 
W innych przypadkach złożonego stanu napięcia, np. przy jednoczesnem działaniu zginania i skrę­
cania albo zginania i ściskania, możemy zwykle obliczyć energję całkowitą przez sumowanie 
energij, odpowiadających składowym stanom napięcia. Takie postępowanie da się często uzasadnić 
niezależnością prac, odpowiadających odkształceniom różnego typu. Przypadki wyjątkowe, w któ­
rych takie obliczenie staje się niedopuszczalnem, rozpatrzymy poniżej.

§ 110. UOGÓLNIONE SPÓŁRZĘDNE I UOGÓLNIONE SIŁY

Z pojęcia ciała sprężystego wynika, że energja potencjalna, nagromadzona przy odkształceniu, 
zależy od ostatecznej zmiany*postaci ciała i jest zupełnie określona tą zmianą. Jakkolwiekbyśmy 
odkształcili ciało sprężyste, to zawsze przy powrocie do pewnej określonej postaci równowagi przy- 
bierze energja potencjalna tę samą wartość, odpowiadającą tej postaci. Wielkości zmienne niezale­
żne, określające odkształconą postać ciała, nazwiemy spółrzędnemi. Energja potencjalna będzie 
zatem jednoznacznie określoną funkcją tych spółrzędnych. Za spółrzędne mogą służyć w rozmai­
tych szczególnych przypadkach rozmaite wielkości. Tak np. przy badaniu rozciągania prętów 
jest odkształcenie zupełnie określone wielkością wydłużenia; w swoim czasie przyjęliśmy tę 
wielkość za spółrzędną i w zależności od niej ustawiliśmy wyrażenie dla energji potencjalnej. Przy 
rozpatrywaniu skręcenia określał zmianę postaci kąt skręcenia i tę wielkość uważaliśmy za spół­
rzędną. Podobnież przyjęliśmy za spółrzędną czystego zginania kąt względnego obrotu końcowych 
przekrojów pręta (§ 109). Wyliczyliśmy tylko kilka najprostszych przypadków, w których zmianę 
postaci określa jedna wielkość, jedna spółrzędną. Ale często wypadnie mieć do czynienia z kilku 
spółrzędnemi, a w najogólniejszym przypadku z nieskończoną liczbą spółrzędnych. Wprowadzając 
uogólnione pojęcie spółrzędnych, wypada posługiwać się uogólnionem pojęciem siły. W licznych 
bowiem przypadkach dogodniej rozpatrywać nie każdą siłę zosobna, lecz pewne grupy sił. Często 
np. spotykamy się z parami sił, które są zupełnie określone momentami. Niekiedy znowu mamy 
do czynienia z obciążeniem równomiernie rozłożonem wzdłuż belki. Działanie sił zewnętrznych jest 
w tym przypadku zupełnie określone „natężeniem" obciążenia, t. j. wielkością obciążenia, przypa­
dającego na jednostkę długości belki. Przy badaniu zgięcia belki na dwu podporach, obciążonej 
jednym ciężarem skupionym, mamy do czynienia z siłą zginającą i odpowiedniemi reakcjami pod­
pór. Ten układ trzech sił jest zupełnie określony wielkością owego ciężaru skupionego i dlatego 
można rozpatrywać całą grupę sił jako jedną uogólnioną siłę.

W poprzednio roztrząsanych przykładach jużeśmy się posługiwali uogólnionemi siłami i wy­
rażaliśmy energję potencjalną ciała jako funkcję tych sił. Np. przy rozciąganiu pręta mieliśmy do 
czynienia nie z jedną siłą, lecz z dwiema siłami rozciągającemi równemi i wprost przeciwnemi. 
Przy skręcaniu i czystem zginaniu mieliśmy po dwie pary sił, równoważące się nawzajem. Tę 
grupę sił określa wielkość momentu pary M, a energję odkształcenia przedstawiliśmy w postaci 
funkcji uogólnionej siły M. Przy obiorze uogólnionych spółrzędnych i uogólnionych sił trzeba mieć 
na oku pewną określoną odpowiedniość między temi wielkościami. Spółrzędną może mieć wymiar 
długości, wymiar oderwanej liczby, pola i t. p. Otóż każdemu typowi spółrzędnej odpowiada okre­
ślony typ uogólnionej siły. Jak należy pojmować tę odpowiedniość, najlepiej objaśnić na przykła­
dach. Przy rozpatrywaniu prostego rozciągania przyjęto za uogólnioną spółrzędną wydłużenie pręta X. 
Uogólniona siła przedstawiała się jako dwie równoważące się nawzajem siły P. Jeżeli spółrzędnej X 
udzielimy nieskończenie małego przyrostu 8X, to siły zewnętrzne wykonują przytem pracę P6X, 
równą iloczynowi uogólnionej siły przez przyrost spółrzędnej. Przy skręceniu i czystem zgięciu 
mieliśmy spółrzędną <p i uogólnioną siłę M. Praca sił zewnętrznych, wykonana podczas zmiany 
spółrzędnej o wielkości Sep bidzie Afócp, t. j. znowu przedstawia się iloczynem siły przez przyrost 
spółrzędnej. Tem też określa się wzmiankowana powyżej odpowiedniość między uogólnionemi spół­
rzędnemi i uogólnionemi siłami. Obrawszy raz pewien układ spółrzędnych, musimy uogólnione 
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siły obrać tak, aby iloczyny sił zewnętrznych przez przyrosty spółrzędnych dawały pracę sił 
zewnętrznych. Przytoczymy jeszcze parę przykładów:

Belka w obu końcach podparta i zginana siłą skupioną P (rys. 275). Grupę zło­
żoną z siły P i odpowiadających reakcyj przyjmiemy za uogólnioną siłę. Praca tych sił przy od­
kształceniu belki jest zupełnie określona zmianą wielkości ugięcia f, 
wobec czego należy w danym przypadku przyjąć to ugięcie za uo­
gólnioną spółrzędną.

Rozpatrzymy teraz zgięcie belki obciążeniem rów­
nomiernie rozłożonem (rys. 276). Oprócz danego obciążenia 
będą na belkę działać nadto reakcje podpór. Cała ta grupa sił jest 
określona natężeniem obciążenia q, to też przyjmiemy tę wielkość 
za uogólnioną siłę. Jakąż wielkość wypadnie w takim przypadku 
przyjąć za uogólnioną spółrzędną? Aby na to pytanie odpowiedzieć, znajdziemy wyrażenie dla 
pracy sił zewnętrznych przy odchyleniu belki od położenia równowagi. Jeżeli przez y oznaczymy 
ugięcie belki w dowolnym przekroju, a przez nieskończenie małą zmianę tego ugięcia, to 
praca obciążenia na długości dx będzie równa qdx$y. Praca całego obciążenia wyrazi się przez

pi C1
\ q dx . by = q \ dx 8y
Jo Jo

(a)

C1Ze względu na to, że \ y dx jest niczem innem, jak polem F,

Rys-276 zawartem między pierwotną osią belki a linją ugięcia* można wy­
rażenie (a) przedstawić w postaci qbF. Jako uogólnioną spółrzę­

dną, zgodnie z wypowiedzianem określeniem, należy przeto przyjąć wielkość F.
Weźmiemy jeszcze przykład, w którym zmianę postaci pręta określa kilka spółrzędnych, 

a mianowicie belkę zginaną siłą P, oraz parami sił i M2, działającemi na jej 
końce (rys. 277). Tutaj rozróżniamy trzy niezależne od siebie grupy sił. Jedna z tych grup 
składa się z siły P i wywołanych nią reakcyj podporowych.
Dwie inne grupy są utworzone z par Mx i M2 wraz z odpowia- 
dającemi im reakcjami podpór. Te grupy sił przyjmiemy za uogól­
nione siły i określimy je wielkościami P, M1 i M2. Ażeby zna­
leźć odpowiadające uogólnione spółrzędne, rozpatrzymy pracę sił 
zewnętrznych przy bardzo małem odchyleniu belki od położenia 

Rys. 277

równowagi. Pary sił i M2 wykonują pracę tylko wtedy, gdy zmieniają się kąty obrotu końców 
i <32. Siła P zaś pracuje przy zmianie ugięcia / w obciążonym przekroju. Oznaczmy przez 

O2 i 6/ przyrosty 82 i /‘przy odchyleniu belki od położenia równowagi, a pracę sił 
zewnętrznych odpowiadającą temu odchyleniu przedstawi wyrażenie:

+Pdf.

Wielkości 81, 82 i f będą przeto uogólnionemi spółrzędnemi w danym przypadku. 

§ 111. OGÓLNE WYRAŻENIE ENERGJI POTENCJALNEJ CIAŁ SPRĘŻYSTYCH

W rozpatrywanych przez nas przykładach (ob. § 108) można było energję potencjalną przed­
stawić albo jako funkcję sił zewnętrznych albo jako funkcję spółrzędnych. W obu przypadkach 
wypadała funkcja kwadratowa jednorodna. Przechodząc od szczegółowych przykładów do przypadku 
ogólnego, wyjaśnimy przedewszystkiem, w jakich warunkach energja odkształcenia wyrazi się 
funkcją kwadratową jednorodną. W tym celu użyjemy zasady prac przygotowanych („wyobrażal- 
nych“). Wydzielmy z układu sprężystego jeden punkt materjalny. Oprócz sił zewnętrznych będą 
nań działać wewnętrzne siły sprężystości, zastępujące działanie reszty układu na wydzielony punkt. 
Dla równowagi tego punktu musi praca sił zewnętrznych i wewnętrznych nań działających, przy
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każdem możliwem przesunięciu, równać się zeru. Gdy przez 8 T oznaczymy pracę sił zewnętrznych, 
a przez 8 / pracę sił wewnętrznych, to wymieniony warunek napiszemy w postaci:

aT + 8/=O..................................................................(188)

Podobne wyrażenie można napisać dla każdego punktu układu. Sumując te równania dla wszyst­
kich punktów układu znajdziemy:

28T + X8J=0...................... (189)

Pierwszy wyraz przedstawia pracę przygotowaną sił zewnętrznych, a drugi takąż pracę sił wewnę­
trznych. Ze względu na to, że praca sił wewnętrznych jest co do wielkości równa, a co do znaku 
przeciwna zmianie energji potencjalnej układu 8 V, możemy podstawowe równanie równowagi napisać

Tutaj oznacza 8 V „przygotowaną" zmianę energji potencjalnej, t. j. zmianę wywołaną możliwemi 
przesunięciami wszystkich punktów układu. Wyrażenie dla pracy sił zewnętrznych można przed­
stawić w innej postaci posługując się pojęciem uogólnionych sił, które będziemy oznaczać wiel- 
kiemi literami O, V, 0,... Odpowiadające im spółrzędne oznaczymy małemi literami cp, 8,... 
Wtedy pracą przygotowaną sił zewnętrznych będzie

OScp + V8^4-08£ + .. . ,
przyczem 8 cp, 8 4r, 8 8,... są przygotowanemi zmianami uogólnionych spółrzędnych. Podstawowe 
równanie (190) przybierze teraz formę:

O8(p + V84; + 08^ + ... = 8V................... (a)

Energja potencjalna V jest funkcją spółrzędnych cp, 4% 8,...; jej zmiana 8 V da się zatem przed­
stawić wyrażeniem:

dV dV dV8V= — 6cp +^484/4-^48^+...acp Y t o

Wstawiwszy tę wartość w rów. (a) znajdziemy po przeniesieniu wszystkich wyrazów na lewą stronę

6’+M+---=° ■ • • •(b)
Uogólnione spółrzędne cp, 4 8,... są zmiennemi niezależnemi, a ich przyrosty 8cp, 8^, 8 8,... 
są również zupełnie niezależne. Ażeby przy tych warunkach uczynić zawsze zadość równaniu (b), 
musimy przyjąć, że spółczynniki przyrostów spółrzędnych 8 cp, 84... są równe zeru, a zatem: 

czyli słowami:
Siły zewnętrzne są pochodnemi energji potencjalnej względem odpowiada­

jących spółrzędnych.
Przy wywodzie powyższego twierdzenia posługiwaliśmy się najogólniejszą zasadą statyki, 

a mianowicie zasadą prac przygotowanych; otrzymany wynik jest przeto ważny dla wszelkich 
układów, w których siły wewnętrzne mają potencjał. Przejdziemy teraz do ciał sprężystych, pod­
legających prawu Hooke’a. Rozpatrywanie elementarnych przypadków odkształcenia wykazało, że 
dla tych ciał są zmiany postaci proporcjonalne względem sił zewnętrznych, że zatem spółrzędne 
są linjowemi funkcjami sił zewnętrznych. Tak się ma rzecz i w najogólniejszym przypadku od­
kształcenia, jeżeli tylko postać ciała i rozmieszczenie sił jest tego rodzaju, że odkształcenia, wywo­
łane którymkolwiek układem sił, wybranym z pośród danych, nie wprowadzają zmian w działaniu 
innych sił, t. z., kiedy zachodzi zasada niezależności działania sił. W takim przypadku składają
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się działania poszczególnych sił, a każda spółrzędna zależy linjowo od sił. Dla uogólnionych Spół­
rzędnych otrzymamy wyrażenia:

cp = ax 0 + bx W 4- 4- .
T = a2 0 + b2 W 4- c20 4- . 
£ = a3^+b3^fc30 + . . (192)

Tutaj oznaczają a15... c^... wielkości stałe, zależne od własności układu sprężystego. Stałe do- 
dajniki nie wchodzą w wyrażenia (192), ponieważ nasze spółrzędne mierzymy od naturalnego 
stanu układu (bez naprężeń), a zatem wartości cp, • • • muszą się równać zeru, skoro siły 0, 
W, 0,... stają się zerem. Rozwiązując równania (t92) względem O, W, 0,... wyrazimy uogólnione 
siły przez spółrzędne. Te wyrażenia będą linjowemi funkcjami spółrzędnych o postaci:

= /ł t cp 4- B i T 4" C j 3 4- .. 
T* = ^2<p4_B2^4C24 4' .. 
9 = /l3cp4~/33T’‘ł“C'3Lt4~«« • (193)

Podstawiwszy te wartości w równania (191), znajdziemy, że pochodne cząstkowe energji potencjal­
nej względem spółrzędnych są linjowemi funkcjami tychże spółrzędnych, a ponieważ te funkcje nie 
zawierają stałych dodajników, więc energję potencjalną układu przedstawia jednorodna kwadratowa 
funkcja spółrzędnych. Wstawiając zaś zamiast spółrzędnych ich wyrażenia (192), znajdziemy ener­
gję potencjalną w postaci jednorodnej kwadratowej funkcji sił zewnętrznych.

Jako przykład weźmiemy zgięcie belki w obu końcach podpartej pod wpływem 
par sił, działających na te końce. Za uogólnione spółrzędne przyjmiemy kąty obrotu prze­
krojów końcowych i t92 ; odpowiadającemi uogólnionemi siłami będą wtedy momenty par 
i M2. Układ równań (192) przybierze w tym przypadku postać (§ 78):

_ M,l M2l _ M2l MJ
1 ~ 3 EP 6 ET L2 3 Er 6 El (a)

Rozwiązując te równania względem uogólnionych sił, znajdziemy wyrażenia, odpowiadające ukła­
dowi (193):

2 El 2 El

Zważywszy, że według (191) jest

otrzymamy wyrażenie dla energji potencjalnej w postaci następującej jednorodnej kwadratowej 
funkcji spółrzędnych:

2 FI

Jeżeli zamiast spółrzędnych wstawimy ich wyrażenia przez uogólnione siły Mt i M2, to otrzymamy:

Niekiedy obiera się dla uproszczenia uogólnione spółrzędne tak, aby w wyrażeniu dla energji po­
tencjalnej znikały wyrazy, zawierające iloczyny spółrzędnych. Spółrzędne, dogadzające temu wa­
runkowi nazywają się głównemi albo normalnemi. Grają one ważną rolę w teorji drgań. 
W dalszym ciągu będziemy ich używać przy badaniu zgięcia belek.
Kurs wytrzymałości materjałów 13
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§112. PRZYPADKI WYJĄTKOWE

Przy ustawieniu ogólnego wyrażenia dla energji odkształcenia przyjęliśmy, że ciało podlega 
prawu Hooke’a i że zachodzi zasada superpozycji. Jeżeli jednak układ jest tego rodzaju, że jego 

sił zewnętrznych, to zasada superpozycji nie zachodzi, 
a energja nie da się wyrazić jednorodną kwadratową 
funkcją spółrzędnych. Objaśnimy to na przykładach.

Dwa pręty pryzmatyczne o równej długości /, leżące 
na jednej prostej, są połączone ze sobą i ze stałemi ścia­
nami zapomocą przegubów A, B, C (rys. 278). Na ten 
układ działa jedyna siła P w punkcie B. Pod jej działa­
niem pręty się wydłużą, a przegub B przejdzie w poło­
żenie B'. Odkształcenie układu jest zupełnie określone 
przesunięciem f punktu B. Tę wielkość przyjmiemy za 

uogólnioną spółrzędną; odpowiadającą uogólnioną siłą będzie widocznie ciężar P wraz z reakcjami 
w przegubach /I i C. Szukajmy wyrażenia dla energji potencjalnej odkształconego układu. Jeżeli 
przez u oznaczymy kąt obrotu prętów, wywołany ich odkształceniem, to dla wydłużenia prętów 
znajdziemy wyrażenie:

cos a

OlzUwzględniając, że kąt a jest bardzo mały i zastępując cos a w przybliżeniu przez 1 — y, możemy 

napisać: a2

Zamiast sina będziemy w dalszym ciągu pisać a. Z warunku równowagi w węźle B' znajdziemy 
p

jako wartość siły wewnętrznej w prętach S = y. Odpowiadającem wydłużeniem prętów będzie:
P J_ 
2a EF' Z porównania obu wartości k otrzymamy: 

a zatem siła wewnętrzna
a V EF ’

Energja potencjalna nagromadzona w układzie przy rozciąganiu prętów będzie równa:

SU _Pl S1 P 
- EF ~4 V EF (a)

Jak widać, nie otrzymaliśmy kwadratowej funkcji sił zewnętrznych, co też było do przewidzenia, 
ponieważ spółrzędną

r=la^l\TF.......................................................... (1«4)

nie jest linjową funkcją siły P. Przy pomocy ostatniej formuły można energję potencjalną układu 
przedstawić wyrażeniem:

4

Ten wynik różni się od innych, otrzymanych w poprzednich przykładach. Dopóki przesunięcia 
były proporcjonalne względem sił, to energja potencjalna była równą połowie iloczynu końcowej 
wartości siły przez odpowiadającą spółrzędną. W danym przypadku równa się energja tylko ćwierci
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tego iloczynu. Znaczenie tego wyniku objaśni najlepiej diagram, przedstawiający zależność P od f
(rys. 279). Jeżeli przy pomocy wzoru (194) odmierzymy odpowiadające 
odcięte i rzędne punktów diagramu, to nie otrzymamy prostej, jak to 
bywało pierwej, lecz pewną krzywą OA. Pole zawarte między krzywą, 
osią odciętych i rzędną końcową, przedstawia pracę siły P podczas 
odkształcenia (przy założeniu, że siła rośnie w sposób ciągły od zera 
do końcowej swej wartości) i jest zarazem miarą energji potencjalnej, 
nagromadzonej w układzie. To pole jest mniejsze od pola trójkąta 
O AB, odpowiadającego linjowej zależności między siłą a przesunię­
ciem. Wstawiwszy za P wartość obliczoną z rów. (194), wyrazimy 
energję potencjalną jako funkcję f, a mianowicie:

sobie wartości f i P jako

V = —— f4
4/3' ’

Tutaj wchodzi czwarta potęga spółrzędnej f. Przez różniczkowanie znajdujemy:

Posługując się tem ogólnem prawidłem, że pocliodna energji potencjalnej względem spółrzędnej 
równa się odpowiadającej sile, można uprościć rozwiązanie zadania. W tym celu wyrażamy wy­
dłużenie pręta przez spółrzędną f równaniem

k = /p+7’-/ = y-ę,

przyczem uwzględniono, że f jest małe wobec l, a więc

i/>47‘ = /(1 + £)4 = /(1 + ^
Energja potencjalna układu

^EF = EF
l 4P

Różniczkując to wyrażenie względem f, otrzymamy siłę P jako funkcję f.
Jako drugi przykład rozpatrzymy najprostszy przypadek jednoczesnego działania 

zgięcia i ściskania (rys. 280). Belka w obu końcach podparta jest obciążona w środku roz­

Kys. 280

piętości siłą prostopadłą P, a nadto ściskana siłami 
podłużnemi S. W danym przypadku zasada superpo­
zycji nie może mieć zastosowania, albowiem odkształ­
cenie (ugięcie), wywołane siłą P, zmienia działanie sił 
podłużnych S, które wywołują nietylko ściskanie, lecz 
mają także wpływ na zgięcie belki. Należy tedy ocze­
kiwać, że energja potencjalna zgiętego pręta nie będzie 
funkcją jednorodną kwadratową. Jakoż równanie różnicz- 
ko*we równowagi przybiera w danym przypadku postać:

EJy -2^-Sy.

Jego ogólną całką jest, jak łatwo się przekonać przez podstawienie:

y =
P xA sin u.x B cos ax — o

przyczem 
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zaś 71 i B są dowolnemi stałemi całkowania. Warunki krańcowe dla wyznaczenia tych stałych są 
następujące:

Dla x = 0 ma być y = 0, zaś dla x— - ma być y = 0.

Pierwszy warunek da nam B=0, a z drugiego znajdujemy:
pA

2aS cos Tę 2
Ostatecznie napiszemy równanie linji ugięcia lewej połowy belki w postaci: 

P . PxV —-------------smaX_ . ,
J o 2S2cc5cos^- 

l . .Podstawiwszy tutaj x = znajdziemy strzałkę ugięcia:
P / al al \

• (c)

2aS \ 8 2 2 r
Ten wynik da się przedstawić w dogodniejszej formie, jeżeli zastąpimy S wartością a2 EL Po 
łatwych przekształceniach otrzymujemy:

oj al
PP

48EI 1 ial\> 'ofl . (195)

Tutaj oznaczono przez f0 ugięcie, otrzymane przy działaniu samej siły prostopadłej P. Spółczyn- 
nik p. zależy od rozmiarów belki i od wielkości siły podłużnej'), zaś ugięcie f zależy linjowo od 
siły P. Zależność od siły podłużnej jest bardziej złożona. Ustawmy teraz wyrażenie dla energji 
zginania pręta. Wstawiwszy zamiast ugięcia y, znalezione powyżej wyrażenie (a), otrzymamy:

1 P>1
i 2 \ Cf

V—EI\ (y")*dx =------------ ..................................................... (196)
J° 16SC0S2y

S* l . .Dołączywszy do tego energję ściskania znajdziemy całkowitą energję odkształconego pręta.

Jak i w poprzednim przypadku nie przedstawia się wyrażenie energji jako jednorodna kwadratowa 
funkcja sił zewnętrznych.

Nakoniec wskażemy jeszcze na zagadnienie ściskania kul i walców (§ 37). Tutaj 
wielkość spłaszczenia nie jest proporcjonalną względem nacisku, wobec czego energja potencjalna 
również nie będzie się wyrażać funkcją jednorodną kwadratową.

Wszystkie powyższe przypadki są jednakże wyjątkami z reguły; zagadnienia jednoczesnego 
działania zginania i rozciągania, albo zginania ze ściskaniem, stanowią [obok przypadku ściskania 
kul i walców] niemal że jedyne przykłady praktycznego znaczenia, w których nie zachodzi zasada 
superpozycji. Z tego powodu dalsze twierdzenia, przy wywodzie których przyjmiemy, że energja 
potencjalna jest jednorodną kwadratową funkcją spółrzędnych, znajdują w rozlicznych działach 
nauki o wytrzymałości jak najszersze zastosowanie.

§ 113. TWIERDZENIE CASTIGLIANO’A
Powyżej dowiedliśmy, że pochodna energji potencjalnej względem jakiejkolwiek spółrzędnej 

równa się odpowiadającej sile (wz. 191). Twierdzenie Castigłiano’a wyraża nawzajem, że pochodna
J) Okażemy później (rozdz. XV), że dla prętów o wymiarach poprzecznych niezbyt małych w porównaniu z długo­

ścią zbliża się spółczynnik p. do jednostki. W takim razie można pominąć wpływ siły podłużnej na ugięcie i posługiwać 
się, jak to czyniliśmy poprzednio, zasadą superpozycji.
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energji potencjalnej względem jakiejkolwiek siły jest równa odpowiadającej spółrzędnej. Dla zasto­
sowania twierdzenia Castigliano’a trzeba energję potencjalną przedstawić jako funkcję niezależnych 
sił zewnętrznych, a funkcja ta powinna być kwadratową jednorodną. Twierdzenie Castigliano a łatwo 
sprawdzić na szczególnych przypadkach rozpatrywanych poprzednio; dowód ogólny przeprowadzimy 
w następujący sposób:

Ażeby utworzyć pochodną energji potencjalnej względem dowolnej uogólnionej siły, np. 0, 
trzeba tej sile udzielić bardzo małego przyrostu 6 i znaleźć odpowiadający przyrost energji po­
tencjalnej 6 V. Wiemy, że przy ważności prawa Hooke’a i zasady superpozycji przedstawia się 
każda ze spółrzędnych cp, T, 8, ... jako linjowa funkcja uogólnionych sił T, W, 0, ... (wz. 192) 
i jeżeli sile 0 udzielimy przyrostu 8 0, to odpowiadającemi przyrostami spółrzędnych będą:

8^6®. 8®....................................... (a)

Przy tej zmianie spółrzędnych wykonują siły zewnętrzne układu pracę elementarną 8T, która się 
zamienia na odpowiedni przyrost energji potencjalnej 8V. Z pojęcia uogólnionych sił i spółrzędnych 
wynika następujące wyrażenie dla pracy sił zewnętrznych na przesunięciach 5q>, 8T, 88, ...:

8 T = j- 60) Sep + W ST + 0 38
Przyrównawszy to wyrażenie do przyrostu energji potencjalnej i opuściwszy dodajnik 60.8cp, jako 
nieskończenie mały wyższego rzędu, otrzymamy po podstawieniu wartości (a):

8 V= O 80 + U’ 8O 4- 6 80 b...,’
a stąd

d cp . d O 9 8
---- 1----l 1 j __X_ । 0 L 
90 ' 00^ 00^’" (b)

Ale pochodna cząstkowa - $ da się obliczyć jeszcze w drugi sposób, a mianowicie przez różnicz­
kowanie równania:

2Vx op-j-W+
wyrażającego twierdzenie Clapeyrona, że energja potencjalna układu równa się połowie sumy ilo­
czynów sił przez odpowiadające im spółrzędne (§ 108). Mamy tedy:

dV , dw 9 0
9___ — cp -4- O - —- ł O - -- 490 1 ' 00 1 00 ' F... (c)

Przy tem różniczkowaniu uwzględniliśmy, że O, O, 0, ... są wielkościami niezależnemi, spółrzędne 
zaś cp, T, — są wogóle zależne od wszystkich sił. Z odjęcia od siebie równań (b) i (c) wynika
wzór: dV

(197)

który wyraża twierdzenie Castigliano’a, że pochodna energji potencjalnej układu wzglę­
dem jakiejkolwiek siły równa się odpowiadającej spółrzędnej.

Twierdzenie Castigliano’a dostarcza nader wygodnego sposobu do wyznaczenia przesunięć; 
trzeba jednak pamiętać, aby energję potencjalną przedstawić w postaci funkcyj niezależnych sił, 
a funkcja ta powinna być kwadratową jednorodną. W tych przypadkach, kiedy nie zachodzi zasada 
superpozycji, może posługiwanie się twierdzeniem Castigliano’a prowadzić do błędnych wyników, 
o czem łatwo się przekonać, stosując twierdzenie dla rozpatrywanych powyżej przypadków wyjąt­
kowych (§ 112).

Korzyści z zastosowania twierdzenia Castigliano’a wykażemy najlepiej na przykładach.
Jako pierwszy przykład weźmiemy sprężynę śrubową, rozciąganą siłami P (rys. 88)2). 

Energją potencjalną układu jest (wz. 52):
M2l

2GIV 2GIP "•

*) Kwestję odkształceń różnego rodzaju sprężyn traktuje szczegółowo książka A. Castigliano’a: „Theorie der 
Biegungs- und Torsions-Federn“.
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Spółrzędną, odpowiadającą uogólnionej sile P będzie szukane wydłużenie sprężyny Na podstawie 
twierdzenia Castigliano’a otrzymamy:

, dV_ PR32jin

'~^P~dP }„2Er
Tutaj

AZ i DM=M, + Px , dp = x

(jeżeli siłę pionową skierujemy do góry, aby otrzymać ugięcie ze znakiem dodatnim), a zatem:

El\MdPdx EipMo + P*)xdx- 2E/+ 3EI'

Ponieważ siły P w rzeczywistości niema, więc w otrzymanym wyniku trzeba podstawić P=0; 
szukanem ugięciem końca belki pod wpływem pary sił, nań działającej, będzie przeto:

2Er
Przypuśćmy teraz, że w tym samym przypadku zginania belki parą sił, chcemy znaleźć 

kąt obrotu jakiegokolwiek przekroju pośredniego, np. przekroju mn w połowie rozpię­
tości (rys. 282). Wtedy umieścimy w tym przekroju fikcyjną parę siłA^. Odpowiadającą tej parze 
spółrzędną będzie szukany kąt cpj. Energja potencjalna w da­
nym przypadku:

v=___ £ ___ .______ £2E1 + 2EI ’
a zatem:

H OM, 2E1 ’

Zważywszy, że w rzeczywistości niema pary sił Afn podstawiamy w otrzymanym wyniku Af^O, 
a wtedy:

2EI

dP~ G4 ’
co zgadza się z wynikiem otrzymanym pierwej inną drogą (wz. 55).

Znajdziemy teraz ugięcie belki jednym końcem utwierdzonej i obciążonej na 
drugim siłą P. Energję potencjalną wyrazimy jako funkcję siły P, wtedy odpowiednią spółrzędną 
będzie widocznie ugięcie końca belki f. Pomijając wpływ naprężeń ścinających, mamy:

\ M2dx nV=\,2ET’ M=Px’ £ Cł dM_ PP 
dP~En0M dPax~ 3EI

Rozpatrzymy dalej zgięcie tejże belki parą sił o momencie Af0, działającą na swobodny 
koniec (rys. 281). Energję potencjalną wyrażamy jako funkcję Odpowiadającą tej uogólnionej 
sile spółrzędną będzie kąt obrotu końca belki cp. Według twierdzenia Castigliano’a znajdziemy:

_ dV _ d C1 M02dx = d
dM.~ dMJo 2EI ~ dM0\2Eir El

Niekiedy trzeba znaleźć wielkość takich przesunięć, dla których niema odpowiadających sił 
zewnętrznych; wtedy wypadnie wprowadzić obciążenia fikcyjne (pomocnicze). Dajmy na to, że 
w ostatnim przykładzie interesuje nas nie kąt cp, lecz pionowe ugięcie końca belki (poziomej).
Wprowadzamy tedy fikcyjną siłę pionową P, działającą na koniec belki. Przesunięciem odpowiada-

jącem wprowadzonej sile będzie szukane ugięcie f. Na podsta­
wie twierdzenia Castigliano a:

. dV_ d C1 M2dx

Rys. 282
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Nakoniec rozpatrzymy układ dwu prętów AB i BC (rys. 283) o równej długości i jednako­
wym przekroju poprzecznym, połączonych przegubami ze sobą i ze stałą ścianą. Przy pomocy 
twierdzenia Castigliano’a znajdziemy przesunięcie przegubu B pod wpływem siły pio­
nowej P. Dzięki przegubom będą pręty narażone tylko na rozciąganie i ściskanie. 
Przy obranych kątach nachylenia będzie tak siła rozciągająca pręt AB, jak i siła 
ściskająca pręt BC, równa.P, a zatem: 

zaś przesunięcie pionowe przegubu B:

bys. 283
dV_ 2PI

f 0P~ EF'

Dla otrzymania poziomej składowej przesunięcia punktu B wypadnie wprowadzić

Rys. 284

snem działaniu sił P i Q będą:
fikcyjną siłę poziomą Q (rys. 284). Siły wewnętrzne w prętach przy jednocze-

P+-- dla pręta AB, zaś — P+~^ dla pręta BC.

a zatem poziome przesunięcie h punktu B przedstawi się wyrażeniem:

h = dQ A. EF V3.EF 3EF

Ponieważ w rzeczywistości niema siły Q, więc w powyższym wyniku trzeba podstawić Q = 0, 
wobec czego h = 0.

Gdyby zachodziła potrzeba wyznaczenia kąta obrotu jakiegokolwiek pręta, np. pręta AB, 
(wskutek działania siły P), to należałoby wprowadzić fikcyjną uogólnioną siłę, której jako spólrzę- 
dna odpowiada szukany kąt obrotu pręta AB. Taką uogólnioną siłą będzie widocznie para o mo- 

Mmencie M (rys. 285). Siły tej pary o wielkości niech będą prostopadłe do osi pręta. Wtedy 

ich praca przy jego wydłużeniu jest równa zeru. Przy obrocie pręta o kąt -p wykonują te siły 
pracę Af<p. Ażeby znaleźć wyrażenie dla energji potencjalnej układu, przy jednoczesnem działaniu 
siły P i pary M, trzeba wyznaczyć siły wewnętrzne (napięcia) w prętach AB i BC.

Napięcie rozciągające w pręcie AB będzie:

P - — tg 30“ = P->

a napięcie ściskające w pręcie BC równa się:

p M p .
I cos 30° / V 3 Rys. 285

Po obliczeniu V znajdziemy, stosując twierdzenie Castigliano’a, kąt

dV
dM iYŚTeF lV3 . EF

3PI 5MI
lf3.EF3l*EF‘

Podstawiając tutaj M=Q, ze względu na to, że w warunkach naszego zadania nie było pary sił, 
otrzymamy: pcp =----- .

EF
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Znak — otrzymaliśmy dlatego, bo pod wpływem siły P obraca się pręt AB w kierunku prze­
ciwnym działaniu pary M.

Dla uproszczenia rachunków wzięliśmy układ złożony tylko z dwu prętów, ale twierdzenie 
Castigliano’a da się z powodzeniem zastosować do układów o większej liczbie prętów. Przy jego 
pomocy można znaleźć nietylko przesunięcia węzłów, lecz także kąty obrotu poszczególnych prę­
tów i zmiany kątów między prętami.

§ 114. ZASADA NAJMNIEJSZEJ PRACY

Zasada najmniejszej pracy daje ogólną i bardzo wygodną metodę obliczenia wielkości staty­
cznie niewyznaczalnych. Można ją otrzymać jako bezpośredni wniosek z twierdzenia Castigliano’a]). 
Jeżeli energję potencjalną odkształconego układu przedstawimy jako funkcję sił, to pośród tych sił 
będą tak dane obciążenia, jak i szukane wielkości statycznie niewyznaczalne. Dla większej jasności 
rozpatrzymy najpierw osobno zastosowanie zasady najmniejszej pracy do wyznaczenia zbytecznych 
reakcyj podporowych, a następnie zastosujemy ją do znalezienia niewiadomych sił wewnętrznych 
układu. Zbyteczne reakcje podporowe powstają wskutek zbędnych ustaleń. Usunąwszy te ustalenia 
i zastąpiwszy ich działanie na układ nieznanemi na razie siłami X, Y, Z, dochodzimy do 
układu statycznie wyznaczalnego, na który oprócz sił danych działają nieznane siły X, Y, Z, ... 
Energję potencjalną układu możemy przedstawić w postaci funkcji danych obciążeń i wielkości sta­
tycznie niewyznaczalnych X, Y, Z, ..., jako zmiennych niezależnych, albowiem reszta reakcyj 
jest z niemi związana ogólnemi warunkami równowagi, a zatem da się wyrazić przez dane obcią­
żenia i wielkości X, Y, Z, ... Wówczas, według twierdzenia Castigliano’a pochodne

dV dV dV 
dX ’ TY ’ Tz

przedstawiają składowe przesunięcia odpowiadające siłom X, Y, Z, ... (Przesunięcia i siły pojmu­
jemy tutaj w znaczeniu uogólnionem). Podpory mogą być nieruchome i ruchome. W pierwszym 
przypadku niema wogóle przesunięcia, w drugim zaś jest składowa przesunięcia, wzięta w kie­
runku reakcji, zerem, o ile wykluczymy tarcie. W obu zatem przypadkach otrzymamy:

Mamy więc tyle równań warunkowych, ile jest wielkości statycznie niewyznaczalnych. Obli­
czenie wielkości statycznie niewyznaczalnych jest, jak widać, równoznaczne z poszukiwaniem 
takich wartości dla X, Y, Z, ..., przy których energja potencjalna V staje się maximum albo 
minimum. Nie trudno dowieść, że w danym przypadku zachodzi minimum. Jakoż energja po­
tencjalna jest jednorodną kwadratową funkcją sił zewnętrznych, ma przeto postać:

V=A<D24-BV2+C02+A,<DV+B,V0 + ...
Ta wielkość jest zawsze dodatnia (dla jakichkolwiek wartości zmiennych O, V, ...), wskutek czego 
spółczynniki A, B, C, . . muszą być także dodatnie, dodatniemi będą zatem i drugie pochodne V 
względem sił, co, jak wiadomo, jest warunkiem minimum. Stąd otrzymujemy prawidło następujące:

Dla znalezienia wielkości statycznie niewyznaczalnych, trzeba ich war­
tości dobrać tak, aby energja potencjalna układu była minimum.

Wyobraźmy sobie, że wielkości X, Y, Z, ... zmieniają się, nie przestając, wraz z resztą sił 
zewnętrznych, czynić zadość ogólnym warunkom równowagi. Każdemu układowi wartości X, Y, Z, ... 
będzie odpowiadać określona wartość energji potencjalnej. Otóż powyższe prawo, zwane zasadą 
najmniejszej pracy, powiada, że w rzeczywistości pojawi się tylko taki układ wartości, X, Y, Z, ..., 
któremu odpowiada najmniejsza wartość energji potencjalnej.

b Zasadę najmniejszej pracy przedłożył L. E. Menabrea akademji nauk w Turynie w r. 1857, a więc znacznie 
wcześniej, nim pojawiła się słynna praca A. C astigliano’a: „Nuova teoria intorno all’ equnibrio dei sistemi elastici", 
zawierająca dowód jego twierdzenia.
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Jako pierwszy przykład zastosowania zasady najmniejszej pracy weźmiemy belkę o stałym 
przekroju, utwierdzoną na jednym, a podpartą na drugim końcu i obciążoną równomiernie na 
całej długości ciężarem q kgjm (rys. 286). Za wielkość statycznie niewyznaczalną obierzemy 
reakcję prawej podpory X. Pominąwszy wpływ sił ścinających, otrzymamy dla V wyrażenie:

v ( M3 dx , qx3 dMprzyczem M=Xx-^, a

Według zasady najmniejszej pracy będzie:

W 1 C' iM. 1 / X/8 9X~ El \>M dXdx~ El ( 3 ~T) =0, a stąd X = ^ql. 
o / o

Ten wynik otrzymaliśmy poprzednio inną drogą. Jeżeliby 
obniżyła się o wielkość 8, to na podstawie twierdzenia Ca- 
stigliano’a otrzymalibyśmy dla wyznaczenia X równanie:

1 (Xls ql* 
El I 3 8 1

Przesunięciu 8 daliśmy znak — dlatego, bo ono zachodzi 
w kierunku przeciwnym działaniu siły.

pod wpływem obciążenia podpora B

Rys. 286

Zamiast reakcyjnej siły możemy jako zbyteczną niewiadomą uważać reakcyjną parę Mo, za­
pobiegającą obrotowi przekroju podporowego 71. Momentem zginającym w dowolnym przekroju mn
będzie:

M=9±x-Zf+MĄ, dM _ x
Wo’”+T’

Przesunięcie odpowiadające Af0 (kąt obrotu przekroju 71) równa się zeru, a zatem:

qx3 Mnx \ dx2+~Hxt=

Rys. 287

Wykonawszy całkowanie dojdziemy do znanego wyniku 
(wz. 109):

Weźmy teraz jako drugi przykład wyznaczenie reakcyj sta­
łych podpór /I i D więzaru kratowego (rys. 287), obciążonego 
jedną siłą pionową P. Długości prętów i pola ich przekrojów po­
przecznych zawiera następująca tablica:

Nr. l cm F cm2 So SiX
lStS0 

F
IS^

F

1 360,6 25 - 1,803 P + 1,202 X — 31,24P 20,82

2 316,2 15 + 1,581 P - 2,108 X — 70,26 P 93,68

3 100,0 10 + l,000P - 1,333 X - 13,34P 17,78

4 360,6 25 —1,803 P + 1,202 X — 31,24P 20,82

5 316,2 15 4-1,581 P — 2,108 X - 70,26 P 93,68

216,34 P 246,78
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Jeżeliby jedna z podpór, np. D była ruchomą, to reakcje możnaby znaleźć z warunków równowagi. Przy danem obciąże- 
p

niu byłyby te reakcje widocznie pionowe i każda z nich równałaby się —Mając wielkości tych reakcyj, znajdziemy łatwo

odpowiadające siły wewnętrzne So w prętach kratownicy. Wielkości podaje również tablica. Ponieważ jednak obie podpory 
. p

są stałe, więc obok pionowych reakcyj - powstaną także reakcje poziome, zapobiegające wzajemnemu oddaleniu się podpór. Wa~ 

runki równowagi nie wystarczają do wyznaczenia wielkości X reakcyj poziomych; znajdziemy je więc przy pomocy zasady naj­
mniejszej pracy. W tym celu trzeba niewiadome siły X dołączyć do danych sił zewnętrznych, wyznaczyć odpowiadające 
siły wewnętrzne we wszystkich prętach i ustawić wyrażenie V dla energji potencjalnej układu. Warunek

d V 
dx

posłuży do znalezienia wielkości X. Siły wewnętrzne w prętach można według zasady superpozycji przedstawić wyraże­
niem: Ą + 8) X. Tutaj oznacza Sj te wartości sił wewnętrznych, jakieby powstały w prętach układu pod działaniem reakcyj 
poziomych w przypadku X=1 (jednostka siły). Wyznaczenie wartości 8) nie przedstawia żadnych trudności. Całkowitą 
energją układu będzie

2EF . (b)

przyczem sumowanie odnosi się do wszystkich prętów układu. Dla obliczenia X mamy przeto równanie:

dX EF = 0, a stąd X=*

v /S0S,
Z F

lSt2

IS s jeżeli przyjmiemy tę samą wartość E dla wszystkich prętów. Wartości wyrazów —j
tablicy. Przy jej pomocy łatwo znaleźć

ISf- k •—— zestawiono w powyższej

X = |^P = 0,88P.
247

Dla uproszczenia rozwiązania wzięliśmy kratownicę, złożoną tylko z pięciu prętów. Tok rachunku pozostaje jednak nie­
zmieniony w bardziej złożonych przypadkach.

Przejdziemy teraz do przypadku, w którym wielkościami statycznie niewyznaczalnemi są siły 
wewnętrzne, np. napięcia w zbędnych prętach układu. Zobaczymy, że zasada najmniejszej pracy za­
chowuje i tutaj swą ważność. Przyjmijmy na razie, że w danym układzie znajduje się tylko jeden 
pręt zbędny. Usuńmy go, a jego działanie na resztę układu zastąpmy dwiema równemi i wprost 
przeciwnemi siłami X. Energja potencjalna V, reszty układu da się wyrazić jako funkcja wielko­
ści X i danych obciążeń. Sam pręt zbyteczny będzie pod działaniem sił — X. Jego energję poten­
cjalną oznaczymy przez Vg. Energją całego układu będzie więc

+ .............................................................. (d)
Stosując twierdzenie Castigliano’a do wydzielonego zbędnego pręta, otrzymamy jego wydłużenie Ó, 
a mianowicie:

Tę samą wielkość ó znajdziemy według twierdzenia Castigliano’a jako pochodną cząstkową energji 
reszty układu, t j.

Ze względu na równość (d) będzie zatem:

dX dX dX
Jeżelibyśmy mieli do czynienia z większą ilością zbędnych prętów w układzie, to nazywając na­
pięcia w nich przez X, Y, Z,... otrzymamy dla ich wyznaczenia równania:

= o aV = o^- = o ax ’ ay ’ az
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Weźmy dla przykładu belkę kratową, przedstawioną na rys. (288), która się różni od rozpatrywanej poprzednio obe­
cnością ścięgna AD i jedną podporą ruchomą. Układ ten jest zattm „zewnętrznie" statycznie wyznaczalny, ale „we­
wnętrznie" nie, gdyż zawiera 4 węzły i 6 prętów, a więc o jeden pręt za wiele. (Liczba koniecznych prętów jest 2.4—3=5).
Jako zbyteczny pręt przyjmiemy najdogodniej AD i oznaczymy jego 
napięcie przez X. Ustawmy wyrażenie dla energji potencjalnej układu. 
Potencjalną energją ścięgna AD o przekroju Fo i długości L będzie

2EFt

Dla uzyskania wyrażenia energji potencjalnej V, reszty układu, trzeba 
działanie ścięgna zastąpić dwiema siłami X', wówczas, posługując się 
wyrażeniem (b) w zadaniu poprzednio traktowanem, otrzymamy:

V, = a zatem V =
2EF 2EF. 2EF

Dla wyznaczenia niewiadomego napięcia X w ścięgnie znajdziemy teraz równanie:

S S I

“ XV '<S» + _ A . X V _dX~EFa+~ EF a stąd X- L [S 2
F^ + F

Sumowanie odnosi się tutaj do wszystkich niezbędnych prętów układu. Jeżeli powiększamy pole F^ przekroju ścięgna, to 
jego wydłużenie będzie ubywać; w granicy dla Fo = oe przechodzi rozwiązanie (e) w wynik (c) otrzymany dla przypadku 
doskonałego ustalenia obu podpór. Przy zmniejszaniu Fo aż do zera dąży i wartość napięcia X do zera, a belka kratowa 
zbliża się swojemi własnościami do belki statycznie wyznaczalnej o jednej stałej, a drugiej ruchomej podporze.

Weźmy teraz wymiary niezbędnych prętów z poprzedniego przykładu (por. str. 201), a pole przekrcju ścięgna przyj- 
mijmy równe 50 cm2. Wtedy

X = . = 0,836 P.
12 + 247

Jeżelibyśmy przyjęli pole przekroju ścięgna 10 razy mniejsze, t. j. 5 cm2, toby wypadło

X = — 1L6_Ł = 0,59 P.
120 + 247

Przy zupełnej nieruchomości węzłów A i D otrzymaliśmy poprzednio

X = 0,88 P.

W roztrząśniętym przykładzie znajdował się tylko jeden pręt zbędny; atoli przy dowolnej liczbie zbędnych prętów 
pozostaje tok rachunku niezmieniony. Pręty zbyteczne zastępujemy siłami zewnętrznemi X, Y, Z,... i znajdujemy napięcia 
w pozostałych prętach w postaci

So + Si X + S2 Y + S3 Z + ...

Wyrażeniem dla energji potencjalnej układu będzie tedy:

v= + 2^+ iy(Ą + s,x+v+...)9
2EF, 2EFt 2EF3 ‘ ‘ 2EF

Rys. 289

Utworzywszy pochodne i przyrównawszy je do zera, znajdziemy tyle równań, ile jest niewiadomych
sił wewnętrznych. Te równania są linjowe względem niewiadomych i okre­
ślają je jednoznacznie.

Dotychczas przyjmowaliśmy, że wielkością wewnętrznie 
statycznie niewyznaczalną jest siła wewnętrzna w zbędnym 
pręcie. Działanie zbędnego pręta na resztę układu zastępo­
waliśmy uogólnioną siłą X, złożoną z dwu sił równych 
i wprost przeciwnych. Nasze rozumowanie i podstawowe 
równania (198) pozostają jednak ważne i wówczas, kiedy 
wielkość statycznie niewyznaczalną X będzie przedsta­

wiać jakakolwiek inna kombinacja sił, np. układ dwu znoszących się nawzajem par sił. Objaśnimy 
to na przykładzie belki dwuprzęsłowej ABC (rys. 289), obciążonej równomiernie ciężarem q kgjm.
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Za wielkość statycznie niewyznaczalną obierzemy, nie jak dawniej, reakcję środkowej podpory, 
lecz odpowiadający moment podporowy Podzielmy belkę przekrojem B na dwie części. Każda 
z nich przedstawia belkę w obu końcach podpartą, a więc przypadek statycznie wyznaczalny. Lewą 
połowę belki zgina oprócz równomiernego obciążenia para sił obrana za zbyteczną niewia­
domą, prawą zaś połowę zgina obciążenie równomierne i para sił —Mo. Niechaj Vt i V2 oznacza 
odpowiednio energję potencjalną lewej i prawej połowy belki. Wtedy na podstawie twierdzenia 
Castigliano’a:

9 V. . 9 V,

przyczem cp jest kątem obrotu przekroju B. H zatem:

SM, dMa SM,

Otrzymane równanie posłuży do wyznaczenia niewiadomej M(]. Pomijając pracę naprężeń ścinają- 
jących, mamy:

Vi=V2Er
przyczem qlt Mox qxiA) dM x

2 l. 2 ’ +

a zatem: »V, _ J_ (' 'M ± dx _ 1 / qlts qlt‘,

J) Znak dla Mo obrano tutaj w przypuszczeniu, że moment podporowy jest dodatni.

dŃa El)„ l, aX~ El\ 6'3 8 /’

Podobnież: d V2 __ 1 / q l2s M0l2
om. + “1 ir

Podstawiając to w rów. (f), znajdziemy:

aU/1 + M=-4q(/,3 + z23)-

To równanie można było także napisać odrazu, stosując twierdzenie o trzech momentach.

Rys. 290

Jako drugi przykład rozpatrzymy zgięcie ramy prostokątnej RCDB (rys. 290), 
wspartej na dwu stałych przegubach 71 i B. Pod działaniem obciążenia, rozłożonego 
równomiernie, będzie pręt CD zginać się tak, jak belka z końcami sprężyście utwier- 
dzonemi. Za wielkość statycznie niewyznaczalną obierzemy wartość Mo momentu 
zginającego w przekrojach C i D. Wtedy momentem zginającym w jakimkolwiek 
przekroju pręta CD, odległym o x od C będzie:

+ zaś +2 2 0 OMo

Moment zginający dla słupów AC i BD w odległości x od dolnego końca będzie:

x ó ,  x
2 “ ~h~’ Tm', h'

Rozkład momentów zginających przedstawiono na rysunku zakreskowanemi polami. 
Według zasady najmniejszej pracy otrzymujemy dla wyznaczenia Mo równanie:

d V
Mo

1 
El

[Przy obliczeniu energji potencjalnej pominięto wpływ sił podłużnych i poprzecznych jako niewielki w porównaniu 
do wpływu momentów zginających. Popełniony przez to błąd będzie widocznie tem mniejszy, im smuklejsze są pręty ramy].

Wstawiwszy wartości za Mt, i wykonawszy całkowanie, znajdziemy:
M___________ lb-______

— / 2 h EI \ •
12 \ ó u łL 1^ I
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§ 115. ZASADA WZAJEMNOŚCI PRZESUNIĘĆ

Posługując się zasadą najmniejszej pracy, możemy bez trudności znaleźć wielkości statycznie 
niewyznaczalne przy stałem obciążeniu układu. Przy obliczeniu kratownic sprowadza się zadanie, 
jak widzieliśmy, do konstrukcji dwu planów sił Cremona’y: jednego dla znalezienia napięć So i dru­
giego dla napięć S,. W przypadku obciążenia ruchomego, jak to bywa przy obliczeniu mostów, 
żórawi i t. p. staje się zastosowanie zasady najmniejszej pracy niedogodnem, ponieważ wymaga­
łoby szukania wielkości statycznie niewyznaczalnych dla każdego położenia obciążenia. Dla uprosz­
czenia rozwiązania takich zadań używamy linij wpływowych. Konstrukcja tych linij ułatwia 
się znacznie przez zastosowanie zasady wzajemności przesunięć, która jest wynikiem tego, 
że energja potencjalna układu V wyraża się jednorodną kwadratową funkcją spółrzędnych cp, T, 0,...
czyli: y=acp2 + b^2 + c^2 + ...4- a'y >k + 0 + c' O + ...

*) C. Maxwell.,„On the calculation of the equilibrium and stiffness of frames“. Phil. Mag. t. 27, str. 294.
2) E. Betti. 11 nuovo Cimento (ser. 2), t. 7 i 8, r. 1872.
3) Lord Rayleigh. Scientific Papers, t. I, str. 179.

Odpowiadające uogólnione siły ^T, 0,... określają równania:
a vO = —— = 2 a cp + a' T T • • • d cp

W = = 2b^ + a' cp + + ...d cp l . .
9 V0 = = 2 c 3 + b cp+c^-b...
uiJ

• (a)

• (b)

Przy pomocy powyższych wyrażeń dowiedziemy twierdzenia o wzajemności przesunięć. Rozpatrzmy 
dwa stany układu sprężystego. Niechaj stan I-szy określają spółrzędne <pt, i odpowia-
jące im siły O1, 0t,...; II-gi stan niech określają spółrzędne cp2, <p2> 02,... i siły d>2, W'2,
02,... Wyobraźmy sobie, że siły odpowiadające I-mu stanowi wykonały pracę na przesunięciach 
cp2, cp,,... odnoszących się do stanu Ii-go. Praca ta równa się:

$192 + 1 ^2 + + • • • —

= 2acpt <p2 + a' cp2 + cpŁ <p2) + 2^^ + //(^cp,, + OJ + 2c 0, + c,(01(p2 b ...
Tutaj przy pomocy równości (t>) wyraziliśmy siły O15... przez spółrzędne 0^...
Otrzymane wyrażenie okazuje się zupełnie symetrycznem względem spółrzędnych I-go i Ii-go 
stanu. Z tego wynika, że otrzymalibyśmy dokładnie taką samą pracę, gdybyśmy zmusili siły Ii-go 
stanu O2, W2, . . . do wykonania pracy na przesunięciach cpn cpn . . . odpowiadających stanowi 
I-mu, czyli: +9, = m+M. +.............................. (199)

To równanie wyraża twierdzenie, noszące nazwę zasady wzajemności przesunięć. Szczególny przy­
padek tego twierdzenia ogłosił Maxwell‘) w r. 1864 wraz z zastosowaniem do obliczenia kratow­
nic. W najogólniejszej postaci dowiedli je włoski uczony E. Betti2) i angielski fizyk lord 
Ray 1 eigh ').

Weźmy pod uwagę najprostszy przypadek, kiedy mamy do czynienia tylko z dwiema uogól- 
niónemi siłami, np. z siłami O i W. Dajmy na to, że przy I-szym stanie staje się siła W zerem 
i działa tylko siła Wartości spółrzędnych, odpowiadających siłom O i W dla tego stanu niech 
będą cpt i cp^ Jako stan II-gi przyjmiemy ten, w którym siła O staje się zerem i działa tylko siła 
^2. Spółrzędne, odpowiadające temu stanowi, nazwiemy przez cp, i <p2; wtedy rów. (199) przybie- 
rze postać:

albo -®i = 4Ł..................................................(200)
^2 T2

Skoro w szczególności = W2, to — ¥2-
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Otrzymany wynik da się wysłowić w następujący sposób:
Jeżeli na dany układ działają dwie uogólnione siły, równe co do liczebnej 

wartości, to zmiana spółrzędnej, odpowiadającej II-giej sile, wywołana działa­
niem siły I-szej, jest taka sama, jak zmiana spółrzędnej, odpowiadającej I-szej 

sile, pod wpływem siły II-giej.
Znaczenie i zastosowanie tego twierdzenia objaśnią najlepiej 

1 przykłady. Jako pierwszy weźmiemy belkę w obu końcach podpartą
Rys. 291 (rys. 291). Obciążmy ją najpierw siłą P, działającą w przekroju I,

a następnie taką samą siłą, działającą na przekrój II. Spółrzędnemi 
dla tych sposobów obciążenia będą ugięcia w przekrojach I i II. Przyjmijmy, że przy działaniu 
siły P w przekroju I powstają w przekrojach I i II ugięcia i f2, natomiast przy działaniu siły P 
tylko w przekroju II powstają w tychże przekrojach ugięcia i f2'; wtedy na podstawie form. (200) 

t. j. przy przeniesieniu siły P z I do II, ugięcie przekroju II przenosi się do przekroju I. [Innemi 
słowy: Ugięcie w przekroju II, wywołane siłą P, działającą na przekrój I, równa 
się ugięciu w przekroju I, wywołanemu siłą P, działającą na przekrój II].

Jako drugi przykład obierzemy belkę jednym końcem utwierdzoną (rys. 292) i rozpatrzymy 
dwa stany tej belki: 1°) zgięcie pod wpływem siły P, działającej na swobodny koniec (fig. a) i 2°)
zgięcie parą sił o momencie M (fig. b). Spółrzędnemi, odpowiadającemi tym sta­
nom obciążenia będą odpowiednio: ugięcie końca belki i kąt obrotu przekroju 
końcowego Jeżeli siła P i moment M mają równe wartości liczbowe, to na pod­
stawie wzoru (200) możemy powiedzieć, że kąt obrotu przekroju końcowego, jaki 
powstał pod działaniem siły P, jest liczbowo równy wartości ugięcia końca belki 
pod wpływem momentu M. Łatwo sprawdzić ten wniosek przy pomocy znanych 

M4 b

________ B\

Rys. 292

wzorów. Kątem obrotu przekroju końcowego wskutek działania siły P będzie 'p = 
końca belki pod wpływem pary sił określa formuła:

PI* . .2gp ugięcie zaś

MP
2 Er

Skoro więc P jest liczbowo równe M, to
cp = f.

Weźmy jeszcze pod uwagę pręt zakrzywiony, czyli łuk (rys. 293), oparty jednym końcem /I 
na stałym, a drugim B na ruchomym przegubie. Dajmy na to, że pod wpływem dwu sił P, rów­

nych i wprost przeciwnych, działających na punkty A i B, odkształci się 
. łuk w sposób uwidoczniony na rysunku. Dowolny punkt łuku C zajmie

\Ć przytem położenie C', przyczem przez Ó oznaczymy składową pionową
P P"\B Przcsun^c^a ' Na podstawie zasady wzajemności przesunięć możemy 

------------- przewidzieć, że pionowa siła P, działająca w punkcie C, wywoła przesu-
Rys 293 nięcie przegubu ruchomego B po linji AB o tej samej wielkości 8.

Przy pomocy zasady wzajemności przesunięć możemy, obrawszy w od­
powiedni sposób dwa porównywane stany układu, ustawić dostateczną liczbę równań dla obliczenia 
wielkości statycznie niewyznaczalnych. Przebieg rachunku najdogodniej objaśnić na szczegółowych 
przykładach.

§ 116. ZASTOSOWANIE ZASADY WZAJEMNOŚCI PRZESUNIĘĆ DO OBLICZENIA 
BELEK CIĄGŁYCH

Rozpoczniemy od najprostszego przypadku belki dwuprzęsłowej (rys. 294). Za zbyteczną nie­
wiadomą obieramy reakcję środkowej podpory. Znajdziemy wielkość tej reakcji przy obciążeniu 
belki jedną siłą P. W tym celu usuwamy podporę środkową, zastępujemy jej wpływ siłą X skie­
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rowaną ku górze (jej wielkość ma być taka, aby zniweczyła ugięcie, wywołane w przekroju pod­
porowym danem obciążeniem) i rozpatrujemy zgięcie belki AB, 
I-szy stan weźmiemy zgięcie siłami P i X, jako Il-gi zgięcie 
siłą równą jednostce, działającą w przekroju C (fig. b). Niech 
będą /0 i f\ ugięciami w punktach C i D, odpowiadającemi 
drugiemu sposobowi obciążenia; wtedy według zasady wza­
jemności przesunięć otrzymamy:

Ph-Xf0 = i.f>................................... (a)

Drugi wyraz opatrzyliśmy tutaj znakiem minus, ponieważ 
ugięcie f0 zachodzi w kierunku przeciwnym kierunkowi X. 
Jednostkę siły po prawej stronie równości (a) pomnożyliśmy 

w obu końcach podpartej. Jako

Rys. z94

przez zero, albowiem odpowiadające jej przesunięcie (ugięcie u środkowej podpory) przy I-szym 
stanie obciążenia jest równe zeru. Niewiadomą reakcję X obliczymy tedy z rów. (a):

Pf. (b)

Przy przesuwaniu obciążenia wzdłuż belki, pozostaje mianownik /0 stałym, a zatem reakcja pod­
porowa będzie proporcjonalna względem ugięcia f\. W przypadku obciążenia układem ciężarów P, 
otrzymamy reakcję podporową przez sumowanie wyrażeń, podobnych do wyrażenia (b), czyli:

= ^Pf 
h ■ (c)

Każdą z sił I-go stanu należy pomnożyć przez odpowiadające ugięcie stanu Ii-go, wobec czego 
linja ugięcia belki AB, pod wpływem jednostki obciążenia, działającej w przekroju C, gra rolę 
linji wpływowej dla reakcji podpory środkowej. Mając tę krzywą, łatwo obliczyć reakcję środ­
kowej podpory z wzoru (c), przy dowolnym rozkładzie obciążenia. Jeżelibyśmy za zbyteczną nie­
wiadomą przyjęli reakcję skrajnej podpory B, to linją wpływową okazałaby się linja ugięcia belki

Rys. 295

podpartej w A i C, a obciążonej na końcu B jednostką cię­
żaru (rys. 295). Do obliczenia niewiadomej reakcji posłuży 
również wzór (c).

Rozpatrzmy teraz przypadek belki na czterech podporach 
(rys. 296). Najpierw znajdziemy wielkości reakcyj podporowych

przy obciążeniu jedną siłą skupioną P. Usuwamy 
pujemy siłami X i Y, skierowanemi w górę (wiel­
kości tych sił muszą być takie, aby znikły ugię­
cia w C i D) i rozpatrujemy zgięcie belki AB 
siłami X, Y i P (fig. a). Oprócz tego stanu, odpo­
wiadającego obciążeniom rzeczywistym, rozpa­
trzymy jeszcze zgięcie belki AB jednostką siły, 
działającą w punkcie C (fig. b) i zgięcie je­
dnostką siły, działającą w punkcie D (fig. c). 
Niechaj będą /c, Jd, Jh, tudzież fc, fp', fn, ugię­
ciami w punktach C, D i H, odpowiadającemi 
dwu ostatnim sposobom - obciążenia. Zastosujmy 
zasadę wzajemności przesunięć najpierw do I-go 
i Ii-go stanu (fig. a i b), a następnie do stanu 
I-go i Iii-go (fig. a i c), to otrzymamy równania:

podpory środkowe, ich działania na belkę zastę-

z których:
Pfn-Xfc-Yfp=\.O, Pfa'-Xfc'-YfD' = 1.0,

/h fp' — fn' fp Y — P faje ~ fu' fc 
fcfp'—fcfp ’ fpfc'~ fpfc . (d)
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Mianowniki wyrażeń, otrzymanych dla X i Y, nie zależą widocznie od położenia ciężaru P. 
Liczniki są określone wielkościami fu i fu' dla dowolnego położenia siły P, które to wielkości będą 
znane, skoro znajdziemy postać linji ugięcia dla Ii-go i Iii-go sposobu obciążenia. Mając te krzywe, 
łatwo obliczyć wartości spółczynników przy P w wyrażeniach (d) dla dowolnego położenia ciężaru, 
a według nich łatwo skonstruować linję wpływowe dla obu reakcyj podporowych.

Zastosujemy teraz zasadę wzajemności przesunięć do wyznaczenia linji wpływowej dla mo­
mentu podporowego Mc belki dwuprzęsłowej /IB (rys. 297). Jako I-szy stan przyjmiemy stan rze­
czywisty belki, kiedy na nią działa obciążenie skupione P. Przy Il-gim stanie niema siły P, 
a zamiast szukanej niewiadomej Mc, działa uogólniona siła równa jednostce. Ażeby urzeczywistnić 
stan Il-gi, rozdzielimy belkę przekrojem m n na dwie części i na każdą z nich działamy w po­
prowadzonym przekroju jednostką zginającego momentu (fig. b). Ta grupa, złożona z dwu równo-

Rys. 297

ważących się par sił i odpowiadających im reakcyj podpo­
rowych, przedstawia uogólnioną siłę tego samego typu, co 
i szukana wielkość Mc. Belki AC i CB są końcami oparte 
i bez trudności znajdziemy ich linję ugięcia. Kąty obrotu, 
końców określają wzory:

LA
3EI •

LA
3E1 ’

£ 2 =

Ii-go stanu będą: ugięcie f punktu D

Mamy teraz przy I-szym stanie ciężar P i niewiadomą 
uogólnioną siłę Mc. Odpowiadającemi im przesunięciami 
i kąt W II-gim stanie będziemy mieć uogólnioną siłę 

złożoną z dwu par znoszących się nawzajem i odpowiadających im reakcyj podporowych. Odpo­
wiadające tej uogólnionej sile przesunięcie w I szym stanie równa się zeru, gdyż w rzeczywistości 
jest belka ciągłą, a więc względny obrót końców C części AC i CB jest niemożebny. Zasada wza­
jemności przesunięć daje:

- 1.0, a stąd = ^4
v. + O-

Tutaj mianownik nie zależy od położenia obciążenia P; przy zmianie tego położenia zmienia się 
moment podporowy według tego samego prawa, co ugięcia f, powstające przy działaniu sił 
stanu Ii-go. Odpowiadające linję ugięcia belek AC i CB (fig. b) będą przeto szukanemi linjami 
wpływowemi. Przy działaniu na belkę AB układu ciężarów skupionych P2, ..., Pn obliczymy 
moment podporowy według wzoru:

2 Pi fi

W podobny sposób można skonstruować linję wpływową dla jakiegokolwiek momentu podporo­
wego Mn'belki wieloprzęsłowej (rys. 298). Jako stan I-szy przyjmiemy rzeczywisty stan belki, 
przedstawiony na fig. (a). Dla otrzymania Ii-go stanu przetniemy belkę nad n-tą podporą i umie­
ścimy tam dwie równe a wprost przeciwne pary sił o momencie równym jednostce. Za rzędne 
linji wpływowej dla Mn będą służyć ugięcia belki, odpowiadające Il-mu stanowi, a wielkość Mn będzie 
określać ten sam wzór, co w poprzednim przypadku. Obliczenie kątów i tudzież ugięć f 
nie ^przedstawia trudności, ponieważ poszczególne przęsła belki ciągłej możemy rozpatrywać jako 
belki w obu końcach podparte i zginane 
parami sił, działającemi na końce. Mo­
menty tych zginających par wyznaczy 
linja łamana an-i an a„+t an+2 ..., po­
prowadzona przez punkty stałe Nn-?, 
Nn-^, On, On+b On+2, ... (fig. b). Mając 
linję wpływowe dla momentów podporo­
wych, możemy pozostałe linję wpływowe 
znaleźć przy pomocy wzorów (136) i (137).
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§ 117. LINJĘ WPŁYWOWE DLA BELKI WZMOCNIONEJ (WIESZAKOWEJ)
Belka AB (rys. 299), obciążona siłą P, jest wzmocniona przy pomocy słupów CE, DF i ścięgien AE, EF i FB. 

Oznaczmy przez EI sztywność przy zginaniu belki AB, przez Ei i Fi — spółczynnik sprężystości i pole przekroju po­
przecznego ścięgien, nakoniec przez E^ i F, — spółczynnik sprężystości i pole przekroju słupów. Chociaż belka ma cztery 
punkty podparcia, to jednak mamy do czynienia tylko z jedną wielkością statycznie niewyznaczalną, ponieważ siły we­
wnętrzne w słupach, jak to wynika z warunków równowagi węzłów E i F są zawsze sobie równe. Obrawszy napięcie X 
ścięgna poziomego EF za wielkość statycznie niewyznaczalną, wyrazimy siłę ściskającą w słupach przez Xtga, a siły 
rozciągające w ścięgnach pochyłych AE i FB przez Xsec a. Wszystkie zatem siły, działające na belkę AB, wyrażają się 
przez P i X. Wyznaczymy X, posługując się zasadą wzajemności przesunięć. Jako I-szy stan przyjmiemy rzeczywisty stan 
układu, kiedy nań działa siła P i siły X, zastępujące ścięgno EF. Stan Il-gi przedstawia fig. (b). Tutaj usunięto siły ze­
wnętrzne, a zamiast zbytecznej niewiadomej X umieszczono siły równe jednostce. Siłom P i X pierwszego stanu odpowia­
dają w Il-gim stanie przesunięcie f* i zbliżenie 8 punktów E i F. Przesunięciem 1-go stanu, odpowiadającem siłom 11-go stanu

X/jest widocznie wydłużenie ścięgna E F, równe o F „ . Zasada wzajemności przesunięć daje zatem równanie:
3 Fi F

— + X 8 = — 1 . , z którego wynika X =----3 £| r i 1 . / r
(201)

Mianownik we wzorze (201), oznaczony dla krótkości literą k, nie zależy od położenia ciężaru P, a przy jego prze­
suwaniu po belce będzie siła X zmieniać się według tego samego prawa, co i ugięcie belki AB w II-gim stanie (fig. b).
Linja ugięcia przy tym stanie będzie zatem służyć za linję wpływową dla szukanej wielkości X. Konstrukcja linji wpływo­
wej sprowadza się w ten sposób do znalezienia ugięć fx i zbliżenia 8 przy II-gim stanie belki. Ugięcia znajdziemy tak, 
jak dla belki prostej podpartej w A i B, oraz obciążonej w punktach C i D siłami o wielkości /. tg u., równemi napięciom 
w słupach. Co się zaś tyczy zbliżenia 8, to najdogodniej znaleźć je przy pomocy twierdzenia Casliglianoa. Oznaczając 
dla jasności przez S siłę równą jednostce, znajdziemy dla energji potencjalnej 
rozciąganych prętów AE i FB, tudzież ściskanych słupów i zginanej belki, odpo­
wiednie wyrażenia:

SU Sstg2ah 5 S*h*l
1 “ Scos^EtA ’ E^ ’ ~ 18 ET'

Wyrażenie dla V3 łatwo otrzymać przy pomocy wzoru dla ugięcia belki, obcią­
żonej symetrycznie dwiema równemi siłami (ob. § 97). Różniczkując całkowitą 
energję V= Vi + V2 + V3 względem S (cząstkowo) i kładąc w otrzymanej pocho­
dnej S—1, znajdziemy szukane zbliżenie:

_ 2 l 2htg2a 5 hU
3 EtFt cos8 a + E^F + 9 EI’

Mając linję wpływową dla napięcia X, możemy łatwo skonstruować linję wpły­
wową dla momentu zginającego w dowolnym przekroju belki. Weźmy pod uwagę 
przekrój mn i ustawmy ciężar P w odległości X, od prawej podpory (fig. c).

Na koniec belki A będzie działać, oprócz reakcji pionowej 
Rys. 299

napięcie

pręta AE, a zatem moment w przekroju mn będzie się składać z dwu części:
z momentu obliczonego, jak dia bełki w dwu punktach podpartej i z momentu napięcia w ścięgnie. Oznaczywszy przez y 
rzędną zawartą między osią belki, a osią ścięgna w przekroju mn, otrzymamy:

AL . (202)

Ta formuła, jak łatwo sprawdzić, zachowuje ważność i dla środkowej części belki, gdzie y ma stałą wartość, równą h. 
Pierwszy wyraz w nawiasie przedstawia rzędne linji wpływowej ACB, skonstruowanej jak dla belki w obu końcach pod­
partej. Drugi zaś wyraz przedstawia wpływ napięcia X i można go otrzymać, mnożąc rzędne poprzednio skonstruowanej 
linji wpływowej dla X przez rzędną y. Przez odejmowanie otrzymamy rzędne szukanej linji wpływowej. Na fig. (c) uwi­
doczniono zakreskowaniem odpowiadającą powierzchnię wpływową.

§ 118. ZASTOSOWANIE ZASADY WZAJEMNOŚCI PRZESUNIĘĆ DO OBLICZENIA 
KRATOWNIC STATYCZNIE NIEWYZNACZALNYCH

Zasada wzajemności przesunięć dostarcza w tym przypadku dogodnego sposobu do wyznaczenia zbytecznych nie­
wiadomych przy działaniu obciążeń ruchomych. W szczególnie prosty sposób rozwiązują się zadania, w których mamy do 
czynienia tylko z jedną wielkością statycznie niewyznaczalną. Rozpatrzymy zosobna przypadek, kiedy zbyteczną niewia-
Kurs wytrzymałości materjałów 14
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domą jest reakcja stałej podpory, i przypadek, w którym jest nią napięcie zbędnego pręta. Jako pierwszy przykład we- 
źmiemy łuk kratowy dwuprzegubowy (rys. 300), obciążony siłami pionowemi. Składowe poziome reakcyj w przegu­
bach A i B będą w tych warunkach równe (na mocy warunku rzutów sił wewnętrznych). Każdą z nich nazywamy 
„parciem poziomem", lub „rozporem" luku. Ich wielkość X wypadnie przyjąć za zbyteczną niewiadomą. Jeżeli np. zało­
żymy, że ruchome obciążenie przenosi się tylko na węzły pasu górnego, to dla konstrukcji linji wpływowej trzeba jednostkę 
obciążenia umieszczać kolejno na każdym z górnych węzłów, a wyznaczywszy dla każdego takiego położenia odpowiada-

Rys. 300

8t, 82, ..., 86 — pionowe przesunięcia węzłów II, IV, VI, VIII, X. Można

ącą wartość parcia poziomego (rozporu), 
trzeba te wielkości odmierzyć jako rzędne 
w odpowiadających punktach dowolnej osi po­
ziomej A' B'. Linja łamana, łącząca otrzymane 
w ten sposób punkty, będzie szukaną linją 
wpływową. Pokażemy jak można znaleźć 
rzędne 8,, 8„ 8g tej linji wpływowej przy 
pomocy zasady wzajemności przesunięć. 
Umieśćmy jednostkę ciężaru nad jednym 
z węzłów (rys. 300, fig. a). Składowe pionowe 
reakcji wypadają w danym przypadku wido­
cznie takie same, jak gdyby łuk był belką 
prostą na podporach A i B; składowe poziome 
oznaczyliśmy już przez X. Stan układu przy 
tym sposobie obciążenia przyjmiemy za I-szy. 
Stan 11-gi odpowiada obciążeniu przedstawio­
nemu na fig. (b), gdy na daną kratownicę 
działają w przegubach podporowych dwie siły 
o wielkości 1, znoszące się nawzajem. Ozna­
czmy przez h ^wywołane tern obciążeniem 
zbliżenie przegubów podporowych, a przez 
je znaleźć kreśląc plan przesunięć Williofa ’)•

Stosując zasadę wzajemności przesunięć do obu powyższych stanów, znajdziemy:

Xh - 1 . 8j = 0, a stąd X—

Jednostka ciężaru, umieszczona w którymkolwiek z węzłów pasu górnego, wywołuje więc parcie poziome, proporcjonalne 
względem pionowego przesunięcia tego węzła pod wpływem sił przedstawionych na fig. (b). Skoro od prostej A'B' na 
rzędnych, odpowiadających górnym węzłom, odetniemy znalezione powyżej przesunięcia i połączymy otrzymane 'punkty 
linją łamaną, to rzędne tej linji dają wielkość proporcjonalną względem parcia poziomego przy dowolnem położeniu jedno­
stki ciężaru ruchomego. Wykreślona linja może zatem służyć za linję wpływową dla parcia poziomego. Jeżeli mamy kilka 
ciężarów pionowych Pi, to mierząc rzędne 8i, odpowiadające każdemu z łych ciężarów, otrzymamy wartość parcia pozio­
mego (rozporu): p. 8.

x = ■
Przejdziemy teraz do konstrukcji linji wpływowej dla siły wewnętrznej (napięcia) w pręcie zbędnym. Weźmiemy tę 

samą kratownicę, co w poprzednim przykładzie, lecz jeden z przegubów przyjmiemy za ruchomy, a za to połączymy 
obydwa przeguby ścięgnem AB, które widocznie będzie zbędnym prętem kratownicy. Obecne zadanie różni się od po­
przedniego tylko tern, że przeguby podporowe mogą się przesunąć względem siebie w kierunku prostej A B. Jeżeli L ozna­
cza pierwotną długość, F — pole przekroju, a X — napięcie ścięgna, to odległość między przegubami zwiększy się 

XLo wielkość Za I-szy stan układu przyjmiemy obciążenie jednostką siły w jednym z górnych węzłów i siłami X,Er
zastępującemi wpływ ścięgna. Za Il-gi stan obierzemy działanie na przeguby dwu sił. znoszących się nawzajem, o wiel­
kości 1 (rys. 300, fig. b). Niech będzie h zbliżeniem się przegubów podporowych, a 8j, 8„ ..., 85 — pionowemi przesu­
nięciami górnych węzłów II, IV, VI, VIII, X, wywołanemi drugim stanem obciążenia; natenczas według zasady' wza­
jemności przesunięć otrzymamy:

, & , v u ~1.XL- 1.82 ± X. h = ——.

Znakiem minus opatrzono te wyrazy, w których siły i przesunięcia mają przeciwne kierunki. Wielkością parcia poziomego 
(rozporu), odpowiadającego jednostce obciążenia, umieszczonej w węźle II, będzie więc:

V 1.8, 

h+ EF

*) Sposób Williofa podaje np. kurs statyki wykreślnej W. L. Kirpiczewa.
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Otrzymane wyrażenie różni się od parcia poziomego przy stałych przegubach [a bez ścięgna] tylko wielkością mianownika, 
wobec czego skonstruowana poprzednio linja wpływowa nadaje się i do tego przypadku, jeżeli tylko zmienimy spółczynnik
proporcjonalności. Zauważymy jeszcze, że nasze rozumowania nie 
uległyby zmianie, gdybyśmy za zbyteczną niewiadomą przyjęli napięcie 
jakiegokolwiek innego pręta danej kratownicy.

Jako przykład układu z dwiema „zbytecznemi niewiadomemi" 
[dwukrotnie statycznie niewyznaczalnego] można wziąć ciągłą belkę 
kratową na czterech podporach (rys. 301). Niechaj obciążenie ruchome 
przenosi się na dolne węzły kratownicy. Lewą podporę przyjmiemy za 
stałą, inne zaś za ruchome. Za zbyteczne niewiadome najdogodniej 
wziąć reakcje podpór środkowych. Dla konstrukcji linij wpływowych 
trzeba znaleźć pionowe przesunięcia dolnych węzłów przy obciążeniach 
jednostkowych, uwidocznionych na fig. (b) i (c). Dla wyznaczenia 
rzędnych linji wpływowej, odpowiadających dolnym węzłom II, 111, IV, 
V i VI, można się posługiwać wzorami (d) (§ 116), otrzymanemi dla 
belek litych. Rys. 301

§ 118. METODA MOHR’A

Sposób obliczenia układów statycznie niewyznaczalnych, obmyślany przez Mohr’a'), polega 
na zastosowaniu zasady prac przygotowanych. Niechaj układ sprężysty będzie w równowadze pod 
działaniem uogólnionych sił zewnętrznych <h, V, i niech oznaczają T, U,... odpowiadające 
siły wewnętrzne układu. Wyobraźmy sobie, że przy stałych wartościach sił zewnętrznych i we­
wnętrznych doznały poszczególne punkty układu przesunięć przygotowanych (t. j. przesunięć ele­
mentarnych, możliwych dla danego układu). Oznaczmy przez Sep, 6 $ 8,..., tudzież przez ó t, du,...
zmiany spółrzędnych sił zewnętrznych i wewnętrznych, odpowiadające tym przesunięciom, naten­
czas podstawowe równanie równowagi (wz. 189) przedstawi się w postaci:

<P8(p 4 ^8^4-05$ + ...+ Tdt + Udu+ ... = $ . (203)

Rys. 302

To równanie będzie się sprawdzać dla wszelkich przesunięć możliwych. Obierając dla 5cp,... óu,... 
kolejno rozmaite wartości, otrzymamy coraz nowe równania równowagi i nasze zadanie polega na 

tern, aby wybrać z nich równania najdogodniejsze do wyznaczenia niewiado­
mych. Dla większej jasności zaczniemy od szczególnego przypadku i rozpa­
trzymy układy prętów (kratownice) z idealnemi przegubami w węzłach. Jeżeli 
przyjmiemy, że siły zewnętrzne działają na węzły, to pręty będą narażone 
wyłącznie na rozciąganie albo ściskanie, a działanie każdego pręta na węzły, 
które on łączy, można zastąpić dwiema siłami równemi i wprost przeciwnemi. 
Rys. (302) przedstawia pręt A B, rozciągany napięciem S. Jego działanie na 
przeguby A i B można zastąpić siłami S, skierowanemi od węzłów. Przy­
puśćmy, że po przesunięciu zajęły węzły A i B położenie A' i B'. Siły S 
wykonują przytem pracę —Sól, przyczem dl oznacza wydłużenie pręta. To 
wyrażenie pozostaje widocznie bez zmiany, jeżeli pręt jest ściskany, wtedy 

bowiem zmieniają się znaki obu wielkości S i dl. Stosownie do tego można dla idealnych kra­
townic, obciążonych tylko w węzłach napisać rów. (203) w postaci:

8 cp + 6 + 0 8 ó + ... = S S d l.......................................... (204)
przyczem sumowanie odnosi się do wszystkich prętów układu.

Zastosujmy otrzymane równanie najpierw do układu statycznie wyznaczalnego. Skoro w takim 
układzie usuniemy jeden pręt, to układ zamieni się na mechanizm ruchomy; węzły, między któ- 
remi ów pręt się znajdował, możemy zbliżyć lub oddalić od siebie i zamiast niego wstawić pręt 
o innej długości. Z tego wnosimy, że przyrosty dl, których udzielamy długościom poszczególnych 
prętów, aby otrzymać przygotowane odkształcenie układu, są w przypadku kratownic statycznie

9 O. Mohr. „Beitrag zur Theorie der Bogenfachwerkstrager" i „Beitrag zur "Theorie des Fachwerks*. Zeitschr. 
I. Krch. u. Ing.-wesen z lat 1874, 1875 i 1885.

14*
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wyznaczalnych zupełnie dowolnemi wielkościami nieskończenie małemi. Możemy przyjąć wydłu­
żenia wszystkich prętów, z wyjątkiem jednego, równe zeru. W takim razie rów. (204) będzie za­
wierać tylko jedno niewiadome napięcie, które przedstawimy wyrażeniem:

<I> 6 cp + WcH + 06^ + ... 5 •

Licznik przedstawia tutaj pracę, wykonaną przez siły zewnętrzne na przesunięciach odpowiadają­
cych wydłużeniu rozpatrywanego pręta. W kursach statyki wykreślnej wykłada się o najprostszych 
sposobach obliczenia tej pracy. Tutaj nie będziemy się zatrzymywać nad tem i przejdziemy do 
układów statycznie niewyznaczalnych. Niechaj zatem dana kratownica, oprócz prętów koniecznych, 
zabezpieczających jej geometryczną niezmienność, posiada jeszcze pręty „zbędne". Ażeby taki pręt 
dał się wstawić między dwoma odpowiadającemi węzłami, powinna jego długość odpowiadać do­
kładnie wzajemnej odległości tych węzłów. Jeżeli danym długościom prętów koniecznych udzielimy 
jakichkolwiek oznaczonych przyrostów, to przez to określimy zupełnie przesunięcia wszystkich 
węzłów układu i zmiany długości prętów zbędnych. Z tego powodu w układach statycznie niewy­
znaczalnych nie możemy dysponować dowolnie wydłużeniami prętów, lecz musimy dobierać wiel­
kości dl tak, aby uczynić zadość pewnym czysto geometrycznym warunkom. Posługując się spo­
sobem Mohr’a, rozwiązujemy to geometryczne zadanie przez porównanie dwóch stanów układu, 
podobnie jak przy zastosowaniu zasady wzajemności przesunięć i obliczamy każdym razem pracę 
układu napięć, odpowiadających jednemu stanowi na przesunięciach stanu drugiego. Dla objaśnie­
nia toku rachunku rozpatrzymy najprostsze zadanie, gdy układ ma tylko jeden pręt zbędny. Nie­
chaj X oznacza napięcie w tym pręcie. Usuwając zbyteczny pręt i zastępując jego działanie na 
resztę układu siłami X, otrzymujemy układ statycznie wyznaczalny, na który oprócz danych 
obciążeń działają nieznane na razie siły X. Ten stan nazwiemy I-szym. Odpowiadające mu napię­
cia w prętach składają się z dwóch części: z napięć wywołanych obciążeniami danemi i z napięć 
powstałych wskutek działania dwu wprost przeciwnych sił X. Kreślimy więc najpierw plan Cre- 
mona’y dla naszego układu przy założeniu, że działają tylko obciążenia dane i otrzymujemy na­
pięcia S‘o. Następnie usuwamy wszystkie obciążenia, zamiast sił X bierzemy siły równe 1 i kre­
śląc drugi plan Cremona’y znajdujemy napięcia S\. Wówczas napięcie z-tego pręta przy jedno- 
czesnem działaniu danych obciążeń i sił X przedstawi formuła:

Si - + S\ X.
Odpowiadającem wydłużeniem pręta będzie: 

ó, = 
1 EF;

X1Wydłużenie pręta zbędnego o długości l i napięciu X jest widocznie równe Jako stan Il-gi

przyjmiemy taki, w którym usunięto dane obciążenia, a siły X zastąpiono dwiema wprost przeciw- 
nemi siłami o wielkości 1. Odpowiadające napięcia w prętach oznaczyliśmy już przez S^. Praca 
przygotowana sił Ii-go stanu będzie równa zeru, ponieważ dla każdego węzła zosobna zachodzi 
równowaga sił działających na ten węzeł. Jeżeli weźmiemy za przesunięcia przygotowane te rze­
czywiste przesunięcia, które odpowiadają I-mu stanowi układu, to otrzymamy równanie pracy:

-1 = O ..... (205)

Pierwszy wyraz przedstawia pracę jednostki siły w II-gim stanie na przesunięciu, odpowiadającem 
wydłużeniu zbędnego pręta w I-szym stanie. Sumowanie w drugim wyrazie równania (205) odnosi 
się do wszystkich koniecznych prętów układu. Dla zbytecznej niewiadomej X znajdziemy z (205) 
wyrażenie:

X = (S1 ~ i [ •••••■• (206)
" “ EFt EF
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Jeżeli przyjmiemy spółczynnik sprężystości materjału stały dla wszystkich prętów, to wzór (206) 
stanie się identycznym z wzorem (e) w § 114, wyprowadzonym przy pomocy zasady najmniej­
szej pracy.

Całe nasze rozumowanie da się zastosować i w tym przypadku, kiedy wielkością statycznie 
niewyznaczalną jest reakcja podporowa. Przytem zajdzie tylko ta różnica, że przesunięcie, odpo­
wiadające tej reakcji, jest zerem. Dlatego zniknie pierwszy wyraz w rów. (205), a wyrażenie dla 
zbytecznej niewiadomej przybierze postać:

V soi S/ /i

...................................................... (207)
" EF;

zgodną zupełnie z formułą (c) w § 114.
Jeżeli układ zawiera więcej zbytecznych niewiadomych (wielkości statycznie niewyznaczal- 

nych), to zastępując je odpowiadającemi siłami X, Y, Z,... otrzymamy układ sił statycznie wyzna- 
czalny. Napięcia w prętach niezbędnych wyrażą się wzorami o postaci:

=S0; +£/%+£/ Y + S./Z + ...
Ten stan obierzemy za I-szy. Za Il-gi stan uważać będziemy taki, w którym usunięto wszelkie 
siły zewnętrzne i zbyteczne niewiadome, a zamiast jednego z prętów zbędnych umieszczono w od­
powiednich węzłach dwie siły wprost przeciwne równe 1. Każąc napięciom Ii-go stanu wykonywać 
pracę na przesunięciach, odpowiadających stanowi I-mu, otrzymamy kolejno równania:

Xlx v S/(S(> + SJY + S/ Y + S3‘Z + . ..)/i
EFX " EF
Y/y vS2i(S'^‘X+S2>YłS3iZ+...)/i_n
EFy ~ ’ EF ~

(208)

[W tych równaniach odpowiadają wskaźniki x, y,... przy długościach l i polach przekroju poprze­
cznego F prętów, napięciom X, Y, Z,... w tychże prętach]. Znalezione równania są linjowe wzglę­
dem niewiadomych X, Y, Z,..., a ich liczba równa się liczbie tych niewiadomych.

§ 120. ZASTOSOWANIE SPOSOBU MOHR’A DO OBLICZENIA KRATOWNIC STATYCZNIE 
NIEWYZNACZALNYCH

Ogólny tok rachunku sposobem Mohr’a, wyłożony w poprzednim paragrafie, objaśniny teraz przykładami szczegó- 
łowemi. Jako pierwszy przykład weźmiemy kwadratową ramę AB CD z dwiema przekątnemi i obliczymy napięcia w prę­
tach powstałe wskutek działania siły poziomej H (rys. 303). Jedną z podpór przyjmiemy za stałą, a drugą za ruchomą. 

Układ okazuje się statycznie wyznaczalnym zewnętrznie (t. j. ze względu na reakcje podporowe), a nie-

Rys. 303

wyznaczalnym wewnętrznie (t. j. ze względu na napięcia w prętach). Cztery węzły są połączone 6-u 
prętami, a zatem jeden pręt jest zbędny. Jako taki przyjmiemy przekątną AC i oznaczymy przez X 
odpowiadające napięcie. Rzeczywisty stan układu przedstawiony na fig. (a) przyjmiemy za stan I-szy; 
Il-gi stan uwidoczniony na fig. (&) otrzymujemy, usuwając zbędny pręt i wstawiając zamiast niego 
dwie siły wprost przeciwne, równe 1. Dla wyznaczenia X użyjemy wzoru (206). Wielkości S^, SJ, 
Si Soł li, (S/)2^ wchodzące w ten wzór, zestawiono dla większej wygody w osobną tablicę (str. 214). 
Pola przekrojów poprzecznych przyjęto dla uproszczenia za równe. Mamy tedy:

/ 32 Sp li = - aH (2 +

X (s?)2 li = a ( 2 + /2 ).

Wstawiając to we wzór (206), znajdujemy:
H(3 + 2/2)

A 4+2/2

W ten sposób sprowadza się cały rachunek do rozwiązania dwu bardzo prostych zadań statyki, t. j. do wyznaczenia napięć 
S0‘ i Sp w układzie statycznie wyznaczalnym, co się wykonywa najprościej, kreśląc odpowiadające plany sił Cremona’y-
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TABLICA do rys. 303

Liczba porządkowa 
pręta Długość l s0 s. SoSJ S^l

1 a
.. n

H
1 aH

"TT
a
T

2 a H
1

~V2
aH a

T

3 a 0
1 

~y~2 O [cm

4 a H _x
Ż 2

_ aH

5 a V2 ~hV2 + 1 — 2aH a K7

6 a yr
1

Zastosujemy teraz sposób Mohr’a do wyznaczenia zbytecznej reakcji podporowej łuku kratowego dwuprzegubowego, 
przedstawionego na rys. (300). Tutaj pod wpływem obciążeń pionowych powstaną nietylko reakcje pionowe, lecz także po­
ziome. Pierwsze łatwo wyznaczyć z warunku momentów sił zewnętrznych, tak samo, jak dla belki prostej o rozpiętości 
AB. O drugich zaś wypowiadają warunki równowagi tylko to, że są równe i wprost przeciwne. Ich wartość X znajdziemy 
przy pomocy sposobu Mohr’a. Usuwamy zbędne ustalenie, zapobiegające rozsunięciu się podpór łuku, a jego działanie za­
stępujemy siłami X. Ten stan układu nazwiemy I-szym. Jako drugi stan przyjmiemy taki, w którym niema sił zewnętrznych, 
a zamiast sił X mamy dwie wprost przeciwne siły równe 1 (lig. b). Ponieważ wskutek usunięcia zbędnego ustalenia stał 
się układ statycznie wyznaczalnym, więc przy pomocy dwóch planów Cremona’y możemy znaleźć napięcia S0‘, odpowia­
dające danym obciążeniom, tudzież napięcia S/, wywołane w prętach układu siłami, przedstawionemi na fig. (b). Mając te 
wielkości, zestawimy następującą tablicę, w której podano także wymiary prętów i wielkości napięć, obliczone przy zało­
żeniu, że we wszystkich górnych węzłach oprócz skrajnych działa ciężar 1 /, a w skrajnych ciężar 0,5 t.

TABLICA do rys. 300

L. p. 
pręta l cm Fcm2 Sokg Si S0Stl

EF
S^l 
EF

1 900 115 —4000 + 0,59 - 9,25 .
-3

10 1,360 .
-6

10
2 630 118 ! —3000 + 0,50 — 4,00 » 0,667 »
3 810 89.9 +3900 -0,65 -11,45 » 1,900
4 720 115 ! 0 — 1,16 0 4,230
5 730 89.9 —3800 + 0,47 - 7,27 0,895
6 610 118 ; —6200 + 1,00 —16,00 » 2,580
7 770 89,9 : +3950 - 0.64 -10,80 « 1,750 V
8 650 115 +3150 . —1,60 -14,25 7,250 »
9 600 89,9 -2750 + 0,30 - 2,75 0,300

10 600 118 —8600 + 1,43 -31,20 V 5,200
11 750 89,9 +3200 — 0,55 ' — 7,31 w 1,260
12 620 115 + 6200 — 2,05 1 —34.30 11,300 9
13 530 89,9 —1150 ! + 0,03 — 0,10 a 0,027 V *
14 600 118 -9700 + 1,60 ' —39,40 6,500
15 770 89,9 + 1400 — 0,23 — 1,38 » 0,226
16 600 115 +8600 - 2,43 -54,50 » 15,400
17 500 89,9 - 250 — 0,14 + 0,05 6,028 W

Wstawiając dane z tej tablicy we wz. (207), znajdziemy:
~3

243,9 ■ 10
~ -6

60,87 . 10
= ~4000J?g.
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§ 121. ZASTOSOWANIE SPOSOBU MOHR’A DO WYZNACZENIA PRZESUNIĘĆ

Skoro wyznaczymy napięcia w prętach, to możemy obliczyć odpowiadające wartości 8/ i dalsze badanie odkształ­
cenia kratownicy sprowadza się do zadania czysto geometrycznego: z danych zmian długości prętów znaleźć przesunięcia 
węzłów. To zadanie rozwiązuje Mohr przy pomocy zasady prac przygotowanych. Podobnie jak przy szukaniu zbytecznych 
niewiadomych, trzeba tutaj za każdym razem porównywać dwa stany układu. Za I-szy przyjmujemy stan rzeczywisty, dla 
którego szukamy przesunięć. Dla otrzymania Ii-go stanu usuwamy wszystkie dane obciążenia i zbyteczne niewiadome, 
jeżeli układ jest statycznie niewyznaczalny, i działamy na układ uogólnioną siłą równą 1, odpowiadającą szukanemu prze­
sunięciu. Przyrównawszy do zera pracę sił 11-go stanu na przesunięciach, odpowiadających stanowi I-mu, otrzymamy 
równanie dla wyznaczenia szukanej wielkości. Skoro przez x oznaczymy szukane przesunięcie, przez SZi wydłużenia prę­
tów, odpowiadające I-mu stanowi, a przez Si napięcia w prętach przy stanie II-gim, natenczas równaniem dla znale-
zienia x będzie: 1 .x — SSi8Zi = O . . (209)

Zastosujemy to do przykładu przedstawionego na rys. (304). Belka kratowa statycznie wyznaczalna podlega działaniu 
obciążeń pionowych w węzłach pasu dolnego. Wymiary prętów i napięcia Soi zestawiono w tablicy umieszczonej poniżej. 
Dajmy na to, że chodzi o pionowe ugięcie środkowego węzła A w pasie dolnym. Siłą, odpowiadającą temu przesunięciu,
będzie siła pionowa, działająca na węzeł /I, wobec czego jako II-gi stan układu trzeba przyjąć obcią­
żenie, przedstawione na fig. (b). Napięcia Si dla tego stanu, jakoteż wartości iloczynów:

S0’/i
ESi 8 Ii = Si-----

Fi

podaje również tablica. (Jako wartość spółczynnika sprężystości E przyjęto tutaj 2.10® kg/cm2).
Wstawiając dane z tej tablicy w rów. (209), znajdziemy:

x = XSi8/i^ —=~0,41 cm.

W podobny sposób można znaleźć przesunięcia w przypadku układu statycznie niewyznaczalnego. Usuwamy zbędne 
ustalenia i zbędne pręty, a ich działanie na układ zastępujemy odpowiadającemi siłami, znalezionemi jednym z powyżej 
wskazanych sposobów. Tą drogą zamienia się układ na statycznie wyznaczalny i przy obliczeniu przesunięć mamy do 
czynienia tylko z prętami niezbędnemi.

THBLICR do rys. 304

L. p. 
pręta

li (cm) Fi (cm2) Sc1 (t) Si (t) ESi 8 h

1 500 30 — 13,75 - 0,625 143
2 300 15 + 8,25 + 0,375 62
3 400 10 + 8,00 0 0
4 300 15 + 8,25 + 0,375 62
5 500 10 + 3,75 + 0,625 117
6 500 20 - 10,50 — 0,750 24
7 500 10 + 6,25 4- 0,625 195
8 300 15 + 6,75 + 0,375 51
9 400 10 + 4,00 0 0

10 500 30 — 11,25 — 0,625 117
11 300 15 + 6,75 -j- 0,375 51

Pokazaliśmy tedy, jak, przy użyciu sposobu Mohr'a, można obliczyć przesunięcie jakiegokolwiek węzła kratownicy
w danym kierunku. Ale przy obliczeniach wypada niekiedy wyznaczyć kąty obrotu poszczególnych prętów, to znów zna­

leźć zmianę kątów między prętami. Te zadania można rozwiązać bez trudności, obrawszy w sto­
sowny sposób siły, odpowiadające Il-mu stanowi układu. Skoro nam chodzi np. o kąt obrotu 
pręta AB (rys. 305), to jako II-gi stan trzeba przyjąć obciążenie przedstawione na fig. (b). Na 
końce pręta działają tutaj siły R prostopadłe do jego osi i tworzące parę o momencie

E/=l.

Przy obrocie pręta AB o kąt 8 cp wykona ta para pracę 1 .8cp. Jeżeli przez Soi oznaczymy napięcia 
wywołane rzeczywistem obciążeniem kratownicy, a przez Si napięcia w II-gim stanie układu, to 
zasada prac przygotowanych da nam równanie:

S0Ui
1 . 8 cp — 2----- — Si = 0,

EFiRys. 305
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z którego można znaleźć szukany kąt obrotu pręta AB. Skoro chcemy znaleźć zmianę kąta a między prętami AB i BC, 
to jako Il-gi stan należy przyjąć obciążenie dwiema parami, przedstawione na rys. (306), przyczem siły R i Ri trzeba

Rys. 3C6

obrać tak, aby

Zmianę kąta a znajdziemy z równania:

Rl^R^h^ 1.

Soi li
1.8 a - S--------  

EFi
Si = 0.

§ 122. ZASTOSOWANIE SPOSOBU MOHR’A DO BADANIA STATYCZNIE NIEWYZNA- 
CZALNYCH PRZYPADKÓW ZGIĘCIA BELEK

W odróżnieniu od zadań poprzednich mamy tutaj do czynienia z nieskończoną ilością spółrzędnych, ponieważ 
ugięciu w każdym przekroju belki można udzielić dowolnego przyrostu, byleby uczynić zadość warunkowi ciągłości. Przy 
obiorze spółrzędnych takiego układu postąpimy w ten sposób: Szeregiem przekrojów poprzecznych dzielimy belkę na ele­
menty dx. Energja zgięcia takiego elementu jest zupełnie określona odpowiadającą wielkością momentu zginającego M 
(z pominięciem wpływu naprężeń ścinających, zależnych od sił poprzecznych). Jako spółrzędna dla tego momentu będzie 
służyć kąt względnego obrotu dwu nieskończenie bliskich przekrojów:

8 cp
Mdx
EI ’

Tak samo, jak przy badaniu odkształcenia kratownic, wypadnie nam porównać dwa stany układu. Jako I-szy stan przyj­
miemy rzeczywisty stan układu, kiedy oprócz danych sił zewnętrznych działają na układ także reakcje statycznie niewy- 
znaczalne X, Y, Z, ..., zastępujące ustalenia zbędne. Stan Il-gi otrzymamy, usuwając wszystkie siły zewnętrzne oraz 
zbyteczne niewiadome, i działając zamiast jednej z tych niewiadomych siłą równą 1. Przy równy wując do zera pracę sił 
II go stanu na przesunięciach stanu I-go, otrzymamy potrzebne nam równanie. Oznaczywszy przez Mi moment zginający 
przy II-gim stanie, a przez x przesunięcie I-go stanu, odpowiadające szukanej zbytecznej niewiadomej X, napiszemy 
równanie równowagi w postaci:

C Mdx
l .................................................................... (210)

Zastosujmy to do przypadku belki jednym końcem utwierdzonej, a drugim podpartej, zginanej obcią­
żeniem równomiernie rozłożonem q kg/cm (rys. 307). Za zbyteczną niewiadomą przyjmiemy reakcję prawej pod­
pory X. Momentem zginającym przekroju mtl będzie przy I-szym stanie:

M=Xx — q~.

Tenże moment w II-gim stanie równa się:
Mi = 1 x.

Wielkość X znajdziemy przeto z równania
C 1 / v \ A
\ \ Xx — q 1 xdx = 0.tZ 1 \ Ł /

Pierwszy wyraz w rów. (210) znika w naszym przypadku, albowiem pod­
pora B nie doznaje przesunięć w kierunku reakcji X. Wykonawszy całko­
wanie dojdziemy do znanej już wartości X. Rys. 307

§ 123. O NAPRĘŻENIACH PIERWOTNYCH W UKŁADACH STATYCZNIE 
NIEWYZNACZALNYCH

Zauważyliśmy już pierwej, że w układach statycznie wyznaczalnych [elementarna] zmiana 
długości jakiegokolwiek pręta, lub położenia punktów podparcia nie wywołuje naprężeń dodatko­
wych. W odmiennych warunkach znajdują się układy, mające „zbędne pręty", lub „zbędne ustalenia", 
czyli układy statycznie niewyznaczalne. Geometryczne rozmiary układu są zupełnie określone prę­
tami i ustaleniami „niezbędnemi", ażeby więc jakikolwiek pręt dodatkowy nie wywołał nowych 
napięć w układzie, musi długość tego pręta być dokładnie równą odległości między odpowiadają­
cemi węzłami. Podobnież musi mieć dodatkowa podpora ściśle określone położenie. Objaśnimy to 
j*eszcze na przykładach.
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Układ ABCD (rys. 308) posiada jeden pręt zbyteczny, a mianowicie przekątną BD. Jeżeli 
długość tej przekątnej nie odpowiada odległości między węzłami B i D, to dla wstawienia jej na 
miejsce wypadnie ją nieco ścisnąć lub rozciągnąć. Wstawiwszy przekątną w napiętym stanie, wy­
wołamy oczywiście napięcia i w pozostałych prętach układu. Te napięcia nie mają 
nic wspólnego z napięciami, wywołanemi w prętach przez siły zewnętrzne i będą 
zależne tylko od tego, o ile pierwotna długość przekątnej BD różni się od odle­
głości między węzłami B i D. Te napięcia będą zachodzić i wówczas, gdy żadne 
siły zewnętrzne na układ nie działają.

Jako drugi przykład weźmiemy belkę ciągłą dwuprzęsłową (rys. 309). Środkowa 
podpora okazuje się zbędną i skoro ją umieścimy wyżej lub niżej od prostej AC, 

B C

Rys. 308

0A

łączącej podpory skrajne, to przez to wywołamy w belce naprężenia dodatkowe niezależne od sił 
zewnętrznych, na belkę działających.

Pokażemy teraz na szczegółowych przykładach, jak przy pomocy wyprowadzonych twierdzeń 
ogólnych można wyznaczyć dodatkowe napięcia (względnie wywołane niemi naprężenia), uwarun-

Rys. 3G9

p tkowane niedokładnościami w położeniu podpór, lub w długościach 
„zbędnych prętów". Te zadania mają znaczenie praktyczne także 
dlatego, ponieważ niekiedy odstępuje się rozmyślnie od geome­
trycznych wymiarów części składowych konstrukcji, aby wy­
wołać pewne naprężenia pierwotne, które potem sumują się

z naprężeniami wskutek sił zewnętrznych. Czasami udaje się tą drogą osiągnąć korzystniejszy 
rozkład naprężeń w układzie. Weźmy np. łuk dwuprzegubowy (rys. 310). Obie podpory mają stałe 
przeguby, jedno zatem ustalenie okazuje się zbytecznem, a mianowicie to, które zapobiega zmianie 
odległości końcowych węzłów A i B. Jeżeli odstęp między 
temi węzłami jest dokładnie równy odległości podpór, to można 
kratownicę ustawić swobodnie na podporach, a w układzie nie 
powstaną żadne naprężenia początkowe. Przyjmijmy teraz, że 
odstęp między węzłami A i B jest większy od odległości pod­
pór o małą wielkość 8. TAżeby kratownicę wstawić na miejsce, 
musimy zbliżyć do siebie węzły /i i B o wielkość 8, działając 
na nie siłami X. Po wstawieniu kratownicy na miejsce, po­
wstaną przeto w prętach napięcia, odpowiadające siłom X. Dla 
znalezienia X najdogodniej zastosować twierdzenie Castigliano’a. 
Oznaczmy przez napięcia, jakieby powstały w prętach na­
szej kratownicy, gdyby zamiast sił X działały siły równe 1. 
(Łatwo je znaleźć kreśląc plan sił Cremona’y). Wtedy przy 
działaniu sił X powstaną napięcia SY'X. Energją potencjalną 
układu będzie

. (S/)2^v = 2EFi
a na podstawie twierdzenia Castigliano’a otrzymamy:

-= 8, skąd X = EF,

Rys. 310

. (211)
8dV

" EF,
Podobnież można znaleźć napięcie w belce kratowej ciągłej, 
wywołane niejednakową wysokością podpór.

Weźmy teraz przypadek, kiedy długość jakiegokolwiek 
pręta układu statycznie niewyznaczalnego nie odpowiada 
odległości między węzłami. Dajmy na to, że pręt AC 
(rys. 311) jest krótszy od odstępu między węzłami A i C 
o wielkość 8. Dla wstawienia tego pręta trzeba będzie rozcią-

Rys. 311
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gnąć go o 5 i potem w takim napiętym stanie przymocować go do węzłów A i C. Taki pręt będzie 
oczywiście wywierał na węzły działanie, które możemy zastąpić siłami X Do ich obliczenia mo­
żemy użyć twierdzenia Castigliano’a. Niech będą S/A' napięciami w prętach kratownicy, po- 
wstałemi wskutek sił X, natenczas energja potencjalna układu:

2EK“’ a zatem

określa zbliżenie węzłów A i C pod wpływem sił X. Energją rozpatrywanego pręta A C (fig. b)
będzie:

2EF’
. .. „ a u, a więc wielkość XI

EF

■-X EE

przedstawi nam jego wydłużenie pod działaniem sił X. Jest rzeczą jasną, że zbliżenie węzłów A i C, 
dodane do wydłużenia pręta AC, musi dać wielkość 8. Stąd równanie:

(S^/i l ó
X 2 EE— + X EF = z które^° obliczymy: X = —j--------- . (212)

EF +2~TfT

§ 124. NAPRĘŻENIA TERMICZNE W UKŁADACH STATYCZNIE NIEWYZNACZALNYCH
W kratownicy statycznie wyznaczalnej nie powstaną dodatkowe naprężenia przy równomiernej 

zmianie temperatury jakichkolwiek prętów układu, a tembardziej przy takiejże zmianie temperatury 
całego układu, ponieważ zmiany długości oddzielnych elementów są od siebie niezależne. Inaczej 
ma się rzecz u kratownic statycznie niewyznaczalnych. Tutaj zmiany długości elementów nie mogą 
być dowolne, wobec czego podwyższenie lub obniżenie temperatury wywołuje zwykle podobny 
skutek, jak błędy w długości prętów, lub w położeniu podpór. Naprężenia wywołane zmianą tem­
peratury, czyli naprężenia termiczne, mogą być niekiedy bardzo znaczne i przy obliczeniach 
trzeba je dołączyć do naprężeń powstałych wskutek danych obciążeń. Obliczenia naprężeń termi­
cznych można dokonać przy pomocy ogólnych twierdzeń dowiedzionych poprzednio. Tok rachunku 
objaśnimy na przykładach.

Weźmy łuk dwuprzegubowy, przedstawiony na rys (310). Skoro temperatura wszystkich prę­
tów podniesie się o F, to przy swobodnem wydłużeniu każdy z prętów zwiększyłby swą długość 
o alt, przyczem a oznacza spółczynnik wydłużenia termicznego, a l długość pręta. Pierwotna 
rozpiętość łuku L zwiększyłaby się o długość

8 = a Lt.
Wskutek stałości przegubów podporowych pojawią się reakcje X, przeszkadzające zwiększeniu 
rozpiętości. Ich wielkość znajdziemy oczywiście z warunku, że wywołane niemi skrócenie rozpię­
tości znosi się z powiększeniem 8 wskutek podwyższenia temperatury. Dla wyznaczenia X można 
zatem zastosować wzór (211) z poprzedniego paragrafu. Podstawiając zamiast 8 powyższą wartość
otrzymamy: aLt

s W
EE

(213)

Podobnież można użyć wzoru (212) z poprzedniego paragrafu do określenia naprężeń, jakie po­
wstają wskutek podwyższenia temperatury jakiegokolwiek jednego pręta. Podwyższenie temperatury 
pewnego pręta jest bowiem równoznaczne z tern, że długość pręta jest większą od odległości mię­
dzy odpowiadającemi węzłami o wielkość 8 = alt. W takim razie musi być pręt uprzednio ści­
śnięty i po wstawieniu na miejsce będzie dążył do rozsunięcia odpowiadających węzłów. Napięcie 
ogrzanego pręta, jakie przytem powstaje, znajdziemy na podstawie wzoru (212), a mianowicie:

alt
l

EF+2 EE
• (214)
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Jeżeli mamy do czynienia z podwyższeniem temperatury całego szeregu prętów w danym układzie, 
to najdogodniej posłużyć się sposobem Mohr’a. Wydłużenie prętów wskutek jednoczesnego działania 
obciążeń i podwyższenia temperatury przedstawi wzór postaci:

(soi + s1ix + s2ir + s3iz +

i płastinok". Izw. Kijews. Pol. Inst. 1910 r.
Ob. także „Kuts Tieorij Uprugosti®, cz. II, str. 50.

EF-

Ten stan układu będziemy uważać za I-szy. Stan Il-gi obieramy tak, jakeśmy to czynili poprze­
dnio, t j. usuwamy wszystkie obciążenia i zbyteczne niewiadome, a jedną z tych niewiadomych 
zastępujemi siłami równemi 1. Przyrównywując do zera pracę sił Ii-go stanu na przesunięciach, 
odpowiadających stanowi I-mu, otrzymamy dostateczną liczbę równań do obliczenia zbytecznych 
niewiadomych. W przypadku układu z jednym prętem zbędnym, przybierze równanie postać:

/ XI V X+ -g—)+ = 0 .. . .(215)

Stąd można obliczyć X.

ROZDZIAŁ XV

PRZYBLIŻONY SPOSÓB BADANIA ZGIĘCIA PRĘTÓW1)

§ 125. OGÓLNY ZARYS METODY

Badanie zgięcia prętów, polegające na całkowaniu odpowiadających równań różniczkowych, 
nie przedstawia żadnych trudności, dopóki da się stosować zasada superpozycji, albo w przypad­
kach statycznie niewyznaczalnych, dopóki liczba zbytecznych niewiadomych jest niewielka. Atoli 
już badanie jednoczesnego działania zginania ze ściskaniem lub rozciąganiem (§112) prowadzi do 
zbyt zawiłych wzorów, nieprzydatnych do praktycznego zastosowania, a w tych przypadkach zgięcia, 
gdzie mamy do czynienia z większą ilością zbytecznych niewiadomych, wymaga obliczenie bardzo 
żmudnej, a niekiedy i wprost niewykonalnej pracy, polegającej na rozwiązaniu układu wielu rów­
nań. W wielu wypadkach można rozwiązanie takich zadań uprościć i otrzymać wynik przybliżony 
z dostateczną dla praktycznych zastosowań dokładnością, bez 
uciekania się do całkowania odpowiadających równań. Metoda 
przybliżona polega na zastosowaniu zasady prac przygotowa­
nych; punkt wyjścia stanowi zatem rów. (190). Weźmy pod 
uwagę belkę prostą, obciążoną układem ciężarów pionowych Pi 
(rys. 312). Zważywszy, że praca każdej z sił na dowolnem prze­
sunięciu przygotowanem jest równa Pidyi, przyczem óji ozna­
cza przyrost ugięcia pod siłą Pi, możemy rów. (190) przedstawić 
w postaci: SPidy, - . (216)

i — 1, 2, 3, ...

co wyraża, że praca sił zewnętrznych na jakiemkolwiek możliwem odchyleniu zgiętej osi belki od 
położenia równowagi równa się odpowiadającemu przyrostowi energji potencjalnej. Ponieważ pod­
czas przesunięć przygotowanych siły Pi zachowują stałe wartości, więc rów. (216) da się jeszcze 
przedstawić w postaci: «(YP,y-V) = 0 .....................................................(217)

i = 1, 2, 3, ...

Znaczy to, że przyrost wyrażenia ujętego w nawiasy przy jakimkolwiek możliwem odchyleniu od 
położenia równowagi osiąga swoją wartość krańcową, t. j. maximum albo minimum. Ten wniosek

Rys. 312

*) Obszerniej traktuje tg kwestję praca autora: „Primienienje normalnych koordinat k’ izsljedowanju izgiba stierżniej 
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dostarcza nam sposobu do znalezienia zgiętej osi belki. Ze wszystkich możliwych postaci trzeba 
wybrać taką, której odpowiada krańcowa wartość („extremum“) wyrażenia:

- V- U.........................................................(218)

Ta postać będzie szukaną postacią równowagi osi belki. Dla określenia postaci zginanego spręży­
stego pręta potrzeba oczywiście nieskończonej liczby spółrzędnych, ponieważ ugięcie w każdym 
punkcie jest wielkością dowolną. Mamy zatem do czynienia z układem o nieskończonej liczbie 
stopni swobody, a szukanie krańcowej wartości wyrażenia (218) prowadzi do zadania z rachunku 
przemienności. Możemy jednakże uprościć rozwiązanie i znaleźć wyrażenie przybliżone dla szuka­
nej postaci równowagi drogą elementarną, korzystając z tej okoliczności, że przybliżona postać 
linji ugięcia przy danych obciążeniach i danych warunkach krańcowych jest znaną. Kładąc

y =
można dobrać kształt funkcji cp(x) tak, aby uczynić zadość warunkom krańcowym i aby określona 
nią krzywa zbliżała się do szukanej linji ugięcia. Ostatniemu warunkowi można dogodzić obrawszy 
dla cp(x) wyrażenie, zawierające kilka dowolnych parametrów. Zmieniając wielkości tych parame­
trów, otrzymamy rozmaite kształty krzywej. Ażeby znaleźć postać najbardziej zbliżoną do rzeczy­
wistej, obierzemy dla dowolnych parametrów takie wartości, przy których wyrażenie (2 i 8) osiąga 
maximum albo minimum. Ponieważ teraz mamy do czynienia ze skończoną liczbą zmiennych, 
więc zadanie sprowadza się do poszukiwania zwykłej wartości krańcowej. W tym celu trzeba tylko 
utworzyć pochodne wyrażenia (218) względem każdego z parametrów i przyrównać je do zera. 
Otrzymane równania posłużą do wyznaczenia odpowiednich wartości parametrów. Im większą 
weźmiemy liczbę parametrów, tern bardziej zbliży się nasza krzywa do szukanej, tern dokładniej- 
szem będzie rozwiązanie przybliżone. Przy rozpatrywaniu zadań szczegółowych zobaczymy, że 
poprzestając tylko na jednym dowolnym parametrze, można, przy udatnym wyborze funkcji cp(x), 
otrzymać wynik zupełnie zadowalający.

§ 126. ZGIĘCIE BELEK W OBU KOŃCACH PODPARTYCH

Metodę, wyłożoną w poprzednim paragrafie, zastosujemy do badania zgięcia belek prostych 
pod działaniem układu ciężarów pionowych o jednym i tym samym kierunku (rys. 312). W tym 
przypadku oś belki zegnie się podług krzywej bez punktów przegięcia i miejsce największego ugię­
cia będzie leżeć w pobliżu środka rozpiętości. Jako pierwsze przybliżenie przyjmiemy, że belką 
ugina się podług sinusoidy, czyli:

Łatwo zauważyć, że przyjęta postać ugięcia czyni zadość warunkom granicznym, albowiem 
przy x = 0 i x = l stają się wielkości y i y" zerami, a zatem na podporach ugięcia i momenty 
zginające równają się zeru, co odpowiada zupełnie podparciu obu końców. Ugięciem belki w od­
ległości Ci od lewego końca będzie

z. . Ci 
Ti = f sin j .

Największe ugięcie, odpowiadające środkowi rozpiętości, równa się widocznie /. Wyrażenie (218) 
przybierze w danym przypadku szczególnym postać:

f2P sin T

Utworzywszy pochodną tego wyrażenia względem f i przyrównawszy ją do zera, otrzymamy równanie:

4T = ^Pisin-p-......................................................  (219)
dt l
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z którego można znaleźć wartość parametru f. Do tego trzeba tylko wyrazić V jako funkcję ugię­
cia. Na podstawie wyników poprzednio otrzymanych (wz. 184) mamy dla energji zgięcia wyrażenie:

1Z El?' jtx. t^EI '
p )0smT,'’I=’4F-^ • ■ • (220>

Wstawiwszy je w rów. (219) otrzymamy:
2Z® % C-f=^-El2PiSiB^...........................................  ' ’221’

Ażeby ocenić dokładność tego wzoru zastosujemy go do kilku szczególnych przypadków. 
Jeżeli na belce znajduje się jeden ciężar P, to ugięciem w środku będzie:

f 2/3 n . nc
t~^EIPsm 1 ‘

Przy c = y, t. j. przy obciążeniu leżącem w środku rozpiętości: 

f = 2P/3 1 P/3
' El “ 48,7 El'

Ten wynik różni się od dokładnej formuły:
Pl^

' " 48 El 
w przybliżeniu o 1,5%.

Skoro będziemy zmniejszać odległość c, a przytem zwiększać P w ten sposób, aby iloczyn 
Pc zachowywał stałą wartość M, to w granicy dojdziemy do zginania belki parą sił, działającą na 
koniec. Zważywszy, że przy małych wartościach c:

71 C x c sin y = y, 

otrzymamy dla ugięcia w środku wyrażenie:
f_ 2/3 _ 2 Ml2 _ Ml2

tc^EI ' l ~ ' El " 15,5E7’

t. j. wielkość różniącą się od dokładnego rozwiązania mniej więcej o 3%. A zatem nawet dla tak 
skrajnego położenia obciążenia daje wzór przybliżony wynik wcale zadowalający.

Od zgięcia siłami skupionemi łatwo przejść do obciążenia ciągłego, rozłożonego według do­
wolnego prawa. Oznaczmy przez q natężenie obciążenia, które w ogólnym przypadku będzie pewną 
funkcją zmiennej x. Jeżeli wydzielimy obciążenie elementarne qdx w odległości x od lewej pod­
pory, to wywołane tem obciążeniem ugięcie środka belki będzie:

2 p xx
óf=-^ sin -p.

Sumując działania obciążeń elementarnych, znajdziemy całkowite ugięcie: 
2P C1 TC X

.....................................................(222)

W szczególnym przypadku równomiernego rozkładu obciążenia, t. j. dla stałego q, otrzymamy: 

,2ę/3C1.:n:x Ąql4 qP 
t = in \ sm -j-dx = -Tp. = .' t^EI Jo / 71 El 76,5 El

Dokładne rozwiązanie daje w tym przypadku: 
5 qP _ qP 

t~3M^ET~1^EF

Błąd przybliżonego rozwiązania jest przeto mniejszy od ^/o.
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Jeżeli nam zależy na większej dokładności, to trzeba, jak już powiedzieliśmy, zwiększyć liczbę dowolnych parame­
trów, wchodzących w wyrażenie dla zgiętej osi. W rozpatrywanym przypadku można to powiększenie osiągnąć przez su­

perpozycję oddzielnych sinusoid. Przyjmijmy np.

y f/ś-e-
Rys. 313

’ 3

nx
y =• fi sin-y + f2 sin -

2nx 3 ax
[ + A sin i + • • • . (223)

Każdemu wyrazowi tego szeregu będzie odpowiadać sinusoida o innej 
długości fali (rys. 313). Każda z nich czyni zadość warunkom krańcowym 
i aby przez superpozycję sinusoid otrzymać postać najbliższą szukanej, trzeba
wielkości fi, f2,... dobrać tak, aby wyrażenie (218) przybrało wartość 
mum albo minimum. Wstawmy w to wyrażenie wartość y z rów. 
a otrzymamy:

. Ci . . 2nci . _ . 3 na , \ 1Z Asm —j F f2 sm —- f3 sin—-—- +... \ — V = 0.

Utworzywszy pochodne względem dowolnych parametrów f, f2,... i 
równawszy je do zera, mamy:

d V „ _ . ?r Ci
= ^Pi sin —;—dfi l

dV D . 2na..............................-aj- = SPi sm —7— 
dfi /

maxi- 
(223),

przy-

(224)

Dla wyznaczenia wielkości /j, f2, . . . trzeba w te równania zamiast V wstawić wartość:

yr_  E / l . ZZ\9J l S • X $ _ . 2 ftX ~ , 3 X(y ) yy- J sin -y + 22f2 sm —---- 1- 32 f3 sin —---- n4 El-4^(A+^a+3^a+...) (225)

Ostatni wynik łatwo otrzymać, zważywszy, że wyrażenie pod znakiem całki, po wykonaniu potęgowania, będzie 
człony dwojakiej postaci:

o , z. . nxx . . mnx . . nnx , „ „ . ~ „2 na/n sm —j— . m2 sin —y i n4/nSin2—y, przyczem n«= 1, 2, 3,...; 1, 2, 3,...,

zawierać

. \ . n«x . max l . nax , /oraz ze \ sm —y sm —j— dx = Q przy m=j=n zaś \ sin*—— dx = — .
Jo 1 1 Jo 1 2

Równania (224) napiszemy przeto w postaci:

El ( VD . Jtci yy ft = LPi sin --y- , 

lY 2 h = EPi sin — ,

a stąd 2^
71 ^EI

h = '

73 3 4 ’

5^0 • CiSPi sm —j,

2/3 yp •l^ET^Pi &m~l

2P vn . 3.t 
^EI^PiSm l

Dla znalezienia ugięcia trzeba tylko te wartości flf wstawić w wyrażenie (223) dla y.
Biorąc pod uwagę, np. przypadek obciążenia jedną siłą skupioną P w środku rozpiętości, mamy:

a więc:

„ / . nc 2nc n . 3xcc = — , sm -y- = 1; sin —— — 0; sm —y =■ — 1

, _ 21* p f _ n f__ L 2!! P

Wyrażenie dla linji ugięcia (wz. 223) przebierze w tym przypadku postać:

2PP / . siec 1 . 3jrcc 1 , 5nx 
y ~ ^ej (s,n~rsin~r+54sin~~T

Ażeby znaleźć ugięcie w środku belki, trzeba wstawić x = y-, a wtedy:

f 2f>f8
1 “ ^EI JL1_L34 + 54
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Zatrzymując tylko pierwszy wyraz szeregu, dojdziemy do otrzymanego poprzednio pierwszego przybliżenia. Dwa pierwsze 
wyrazy szeregu dadzą nam drugie przybliżenie:

2 / l I 1 jPI"- P,‘ 
' «*  \ 1 81 / EI A^IEI'

*) Szereg zadań^ tego rodzaju obejmują prace A. P. Yan der Vliet’a, umieszczone w „Izw. Sobr. Inż. Put. 
Soobszcz.“ z lat 1900—19C3 i w „Izw. Petersb. Polit. Inst.“ z r. 1904. W tych pracach znajdują się tablice szczegółowe, 
ułatwiające znacznie obliczenia. Rozwiązanie tychże samych zadań znajduje się w dziele autora: „Kurs Tieorij Uprugosti", 
cz. II, str. 27.

Ob. także: Tolle, Z. d. Ver. deutsch. Ing. z r. 1897, str. 855.
Forchheimer, Z. d. Ver. deutsch. Ing. z r. 1906, str. 58.

Kwestję naprężeń dopuszczalnych w przypadku jednoczesnego działania zgięcia i ściskania rozpatruje szczegółowo 
praca K. S. Zawrjewa w „Wiestniku Ob-a Technołogow11 z r. 1913. Podane w tej pracy tablice uproszczają znacznie 
obliczenia.

różniące się od rozwiązania dokładnego o mniej niż 74%. W dalszym ciągu będziemy zwykle poprzestawać na pierwszem 
przybliżeniu, dającem dokładność zupełnie wystarczającą do celów praktycznych.

Jeżeli się będziemy posługiwać pojęciami „uogólnionej spółrzędnej" i „uogólnionej siłyto 
równania (219) i (224), które stosowaliśmy do znalezienia parametrów f, fi, przybierają bar­
dzo proste znaczenie. Weźmy np. równanie (219). Przypuszczając, że nasza belka zgina się podług 
sinusoidy

y = f sin

zamieniliśmy ją tern samem w układ o jednym stopniu swobody. Dla określenia wszystkich ele­
mentów zgięcia, t. j. ugięcia, kąta nachylenia stycznej i krzywizny w dowolnym przekroju, wystar­
czy znać tylko wielkość f. Tę wielkość przyjmiemy za uogólnioną spółrzędną układu. Jakże będzie 
w takim przypadku wyglądać uogólniona siła? Ażeby odpowiedzieć na to pytanie udzielmy naszej 
spółrzędnej bardzo małego przyrostu Sf i znajdźmy pracę odpowiadającą temu przyrostowi. Czyn­
nik, przez który trzeba pomnożyć ażeby otrzymać pracę, będzie tedy, stosownie do określenia 
przyjętego dawniej, szukaną uogólnioną siłą. Przyrostowi spółrzędnej odpowiada przesunięcie

jt C- R C'punktu działania siły Pi o wielkość Sf sin y , przyczem powstanie praca Pi sin —p-. Pracę 

wszystkich obciążeń działających na belkę przedstawi suma:
Ti o •

óf^Pisin- f 1 ,

jt Cia zatem S P, sin —j— jest niczem innem, jak uogólnioną siłą, odpowiadającą spółrzędnej f. Po 

tych rozważaniach można rów. (219) otrzymać od razu przez przyrównanie pochodnej energji po­
tencjalnej względem spółrzędnej do odpowiedniej uogólnionej siły. To samo można powiedzieć 
w odniesieniu do równań (224). Wielkości /n f2, f3,... okazują się uogólnionemi spółrzędnemi 
układu, a sumy po prawej stronie tych równań będą odpowiadającemi uogólnionemi siłami. W wy­
rażenie dla V (wz. 225) wchodzą tylko kwadraty wielkości fktóre przeto okazują się „głów­
nemi", albo „normalnemi" spółrzędnemi układu.

§ 127. JEDNOCZESNE DZIAŁANIE ROZCIĄGANIA LUB ŚCISKANIA I ZGIĘCIA

Dopóki poprzeczne rozmiary pręta nie są zbyt małe w porównaniu z jego długością, można, 
przy jednoczesnem działaniu sił podłużnych i poprzecznych, posługiwać się zasadą superpozycji 
i dodawać naprężenia wskutek zgięcia do naprężeń wskutek sił podłużnych. Atoli w przypadku 
prętów giętkich może takie składanie doprowadzić do większych błędów, ponieważ siły podłużne 
wywołują przy pewnych warunkach znaczne zmiany w naprężeniach zginających. Badanie wpływu 
sił podłużnych na ugięcie sprowadza się do całkowania równania różniczkowego linji ugięcia, 
a ostateczne wyrażenie dla ugięcia, nawet w najprostszych przypadkach ’), przedstawia się dość 
zawiłą formułą, niedogodną do obliczeń (§ 112). Przybliżona metoda okazuje się w tych przypad­
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kach szczególnie dogodną. Przy jej użyciu otrzymujemy dla ugięcia bardzo proste formuły, wyka­
zujące jasno, jak się zmienia wpływ sił podłużnych na zgięcie w zależności od rozmiarów pręta.

Rys. 314

Niech zatem belka /IB, zginana siłami poprzecznemi Plf 
P2f- podlega nadto działaniu siły podłużnej ściskają­
cej S (rys. 314). Przyjmijmy w pierwszem przybliżeniu, 
że belka zgina się według sinusoidy 

i obierzmy wielkość f za uogólnioną spółrzędną. Ażeby 
znaleźć odpowiadającą uogólnioną siłę, udzielmy spółrzę­
dnej f nieskończenie małego przyrostu 6/ i wyznaczmy 

odpowiadającą wartość pracy sił zewnętrznych. Co się tyczy obciążeń pionowych, to ich pracę, 
jak widzieliśmy, przedstawia wyrażenie

8/SPisin

Pracę zaś sił podłużnych znajdziemy, obliczywszy zbliżenie końców zginanej belki. To zbliżenie 
będzie widocznie równe różnicy między długością łuku zgiętej osi, a długością odpowiadającej cię­
ciwy /IB. Różnica między długością elementu ds (rys. 314), a długością jego rzutu dorówna się

ds — dx = ds(I coscp) = 2ds sin2-|-.

Przy małych zakrzywieniach można w otrzymanym wyniku wstawić

, j • • T 1 /ds = dx i sm^=--y, 2 2^

a zbliżenie końców belki przy zgięciu przedstawi się wzorem:

C1 1 c181 = \ (ds — dx) = y \ (y')2dx . . . . . (226)
Jo .'o

Jeżeli belka zgina się według sinusoidy, to 

dl=^\^TdX4T .(227)

Udzielając ugięciu f nieskończenie małego przyrostu, wywołujemy tern samem dodatkowe zbliżenie 
końców belki o wielkości 

przyczem siły podłużne S wykonują pracę

Dołączając to do pracy sił pionowych Pi, znajdziemy:

Pi sin ^L + S^Sf.

Czynnik ujęty w nawias jest tutaj uogólnioną siłą, odpowiadającą spółrzędnej f. Przyrównawszy 
pochodną energji potencjalnej względem spółrzędnej do odpowiadającej siły, otrzymamy równanie:

^-2PiSin ; +S 2l •
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Stąd po wstawieniu zamiast V wyrażenia (220) wypadnie:

2 /’ 2P, sin 
/= 5 SC \'

~^E1)

Skoro porównamy ten wynik z wyrażeniem dla ugięcia (221), odpowiadającem działaniu samych 
obciążeń pionowych i dla krótkości oznaczymy to ugięcie przez /0, to otrzymamy wzór:

f*
f = SI*.........................................................(228)

^E1
Drugi wyraz w mianowniku ocenia wpływ podłużnej siły na ugięcie. W przypadku prętów o małej 

smukłości jest stosunek S: — małym ułamkiem, a rola siły podłużnej jest przeto znikoma. Ten 

wpływ wzrasta z powiększeniem giętkości pręta, czyli z powiększeniem jego smukłości. Gdy siła 
EI

podłużna ma wartość - j2- , to mianownik we wzorze (228) staje się zerem, a zatem bardzo małe 

obciążenie prostopadłe może wywołać wielkie ugięcie. Tę wartość siły podłużnej będziemy nazy- 
^E1wać krytyczną i oznaczymy stosunek S: przez a’. Wówczas

f = r^ = p-'/ó (229)

Wpływ siły podłużnej na ugięcie jest zupełnie określony jej stosunkiem do krytycznej wartości 
siły. Dla ocenienia dokładności otrzymanego wzoru, obliczymy kilka wartości spółczynnika p/ i po­
równamy je z wartościami p wyznaczonemi według dokładnego wzoru (195) dla przypadku zgięcia 
ciężarem skupionym, umieszczonym w środku rozpiętości. Wynik obliczeń zestawiono w poniższej

^ = 0
4

p' = 1,00

p = 1,00

0,2

1,09

1,09

0,5

1,25

1,25

1,0

1,68

1,67

1,5

2,55

2,53

2,0

5,27

5,22

tablicy, z której widać, jak wzrasta wpływ siły podłużnej na zgięcie w miarę zwiększenia a2. Przy
cc2—— = 0,5, t. j. kiedy wielkość siły podłużnej równa się mniej więcej jednej piątej części warto-

ści krytycznej, jej wpływ na zgięcie objawia się zwiększeniem strzałki o25°/o; przy sile dwa razy 
większej równa się ugięcie dodatkowe 68°/o z fa. Różnica między formułą dokładną a przybliżoną 
jest bardzo mała; dla przypadków objętych tablicą nie przekracza nigdzie l°/o. Taka dokładność 
jest naturalnie całkiem wystarczającą dla zastosowań praktycznych. Gdyby jeszcze większe przy­
bliżenie było pożądanem, to należałoby wziąć ogólne wyrażenie dla ugięcia (wz. 223) i odpowia­
dającą formułę (225) dla energji potencjalnej. Z przejściem dp obciążenia ciągłego rośnie dokła­
dność przybliżonego wzoru (228). Przy równomiernie rozłożonem obciążeniu błąd popełniony, w naj­
gorszym przypadku, nie przekracza 1l^lo. W przypadku parabolicznego rozkładu obciążenia jest 
błąd jeszcze mniejszy. W praktyce możemy przeto zawsze się posługiwać wzorem przybliżonym, 
jeżeli tylko wszystkie siły pionowe mają ten sam kierunek. Tenże wzór da się zastosować i przy 
zgięciu belki parami sił, działającemi na jej końce, byleby tylko obie pary zginały belkę w tę samą stronę.

Od siły podłużnej ściskającej przechodzimy łatwo do przypadku siły rozciągającej, zmieniając 
tylko znak wielkości S. Jeżeli poprzestaniemy na pierwszem przybliżeniu, to ugięcie środkowego prze- 
kroju równa się L ...........................................  (230)

' 14-a* v 7
Kurs wytrzymałości materjałów 15 
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przyczem a2 zachowuje poprzednie znaczenie. W przypadku rozciągania prętów smukłych może a2 
być większe od 1 (w praktyce a2 nie przekracza 10) i, jak wskazuje obliczenie następnych przy­
bliżeń, maleje dokładność wzoru (230) wraz z powiększeniem a2. Dla sił skupionych już przy a2=2 
osiąga błąd przybliżonego wzoru 4,3°/o. W przypadku obciążenia równomiernie rozłożonego jest 
dokładność znacznie większą i np. dla cc2 = 10 błąd nie przekracza l,7°/o.

Obliczywszy według wzorów przybliżonych ugięcie, znajdziemy łatwo wielkość momentu zgi­
nającego, uwarunkowanego działaniem sił podłużnych. Dla środka belki moment ten jest równy: 

+ — ± ^6 
pa2’

Znaki górne odnoszą się tutaj do przypadku siły ściskającej S, dolne zaś do przypadku siły roz­
ciągającej. Weźmy np. przypadek jednoczesnego ściskania siłą S i zginania siłą P, umieszczoną 
w środku pręta. Moment zginający w środkowym przekroju ma największą wartość

PI
4

P/3
Tutaj wstawiliśmy zamiast /0 wartość

PI 0,823 a2
1 — a2

W przypadku obciążenia równomiernie rozłożonego o natężeniu q, jest moment zginający 
w środku rozpiętości równy:

1,028 a2
1 — a2

M = ^ + Sf= -^(1 +

Powyższe wzory dla największych momentów zginających dają, w przypadku sił ściskających, dostatecznie dokładne 
wyniki. Przy siłach rozciągających, gdy a2 staje się ujemnem, przedstawi się największy moment jako różnica dwóch 
wielkości. Przy wielkich wartościach a2, kiedy wpływ sił podłużnych staje się szczególnie wielkim, zbliżają się obie wiel­
kości do siebie i dlatego moment, obliczony z ich różnicy, może wypaść ze znacznym błędem. Z tego porodu przy a2 >3*)  
wypadnie dla obliczenia momentu zginającego użyć dalszych przybliżeń.

*) Przy a2 —3 wynosi błąd Mmax dla obciążenia równomiernego około 2,5°/o.

Dla otrzymania dalszych przybliżeń trzeba wziąć dla y ogólne wyrażenie:
_ . nx . . . 2nx . . . 3nx .y = Asin-^—f-/2Sin—p+;3sin-y- +...

Wzajemne zbliżenie końców belki przy zgięciu przedstawi się wtedy wzorem:

(a™^ + 2/1coS^+ 3fjCoS^'V + . J 2'7^^^
w tz o * Jo \ l l l I ą l

Ostatni wynik otrzymujemy łatwo, zważywszy, że:
Cl 1 c1\ 9nnx , l . \ max nxx ,\ cos2—-—dx= ? , zaś \ cos—. -cos - d x = 0, 
Jo 12 Jo ‘ ‘

jeżeli m=\=n (liczby całkowite).
Przyjmijmy Jj, f2, ... za uogólnione spółrzędne i znajdżmy odpowiadające wartości uogólnionych sił. Udzielmy jednej 

ze spółrzędnych fm przyrostu 8/m, wtedy ugięcie belki przyrośnie o
_ _. . m:ixSy = 8/m sin--j-,

a zbliżenie 81 zmieni się o wielkość

dfm 'm “ 21
Siły prostopadłe Pi wykonają przytem pracę:

D • Ci o e^Pism—j-—

Pracę, wykonaną siłami podłużnemi S, przedstawi wyrażenie:

-i-± i 2 I /m o /m,

przyczem znak + odpowiada sile ściskającej, a —
• będzie:

rozciągającej. A więc uogólnioną siłą, odpowiadającą spółrzędnej fm,

. nur Ci2 Pi sin--- 1— + Sf± 21 '
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Przyrównywując pochodne energji potencjalnej (wz. 225) względem jakiejkolwiek spółrzędnej do odpowiadającej siły, otrzy­
mamy równania postaci:

m^EI . v . mna c. m2Jt2 
2p /m Sin---- j---- ± o/m—.

Stąd znajdujemy:
„n . mści 

2 p 2Pi sin ।
fm — El m2 (m8 T a2) ’

przyczem a8 ma poprzednie znaczenie.
Wstawiwszy otrzymane w ten sposób wartości spółrzędnych /j, /2, ... w ogólne wyrażenie dla y, znajdziemy:

21®
y ^EI

. aci . aX 2j Pi sin—j— sm -j-

. PTFTa2) +

. 2ita . 2?ta? . 3jrci . 3jr:»^Pi sin —-— sm —j— 2jPi sin —j— sin —j—

28 (22 T a2) 32 (32 T a2)

Ten wynik można zastosować także i w tym przypadku, kiedy na belkę działa obciążenie ciągłe o natężeniu q. (W ogól­
nym przypadku będzie q pewną funkcją c). Obciążenie qdc, przypadające na element długości dc, można zastąpić siłą 
skupioną. Sumując działanie poszczególnych elementów obciążenia ciągłego, otrzymamy z wzoru (a):

21® 
y~ ^EI

• ?rc \ . 2ffC . \ . 3nc ,q sin -p dc \ q sin —z— dc \ q sin —z- dc
o ‘ . Jo ‘ Jo 1 . 3xx
l2 (l2 T a2) sin + ~T2 (22 + a2) " Sin ~T~ + 32 (32 + a2C S,n ~T~ + . (b)

W przypadku obciążenia równomiernie rozłożonego jest q stałe, a wyrażenie dla ugięcia przybierze postać:

4qP 
y~ ^EI

. XX sin — . 3nX sin —j—

_ 1® (l2 + a8J 3®(32 + a2)

. 5nxsin—j—

5® (52 T a2) • (c)

§ 128. ZGIĘCIE BELEK OBU KOŃCAMI UTWIERDZONYCH

W przypadku utwierdzenia końców belki będą ugięcia na podporach i kąty nachylenia sty­
cznych równe zeru. Przy działaniu sił pionowych, zgodnie skierowanych, ma zgięta oś dwa punkty
przegięcia, a maximum ugięcia leży w pobliżu środka 
tym wszystkim warunkom i otrzymamy przybliżoną 
postać krzywej, jeżeli dla zgiętej osi przyjmiemy 
równanie:

rozpiętości (rys. 315). Uczynimy zadość

y=
2jix cos—p

e, n £

Łatwo okazać, że y i y' stają się zerami przy x = 0 
i x=l. Największe ugięcie odpowiada środkowi rozpię­
tości i równa się f. Obrawszy w ten sposób postać 
krzywej, zamieniliśmy tem samem naszą belkę w układ

Rys. 315

jednym stopniu swobody. Jako uogól-
nioną spółrzędną weźmiemy wielkość f. Jeżeli spółrzędnej f udzielimy elementarnego przyrostu Ó f, 
to punkt działania jakiegokolwiek ciężaru Pi przesunie się o wielkość:

Siły pionowe Plf P2, ... wykonują przy tem pracę: 

df. ~ 2Pi (1 — cos 
w

2in:Ci
~T~

Uogólnioną siłą, odpowiadającą spółrzędnej f, będzie przeto

y —COS

zaś równanie dla wyznaczenia f ma postać:

2nc-, 
nr

dV
Of=

y 2P, ( l - COS 2~Ci
. (231)

- g

o

2 a a y ( 1 — COS-- y

l
15*
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Wartością energji potencjalnej w danym przypadku będzie:

. (232)

. (233)

v=y (y ) _ j cos 1 18

Wstawiwszy to w rów. (231) znajdziemy: 

■ ■ ■

Gdy w szczególności działa na belkę tylko jeden ciężar w środku, to otrzymamy:
PZ3 _ Pls

'~2^EI 194,8 E/’ 
PP zamiast dokładnego rozwiązania Błąd wynosi zatem około l,5*/0.

W przypadku obciążenia ciągłego należy sumowanie zastąpić całkowaniem. Wzór dla ugięcia 
napiszemy wówczas w formie następującej:

............................................ (233)'

Dla równomiernie rozłożonego obciążenia q mamy:

„ ql* V 14 2nx\ , ql4 
C0S l ldX~ 4nlEI'

I tutaj popełniony błąd nie przekracza 1,5%.
Rozpatrzymy teraz wpływ siły podłużnej S na ugięcie belki. Zatrzymując poprzednie wyra­

żenie dla y znajdziemy najpierw wartość uogólnionej siły, odpowiadającej spółrzędnej f. Przy 
zmianie f będą wykonywać pracę nietylko pionowe obciążenia Pi, lecz także siły podłużne S. 
Praca sił pionowych wyrazi się tym samym wzorem, co w przypadku poprzedzającym. Dla obli­
czenia pracy sił podłużnych utwórzmy wyrażenie dla zbliżenia końców zginanej belki. Na pod­
stawie wzoru (226) mamy

= .... (234)

Udzielając spółrzędnej /‘przyrostu óf, znajdziemy, że zbliżenie końców zmienia się o wielkość:

a odpowiadająca praca sił S równa się 
s^f-

Dołączając do tego pracę sił Plt P2, ..., znajdziemy dla szukanej uogólnionej siły wyrażenie:

y % Pi ( 1 — COS-- j-- I + ^lS’

Równanie dla wyznaczenia f napiszemy teraz w postaci: 
d V 1 D / 2na \ ędf ~ 2 2PiU cos l I + 21 S'

Wstawiwszy zamiast V wartość z wz. (232), otrzymamy dla ugięcia wzór: 

f 1 vd h 2ftCi i^ą^EI^ SZ» cos 1 )•

Ąn2EI
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Gdy przez oznaczymy ugięcie wywołane działaniem samych tylko sił pionowych Pi i zatrzy­
mamy oznaczenie

to powyższa formuła przybierze postać: 

f=—........ .(235)
1

W przypadku sił podłużnych, rozciągających, trzeba tylko zmienić znak S, a zatem:

. (236)

Porównywując to z wynikami poprzedniego paragrafu, widzimy, że w przypadku końców utwier­
dzonych grają siły podłużne mniejszą rolę, niż przy końcach podpartych. Wpływ tych sił na ugięcia 
można przeto częściej zupełnie pominąć.

Wzory (235) i (236) wypada uważać za pierwsze przybliżenie. Dla otrzymania dokładniejszej wartości ugięć i dla 
obliczenia momentów podporowych, można użyć następującego sposobu:

Najpierw usuwamy zbyteczne ustalenia, zapobiegające obrotowi końców belki i znajdujemy dla otrzymanej tym spo­
sobem belki w obu końcach podpartej ugięcie i kąty obrotu końców. Następnie dobieramy momenty podporowe tak, aby 
one przywróciły obrócone końce belki w ich pierwotne położenie. Dla rozwiązania tego zadania będą nam potrzebne 
wzory wyrażające ugięcie i kąty obrotu końców belki wywołane działa- iy 
niem momentów podporowych. Otrzymamy je przez całkowanie równania 
różniczkowego linji ugięcia belki. Dajmy na to, że belka AB (rys. 316) SZ4|______________________  P S X
zgina się wskutek momentu M, działającego na jej lewy koniec i wskutek ' 
sił ściskających S. Równaniem różniczkowem zgiętej osi będzie:

Rys. 316

El^~—i---------

Ogólna całka tego równania ma postać:
. o.nx M(l — x) . SEy = A cos —;----1- B sin —=— H------ , przyczem ał = . r.I i SI -2EI

Stałe całkowania A i B znajdziemy z warunków krańcowych. W naszym przypadku y staje się zerem przy x — 0 
i przy x = l. Mamy więc dwa równania warunkowe:

MA + -^=0, A cos a a + B sin a x = 0,

z których znajdujemy:
„ M D M A =---- $, B = -y ctg a x,

a zatem:

M I , s-Lc‘8 . a nx a nx a Jt sin —j------cos —j— Ml2
ax(x — /) 

l 
sina2^El

dy
Utworzywszy pochodną i podstawiwszy w niej kolejno x = 0 i x = l, otrzymamy wzory dla kątów obrotu belki, 

[znaki ustalone według umowy z § 74]:

Ml ( i . ) Ml I 1 1 \-------ctg ax I , £, =------ =y- I —--------------I........................................(237)axE1 \ ax / ax El \ sin a x a x I ’

Łatwo sprawdzić, że przy małych wartościach a?r, t. j. przy małych wartościach siły podłużnej, znalezione wzory zgadzają 
się z otrzymanemi powyżej formułami (104).

Jeżeli teraz na belkę działają po obu końcach dwa momenty i M2, oraz siły ściskające S, to dla kątów obrotu 
otrzymamy wzory:

% Md l l t )ctSajrCL X E 1 \ O. X /
„ M^ I 1 t \^2 =-----I ------ ---- ctg a x )axEI\gx 6 I

\ { 1
a x EI \ sin a x

1
ax

\ Md l 1
gxEI ' sina^

1
ax

. (237/
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Dla Mi — M% = M będzie a jt
' Ml i 1 t \ Ml g2

! = d2 =-----— .----------ctg a jt I = „ ,--------airE/ \ Sina?t I El an . (238)

Gdy zamiast siły ściskającej mamy siłę podłużną rozciągającą, to wypadnie zmienić znak u? i, co zatem idzie, wielkość a 
zastąpić wszędzie przez af. Wówczas wzór (238) przybierze postać:

. (238)'

w której tgh oznacza „tangens hyperbolicus". Mając wzory (237) i (238), 
zgięcia belki obu końcami utwierdzonej.

Rozpatrzmy np. przypadek zgięcia belki obciążeniem równomiernie 
znajdziemy dla ugięcia, według wzoru (c) w § 127, wyrażenie:

możemy bez trudności rozwiązywać zadania

rozłożonem. Usunąwszy utwierdzenie końców,

7 !ĆEI

Sin -y- sin —p-

_ l3 (l2 + cc2) 33 (32 + a2)

2) Bardziej szczegółowo traktuje to zadanie „Kurs Tieorij Uprugosti" autora, cz. U, str. 45.

Różniczkując względem x i podstawiając w pochodnej x = 0, otrzymujemy dla kątów obrotu końców wzór:

4ql3 [. 1
^EI I l2(12q=a2) 32 (32 T a2) 52 (52 T a2)

Ponieważ według warunku utwierdzenia końce belki się nie obracają, więc momenty podporowe obracają końce belki o kąly 
równe i wprost przeciwne tym, które powstały wskutek obciążenia ciągłego. Dla wyznaczenia M otrzymamy w przypadku 
siły podłużnej ściskającej równanie:

Ml&?
EI-— ^E/L 12(p—a2) 32(32— a2) 52(52-as)

sin —j— 

l3 (52 + ipy

1 1

1 1

zaś w przypadku rozciągania siłą podłużną:

MZtghy 4ę/3l 111
EI~^~ ^E/LPtP+a2) + 32(32+a2)+ 52(52+a2)

Zważywszy, że:
11 1

12(l2-ai) +32(32—a2) + 52(52—a2) +

, a jr aj
Ł&2 2

96 1 / a \8

__ 1___ |------1__ . _]------ 1__
l2 (P+a2) 3a(32+a2) 52 (52+a2) 96 ' 1

. . ajr aj 
tghT—2

8
otrzymamy dla momentów podporowych wzory:

ajr ajr 
g 2

*:M = ~ 12 l"/cun>---- a-’ PrzyPadku siły ściskającej),

M =

, , a« an
qr
12 1 / air \2 , a?r (w przypadku siły rozciągającej)

. (239)

Według tych wzorów łatwo obliczyć momenty podporowe, skoro siła podłużna jest znana.

§ 129. PRZYPADEK NIEZNANYCH SIŁ PODŁUŻNYCH2)

W rozpatrywanych powyżej przypadkach uważaliśmy siły podłużne S jako dane. Atoli w prak­
tyce spotykamy się często także z zadaniami, w których siły podłużne są nieznane. Takie siły po­
jawiają się zwłaszcza wskutek zbytecznego ustalenia końców. Podpory bowiem bywają nieraz tak urzą-

J) Do tej równości dochodzimy najłatwiej, porównywując ugięcie wyznaczone z wzoru (195) z wartością otrzymaną 
z ogólnego wzoru (a) w § 127, przy działaniu jednej siły P w środku rozpiętości.
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dzone, że końce belki nie mogą się przy zgięciu zbliżyć do siebie. Wtedy zginaniu towarzyszą siły 
podłużne, rozciągające oś belki. Wielkość tych sił łatwo znaleźć przy pomocy formuł (230) i (236), 
wyprowadzonych powyżej. Jeżeli końce belki są zupełnie unieruchomione, to różnica między dłu­
gością łuku i cięciwy /IB (rys. 314) musi być równa wydłużeniu, jakiego doznaje oś .belki pod 
działaniem sił rozciągających S, wywołanych zgięciem. Przy pomocy wyrażenia dla 61 (wzór 227) 
otrzymamy równanie: x2 f2 SI

^T = EF’

przyczem F oznacza pole przekroju poprzecznego belki. Zważywszy, że
C 2 3 &
S = a2jr2 -p-,

i wstawiwszy zamiast f przybliżone wyrażenie (230), znajdziemy równanie:

,, .................................................... (240)(1 + a’)2 v 2

Tutaj oznacza r odpowiadający promień bezwładności przekroju poprzecznego. Równanie (240) za­
wiera tylko jedną niewiadomą wielkość a2; wyznaczywszy ją, możemy bez trudności obliczyć S. 
Dla rozwiązania najdogodniej przedstawić rów. (240) w następującej postaci:

LL 
4r2 (240)'

Prawą stronę można obliczyć z danych rozmiarów belki i obciążeń pionowych. Następnie łatwo 
znaleźć a2 przy pomocy tablicy kwadratów liczb. Oto przykład liczbowy takiego rachunku:

Pręt żelazny o przekroju kwadratowym 1 cm X 1 cm i długości / = 80 cm, podparty nieruchomo
w obu końcach, jest obciążony ciężarem równomiernie rozłożonym q = 0,5 kg/cm. Przy tych roz-

1 1 5 a F
F = 1 cm2, 1 = ^2 cm^ r* = 12 Cm2’ = 184" = 2.106 kg/cm2.

(240)' daje:
u,2 (1+a2)2 = 7,68, z czego a2 = ~ 1,37,

ElS = aW^=~352kg.

środku f < £

a więc największy moment zginający będzie mieć wartość: 
m er l,028a2 \ _ q l2^”8 Sf~ 8 ( l+a2 / ~ 0,4 8 “ 160

miarach:

Równanie 

a zatem

Ugięcie w

Dla największych ciągnień otrzymamy tedy wartość:
S M . 160 2Pmax -- p + py — 352 “I- 1310 kg/cm .

Rozwiążemy jeszcze to zadanie przy założeniu końców utwierdzonych. W tym przypadku

/o
1 qF

184 El = 0,32 cm, a2.
4

Równanie dla wyznaczenia a2 będzie mieć postać

/ (X2 \2 f 2
«• 1 + t = 44 = 0,307.

' 4 ' 4r*
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Stąd „i 0,32
a2=-0,27,S = a2^2^ = 69^ i f= t | 0,27 = 0,30.

4

Moment zginający w płaszczyźnie utwierdzenia równa się według przybliżonego wzoru1):

M = 256 kg cm.
1 M £

Największą wartość ciągnień znajdziemy z wzoru:

pmsx = y + ^= ~69 + 1536 = 1605 k^cm9.

9 Przy małych wartościach a2 wynik, otrzymany podług tego przybliżonego wzoru, różni się nader mało od tego, 
który wynika z wzoru (239). Przy a2 = 1 odpowiadający błąd jest nieco większy od 1%, a przy a2 = 2 około 2,5%. Gdy 
a2 jest wielkie, to siłę podłużną można obliczyć na podstawie wzorów przybliżonych, a do obliczenia momentu podporo­
wego można użyć wzoru (239).

Pokazuje się, że wartość największych naprężeń jest większa w przypadku utwierdzenia końców, 
niż w przypadku ich podparcia. [Utwierdzenie okazuje się przeto w tych warunkach niekorzystnem]. 
Taki wynik objaśnia się tem, że w przypadku utwierdzenia końców wypada siła podłużna, zmniej­
szająca wielkość największego momentu, mniejsza, niż przy podparciu końców.

We wszystkich poprzednich wywodach przyjmowaliśmy, że siły zginające działają w jednej 
z głównych płaszczyzn belki. Jeżeli płaszczyzna działania sił nie schodzi się z jedną z płaszczyzn 
głównych, to wypadnie siły rozłożyć w dwu kierunkach wzajemnie prostopadłych, odpowiadających 
głównym osiom bezwładności przekroju poprzecznego. Stosując wyprowadzone wzory, znajdziemy 
bez trudności ugięcie w każdej płaszczyźnie głównej, a stąd i ugięcie całkowite.

§ 130. WZORY DLA OBLICZEŃ W PRZYPADKU JEDNOCZESNEGO DZIAŁANIA ZGIĘCIA 
I ŚCISKANIA

Przy pomocy wyłożonej powyżej metody przybliżonej, możemy ocenić wpływ siły podłużnej 
na ugięcie i obliczyć największe naprężenia, które powstają przy jednoczesnem działaniu zgięcia 
i ściskania. Te naprężenia będą linjowo zależne od wielkości sił prostopadłych do osi belki, wpływ 
zaś siły podłużnej jest bardziej złożony, i w przypadkach, gdy siła podłużna zbliża się do wartości 
krytycznej, mogą już niewielkie zmiany siły odbić się znacznie na wielkości ugięcia, a więc i na 
wielkości naprężeń. Tę okoliczność należy uwzględnić przy obiorze naprężeń dopuszczalnych 
w przypadku jednoczesnego działania zgięcia i ściskania.

Nazwijmy przez R naprężenie dopuszczalne przy prostem rozciąganiu i przyjmijmy, że ono 

równa się tej granicy sprężystości materjału R}. Przy takim obiorze naprężenia dopuszczal­

nego pręt rozciągany dojdzie do niebezpiecznego stanu napięcia i może doznać trwałych odkształ­
ceń tylko wtedy, gdy siła rozciągająca wzrośnie /?-krotnie. Dzięki linjowej zależności naprężeń od 
sił zachodzi tutaj między obciążeniem bezpiecznem, a obciążeniem, przy którem zaczynają się 
trwałe odkształcenia, stosunek równy stosunkowi naprężenia dopuszczalnego do naprężenia na gra­
nicy sprężystości. Obierając pewien stopień pewności w odniesieniu do naprężeń, będziemy mieli 
tenże sam stopień pewności i co do obciążeń. Inaczej jednak ma się rzecz przy jednoczesnem 
działaniu zgięcia i ściskania, albo zgięcia i rozciągania. Niechaj np. pręt w obu końcach podparty 
ściska siła S i zgina obciążenie równomiernie rozłożone o natężeniu q. Największy moment zgi­
nający w środku rozpiętości określa wzór (ob. § 127):

qPi, , 1,028 2 SP
m = + Przy“em “2 = ;?E7-
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Oznaczywszy przez F pole przekroju poprzecznego, a przez W jego moduł („moment oporu"), 
otrzymamy dla największych ciśnień wyrażenie:

S , Z, . 1,028 a2 \
F + 8W \ + 1 - a2 / (a)

Przy powiększeniu sił zewnętrznych będą wzrastać nietylko S i ę, lecz także i a2, wobec czego 
naprężenia, obliczone wzorem (a), będą wzrastać prędzej, niż siły, i to tern prędzej, czem bardziej 
a2 zbliża się do 1. Gdybyśmy obrali rozmiary pręta tak, aby naprężenia, określone wzorem (a), 
równały się naprężeniu R, dopuszczalnemu przy prostem rozciąganiu, to przy fc-krotnem zwięk­
szeniu wszystkich sił zewnętrznych, naprężenia przekroczą granicę sprężystości i pręt dozna od­
kształceń trwałych. Z tego widać, że stopień pewności będzie w rozpatrywanym przypadku mniej­
szy, aniżeli przy prostem rozciąganiu i gdy a2 różni się niewiele od 1, to niewielki przyrost siły 
podłużnej może pociągnąć za sobą zniszczenie pręta.

Dla zabezpieczenia w rozpatrywanym przypadku takiego samego stopnia pewności, jak przy 
prostem rozciąganiu, trzeba wymiary pręta dobrać tak, aby przy fc-krotnem powiększeniu wszyst­
kich sił zewnętrznych największe naprężenia wyznaczone na podstawie wzoru (a), osiągnęły war­
tość, odpowiadającą granicy sprężystości. Dla obliczenia pręta mamy tedy warunek:

kS kql2 / 1,028 k a2
F 8W \ + l-ka2 I <

albo po podzieleniu przez k
S ql2 /. 1,028/?cc2 \ p
F+-8¥l1 + T^I<l?.................................................... (b)

Przez wprowadzenie czynnika k po lewej stronie wzoru (b) zwiększamy wartość siły podłużnej 
i w ten sposób uwzględniamy tę okoliczność, że przy jednoczesnem działaniu sił podłużnych i po­
przecznych (obciążeń prostopadłych) są naprężenia nielinjową funkcją wielkości siły podłużnej. 
Z rozpatrzonego przypadku szczególnego możemy wysnuć następujący ogólny wniosek: Przy obli­
czeniu prętów narażonych na siły podłużne i poprzeczne można przyjąć naprężenie dopuszczalne, 
jak dla prostego rozciągania, jednakowoż dla zapewnienia należytego stopnia bezpieczeństwa trzeba 
w takim przypadku, przy uwzględnieniu wpływu siły podłużnej na wielkość momentu zginającego, po­
mnożyć tę siłę przez spółczynnik większy od 1, równy stosunkowi granicy sprężystości materjału do 
naprężenia dopuszczalnego przy prostem rozciąganiu. Łatwo dostrzec, że przy takim sposobie obli­
czenia wypadną największe naprężenia, w przypadku działania siły podłużnej ściskającej, mniej­
sze od R, a w przypadku rozciągającej siły podłużnej większe od R1).

§ 131. ZGIĘCIE BELEK LEŻĄCYCH Nfi SPRĘŻYSTEM PODŁOŻU

Rozwiązanie tego zadania drogą całkowania odpowiadającego równania różniczkowego prowa­
dzi, jak widzieliśmy (§ •%), do dość zawiłego wyrażenia dla linji ugięcia i wyznaczenie ugięć 
w różnych szczególnych przypadkach wymaga niemało rachunkowej pracy. Te obliczenia można 
niekiedy znacznie uprościć przez zastosowanie metody przybliżonej. Ta metoda jest szczególnie ko­
rzystna wtedy, gdy można poprzestać na pierwszem przybliżeniu. Rozpatrzymy tutaj dwa zadania: 
a) zgięcie belki z końcami swobodnemi pod wpływem siły działającej w środku i b) zgięcie belki 
z końcami podpartemi. W obu przypadkach zakładamy, że belka jest na całej długości złączona 
z podłożem sprężystem. Przypadek bardzo wielkiej długości pręta rozpatrzyliśmy już poprzednio, 
przyczem się okazało, że oś pręta zgina się pod działaniem siły skupionej podług krzywej falistej, 
a długość fali zależy od stopnia podatności podłoża i od sztywności pręta przy zginaniu. Przy za­
łożeniu, że na każdą jednostkę długości pręta przypada reakcja podłoża równą ky, znaleźliśmy dla 
długości półfali wyrażenie (wz. 155, § 96):

4.----------
L = —, jeżeli a = 1/ k .

a r 4EI

*) Por. pracę K. S. Zawrjewa, przytoczoną powyżej (w § 127).
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Gdy weźmiemy stosunkowo krótki pręt, którego długość / jest mniejsza od długości półfali L, to 
pod działaniem siły skupionej w środku pręta powstanie zgięcie podług krzywej bez punktów prze­

gięcia (rys. 317), przyczem końce pręta obniżą się o pewną 
\ wielkość a. Największe ugięcie, odpowiadające środkowi 

belki będzie równe a T f. Dla wyznaczenia a i f użyjemy 
! metody przybliżonej. Przyjmiemy, że pręt zgina się według 

sinusoidyl), a wtedy ugięcie w jakimkolwiek przekroju 
przedstawi się równaniem:

Rys. 317
, f . nx y = a + f sin-j- . • (a)

W to wyrażenie wchodzą dwa parametry a i f; przyjmiemy je za spółrzędne układu. Skoro spół­
rzędnej a udzielimy przyrostu 8a, to siła P wykona pracę PSa, a zatem P będzie uogólnioną siłą 
odpowiadającą spółrzędnej a. Tak samo przekonamy się, że i spółrzędnej f odpowiada siła P.
W takim razie:

da df • (b)

Dla wyznaczenia a i f trzeba w otrzymane równania wstawić wartość V. Energja potencjalna 
układu składa się w danym przypadku z dwóch części: z energji zgięcia Vit dla której możemy 
użyć wyrażenia (220), i z energji odkształcenia podłoża V2. Reakcja podłoża, przypadająca na ele­
ment belki o długości dx, równa się kydx. Ta reakcja wzrasta przy zgięciu od zera do swej koń­
cowej wartości, przyczem ugięcie zmienia się proporcjonalnie względem reakcji od zera do y, 
przeto praca zużyta na odkształcenie podłoża da się przedstawić w postaci

K = ky dx y1 dx.
Jo A Z Jo

Wstawiwszy za y wartość (a) i wykonawszy całkowanie znajdziemy:

Całkowita energja układu będzie zatem:
rt4f2 FIV = V + K = ' a2 + 4—+ 4 rt z

Po podstawieniu wartości V przybiorą równania (b) postać następującą:

^fEI , klf , 2klakla + ^dl= P;

Pierwsze z tych równań daje:
P 2f a=,,----- -kl rt (c)

Wstawiwszy to w równanie drugie, otrzymamy dla ugięcia f wyrażenie:

rt-2________ P________ __ rt-2 2PF_________ 1_______
rt ‘ El k / /. 8 \ — rt * rt4 El ’ k F /. 8 \

*) Bardziej szczegółowe rozwiązanie zagadnienia zgięcia belki, spoczywającej na sprężystem podłożu i zastosowanie 
przybliżonej metody w przypadku belek o zmiennym przekroju znajdzie czytelnik w dziele autora: „Kurs Tieorij Uprugo- 
sti“, cz. II, str. 20.

Ob. także pracę stud. N. W. Krasnopierowa, Izw. Pietrogr. Pol. Inst. z r. 1916.

Zastosujmy otrzymane wzory do szczególnego przypadku. Pręt stalowy (E=2,2. 10° kglcm2) 
o przekroju kwadratowym 6 cm X 6 cm i długości 80 cm, obciążony w środku siłą P = 1000 kg, 
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spoczywa na sprężystem podłożu o spółczynniku podatności k = 240 kg/cm*.  Podstawiwszy te dane 
we wzór (d) znajdziemy najpierw

*) Wynik zaczerpnięty z kursu Fóppfa, wyd. 3-cie, str. 244.

f=P.10-4.0,148,

następnie z (c) otrzymamy
a = P.10-4.0,427,

a zatem największe ugięcie równa się:

a + /=p. io~4.0,575 cm.

Stosunkiem ugięcia środka belki do ugięć końców będzie:
(a + f): a = 0,575 : 0,427 = 1,35.

Taki sam stosunek zajdzie między odpowiadającemi ciśnieniami na podłoże. Ażeby znaleźć wiel­
kość nacisku, przypadającego na jednostkę długości w jakimkolwiek przekroju pręta, trzeba pomno­
żyć ugięcie przez spółczynnik k. Odpowiadające ciśnienie otrzymamy, dzieląc ten iloczyn przez 
szerokość belki. Na końcach belki otrzymamy jako wartość nacisku na jednostkę pola:

k
p, = P. 0,427.104. — = 10,3 kg/cm2.

Dla środka belki mamy:
= 1,35 pn = 13,9 kg/cm*.

Jeżeli to zadanie rozwiążemy przez całkowanie równania różniczkowego, to znajdziemy 9:
p0 = 10,3 kg/cm*,  Pi = 14,0 kg/cm*.

Jak widać z tego, daje metoda przybliżona i tutaj dokładność zupełnie wystarczającą. Rozwią­
zanie zadania sprowadza się do podstawienia danych liczbowych w gotowe wzory (c) i (d), pod­
czas gdy przy użyciu dokładnego sposobu trzeba każdym razem najpierw wyznaczyć wszystkie 
dowolne stałe całkowania, co wymaga, w danym przypadku, niemało pracy.

Rozpatrzymy teraz zgięcie belki z końcami podpartemi, obciążonej układem sił skupionych Pi. 
Jeżeli długość belki / jest mniejsza od długości półfali L, odpowiadającej danemu podłożu spręży­
stemu, to możemy, stosując metodę przybliżoną, poprzestać na pierwszem przybliżeniu i przyjąć, 
że zgięcie zachodzi według sinusoidy:

_ . nx 
y = f^—l~-

Wówczas skorzystamy z wyników otrzymanych pierwej przy badaniu zgięcia belek końcami pod­
partych (§ 126). Aby ująć w rachunek wpływ sprężystego podłoża, trzeba w rów. (219) wstawić 
odpowiednią wartość energji potencjalnej, składającej się w danym przypadku z dwu części: z ener­
gji zgięcia Vi i energji odkształcenia podłoża V2. Wartość znamy już, V2 zaś obliczymy w ten 
sposób; ,ri 

v2 = 9 \ y2dx = 
Jo

kl

I kl Ti*  EI\____ ____ JTC:

A zatem

a rów. (219) przyjmie postać:
dV
df 2 + 2P ) “ sm“T-

Stąd
2 P-SP, sin-y- j 

ZE/ ' . feP 
;-E/

(241)
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Tenże sam wynik można otrzymać i inną drogą, rozważając zgięcie belki w obu końcach pod­
partej pod działaniem sił skupionych Pn P2, ... i obciążenia ciągłego, którego natężenie zmienia 
się według prawa:

q = — ky = — k / sin -p.

Na podstawie wzorów (221) i (222) znajdziemy:

f = (2 Pi sm ~ + Vs,n t dx) ’
a stąd, po wstawieniu wartości za q, otrzymamy znaleziony powyżej wzór (241).

Od zgięcia belki siłami skupionemi łatwo przejść do obciążenia ciągłego. Zamiast sumy skoń­
czonej liczby dodajników, wchodzących we wzór (241), otrzymamy całkę, rozpostartą na całą dłu­
gość belki, a wyrażenie dla ugięcia napiszemy w postaci:

2/8 q sin ^dx .
f- ^ET1— —ki ....................................... (24l)'

1 + ^EI

Dla obciążenia równomiernie rozłożonego jest q stałe, a wzór powyższy przekształci się na na­
stępujący:

Pierwsze przybliżenie nic daje dostatecznej dokładności przy umieszczeniu siły skupionej blisko jednej z podpór, 
albo przy zgięciu belki parą sił, działającą na jej końce. W takich przypadkach, lub wogóle, jeżeli większa dokładność jest 
pożądana, wypada uciec się do dalszych przybliżeń. W tym celu trzeba użyć ogólnego wyrażenia dla y (wz. 223) i odpo­
wiadającej wartości (225) dla energji potencjalnej. Na belkę będzie działać, oprócz sił Pif P^, ..., obciążenie ciągłe, odpo­
wiadające reakcji sprężystego podłoża. Natężenie tego obciążenia zmienia się podług prawa:

q = — k y = — k \Jt sin j + f, sin —j- + /3 sin p +...).

Równanie (224) napiszemy teraz w postaci:
dV vn • 1 CZ .
-ai- — 3 Pi sin —,---- 1- \ ę sin , dx,
dh i Jo 1

_ „D . 2«a 
dh z

. 2 nx q sin —j— 
*o *

dx,

Podstawiając zamiast V i q ich wartości, i wykonując całkowanie, znajdujemy:
2P VD . Jt Ci 

^ = 7>E72PiS,n^

^EI

1 2/8 2 JtCi
7

1
1+-^-

T 2‘n‘EI

Wstawiwszy te wartości ... w wyrażenie dla y, otrzymamy równanie zgiętej osi. W przypadku obciążenia jedną
siłą w środku belki c — -y j będzie:

= m 
y ^EI

. jtx . 3nxsin sm —j—

r ^EI V 3WEI
• (243)
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^rzy działaniu obciążenia równomiernie rozłożonego q należy w miejsce 2Pi sin —jC1-w równaniach (e) wstawić wielkość:

l 
q

o
sin —j— dx = 2lq 

nn

dla n nieparzystego, a 0 dla n parzystego. Równaniem linji ugięcia będzie tedy;

_ 4ql*
~^E1

. nx sm . 3nx sm—p~

14
kr

^El
38 (14 ki' \ 

3WEII

. (243 a)

Na podstawie tych ogólnych wyrażeń dla linji ugięcia można nabrać wyobrażenia o błędach, które popełniamy, poprzestając 
na pierwszem przybliżeniu.

§ 132. OBLICZENIE BELEK SKRZYŻOWANYCH
Przy obliczeniu inżynierskich konstrukcyj napotykamy nierzadko kwestję wytrzymałości płaskich ścianek, narażonych 

na obciążenie ciągłe. Jako przykłady można przytoczyć szczelne przegrody w okrętach i wrota śluz, wytrzymujące napór 
wody. Zwykle buduje się taką ściankę z żelaznej blachy, wzmocnionej układem skrzyżowanych belek, położonych w dwu 
wzajemnie prostopadłych kierunkach równoległych do boków (prostokątnej) ścianki. Do obliczenia tych belek zastosujemy 
metodę przybliżoną 4 w przypadku przedstawionym na rys. (318). Żelazne blachy ścianek są przymocowane do układu 
jednakowych i równo odległych beleczek pionowych, czyli słupów, które się opierają na belce poziomej AB. Przyjmiemy, 
że nacisk wody rozkłada się równomiernie na słupy, że zatem każdy z nich znosi to samo 
obciążenie ciągłe Q, zmieniające się według prawa trójkąta' lub trapezu. To obciążenie 
przenosi się częściowo na podpory skrajne, po części zaś na belkę poziomą A B. Nacisk 
na tę belkę będzie oczywiście zależnym od jej sztywności. Gdyby była doskonale sztywna, 
t. zn. gdyby się nie uginała pod wpływem przeniesionych na nią nacisków, to każdy słup 
przedstawiałby się jako belka ciągła dwuprzęsłowa na stałych podporach. Nacisk na środ­
kową podporę byłby równy aQ, przyczem a oznacza spółczynnik zależny od położenia 
belki poziomej. Jeżeli ona podpiera słupy w połowie wysokości, to dla rozkładu obciążenia 

5według trójkąta, albo trapezu «= —. Dla każdego szczególnego przypadku działania O
obciążenia i położenia podpór można wogóle znaleźć a sposobami poprzednio wyłoźonemi 
i całe obliczenie słupów nie przedstawi trudności. W rzeczywistości jest zadanie znacznie 
zawilsze, ponieważ zwykle nie można pominąć ugięcia belki poziomej i przy obliczeniu 

Rys. 318

słupów trzeba uwzględnić poddanie się środkowej podpory, równe odpowiadającemu ugięciu y belki AB. To poddanie się 
wywoła zmniejszenie reakcji środkowej podpory o pewną wielkość yy, jeżeli przez y nazwiemy spółczynnik zależny od 
sztywności słupów i od rozmieszczenia podpór (§ 88). Przy dwóch równych przęsłach 

48 Et A
hs........................................................... (a)

jeżeli Ei Ii oznacza sztywność słupów, a ich długość. Nacisk przenoszący się na belkę poziomą przedstawi formuła:
R = aQ —yy................................................................................. (b)

Dla uproszczenia badania tej belki zastąpimy naciski skupione obciążeniem ciągiem. W tym celu rozłożymy każdą siłę R 
równomiernie na długości d, równej odstępowi słupów. Przy znaczniejszej liczbie słupów (jeżeli ich liczba nie mniejsza 
od 5), można otrzymany w ten sposób schodkowy rozkład obciążenia (rys. 246) zastąpić ciągłym; wówczas natężenie ob­
ciążenia w dowolnym przekroju belki poziomej przedstawi się wzorem:

aQ yy . , .4^4 ............................... <c>
Belka pozioma jest zatem w takich warunkach, jak pręt z końcami podpartemi, spoczywający na sprężystem podłożu i zgi­
nany obciążeniem równomiernie rozłożonem q. Dla wyznaczenia ugięć można użyć albo ogólnego wyrażenia (wz. 243), 
albo poprzestać na pierwszem przybliżeniu (wz. 242). Co się tyczy słupów, to słupy skrajne będą w warunkach bliskich 
belce ciągłej na stałych podporach. Dla słupa środkowego będzie poddanie się środkowej podpory największe, jeżeli oczy­
wiście wykluczymy przypadki, kiedy belka pozioma jest tak giętka, że przy zgięciu powstaje na niej więcej jak jedna pół- 
fala. To poddanie się podpory środkowej, a zarazem ugięcie środka belki poziomej f, może być w niektórych warunkach 
tak wielkie, że reakcja R, określona wzorem (b), otrzymuje wartość ujemną. W takim przypadku belka pozioma nietylko 
nie przynosi żadnej korzyści, ale nawet okazuje się wprost szkodliwą, gdyż powiększa naprężenia w środkowych słupach. 
Tego można uniknąć tylko należytym obiorem poprzecznych rozmiarów belki poziomej. Dlatego zwrócimy się do wzoru (b).

4 Szczegółowiej rozpatruje to zadanie „Kurs Tieorij Uprugosti" autora, cz. II, str. 16.
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Wstawiwszy w nim zamiast y przybliżoną wartość ugięcia (wz. 242) dla środka belki poziomej, otrzymamy wyrażenie 
reakcji środkowej podpory dla środkowego słupa w postaci:

albo, zważywszy, że w danym przypadku

R -aQ Yf-aQ ^Er kl* ’ 

^^EI

wyrażenie
4 Z4 

^Eld

przyczem dla skrócenia wprowadziliśmy oznaczenie:

^Eld '

W przypadku, gdy belka pozioma połowi długość słupów, jest
48 EJj i l \3 l 

ET \ ij d

(d)

(e)

Jeżeli znamy rozmiary belek, to możemy znaleźć £ i przy pomocy wzoru (d) wyjaśnić warunki działania słupa środkowego. 
Belka pozioma staje się bezużyteczną, gdy reakcja R wypada równa zeru, t. j. kiedy

1- uczyli p = ----J 4 —TT 3,6 (244)

R = aQ 1 — y

9 = %£ k = x.
d ’ d ’

1 +

1

^EId_

1 — -

TT 1 -|- p

W praktyce należy rozmiary belki poziomej obierać tak, aby odpowiadająca wartość p była znacznie mniejszą od wielkości, 
określonej wzorem (244). Jako przykład weźmiemy ściankę o konturze kwadratowym, złożoną z dziewięciu równoległych 
słupów, podpartych w połowie wysokości belką poziomą. Dla obliczenia spółczynnika p użyjemy formuły (e)', podstawiając 
w niej l:d — 10 i l = % Jeżeli dla słupów wziąć prolil U Nr 10 (Ą = 213 cm4), a dla belki poziomej profil ZE Nr 40 
(/ = 26100 cm4), to p — 0,040, a reakcja podporowa (wz. d)

R = 0,95 a Q = 0,594 Q.

W danym przypadku można przeto pominąć zgięcie belki poziomej i obliczać słupy przy założeniu podpór stałych. Jeżeli 
zmniejszyć sztywność belki poziomej i przyjąć np.

Z = 2020 cm4, to p = 0,520, a R = 0,565 a Q.

Teraz, dzięki ugięciu belki poziomej, zmniejszyła się reakcja R w porównaniu z przypadkiem poprzednim prawie o 40%. 
Wziąwszy belkę poziomą o tym samym przekroju, co słupy, otrzymalibyśmy dla owej reakcji wartość ujemną. W tych wa­
runkach staje się belka pozioma szkodliwą.

Bez wszelkich trudności można przybliżoną metodę zastosować i do przypadku, kiedy końce belki poziomej są 
utwierdzone. Przyjąwszy w pierwszem przybliżeniu, że belka zgina się według krzywej:

f i a 2nx y - 2

znajdziemy wielkość ugięcia J w środku rozpiętości przy pomocy wzoru (233)', skoro w nim zamiast q wstawimy wartość 
wyznaczoną z równania (c). Po prostych przekształceniach otrzymamy:

' ^^EI
1
3kr •

16 ^EI

Ten wynik różni się od wzoru (242), którym posługiwaliśmy się przy podpartych końcach bełki poziomej, tem, że zamiast 
wielkości , ,,

n'El p’
wchodzi weń wielkość

LZ ' ' ....................................................(245)

Wzór dla wyznaczenia środkowej reakcji środkowego słupa będzie zatem mieć postać:

*=“«?(>-..................................... l246»
Cały tok rachunku pozostaje zresztą taki sam, jak w poprzednim przypadku.

• Jeżeli układ słupów opiera się na dwu belkach poziomych, to nazywając ich ugięcia odpowiednio przez yi i ys 
znajdziemy łatwo dla pośrodkowych podporowych reakcyj słupów wyrażenia:

R. - aj Q~ YiJt — Yi'y2, Ri - ^Q~ y^ — y/y2.
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Stałe spółczynniki Ya' można znaleźć z rozważania zgięcia belki na 4 podporach i wpływu na to zgięcie poddania
się podpór pośrodkowych. Zastępując, tak jak w przypadku poprzednim, siły skupione obciążeniem ciągiem, znajdziemy, 
że każda z belek poziomych niesie obciążenie ciągłe zmieniające się według prawa:

7?q =

q = = <h — k^yi - k2

dla pierwszej belki;

dla drugiej belki.

Ograniczając się do pierwszego przybliżenia możemy przyjąć 
, . nx . . nx yx = f, sin -p y2 = A sin -y .

Do wyznaczenia ugięć fi i /, użyjemy wzoru (241)'. W nim trzeba tylko wstawić zamiast q wyżej napisane wartości. Wy­
konawszy całkowanie otrzymamy dla wyznaczenia fi i f^ równania:

2P /2I kt'hl\ _ 2P / 21 k2ftl k%'hl\
“ 2 2 r 11 n^ElKn^ 2 2 /‘

Mając /j i ft, możemy przejść do badania zgięcia słupów i do wyznaczenia Rt i R^.
Jeżeli mamy wiele belek poziomych (tworzących ze słupami całą sieć belek skrzyżowanych, rys. 319), to wskazany 

powyżej sposób obliczenia staje się niedogodnym; dla otrzymania rozwiązania przybliżonego postąpimy przeto w następu­
jący sposób: Obciążenie ciągłe, działające na ściankę, skupimy w punktach przecięcia się belek poziomych i pionowych.
Przez to usuniemy miejscowe zgięcie belek między dwoma węzłami, ale ogólny cha­
rakter powierzchni ugięcia ścianki pozostaje niezmieniony. Jeżeli kontur ścianki różni 
się niewiele od kwadratu, to w pierwszem przybliżeniu można przyjąć, że przekroje 
powierzchni ugięcia płaszczyznami poziomemi i pionowemi są sinusoidami. Oznaczyw­
szy przez w ugięcie ścianki, możemy zatem powierzchnię ugięcia przedstawić anality­
cznie w sposób następujący:

f . nx . nyIV = f sin —sin —...........................................(247)

Wstawiając jc = const. = c, znajdujemy przekrój pionowy powierzchni ugięcia. Równa­
niem odpowiadającej krzywej będzie:

e . nc . ny w = f sin -y sin y .

Tak samo można znaleźć dowolny przekrój płaszczyzną poziomą. W ten sposób okre­
ślamy zgięcie wszystkich belek układu jedną wielkością f, czyli otrzymujemy układ o jednym stopniu swobody. 
Obierzmy / za spółrzędną układu i szukajmy odpowiadającej wartości uogólnionej siły. Przyrostowi spółrzędnej 8 f odpo­
wiada dodatkowe ugięcie ścianki: nx . ny8 u? = 8 ; sm -j- sm

Przy tej zmianie ugięcia obciążenie ciągłe o natężeniu q wykonywa pracę:

' nx • ny ri8 / y q sin -y sin -y dx dy.

Mnożnik przy 8f w tern wyrażeniu będzie szukaną uogólnioną siłą Równanie dla wyznaczenia f ma przeto postać:

. nx . ny , , q sin -y sm y- dx dy (248)

Pozostaje tylko znaleźć wyrażenie dla energji potencjalnej V jako funkcji f, co nie nastręcza żadnych trudności, ponieważ 
każda z belek ugina się podług określonej sinusoidy. Wyznaczywszy z rów. (248) wielkość f i otrzymawszy takim sposobem 
pierwsze przybliżenie dla ugiętej powierzchni ścianki, możemy przejść do obliczenia dodatkowych naprężeń wskutek miej­
scowego wygięcia belek, czego łatwo dokonać przy pomocy teorji belek ciągłych. Próbne rachunki wykazały, że znalezione 
w ten sposób pierwsze przybliżenie daje wyniki zupełnie zadowalające. Jeżeli potrzeba większej dokładności, to naturalnie
można się uciec do dalszych przybliżeń. W przypadku naporu hydrostatycznego nadaje się do drugiego przybliżenia
wyrażenie: _ . nx . ny . , . nx . 2ny iv = J sin -y- sm ~~~ + h sin — sin —~,/ Ą l li

uwzględniające wpływ nierównomierności rozkładu ciśnienia na wysokości ścianki1).

x) Dalsze szczegóły znajdzie czytelnik w dziele autora „Kurs Tieorij Uprugosti“, cz. II, str. 72.
[Biorąc ściśle należałoby jeszcze przy obliczeniu energji potencjalnej V uwzględnić skręcenie belek sieci, jakoteż 

współdziałanie blachy do tych belek przymocowanej. Obie okoliczności zwiększają sztywność całego układu, a więc zmniej­
szają naprężenia w belkach sieci, niekiedy w dość znacznym stopniu].



CZĘŚĆ V

PRĘTY ZAKRZYWIONE

ROZDZIAŁ XVI 

§ 133. ROZKŁAD NAPRĘŻEŃ

Zagadnienie zgięcia prętów zakrzywionych ograniczymy do tych przypadków, w których oś 
(linja środkowa) pręta jest krzywą płaską. Przyjmiemy nadto, że wszystkie siły zewnętrzne leżą 
w płaszczyźnie krzywizny i że w tej płaszczyźnie leży także jedna z głównych osi bezwładności 
każdego poprzecznego przekroju pręta'). Wtedy zgięcie osi pręta, które przyjmiemy za bardzo małe, 
będzie zachodzić w płaszczyźnie działania sił, czyli w płaszczyźnie obciążenia. Przy badaniu roz­
kładu naprężeń będziemy się posługiwać poprzednią metodą. Pręt utrzymywany w równowadze 
siłami zewnętrznemi Pit P2,... dzielimy na dwie części dowolnie poprowadzonym przekrojem mn,

Rys. 320

normalnym do zgiętej osi i rozważamy warunki równowagi jednej z tych 
części, np. lewej (rys. 320). Siły zewnętrzne działające na tę część mo­
żna sprowadzić do jednej siły R, przechodzącej przez środek ciężkości 
przekroju i do pary sił o momencie M. Te siły równoważą napięcia roz­
łożone w przekroju mn i zastępujące działanie odciętej części pręta na 
część rozpatrywaną. Zaczniemy od tego przypadku, w którym R = 0, t. j. 
gdy wszystkie siły zewnętrzne, leżące po jednej stronie przekroju mn, 
sprowadzają się do pary sił M. "L warunków równowagi wnosimy, że 
i siły wewnętrzne, działające w płaszczyźnie mn muszą się sprowadzać 
do pary o momencie równym co do bezwględnej wartości momentowi M,

a co do znaku przeciwnym. Hżeby znaleźć prawo rozkładu napięć w przekroju, wyjdziemy z hipo­
tez przyjętych już poprzednio przy badaniu zgięcia prętów prostych (§ 59). Przypuśćmy, że przy 
działaniu momentu zginającego M powstaną w płaszczyźnie przekroju poprzecznego tylko naprę­
żenia normalne, a ich rożkład jest taki, że przy zgięciu przekrój pozostaje płaskim. Wyniki, otrzy­
mane na podstawie tych hipotez, potwierdzono z dostateczną dokładnością tak badaniami teorety- 
cznemi, jakoteż i doświadczeniami, przytoczonemi poniżej2).

2) Teorję zgięcia prętów zakrzywionych, opartą na hipotezie płaskich przekrojów, rozwinięto głównie w pracach na­
stępujących :

Winkler „Formanderung und Festigkeit gekriimmter Kórper", Civilingenieur z r. 1858, str. 232; tegoż „Elastizitat 
u. Festigkeit" r. 1867, str. 253;

Grashof „Theorie d. Elastizitat und Festigkeit", r. 1878, str. 251.

*) Zgięcie pręta zakrzywionego podług koła pod wpływem sił prostopadłych do płaszczyzny krzywizny rozpatruje 
K. Federhofer w pracy „Berechnung des senkrecht zu seiner Ebene belasteten Bogentragers". Z. f. Math. u. Ph. 62 Bd. 
z roku 1913.

Ob. także „Kurs Tieor. Uprug.", cz. II, str. 88.
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Wydzielmy z pręta dwoma nieskończenie bliskiemi przekrojami element klinowaty abcd 
(rys. 321). Pod działaniem momentu zginającego M obróci się przekrój cd, względem ab o pewien
kąt 8 dcp i zajmie położenie c'd'. Przy przyjętym kierunku 
momentu, który będziemy uważać za dodatni, powstaną w gór­
nych włóknach ciągnienia, zaś w dolnych ciśnienia. Po­
wierzchnia mn stanowić będzie warstwę obojętną, w której 
pierwotna długość włókien ds pozostaje niezmienioną. Na- 
zwijmy przez r pierwotny promień krzywizny, odpowiada­
jący łukowi mn, a przez dcp pierwotny kąt między prze­
krojami ab i cd, natenczas

ds = rdy.
Pierwotna długość dowolnego włókna pq, znajdującego się w odległości z 
od warstwy obojętnej, będzie równa (r + z)dcp. Wskutek zgięcia dozna to 
włókno wydłużenia bezwzględnego

Rys. 321

jego wydłużenie względne określi zatem wzór:
_ z. 8 dcp

e~ (r + z)dy ‘

Przyjmując, że włókna podłużne nie wywierają na siebie nawzajem uwagi godnego ciśnienia, mo­
żemy przejść łatwo od wydłużeń do odpowiadających im naprężeń:

c $dcp p = E r dcp (249)

Skoro otrzymane prawo rozkładu naprężeń normalnych przedstawimy wykreślnie (rys. 322), wy­
stawiając w każdym punkcie przekroju odcinek normalny x, równy odpowiadającemu naprężeniu,

to otrzymamy krzywą:

Rys. 322

z
r 4- z’

przyczem /I jest czynnikiem stałym. Naprężenia zmieniają się przeto we­
dług prawa hiperbolicznego, przyczem hiperbola ma asymptotę prostopadłą 
do ab i przechodzącą przez środek krzywizny O. We wzór (249) wchodzą 
, . . . . . . . 8 d cp „ . , .dwie nieznane dotąd wielkości r i Do lch wyznaczenia posłużą rów­

nania równowagi. Suma algebraiczna sił wewnętrznych w przekroju a b ma 
być równa zeru i ich moment względem dowolnej osi prostopadłej do płasz­
czyzny rysunku ma być równy momentowi zginającemu M; a zatem:

Zauważmy, że

8 dcp 1 z*dF—\ ------ = M .dcp JfF + Z

(a)

(b)

zdF— r zdF 
r+z ’

Druga całka na podstawie rów. (a) staje się zerem, a więc:

z^dF 
fF + Z

zdF=S = Fy 
F

. (250)

q qr — z. 8 d cp;

z

x = A

Tutaj oznacza S moment statyczny przekroju poprzecznego względem osi obojętnej, a y odstęp osi 
obojętnej od środka ciężkości przekroju (rys. 321).
Kurs wytrzymałości materjałów 16
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Wstawiając to w rów. (b), otrzymamy:
„ 8dv M
E~dV = s . (251)

a wzór (249) przybierze postać: _ M z
? ~ S ' r+z

Dla największego i najmniejszego naprężenia mamy tedy wzory:
M hx . M h2

P"“~ S7+h, 1 Pmi" S r-Y

9 Ob. Pf lei der er „Die Beanspruchung stabfórmiger Trager mit gekriimmter Mittellinie“, Zeitschr. d. Yer. d. Ing. 
z r. 1907, str. 209.

2) To zadanie rozwiązał najpierw prol. I. Jewniewicz; ob. „Rukowodstwo k’izuczenju zakonow soprotiwlenij stroi- 
tjelnych materjałów", r. 1868, str. 131. Z obcych autorów potrącają o tę kwestję np.:

Muller-Breslau w dziele „Die neueren Methoden der Festigkeitslehre", wyd. III, str. 208.
E. S. Andrews „Theory of stresses in crane and coppling hooks“, Drapers Company Research Memoirs I z r. 1904.
3) Pierwsze badania teoretyczne rozkładu naprężeń w zginanych krzywych prętach przeprowadził prof. Ch. G o ło­

wi n; ob. Izw. SPB. Techn. Inst. z r. 1881.
Przypadek zginania parą sił i siłą poprzeczną rozwiązał L. Prandtl; ob. kurs Fóppla, t. 5, str. 72, a później:
A. Timpe, Zeitschr. f. Math. u. Phys. z r. 1905, str. 348.
W rosyjskiej literaturze pojawiły się odnośne prace:
N. Mitińskiego: „Ob izgibie kriwych brusjew", Sborn. Inst. Inż. Put. Soobszcz. z r. 1900 i
S. Bełzeckiego: „Płoskaja zadacza teorij uprugosti w cilindriczeskich koordinatach", Izw. Sobr. Inż. Put. Soob. 

z r. 1906, str. 146.

. (249/

(252)

Widzimy stąd, że obliczenie naprężeń przy zgięciu wymaga uprzedniego znalezienia wielkości S, 
t. j. określenia położenia osi obojętnej. Jak zobaczymy poniżej, można tego dokonać bez szczegól­
nych trudności.

Jeżeli poprzeczne wymiary pręta są małe w porównaniu do promienia krzywizny, to wielkość z 
w mianowniku wyrażenia (a) można pominąć wobec r. Równanie (a) przekształci się wówczas na

zdF=0,
F

co wyraża, że oś obojętna przechodzi przez środek ciężkości przekroju. Z rów. (b) otrzymamy wtedy:
- Sdcp rM „ ~ , MdsŁ = j, albo oat = -r,dtp 1 ’ r El (253)

a formuła (249) dla naprężeń otrzyma postać taką samą, jak w przypadku zgięcia prętów prostych. 
W dalszym ciągu, przy rozpatrywaniu szczególnych przypadków, objaśnimy przy jakich warto­
ściach rozmiarów poprzecznych można bez znaczniejszych błędów zastąpić hiperboliczny rozkład 
linjowym. Takie zastąpienie upraszcza naturalnie obliczenia w znacznym stopniu.

Przy wywodzie podstawowego wzoru dla rozkładu naprężeń normalnych przyjęliśmy, że przy zgięciu włókna podłu­
żne nie wywierają na siebie nawzajem nacisku. W rzeczywistości jednak muszą zachodzić między włóknami ciśnienia, jak 
się o tem można przekonać drogą elementarnych rozważań. Wydzielmy z klinowatego elementu abcd (rys. 323), ograni­

czonego dwoma przekrojami poprzecznemi ab i cd, podłużne włókno pq. To włókno będzie roz­

Rys. 323

ciągane wskutek działania momentów M. Niechaj P będzie wielkością odpowiadających napięć. 
Te napięcia są normalne względem płaszczyzn przekrojów poprzecznych i przy geometrycznem 
dodawaniu dadzą wypadkową, skierowaną ku warstwie obojętnej. Zupełnie tak samo można się 
przekonać, że napięcia ściskające P', działające na końce włókna st, wydzielonego ze ściskanej 
części pręta, dadzą także wypadkową, skierowaną ku warstwie obojętnej. Te siły warunkują wza­
jemny nacisk włókien podłużnych, przyczem odpowiadające ciśnienia rosną w miarę zbliżania się 
do warstwy obojętnej. Wpływ tych napięć na rozkład naprężeń normalnych w płaszczyźnie prze­
kroju poprzecznego okazuje się niewielkim *) i w dalszym ciągu nie będziemy go uwzględniać. 
[Inaczej ma się rzecz z wpływem napięć poprzecznych na odkształcenie linji środkowej, co prawda, 
tylko w przypadku wyjątkowo smukłych kształtów przekroju, jak np. przekrój rurowy o cienkich 
ścianach]. Pozostawimy także bez rozpatrzenia kwestję wpływu odkształcenia całego przekroju 
poprzecznego na rozkład naprężeń normalnych2).

Ścisłe rozwiązanie zagadnienia rozkładu naprężeń w płaszczyźnie przekroju poprzecznego krzywego pręta posiadamy 
tylko w tym przypadku, gdy przekrój przedstawia wydłużony prostokąt8). Nazwijmy przez b i a zewnętrzny i wewnętrzny 
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promień zarysu krzywego pręta (rys. 324), przez px naprężenia normalne działające w płaszczyźnie przekroju poprze­
cznego, a przez pz naprężenia normalne, wynikające z wzajemnego działania na siebie elementów włókien podłużnych.
Wtedy dokładne rozwiązanie przedstawia się wzorami1):

4 M / 2 , p b a2 b2 b \

4M
(254)

Porównawcze obliczenia wykazały, że w przypadkach, kiedy wysokość przekroju b—

rozwiązanie przybliżone (wz. 249') różni się bardzo mało od powyższego ścisłego. Różnica obu 
formuł wzrasta z powiększeniem wysokości przekroju, ale zarazem staje się wątpliwą i ważność 
naszych rachunków. Tak bowiem dokładne, jak i przybliżone wzory, opieramy na założeniu, że 
rozpatrywany przekrój jest odległy od miejsca działania sił i że poprzeczne rozmiary pręta są 
małe w porównaniu do jego długości. Oba te warunki przestają się spełniać w miarę wzrostu 
wysokości przekroju; jednocześnie wywierają coraz większy wpływ naprężenia miejscowe, powsta­
jące w miejscu działania sił zewnętrznych i wywołujące znaczne zmiany w rozkładzie naprężeń, znalezionym poprzednio2).

Przy takich warunkach należy przywiązywać wielką wagę do doświadczalnego sprawdzenia otrzymanych wzorów. 
W pierwszych doświadczeniach, dokonywanych nad prętami zakrzywionemi, doprowadzano je do złamania i oznaczono 
wielkość obciążenia łamiącego8). Tą drogą można było znalez'ć wytrzymałość badanego pręta, jednakowoż to nie wystar­
czało do otrzymania nawet przybliżonego obrazu rozkładu naprężeń w zwykłych warunkach pracy krzywego pręta, ponie­
waż materjał przy wysokich naprężeniach, poprzedzających złamanie, przestaje podlegać prawu Hooke’a, wobec czego tracą

ważność formuły teoretyczne, znalezione powyżej. Dopiero późniejsze doświadczalne badania miały 
na celu sprawdzenie wzorów teoretycznych przez obserwację odkształceń pręta4). Dopóki materjał, 
zginanego pręta (taki jak żel. kowalne i stal) pracuje w granicach sprężystości, odkształcenia podleM 
gają prawu Hooke’a. Zboczenie od tego prawa wykazuje chwilę pojawienia się odkształceń trwałych 
w najbardziej wytężonem miejscu pręta. Wyznaczając dla tego miejsca wielkość naprężeń według 
wyprowadzonych powyżej wzorów i znając z przygotowawczych doświadczeń wartość granicy 
sprężystości badanego materjału, można osądzić stopień dokładności teoretycznych wzorów. Ten 
sam wynik można też osiągnąć przeprowadzając doświadczenia nad prętami o polerowanej powierz­
chni i wnioskując o przekroczeniu granicy sprężystości z pojawienia się linji Liidersa5). Bardziej 
szczegółowy obraz rozkładu naprężeń otrzymujemy na podstawie doświadczeń z prętami spo- 
rządzonemi z materjału przeźroczystego, np. ze szkła. Drogą optyczną można wówczas stwier­
dzić położenie warstwy obojętnej6) i znaleźć różnicę naprężeń p*  — pz w dowolnym punkcie. 
Poniżej zestawiono wyniki doświadczeń nad szklanym prętem o przekroju prostokątnym (rys. 325) 
wraz z odpowiadającemi wartościami teoretycznemi w pięciu punktach przekroju mn’).

*) Ob. autora „Kurs tieorij uprugosti“, cz. I, str. 110 (r. 1914).
2) Wpływem naprężeń miejscowych zajmuje się praca autora: „O raspredjelenij napriażenij w krugowom koleje* 

Izw. Kijew. Pol. Inst. z r. 1908.
8) Ob. C. Bach „Elastizitat u. Festigkeit", wyd. III, str. 476.
A. Fóppl „Mitteil. aus d. mech, techn. Labor.*, Miinchen, r. 1898, str. 36.
4) Ob. przytoczoną powyżej pracę E. S. Andrews’a.
Szczegółowem badaniem rozkładu naprężeń w hakach zajmuje się doświadczalna praca Preuss’a, Zeitschr. d. Ver. 

d. Ing. z r. 1911.
Ob. także „Mitteil. iiber Forschungsarb.*, Nr. 126.
5) Ob. M, A. Woropajew „Opredjelenie napr. i deform. w brusiach bolszoj kriwizny", Izw. Kij. Pol. Inst. z r. 1910. 
a) Ob. C o k e r „The Optical Determination of Stress*, Phil. Mag. z r. 1910, str. 740, tudzież Engineering z r. 1911, str. 565. 
Zasady optycznej metody badania stanu napięcia w ciałach przeźroczystych wyłuszcza praca W. Ł. Kirpiczewa 

w Wiest. Ob-a Technołogow z r. 1913.
7) Liczby zaczerpnięte z pracy I. Aue „Zur Ber. d. Spannungen in gekr. Staben unter. Anwend. d. opt. Methode", r. 1910.

Rys. 325

Punkt

Wartości teoretyczne
Wartości doświadczalneprzybliżone

px

dokładne
według hipotezy 

płas. przekr.
według hipotezy 
linjowego rozkł.

Pz Px — Pz px — Pz+A)
\ mm2 / P*

1 — 0,463 — 0,302 - 0,435 - 0,000 - 0,435 — 0,435
2 — 0,121 — 0,151 -0,115 - 0,086 - 0,029 0,000
3 + 0,050 0,000 + 0,046 - 0,071 + 0,117 + 0,109
4 + 0,155 + 0,151 + 0,145 - 0,034 + 0,179 + 0,163
5 + 0,224 4- 0,302 + 0,219 0,000 + 0,219 + 0,217

16*



244

Okazuje się, źe doświadczalne wartości różnicy px — pz zgadzają się bardzo, dobrze z wynikami obliczeń według 
wzorów dokładnego rozwiązania. Hipoteza płaskich przekrojów daje także dla wartości największych naprężeń wyniki za­
dowalające. Natomiast hipoteza linjowego rozkładu naprężeń prowadzi, przy obranych stosunkach wysokości przekroju do 
promienia krzywizny pręta, do znacznych błędów.

Dotychczas rozpatrywaliśmy stan napięcia w przekrojach poprzecznych krzywego pręta, wy­
wołany działaniem pary zginającej o momencie M. Teraz przyjmiemy, że oprócz pary działa 
jeszcze siła R, przechodząca przez środek ciężkości rozpatrywanego przekroju (rys. 326). Roz­

łóżmy tę siłę na dwie składowe: N, normalną względem przekroju i Q, leżącą 
w płaszczyźnie przekroju. O sile podłużnej N możemy przyjąć, że rozkłada się 

. A/w przekroju równomiernie i wywołuje względne wydłużenie włókien równe: pp. Kli- 

;' ! nowaty element pręta ograniczony dwoma przekrojami poprzecznemi ab i cd (rys. 326)
ri odkształci się tak, że przekrój cd zajmie położenie c'd', a ponieważ przyrosty dłu-
n gości włókien podłużnych są proporcjonalne względem odległości od środka 

krzywizny O, więc kierunek ćd' przejdzie przez punkt O. Przy takiem od­
kształceniu nie zmieni się promień krzywizny pręta, a tylko kąt dy mię­
dzy dwoma sąsiedniemi przekrojami poprzecznemi otrzyma przyrost ddq. 
Względne powiększenie kąta równa się widocznie względnemu wydłużeniu 
włókien, a zatem: * </ u

ódcp-dcp.A ...... (255)

Siła poprzeczna <2 wywoła naprężenia styczne, które jednakże grają podrzędną rolę przy zgię­
ciu krzywych prętów i dlatego zwykle nie bierze się ich w rachubę. W tych zaś przypadkach, 
kiedy naprężeń stycznych pominąć nie można, przyjmuje się w przybliżeniu, że prawo ich roz­
kładu w płaszczyźnie przekroju poprzecznego jest takie same, jak w przypadku prętów prostych.

§ 134. SZCZEGÓŁOWE PRZYPADKI ZGIĘCIA KRZYWYCH PRĘTÓW

Obliczenia naprężeń normalnych według wz. (249), wyprowadzonego na podstawie hipotezy
płaskich przekrojów wymaga, jak widzieliśmy, uprzedniego 
do czego służy równanie:

wyznaczenia

Tok obliczenia odległości r osi obojętnej od środka krzywizny przedsta­
wimy na szczegółowych przykładach.

Przekrój prostokątny. Dzieląc pole prostokąta (rys. 327) na 
elementy prostemi równoległemi do 00 i oznaczając przez u odległości 
każdego takiego elementu pq od osi 00, możemy rów. (a) przedstawić
w postaci

(u — r) du 
u

(1 - —) du = 0. 
\ u /

Wykonawszy całkowanie otrzymamy dla r wyrażenie:

h2—Ui = h 
Igih-lgu, l

* Ui
. (256)

położenia osi obojętnej,

Rys. 327

z którego, przy pomocy tablic logarytmów naturalnych, łatwo znaleźć wielkość r, a zatem i odle­
głość y osi obojętnej od środka ciężkości przekroju. Nie trudno okazać, że oś obojętna przesuwa 
się od środka ciężkości przekroju ku środkowi krzywizny i to tern bardziej, im mniejszą jest war­
tość stosunku p: h, jeżeli p jest odległością środka ciężkości przekroju od środka krzywizny. W ta-
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p 
h

Hipoteza płaskich 
przekrojów

Hipoteza linjo­
wego rozkładu

1

"O
 

T3
B 

3
5*

 
Q
)

M
 

X

II II To
 

*

^1^ 
* 

+ 
1

2 Pmax— 10,25„
Pmin = — 14,4 „

+ 12 „
— 12 „

3
Pmax = 16,1 „
Pmin — — 20,2 „

+ 18 „
- 18 „

4
Pmax — 22,2 „
Pmin — — 26,2 „

+ 24 „
- 24 „

10
Pmax — 58 „
Pmin — 62 „

+ 60 „
~ 60 „

blicy, umieszczonej poniżej, znajdują się wartości największych ciągnień i ciśnień przy różnych 
wartościach stosunku p: h, obliczone według wzoru (252). Obok nich zestawiono dla porównania 
wartości tychże naprężeń, obliczonych na podstawie formuły 
dla prętów prostych. Z tablicy widać, że dzięki hiperbolicznemu 
rozkładowi naprężeń, staje się różnica bezwzględnych wartości 
Pmax i Pmin bardzo znaczną przy małych wartościach stosunku 
p: h, że nadto wartość największego, bezwzględnie biorąc, na­
prężenia jest dla krzywego pręta większą, niż w przypadku pręta 
prostego o tym samym przekroju. Z wzrostem stosunku p: h 
znika różnica w rozkładach naprężeń między prętem krzywym 
a prostym; przy p : h = 4 zboczenia nie przekraczają 9%, a przy 
P : h = 10 tylko 30/0. Jeżeli poprzestaniemy na dokładności 10%, 
to, począwszy od p : h = 4 można obliczać pręty krzywe według 
wzorów wyprowadzonych dla prętów prostych ')• Takie pręty 
będziemy w dalszym ciągu nazywać „prętami o małej krzywi- 
źnie“. Z niemi mamy przeważnie do czynienia przy obliczeniu 
konstrukcyj inżynierskich, np. łuków, mostów łukowych, skle­
pień i t. p. Pręty, u których p: h < 4 spotykamy dość często w konstrukcji maszyn, np. jako haki, 
ucha, ogniwa łańcuchów i t. p. Takie pręty będziemy nazywać „prętami o wielkiej krzywiźnie" 
i będziemy je obliczać przy pomocy wzorów, wyprowadzonych z hipotezy płaskich przekrojów.

U

...u,
Hi

Rys. 328

Przekrój I (dwuteowy). Zupełnie tak samo jak dla prostokąta, można zna­
leźć położenie osi obojętnej i dla przekrojów złożonych z prostokątów. Dla przekroju 
dwuteowego np. o rozmiarach, uwidocznionych na rys. (328), przybierze rów. (a) po­
stać następującą:

zdF . I (u — r}dF (u—r) du , , ( U3(u — r)du , ,-— — \ \---------------H u2 \--------------- r b<r + z V u 1 u ) u 1JF Ju3 Ju2

Po wykonaniu całkowania i rozwiązaniu względem r otrzymamy:

bl h\ + b2 hą + b3 h3
bJg^ + Mg^ + hlg^Ul U3

“2 (u—r) du _ 0 
u

. (257)

Przy danych rozmiarach przekroju poprzecznego obliczenie wielkości r nie przedsta­
wia żadnych trudności. Rozmiary można też obrać w ten 
sposób, że wielkości największego ciągnienia i ciśnienia

będą sobie równe. W tym celu, jak widać z wzorów (252', trzeba uczynić zadość warunkowi:

u4 — r r —
u4 Ul

Przyjąwszy wielkości u4, Uj i obliczywszy r, znajdziemy z wzoru (257) potrzebne wartości 
stosunków między pozostałemi rozmiarami. W przypadkach, gdy środek ciężkości przekroju 
leży w środku wysokości, jest wartość napiężenia na wklęsłej powierzchni pręta większa, niż 
na wypukłej. Ażeby te naprężenia zrównać, trzeba środek ciężkości przekroju zbliżyć do środka 
krzywizny osi pręta. W przypadku przekroju I można to osiągnąć, obierając bt > b3.

Przekrój trapezowy stosuje się często w hakach (rys. 329). Równanie dla wyzna­
czenia r ma postać:

(u—r)dF , __ T__
-------------= 0, skąd r = „

F U \ —
JF U

• (b)

u, —W
Rys. 329

Zważywszy, że szerokość przekroju jest przy naszych oznaczeniach równa:

y = b1+(bi — h2)^—zaś dF^ydu, 
Ua— ut

*) Co się tyczy powstających przy tem błędów ob. Weyrauch’a „Bogentrager“, II wyd. z r. 1911, str. 32.

r

F
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otrzymamy z rów. (b): F

L U2—Ul J Ut
(258)

Zauważymy, że w rozpatrywanym przekroju mn haka działa oprócz momentu zginającego także siła podłużna N, równa 
ciężarowi podnoszonemu przez hak. Naprężenia wskutek siły podłużnej, rozłożone równomiernie w przekroju, należy zatem 

dodać do naprężeń, wywołanych działaniem momentu zginającego.
Kładąc w otrzymanym powyżej wzorze b1 = 0, wyznaczymy położenie osi 

obojętnej dla przekroju trójkątnego.
Przekrój okrągły. Szerokość przekroju w odległości § od środka (ry­

sunek 330) równa się: .——---------

Rów. (b) dla wyznaczenia r napiszemy przeto w postaci:

We wszystkich rozpatrywanych przypadkach określa odległość osi obojętnej od środka ciężko­
ści przekroju różnica

Y = p — r.
Jeżeli r mało się różni od p, to taki sposób obliczenia może prowadzić do znaczniejszych błędów 
w oznaczeniu wielkości y- Ta niedogodność da się usunąć w sposób następujący. Zamiast odległo­
ści z od osi obojętnej, wprowadzimy odległość

z' = Z — Y
od prostej równoległej do tej osi i przechodzącej przez środek ciężkości przekroju. Wówczas rów­
nanie dla wyznaczenia osi obojętnej przekształci się w ten sposób:

zdF {(z'+y)dF { z'dF t C dF
fF+z Jf p + z JfP + z JfP + z

Wprowadźmy oznaczenie:
£z'dF

....... (260)

przyczem F jest polem przekroju; natenczas:

dF _ 1 C pdF _ 1 C /!
fP + Z7 p JfP + z7 p Jf'

-^)dF=--F(l+<p). 
p+z'/ P v J

Wstawiwszy tę wartość w powyżej napisane rów. (c), otrzymamy:

P<P
1 + y (261)

Liczbę" <p można 
rozwinięcia:

C z'dF _
JfP + z'

znaleźć analitycznie lub wykreślnie. Przy wyznaczeniu analitycznem użyjemy

j.
P

z'(1 —— + ) dF.
F P P2 1

Otrzymany tą drogą szereg jest silnie zbieżny i przy 
obliczeniach można poprzestać na niewielu wyrazach. 
Np. dla przekroju prostokątnego o wysokości h
i szerokości b mamy:

1 \ z — \ z 
P Jf

z'8 )dF =

Rys. 331

z' z'*—I  
p P2

0*

2
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a stąd
1 / h \2 1 i h \* 1 / h \6

“ T'2p ’ + 5 ' 2p ’ + 7“ ’ 2p ' + ‘”

Podobnież znajdziemy dla przekroju kołowego:

T 4'2p'"^8'2p'"^64'2p'+“’

Dla konturów złożonych (rys. 331) można wyznaczyć wartość cp wykreślnie. W tym celu reduku­
jemy długość y każdego paska elementarnego przekroju w stosunku zz:(p+z') i otrzymujemy 
w ten sposób krzywą ABCDH, której rzędne po lewej stronie środka C będą widocznie dodatnie, 
a po prawej ujemne. Algebraiczna suma pól ABC A i CHDC jest oczywiście równa

Posługując się planimetrem, znajdziemy łatwo wartość cp.

§ 135. ZADANIE LAME’GO

Tę nazwę otrzymało zagadnienie rozkładu naprężeń w pierścieniu kołowym o przekroju pro­
stokątnym, narażonym wewnątrz i zewnątrz na równomiernie rozłożone ciśnienia. Można sobie 
wyobrazić ten pierścień wycięty z rury walcowej dwoma przekrojami poprzecznemi mn i pq 
(rys. 332, fig. a). Ponieważ pod działaniem ciśnień równomiernie rozłożonych będą odkształcenia 
i naprężenia we wszystkich przekrojach poprzecznych rury jednakowe, więc możemy się ograni­
czyć do rozpatrzenia pierścienia, którego wymiarem w kierunku osi rury jest jednostka długości.
Oznaczmy odpowiednio przez a i b 
wielkość wewnętrznego i zewnętrznego 
promienia, a przez pa i pb odpowiada­
jące ciśnienia. Dla określenia stanu na­
pięcia w jakimkolwiek punkcie o odle­
głości p od osi pierścienia, wydzielimy 
u tego punktu element abcd (fig, b) 
dwiema spółosiowemi powierzchniami 
walcowemi o promieniach p i p + dp, 
oraz dwoma przekrojami osiowemi, za- Rys. 332

mykającemi kąt dy. Dzięki symetrji
oddzielne punkty pierścienia przesuwają się przy odkształceniu tylko w kierunku promieni, a te 
przesunięcia są dla punktów równoodległych od osi jednakowe. Wobec tego kąty proste wydzielonego 
elementu abcd pozostają prostemi, a na jego ścianach bocznych nie będzie naprężeń stycznych. 
Naprężenia normalne na ścianach ab i cd, leżących w przekrojach południkowych, będą także 
z powodu symetrji równe; oznaczymy je przez px. Naprężenie normalne, działające na ścianę ad, 
odpowiadającą powierzchni walca o promieniu p, nazwiemy przez pz; wtedy naprężeniem na ścia­

nie przeciwległej bc, odległej od środka p + dp, będzie pz + dpz 
dp dp1). Między naprężeniami ob-

wodowemi px i radjalnemi pz zachodzfzależność podyktowana warunkami równowagi. Ażeby 
ją napijać rzutujemy siły działające na wydzielony element na kierunek promienia Ob i przy­
równywamy sumę rzutów do zera. Na ściany abicd działają siły normalne o wielkości px.dp. 1. 
Rzutując je na Ob, otrzymamy:

— pxdp. 1. d<p

b Na rysunku przyjęliśmy px i pz jako ciągnienia. Jeżeli z rachunku wypadnie dla któregokolwiek z tych naprężeń 
wartość ujemna, to będzie to znaczyć, że mamy do czynienia z ciśnieniem.
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Na ścianę ad działa siła pz.pdcp.l, a na ścianę bc siła skierowana w przeciwną stronę 
o wielkości:

(pz+ + dp) dy. 1 =pzpdcp. 1 4-pzdpdcp. 1 + ^ dp. pdcp . 1 J).

Rzutując te siły na kierunek promienia ab, znajdziemy:

pxdp dy . t + dp . p dtp. 1................................................(b)
w f-'

Z (a) i (b) wynika potrzebne nam równanie równowagi w postaci:'

+ .................................................... (c)

Drugie równanie, konieczne do wyznaczenia niewiadomych naprężeń px i pz, otrzymamy, biorąc 
pod uwagę odkształcenie pierścienia. Nazwijmy przez u przesunięcie w kierunku promienia jakie­
gokolwiek punktu, leżącego w odległości p od środka pierścienia. Ta wielkość będzie pewną 
funkcją zmiennej p. Jeżeli weźmiemy nieskończenie bliski punkt w odległości p + dp od środka, 
to jego przesunięciem w kierunku promienia będzie:

. du ,

d uElement promienia dp wydłuży się przeto o -^-dp, a wydłużenie względne w kierunku pro­

mienia określi wzór:
duO —— _  J • dp

Oprócz wydłużenia w kierunku promienia dozna element abcd także wydłużenia obwodowego ex 
Jego wielkość znajdziemy z warunku, że punkty leżące przed odkształceniem na okręgu o pro­
mieniu p, znajdują się po odkształceniu na okręgu o promieniu p4-u, a więc względne wydłużenie 
obwodowe ma wartość

u
- p •

Mając wartości wydłużeń ex i ez jako funkcji u, możemy wyrazić przez tę wielkość naprę­
żenia p* i pz. W samej rzeczy według § 17 będzie:

Px~ 1 — ^(ex+oez) - i_o8 ( p + ©dp ),
E ( । . E / du . u \ ’ ' ‘ ®

Pz - 1 —“ l-fjS ( dp p ) *

Wstawiwszy te wyrażenia w rów. (c), otrzymamy:

d*u 1 du u = o
dp* p dp p2

To równanie da się przedstawić w postaci: 
d / du u \ . du u-r— (-j—I---- ) = 0, a zatem —I----- = const.dp ' dp p 7 ’ dp p

Ostatniemu zaś równaniu czyni zadość:

u = 71 p + ,

*) Pominęliśmy wyraz dpz 
dp d p2 d <p. 1 jako nieskończenie mały wyższego rzędu niż inne.
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przyczem A i B są dowolnemi stałemi. Wyznaczymy je z warunków krańcowych dla naprężeń. 
W tym celu wstawimy zamiast u wartość w wyrażeniach (d) dla naprężeń i znajdziemy:

P»= i~ih(> + '’) + y(>-'’)h

Na zewnętrznej powierzchni pierścienia, t. j. przy p = b, staje się naprężenie p7 równe ciśnieniu 
zewnętrznemu, t. j. — pb. Podobnież na powierzchni wewnętrznej jest pz = — pa. Te warunki dają 
następujące dwa równania dla wyznaczenia stałych A i B:

Stąd:
n 1—0 a2pa-h2Pb o_l+° (pa — Pb)a2b2

E b2-a2 ' E " ~ b2 — a*
Wyznaczywszy stałe dowolne, przedstawimy wyrażenia dla naprężeń w postaci:

a2pa —haPb , (Pa — Pb)a*b*
Px b* — a2 + p8(b8 — a8) ’[

= a2pa —h2pb (pa —pb)a2h2....................................... ^262^
Pz b2-a2 p2(b2-a*) ’

Skoro w szczególności niema ciśnienia zewnętrznego, czyli pb = 0, to wzory dla naprę­
żeń przybierają postać:

_ paa2(b24-p2) _ a2 pa i b2 \
Px~ p2(b2~a2) b2-a2^p2^
_ _ pa a2 {b2 + p2) = _ a2 pa / b2 _ \ | ' ’ ’ ^263^

Pz ~ p2 (b2 - a2) b2 - a2' p2 ' ’ )

W tym przypadku są naprężenia obwodowe wyłącznie ciągnieniami. One osiągają największą war­
tość na wewnętrznej powierzchni rury, t. j. przy p = a, najmniejszą zaś przy p — b; 

, . b2+a2 , . 2 a2
(Px)max — _ a?P*'> (Px)min — _ g2 Pa’ ’ ' * * (264)

( \ \ _ a2 + b2
(Px)max • (,Px)min — n 2 •

Im mniejsza przeto grubość ściany rury, tern mniej nierównomiernie rozkładają się naprężenia 
obwodowe. Naprężenia radjalne wypadają wszędzie ujemne, są więc ciśnieniami. Te naprężenia 
znikają ńa zewnętrznej powierzchni, a stają się równe — pa na wewnętrznej powierzchni rury. 
Przesunięcie dowolnego punktu:

u = Ap -ł- — = 
P

1—5 
~E~

a2pa — b2pb 1+5 (Pa — Pb)a2b2 
b2~a2 ,p + E (b2-a2)p

W przypadku szczególnym, gdy pb = 0, powiększy się promień wewnętrzny o:
_ apa / b2+a2

E \b2—a2 . (265)

Przy działaniu tylko zewnętrznego ciśnienia mamy dla naprężeń następujące wzory: 
_ _ P*b2 Zi < a2> „ _ P*b2 (* a2\ MMPx b2 — a2\1 + p2/’ Pz b2 — a2 \ p2 / ' ’ ’ (266^

Odpowiadające zmniejszenie promienia zewnętrznego:
ó ( b.2.+ a2 _ g)................................................(267)

2 E ' b*-a* 1
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Przy pomocy wyrażeń dla 8t i 83 łatwo rozwiązać zagadnienie rozkładu naprężeń w ściankach składo­
wych rur walcowych. Takie rury stosuje się przy bardzo wysokieh ciśnieniach wewnętrznych, ażeby otrzymać ko­
rzystniejszy rozkład naprężeń obwodowych na grubości ścianki rury. Z wzoru (264) widać, że w ściance litej nie może
Wielkość (px)max

Rys. 333

w żadnym wypadku być mniejszą od pa, a powiększenie grubości ścianki ponad pewną granicę ma 
wpływ bardzo mały na wielkość naprężeń krańcowych. Materjał można lepiej wyzyskać, składając 
ścianę rury z dwu rur (rys. 233) o rozmiarach tak dobranych, aby przy zestawieniu powstały pewne
naprężenia początkowe. W tym celu bierze się promień we­
wnętrzny wierzchniej rury nieco mniejszy od promienia ze­
wnętrznego rury środkowej. Rury można na siebie nasunąć 
po uprzedniem ogrzaniu rury zewnętrznej do odpowiedniej 
temperatury. Przy ostyganiu kurczy się ta rura i w powierz­
chni przylegania obu rur powstaje ciśnienie p, ściskające rurę 
wewnętrzną, a rozciągające zewnętrzną. To ciśnienie wywoła 
skrócenie zewnętrznej średnicy rury środkowej, określone wzo-

rem (267) dla 8a i zwiększenie wewnętrznej średnicy wierzchniej rury o wielkość 
przedstawioną wzorem (265) dla 8t. Jeżeli przez 28 oznaczymy różnicę między 
temi średnicami, przyjętą przy sporządzeniu rur, to wielkość niewiadomego narazie 
ciśnienia p znajdziemy z warunku:

8 = ^+8, 

Stąd:

pb lb3-[-as ’ 
- ~e \b2—a2

2&2(c8—aa)Pb (c^+b3 , A _pb________ ______  
EW-b*̂  I E ' (b^-a^^-b2)'

*) Ob. Blumenfeld „Berechnung von gekriimmten Staben“,?’Zeitsch. d. V. d. Ing., r. 1907. 
Baumann, Zeitschr .Ad. Ver. deutschZIng. z r. 1908, str. 397.

E8 (ba-a2) (c2-b2)
2b2(c2- a2)

. (268)

Na rys. (334) przedstawiono wykreślnie rozkład naprężeń px dla następujących 
danych: a = 10cm, b=*  15cm, c=20cm, 8 -0,012cm i pa = 2000 Ag/cm2. Przy - 
jąwszy dla żelaza kowalnego E — 2.106 kg/cm1, znajdziemy z wzoru (268), że 
p = 260 kg/cm2. Pod działaniem tego ciśnienia powstaną w rurze wewnętrznej na­
prężenia ściskające px, których rozkład na grubości ścianki przedstawia krzywa

m

Rys. 334

kropkowana rs. W rurze zewnętrznej powstaną zarazem obwodowe ciągnienia o rozkładzie przedstawionym krzywą tu. Jeżeli 
rurę złożoną poddamy wewnętrznemu ciśnieniu, to powstające przytem obwodowe ciągnienia określa wzór (263). Na ry­
sunku przedstawiono prawo ich zmiany krzywą mnq. Sumując te naprężenia ze znalezionemi powyżej naprężeniami po- 
czątkowemi, otrzymamy rozkład uwidoczniony na rysunku zakreskowanem polem. Z tego przykładu widać jasno, jak można
wyzyskać lepiej materjał zewnętrznej rury, wywołując sztucznie naprężenia początkowe.

P b

§ 136. OBLICZENIE UCHA W POŁĄCZENIU SWORZNIOWEM I OGNIW ŁAŃCUCHÓW

Z wyniku poprzedniego paragrafu można skorzystać dla przybliżonego obliczenia elementów, 
przedstawionych na rys. (335) i (336). Główna trudność przy wyznaczeniu naprężeń polega tutaj 
na tem, że nie znamy prawa rozkładu ciśnień, przeniesionych przez walcowy sworzeń A SB na 
wewnętrzną powierzchnię ucha lub ogniwa. Rozkład ciśnień 
obrobienia, jakoteż od odkształceń obu stykających się czę­
ści. Przy obliczeniach praktycznych zadowalano się dawniej 

Rys. 335

bardzo grubem przybliżeniem, 
uważając połowę ucha za belkę 
podpartą w punktach C i obcią­
żoną ciężarem P, bądź to skupio­
nym, bądź też równomiernie rozło­
żonym wzdłuż 71B. Niektórzy pó­
źniejsi autorowie proponują obli­
czenie tych elementów jako prę­
tów krzywych, ale zasadniczą 
kwestję rozkładu ciśnień pomiędzy 

sworzniem a uchem załatwiają zupełnie dowolnie, przyjmując albo nacisk skupiony w punkcie S, 
albo obciążenie równomiernie rozłożone wzdłuż 71B. Czyniąc jedno z tych założeń, można znaleźć
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Rys. 337

łatwo tę wartość siły P, przy której musiałyby się pojawić trwałe odkształcenia i sprawdzić ten 
wynik drogą doświadczalną. W tym kierunku wykonano liczne badania ‘) z różnorodnemi uchami 
i ogniwami. Obserwacje chwili pojawienia się linij Liidersa na bocznej polerowanej powierzchni 
rozciąganej próbki pozwalają ustalić położenie przekroju niebezpiecznego i wyznaczyć obciążenie 
odpowiadające pojawieniu się odkształceń trwałych. Te doświadczenia wykazały całkowitą niezgo­
dność obliczeń z rzeczywistością i kazały poszukiwać bardziej zadowalających 
podstaw dla rachunku. Szereg doświadczeń nad modelami z gumy wykazał, że 
w miejscu przylegania do sworznia ucho się nie zgina, lecz odkształca tak, jak 
ścianka rury walcowej, narażonej na ciśnienie wewnętrzne, rozłożone równo­
miernie. Dlatego przy obliczeniu należy się uciec do wzorów Lame’go (264). 
Wielkość pa, wchodzącą w te wzory, można znaleźć w następujący sposób: 
Niechaj 2 a oznacza kąt środkowy, odpowiadający powierzchni przylegania 
(rys. 337), zaś c grubość ucha w kierunku prostopadłym do płaszczyzny ry­
sunku. Nacisk na element powierzchni, odpowiadający kątowi d<p, równa się paadyc. Rzutując 
te naciski elementarne na kierunek Os i przyrównywując sumę rzutów do siły rozciągającej P, 
znajdziemy :

Pa P
F= 2 \ pa a c d <p. cos 'p = 2 pa a c sin a, a stąd pa = ~------ •-----n rr

W praktyce mamy zwykle do czynienia z przypadkiem, w którym a = 90°. Wówczas:
P

Pa=2le‘ luL

Wstawiwszy otrzymaną wartość pa we wzór (264), otrzymamy wielkość największych ciągnień
obwodowych i możemy wyznaczyć tę wartość P, której powinno 
odpowiadać pojawienie się trwałych odkształceń i linij Liidersa 
ftżeby przedstawić o ile powyższa podstawa obliczenia odpowiada 
rzeczywistym warunkom pracy ucha, przytoczymy wyniki doświad­
czeń nad próbkami, przedstawionemi na rysunku (338). W tablicy 
oprócz danych doświadczalnych i wyników obliczenia według 
wzoru Lame’go, umieszczono także wyniki obliczeń, otrzyma­
nych przy założeniu: 1°) siły skupionej w punkcie S i 2°) ob­
ciążenia rozłożonego równomiernie na średnicy sworznia /IB. 
W obu ostatnich przypadkach traktowano ucho jako pręt zakrzy­
wiony i wyznaczono naprężenia na podstawie hipotezy płaskich, 
przekrój ów.Rys. 338

Typ 
ucha

Obciążenie odpowiadające chwili pojawienia się odkształceń trwałych 
w kg Granica 

sprężystości 
w kg/cm2a b l h Siła skup. Równom. obciąż. Wzór Łaniego Dane doświad­

czalnew cm

I
1 2 5,5 — 420 658 2400 2600 2000
1 3 5,5 — 1120 1500 3200 3600 2000
2 5 5 — 1600 2590 5800 6400 2000

II 1 2 — 4 353 526 2400 2600 2000

III
1 3 — 2,5 680 910 2720 w3000 1700
1 2,5 — 3 590 870 2900 3300 2000

Powyższa tablica wykazuje dobitnie, że ze wszystkich sposobów obliczenia zbliżają się naj­
bardziej do rzeczywistości wyniki, otrzymane na podstawie wzoru Lame’go. Ten wzór daje zado­
walające wartości dla największych naprężeń nawet w tych przykładach, gdy zachodzi nieścisłe

*) Ob. przytoczoną powyżej pracę M. A. Woropajewa. 
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przyleganie sworznia do wewnętrznej powierzchni ucha, co bywa wynikiem niedokładności przy 
praktycznem wykonaniu połączeń *). Przy obliczeniu ogniw zwykłych łańcuchów (rys. 339) kom­
plikuje się zadanie jeszcze i tem, że przekrój poprzeczny nie jest prostokątny, lecz okrągły. Sze­
reg odnośnych doświadczeń wykazał jednak, że i w tym przypadku można znaleźć siłę, odpowia­
dającą pojawieniu się pierwszych odkształceń trwałych przy pomocy powyższego sposobu. W tym 

celu zastępujemy przekrój okrągły prostokątnym o tem samem polu i wysokości 
• równej średnicy d. Szerokością zastępczego przekroju poprzecznego będzie zatem:

A ^d8 j ^d

zaś odpowiadającem ciśnieniem pa^ występującem we wzorze Lame’go będzie
\ ~ "1 P

\ 2 a c sin a d8 . F sin a
\ / —j—sinaV 7 .

"T? Wtedy na podstawie formuły (264) otrzymamy:

B"S3’ = = ............................... (269)tr—a2 r sina
Ten sztuczny sposób obliczenia nie daje, naturalnie, wyobrażenia o rzeczywistym rozkładzie na­
prężeń w rozciąganem ogniwie, lecz otrzymany wynik nie jest pozbawiony praktycznej wartości, 
ponieważ ostateczny wzór zgadza się dobrze z danemi doświadczalnemi.

i
Rys. 340

§ 137. ODKSZTAŁCENIE PRĘTÓW ZAKRZYWIONYCH
Przesunięcia poszczególnych punktów krzywego pręta pod działaniem sił zewnętrznych znaj­

duje się najprościej przy pomocy twierdzenia Castigliano’a. Do tego potrzeba wyrażenia dla energji 
potencjalnej pręta jako funkcji sił zewnętrznych. W tym celu obliczymy naj­
pierw energję nagromadzoną przy odkształceniu w klinowatym elemencie 
krzywego pręta, zawartym między dwoma nieskończenie bliskiemi przekro­
jami ab i cd (rys. 340). W ogólnym przypadku będą na ten element działać 
momenty zginające M, siły podłużne N i poprzeczne Q. Utwórzmy wyrażenie 
dla pracy tych sił przy ich powolnym wzroście od zera aż do wartości koń­
cowej. Moment M wywoła przyrost kąta dy o wielkość 6 dtp określoną wzo­
rem (251) i wykonywa przytem pracę:

Módtp _ M*dq _ M*ds , .
2 ...............................

Siła podłużna wywoła wydłużenie elementu w kierunku osi pręta. Odpowiada­
jąca energja wydłużenia równa się: N*ds

2EF........................................
Oprócz tego siła podłużna zmieni kąt dco o wielkość, określoną formułą (255). 
momenty pracę: Ndy _ MNds

M ' EF " EFp

Co się tyczy pracy siły poprzecznej Q, to obliczymy ją tak samo, jak dla pręta pryzmatycznego 
(wz. 186), ponieważ przyjęliśmy w przybliżeniu to samo prawo rozkładu naprężeń ścinających. 
Sumując, znajdujemy szukane wyrażenie dla energji nagromadzonej w elemencie pręta:

M*ds N2ds MNds k'Q*ds
d 2ESp 2EF^ 2FG ’

x) Zmniejszając promień zewnętrzny b i szerokość h w przypadku ucha typu Iii-go, można dojść do takiego kształtu, 
u którego bardziej wytężoną okaże się część ucha nieprzylegająca do sworznia. W tych warunkach będą miejscami nie- 
bezpiecznemi przekroje mn w miejscu połączenia ucha z częścią prostą. Dla wyznaczenia naprężeń niebezpiecznych trzeba 
wtedy rozpatrywać ucho jako pręt krzywy, a można zupełnie pominąć odkształcenie tej części ucha, na którą sworzeń 
wywiera nacisk bezpośrednio.

■ • • • (b)

Przytem wykonują
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Energję potencjalną całego pręta określi zatem wzór:

1Z Cs/ M2 N* MN k'W\,V V 2ESp + 2EF + EF<+ 2FG 'ds • • • • (2™)

Przy obliczeniu odkształceń w zagadnieniach praktyki mamy przeważnie do czynienia z prętami
o „małej krzywiźnie“. Wówczas można z wystarczającem przybliżeniem uprościć znacznie ogólne

wyrażenie dla energji potencjalnej, opuszczając dwa ostatnie 
wyrazy w nawiasach wzoru (270) i zastępując nadto w pierw­
szym wyrazie wielkość Sp przez zbliżoną do niej co do 
wartości wielkość momentu bezwładności przekroju poprze­
cznego 1). Formuła dla V przybierze tedy uproszczoną postać:

(271)

a więc taką samą jak dla pręta prostego. Na szczegółowym 
przykładzie poniżej rozpatrzymy wpływ tych uproszczeń na 
dokładność wyników.

Odkształcenie osi pręta będzie zupełnie określone, skoro
znamy dla każdego przekroju poprzecznego przesunięcie

jego środka i kąt obrotu przekroju. Dajmy na to, że trzeba zbadać odkształcenie pręta OB Ti, dol­
nym końcem utwierdzonego (rys. 341). Wyprowadzimy wzory dla zmiany położenia dowolnego prze­
kroju poprzecznego mn. Ażeby znaleźć kąt obrotu tego przekroju, powstający pod działaniem sił
zewnętrznych, trzeba dodanych obciążeń dołączyć fikcyjny moment M^ działający na przekrój mn 
i wyprowadzić pochodną energji potencjalnej pręta względem Mb. Podstawiając w ostatecznym wy­
niku Mo = 0, znajdziemy szukany kąt J<p0. Wyrażenie dla energji potencjalnej będzie miało postać;

{^(M+M^ N2 AM + MJN k'Q*i
~ 2 ESp 2EF + EFp 2FG laS’

Tutaj oznacza M moment zginający uwarunkowany danemi siłami zewnętrznemi, zaś wprowa­
dzony przez nas moment fikcyjny. Całkowanie musi się rozpościerać na część pręta między płasz­
czyzną utwierdzenia, a rozpatrywanym przekrojem mn, ponieważ tylko odkształcenie tej części 
ma wpływ na szukaną zmianę położenia przekroju. Stosując twierdzenie Castigliano’a otrzymamy:

= ęs/ jl n
Mo=o j0'ESp EFp . (272)

Gdybyśmy użyli przybliżonego wyrażenia dla energji potencjalnej, to szukany kąt obrotu przedsta­
wiałaby formuła:

. ^Mds ^=\^ET (212)'

Ostatni wynik stosuje się najczęściej w obliczeniach praktyki. Ażeby znaleźć przesunięcie środka 
przekroju mn w kierunku osi X-ów, trzeba do danych obciążeń dołączyć fikcyjną siłę Po mającą 
tenże kierunek. Wskutek tego przybywa w dowolnym przekroju moment dodatkowy Pp(y0—y) 
i dodatkowa siła podłużna P0cos<p. Przybliżony wzór (271) dla energji potencjalnej napiszemy 
teraz w postaci:

[M+P0(y0 y)]2 
2 El

[N + Po cos t)2 

2EF

. / dV

*) To wynika stąd, że przy — = 0, musi wzór (249) zgadzać się z wzorem (64) dla prostego pręta.
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Tworząc pochodną tego wyrażenia względem Po i podstawiając w końcowym wyniku Po = O, otrzy­
mujemy dla szukanego przesunięcia wzór:

s_ {’M(y„-y)ds Cs Ncosyds _ 
8X0 - X El------+ X EF

Mds _ 
~ET~

s Myds {™Ndx
o El Jo EF • (273)

W podobny sposób znajdziemy formułę dla przesunięcia punktu 71 w kierunku osi Y-ów, a mia­
nowicie :

. {‘Mds , {‘ Mxds , U‘Ndy
ya~ El +X El EF • (274)

O

Otrzymane wzory rozwiązują całkowicie kwestję odkształcenia krzywego pręta i sprowadzają wy­
znaczenie wielkości 8 cp0, d*,,  ^y0 do obliczenia kilku całek, co można wykonać drogą analityczną

*) Ob. Baumann „Einfaches Yerfahren zur Ermittlung der Formanderung ebengekrummter stablbrmiger Kórper", 
Z. d. Yer. d. Ing. z r. 1910, str. 1677.

r

Rys. 342

albo wykreślną1).
W szczególnym przypadku, kiedy pierwotna oś zakrzywionego pręta jest łukiem 

koła, można zamiast przesunięć poszczególnych punktów znaleźć równanie zgiętej osi 
pręta, analogicznie jak przy zgięciu belek prostych. Niech będzie łuk koła 71B (rysu­
nek 342) o promieniu a pierwotną osią pręta, która po zgięciu przybiera postać przed­
stawioną linją kreskowaną. Oznaczmy przesunięcia punktów osi w kierunku promieni 
przez y i napiszmy równanie linji ugięcia we spółrzędnych biegunowych o początku O:

r = f (?)> przyczem r = a + y .

Dla promienia krzywizny we spółrzędnych biegunowych mamy wzór:
r /H 2 1 3

. (d)

p = dr^ d2r
\dq>' d^

Podstawiwszy r = a 4- y i opuściwszy po rozwinięciu wyrazy, zawierające wielkości małe wyż­
szego rzędu 2

y dcp2’ ”• ’
otrzymamy a3 4- 3 a*y

a8 + 2ay - d cp2

Przyrost krzywizny osi pręta będzie więc równy:
। d2y

j___ 1 = y+ d^.
P a a2+3ay

Skoro w ostatnim wyniku pominiemy wyraz 3ay w porównaniu do a2, to, uwzględniając, że

otrzymamy
ds = adcp

pa a2

Z drugiej strony, z rozpatrywania odkształceń elementu 
jami poprzecznemi wynika:

d2y
ds2

pręta, zawartego między dwoma

• (e)

przekro-

1 _ dcp + ódcp
ds

d cp _ d dcp 
ds — ds

£
P a

Dla prętów o „małej krzywiźnie“ otrzymamy, pomijając wpływ siły podłużnej (wz. 253):
1 1 _ 4 d cp _ M
P a ~ adcp El ’
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a równanie zgiętej osi pręta przybierze postać1):

9 To równanie otrzymał najpierw J. Boussinesą; ob. C. R. t. 97, str. 843, r. 1883.
Rozwiązaniem całego szeregu zadań, odnoszących się do zgięcia prętów kołowo zakrzywionych, zajmuje się praca 

R. Mayera; ob. Zeitschr. f. Math. u. Phys. z r. 1913, t. 61, str. 246.
Zgięcie prętów kołowo zakrzywionych pod wpływem sił prostopadłych do płaszczyzny koła rozpatrywał już deSaint- 

V en ant; ob. C. R., t. 17 z r. 1843.
Ob. nadto pracę Kannenbergera w Oster. Woch. f. d. 6H. Baud. z r. 1912.
2) Ob. pracę autora: „Ob izgibie slogka iskriwlonnych stjerźniej“. Wiest. Ob-wa Technołogow z r. 1913.

El( d2y 
ds2 -M (275)

Przy a = oo przechodzi to równanie w równanie linji ugięcia pręta prostego (wz. 90).
W praktyce mamy niekiedy do czynienia ze zgięciem prętów lekko zakrzywionych, u których pierwotna strzałka ugięcia 

jest mała w porównaniu do rozpiętości. Przy działaniu na taki pręt sił poprzecznych można w podstawowem równaniu (275) 
pominąć drugi wyraz po lewej stronie i szukać ugięć tak samo, jak i w przypadku prętów pryzmatycznych. Jeżeli oprócz 
sił poprzecznych zginających działają na lekko zakrzywiony pręt i siły podłużne, to pierwotne zakrzywienie może mieć 
istotny wpływ na ugięcie, a dla oceny tego wpływu najdogodniej użyć przybliżonej metody, wyłożonej w rozdziale XV2). 
Oznaczmy przez y0 pierwotne ugięcie pręta, a przez y\ ich przyrosty pod wpływem sił zginających. Wtedy całkowite ugię­
cie w jakimkolwiek przekroju pręta będzie równe:

y=y0 + ji-
Przyjmijmy, źe mamy pręt w obu końcach podparty o długości Z, a początkowe zakrzywienie przedstawia szereg trygono­
metryczny : , . nx , . 2nxy0 = bi sin ---- 1- b.L sin — —

Zakrzywienie wskutek zgięcia można przedstawić wyrażeniem:
. nx . 2nxTi = aj sm — + a2 sin —*---- F ...

(f)

(g)

Wielkości at, av ... przyjmiemy za uogólnione spółrzędne, określające odkształcenie pręta. Przedstawmy energję poten­
cjalną zgięcia i wzajemne zbliżenie końców pręta przy zgięciu w postaci funkcyj obranych spółrzędnych. Na podstawie 
wzoru (225) otrzymamy dla energji potencjalnej zgięcia wyrażenie:

Zbliżenie końców pręta wskutek zgięcia równa się, na podstawie ogólnego wzoru (226):

a Z 1
2

n2 
TT ri2 a. n (h)

Przyjmijmy, źe na nasz pręt działa równomiernie rozłożone obciążenie q i podłużna siła rozciągająca S. Jeżeli jakiejkolwiek 
spółrzędnej an udzielimy przyrostu S an, to siły zewnętrzne wykonują przytem pracę:

a l . nnx , d8Z8 an \ q sin —j— dx — S —— 8 an = 8 an
Jo ' da"

. nnx , n2 „ r
q sin —j— dx — S n2 (an + bn) . 

o '
Czynnik przy 8 an przedstawia tutaj uogólnioną siłę odpowiadającą spółrzędnej an. Przyrównywując pochodną energji po­
tencjalnej układu względem uogólnionej spółrzędnej do odpowiadającej uogólnionej siły, otrzymujemy równanie:

El C1 . nnx n^n2 , .
---- — an = ą sm —— dx — 5 -j" (an 4 bn ),

z którego, po wprowadzeniu poprzedniego oznaczenia:

n2EI '

znajdziemy: PI „
\ q sin —=— dx

= 2P Jo_______ 1________ a2 bn
n n^EI n2(n2 + a2) n2+a2
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Wykonawszy całkowanie i wstawiwszy otrzymane w ten sposób wartości spółrzędnych w ogólne wyrażenie dla ugięcia,
otrzymamy: . nx

4ąP Sm T 
n^EI L l8(l2+«2) 33(32+a2) + -

,, . nx a/bi sin —j-

l2 a2 23 + a2 (k)

Pierwsza część tego wyrażenia zgadza się zupełnie z tem, cośmy otrzymali pierwej dla ugięcia prętów pryzmatycznych 
(ob. wz. c w § 127). Druga część określa wpływ pierwotnego zakrzywienia na działanie siły podłużnej.

Otrzymany wzór (k) zastosujemy do szczególnego przypadku. Niechaj np. pręt stalowy, w obu końcach podparty, 
o długości l = 150 cm i przekroju poprzecznym kwadratowym 1 cm X 1 cm, zgina się pod wpływem własnego ciężaru i siły 
podłużnej S = 100 kg. Pierwotne ugięcie niech przytem przedstawia równanie:

„„ . na n. . 2nx y0 = — 0,8 sm ----- 0,3 sin —;—l l

(Znak — wskazuje, że pierwotne wygięcie jest skierowane w górę). Podstawiwszy E = 2,2 . Wkglcrri1 i ql = 1,2kg znajdziemy:

SI2 
n^EI 1,25, s = 0,289 cm. n5 El

Wstawiwszy te wartości we wzór (k) dla ugięcia, otrzymamy:

yt = ( 0,129sin 0,001 sin —----- ...) -j- ( 0,444 sin -j—H 0,071 sm ——

Pierwsza suma przedstawia ugięcia pręta pryzmatycznego, druga zaś, złożona z dwu wyrazów, daje ugięcia uwarunkowane 
początkową krzywizną.

Jeżeli siłę podłużną zwiększymy 10-krotnie, to otrzymamy a2 = 12,5, a wzór (k) da nam:

yt = | 0,021 sin + 0,0005 sin 3 n x 
~T

..) + ( 0,740sin + 0,227 sin -y

Widzimy, że tutaj siła podłużna ma dominujący wpływ; ona znosi znaczną część początkowego wygięcia pręta.
Natomiast siła ściskająca dąży do powiększenia pierwotnego zakrzywienia pręta. Dla wyznaczenia ugięć można użyć 

poprzedniej formuły (k), zmieniwszy tylko znak a2.
Rozpatrzymy jeszcze przypadek, w którym siła podłużna nie jest zgóry dana, lecz powstaje wskutek tego, że końce 

zginanego pręta są unieruchomione. Przyjmijmy, że pierwotne zakrzywienie pręta da się przedstawić sinusoidą:

To = sm -j- .

Pod działaniem obciążenia równomiernie rozłożonego ugięcie wzrasta i pojawia się siła podłużna rozciągająca, która 
zapobiega wzajemnemu zbliżeniu się końców. Poprzestając na głównych członach wzoru (k), otrzymujemy dla ugięcia wy­
rażenie: .

_ 4ąP Sin l a2^ .
~ n^Ei ' Sm ~r ‘

Niewiadomą na razie wielkość a2 znajdziemy z warunku, że zbliżenie końców pręta wskutek zgięcia równa się wydłuże­
niu, wywołanemu siłą podłużną. Na podstawie wzoru (h) dla zbliżenia, otrzymamy:

(1+a2)2 1 + a2 • (O

4 o /4Tutaj /o = przedstawia przybliżone wyrażenie dla ugięcia pręta bez działania siły podłużnej; r zaś jest promieniem 

bezwładności przekroju poprzecznego. Wyznaczywszy z rów. (1) a2, znajdziemy siłę podłużną, a następnie ugięcia i na­
prężenia w pręcie.

§ 138. OBLICZENIE OKRĄGŁEGO PIERŚCIENIA

Kwesta oznaczenia odkształceń krzywego pręta ma praktyczne znaczenie w związku z roz­
wiązaniem zadań statycznie niewyznaczalnych. Jako pierwszy przykład weźmiemy obliczenie koło­
wego pierścienia o stałym przekroju, rozciąganego lub ściskanego siłami P, działającemi wzdłuż 
pewnej, np. pionowej średnicy koła (rys. 343). W takich, mniej więcej, warunkach będą się znaj­
dować okrągłe ogniwa rozciąganego łańcucha. Odwróciwszy zaś kierunki sił P, otrzymamy wzory, 
przydatne do obliczenia ścian rur walcowych, ściskanych między dwiema równoległemi płaszczy­
znami. Ze symetrji wynika, że tak przekroje poprzeczne aa i bb, odpowiadające średnicy pozio­
mej, jakoteż przekroje mn i pq, zachowują swoje położenie po odkształceniu, a stan odkształcenia 
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i napięcia wszystkich czterech ćwiartek pierścienia jest jednakowy. Rozpatrzmy ćwiartkę I. Prze­
krój mn będziemy uważać za utwierdzony, a na przekrój aa działamy siłami zastępującemi dzia­
łanie dolnej części pierścienia na górną. To działanie sprowadza się z po- 

Pwodu symetrji do siły -y i momentu o nieznanej jeszcze wielkości Mo. u
Wielkość znajdziemy z warunków odkształcenia obranej ćwiartki. 
Przekrój aa nie zmienił swego położenia, a zatem kąt obrotu Sep staje 
się dla niego zerem. Na mocy wzoru (272) otrzymamy tedy równanie:

n

8t(> ~ \JfSp + £Fp) pd'p ~ °‘

Moment zginający i siłę podłużną w dowolnym przekroju pierścienia, 
nachylonym do poziomej średnicy pod kątem cp, określą następujące wzory:

P PM = y p (1 — cos <p) + M0, N = y cos cp . . . (a)
Rys. 343

Wstawiwszy te wartości w powyższe równanie i wykonawszy całkowanie, otrzymamy:

albo, zważywszy, że S—Ff,

= 2 \ Jt TC p / • (276)

Jeżeli pominiemy wpływ siły podłużnej i wyjdziemy z przybliżonego wzoru (272)', to znajdziemy:

Mo = - ~ 4) = ~0,182/>p....................................... (277)

Z porównania otrzymanych wyników przekonywamy się, że wpływ siły podłużnej i przesunięcia osi 
obojętnej na wielkość statycznie niewyznaczalną Af0 staje się znacznym tylko w przypadku prętów

Wyznaczywszy łatwo znaleźć moment

p_ _ 
h

1 1,5 2 3

Y = 0,090 0,038 0,021 0,009
P

Błąd= 15,8% 6,7% 3,7% 1,6%

o większej krzywiźnie. Błędy przybliżonego wzoru 
w przypadku prostokątnego przekroju pierścienia o wy­
sokości h zestawiono w obok umieszczonej tablicy dla 
kilku wartości w stosunku p: h.

Dla wypadła nam wartość ujemna, co dowo­
dzi, że moment ten ma kierunek przeciwny przyjętemu 
na rysunku. To było do przewidzenia, jeżeli zważymy, 
że pod działaniem sił rozciągających P musi wzrastać 
promień krzywizny pierścienia w przekrojach aa i bb. 
zginający w dowolnym przekroju pierścienia przy po­

mocy ogólnego wyrażenia (a). Kładąc cp = — i wstawiając zamiast Mo wartość przybliżoną we­

dług wzoru (277), otrzymamy moment zginający dla przekrojów mn i pq:

W tych przekrojach osiągają naprężenia normalne wskutek zgięcia największą wartość.
Do obliczenia wydłużenia pionowej średnicy pierścienia użyjemy twierdzenia Castigliano’a. Dokładniejszem wyraże­

niem dla energji potencjalnej będzie w tym przypadku (wzór 270):

MN k'Qi \ 
j0\2ESp^2EF ' EFp + ; FG I d(p‘

Wstawiając za M, N i Q ich wartości:
M = ---- cos<p~^“p“)’ cos <p, Q = -j-sin<p

£ \ Tl p ] 4 4

Kurs wytrzymałości materjałów 17
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i tworząc pochodną energji potencjalnej względem P, znajdujemy szukane zwiększenie średnicy:

ESp l 4 » I p’ / p L ' P / 8 J 2C p l

Gdy pominiemy działanie sił podłużnych i poprzecznych, tudzież przesunięcie osi obojętnej y, to otrzymamy dla 8 nastę­
pujący prosty wzór:

, _^(2L_A)=0,49^Eli 4 n I ' El’

Ten wynik można otrzymać także przez całkowanie równania (275), które w danym przypadku ma postać:
d2y , y Pp / 1 coscp) .. d^y . Pp9 i 1 coscp)d? + ^--E7b--—b -ei H'

Łatwo się przekonać, że ogólną całką tego równania jest
P ps p p8

y = A cos cp + B sin <p + —cp sin cp------ .J ĄEI nEI

Stałe dowolne A i B wyznaczymy z warunku, aby stało się zerem przy cp — 0 i q> = ponieważ końcom średnicy 

poziomej i pionowej odpowiadają największe przesunięcia w kierunku promienia. Wówczas:

Pp9 , Pp3 . Pp8

Zmniejszenie średnicy poziomej równa się:
2(v)■*'<P = o El In

P o3 0,137 Li
zaś zwiększenie pionowej średnicy:

2(y) _A)=0i49^-p-, 
' A EI \ 4 nl ’ EI ’
T 2

zgodnie z otrzymaną powyżej formułą przybliżoną.
Rozpatrywany przykład zgięcia pierścienia stanowi najprostsze zadanie tego rodzaju. Dzięki symetrji mieliśmy do 

czynienia tylko z jedną zbyteczną niewiadomą Mo. Przy dowolnem obciążeniu pierścienia (rys. 344)

Rys. 344

będziemy mieć trzy wielkości statycznie niewyznaczalne, które obliczymy najłatwiej przy pomocy za­
sady najmniejszej pracy. Przecinamy pierścień w (teoretycznie dowolnym) przekroju mn. [Obieramy 
go oczywiście tak, aby rachunek możliwie uprościć]. Wzajemne działanie części po obu stronaeh 
przekroju można w najogólniejszym przypadku zastąpić siłami N, Q i parą o momencie M. Skoro 
znajdziemy te trzy wielkości, to obliczenie momentu zginającego, siły podłużnej i poprzecznej w ja­
kimkolwiek przekroju pierścienia nie przedstawi trudności. Przyjąwszy M, N i Q za zbyteczne nie­
wiadome, możemy utworzyć wyrażenie dla energji potencjalnej pierścienia w zależności od tych wiel­
kości i wyznaczyć je z równań: Qy QV dV

dM = Q’

Rys. 345

l91!^ _ Al 
pp ds -dH~ 0 EI

ds + (a)

§ 139. ŁUK DWUPRZEGUBOWY

Przyjmijmy, że przeguby podporowe luku, obciążonego układem sił pionowych, leżą w równej 
wysokości (rys. 345). Po rozłożeniu każdej z reakcyj podporowych na składową poziomą i pionową, 
możemy składowe pionowe wyznaczyć zupełnie tak samo, 
jak dla belki w obu końcach swobodnie podpartej, gdyż przy 
ustawieniu warunku momentów względem /ł lub B znikają 
momenty składowych poziomych. Dla obliczenia tych osta­
tnich daje statyka tylko jedno równanie, a mianowicie: 
suma rzutów na oś poziomą równa się zeru. Przy obecno­
ści samych obciążeń pionowych wnosimy stąd, że poziome 
reakcje są co do wielkości równe, a co do kierunku prze­
ciwne. Ich wspólną wartość H, zwaną „parciem pozio­
mem“ łuku, znajdziemy przy pomocy twierdzenia Castigliano’a. Zważywszy, że przy obliczeniu 
łuków mamy do czynienia z prętami o małej krzywiźnie, weźmiemy dla energji potencjalnej układu 
wartość przybliżoną (wz. 271). A zatem:
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Tutaj jest 81 przesunięciem odpowiadaj ącem uogólnionej sile H, t j. wzajemnem zbliżeniem obu 
przegubów. W szczególnym przypadku doskonałego ustalenia podpór jest 8/-O, a dla wyzna­
czenia H otrzymamy równanie:

..dM
dH, A dH^ A

o El EF ............................................
w którcm całkowanie rozciąga się na całą długość łuku. Moment zginający w dowolnym przekroju 
łuku różni się od odpowiadającego momentu Mo dla belki o tej samej rozpiętości i tern samem 
obciążeniu tylko o moment siły poziomej H. Oznaczywszy przez y rzędne osi [linji środkowej] 
łuku, możemy napisać:

M — MQ — Hy................................................................. (b)
Co się tyczy siły podłużnej N, to bez wielkiego błędu w końcowym wyniku możemy ją przyjąć 
za stałą na całej długości łuku i równą parciu poziomemu H. Wstawiwszy wartości M i N
w rów. (a)', otrzymamy:

a stąd:

M.yds Cy2ds 
El + J El

f M^yd^
J El

C y'1 ds , f ds
J ~ET +jef

J Cr

. (278)

W przypadku łuku 
prostszej postaci:

o stałym przekroju przedstawi się wyrażenie dla H w następującej

\ Moy ds
H = ~------------- . . . . . . . (278)'

\y2ds + r2s

jeżeli r oznacza promień bezwładności przekroju, a s długość osi łuku. Dla niezbyt płaskich 
łuków będzie r małe w porównaniu do y, wobec czego można pominąć drugi wyraz w mianow­
niku wzoru (278/ i napisać w przybliżeniu:

\ Moyds
= ............. ........................................................... (278)"

\ y2 ds

Ten wzór zastosujemy do przypadku, kiedy oś łuku jest parabolą o równaniu

n 4/ x)

a obciążenie jest równomiernie rozłożone na rzucie poziomym łuku. Wówczas:

^0 =52-X —~ = yX(/-X).

Z porównania wyrażeń dla Mo i y otrzymamy:

M =3Ł.^ 
O — g / ’

a po wstawieniu we wz. (278)" znajdziemy wyrażenie dla parcia poziomego:

H = ^................................................................. (279)

Tego wzoru można używać do przybliżonego wyznaczenia parcia poziomego H nietylko dla łuku 
parabolicznego, ale i dla łuków odcinkowych o innym kształcie.

17*



260

Powrócimy teraz do ogólniejszego rów. (a) i zastosujemy je do wyznaczenia napięć powstających w tuku 
wskutek zmiany temperatury luku o P *).  Jeżeliby jedna z podpór była ruchomą, to takiemu podwyższeniu tempe­
ratury towarzyszyłoby powiększenie odległości między przegubami o

*1 Kwestja naprężeń termicznych w związku z budową wielkich łuków mostowych z betonu łub żelbetu nabiera 
w naszych warunkach klimatycznych poważnego praktycznego znaczenia, wobec czego wypada zbadać dokładniej rozkład 
temperatury na grubości łuku. Niektóre daty doświadczalne w tej sprawie można znaleźć w interesującym artykule C. H 
Paul and Mayhew. Ob. Trans. Amer. Civil. Eng. Vol. 79 (r. 1915).

81 = alf,

przyczem a jest spółczynnikiem termicznego wydłużenia materjału łuku. Ażeby przesunięty przegub wrócił na miejsce, 
trzeba nań działać silą poziomą której wielkość znajdziemy łatwo przy pomocy twierdzenia Castigliano’a. Podstawiwszy 
w rów. (a):

81= alt, N=Ht i 
otrzymamy:

H,-,—. 
\y2ds , \ ds \ et + \ep

Całkowite parcie poziome, wywołane działaniem obciążeń pionowych i podwyższeniem temperatury określi przeto wzór:

J £ *
H^- '------------ r.......... ..............................................................................(280)

\ yids , \ ds
J + J

Obliczenie całek wchodzących w powyższe wzory dą się zastąpić konstrukcją wykreślną. Wielkości

\ M^yds • \ y2ds
V E7 1 J

przedstawiają momenty statyczne względem osi X-ów pewnych fikcyjnych obciążeń ciągłych o natężeniu i , 
działających na oś łuku. Wielkość

\ ~ \ [dla dość płaskich łuków]j Łr j tr 

można uważać za pole ograniczone krzywą, której rzędne są równe .

§ 140. LINJE WPŁYWOWE DLA ŁUKU DWUPRZEGUBOWEGO
Przy działaniu na łuk obciążeń ruchomych najdogodniej przeprowadzić obliczenie przy pomocy linij wpływowych. 

Zbadajmy najpierw wpływ położenia ciężaru P (rys. 346) na wielkość wywołanego nim parcia poziomego H. Przekrój 
łuku przyj mierny przytem za stały i zastosujemy wzór (278)'. Reakcjami pionowemi 

l będą przy obranem położeniu ciężaru:

MQ = —y~ x dla lewej części łuku, a 

P aMo — —j-(l — x) dla prawej części.

Wyrażenie dla parcia poziomego (wzór 278)' przybierze postać:

Pb\ . , Pa\ . , \ %yds-\------------(/ — y ds
H =----- --------- - --------- -----------------------

\ y2 ds + r2 s

Dla uproszczenia dalszych obliczeń zastąpimy element łuku ds przez element jego rzutu poziomego dx. Taka zamiana, 
jak wykazały szczegółowe obliczenia, wywołuje tylko nieznaczne błędy w końcowej wartości H. Wzór dla parcia poziomego 
napiszemy tedy w postaci: PbCa P a (* 1

-j-\ xydx + —\ (l — x)ydx
H =---- --------—---------- Al......................................................................................(281)

\ y2dx + rzl
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W szczególności dla łuku parabolicznego o równaniu (§ 139):
y = a(!-a)jl

znajdziemy po wstawieniu wartości y i wykonaniu całkowania:

. (282)

Otrzymane wyrażenie daje dla P = 1 szukane równanie linji wpływowej. Największa rzędna linji wpływowej odpowiada 
środkowi rozpiętości. Jej zmianę w zależności od stosunku f:l przedstawia załączona tablica. (Przy obliczaniu przyjęto 
r2=0,0004/2). Równanie linji wpływowej dla parcia poziomego można

. . . .. -i 5 / . a a2\znacznie uprościć, jeżeli zwazymy, ze czynnik — 1 -j- -y — yyj

zmienia się stosunkowo mało przy zmianie a od o do ~ (w grani-

5 25 \cach od -j- do ) i w przybliżeniu można jego wartość k przyjąć o 32 /

_L_ 1 _L
' 1 3

1
4

1 
5

1
Przy P= 1, = i 0,58

i
0,77 0,96

za stałą. (Dla przyjmuje się k = C,78, dla bardziej płaskich łuków k = 0,75). Wówczas:

kP----- (283)

Odpowiadająca linja wpływowa dla H jest parabolą. Linję wpływową dla momentu zginającego M 
w dowolnym przekroju łuku mn (rys. 347) wykreślimy, biorąc pod uwagę, że

M = Mo — Hya.

Rzędne szukanej linji wpływowej otrzymamy jako różnice rzędnych trój­
kąta ACB (lig. b), przedstawiającego linję wpływową dla Mo i wielkości 
Hya. Te ostatnie otrzymujemy, mnożąc rzędne dla parcia poziomego H 
przez stały czynnik ya. Siła poprzeczna Q w dowolnym przekroju łuku 
przedstawia się wzorem:

Q = Qo cos cp — H sin cp,

jeżeli Qo oznacza siłę poprzeczną dla belki prostej o tej samej rozpiętości, co łuk. Rzędne linji wpły­
wowej dla siły poprzecznej tworzy dla prawej części łuku różnica rzędnych prostej BC (rys. 348)

i wielkości H sin cp. W równie prosty sposób można skonstruować i linje wpływowe dla siły podłużnej, jeżeli zważymy, że

Rys. 347

Rys. 348

N = Qo sin cp 4- H cos cp.

§ 141. NAJNIEKORZYSTNIEJSZE OBCIĄŻENIE ŁUKU
Ażeby znaleźć ten rozkład obciążenia łuku, któremu odpowiadają największe naprężenia normalne w dowolnie obra­

nym przekroju mn (rys. 349), można, zamiast konstrukcji linij wpływowych, użyć t. zw. „linji oddziaływania". Ta linja jest
miejscem geometrycznem punktów przecięcia się obu reakcyj 
podporowych, wywołanych ruchomym ciężarem P. Jej rzędne 
v określa proporcja:

z której po wstawieniu wartości H z wzoru (282), otrzymamy 
równanie krzywej oddziaływania:

Jeżeli weźmiemy dla parcia poziomego uproszczone wyrażenie 
(283), to „krzywa oddziaływania" stanie się prostą równoległą 
do osi X-ów. Jej równaniem będzie:

f
k Rys. 349

H =

P b y-.a = A-.H=^-.H, 
J l

y = i i JL _ Jł.
+ l P

y =
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Mając „krzywą oddziaływania" można bardzo łatwo wyznaczyć reakcje dla dowolnego położenia siły P. Znajdziemy teraz 
te miejsca, które należy obciążyć, aby górne włókna w przekroju mn doznawały największych ciągnień. Niech będą p i q 
krańcowemi punktami rdzenia przekroju. Poprowadźmy przez p prostą Ap, Bp i przedłużmy je do przecięcia się z „krzywą 
oddziaływania" w punktach p i a. Jeżeli ciężar leży po prawej stronie punktu p, to lewa reakcja podporowa łuku przetnie 
rozpatrywany przekrój mn poniżej punktu p i wywoła w górnych włóknach przekroju ciągnienia. To samo zajdzie i przy 
położeniu ciężaru po lewej stronie punktu a. Największe ciągnienia w górnych włóknach rozpatrywanego przekroju otrzy­
mamy przeto obciążając części łuku A'a i ^B'. Aby otrzymać największe ciśnienia w tychże włóknach, trzeba umieścić 
obciążenie między punktami a i p. Naprężenia w dolnej części przekroju mn można zbadać tym samym sposobem; trzeba 
tylko poprowadzić dwie proste łączące przeguby A i B z górnym punktem rdzennym q. Przedłużając te proste do prze­
cięcia się z „krzywą oddziaływania" znajdziemy szukane przedziały obciążenia.

§ 142. ŁUK BEZPRZEGUBOWY
Taki łuk ma oba końce utwierdzone, a zatem każdy z nich dostarcza następujących trzech niewiadomych: wielkość 

reakcji, jej kierunek i punkt działania. Trzy warunki równowagi nie wystarczają do wyznaczenia sześciu niewiadomych; braku­
jące trzy równania można jednak ustawić rozważając odkształcenia łuku. Jako wielkości statycznie niewyznaczalne obie-

rzemy moment utwierdzenia Ma, wielkość pionowej składowej A i poziomej 
składowej H reakcji lewej podpory (rys. 350). Te wielkości znajdziemy przy 
pomocy zasady najmniejszej pracy. Przyjąwszy, że ustalenie końców jest 
doskonałe, czyli, że punkt A nie może doznać przesunięcia, a przekrój A 
obrotu, mamy:

dV n dV n dV n z xdMA “ °’ dA “ °’ dH ° ' ' ’ ’ (a)

Dla energji potencjalnej możemy wziąć uproszczone wyrażenie (271). Wcho­
dzące w nie wielkości M i N łatwo przedstawić jako funkcje zbytecznych 
niewiadomych i sił zewnętrznych, a mianowicie:

M = Ma + Ax — Hy — M', N — — A sin <p - H cos <p + A
W tych wyrażeniach oznaczyliśmy przez M' moment względem środka przekroju mn danych obciążeń, działających na lewą 
część łuku, a przez N' rzut tych obciążeń na kierunek normalnej do przekroju mn. Wstawiwszy napisane wartości M i N 
w równania (a), otrzymamy po skróceniu przez wspólny czynnik E:

,, \ ds . „( xds rĄ yds { Mfds
Ma + 7---

Ma

Ma

( xds . n\x2 ds rt\xyds . „( sin2<pds , ., (sin <p cos cp ds 
p + ~ y r + j—+ f

’) E. Mórsch „Berechnung von eingespannten Gewólben", Schweiz. Bauz., XLV1I, Nr 7 i 8.
R. Schónhofer „Statische Untersuchung von Bogen- und Wólbtragwerken" r. 1908.
2) W rosyjskiej literaturze jest poświęcona tej kwestji praca S. Bełżec ki ego: „Racionnalnyja formy spłosznych 

uprugich arok“, r. 1905.

N' sin <p ds 
F . (284)

yds „\xyds Ay^ds „ ( sin <p cos ds cosa<pds 
T + M t “ H\ / ~ ---- F----------- ------------ F-----=

M'yds \ N'cosyds i _

Wyznaczenie zbytecznych niewiadomych sprowadza się w ten sposób do rozwiązania trzech równań linjowych. Główna tru­
dność rozwiązania polega na wielkiej ilości pracy rachunkowej przy wyznaczeniu całek określonych, wchodzących w po­
wyższe równania. Liczbę całek można zmniejszyć znacznie przez odpowiedni obiór spółrzędnych1), a żmudny rachunek da
się zastąpić konstrukcjami wykreślnemi. Te sposoby, mające 
wielkie znaczenie praktyczne, głównie przy obliczeniu sklepień 
kamiennych i betonowych, stanowią przedmiot wykładu statyki 
budowli, gdzie także porusza się ważną kwćstję najkorzystniej­
szego kształtu łuku lub sklepienia2).

Tutaj objaśnimy niektóre z uproszczeń w przypadku dzia­
łania jednej siły skupionej na łuk symetryczny (rys. 351). Ma­
jąc rozwiązanie tego zadania, możemy łatwo skonstruować 
linję wpływowe dla wielkości statycznie niewyznaczalnych, 
a przy pomocy tych linij rozwiążemy kwestję naprężeń, po­
wstających w łuku pod działaniem ruchomego układu cięża­
rów ze sobą związanych. To bowiem zadanie wypada rozwiązywać przy obliczeniu mcsłów kamiennych i betonowych Przy 
konstrukcji linij wpływowych szczególnie korzystnem jest zastosowanie zasady wzajemności przesunięć. Jako zbyteczne nie­
wiadome przyjmiemy siły określające naprężenia w szwie kluczowym C. Ogół napięć, działających w pizekroju C, można 



263

sprowadzić do jednej siły i jednej pary sił. Punkt działania siły umieścimy w odległości c od wierzchołka C osi łuku, przy­
czem c obierzemy w dalszym ciągu tak, aby możliwie uprościć konstrukcję linji wpływowej. Rozłożywszy siłę na składowe 
poziomą i pionową i obrawszy dla sił i momentu kierunki, wskazane na fig. (b), sprowadzamy obliczenie do konstrukcji 
linij wpływowych dla H, V i Mo. Przy zastosowaniu zasady wzajemności przesunięć 
będziemy rzeczywisty stan układu, przedstawiony na rys. (351), porównywać z je­
dnym ze stanów, uzmysłowionych na rys. (352). Dla otrzymania tych pomyślanych 
stanów odrzucamy zbyteczne niewiadome H, V i Mo, zamieniając w ten sposób łuk 
na dwa oddzielne krzywe* pręty, utwierdzone dolnemi końcami w d i B, a zginane 
siłami równemi jednostce, działającemi na górne końce.

Do zastosowania zasady wzajemności przesunięć będą nam potrzebne prze­
sunięcia górnych końców C naszych krzywych prętów, oraz przesunięcia punktu m, 
odpowiadającego miejscu działania pionowej siły P (rys. 352). Te przesunięcia bę­
dziemy pojmować w uogólnionem znaczeniu. Tak np. przesunięciem, odpowiadają- 
cem uogólnionej sile V rzeczywistego stanu układu (rys. 351) będzie względne pio­
nowe przesunięcie punktów C dla każdego z przypadków, przedstawionych na ry­
sunku (352). Te przesunięcia oznaczymy przez 8vv; 8vh; 8vm . Pierwszy z wska­
źników oznacza, że mamy do czynienia z przesunięciem, odpowiadającem sile V. 
Drugi zaś wskaźnik objaśnia, jakiego typu siłą równą 1 to przesunięcie wywołano. 
Sile H stanu rzeczywistego będą odpowiadać w stanach pomyślanych zwiększenia 
wzajemnych odległości punktów O, które się przyjmuje jako niezmiennie połączone 
z końcowemi przekrojami C naszych prętów. Te przesunięcia oznaczymy przez; 
8hV; 8hh; 8hm. Uogólnionej sile Mo stanu rzeczywistego będzie odpowiadać wzglę­
dny obrót końcowych przekrojów C przy stanach pomyślanych. Odpowiadające kąty 
obrotu oznaczymy przez: 8mv; 8mh; 8mm. Nakoniec pionowe przesunięcia punktu m Rys. 352
przy stanach pomyślanych [rys. (352), fig. (a), fig. (b), fig. (c)] oznaczymy odpo­
wiednio przez: /v; /h; /m. Zastosujmy teraz zasadę wzajemności przesunięć do rzeczywistego stanu układu i do stanu po­
myślanego, który uzmysławia fig. (a). Ponieważ w stanie rzeczywistym nie zachodzi względny ruch obu części łuku w prze­
kroju C, przeto przesunięcia stanu rzeczywistego, odpowiadające siłom stanu pomyślanego, będą równe zeru. Praca sił 
stanu pomyślanego na odpowiadających przesunięciach stanu rzeczywistego staje się tedy zerem. A zatem ^będzie równą 
zeru i praca sił stanu rzeczywistego na odpowiadających przesunięciach stanu pomyślanego, czyli:

Mo 8mv + H8hv + V8vv + P/v = 0.

Porównywując w podobny sposób stan rzeczywisty ze stanami pomyślanemi, przedstawionemi na fig. (b) i (c) rys. (352) 
otrzymamy:

M08mh + H8hh + V8vh + Pfn — 0,.

Afo&MM + H8hm + V8vm + P[m = 0.

Przy pomocy warunków symetrji można się odrazu przekonać, że niektóre z przesunięć stają się zerami i uprościć przez 
to otrzymane powyżej równania do wyznaczenia zbytecznych niewiadomych. Weźmy pod uwagę pomyślany stan, przedsta­
wiony na fig. (a). Lewy pręt różni się od prawego tylko kierunkiem siły zewnętrznej, wobec czego przesunięcia odpowia­
dających punktów tych prętów będą zawsze co do wielkości równe, ale co do kierunku przeciwne. W takim przypadku 
przesunięcie 8vv, przedstawiające względne pionowe rozsunięcie punktów C, będzie równe podwójnemu ugięciu w prze­
kroju C lewego pręta, zaś przesunięcie 8mv i 8hv będą równe zeru, ponieważ poziomy odstęp między punktami O pozo- 
staje w danym przypadku niezmiennym, a względny kąt obrotu przekrojów C jest równy zeru. A zatem dla pomyślanego 
stanu (a) napiszemy [ob. wzory (272)', (273) i (274) dla przesunięć]:

PS P S PS P
8w — 2 \ xMds + 2 \ Ndy — 2\ x*ds -ł- 2 \ sincpdy

Jo EI Jo EE Jo EI Jo EE
8mv = 0
8hv = 0

W podobny sposób otrzymamy dla pomyślanych przypadków (b) i (c):

8vh — 8hv = 0,

Smh = 2
^Mds

\EI yds
EI ’ • (b)

ps
«. o\ (c+y)Mds8hh = 2 \ 1'----

Jo EI

s
1 Ndx
Jo^

PS psM ds _ o \ ys ds 0 \ cos <p dx
EI “ Jo^ Jo”^^
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8 VM = 8 MV = 0, 
ps J* x yds

8 HM = 8 MH = 2 \ ,
JO

-8 MM = 2 \ -^7-
Jo EI

Na podstawie tego przybiorą równania do wyznaczenia zbytecznych niewiadomych postać następującą: 

U8w + Pfv = 0, 
Mo 8mh + H8 hh + P/h = 0, ..............................

Mo 8 mm + H8 hm + P/m = 0
Pierwsze z tych równań daje:

(c)

(d)

V = —P-^.
8w

A zatem linja pionowych ugięć (mierzonych jako dodatnie w kierunku dodatniej osi Y) dla pomyślanego stanu (a) przedsta­
wia linję wpływową niewiadomej V. Konstrukcję linij wpływowych dla dwu pozostałych niewiadomych M^ i H można

X m

znacznie uprościć przez stosowny obiór odległości c, którą dotychczas pozo­
stawiliśmy nieoznaczoną. Dla c przyjmiemy taką wielkość, aby przesunięcie 8mh 
stało się zerem. Wówczas

'o
^£ = 0
El ’

Rys. 353 czyli początek spółrzędnych O leży w środku ciężkości osi łuku, jeżeli jako 
ciężar jednostkowy tej osi przyjmiemy w dowolnym przekroju 1/EI.

Przy takim obiorze odstępu c drugie i trzecie z równań (d) dadzą:

H = — P i M = — P 8hh 0 8mm

W ten sposób konstrukcja linij wpływowych dla H i M^ sprowadza się do wyznaczenia pionowych ugięć w przypadkach
pomyślanych, przedstawionych na fig. (b) i (c) rys. (352). Te ugięcia można obliczyć 
dla pionowych przesunięć. Umieściwszy początek spółrzędnych w punkcie m, którego 
ugięcia szukamy i obrawszy kierunki osi, sił i momentów według rys. (353), otrzy­
mamy dla pionowego przesunięcia w kierunku osi y wyrażenie:

przy pomocy ogólnego wzoru (274)

s ps
xMds l Nds sin cp

Jo EF
Pierwszy wyraz tego wzoru przedstawia ugięcie wskutek momentu zginającego, 
a drugi wskutek siły podłużnej. Wyznaczenia ugięcia można dokonać drogą anali­
tyczną lub wykreślną. W pierwszym przypadku sprowadza się zadanie do przybli­
żonego obliczenia całek określonych, w drugim zaś do całkowania wykreślnego. 
Przy wykreślnem rozwiązaniu możemy korzystać z tego, że pierwsza całka we 
wzorze (e) przedstawia moment względem punktu m pewnego obciążenia ciągłego 
osi sklepienia o natężeniu M[EI. Skoro połowę sklepienia (łuku) AC podzie imy 
na szereg klińców o grubości 8s, mierzonej na osi, a na środek ciężkości każdego 
klińca działamy pionową siłą o wielkości Mbs/El i wykreślimy dla tego układu sił 
równoległych wielobok sznurowy, to rzędne otrzymanego tą drogą pola momentów 
dadzą nam w określonej skali ') wartości ugięć wywołanych momentem M. Ugięcia 
wskutek siły podłużnej, przedstawione drugą całką wzoru (e) znajdziemy jako wypad­
kową sił pionowych, rozmieszczonych w sposób ciągły wzdłuż łuku Am o natężeniu

N sin ylEF.
Dla obliczenia przesunięć 8yv, 8hh, 8mm skorzystamy z wzorów (a), (b) i (c). Za­
warte w nich całki określone można zawsze z dostatecznem dla praktyki przybliże-

. (e)

y ■ fig. a

fis 4

Rys. 354

niem obliczyć przy pomocy wzoru Simpson’a lub Cotes’a. W ten sposób wyznaczają się wszystkie elementy, zapomocą 
których można wykreślić linję wpływowe dla obranych zbytecznych niewiadomych H, V i Mo. Ogólną postać tych linij 
przedstawia rys. (354). Zauważymy jeszcze, że sporządzając modele łuków i poddając je działaniu par oraz sił H i V,

c

s

7^

P

0 Wielkości Mb s/EI, które traktujemy jako siły, przedstawiają liczby oderwane, które wyobrażamy odcinkami. Jeżeli 
odległość biegunową przyjęto w tejże podziałce równą jednostce, to ugięcia wypadną w tej samej skali co rysunek skle­
pienia. Zmniejszając n-krotnie odległość biegunową, powiększamy tyleż razy skalę ugięć.
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można otrzymać linję wpływowe na drodze doświadczalnej, co przedstawia interes w przypadku konstrukcyj złożonych, 
np. przy' badaniu współudziału części konstrukcyjnych, związanych ze sklepieniem w ogólnej pracy łuku.

Naszkicujemy teraz ogólny tok rozwiązania zagadnienia naprężeń, powstających w lukach z utwierdzonemi końcami 
przy podwyższeniu temperatury. Do tego prowadzi najprościej twierdzenie Castigliano’a. Łuk uczynimy statycznie wyzna- 
czalnym, jeżeli utwierdzenie jednego końca, np. prawego, zastąpimy przegubem stałym, a drugiego przegubem przesuwał- 
nym (rys. 355). Wówczas łuk odkształci się swobodnie wskutek podwyższenia 
temperatury o t°, a jego rozpiętość l zwiększy się o alt. Dobierzmy teraz układ 
sił, jakim trzeba działać na łuk, aby przekroje podporowe łuku wróciły w pier­
wotne położenie. Przedewszystkum sprowadzimy w pierwotne położenie przegub/I, 
przy pomocy siły poziomej o Hi. Oś łuku zegnie się przytem i zajmie położenie A CB. 
Styczna do osi w punkcie A przejdzie z położenia A' T', równoległego do poło­
żenia pierwotnego A T, w położenie A T". Takiż sam obrót stycznej zajdzie 
i u prawej podpory. /Iżeby styczne końcowe wróciły w pierwotne położenie, mu- 
simy na końce łuku działać momentami Mt. W przypadku symetrycznego kształtu 
łuku będą te momenty równe i przy ich działaniu w punktach A i B nie po­
wstaną dodatkowe reakcje pionowe. Naprężenia w dowolnym przekroju łuku będą 
i sił poziomych Hp Dla momentu zginającego i siły podłużnej otrzymujemy wyrażenia:

M = Mi — Hi y, N= — Hi cos cp.

Rys. 355

wyznaczone wielkościami momentów Mi

Energję potencjalną układu można przedstawić jako funkcję tych wielkości. Zważywszy, że przy wspólnem działaniu M 
i Hi, jest przesunięcie odpowiadające uogólnionej sile Hi równe alt, a przesunięcie odpowiadające Mx jest równe zeru 
(gdyż ostateczny kierunek stycznej AT jest równoległy do A'T'), otrzymamy dwa równania:

Wstawiwszy w wyrażenie dla energji potencjalnej wartości M i AT znajdziemy:

(285)

1 J El j El J EF

Z tych równań wynajdziemy wielkości momentów podporowych i parcia poziomego, wywołanych podwyższeniem tempera­
tury łuku.

Dla sprawdzenia wyprowadzimy te same równania sposobem Mohr’a. Jako pierwszy stan obierzemy rzeczywisty stan 
układu, w którym pod wpływem podwyższenia temperatury powstały momenty podporowe Mi i parcie poziome H^ Odpo­
wiadające temu stanowi odkształcenia każdego elementu łuku, zawartego między dwoma nieskończenie bliskiemi przekro­
jami poprzecznemi określa zmiana kąta:

R. Mds (Mi-Hy)ds

i wydłużenie elementu
s , H cos <p ,ods— atds------ —ds.EF

Jako drugi stan przyjmiemy ten, w którym na oswobodzone końce łuku działają dwie wprost 
przeciwne pary sił równe 1 (rys. 356). Moment zginający w każdym przekroju poprzecznym 
łuku będzie równy 1, a praca sił drugiego stanu na przesunięciach odpowiadających stanowi 
pierwszemu przedstawi się formułą:

(Mi - Hty) ds 
El

Tę wielkość należy, stosownie do zasady prac przygotowanych, przyrównać do zera. W ten spo­
sób otrzymujemy pierwsze z równań (285). Dla ustawienia drugiego równania porównamy rze­

czywisty stan układu ze stanem, w którym na oswobodzone końce łuku działają dwie wprost przeciwne siły poziome 
równe 1 (rys. 357). Moment zginający dla dowolnego przekroju równa się — l.y, a siła podłużna —1 . cos cp. Praca sił 
tego stanu na przesunięciach stanu pierwszego przedstawia się wyrażeniem:

y (Mt — Hi y) ds 
El

Hi cos2 cp ds 
EF

Przyrównawszy je do zera otrzymamy drugie z równań (285).
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§ 143. ŁUK PARABOLICZNY O KOŃCACH UTWIERDZONYCH (BEZPRZEGUBOWY)
W przypadku płaskiego łuku parabolicznego o stałym przekroju można uprościć ogólne równania (284) dla wyzna­

czenia zbytecznych niewiadomych, przyjmując w przybliżeniu:
ds = dx, cos cp = 1, sin <p = 0, N' = 0.

Wtedy:
Cs ds C dx l Cs ds dx P

AS Al As Al
i x2ds x2dx _ P 1 y ds  y y dx _ 2 fl

ds (* dx _ fl2 ( Sy‘żds _ C‘ y*dx 8 f2l 
^T~\xy~r-3T’ -15-'

Wstawiwszy te wyniki w równania (284), otrzymamy:
/ 2 1 C1

Afn + Zl4-4wf = 4-\ M'dx,

2 2+ - Al-Hf = 2 \\ M xdx
Jo

2 / , 45 H \ C1 3 C
15 H l T p ) ~ M , M dX 2 \

Odejmując trzecie równanie od pierwszego, znajdujemy wyrażenie dla parcia poziomego:

M'ydx;

odejmując zaś od drugiego równania pierwsze, mamy:

/i p ę1 c1
-ŁŁ = 2 \ M'x dx - l \ M' dx.

6 Jo Jo
Nakoniec dla momentu Mh otrzymamy (z pominięciem wyrazów opatrzonych czynnikiem -p- ) wyrażenie:

9 C* 6 C* 15 C1
Mf\ = -r\ M'dx-^ \ M'xdx-^\ M'ydx.

1 Jo 1 Jo 2H Jo
Gdy w szczególności na łuk działa tylko jedna siła skupiona P, odległa od pionowych podporowych 

odpowiednio o a i b (a -p b = 1), to wielkość M' jest równa zeru dla lewej części, dla prawej zaś = P (x — a). Wtedy:
pi

M' dx = p\ (x 
a

a}dx=±-Pb\

p i pi
\ M’ x dx — P \
J 0 Ja

(x — a) x dx = 4 P (/ — a)2 (2 / + a), 
o

M'y dx = \ (l — x) (x — a) x dx = ^4 U — a)8 (/ + a).
0 * Ja 01

Wstawiwszy te wartości w znalezione powyżej wyrażenia dla wielkości statycznie niewyznaczalnych znajdziemy:

15 ai(l — a)2P = Za^b^P 15
4 ’ ns /1 . 45 H i “ /8 ’ ftf/i । 45 r2 \8H1 + Tp/

_ (/—a)2 (/+ 2a) P P — 3a2/ + 2a8/i p / — p r*,

Mn = - _p=_^.p,{i_S‘\

. (286)

Na podstawie tych wzorów można skonstruować linje wpływowe dla zbytecznych niewiadomych, a przy ich pomocy można 
także znaleźć linje wpływowe dla M, N i Q. Dla wyznaczenia najniekorzystniejszego obciążenia łuku użyjemy z korzyścią 
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„krzywej oddziaływania". Rzędną Ji jakiegokolwiek punktu E tej krzywej (rys. 358) wyznaczymy z warunku, że całkowita 
reakcja lewej podpory przechodzi przez ten punkt. Ta reakcja jest wypadkową z momentu Mn, oraz sił zł i H, działających 
w punkcie A, a zatem:

Mn 4- A a — Hyt = 0.
Stąd:

Mn 4-A a

Wstawiając tutaj wartości Mn i 41, znalezione dla łuku parabolicznego, otrzymamy: 
hi 45 r2 \Ti = | (1+^77)/........................................................................(287)

Linja oddziaływania jest więc w danym przypadku prostą A' B', równoległą do osi X-ów. Ta linja nie wystarcza jeszcze 
do wyznaczenia reakcyj wywołanych danem obciążeniem, albowiem punkty działania całkowitych reakcyj podporowych 
nie schodzą się z końcami A i B łuku. Dla znalezienia kierunku reakcji
obliczymy tg kąta, jaki reakcja tworzy z osią X-ów, a mianowicie:

* 71 4 / Z + 2a 
a2

Równanie linji działania reakcji lewej podpory napiszemy tedy w postaci: 

, , 6 / 45 r2 \ , 4 z J, . 45 r2\ . Z + 2ay = y, + (®-a)tgY = y(i+TF) + =

_2f/ 45r» \[2lz 2(1-20)1
-W l1 + T75‘Hl>------------a----- + 5| ■ • 'W

Przy przesunięciu ciężaru zmienia się a i otrzymamy coraz to nowe proste 
o równaniu (a). Ich owiniętą znajdziemy, rugując parametr a z tegoż równania 
i równania:

n_2H 1 1 45 r2 H 4^ . 2(l — 2x)l 0~l5r+ Z +—I’

’) Winkler „Die Lehre von d. Elastizitat u. ...“, r. 1867, str. 293 
Weyrauch, „Theorie der elastischen Bogentrager".
Mehrtens, „Die Statik d. Baukonstruktionen", t. LI.
[Thuli i e, „Podręcznik teorji mostów", cz. II, Lwów, 1913].

Rys. 3i 8

które wypływa z (a) przez t óżniczkowanie względem a. Wynik rugowania jest następujący:

d-2^2] 
lx J10y — (288)

Nakreśliwszy krzywą owiniętą według tego równania i mając krzywą oddziaływania, znajdziemy łatwo kierunek reakcyj 
podporowych dla każdego położenia ciężaru. Wystarczy w tym celu z punktu E przecięcia się kierunku siły P z linją 
oddziaływania poprowadzić styczną do krzywej owiniętej.

Rozpatrzymy jeszcze naprężenia w dowolnym przekroju poprzecznym mn. Niechaj będą p i q krańcowemi punktami 
rdzenia przekroju. Poprowadźmy przez p proste pP i pa styczne do owiniętej, przecinające linję oddziaływania w punk­
tach p i a. Dla każdego ciężaru, leżącego po prawej stronie punktu p, przejdzie lewa reakcja podporowa poniżej p i wy­
woła w górnych włóknach przekroju mn ciągnienia. To samo można powtórzyć i odnośnie do ciężarów leżących po lewej 
stronie punktu a. A zatem dla otrzymania największych ciągnień w górnych włóknach przekroju mn, trzeba obciążyć 
łuk w przedziałach A' a i ^B'. Obciążenie przedziału ap wywoła w tychże włóknach największe ciśnienia. Ażeby rozwią­
zać kwestję rozkładu obciążeń dla otrzymania największych naprężeń w dolnych włóknach przekroju mn trzeba poprowa­
dzić styczne do owiniętej przez górny punkt q rdzenia przekroju. Dalsze szczegóły obliczenia łuków i sklepień można 
znaleźć w działach specjalnych1).



CZĘŚĆ VI

ROZDZIAŁ XVII

ZGIĘCIE CIENKICH PŁYT

§ 144. ZGIĘCIE PŁYTY PODŁUG POWIERZCHNI WALCOWEJ

Elementarna teorja zgięcia płyt ma wiele wspólnego z wyłożoną poprzednio toorją zgięcia prę­
tów. Wywody opierają się na pewnych założeniach upraszczających, które pozwalają drogą elemen­
tarną znaleźć wielkości ugięć płyty i powstających przytem naprężeń dla kilku przypadków szcze­
gólnych, mających większe znaczenie praktyczne. Będziemy rozpatrywać płyty o grubości h stałej 
i małej w porównaniu do długości i szerokości płyty. Płaszczyznę połowiącą grubość nazwiemy 

płaszczyzną środkową płyty. Ta płaszczyzna gra w te- 
orji zgięcia płyt taką samą rolę, jak warstwa obojętna przy 
zgięciu prętów. Wogóle będziemy rozpatrywać tylko ugięcia 
małe wobec grubości płyty h; to ograniczenie odpada jednak 
przy zgięciu według powierzchni walcowej. Przyjmiemy dalej, 
że każdy element prostolinjowy, prostopadły do płaszczyzny 
środkowej, pozostaje po zgięciu prostolinjowym i prostopa­
dłym do powierzchni ugięcia, t. j. powierzchni, która 
powstaje z płaszczyzny środkowej wskutek zgięcia. To przy­
jęcie odpowiada hipotezie płaskich przekrojów w teorji zgię­
cia prętów. Osie X i Y prostokątnego układu spółrzędnych 
obierzemy w płaszczyźnie środkowej, a oś Z skierujemy 
prostopadle do tej płaszczyzny.

Weźmy teraz pod uwagę przypadek, kiedy płyta o sta­
łej szerokości l i nieograniczonej długości w kierunku osi Y-ów 
(rys. 359) zgina się podług powierzchni walcowej o tworzą­
cych równoległych do osi Y. Warunki odkształcenia będą 

przytem we wszystkich przekrojach prostopadłych do osi Y jednakie, wobec czego możemy się 
ograniczyć do rozpatrzenia zgięcia skrawka mnpq o szerokości 1 (fig. a). Na skutek uczynionych 
powyżej założeń przekroje poprzeczne ab i albi tego skrawka (fig. b) pozostaną przy zgięciu pła- 
skiemi, a względne wydłużenie jakiegokolwiek podłużnego elementu s/, leżącego w odległości z od 
płaszczyzny środkowej, będzie równe:

z 
e-T’

jeżeli p oznacza promień krzywizny. Wyrażenie dla wydłużenia jest więc takie same, jak w przy­
padku zgięcia prętów, atoli wartość odpowiadających naprężeń będzie inna. Przyczyna tego jest 
następująca: Przy zgięciu pręta odkształca się przekrój poprzeczny w sposób uzmysłowiony na fig. (c).
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Przy zgięciu naszego skrawka takiego odkształcenia nie będzie, gdyż zapobiegają temu sąsiednie 
części zginanej płyty. Przy rozciąganiu lub ściskaniu nie doznają włókna podłużne odpowiadają­
cego zwężenia lub rozszerzenia poprzecznego, co może być tylko wynikiem pewnych naprężeń bo­
cznych. Oznaczmy odpowiednio przez px i py naprężenia normalne w płaszczyznach prostopadłych 
do osi X-ów i Y-ów. Na podstawie ogólnych wzorów (15) możemy napisać:

P* “ ।H" ^y), py 1_ $2 (®y +

Zważywszy, że w danym przypadku jest 
z . n — 1 6y — 0,
P

otrzymamy: E z gE z
P‘ = ^-T> p^r^-y-

Moment napięć normalnych, rozłożonych w przekroju poprzecznym rozpatrywanego skrawka, bę­
dzie równy:

C+2 E z*dz _ E h3 1 
p “ 1-^’12‘T

. (289)

Porównywując ten wynik z tern, co mieliśmy przy rozpatrywaniu zgięcia prętów (wz. 63), widzimy 
1 h3 różnicę tylko w tem, że zamiast momentu bezwładności poprzecznego przekroju równego —

wchodzi we wzór (289) nieco większa wielkość
1. h3

12(1 —o*) *

Dzięki połączeniu z sąsiedniemi częściami płyty okazuje się skrawek mnpq bardziej sztywnym 
od belki o tym samym przekroju. Dla uproszczenia wzorów wprowadzimy oznaczenie:

E h3 _r 
l — o* ’ 12 C . (290)

Wielkość C gra w teorji zgięcia płyt tę samą rolę, co sztywność B w teorji zgięcia prętów. Bę­
dziemy ją nazywać sztywnością płyty przy zginaniu walcowem, albo krócej walcową sztywno­
ścią płyty. Przy tem znakowaniu napiszemy wzór dla krzywizny w postaci:

1 M
P ~ C . (289)'

Tutaj oznacza M moment zginający odniesiony do poprzecznego przekroju skrawka o szerokości 1. 
Wstawiwszy znalezioną wartość dla krzywizny we wzory dla naprężeń, otrzymamy:

\2Mz . \2Mz
P* ~ ^3 1 Py ~ G ^3 •

Naprężenia px będą przeto takie same jak w belce o przekroju 1 X h. Atoli oprócz tego pojawiają 
się naprężenia py, zapobiegające odkształceniu przekroju poprzecznego. Takie naprężenia powinny 
działać na brzegach skrawka mnpq, aby zaszło jego zgięcie według powierzchni walcowej1).

§ 145. OBLICZENIE DŁUGICH PŁYT PROSTOKĄTNYCH
Jeżeli obciążenie ciągłe zginające długą prostokątną płytę nie zmienia swojego natężenia w kie­

runku długości płyty, to w miejscach, odległych od krótkich boków płyty, można bez wielkiego 
błędu przyjąć powierzchnię ugięcia za walcową. Wydzielając, jakeśmy to uczynili w poprzednim 
paragrafie, skrawek płyty o szerokości 1, możemy naprężenia px znaleźć dla tego skrawka tak

9 Postać powierzchni skrawka w przypadku, gdy niema naprężeń py, rozpatrzono w interesującej książce Searle’a: 
Experimental Elasticity, str. 50.
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samo, jak dla belki. Wszelako przy obliczeniu ugięć trzeba uwzględnić zwiększenie sztywności 
skrawka wskutek wpływu sąsiednich części płyty. Oznaczywszy przez u? ugięcie (rys. 359), mo­
żemy równanie różniczkowe linji ugięęia skrawka napisać w postaci (wz. 90):

= ................................................ (291)

Jeżeli krawędzie zginanej płyty mogą się swobodnie przybliżać, to obliczenie wszystkich elemen­
tów zgięcia nie przedstawia żadnych trudności. Zatrzymamy się na przypadku, kiedy zbliżeniu się 
krawędzi przeszkadzają dodatkowe ustalenia. To zadanie ma większe znaczenie praktyczne, ponie­
waż brzegi blach narażonych na zginanie przytwierdza się zwykle do mniej lub więcej stałych 
podpór (linjowych). W tych warunkach będzie wydzielony skrawek narażony także na działanie sił 
podłużnych, przeszkadzających wzajemnemu zbliżeniu się końców. Dla wyznaczenia tych sił sko­
rzystamy z niektórych wyników, otrzymanych przy rozpatrywaniu jednoczesnego działania na belkę 
sił podłużnych i poprzecznych (§ 127). Niech będzie S wielkością siły rozciągającej, przypadającej 

Sna skrawek o szerokości 1, a p = -— wielkością odpowiadającego ciągnienia. Oznaczmy tak samo, 

jak przy rozpatrywaniu zgięcia prętów, stosunek siły podłużnej do jej „wartości krytycznej* przez 
a’ (ob. str. 225 i 229). Uwzględniając wyrażenie dla sztywności walcowej, mamy: «

12(1 - o8) ST 12(1 -T) 
Ehs T T E h*

Wartość największego ugięcia znajdziemy, zależnie od sposobu ustalenia 
z następujących formuł:

f
f = dla końców podpartych (wz. 230),

. (292)

końców, według jednej

albo dla końców utwierdzonych,

przyczem f0 oznacza strzałkę ugięcia wskutek działania samych tylko sił poprzecznych; łatwo ją 
znaleźć w każdym szczególnym przypadku drogą całkowania równania (291). Dla obciążenia rów­
nomiernie rozłożonego np. otrzymamy:

, 5
" 384 C w przypadku podparcia końców, a

1 qP
384 C w przypadku końców utwierdzonych.

Wartość największego momentu zginającego w przypadku końców podpartych i obciążenia 
równomiernie rozłożonego określimy wzorem (§ 127)':

8 \ 1 + a2 / (293)

W przypadku końców utwierdzonych jest moment podporowy w przybliżeniu równy:

qP Sf ql*
12 2 12

^8 a8

. (294)

(Przy wartościach a2 > 2 lepiej użyć do obliczenia momentu podporowego wzoru 239). W ten spo­
sób sprowadza się zagadnienie zgięcia płyty o ustalonych krawędziach do wyszukania wielkości a2. 
Przy badaniu zgięcia prętów wyznaczaliśmy a2 z równania (240)':

a’(l + a>)« =v 7 4r8
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To równanie wyprowadzono przy założeniu, że końce pręta są przegibnie połączone z punktami 

bezwzględnie stałemi, że zatem zbliżenie końców -tt- (wz. 227), uwarunkowane zgięciem osi pręta, 

jest dokładnie równe wydłużeniu pręta wskutek siły podłużnej. Ale tego równania można używać 
tylko w tym przypadku, kiedy podłużne brzegi płyty mogą się przy zgięciu swobodnie obracać, 
a zupełnie się przytem nie zbliżają. Uogólnimy tedy nasze wywody przyjmując takie sposoby usta­
lenia, które dozwalają na pewne zbliżenie podłużnych krawędzi płyty. Dajmy na to, że takiemu 
zbliżeniu przeszkadzają sprężyste rozpory. W takim przypadku siła podłużna S, rozciągająca wy­
dzielony skrawek, będzie silą ściskającą dla rozpór. Jeżeli Ft oznacza pole przekroju rozpór, przy­
padające na skrawek o szerokości 1, to skrócenie rozpór będzie równe:

SI
EF, '

Dla wyznaczenia a* mamy więc warunek następujący: Zbliżenie końców skrawka wywołane zgię­
ciem równa się sumie z wydłużenia skrawka i skrócenia rozpór, czyli:

_(1 o).S/ SI
41 E.l.h + EF/

Pierwszy wyraz po prawej stronie powyższego równania jest opatrzony czynnikiem (1—o2), ponie­
waż przyjmujemy, że wydłużeniu środkowej powierzchni płyty w kierunku osi X-ów nie towarzy­
szy skrócenie poprzeczne w kierunku osi Y-ów. Wstawiwszy zamiast S i / ich wyrażenia przez a*, 
otrzymamy1): v2 1

= . (295)
1 +

Spółczynnik k, określony powyższem równaniem, nazywają „spółczynnikiem rozporu". Z powięk­
szeniem sztywności rozpór dąży ta liczba do wartości 1. Przy k = 1 zamienia się równanie (295)
na wyprowadzone poprzednio rów. (240)'. Zupeł 
nie tym samym sposobem otrzymamy d'a płyt 
z utwierdzonemi brzegami podłużnemi:

“T + = • • (2%)

Wielkość siły podłużnej S jest proporcjonalna 
względem a2 i jak widać z otrzymanych równań 
(^95) i (296) rośnie wraz powiększeniem Im 
mniejsza jest sztywność płyty i im większy sto­
sunek /: h, tern większy będzie wpływ siły po­
dłużnej na ugięcie i na wielkość naprężeń. Utwier 
dzenie podłużnych brzegów płyty zmniejsza f0 
kilkakrotnie, co się odbija silnie na wielkości siły 
podłużnej S. Na rys. (360) przedstawiono wzrost 
ugięć przy powiększeniu obciążenia równomiernie 
rozłożonego q od 0 do 1 kglcm*, działającego na płytę o szerokości / = 122 cm i sztywności 
C = 185.10s kg.cm. Proste I i II, wy kreskowane na rysunku, dają nam wzrost ugięć płyty w przy­
padku brzegów podpartych i utwierdzonych przy braku sił podłużnych S. Lin-je pełne V i II' przed­

*) Bez szczególnych trudności można ustawić równanie dla wyznaczenia a2 i w tym przypadku, gdy płyta podlega
oprócz zgięcia, nadto działaniu napięć rozciągających So, rozłożonych lównomiernie na podłużnych brzegach płyty. Jeżeli
S oznacza, jak pierwej, napięcie rozciągające w płycie po zgięciu, to napięcie ściskające w rozporach równa sig S—Ą, 

a odpowiadające względne skrócenie rozpór przedstawi wyraz: - „p. Wielkość S znajdziemy zaś z warunku:

{S-S0)l
4/ Eh EFt



stawiają wzrost ugięć płyty przy obecności sił podłużnych. Wielkość S obliczono przytem przy 
założeniu, że brzegi płyty zupełnie się nie przesuwają, że zatem „spółczynnik rozporu“ k jest 
równy 1. Przy brzegach swobodnie obracalnych (linje I i F) da się zauważyć już przy małych 

obciążeniach wpływ siły podłużnej i ten wpływ
rośnie szybko wraz z wielkością obciążenia. 
W przypadku brzegów utwierdzonych (linje II i IF) 
jest rola siły podłużnej nie tak znaczna.

Jeszcze dobitniej przedstawi się wpływ siły 
podłużnej przy różnych sposobach ustalenia brze­
gów płyty, jeżeli będziemy śledzić zmiany naj­
większych naprężeń powstających przy ugięciu 
płyty. Na rys. (361) przedstawiają proste I i II 
odpowiednio wzrost największych naprężeń przy 
podparciu i utwierdzeniu brzegów, jeżeli niema 
sił podłużnych. Wskutek obecności siły podłużnej 
idzie wzrost największych naprężeń powolniej 
i dla rozpatrywanej płyty przedstawia go krzywa 
I' w przypadku brzegów podpartych, a krzywa II' 
w przypadku brzegów utwierdzonych. W tym osta­
tnim przypadku pozostaje wpływ siły podłużnej 
niewielkim niemal do granicy sprężystości; zato
w przypadku brzegów podpartych gra siła podłu­

żna rolę zasadniczej wagi. Dzięki jej działaniu rosną naprężenia o wiele powolniej, niż przy kra­
wędziach swobodnie przesuwalnych i ostatecznie otrzymujemy wynik wprost przeciwny temu, 
jaki mieliśmy przy rozpatrywaniu zgięcia belek. Okazuje się mianowicie, że pod względem naprę­
żeń znajdują się płyty z utwierdzonemi brzegami w gorszych warunkach, niż płyty, u których 
brzegi podłużne mogą się obracać swobodnie.

Obliczenie długich płyt prostokątnych, narażonych na równomiernie rozłożone obciążenie q kg/cm2, ułatwią podane 
poniżej tablice I i II1). Tablica I odnosi się do przypadku płyty o brzegach podpartych i zawiera ciągnienia pi, wywołane 
siłą podłużną i największe całkowite naprężenia p2 wskutek jednoczesnego działania zgięcia i rozciągania. W rubrykach 
dla pt i p2 podano wartości naprężeń sprowadzonych, otrzymanych przez pomnożenie odpowiadającego względnego wy­
dłużenia przez spółczynnik sprężystości materjału (przy układaniu tablicy przyjęto E — 2,2 . 10® kg/cm2, o = 0,3). To są te 
naprężenia, z któremi mamy do czynienia przy obliczeniach na podstawie drugiej teorji wytrzymałości. Dla otrzymania 
naprężeń rzeczywistych trzeba liczby tablicy podzielić przez 1 — o2. Z równań (295) i (296) widać łatwo, że wielkość a2 
zależy przy określonem obciążeniu i przy określonym sposobie ustalenia brzegów, tylko od stosunku l : h. To samo da 
się wywnioskować i co do naprężeń na podstawie wzorów (293) i (294). Z tego powodu podano w tablicach naprężenia 
Pi i p2 w zależności od stosunku /: h, który zmieniano w granicach l: h = 80 do l:h = 240. Im ten stosunek jest większy 
i im większe jest obciążenie q, tern większą rolę grają siły podłużne. Co się tyczy spółczynnika rozporu k, to w tych 
przypadkach, w których zmniejszenie k wywołuje zrazu zwiększenie naprężenia, a potem jego zmniejszenie, podano w tabli­

cach największą wartość naprężenia przy zmianie k w granicach: -y- < k < 1.

2) Bliższe objaśnienie tej kwestji znajdzie czytelnik w przytoczonej książce I. G. Bubnowa, str. 593.

Tablica II odnosi się do przypadku długiej płyty prostokątnej z utwierdzonemi brzegami. Przy takim sposobie usta­
lenia zachodzą największe naprężenia na brzegach płyty. Badając przy pomocy przytoczonych powyżej wzorów zgięcie 
elementarnego skrawka, wydzielonego z płyty, znajdziemy, że przy małych obciążeniach, dopóki rozciągająca siła podłu­
żna, wywołana zgięciem, jest mała, moment podporowy ma dwa razy większą wartość od momentu zginającego w środku 
rozpiętości skrawka. Wraz z powiększeniem obciążenia rośnie stosunek momentu podporowego do momentu w środku 

4
rozpiętości. Cała rozpiętość wydzielonego skrawka da się podzielić na część środkową, zajmującą przeszło-^-rozpiętości2),

*) Te tablice zaczerpnięto z litografowanego kursu I. G. Bubnowa „Stroitielnaja mechanika korablja".
Tablice ułożone w zastosowaniu do pokładów mostowych znajdują się w pracy N. W. Tierpugowa, ob. Izw. 

Kijew. Pol. Inst. z r. 1908.
Szczegółowe studjum kwestji zgięcia długich płyt prostokątnych znajduje się w książce I.G. Bubnowa: „Stroitiel- 

naja mechanika korablja", t. II, str. 545.
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w której naprężenie nigdzie nie przekracza największego naprężenia w środkowym przekroju skrawka i dwie części skrajne 

obejmujące razem mniej jak rozpiętości, w których największe naprężenia przewyższają wielkość krańcowych naprę- 

żeń w środku rozpiętości. Tablica II zawiera sprowadzone naprężenia pu odpowiadające sile podłużnej rozciągającej i naj­
większe naprężenia pt wskutek jednoczesnego działania zgięcia i rozciągania w środku rozpiętości wydzielonego skrawka 
elementarnego. Największe naprężenia u podpartego brzegu płyty będą większe od jednakowoż w przypadkach stałego 
obciążenia płyty nie liczymy się zwykle z temi naprężeniami i dopuszczamy nawet pojawienie się odkształceń trwałych 
ii brzegu utwierdzonego. Skoro przy stałym wzroście obciążenia przekroczą naprężenia utwierdzonego brzegu płyty gra­
nicę sprężystości, to przy dalszem powiększeniu q będzie moment podporowy wzrastać słabiej, niż to wynika z wzorów, 
wyprowadzonych przy założeniu doskonałej sprężystości materjału, a brzeg płyty zajmie położenie pośrednie między poło­
żeniami odpowiadającemi swobodnemu podparciu i doskonałemu utwierdzeniu brzegu. Wówczas największe naprężenia 
w środku rozpiętości będą leżeć między odpowiadającemi wartościami p2, przytoczonemi w tablicach I i II, obliczonemi 
przy założeniu doskonałej sprężystości materjału.

TABLICA I
Brzegi płyty podparte

b

4=80 
n. h 120 / _ 

h 160 4=200 
n

4-= 240 
h

k= 1 *y0,5 k= 1 k = 0,5 k=l N
il o cn k = 1 Jr N
|| o cn k = 1 IIK

0,3 { Pi= 189 — i 380 275 510 390 615 480 710 555
Ps= — — 1060 1120 1075 1100 1095 1095 1130 1095

0,4 | Pi = 261 — 475 350 630 490 755 590 865 680
P2 = — — 1240 1300 1250 1285 1285 1260 1320 1270

0,5 | Pl = 325 220 570 425 740 575 880 690 1010 790
P2 = 1300 1410 1390 1460 1410 1435 1450 1415 1495 1415

0,6 | Pl = 385 270 655 495 840 655 1000 780 1140 895
P2 = 1450 1570 1525 1600 1550 1565 1600 1550 16651 1555

0,7 | Pl = 445 315 730 560 985 730 1110 870 j 1270 995
P2" 1590 1720 1645 1720 1680 1685 1740 1680 1820 1700

0,8 { Pl = 500 360 805 620 1025 800 1220 955 1385 1090
Ps = 1710 1850 1760 1835 1800 1795 1875 1800 1965 1835

0,9 { Pi = 555 400 875 675 1110 870 1320 1040 1500 1180
P2 = 1830 1970 1860 1940 1920 1900 2005 1910 2100 1955

1,0 | Pt = 610 455 945 730 1200 985 1415 1115 1615 1270
?2 = 1930 2080 1960 2035 2030 2000 2130 2010 2220 2060

1,1 { Pi = 660 485 1010 780 1280 1000 1515 1190 1720 1355
P2 = 2030 2185 2055 2130 2140 2095 2250 2110 2345 2155

1,2 | Pl = 705 525 1075 835 1355 1060 1605 1260 — —
P2 = 2130 2285 2145 2220 2245 2175 2360 2205 — —

1,3 | Pi = 755 555 1140 880 1430 1125 1695 1330 — —
Ps = 2220 2380 2230 2305 2345 2270 2465 2305 — —.

1,4 { Pi = 800 670 . 1205 930 1505 1185 1785 1400 — —
P2 = 2305 2465 2320 2385 2435 2355 2570 2400 — —

1,5 { Pl = 845 710 1265 980 1580 1245 1865 1470 — —
P2 = 2390 2555 2405 2460 2525 2440 2670 2500 — —

1,6 | Pl = 890 750 1330 1030 1655 1300 1945 1525 — —

P2 = 2470 2635 2490 2535 2620 2530 — -r . — —

1,7 { Pl = 930 785 1390 1075 1725 1350 2020 1585 — —

P2 = 2545 2715 2575 2610 — — — — — —

Kurs wytrzymałości materjałów
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THBLICB. II
Brzegi płyty utwierdzone

zuioi^ b

~ = 80 h h “ 120 l _ 
h 160 1 _ 

h “ 200 4- = 240 
*

k= 1 * = 0,5 * = 0,5 k = 1 * = 0,5 k = 1 * = 0,5 *= 1 * = 0,5

0,3 | Pl= — — 150 90 310 215 455 330 565 430
P2 = — — — — 1030 1110 1070 1175 1085 1095

0,4 | Pi = — — 215 135 415 290 575 425 710 535
Pa= — — 1080 1120 1215 1305 1240 1300 1260 1265

0,5 | Pi= — 280 180 510 365 685 520 840 640
P2 = — 1245 1320 1375 1465 1395 1430 1430 1415

0,6 | Pt = 65 10 345 230 595 435 795 600 960 735
P2 = — — 1400 1495 1510 1600 1535 1560 1585 1545

0,7 | Pi= 95 30 410 275 680 500 895 675 1075 825
P2 = — — 1545 1645 1635 1720 1620 1680 1725 1670

0,8 | Pl = 125 55 470 320 760 560 995 750 1185 910
P2 = 1180 900 1675 1785 1750 1835 1795 1790 1860 1785

0,9 | Pl = 155 75 530 365 835 620 1085 825 1295 995
P2 = 1370 1155 1790 1915 1860 1940 1910 1900 1990 1895

1,0 | Pl = 185 95 530 410 910 680 1175 895 1400 1075
P2 = 1535 1360 1900 2035 1965 2040 2020 1995 2110 2005

1,1 { Pl = 215 115 650 450 985 740 1265 965 1500 1155
P2 = 1675 1535 2005 2145 2065 2185 2130' 2095 2220 2110

1,2 { Pl = 240 135 700 490 1055 795 1350 1035* — —
P2 = 1800 1685 2105 2245 2160 2225 2235 2185 — —

1,3 { Pl = 270 155 755 530 1125 850 1430 1100 — —
P2 = 1905 1820 2195 2345 2255 2310 2335 2275 — —

1,4 | Pl = 300 180 810 570 1195 900 1505 1160 — —
P2 = 2000 1945 2280 2435 2345 2390 2440 2360 i — —

1,5 | Pl = 330 200 860 610 1260 950 1575 1215 — —
P2 = 2085 2065 2365 " 2520 2430 2470 2534 2445 — —

1,6 { Pl = 360 220 910 650 1325 1000 1645 1275 — —
P2 = 2155 2175 2440 2605 ! 2515 2550 — — — —

■’7 {. Pl = 390 240 955 685 1390 1045 1705 1335 — —
P2 = 2220 2280 2520 2690 : —- — — — — —

§ 146. ZGIĘCIE ZŁOŻONE Z DWU ZGIĘĆ WALCOWYCH

Ażeby płyta zgięła się według powierzchni walcowej, której tworzące są równoległe do osi Y, 
winien zachodzić, jak widzieliśmy, określony stosunek między naprężeniami p* i py, a mianowicie 
musi być:

J Py = °P*-

Jeżeli ten stosunek ma inną wartość od określonej powyższą równością, to otrzymamy bardziej 
złożoną postać powierzchni ugięcia płyty. Wydzielmy z płyty przekrojami prostopadłemi do osi X 
i Y prostopadłościan (rys. 362), którego wysokością jest grubość płyty h, a podstawą kwadrat 
o boku równym 1 i przyjmijmy, że na jego boczne ściany działają tylko naprężenia normalne 
px i py, sprowadzające się odpowiednio do par o momentach Mt i M2. Wychodząc z przyjętej pod-
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stawowej hipotezy wnosimy, że przy zgięciu płyty pozostają ściany boczne płaskiemi, a płaszczy­
zna środkowa gra rolę warstwy obojętnej. Krzywizny powierzchni środkowej, odpowiadające prze­
krojom normalnym płaszczyznami ZX i ZY, oznaczymy przez 
J i . Wtedy odkształcenie warstwy elementarnej odległej 
n j n 2

o z od płaszczyzny środkowej') [na rys. (362) zakreskowano 
boczne ściany tej warstwy], określą wydłużenia (względne):

_ z _ z
“X" 1 e'~^

Odpowiadające tym odkształceniom naprężenia łatwo znaleźć 
z ogólnych wzorów: Kys. 362

P* = (?x + oey) i py = (ey + ).

Po podstawieniu powyższych wartości ex i ey, otrzymamy:
£z / 1 \ Ez i 1 o \

p* ~ +Pr + rj . (b)

Utworzywszy ogólne momenty naprężeń bezwzględnych, działających na ściany boczne prostopa­
dłościanu i przyrównawszy je do i znajdziemy:

m2 =

2

E r 1 
i- o2 i7?2

hr+4-] V ’z2 dz = c (4- + 7T)
1 L /i । /X 2 J ej h ' ii £ /l 2

. (297)

Te wzory pozwalają ze znanych wielkości i M2 wyznaczyć odpowiadające wartości promienia 
krzywizny i R2. Nietrudno zauważyć, że Rt i R2 są w danym przypadku głównemi promie­
niami krzywizny powierzchni ugięcia, ponieważ wydłużenia określone wzorami (a) przedstawiają 
krańcowe wartości wydłużeń w wydzielonej warstwie elementarnej. Wydłużenie tej warstwy w ja­
kimkolwiek kierunku nachylonym względem osi X pod kątem 0 będzie miało pewną wartość po­
średnią i da się przedstawić w postaci:

Z 7 7— = ex cos* + ey sin114 = & cos2 £ 4- sin8
P R} R2

jeżeli p jest promieniem krzywizny, odpowiadającym kierunkowi 3. Zależność między promieniami 
krzywizny ma tedy postać:

1 _ cos2^ sin21)
P “ Ri '

Kombinując wyrażenia dla momentów (wz. 297) z wzorami (b) dla naprężeń, znajdziemy po pod-

stawieniu z = Q : _ 6M1 . , . _ 6/W2\Px )max hi 1 (Py)max — ^2“ •

Bez trudności można także ustawić wyrażenie dla energji potencjalnej nagromadzonej przy zgięciu 
płyty w wydzielonym elemencie. Ściany boczne elementu, pozostając przy zgięciu płaskiemi, obra­

cają się o kąty odpowiednio równe: ~ i ; momenty zaś i M2, rosnące stopniowo od zera 

do swych końcowych wartości, wykonują przytem pracę:
_ C । / 1 f / 1 f 2s । 

2 i Rt 4 R2 ) 2 L\ RJ + \ R2 ) +'R^, ! (298)

18*
Ł) z mierzymy w kierunku wypukłości.
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która przedstawia szukaną wartość energji potencjalnej, odniesionej do jednostki powierzchni zgi­
nanej płyty. W zastosowaniu do elementu płyty o krawędziach dx i dy należy widocznie powyż­
sze wyrażenie pomnożyć przez pole dx . dy.

W szczególnym przypadku, gdy główne promienie krzywizny są równe i mają wspólną war­
tość R, dają wyrażenia (297):

Mi = M2 = M = .............................................. (299)

Ponieważ płyta zgina się przytem podług powierzchni kuli, więc rozkład naprężeń będzie w każ­
dym normalnym przekroju płyty jednaki. Na pole przekroju 1. h przypada moment M. Na pod­
stawie tego można nawzajem wywnioskować, że przy dowolnej postaci konturu zgina się płyta po­
dług powierzchni kuli, jeżeli na ścianach, odpowiadających konturowi, działają tylko naprężenia 
normalne, sprowadzające się na długości konturu ds do momentu Mds. Promień kulistej po­
wierzchni ugięcia będzie równy:

C(l + *)
M 

§ 147. NAPRĘŻENIA TERMICZNE W PŁYTACH

Otrzymany powyżej wynik można zastosować do rozwiązania interesującego zadania o na­
prężeniach termicznych w płytach. Jeżeli płyta oddziela dwie przestrzenie o różnej temperaturze, 
to bez wielkiego błędu można przyjąć, że na grubości płyty zmienia się temperatura linjowo. We­
dług tegoż prawa będą się zmieniać i wydłużenia termiczne, co wywoła w płycie o swobodnych 
brzegach wygięcie kuliste. Biorąc za punkt wyjścia temperaturę, odpowiadającą płaszczyźnie środ­
kowej i oznaczając przez t całkowity spadek temperatury na grubości płyty, znajdziemy dla wy­
dłużeń na powierzchniach płyty wyrażenia:

at . at
+ T 1 3 ’

Z drugiej strony określa te wydłużenia promień R kulistej powierzchni zgięcia wyrażeniami:

, h . h .
+ 1 2R’

azatcm: R-— . . ........................................ (300)

Jeżeli brzegi płyty są zupełnie swobodne, to takie zakrzywienie nie wywoła żadnych naprężeń. 
Atoli w przypadku utwierdzenia brzegów wzdłuż całego konturu powstaną reakcyjne momenty, 
których wielkość znajdziemy w bardzo prosty sposób. Okazaliśmy, że równomierny rozkład mo­
mentów wzdłuż konturu płyty wywołuje zgięcie kuliste. Natężenie momentów M możemy obrać tak, 
aby wywołana niemi krzywizna była co do wielkości równa, a co do znaku przeciwna krzywiźnie 
uwarunkowanej nierównomiernem ogrzaniem. Przy działaniu takich momentów pozostanie płyta 
płaską, a jej brzegi nie obrócą się; warunek utwierdzenia będzie zatem spełniony. Na podstawie 
wzorów (299) i (300) określi szukaną wielkość M równanie:

M = CC1 + 
h

Odpowiadającą wartością największych naprężeń będzie:

_ 6M _ 6 C(1 4-o)a/ Eat
P-" - ~ 2(1—s) . (301)
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Okazuje się, że te naprężenia zupełnie nie zależą od grubości płyty, zważywszy jednak, że spadek 
temperatury t1) jest zwykle tem większy, im płyta jest grubsza, dochodzimy do wniosku, że na­
prężenia termiczne grają ważniejszą rolę w grubych płytach, niż w cienkich. (Zaznaczymy tutaj 
fakt, ogólnie znany, iż retorty, podlegające działaniu wysokich temperatur, okazują się najtrwal- 
szemi, jeżeli ich ścianki mają najmniejszą grubość). Wzoru (301) można używać także do przybli­
żonego wyznaczenia naprężeń termicznych w rozmaitych powłokach, jak np. w ściankach i dnach 
kotłów, w ściankach rur płomiennych i t. d., a nawet w tych przypadkach, kiedy grubość ściany 
jest bardzo znaczna, jak to np. zachodzi w murowanych kominach. Otrzymany wzór daje wyniki 
nieróżniące się zbyt wiele od tych, które wypływają z dokładnego rozwiązania zadania o napręże­
niach termicznych w grubościennych walcowych rurach2).

l) [Dokładne rozwiązanie tego zadania znajdzie czytelnik w pracy tłumacza p. t. „O natężeniach wywołanych nie-
równem ogrzaniem wewnętrznej i zewnętrznej ściany rury“. Czas, techn. r. 1906}.

§ 148. RÓWNANIE RÓŻNICZKOWE POWIERZCHNI UGIĘCIA PŁYTY OKRĄGŁEJ 
SYMETRYCZNIE OBCIĄŻONEJ

Ograniczymy się tutaj do rozpatrzenia dwu szczególnych przypadków obciążenia, a mianowi­
cie obciążenia rozłożonego równomiernie i skupionego w środku płyty. Ogólniejsze przypadki śród-
kowo-symetrycznego obciążenia płyty można także rozwiązać drogą 
elementarną, jednakowoż ostateczne wzory dla naprężeń i ugięć wy­
padają bardziej złożone. Początek spółrzędnych umieścimy w środku 
środkowej płaszczyzny płyty nieodkształconej i weźmiemy pod 
uwagę przekrój południkowy ZX (rys. 363). Zgodnie z przyjętą hi­
potezą prostolinjowe elementy prostopadłe do płaszczyzny środko­
wej pozostaną po zgięciu prostemi i prostopadłemi do powierzchni 
ugięcia płyty. Szereg takich elementów ułożonych przed odkształ­
ceniem na powierzchni walca obrotowego o promieniu x, utworzy 
po odkształceniu powierzchnię stożka obrotowego o wierzchołku B, 
przyczem każdy element m n obróci się około swego środka Zl o pe­
wien kąt Krzywizną powierzchni ugięcia płyty w przekroju po­
łudnikowym będzie widocznie:

1 _ _ dtp
Ri ” 9x2 “ dx'

Co się tyczy drugiej krzywizny głównej, to dla jakiegokolwiek punktu A jest odpowiadający pro­
mień krzywizny R2 równy AB, a zatem:

1 _ ?
R2 x *

Przy badaniu zgięcia płyty pominiemy wpływ naprężeń stycznych na ugięcie. 
Wówczas można się posługiwać wzorami (297) i napisać dla natężenia mo­
mentów Af2 w przekroju południkowym wyrażenie:

M„ = C(-?- +
2 \ x dx>

Dla przekroju normalnego prostopadłego do płaszczyzny południkowej, otrzymamy:

Po tych przygotowaniach przystąpimy do badania warunków równowagi elementu płyty abcd 
(rys. 364), wyciętego dwoma nieskończenie bliskiemi przekrojami południkowemi i dwoma walcami

*) Przez t rozumiemy różnicę temperatur obu powierzchni płyty. Temperatura przylegającego do płyty środowiska 
może różnić się znacznie od temperatury odpowiadającej powierzchni płyty. Ob. pracę Holborn’a i Dittenberg’a 
w Mitteil. ii. Forschungsarb. Heft 2. Zmianę temperatury w ścianie parowego kotła badano szczegółowo na drodze do­
świadczalnej. Ob. Poensgen, Zeitschr. d. V. d. Ing. 1916, str. 27.
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spółosiowemi o promieniach X i x + dx. Na boczne ściany elementu ad i bc, leżące w przekro­
jach południkowych będą działać momenty zginające M2dx; na ścianę cd, odpowiadającą po­
wierzchni walca o promieniu x, będzie działać moment:

i nakoniec na ścianę przeciwległą ab moment:

(4-^^dx}(x + dx) d$.

Utwórzmy moment wszystkich tych sił względem osi 00, prostopadłej do dwusiecznej kąta d^. 
Uwzględniając kierunek strzałek wskazany na rysunku i pomijając nieskończenie małe wyższego 
rzędu, otrzymamy dla szukanego momentu wyrażenie:

(^Mi + ^~dx^ (x-i dx) d-d —M^xd^ — M2dxd^ = x ^~—M2^dxd^ . (a)

Przejdziemy teraz do wyznaczenia naprężeń stycznych, działających na wydzielony element. Ze 
symetrji odkształcenia wnosimy, że na ścianach ad i bc, leżących w przekrojach południkowych, 
nie będzie żadnych naprężeń stycznych. Na ścianach zaś ab i cd będą działały naprężenia sty­
czne w kierunku pionowym. Ich sumę znajdziemy na podstawie następującego rozważania: Weźmy 
walcowy przekrój płyty o promieniu x i oznaczmy przez T sumę napięć stycznych, odniesioną do 
jednostki obwodu walca. Wszystkie napięcia styczne dadzą wówczas pionową wypadkową, 
równą T . 2^x. Ta siła musi być widocznie co do wielkości równa, a co do kierunku przeciwna 
obciążeniu płyty, rozłożonemu w obrębie koła o promieniu x. Przy jednoczesnem działaniu obcią­
żenia równomiernie rozłożonego o natężeniu q i siły skupionej w środku P, otrzymamy dla wy­
znaczenia T równanie:

T. 2itx — qxx2 + P, skąd T = ~ 4- .2 2 nx
Napięcia styczne, działające na ścianę cd wydzielonego elementu, sprowadzają się do wypadkowej: 

Txd& = x(^ + -P-)df>.
\ 2 2^x/

Pomijając nieskończenie małe wyższego rzędu, znajdziemy, że moment napięć stycznych, działa­
jących na ścianach ab i cd rozpatrywanego elementu, wzięty względem osi przechodzącej przez 
środek elementu i równoległej do 00, równa się:

Tx d^ dx = x 4- ^}dbdx................................................(b)
\ 2 2?tx/ v 7

Dla równowagi elementu potrzeba aby momenty (a) i (b) były co do wielkości równe, a co do 
znaku przeciwne, a więc:

Ml + x^-M^X^ + ^^. ........................... . (c)

Wstawiwszy zamiast i M2 powyżej znalezione wyrażenia, otrzymamy równanie różniczkowe: 
d* cp 1 d cp cp _ qx P
dx* x dx x2 ~ 2C 2^Cx'

To równanie da się przedstawić w dogodniejszej postaci, jeżeli uwzględnimy, że: 
+_ JL = a = J_r± A I 

dx2 x
I\ zatem:

dx x2 dx dx L x

Pierwsze całkowanie daje:
1

d r 1 d (x cp) qx
2C'

d(x cp) _
x dx

qx2 P
4C 2xC^X^C
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2 4 / 1 2 2’
a stąd: 

qx*  Px n x , C,

•

v 16C 8«C 2 gx ) + C'2+V

Ażeby otrzymać wyrażenie dla ugięć płyty, zważmy, że cp jest kątem, 
południka z osią X-ów, a więc:

_ dw . dw _ qx3 Px ( . Ct

Mnożąc obie strony przez x i całkując powtórnie, otrzymamy:

( x! u c X c 

. . . . (302)

jaki tworzy styczna do

'~-dx 1 dx ~ ibc^ ^x’
z czego po zcałkowaniu wypływa:

qx*  , Px*  n C.x*  „ , _ z
W = MC+ S^Ć^x~i}------^~-C2lgx + C5 • • • • (303)

Stałe dowolne wchodzące w wyrażenia (302) i (303) trzeba w każdym szczególnym przypadku 
wyznaczyć z warunków krańcowych płyty.

§ 149. ZGIĘCIE OKRĄGŁEJ PŁYTY WSKUTEK OBCIĄŻENIA RÓWNOMIERNIE 
ROZŁOŻONEGO

Najprościej rozwiązuje się zadanie w przypadku doskonałego utwierdzenia brzegu płyty.
Wówczas: 

= 0 dla x = r, dx
jeżeli r jest promieniem obwodu. Prócz tego wynika z warunków symetrji:

div — = 0 dla x = 0. dx
Przyjmując w ogólnych wzorach poprzedniego paragrafu P — 0, otrzymamy tedy dla wyznaczenia
stałych i C2 następujące równania: 

= n [ —n
L16C 2 x L ’ L16C 2 xL

Stąd:
C,=^ i C2 = 0.

Wstawiwszy te wartości w wyrażenie dla cp, otrzymamy:

<p = .....................................................(304)

Momenty zginające odniesione do jednostki długości będą:

M- = C(-2 +g D= +
o • • • (a)

«s = C(| + « ^ ) = i[r2(l + a) - X'(1 + 3O)]

Naprężenia px i py w dowolnym punkcie o odległości z od środkowej płaszczyzny określają wzory:
12Mtz 12M2z

♦ P*  - jp ’ Py ^3 •

Naprężenia p* osiągają największą wartość na utwierdzonym obwodzie płyty, gdzie Mt =  . ... 8a mianowicie: 3 ar2
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3 o r8Naprężenie py w tychże punktach ma wartość. o. W środku płyty jest:

Mt = M2 = ^-(1 + o),

a naprężenia, odpowiadające środkowi dolnej powierzchni płyty, będą:
3 qr* ( .

P« = Py = + 4

Przy obliczeniu płyt wyjdziemy z trzeciej teorji wytrzymałości. Ponieważ px i py są tego sa­
mego znaku, a trzecie naprężenie pz, działające w płaszczyznach prostopadłych do osi Z-ów, przyj­
mujemy równe zeru, (ciśnienie obciążenia ciągłego jest najczęściej bardzo małe w porównaniu do 
naprężeń wskutek zginania), więc pierwsza i trzecia teorja wytrzymałości są w danym przypadku 
zgodne. Okazuje się tedy, że najniebezpieczniejszemi są punkty utwierdzonego obwodu płyty, 
a warunek wytrzymałości ma postać:

(P.U =...... (305)

przyczem R oznacza naprężenie dopuszczalne (bezpieczne). Gdybyśmy zastosowali drugą teorję 
wytrzymałości, to warunek wytrzymałości przybrałby formę:

3 qr2 o
P, -ap, = f s

Wyznaczmy teraz kształt powierzchni ugięcia płyty. Na podstawie ogólnego wyrażenia (303) mamy:
_ qxi qrax* r
” 64 C 32C + *

Zważywszy, że na obwodzie jest ugięcie równe zeru, znajdziemy:
__ ęr4

3 ” 64C’
a zatem:

qx* qr2x*
W ~64C~12C

ęr4 _ q 
64C“ 64C

Największe ugięcie w środku płyty będzie równe:

' ~ 64C . (306)

Ażeby otrzymać główniejsze wzory dla zgięcia okrągłej płyty podpartej swobodnie na obwo­
dzie, zastosujemy zasadę superpozycji, którą posługiwaliśmy się często przy badaniu zgięcia prę­
tów. Dopiero co rozpatrzony przypadek zgięcia płyty utwierdzonej na obwodzie można sobie wyo­
brazić jako wynik jednoczesnego działania obciążenia ciągłego i momentów podporowych o natę­

qr2
8 ’żeniu — Jeżeli do tych sił dołączymy równomiernie rozłożone na obwodzie momenty zgina­

jące o natężeniu:
M=+

O

to dochodzimy oczywiście do zgięcia płyty podpartej na obwodzie pod wpływem obciążenia równo­
miernie rozłożonego. Dodatkowe momenty zegną płytę podług powierzchni kuli i wywołają 

. q raw każdym przekroju normalnym momenty zginające o natężeniu Dołączając je do wyra­

żeń (a) znajdziemy, że w przypadku podparcia obwodu:

Af, = ^[(3 + a)r’-(3 + a)x’], M, = ^[ (3 + a)r’-(l + 3a)x’].
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Największe natężenie osiągają momenty zginające w środku płyty, gdzie:

qr\

Odpowiadającemi wartościami największych naprężeń będą:

(n) = (n) =6^ = 3(3 + g)j^

Warunek wytrzymałości na podstawie pierwszej i trzeciej teorji napiszemy w postaci:

3 (3 + o) gr2
8 h2

albo wstawiwszy zamiast o wartość 0,3 (dla żelaza kowalnego i stali):

1,24*^/? .

Wychodząc z drugiej teorji (teorji największego wydłużenia) 
otrzymalibyśmy warunek wytrzymałości :

P* & Py —
3 (3 + o) (1 — o) gr2 ~

8 h2 x ’ 

który dla o = 0,3 przybiera postać:

0,87

Do porównania naprężeń (px)max i (py)max przy swobodnem 
podparciu obwodu i jego utwierdzeniu posłuży diagram (rys. 365), 
w którym linje pełne przedstawiają zmianę naprężeń w zale­
żności od x w przypadku płyty o brzegu podpartym, zaś linje 
przerywane spełniają to samo zadanie dla płyty o brzegu 
utwierdzonym.

Rżeby znaleźć ugięcie w środku płyty, trzeba do wyrażenia (306), otrzymanego poprzednio, 
dołączyć ugięcie, wywołane momentami zginającemi Af. Te momenty zginają płytę podług po­
wierzchni kuli o promieniu:

C(14-g)_ 8C(l + o)
M ” qr2

(ob. wz. 299) i wywołują dodatkowe ugięcie f1 którego wielkość wyznaczymy 
z rys. (366). Zważywszy, że Ą jest bardzo małe w porównaniu do r, 
znajdziemy:

apf^r2,

a wstawiwszy za p wartość, znalezioną powyżej, otrzymamy:

f
11 16C(l + <y)‘

Całkowite ugięcie w środku płyty podpartej na obwodzie określi przeto wzór:

ęr4 qri _ qri 54-o 
64C 16C(l + o) “ 64Ć T+o

To ugięcie jest w przybliżeniu cztery razy większe od ugięcia płyty o brzegu utwierdzonym.

(308)
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§ 150. ZGIĘCIE OKRĄGŁEJ PŁYTY SIŁĄ SKUPIONĄ W ŚRODKU1) 

Ogólne wyrażenie dla cp napiszemy w tym przypadku w. postaci (wz. 302):

l) Zgięcie okrągłej płyty siłę, działającą mimośrodkowo, rozpatrzył Clebsch; ob. „Thćorie de 1’elasticitć des corps 
solides", przekład de S.-Venant’a, str. 774.

Przybliżone rozwiązanie tego zadania podał A. Fóppl; ob. Sitzungsber. d. Math. Ph. Klasse d. Akad, zu Miin- 
chen, r. 1912.

2) Przybliżone rozwiązanie tej kwestji dał Hencky w rozprawie: „Der Spannungszustand in rechteckigen Platten“, 
r. 1913, str. 54.

P X z—1 । 1 i ^2’ = -8.c(210gx"1)+^+v
Zakładając utwierdzenie obwodu płyty mamy dla 
stępujące:

wyznaczenia stałych dowolnych dwa warunki na-

[_^(21ogx-l)

Zważywszy, że: 

otrzymamy z pierwszego równania C2 = 0. Drugie równanie daje:

a zatem: Px . r

Natężenie momentów zginających Mt i Af2 określają wzory:

Te momenty przybierają na obwodzie wartości
., P . ., s P
M,-------- i-----1 ^2 =-------- A--- *1 4% 2 4?t

Odpowiadające wartości największych naprężeń będą: 
3 P 3 P

(Px)max = 2 ^2 * (Py)max = “^2 * • • • • (309)

Okazuje się, że te wielkości zupełnie nie zależą od promienia płyty. Dla porównania tego wyniku 
z wzorem (305) napiszemy ten ostatni w postaci:

4?t

przyczem Q oznacza całkowite obciążenie płyty. Ą zatem skupienie obciążenia w środku płyty 
podwaja naprężenia na obwodzie. Co się tyczy naprężeń w pobliżu środka płyty, to, jak widać 
z wzorów (a), ich wielkość rośnie w miarę jak x maleje. Przy x = 0 stają się i M2, a zarazem 
i odpowiadające im naprężenia nieskończenie wielkiemi. Tutaj nasze formuły, otrzymane na pod­
stawie całego szeregu założeń tracą właściwie ważność, a istotnego znaczenia nabierają naprężenia 
miejscowe, których rozkładu nie można znaleźć drogą elementarnąa).



283

Znajdziemy teraz postać powierzchni ugięcia. Na podstawie ogólnego wyrażenia dla ugięcia 
(wz. 303) mamy:

W 8aC\ $ r 2^ + C'A’

Stałą dowolną C3 znajdziemy z warunku, że ugięcie na obwodzie równa się zeru, a zatem:

r ~—[Px2finx hi _
3 ~ I r a/Urie^C’

Px2 x P . .
8?tC & r 16ftCv

W środku płyty, gdzie x = 0, staje się pierwszy wyraz po prawej stronie zerem, i dla strzałki 
ugięcia otrzymamy (przy <y = 0,3) wyrażenie:

Pr2 Pr2f-^c = 0’22^....................................... <310’
Z porównania tego wyniku z wzorem (306) wnosimy, że przy działaniu siły skupionej w środku 
płyty jest strzałka ugięcia cztery razy większa, niż w przypadku obciążenia równomiernie rozło­
żonego o tej samej wielkości.

W rozpatrywanym przypadku zgięcia płyty, mamy oprócz siły skupionej P jeszcze momenty 
Ppodporowe o natężeniu — Ażeby przejść do płyty podpartej, trzeba widocznie dołączyć do tych 4 K

Psił momenty równomiernie rozłożone na obwodzie o natężeniu + Te momenty wywołają do­

datkowe zgięcie płyty podług kuli o promieniu:
C(H-o) 4jrC(H-o) 

P - m~ ~ p

Odpowiadające dodatkowe ugięcie w środku określi wzór:
r2 Pr2

Z ~ 2p “ 8W +T) * 
%

Dołączając to do wyniku (310) znajdziemy strzałkę ugięcia okrągłej płyty podpartej na obwodzie:
- 3 + o Pr2 n ec Pr2 .

f _ T+c ' 16nC “ 0,55 “EF .................................................(311)

Co się tyczy naprężeń, to potrzebne do ich wyznaczenia wartości i M, otrzymamy, dołączając 
P do wyrażeń (a) wielkość .

§ 151. ZGIĘCIE OKRĄGŁEJ PŁYTY Z KOLISTYM OTWOREM W ŚRODKU

Przy symetrycznym, rozkładzie obciążenia można to zadanie rozwiązać drogą elementarną stosowaną w poprzednich 
przypadkach. Jeżeli na płycie spoczywa obciążenie równomiernie rozłożone (rys. 367), to siłę styczną T, przypadającą na 
jednostkę długości przekroju walcowego o promieniu x określi równanie:

T . 2 n x = n q (jc2 — a2), z czego —2 Łx

Wstawiwszy to wyrażenie w 
my po zcałkowaniu kolejno:

QX P ogólne rów. (c) (§ 148) zamiast wielkości 2- 4- -----  znajdzie- 2 2nx

qx* .q^x 
16C +-8C~

(2lgx- 1) + ^£ + S
2 x

Rys. 367

qx^ q a* x2 .. Ctx2 _
““MC- ---- 2------ C^x + C>-
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Stałe dowolne Cit C, i Cg znajdujemy w każdym szczególnym przypadku z warunków na obwodzie zewnętrznym

Rys. 368

i wewnętrznym.
Jeżeli na płytę działają siły pionowe, rozłożone równomiernie na obwodzie we* 

wnętrznym (rys. 368) i mające wypadkową P, to równanie powierzchni ugięcia będzie 
takie same, jak w przypadku pełnej płyty, obciążonej w środku siłą P (§ 150). Stałe cał­
kowania można znaleźć z warunków na obwodzie wewnętrznym i zewnętrznym. DobierS- 
jąc w odpowiedni sposób te warunki, można otrzymać wzory, potrzebne do obliczenia 

pierścieniowych pokryw kanałów, tłoków maszyn parowych i t. d. ty.

§ 152. GRANICE STOSOWALNOŚCI WYPROWADZONYCH WZORÓW

Wyłożona teorja zgięcia okrągłych płyt opiera się na szeregu założeń, przyjętych bez uzasadnienia, wobec czego 
doświadczalne sprawdzenie otrzymanych wyników przedstawia interes nader ważny. Badania dokonane w tym kierunkua) 
wykazały, że wzory otrzymane dla ugięcia płyt, dają wyniki zupełnie zadowalające, dopóki strzałka ugięcia / jest mała 
w porównaniu do grubości płyty (f < 0,2 h). Przy większych ugięciach dostrzeżono znaczne zboczenia od linjowej zale­
żności między obciążeniami a odpowiadającemi ugięciami. Ugięcia rosną powolniej od obciążeń i płyta okazuje się sztyw­
niejszą, niżby wypadało z wzorów teoretycznych. Ażeby znaleźć przyczynę tej niezgo­
dności teoretycznych wzorów z doświadczeniem przy większych ugięciach płyty rozpa­
trzymy najprostszy przypadek zgięcia kulistego. Elementarna teorja zgięcia płyt polega mię­
dzy innemi na przypuszczeniu, że powierzchnia środkowa nie odkształca się i gra rolę war­
stwy obojętnej. Wydłużenie oddzielnych elementów płyty, równoległych do powierzchni 
środkowej, są proporcjonalne względem odległości od tej powierzchni i osiągają największą 

wartość na powierzchni zewnętrznej płyty (p jest promieniem kuli jako powierzchni 
2 p

ugięcia). Łatwo okazać, że wygięcie kuliste płyty jest niemożebne bez odkształceń 
w płaszczyźnie środkowej. Te odkształcenia są przy małych ugięciach znikome, atoli 

przy większych ugięciach, osiągają wielkości tego samego rzędu co wydłużenie . 

Niech A OB (rys. 369) przedstawia południkowy przekrój środkowej powierzchni płyty, 
wygiętej podług kuli o promieniu p. Jeżeli w środkowej powierzchni nie zajdą przy 
zgięciu odkształcenia, to długość łuku OB musi się równać pierwotnemu promieniowi
płyty O B' = r = p
Przypuściwszy brak odkształcenia powierzchni środkowej w kierunku promienia, otrzymamy w konsekwencji odkształcenie 
tejże powierzchni w kierunku do promienia prostopadłym. Weźmy bowiem pod uwagę punkty A i B. Przed odkształceniem 
leżały te punkty na kole o promieniu r, po odkształceniu zaś będzie promień tego koła równy

C B = p sin

Elementy leżące na obwodzie tego koła doznają przeto w kierunku obwodu skrócenia o wielkości względnej: 
p — p sin _ tP

6 “ pó 6

Zważywszy, że f - p (1-cos*) = ~ 

możemy wzór dla e napisać w postaci:

hZnalezione odkształcenie powierzchni środkowej bedzie małe w porównaniu do tylko w tym przypadku, kiedy f jest2 p
małe wobec h. Jeżeli f i h są wielkościami tego samego rzędu, to odkształcenia powierzchni środkowej, które pomijamy

ty Cały szereg przykładów tego rodzaju roztrząsają prace M. Ensslin’a: „Studien uber die Beanspruchung und 
Formanderung kreisfbrmiger Platten“, Dinglers Polyt. Journ. z r. 1903 i 1904.

Ob iczenie tłoków i literaturę tego przedmiotu znajdzie czytelnik w pracy C. Pfleiderer’a „Die Berechnung der 
Scheibenkolben", Mitt. ii. Forschungsarb. z r. 1911, Nr 97.

Co do sprawy obliczenia kołnierzy rur (łlansz) ob. Łukina „K’tieorij i rasczotu flianciewych sojedinienij“, r. 1911.
ty C. Bach, Elastizitat u. Festigkeit, wyd. V, str. 585.
A. Fóppl, Mitt. d. Mech. Techn. Labor. Miinchen, r. 1900.
Steinthal, Engineering, r. 1911, str. 677.
Cr a wf ord, Royal. Soc. Edinburgh, r. 1912.
M. Ensslin, Dinglers Polyt. Journ. r. 1913, str. 677.
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w elementarne) teorji zgięcia, będą wielkościami tego samego rzędu, co i hwydłużenia *). Ten wniosek, odnoszący się

do kulistego wygięcia, można rozciągnąć i na inne przypadki zgięcia płyt. Wyjątek stanowi widocznie zgięcie podług po­
wierzchni rozwijalnej.

Zaznaczymy jeszcze jedną okoliczność, którą należy uwzględnić przy porównaniu danych doświadczalnych z wyni­
kami obliczeń teoretycznych. W naszych wywodach przyjęliśmy, że na obwodzie płyty niema reakcyj leżących w jej płasz­
czyźnie, któreby przeszkadzały wzajemnemu zbliżeniu się przeciwległych punktów obwodu przy zgięciu. W rzeczywistości 
będzie podparcie obwodu prawie zawsze takie, że to zbliżenie zajść nie może. Wskutek tego będą zgięciu płyty towarzy­
szyć napięcia rozciągające, działające w płaszczyźnie środkowej. Wielkość tych napięć i ich wpływ na ugięcie można wy­
znaczyć tą samą metodą przybliżoną, którą stosowaliśmy przy badaniu zgięcia płyty według powierzchni walcowej. Nie 
zatrzymujemy się tutaj przy tern zadaniu, ponieważ ono nie ma większego praktycznego znaczenia. Przy małych ugięciach 
nie grają napięcia rozciągające roli godnej uwagi; przy silnych zaś zakrzywieniach płyty tracą ważność wzory, otrzymane 
na podstawie elementarnej teorji.

§ 153. ENERGJA POTENCJALNA ZGIĘTEJ PŁYTY

Poprzednio wyprowadziliśmy już wyrażenie dla energji potencjalnej zgiętej płyty w zależno­
ści od głównych promieni krzywizny (wz. 298). Dla dalszych 
szem wyrażenie energji potencjalnej jako funkcji ugięcia 
płyty w. Ażeby utworzyć to wyrażenie wydzielimy z płyty 
przekrojami równoległemi do płaszczyzn ZX i ZY (rys. 370, 
fig. a) element o krawędziach dx, dy i h. Odpowiadające 
wartości krzywizny będą:

dl w . 92 m 
9x2 1 oy*

i da się rozwiązać tylko sposobem przybliżonym. Ob. pracę autora: „K’woprosu o bolszich progibach*, Sborn. Inst. Inż-
Put. Soobszcz. z r. 1915.

Jeżeliby te przekroje były przekrojami głównemi, to energję 
wydzielonego elementu przedstawiałoby według wzoru (298) 
wyrażenie:
,C r/ d*w \2 , / 92 w \2 , o 92ip 02 m i , . , .d’z> = TU7^) + ^9xi-^\dxdy ' (a)

W ogólnym przypadku będzie wyrażenie dla energji elementu 
nieco bardziej złożone, ponieważ każda nieskończenie cienka 

zastosowań okaże się korzystniej-

warstwa pozioma wydzielonego elementu, leżąca w odległości z 
od płaszczyzny środkowej (na fig. c zakreskowano widoczne ściany boczne rozpatrywanej warstwy) 
będzie nietylko narażona na rozciąganie lub ściskanie w kierunku osi X i Y, lecz także na ścina­
nie. Wielkość odpowiadającego odkształcenia postaciowego i wartość energji potencjalnej warstwy 
elementarnej znajdziemy na podstawie rozważań geometrycznych. Rozpatrzmy przesunięcia wierz 
chołków A, B, C i D tej warstwy w kierunkach osi X i Y przy zgięciu płyty. Te przesunięcia są 
wywołane obrotem pionowych krawędzi wydzielonego elementu. Z fig. (b) widać, że punkt A do- 
znaje w kierunku osi X-ów przesunięcia:

dw u = — z^ dx
Podobnież będzie przesunięciem punktu A w kierunku osi Y-ów:

dw
V - —z-^-.dy

Jeżeli teraz przejdziemy do punktu B, odległego od A o dx, to jego przesunięcie w kierunku osi
Y-ów określi wyrażenie: , dv . dw 92 w ,u + — dx = — z------ z—-z-dx.dx dy dxdy

*) Odpowiadające zadanie sprowadza się nawet w najprostszych przypadkach do całkowania równań nielinjowych 
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Podobnież będzie przesunięciem punktu D w kierunku osi X-ów:

du . du) d- w .u + „ dy = — z-^----- z •.—a— dy.dy dx dxdy J

Dla większej jasności przedstawiono na rys. (37i) rzut poziomy warstwy elementarnej /IB CD 
przed odkształceniem i po odkształceniu (przy założeniu, że u i v są dodatnie). Kątem odkształ- 

Kys. 371

cenią postaciowego rozpatrywanej warstwy jest:
, o dv ( du o d2 id .

dx + dy~ 2zdxdy'

Odpowiadające naprężenie ścinające będzie równe:
d2 w r
dxdy

a energję potencjalną odkształcenia postaciowego rozpatrywanej war­
stwy określi wyrażenie

d2 m 12i^) Gdxdydz ■

Zmieniając z w granicach od — _do + 9 i sumując wyrażenia elementarne postaci (b), £ £

. (b)

otrzy­

mamy energję odkształcenia postaciowego dV2i nagromadzoną, w wydzielonym elemencie płyty, 
a mianowicie:

dV2-2G^ z2 dx dy dz = 2G dx dy. ~; = C(1 — s) (~-) dxdy . (c)
2 J_h\dxdyl \dxdyl J 12 ’\dxdyl J

2

Dodając (a) i (c\ otrzymamy szukane ogólne wyrażenie dla całkowitej energji potencjalnej ele­
mentu płyty w postaci:

d V = d Vt + d V2 C r/ ir \2 i d2 id \2 _ d 2 idTlh-p-) +(^) +2o^f
d2 id + 2(l-a) ( d2 u? 

dxdy dx dy =

_ C [ / d2 id d2iv \2 o z . r d2 id d2 id 
" 2~ l ' dx2 + "dy^ / — 2 (1 —o) | . —p-

d 2 id 
dxdy (312)

Energję potencjalną całej płyty otrzymamy przez sumowanie wyrażeń elementarnych postaci (312) 
na całej powierzchni płyty l).

§ 154. PRZYBLIŻONA METODA BADANIA ZGIĘCIA PŁYT

Przy badaniu zgięcia płyt można zastosować tę samą metodę przybliżoną, której używaliśmy 
do wyznaczenia ugięcia prętów w rozdziale XV. Czyniąc zadość warunkom na obwodzie przyjmujemy

w = f (x,y) (a)

jako przybliżone równanie powierzchni ugięcia, przyczem funkcja cp (x, y) zawiera jeden lub kilka 
dowolnych parametrów. Te parametry grają rolę uogólnionych spółrzędnych i możemy ich wartość 
dobrać tak, aby przyjęta postać równowagi (a) zbliżała się możliwie najbardziej do postaci rzeczy­
wistej. Wyznaczenie parametrów odbywa się tak samo, jak przy badaniu zgięcia prętów. Usta­
wiamy wyrażenie dla energji potencjalnej zgiętej płyty i pochodne tego wyrażenia względem uogól­
nionych spółrzędnych (parametrów) przyrównywamy do odpowiadających uogólnionych sił. Tą

*) [Płyty betonowe uzbrojone „na krzyż" zachowują się z wielkiem przybliżeniem jak płyty z materjału różnokierun- 
kowego. Obliczeniem elementarnem energji potencjalnej takich płyt zajmuje się praca tłumacza: „Die Grundlagen einer 
rationellen Berechnung der kreuzweise bewehrten Eisenbetonplatten", Z. d. bst. Ing. & Arch. V. r. 1914].

[Ogólną teorję takich płyt wraz z rozwiązaniem licznych zadań praktycznego znaczenia zawierać będzie obszerna 
praca tłumacza, jaka się ukaże wkrótce w publikacjach Lwowskiego Towarzystwa Naukowego p. t. „Teorja płyt prostokątnie- 
różnokierunkowych wraz z technicznemi zastosowaniami do płyt żel.-betonowych, krat belkowych i t. p.“].
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drogą utworzymy tyle równań, ile jest dowolnych parametrów. Jako przykład rozpatrzymy przypa­
dek zgięcia płyty prostokątnej, przyczem, poprzestając na pierwszem przybliżeniu weźmiemy wy­
rażenie dla powierzchni ugięcia z jednym dowolnym parametrem. Przyjmiemy, że kontur płyty, ob­
ciążonej równomiernie (gkglcm*) różni się niewiele od kwadratu (rys. 372). W przypadku podparcia ob­
wodu uczynimy zadość warunkom krańcowym, jeżeli przyjmiemy, że 
przekroje powierzchni ugięcia płaszczyznami Z X i Z Y są sinusoidami, 
czyli że równanie powierzchni ugięcia ma postać

iv = f sin — sm Y . . . . . (b)'ab '
Łatwo się przekonać, że na obwodzie płyty jest

d2 iv _ 3’ IV _ '
dx2 dy2

Odpowiadające momenty M, i M2 stają się przeto zerami, jak tego wymagają warunki krańcowe 
przy podparciu obwodu. Dla a

*=2^=2'

t. j. w środku płyty wypada tv - f.

Utwórzmy teraz wyrażenie dla energji potencjalnej płyty. Na podstawie wzoru (312) mamy:

2(l-o)| dUv
d X2

d2iv 
df

d* iv 
dxdy . (313)

Wstawiwszy za iv wartość (b) i uwzględniwszy, że

CC ■ ^x . aity , , CC ,,xx 2ny ab\ \ sin — sm2 dx dy — \ \ cos- — cos2 ~ dx dy =
J Jo a b Jo Jo a b ~ 4

otrzymamy po prostych przekształceniach:
n:4 / 1 i \2

(314)

Przyjąwszy dla ugięcia wyrażenie (b) przemieniliśmy tem samem płytę w układ o jednym stopniu 
swobody. Wszystkie elementy zgięcia określa wielkość strzałki ugięcia f. Tę wielkość przyjmiemy 
za uogólnioną spółrzędną i znajdziemy odpowiadającą wielkość uogólnionej siły. Skoro spółrzę­
dnej f udzielimy przyrostu elementarnego df, to obciążenie qdxdy, przypadające na element pola 
płyty, wykona przytem pracę:

q dx dy. 6 f sin — sm ~ .

Całkowita praca wykonana przez obciążenie płyty równa się zatem:

. ny , 4qabdf^dx\^ q sm ~ sm ~ dy = df. ——,

4 a więc szukana uogólniona siła równa się q a b. Wielkość f znajdziemy z równania:

™ = - Cfa b (-L + -M2 = 4-^ 
df 4 1 V a2 b2 / jr2 ’

Przyjąwszy, że a > b i wprowadziwszy oznaczenie b: a = znajdziemy:

.........................................................(315)C (1 -hp. )2
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p- Dokładne 
ugięcie

Przybliżone 
ugięcie

(Py)max 
[dokład.]

0 0,0130^ 
Cz — 0,75 .

1
3 — — 0,72 „

1
2 0,0101 „ 0,0106^ 

O 0,61 ,

2
3 — ■ — 0,48 „

1 0,00406 „ 0,00416 „ 0,29 „

Stopień dokładności tego przybliżonego wzoru można osądzić według wyników umieszczonych w po­
niższej tablicy ’)• Przez dokładną wartość ugięcia rozumiemy tutaj wartość otrzymaną z całkowania 

równania różniczkowego powierzchni ugięcia płyty. 
Dla płyty kwadratowej równa się błąd przy­

bliżonego wzoru około 2,5°/0. Dla prostokątnej 
o stosunku boków p = 0,5 wypada błąd 5°/0. Ze 
wzrostem długości płyty powiększa się błąd, co 
było do przewidzenia, ponieważ powierzchnia ugię­
cia w środkowej części płyty zbliża się do po­
wierzchni walcowej; do obliczeń wypadnie wów­
czas używać raczej wzorów otrzymanych w § 145. 

Największe naprężenia w przypadku podpar­
cia obwodu powstają w środku płyty w przekroju 
normalnym do krótszych boków. Z tablicy widać, 
że w miarę wzrostu długości płyty te naprężenia 
zdążąją szybko do wartości odpowiadającej płycie 
nieskończenie długiej (p = 0). Jeżeli brzegi płyty 

nie mogą się przesuwać przy zginaniu, to pojawią się napięcia rozciągające powierzchnię środ­
kową. Dla długich płyt można je wyznaczyć tak samo, jak przy zginaniu według powierzchni wal­
cowej. W przypadku płyt o konturze mało różnym od kwadratu staje się zadanie bardziej złożo- 
nem2). Wpływ tych napięć na zgięcie płyty będzie przy małych ugięciach nieznaczny.

2) Ob. pracę autora: „Primienienie normalnych koordinat...*, Izw. Kijew. Polit. Inst. z r. 1909.

Rozpatrzmy teraz zgięcie płyty prostokątnej utwierdzonej na całym obwodzie. Dla powierzchni 

ugięcia trzeba dobrać takie wyrażenie, aby nietylko zr, lecz także i stawały się zerem 

na utwierdzonym konturze płyty. Tym warunkom czyni zadość równanie:

iv = 2 cos—- a cos 2*y\ 
b / (c)

Łatwo sprawdzić, że przy x = 0, x = a, y = 0 i y = b

, . . . . . . i . . 9 m . d iv ..r , . . ..staje się zerem tak ugięcie ir, jakoteż pierwsze pochodne i Wstawiwszy wyrażenie dla

ugięcia (c) we wzór (313) i wykonawszy potrzebne przekształcenia, otrzymamy:

17 U i 3 . 2 ,3V-g-Cf ab + p . (316}

Obierzmy f za uogólnioną spółrzędną. Praca obciążenia równomiernie rozłożonego, odpowiadająca 
przyrostowi spółrzędnej 8/, będzie równa:

fb/< 2rtx\/ 2ny\, , ab,. 
P T }dx W~cos^)\l-cosb)dxdy = q

o.ba zatem siła odpowiadająca spółrzędnej f równa się q -t-. Wielkość f wyznaczymy z równania:4
d V 3 , 2 , 3 x ab
df “ 4 Cabf\ & + a2 ^2 + bi) 4 •

Wprowadziwszy poprzednie oznaczenie b : a = p, otrzymamy:
1 qb* 1 

‘ 3 + 2p7+3p? • (317)

’) Szczegółowe tablice do obliczenia płyt prostokątnych o podpartym obwodzie znajdzie czytelnik w dziele autora: 
Kurs tieorij uprugosti", cz. II, str. 290.
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Tablica umieszczona poniżej zawiera wyniki, otrzymane na podstawie tej przybliżonej for­
muły. Dla porównania przytoczono również i wyniki dokładniejszych badań 9, z których zaczer­
pnięto także podane wartości naprężeń. _____________________

W przypadku płyt zbliżonych do kwadrato­
wych daje przybliżony wzór dla ugięcia wyniki 
zupełnie zadowalające. Z powiększeniem długości 
płyty błąd wzrasta, a począwszy od p. = 0,5 mo­
żna wykonywać obliczenia według wzorów otrzy­
manych dla zgięcia walcowego (y. = 0).

Największe naprężenia powstają w środku 
dłuższych boków płyty, t. j. dla y = 0, lub 

a 2b i x = -y. Jak widać z tablicy, już przy p. = -y w o
zbliżają się największe naprężenia do tych war­
tości, jakie wypadają dla płyty prostokątnej nie­
skończenie długiej. Wpływ napięć rozciągających, 
powstających przy zgięciu płyt z unieruchomio-

Dokładne 
ugięcie

Prz\ bliźone 
ugięcie ( Py )max

0 0,00260 — 0,500

1
2 0,00253 „ ci 0,00278 O 0,497 „

2
3 0,00213 „ 0,00229 „ 0,467 „

4
5 — — 0,399 „

1 0,00126 „ 0,00128 „ 0,293 „

nemi brzegami, jest w praktyce zawsze bardzo mały i można go pominąć, jeżeli tylko naprężenia 
w utwierdzonym brzegu nie przekraczają granicy sprężystości.

§ 155. OBLICZENIE ŚCIAN (PŁYT) ZAKRZYWIONYCH, CZYLI POWŁOK

Pomimo całą ważność praktyczną, jest obliczenie powłok dotychczas bardzo mało opraco­
wane, ponieważ zupełne rozwiązanie zadania przedstawia wiele trudności natury czysto matematy­
cznej. Dla otrzymania przybliżonych rozwiązań trzeba się uciekać do rozmaitych założeń uproszcza- 
jących, zależnie od rozmiarów i warunków pracy obliczanych części składowych. Często np. pomija 
się zgięcie powłoki i uwzględnia się tylko rozciągania lub ściskania, uważane za równomiernie roz­
łożone na grubości ścianki. Tego sposobu używaliśmy już przy obliczeniu cienkościennych naczyń, 
narażonych na ciśnienie gazów lub cieczy. Są naodwrót przypadki, w których główną rolę grają 
naprężenia zginające, wobec których można pominąć rozciągania łub ściskania środkowej powierz­
chni powłoki2). Taką drogą otrzymano szereg rozwiązań, mających większe znaczenie w akustyce, 
a mianowicie zbadano kwestję drgań powłok walcowych stożkowych i kulistych3).

2) Kilka zadań tego rodzaju rozpatrzył autor w pracy; „K’woprosu o deformacijach i ustojcziwosti cilindriczeskoj 
obołoczki", Wiestnik Obszcz. Technołogow z r. 1914.

3) Sprawę obliczenia powłok rozpatruje bardziej szczegółowo „Kurs tieorji uprugosti", cz. II, str. 362.
[Ob. także A. i L. Fóppl „Drang und Zwang“, t. II, rozdz. V, 1920].

Kurs wytrzymałości materjałów 19

W niektórych prostszych przypadkach można otrzymać zupełne rozwiązanie przy uwzględnie­
niu i zgięcia i odkształcenia powierzchni środkowej. Jako przykład przytoczymy obliczenie rury 
walcowej. Jeżeli obciążenie nie zmienia się wzdłuż osi walca, to możemy się ograniczyć do rozpa­
trzenia odkształceń pierścienia elementarnego, wyciętego dwoma przekrojami prostopadłemi do osi 
rury o wzajemnej odległości 1. Do obliczenia takiego pierścienia zastosujemy przeto prawidła, wy­
łożone w rozdziale o prętach zakrzywionych, uwzględniając jednakowoż, że dzięki połączeniu wy-

0 Ogólną metodę badania zgięcia płyty prostokątnej utwierdzonej na obwodzie podają prace B. Kojałowicza 
(ros.) „O pewnem równaniu różniczkowem cząstkowem 4-go rzędu", r. 1902 i W. Ritz’a „Ober die neue Methode zur 
Lósung gewisser Yariationsprobleme der math. Physik". Journ. L Math. z r. 1909, str. 1.

Niektóre wyniki liczbowe znajdują się w dyplomowej pracy D. Pistriakowa: „Izgib tonkoj płastinki", Izw. Kijew. 
Polit. Inst. z r. 1910.

Szczegółowe tablice dla obliczenia płyt o brzegach podpartych i utwierdzonych znajdują się w przytoczonej powyżej 
książce I. G. Bubnowa. Por. nadto:

H. Hencky „Der Spannungszustand in rechteckigen Platten", Miinchen 1913;
A. Nódai „Die Formanderungen u. die Spannungen v. rechteckigen elastischen Platten", Z. d. Ver. D. Ing. 

z r. 1914, str. 487.
[B. G. Galierkin „Izgib priamougolnych płastinok..." Petrograd 1917].
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dzielonego pierścienia z sąsiedniemi częściami rury staje się niemożebnem odkształcenie poprze­
cznego przekroju pierścienia przy zginaniu. Ta okoliczność, jakeśmy się przekonali (§ 144), po­
większa nieco sztywność pierścienia. Zamiast wielkości

1 haEl = E . ‘ (h grubość ściany),A w

trzeba wprowadzić w rachunek sztywność walcową:
E . 1 . h* 
(1-g2) 12 •

W przypadku okrągłego przekroju poprzecznego rury można przy badaniu odkształceń zastosować 
ogólne rów. (275) ’). Na końcach rury, w miejscach połączenia jej z kołnierzami lub dnem, będą 

warunki odkształcenia znacznie więcej złożone.

Rys. 373

Dokładne rozwiązanie tego zadania przedsta­
wia wielkie trudności, atoli w przypadku okrą­
głego przekroju poprzecznego i obciążeń sy­
metrycznych względem osi rury można bada­
nie uprościć i sprowadzić zedanie do wyzna­
czenia zgięcia skrawka elementarnego, wydzie­
lonego wzdłuż tworzącej walca. Rys. (373) 
przedstawia podłużny i poprzeczny przekrój 
cylindra, narażonego na równomierne ciśnienie 
wewnętrzne q. Oznaczmy przez y ugięcie wy­

dzielonego skrawka w jakimkolwiek przekroju poprzecznym m n. (Na fig. b uwidoczniono przekrój 
wydzielonego skrawka przez zakreskowanie). To ugięcie równa się radjalnemu przesunięciu punk­
tów powierzchni walcowej, leżących w przekroju m n. Wydłużenie względne obwodu walca w prze­
kroju mn równa się:

e, =

Odpowiadające ciągnienie obwodowe p}, dążące do rozerwania walca wzdłuż tworzącej, wyznaczymy 
z wzoru 1 Z X=-g(Pi-^p2),

w którym p2 oznacza ciągnienie podłużne, wywołane naporem na dna. Dla p2 mamy równanie:
_nr2 q rq

P2~2xFh~2h'

A zatem: r , Ey , rq

Z fig. (b) widać, że naprężenia obwodowe px dają składową w kierunku promienia, przeszkadza­
jącą ugięciu wydzielonego skrawka. Wielkość radjalnego napięcia, przypadającego na jednostkę 
długości skrawka równa się: \ Ehv <5 a

......................................... W
Dołączywszy to wyrażenie z odpowiednim znakiem do obciążenia ciśnieniem wewnętrznem q, na­
piszemy równanie różniczkowe dla linji ugięcia skrawka w postaci:

^y Ehy 
r2 . (b)

Wprowadziliśmy tutaj sztywność walcową C, ponieważ wskutek połączenia elementarnego skrawka 
z sąsiedniemi częściami rury, staje się niemożebnem odkształcenie poprzecznego przekroju skrawka,

Ł) Szereg zadań tego rodzaju zawiera praca Forchheimer’a w Zeitschr. d. dst. Ing. u. Arch. Ver. z r. 1914,str. 133.
Ob. także rozprawę doktorską V. May er’a: „Ober Elastizitat u. Stabilitat des geschlossenen und offenen Kreisbogens“. 

Co do obliczenia rur o przekroju eliptycznym ob. Mayer-Mita, Zeitschr. d. Ver. d. Ing. z r. 1914. 
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charakterystyczne dla zgięcia pręta. Otrzymane równanie zgadza się z otrzymanem poprzednio 
przy badaniu zgięcia belek, spoczywających na sprężystem podłożu. Ogólną całką tego równania jest:

Q y = CL ea*cosax 4- C2 e«^sinax 4- C3e —a*cosax 4- C4 e—a*sinax 4- r2,

9 Ob. C. Runge, Zehschr. f. Math. u. Ph, t. 51, r. 1914, str. 254.
H. Reissner, Beton u. Eisen, t. 7, r. 1908.
T. Poschi u. K. Terzaghi, „Berechn. v. Behaltern...“, r. 1913.
Ob. także „Kurs tieorji uprugosti", cz. II, str. 20.
H. Lorenz, „Technische Ela tizitatshhre", r. 1913, str. 603.
2) Obliczenie tablicy wykonał inź. K Czałyszew przy założeniu E = 2.10s kg/cm2 i o = 0,3.
s) Wpływ krzywizny w przypadku płyty prostokątnej o długości boków tego samego rzędu rozpatrzył autor w nocie 

ogłoszonej w Sborn. Inst. Inż. Put. Soobszcz. z r. 1914.

przyczem 4I Eh 
y4Cr2

Stałe dowolne ... C4 dadzą się wyznaczyć z warunków na końcach wydzielonego skrawka. 
Jeżeliby dna były doskonale sztywne, to te warunki są następujące:

y = 0 dla x = 0 i x = /; y' = 0 dla x - 0 i x = l.

Bez szczególnych trudności można rozwiązać nasze zadanie także z uwzględnieniem odkształcenia 
dna. W tym przypadku trzeba stałe dowolne wyznaczyć z warunków połączenia ścianki z dnem. 
Badanie zgięcia podłużnego skrawka, wyciętego ze ściany walca, można rozciągnąć na przypadki 
zmiennego ciśnienia q i zmiennej grubości ścianki h ’). Te zadania mają praktyczne znaczenie
w związku z obliczeniem zbiorników na płyny lub ciała sypkie.

Na zakończenie weźmiemy jeszcze jedno zadanie, przedstawiające pewien interes prakty­
czny w związku z obliczeniem pokładów mostowych. Przyjmijmy, że walcowa powłoka opiera 
się na dwu równoległych krawędziach (rys. 374) i podlega działaniu obciążenia równomiernie 
rozłożonego o natężeniu q. Przy obliczeniu możemy się ograniczyć do rozpatrzenia elementu 
powłoki zawartego między dwoma przekrojami mn i m^j, normalnemi do tworzących walca, 
o wzajemnej odległości 1. W przypadku przegibnego nieruchomi go podparcia brzegów, można 
obliczać ten element jako łuk dwuprzegubowy, jeżeli jednak początkowa strzałka f zwisającej 
powłoki jest mała w porównaniu z rozpiętością I, to do obliczenia można użyć przybliżonego 
sposobu, wyłożonego w § 137. Zważywszy, że przekrój poprzeczny wydzielonego skrawka nie 
odkształci się przy zgięciu, wypadnie nam wprowadzić sztywność walcową:

Eh3
12(1 — o»)’ Rys. 374

a wtedy wielkość a2, przedstawiająca stosunek siły podłużnej rozciągającej S, jaka powstaje wskntek zgięcia skrawka, do 
krytycznej wartości siły, będzie określona wzorem:

12 SI2 (1 — o2) 
v2Ehs

Równanie (/), otrzymane w § (137) dla pręta, przybierze teraz postać:

, 2 br (Jo - a2 b^ _ a2h2 
(14-O2 + 1 + a2 “3 . (318)

Tutaj oznacza h grubość powłoki, bt początkową wartość strzałki, f0 strzałkę ugięcia skrawka, obliczoną jak dla belki 
w obu końcach podpartej o sztywności C. Mając te wielkości, wyznaczamy z powyższego równania a2, a stąd i siłę po­
dłużną S. Dalszy rachunek nie przedstawia już żadnych trudności. Niżej umieszczona tablica zawiera wartości strzałki 
ugięcia f (w środku), naprężeń pt wskutek siły podłużnej n zciągającej i największych naprężeń f2, obliczone dla żelaznej 
powłoki o grubości h = 1 cm, rozpiętości 1=100 cm i bt — 0, 1, 2 i 3 cm2). Z tej tablicy widać, jak początkowe zakrzy­
wienie wpływa na siły wewnętrzne i odkształcenie powłoki. Dzięki temu zakrzywieniu zmniejsza się wielkość siły podłu­
żnej, jakoteż wielkość naprężeń zginających. Przy strzałce początkowej b, — 3 cm jest rola zgięcia znikoma, a siłę podłużną 
możemy znaleźć, obliczając wydzielony skrawek, jak giętkie cięgno3).

Z wyznaczeniem naprężeń w powłokach kulistych mamy do czynienia przy obliczeniu kopuł, den kotłów i t. p- 
W przypadku powłoki podpartej wzdłuż kołowego konturu i obciążonej symetrycznie w sposób ciągły, otrzymujemy przybli­
żone rozwiązanie, pomijając naprężenia zginające i uwzględniając tylko rozciąganie i ściskanie środkowej powierzchni powłoki.

19*
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bt =0 bi = 1 cm bt =* 2 cm &i = 3 cm
q 

kg/cm2 / Pi P2 f Pt P2 f Pi Pi f Pi P2
cm kg/cm2 cm kg/cm2 cm kg/cm? cm kg/cm2

0,1 0,445 107 570 0,10 101 191 0,03 60 78 0,01 43 43
0,2 0,639 221 873 . 0,18 191 347 0,06 119 149 0,03 83 83
0,3 0,769 320 1094 ' 0,25 272 482 0,09 176 218 0,04 124 124
0,4 0,870 410 1273 0,31 350 608 0,11 229 331 0,06 164 164
0,5 0,953 493 1426 0,37 421 727 0,14 288 342 0,07 205 205
0,6 1,025 570 1566 0,42 490 832 0,16 342 402 0,09 243 243
0,8 1,148 713 1801 0,51 620 1004 0,22 443 540 0,11 323 323
1,0 1,251 845 2003 0,59 . 739 1188 0,26 547 625 0,13 402 402
1,5 1,453 1143 2427 0,76 1030 1480 — — — — — —
2,0 1,614 1409 2765 0,89 1270 1870 — — — — — —

*) Ob. H. Reissner, Festschrift Mulłer-Breslau, r. 1912 [i Yierteljahrschriłt der Naturłorsch. Gesellschaft in Ziirich 
60 (1915) S. 23].

2) Te naprężenia można obliczyć w przybliżeniu przy pomocy metody, wskazanej przez O. Blumenthal’a. Ob. 
Z. L Math. u. Phys. Bd. 62, str. 359.

Wykład tej metody w zastosowaniu do jednego szczególnego przypadku znajdzie czytelnik w pracy autora: „Ras- 
czot sfericzeskich obołoczek". Ob. Wiestnik O-wa Technołogow z r. 1913.

Szereg rozwiązań odnoszących się do powłoki stożkowej i kulistej znajduje się w pracy Meissner’a, ob. Phys. 
Zeitschr. z r. 1913, str. 343.

Ob. także pracę Keller’a, „Mitteil. ii. Forschungsarb.“.

W tym przypadku, gdy podparte brzegi powłoki mogą przy odkształceniu przemieszczać się swobodnie w kierunku nor­
malnych do powierzchni powłoki, otrzymane tą drogą rozwiązanie przybliżone daje wyniki o dokładności zupełnie wystar­
czającej dla praktyki1)- Jeżeli jednak brzegi powłoki są ustalone tak, że nie mogą swobodnie się obracać, albo przesuwać, 
to wzdłuż brzegów powstają napięcia, które mogą wywołać znaczne naprężenia miejscowe. Te naprężenia maleją szybko 
w miarę oddalenia od podpartego konturu2), wobec czego mogą pozostać nieuwzględnione, o ile powłoka jest narażona na 
obciążenie stałe lub tylko przypadkowe.



CZĘŚĆ VII

ZAGADNIENIA DYNAMICZNE NAUKI O WYTRZYMAŁOŚCI

ROZDZIAŁ XVIII

WPŁYW SIŁ BEZWŁADNOŚCI

§ 156. O NAPRĘŻENIACH W PRĘTACH PORUSZAJĄCYCH SIĘ

Spółczesna technika, a w szczególności spółczesna konstrukcja maszyn, stawia cały szereg 
zadań, w których kwestja wytrzymałości nie da się rozstrzygnąć w sposób zadowalający, dopóki 
nie uwzględnimy ruchu obliczanych elementów. Siły bezwładności, drgania i uderzenia mogą bo­
wiem grać bardzo ważną rolę przy większych prędkościach ruchu, wobec czego pomijać ich nie 
wolno1). Mimo to ma opracowanie zadań dynamiki w nauce o wytrzymałości zakres daleko skrom­
niejszy, aniżeli opracowanie kwestyj statycznych, musimy więc w dalszym toku wykładu poprze­
stać na kilku najprostszych przykładach.

Kwestja naprężeń dynamicznych rozwiązuje się najłatwiej w tych przypadkach, kiedy można 
pominąć odkształcenia obliczanych części i przyjąć, że one się poruszają jako ciało doskonale 
sztywne. Wówczas, stosownie do danego ruchu maszyny, wyznaczymy bez trudności przyśpiesze­
nia oddzielnych elementów obliczonej konstrukcji i znajdziemy odpowiadające wartości sił bezwła­
dności. Dołączając te siły do danych sił zewnętrznych, prowadzimy dalszy rachunek tak ; 
samo, jak w zadaniach statycznych. Rozpatrzmy np. wpływ sił bezwładności na naprężę- i 
nia w poruszających się prętach. Jeżeli pręt porusza się w kierunku swojej osi, to siły * 
bezwładności wywołają w nim dodatkowe ciągnienia lub ciśnienia, zależne od wielkości 
przyśpieszenia i ciężaru właściwego materjału pręta. Niechaj pręt AB (rys. 375) podnoś / 
się pionowo w górę pod wpływem siły działającej na koniec B. Gdyby ruch pręta był 
jednostajny, to na każdy jego element działałaby tylko siła ciężkości, i jeżeli q oznacza i
ciężar jednostki długości pręta, to siła wewnętrzna w przekroju B byłaby równa ql, t. j. cię- J
żarowi pręta. Skoro teraz założymy ruch jednostajnie przyśpieszony i oznaczymy przez a Rys 375 
wielkość odpowiadającego przyśpieszenia, to na każdy element pręta o długości dx będzie 
działać oprócz jego ciężaru qdx i siła bezwładności, mająca w danym przypadku ten sam kieru­
nek, co siła ciężkości. Dla określenia wielkości siły bezwładności, działającej na element, trzeba 

masę elementu ~~dx pomnożyć przez przyśpieszenie a. Napięcie rozciągające w przekroju B 
O 

będzie równe:

x) Ważność zadań dynamiki w nauce o wytrzymałości podkreślił prof. A. Sommerfeld w interesującym artykule 
w Zeitschr. d. Ver. d. Ing. z r. 1902, str. 390.
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Jeżeliby w dolnym końcu pręta wisiał nadto ciężar Q, to dla siły wewnętrznej w przekroju B 
otrzymalibyśmy wyrażenie:

(?/ + Q)(l+j).........................................................(319)

Przy wielkich wartościach przyśpieszenia a mogą ciągnienia, wywołane siłami bezwładności, prze­
wyższać wielokrotnie naprężenia, wywołane obciążeniem statycznem. Tę okoliczność zużytkował 
O. Reynolds (§ 24) przy konstrukcji swojej maszyny do badania znużenia metali. Pręt próbny 
wraz z przymocowanym do dolnego końca stosunkowo niewielkim ciężarem Q wykonywa w tej 
maszynie pionowe ruchy okresowe o bardzo wielkiej częstości (do 2000 wahnień na minutę). War­
tość powstających przytem sił bezwładności dochodzi do sześćdziesięciokrotnej wielkości ciężaru Q.

Jeżeli kierunek ruchu postępowego pręta jest różny od kierunku jego osi, to siły bezwładności 
wywołują nietylko napięcia podłużne, lecz także i momenty zginające pręt. W praktyce zachodzą 
przypadki, kiedy powstałe w ten sposób naprężenia zginające osiągają znaczną wielkość; należy 
je przeto wziąć w rachubę. Jako przykład przytoczymy obliczenie łącznika korb sprzężonych osi 
lokomotywy i trzonu korbowego maszyny parowej. Podczas ruchu lokomotywy trzon /IB (rys. 376) 
oprócz ruchu wspólnego z lokomotywą (przyjętego za jednostajny) wykonywa jeszcze ruch względny, 
przy którym wszystkie punkty jego osi opisują koła o promieniu r ze stałą prędkością kątową co.

Siłę bezwładności przypadającą na element łącznika o długości dx 
f / f f f f / / L i masie 4- dx przedstawia tutaj siła odśrodkowa o wiel- 
' h £

~ kości dx. co’ r. Jej kierunek jest w każdej chwili równoległy

• ; do kierunku obu korb C/I i DB. Łącznik /IB jest zatem nara­
dy żony na zgięcie tak, jakby nań działało obciążenie rozłożone 

równomiernie o natężeniu:
Rys. 376 Q n

g

w kierunku równoległym do korby. Najniekorzystniejszy przypadek obciążenia zajdzie widocznie, 
gdy korby zajmą położenie pionowe, gdyż siły bezwładności będą wtedy prostopadłe do osi łą­
cznika. Powstający wskutek tego największy moment zginający zajdzie w środku łącznika, a jego 
wielkość przy stałym przekroju łącznika określi wzór:

M= ° 
O g

Dołączywszy do tego moment ciężaru własnego, znajdziemy:

. (320)

Naprężenia wskutek zgięcia trzeba złożyć z naprężeniami wywołanemi siłą podłużną w łączniku. 
Z wzoru (320) widać, że siły bezwładności przybierają
szczególnie wielką wartość przy wielkich prędkościach 
ruchu i że wielkość Mmax jest proporcjonalna względem 
ciężaru jednostki długości łącznika. Dla zmniejszenia 
tego ciężaru nadaje się łącznikom w szybkobieżnych 
lokomotywach przekrój poprzeczny ] (dwuteowy), ko­
rzystniejszy od prostokątnego.

Przy obliczeniu trzonu korbowego (rys. 377) przyj­
mują zwykle, że poziome składowe przesunięć wszyst­
kich punktów osi trzonu są równe przesunięciu punktu F, 
t. j. rzutu końca korby B. To założenie jest tem bliż­

Rys. 377sze prawdy, im większą jest długość trzonu w porów­



'295

naniu do długości korby r. Mierząc czas od chwili, w której korba zajmuje położenie poziome, 
określimy położenie punktu F równaniem:

x = r cos co t.
Co się tyczy przesunięć pionowych y, to one są dla różnych punktów trzonu różne. Dla jakiego­
kolwiek punktu D w odległości & od końca trzonu C mamy:

y=rsincv/.-j-.

Rzutami przyśpieszenia punktu D będą:
£ 

x" = — r a)’ cos co /, y" = — r co’ sin co /. y-.

Kierunek przyśpieszenia y" można przyjąć w przybliżeniu za prostopadły do osi trzonu korbo­
wego. Odpowiadające temu przyśpieszeniu siły bezwładności odniesione do jednostki długości 
trzonu, t. j.

——y"=ĄrT co2 sin co/. -y- 
g^ g l

wywołają zgięcie trzonu jako obciążenie ciągłe, zmieniające się od wartości O w«końcu C do war­
tości -^-rco’sin co/ w końcu B. Najniekorzystniejszy przypadek otrzymamy dla sinco/= 1. Maxi- 

mum momentu zginającego w przypadku stałego przekroju zachodzi w odległości:

od punktu C i ma wartość: 

g 2 - 0,128 g 2 ....................................... (321'

§ 157. NAPRĘŻENIA W WIRUJĄCYM PIERŚCIENIU

Z kwestją naprężeń w szybko wirującym pierścieniu spotykamy się przy obliczeniu wieńca 
kół zamachowych, bębna turbin parowych, kotwicy prądnic i t. p.1). Jeżeli grubość pierścienia 
w kierunku radjalnym jest mała w porównaniu z jego promieniem, to można przyjąć w przekroju 
pierścienia równomierny rozkład ciągnień, powstających w nim wskutek obrotu. Oznaczmy przez q 
ciężar jednostki obwodu pierścienia, a przez co stałą prędkość kątową obrotu. Jeżeli r jest średnią 
wartością promienia, to siła bezwładności, przypadająca na wydzielony element pierścienia równa się:

Siły bezwładności mają w danym przypadku kierunek radjalny i są rozłożone równomiernie na 
obwodzie pierścienia. Wywołane niemi ciągnienie wyznaczymy zupełnie w ten sam sposób, jak 
w ściance rury narażonej na wewnętrzne stałe ciśnienie (§ 35). Napięcie obwodowe:

T^r 7 
g r g

Dzieląc wielkość tego napięcia przez pole przekroju poprzecznego pierścienia, znajdziemy szukane 
ciągnienie:

..............................................................................................(322)

o

*) Werner. „Die mech. Beanspruchung rasch laufender Magnetrader", r. 1904. 
Lorenz, „Berechnung rotierender Trommeln", Z. d. Ver. d. Ing., r. 1910, str. 1397. 
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jeżeli r oznacza ciężar właściwy materjału pierścienia. Wielkość naprężenia zależy więc 
tylko od ciężaru właściwego materjału i prędkości obwodowej v. Dla żelaza 
zlewnego daje otrzymany wzór następujące wartości naprężeń przy różnych prędkościach:

p- 25 50 100 150 200 400 misek,
p = 50 200 800 1800 3200 12800 kglcm2.

Już przy prędkościach 150 misek zbliżają się naprężenia do granicy proporcjonalności. Ażeby 
można stosować większe prędkości, trzeba pierścienie zastąpić krążkami i sporządzić je z wybo­
rowego materjału o wielkiej wytrzymałości, np. ze’ stali niklowej.

§ 158. NAPRĘŻENIA W WIRUJĄCYCH KRĄŻKACH
Z obliczeniem szybko wirujących krążków mamy do czynienia przy projektowaniu turbin parowych, przy wyzna­

czeniu niebezpiecznej prędkości dia kamieni szlifierskich 9 i t. d. W przypadku stałej i małej grubości krążka można za­
gadnienie naprężeń, wywołanych siłami bezwładności, rozwiązać z wielką dokładnością drogą elementarną. Tok rozwiązania 
tego zadania zbliża się wielce do stosowanego przy wywodzie wzorów Lam£’go. Wydzielamy z krążka element abcd 
(rys. 332) i z warunków jego równowagi znajdujemy związek między naprężeniami px i pz. W tym cela rzutujemy wszystkie 
siły zewnętrzne elementu na kierunek promienia ob. Oprócz sił „powierzchniowych" mamy tutaj i „masowe® siły bez­
władności : a „

—j— pdcpdp,

mające kierunek promienia. Zamiast równania (c), otrzymanego przy traktowaniu zadania Lamń’go, będziemy mieli równanie:
I dp* I «2P2Y a

Pz + p ~Px^ - 0................................................................................................

Wyrażenie (d) z § (135) dla px i pz w zależności od przesunięcia radjalnego u zachowuje swą ważność, a więc:

Wstawiwszy te wartości w równanie (a) otrzymamy: 
d2u 1 du u cd2py(1— a2) _ 
d^ + 7d7 Ps+ Eg

Wprowadzając dla skrócenia oznaczenie:

możemy otrzymane powyżej równanie przedstawić w postaci:

a stąd po zcałkowaniu znajdujemy:

d 
do

r L^£i i
L P dp J

_  -^P8 | G P I ^2
8 2’rp (c)

Stałe dowolne C, i C2 trzeba wyznaczyć z warunków krańcowych. Tutaj rozpatrzymy dwa szczególne przypadki, a miano­
wicie: krążek z otworem w środku i krążek pełny.

U krążka z otworem muszą naprężenia radjalne znikać dla p = a i p = b, jeżeli a oznacza promień otworu, a b ze­
wnętrzny promień krążka. Wstawiwszy znalezioną wartość u w wyrażenie dla naprężenia pt, otrzymamy:

E rPz ~ i _ o2 L 3 + g

8
1 —<3

2^P2 + C,—(1—ojSJ.

Warunki krańcowe dają dla wyznaczenia C, i równania:

+5/U» + l±^ c, - (1 - »)§ = 0,

x) Ob. Stodoła, „Die Dampfturbinen®, wyd. 4-te z r. 1910, str. 248;
Griibler, Zeit. d. Ver. d. Ing. z r. 1897, str. 860 i z r. 1905, str. 535;
H. Ho Iz er, „Berechn. d. Scheibenrader®, Zeit. I. d. gesammte Turbinenwesen, r. 1913. 
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z których znajdujemy:
= + C,~-£±^'W.

Dla naprężeń px i pz otrzymamy przeto wyrażenia:
_ 3 + a AE / 14-3©

Px 1 - a2 ' 8 \ 3 + o

_ 3 + o
Pz — ------o1 — a2

AE 
8

(323)

Wprowadzając napowrót wartość A (wz. b) i nowe oznaczenia:
a: b — a, p : b = cp,

możemy wzory dla naprężeń przedstawić w prostszej postaci:

_ \d3 34-P
Px g ' 8

Y u2 3 - 
- T ■ “

cc®
1 4- ~

CC® 1 + a2 _ “ 
cp2

. (323)'
g — . , -<p 3 -p o

Tutaj oznacza u prędkość w b zewnętrznego brzegu krążka. Naprężenia radjalne stają się równe zeru dla cp = a i cp = 1, 
czyli na wewnętrznym i zewnętrznym brzegu krążka. Dla pośrednich wartości <p są naprężenia pz dodatnie i, jak łatwo 
sprawdzić, osiągają maximum dla:

kiedy p = b V a = Yab.

Wstawiwszy tę wartość p we wz. (323) znajdziemy:
(p.)m.x = ^ .............................................................(324)

g 8

Co się tyczy naprężeń px, to one są również wszędzie dodatnie i, co łatwo zauważyć, osiągają największą wartość przy 
najmniejszej wartości <p, t. j. na brzegu otworu, gdzie cp = a, a mianowicie:

(n _Y»a 3 +o V px)ma* — . (325)

Porównywując (324) i (325) widzimy, że o wytrzymałości krążka decydują naprężenia (px)m«x; krążek należy zatem obli­
czać na podstawie wzoru (325).

Zbadajmy, jaki wpływ ma wielkość otworu na wartość największych ciągnień. Przy małym otworze jest a małe 
w porównaniu do b i wielkość a2 można pominąć. Wtedy:

x _ywi3 4~ o
(Px)max— — —................................................................................................................(325)

Drugi skrajny przypadek otrzymamy, gdy a zbliża się co do wielkości do b i krążek zamienia się w pierścień, którego 
grubość w kierunku promienia jest bardzo mała. Wtedy można przyjąć a= 1, a wzór (325) daje:

(Px)max — ,

t. zn. dokładnie tę samą wartość, jaką znaleźliśmy pierwej dla cienkiego pierścienia (§ 157). Z otrzymanych wyników 
widać, że w przypadku krążka z otworem w środku jest miejscem niebezpiećznem brzeg otworu.

Ażeby uniknąć wielkich naprężeń materjału, stosują niekiedy konstrukcje, które umożliwiają połączenie osi z krąż­
kiem bez robienia otworu w środku. Rozpatrzmy tedy jak się rozkładają naprężenia w przypadku krążka pełnego. Dla 
wyznaczenia stałych całkowania Q i C, będziemy teraz mieli następujące warunki: 1) Przesunięcie radjalne u musi 
w środku krążka równać się zeru i 2) naprężenie pz staje się zerem na obwodzie krążka. Aby uczynić zadość pierwszemu 
warunkowi, trzeba w wyrażeniu (c) przyjąć C, = 0, a wtedy dla wyznaczenia Cj daje drugi warunek równanie:

3^-dl4-°r n lłx r 34~°^b*— ** + — ^=0, z którego: C. = , + g 4

Dla naprężeń px i Pz otrzymamy teraz wyrażenia:

_YD,34-o/i 14-3apJ\
P*~ g 8 ' 1 3 + o bs' ’

pz = ^.ŁWl-P,|.
P g 8 \ b3 /

Obadwa naprężenia są dodatnie i wzrastają, gdy p maleje, t. j. w miarę zbliżania się do środka krążka. Dla p = 0 będzie:

(Px)max — (pZ)max = — . . . . ......................................................(326)
g 8

Znalezione wartości naprężeń są dwa razy mniejsze od tych, jakie wypadły dla krążka z bardzo małym otworem w środku
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§ 159. KRĄŻEK O RÓWNOMIERNEJ WYTRZYMAŁOŚCI

Znaleźliśmy, że w przypadku krążka o stałej grubości są naprężenia proporcjonalne względem kwadratu prędkości 
obwodowej o krążka. Dla materjału o danej wytrzymałości można zawsze ustalić graniczną wartość v, poza którą muszą 
największe naprężenia przekroczyć normę dopuszczalną dla materjału. Ażeby można stosować bezpiecznie większe pręd­
kości wypada budować krążki o zmiennej grubości. Przy obliczeniu naprężeń w takim krążku wyjdziemy, jak poprzednio, 
z założenia, że naprężenia nie zmieniają się na grubości krążka. To przyjęcie, jak wykazały dokładniejsze badania1)? 
zbliża się bardzo do rzeczywistości u krążków niezbyt grubych. Naprzykład dla krążka o postaci bardzo spłaszczonej 
elipsoidy obrotowej, przy największej grubości równej 4- średnicy zewnętrznej, zboczenia od równomiernego rozkładu na-

O
prężeń na grubości krążka nie przekraczają 5%. Dla ustawienia zależności między naprężeniami px i pz zwrócimy się do 
warunku równowagi elementu abed (rys. 332), wydzielonego z krążka dwoma spółosiowemi powierzchniami walcowemi. 
Jeżeli y oznacza zmienną grubość krążka, to napięcia działające na boczne ściany elementu ab i cd będą równe:

Px . y • d p.
Napięcia na ścianach ad i bc określą wyrażenia: 

pz . y . p . d 'p
Dołączając do tych napięć siły bezwładności:

Pzj pdcp + d(Pzjpdcp).

Y<« P y • p d d P . —-—,

i rzutując wszystkie siły na kierunek promienia, otrzymujemy równanie równowagi:
Y (D^p d(pzypdcp) 4-ycpdcpdp—- ----- P*ydp  dy =0.

*) Ob. A. Stodoła, „Die Dampfturbinen", r. 1910, str. 617, tudzież artykuł tegoż autora w Zeitschr. d. Ver. 
d. Ing. z r. 1907, str. 1269.

albo:
d , . , yp2yco2 _(p^p)-p^+—g— = o (a)

Stosunek px do pz zmienia się zatem w zależności od prawa, według którego będzie się zmieniać grubość krążka y. Naj­
korzystniejszym okazuje się widocznie ten przypadek, w którym naprężenia px i Pz są sobie równe i mają na całym krążku 
wartość stałą, równą naprężeniu dopuszczalnemu. Przyjmując tedy w rów. (a):

p*  = Pz = R,
otrzymamy:

a stąd:

n dy , yp2Yws_n
PW+^Tj’ albo:

y = yoe

f CD2 p2
W • (327)

dy Y ,

Tutaj oznacza y0 grubość krążka w środku. Wyznaczymy ją w zależności od warunków na obwodzie krążka. Kwestja 
odkształceń krążka o równomiernej wytrzymałości rozwiązuje się w bardzo prosty sposób. Równym naprężeniom p*  i pz będą 
odpowiadać równe wydłużenia względne:

(l-o)Rex = ez = -—— £
Przesunięcie jakiegokolwiek puktu w kierunku promienia będzie równe:

„ (l-o)R ’
“ =----- . (328)

Przejdźmy teraz do warunków na obwodzie krążka. W praktyce zaopatruje się krążek turbiny szerszym wieńcem (rys. 378), 
do którego są przymocowane łopatki turbiny. Przekroju poprzecznego lego wieńca nie można obrać dowolnie dla krążka 
o równomiernej wytrzymałości; jego rozmiary znajdziemy z następującego rozważania. Przy obrocie krążka działają 

na wieniec oprócz sił bezwładności jeszcze i na­
prężenia R w miejscu geometrycznego połączenia 
krążka z wieńcem. Rozmiary wieńca należy dobrać 
tak, aby zwiększenie jego wewnętrznego promie­
nia b było dokładnie równe rozszerzeniu krążka 
o równomiernej wytrzymałości i promieniu zewnę­
trznym b. Siły, przypadające na jednostkę długości 
wieńca, określa formuła:

Rys. 378
S
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w której bt oznacza odległość środka poprzecznego przekroju wieńca od środka krążka. Wydłużenie względne wieńca 
równa się:

e = ^ 
a te

1
E ’

a zwiększenie promienia wewnętrznego:
beb — —- • .ay, E

Porównywując to z wydłużeniem promienia krążka, obliczonem według wzoru (328), otrzymamy potrzebny związek między 
rozmiarami wieńca:

^Rb^^ 4E ayt E (329)

O wielkościach yt i y2 decydują zwykle wymogi konstrukcyjne; rów. (329) określa przeto tę grubość wieńca a, jakiej 
potrzeba, aby w miejscu (geometrycznego) połączenia krążka z wieńcem zachodziły naprężenia równe R.

Dalsze szczegóły obliczenia można znaleźć w dziełach specjalnych, poświęconych turbinom parowym1).

i A. Leon’a: „Uber rotierende Scheiben gleichen Fliehkraftwiederstandes". Sitzungsber. d. Akad. d. Wiss. Wien. 1907.
Rachunkową metodę obliczenia krążków o zmiennej grubości podał autor w pracy: „Woprosy procznosti w paro­

wych turbinach". Wiestn. Ob-a Technołogow z r. 1912.
Zastosowaniem metody W. Ritz’a do obliczenia krążków turbinowych zajmuje się interesująca praca PóschFa 

w Zeitschr. f. d. gesamte Turbinenwesen z r. 1913.
Tablice pomocnicze do obliczenia krążków znajdują się w książce Donafa: „Die Berechnung rotierender Scheiben 

u. Ringe...“. R. 1912.

§. 160. NAPRĘŻENIA W WIEŃCU KOŁA ZAMACHOWEGO

Przy obliczeniu koła zamachowego ze względu na wytrzymałość poprzestają zwykle na wyznaczeniu naprężeń 
w wieńcu uważanym za pierścień obracający się z daną prędkością kątową co. Atoli sprychy przeszkadzając swobodnemu 
rozszerzeniu się wieńca, zmniejszają wprawdzie w nim siłę rozciągającą, lecz jednocześnie wywołują dodatkowe naprężenia 
zginające. Obliczymy te naprężenia przy założeniu stałej prędkości kątowej koła. W tym przypadku są sprychy narażone 
wyłącznie na rozciąganie, a odpowiadającą siłę rozciągającą X można znaleźć przy pomocy zasady najmniejszej pracy.
Przy ustawieniu wyrażenia dla energji potencjalnej, wystarcza widocznie 
wziąć pod uwagę część koła, wydzieloną dwoma przekrojami południ- 
kowemi, połowiącemi kąty między przyleghmi sprychami (rys. 379). 
Niech będzie 2 a wielkością kąta między dwiema po sobie następują- 
cemi sprychami. Działanie reszty wieńca na część rozpatrywaną można 
zastąpić siłą podłużną No i parą sił o momencie Mo. Z warunków sy­
metrji wnosimy, że siła poprzeczna w rozpatrywanych przekrojach 
musi być równa zeru. Jeżeli q oznacza ciężar jednostki długości wieńca, 
a r jego promień, to z warunku rzutów wszystkich sił zewnętrznych na 
kierunek sprychy otrzymamy:

a stąd:

pa
2N0 sin a + X = 2 \ ~~ w2 r cos (a— <p), 

Jo »
= qr*^ X 

0 g 2 sin a '

Dla przedstawienia Mo jako funkcji X skorzystamy z tej okoliczności, że przekroje końcowe wydzielonej części wieńca 
nie obracają się, że zatem (wz. 272'):

pa 
\ = 0 ............................................................................(a)
Jo

Tutaj oznaczyliśmy przez moment zginający w dowolnym przekroju wieńca, zamykającym z przekrojem początkowym 
kąt <p. Tę wielkość określi wyrażenie:

... nr /. ' . q ~ o . , y ., Xr 1 — cos
^ = ^0 —./Vor(l —cos?)-r sm 2 M° 2~^ina ’

Wstawiwszy je w rów. (a) i wykonawszy całkowanie, znajdziemy:

„ Xr / 1 1 \— o I I •2 \ sm a a /

x) Liczne dane co do postaci równomiernej wytrzymałości wirujących krążków zawiera praca A. Basch’a 
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Mając wyrażenia dla i No, znajdujemy wielkości siły podłużnej i poprzecznej, tudzież wielkość momentu zginającego 
w przekroju mn:

At M I 2 • 2 ? 9 2 2 X COSAL — cos cp 4- -L—— 2r* sm2 — = -4- r2 a>2 —— —----- ,g 2 g 2 sm a

Qcp = sin <p
q o . <p <p- ------ 2 r sm 4r cos 4,

g 2 2
X sin <p 
2 sin a ’

2 1 sm a a /
Xr 1 — cos <p _ Xr / _1___cos <p
2 sin a • — 2 ' a sin a

Energję potencjalną wydzielonej części wieńca przedstawimy na podstawie przybliżonej formuły (271) w postaci:

V. = 2
a M2 r dtp 

9
i0 2EI

pa N^rdy
42 \ —--Jo 2EF

Tutaj oznacza odpowiednio I i F moment bezwładności i pole przekroju poprzecznego wieńca. Obliczymy teraz energję 
potencjalną sprychy, narażonej na rozciąganie (rys. .380). Długość sprychy przyjmiemy równą długości promienia koła 

zamachowego, a pole przekroju poprzecznego (przyjętego za stały) oznaczymy przez Fi’, wtedy 
napięcie N w przekroju mn, wziętym w odległości p od środka koła, będzie się składać z siły X 
określającej działanie wieńca na sprychę i sił bezwładności działających na zewnętrzną część sprychy. 
Otrzymamy tedy:

N=X+^(r-t>) r̂^ = X + ^ł(r'-P'}. 
g 2 Łg

Energję potencjalną sprychy przedstawi zatem wyrażenie:
ęr N2dP

Pomijając odkształcenie innych części koła zamachowego, otrzymamy dla całkowitej energji odkształ­
cenia wyrażenie:

V= ^4-^.
Do wyznaczenia niewiadomej X posłuży, według zasady najmniejszej pracy, równanie:

Wstawiwszy wartość V, znajdziemy po szeregu przekształceń:

Y_ q<r2r2 1
A — 0 Fr* F . (330)

jeżeli dla skrócenia wprowadzimy następujące oznaczenia:

A(a) =
1

2 sin2 a
sin 2 a 

4
a \ . . . 1 / sin2a a \ 1
2l’ =

Użycie wzoru (330) ułatwia umieszczona poniżej tablica wartości fi (a) i fj (a), odpowiadających różnej liczbie sprych n.

n — 4 4 8 10 12

ft(a) = 0,643 i
I . 1 0,957 1,274 1,592 1,910

Ma) = 0,00608 0,00169 0,00076
i

0,000395 0,000125

Obliczywszy napięcie sprychy X, znajdziemy bez trudności wielkość momentu zginającego, siły podłużnej i poprzecznej 
w dowolnym przekroju wieńca i możemy obliczyć odpowiadające wartości naprężeń.

W przypadku zmiennej prędkości kątowej koła zamachowego przybywają obok radjalnych sił bezwładności jeszcze 
siły bezwładności styczne, odpowiadające przyśpieszeniu kątowemu. Te siły wywołują zgięcie sprych, przyczem naprężenia 
zginające będą tern większe, im naglejsze są zmiany prędkości kątowej koła. Jeżeli oj oznacza przyśpieszenie kątowe koła 
zamachowego, to przyśpieszeniem stycznem punktów wieńca będzie ró>. Odpowiadające styczne siły bezwładności dają 
względem osi koła moment:

M — — w r\
g
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Ugięcie końca sprychy pod wpływem P i M będzie równe:

przyczem Q oznacza ciężar koła zamachowego. Ten moment przenosi się na wał za pośrednictwem sprych; dla momentu 
zginającego każdej sprychy w miejscu jej osadzenia na piaście można przeto przyjąć wartość:

i. M Q .. , 
= ...............................................................(»')

Nietrudno też znaleźć prawo zmienności momentu zginającego wzdłuż sprychy. Dla uproszczenia zadania pominiemy sto­
sunkowo małe zgięcie 'wieńca') i wpływ sił bezwładności działających na masę sprychy. Wówczas każda sprycha przed­
stawia sięjako belka utwierdzona końcem A (rys. 381) i obciążona na drugim końcu siłą P, oraz parą sił M. Związek 
zaś między siłą a parą określa warunek, że styczna do zgiętej osi sprychy w jej końcu B, a zarazem normalna do wieńca 
przechodzi przez punkt 71, odpowiadający środkowi koła.

Pr8 Mr*

8) Najbardziej wyczerpująco traktuje teorję drgań układów sprężystych dz'eło lorda Rayleigh: „Theory of sound*. 
Jakkolwiek ta książka jest poświęcona zagadnieniom akustyki, to jednak można w niej znaleźć cały szereg rozwiązań 
o wielkiej praktycznej doniosłości. Przystępniejszy wykład teorji drgań zawiera książka Lamb’a: The Dynamical theory 
of sound.

Ob. także'; B. Hopkinson: „Yibrations of systems having one degree of Freedoms“;
A. Boutaric: „Oscilations et Yibrations, Paris, 1912.
jHl. N. Kryło w: „O niekotorych differencialnych urawnieniach...". 1913.
W tej ostatniej książce, napisanej dla inżynierów, interesujących się mechaniką, wyłożono metody całkowania równań 

różniczkowych, mających znaczenie techniczne. Osobliwie szczegółowo rozpatrzono zadania drgań prętów.
Ob. także „Kurs tieorji uprugosti", cz. II, str. 171.

3EIt 2EIi '
Kąt nachylenia stycznej w punkcie B: 

_ Pr2 Mr
T ~ 2Eli ~ Eh ' 

Ten_kąt określa nadto równanie: 
_ f _ Pr2 Mr 

T ~ ~r " ~3Eh ~TeI^ ' 

Z porównania obu wyrażeń dla cp wynika:

Rys. 381

Diagram momentów zginających dla sprychy przedstawia lig. (b). Otrzymane wzory rozwiązują kwestję wytrzymałości 
w przypadku koła zamachowego jednolitego. Jeżeli koło jest złożone z części, to trzeba nadto zbadać wytrzymałość w miej­
scach połączenia. Te miejsca okazują się zwykle najbardziej niebezpiecznemi, ponieważ konstrukcje połączeń stosowane 
w praktyce nie wykluczają możliwości względnych przesunięć połączonych części2).

ROZDZIAŁ XIX

O DRGANIACH UKŁADÓW SPRĘŻYSTYCH

§ 161. SWOBODNE DRGANIA UKŁADU O JEDNYM STOPNIU SWOBODY

Kwestja drgań układów sprężystych ma nietylko znaczenie teoretyczne, lecz także wielką 
doniosłość praktyczną8). Z zadaniami tego rodzaju spotykamy się w różnych dziedzinach konstrukcji 
maszyn: np. przy obliczeniu wałów maszyn okrętowych, wałów turbin parowych i belek podtrzy­
mujących szybkobieżne, a niezupełnie zrównoważone maszyny. Z takiemi zadaniami, tylko w za­
wilszej postaci ma do czynienia projektujący inżynier przy badaniu drgań okrętów, lub wyzna­
czeniu naprężeń dynamicznych w mostach, drgających pod wpływem ruchomych obciążeń. W pew­
nych warunkach mogą powstające drgania być bardzo znaczne, wobec czego należy wywołane 
niemi naprężenia wziąć w rachubę. Te naprężenia zmieniają nietylko swoją wielkość, ale i znak. 
Przy szybkich drganiach powstaje w krótkim przeciągu czasu wielka liczba zmian znaku naprę­
żeń, co się odbija szczególnie szkodliwie na wytrzymałości materjału i konstrukcji. Z wyliczonych

x) Bardziej szczegółowe badanie tej kwestji znaleźć można w pracy H. Bauer’a: „Die Festigkeitsberechnung der 
Schwungrader", Dingl. P. J. z r. 1908, str. 353.

2) Opis doświadczalnych badań odkształceń koła zamachowego znajduje się w artykule S. H. Barraclough’a: 
„Hn Optical Method of determining the deformations of a Rotating Fly-Wheel“, Proc. Civ. Eng., v. CL., str. 398.
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Rya. 382

dowolne

powyżej przykładów widać, że inżynier stoi niekiedy przed kwestją drgań układów bardzo złożo­
nych, dła których dokładne i wyczerpujące rozwiązanie zadania przedstawia wielkie trudności. 
W takich przypadkach ograniczamy się najczęściej do rozwiązania przybliżonego i sprowadzamy 
zagadnienie do badania układu o jednym stopniu swobody. Analogiczną metodą posługiwaliśmy 
się już w statycznych zadaniach zgięcia prętów (rozdz. XV).

Drgania sprężyste układu mogą powstać wśród rozmaitych okoliczności; jeżeli one zachodzą 
bez współudziału sił zewnętrznych, albo pod wpływem sił stałych, to nazywamy je swobodnemi 

lub własnemi drganiami układu. Podstawowe własności drgań przedstawimy na 
najprostszym przykładzie pionowych drgań (wahnień) ciężaru Q, zawieszonego na sprę­
żystym pręcie A O (rys. 382), przyczem pominiemy masę, a więc i ciężar własny pręta. 
Przy statycznem działaniu ciężaru wydłuży się pręt o wielkość:

. Q/
X = EF-

Niech będzie O położeniem środka masy ciężaru Q, odpowiadającem stanowi równowagi. 
Ażeby zmusić ciężar do drgań w kierunku pionowym, postąpimy tak: Zapomocą odpo­
wiedniej siły pionowej wywołamy dodatkowe wydłużenie pręta o dowolnej wielkości a 
i pozostawimy następnie ciężar samemu sobie. Wtedy ciężar zacznie wykonywać ruch 
okresowy około położenia równowagi, odchylając się od punktu O do góry i na dół 
o wielkość a. Dla ustawienia równania różniczkowego tego ruchu weźmiemy pod uwagę 
wszystkie siły działające na ciężar. W chwili, kiedy środek ciężaru znajduje się w O, 
siła ciężkości Q równoważy się z odpowiadającem napięciem pręta A O. Weźmy teraz 

inne położenie ciężaru podczas drgania i oznaczmy przez X spółrzędną środka masy, 
odpowiadającą temu położeniu (dodatnie x mierzymy od punktu O w dół). Wówczas, oprócz siły 
ciężkości Q, skierowanej pionowo w dół, będą na ciężar działać: napięcie w pręcie równe 

i skierowana w górę siła bezwładności
Q d*x

Równanie ruchu będzie przeto następujące:
n ( ca xEF\ Q dix d*x , .Q-(Q+ gd/2"’ czyh ‘ ‘

przyczem wielkość pomocniczą k, zwaną częstością drgań, określa wzór:

.................................................................................(332)
। । A.

Ogólna całka otrzymanego równania różniczkowego ma postać:

x A sin kt + B cos kt........................................................ (b)

Stałe dowolne A i B należy wyznaczyć tak, aby czyniły zadość warunkom początkowym ruchu. 
W chwili początkowej odchyliliśmy ciężar z położenia równowagi o długość a i pozostawiliśmy 
go samemu sobie, nie udzieliwszy mu prędkości początkowej, a zatem

dla t = 0, x = a i x' = 0.
Stąd równania do wyznaczenia A i B:

[A sin kt + B cos kt]t = o = a, [AZ? cos kt 4- Bk sin kt] t = 0 = 0.
Drugie z tych równań daje A = 0, a wtedy wypływa z pierwszego B = a. Wstawiwszy te^wartości 
w ogólną całkę (b), otrzymamy:

x = a cos kt, x' = — ak sin kt................................................(c) 
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Przy zmianie cos/?/ w granicach od +1 do — 1, będzie x zmieniać się w granicach od + a 
do —a. Z wyrażenia (c) widać, że wartość x i x' pozostaje niezmienioną, skoro do t dodamy 
wielkość:

zp 2 / A A A \T = ........ (333)

W przedziale czasu T wykonywa ciężar całkowite drgnienie (wahnienie), wracając zarazem 
w początkowe położenie i przybierając początkową prędkość. Wielkość T nazywa się okresem 
(perjodem) własnych drgań układu. Okres T nie zależy od warunków początkowych ruchu i jest 
zupełnie określony własnościami sprężystemi i rozmiarami pręta, oraz wielkością ciężaru Q. Wsta­
wiwszy zamiast k wartość z (332), otrzymamy dla T wzór:

2nd~ - 2jc 

V £T = (334)

identyczny z wynikiem, otrzymanym w mechanice teoretycznej dla okresu wahadła matematy­
cznego. Możemy więc wypowiedzieć twierdzenie: Czas całkowitego wahnienia ciężaru Q, 
zawieszonego na pręcie sprężystym, pozbawionym masy, }
jest równy okresowi wahadła matematycznego o długości r 
równej bezwzględnemu wydłużeniu tego pręta przy staty- 7=^ j/j ,_____ ;ff 
cznem działaniu ciężaru Q.

Dla uproszczenia rozważań wzięliśmy pod uwagę ciężar, zawieszony — /.... .... j
na sprężystym pręcie, ale taki sam ruch okresowy można otrzymać, [fi&ć. 
jeżeli zawiesimy ciężar na sprężynie śrubowej lub położymy go na sprę- 
żystej belce (rys. 383, a i b), o ile oczywiście można pominąć masę 
sprężyny lub belki. W tych wszystkich przypadkach jest rzeczą istotną Ry®. 383

tylko fakt, że obniżeniu ciężaru towarzyszy pojawienie się sił sprężystości, przeszkadzających temu 
obniżeniu, a wielkość tych sił jest proporcjonalna względem wielkości przesunięcia. Przy rozcią­
ganiu pręta spółczynnik proporcjonalności, przez który trzeba pomnożyć przesunięcie, aby otrzy- 

EFmać siłę, równał się . Nietrudno znaleźć odpowiadające spółczynniki dla sprężyny i belki/IB.

Wydłużenie sprężyny pod działaniem siły Q określa według § 47 równanie:

, QR32jtn

zaś ugięcie belki obciążonej w środku siłą Q:

f 48 EF

Ażeby od drgań ciężaru zawieszonego na pręcie przejść do układów, przedstawionych na fig. (a) 
EFi (d), wystarczy zamiast y podstawić odpowiednio:

G/p . 48 EI
2nnRs 1 P ’

a okresy drgań dla sprężyny śrubowej i dla obciążonej belki /IB będą takie same, jak dla waha­
dła matematycznego o długości równej wydłużeniu sprężyny h, względnie ugięciu belki f.

§. 162. PRZYBLIŻONE OBLICZENIE OKRESU PODSTAWOWYCH (GŁÓWNYCH) DRGAŃ 
UKŁADÓW ZŁOŻONYCH

Przy rozwiązaniu zadań poprzedniego paragrafu pominęliśmy masę pręta i masę sprężyny wobec masy zawieszo­
nego ciężaru Q i w ten sposób otrzymaliśmy układ o jednym stopniu swobody. Zadanie sprowadzało się do całkowania 
zwykłego równania różniczkowego linjowego ze stałemi spółczynnikami. Bez tych uproszczeń staje się kwestja o wiele za­
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wilszą; trzeba rozwiązać równanie różniczkowe cząstkowe i zbadać rozmaite typy możliwych drgań układu. W zagadnie­
niach technicznych gra najistotniejszą rolę ten typ drgań, któremu odpowiada okres najdłuższy. Są to t. zw. podstawowe 
drgania układu. Do znalezienia ich okresu używamy metody przybliżonej. Na podstawie danych doświadczalnych przyj­
mujemy typ drgań, t. j. postać tych odchyleń, które układ otrzymuje przy drganiach i zamieniamy tym sposobem układ 
złożony w układ, o jednym stopniu swobody1). Dla objaśnienia toku rachunku rozpatrzymy kilka zadań.

Jako pierwszy przykład weźmiemy przypadek ciężaru zawieszonego na pręcie. Przyjmijmy na razie, że pręt jest po­
zbawiony masy. Kiedy podczas drgania ciężar Q osiąga jedno ze swoich położeń skrajnych, to jego prędkość, a zatem 
i energja kinetyczna układu staje się zerem. Potencjalna energja osiąga w tejże chwili największą wartość, ponieważ jej 
odpowiadają największe odkształcenia sprężystego pręta. Gdy ciężar przechodzi przez średnie położenie (położenie równo­
wagi), to jego prędkość i energja kinetyczna mają największą wartość, energja potencjalna zaś osiąga swoje minimum. 
W ten sposób podczas drgań zmienia się wciąż wielkość energji kinetycznej i potencjalnej, wszelako ich suma, t. j. całko­
wita energja układu, pozostaje stałą, ponieważ dotąd pomijaliśmy w naszych wywodach opory, jakie napotyka ciężar Q 
podczas ruchu i nie uwzględnialiśmy rozpraszania energji. Energja potencjalna układu będzie sumą z energji rozciągania 
pręta i energji ciężkości zawieszonego ciężaru, czyli równa się:

+ ...................................................................................(«)

jeżeli x odmierzamy od położenia równowagi środka ciężaru Q. Energja kinetyczna układu będzie równa energji kinety­
cznej samego ciężaru, t. j.

gdyż przyjęliśmy, że pręt jest pozbawiony masy. Otrzymamy tedy równanie:
Eh O~ (a: + X)s— Qx + — a?'2 — const.,

• Ł g

albo, uwzględniając, że . _ Ql .
~ EF'

^r^xtJr~-x'>^consL.........................................................................(c)
21 2g

Różniczkując względem t dojdziemy do równania drgań, rozpatrzonego w poprzednim paragrafie:

@ x" I — o 
g l

Położenie układu będzie zupełnie określone spółrzędną x, a przesunięcie jakiegokolwiek przekroju pręta, leżącego w odle­
głości £ od punktu zawieszenia (rys. 378) będzie równe:

u = ~.........................................................   • • • • (d)

Ocenimy teraz wpływ masy pręta na okres drgań układu2). Jeżeli masa pręta jest niewielka w porównaniu do masy cię­
żaru Q, to możemy bez wielkiego błędu przyjąć, że typ podstawowych drgań układu będzie taki sam, jak i w przypadku 
pręta bez masy. Przesunięcie dowolnego przekroju pręta przy drganiach określi poprzedni wzór (d), a energja potencjalna 
rozciągania pręta przy odchyleniu ciężaru o x z położenia równowagi zachowa poprzednią wartość. Co się tyczy energji 
kinetycznej układu, to ona zmienia się nieco; do energji kinetycznej poruszającego się ciężaru trzeba dołączyć energję 
kinetyczną pręta. Skoro przez q nazwiemy ciężar jednostki długości pręta, to energję kinetyczną elementu pręta, wydzei- 
lonego w odległości ś od punktu zawieszenia, przedstawi wyrażenie:

Energja kinetyczna całego pręta będzie równa:

qd$ i x'l\2_ ql a'2
2g U J ~3g 2 ’

a energję kinetyczną całego układu wyrazi wzór:

T) Ten sposób zaproponował lord Rayleigh; ob. Theory of sound, wyd. 2-gie, str. 111 i 287.
a) Swobodne drgania tego układu zbadał już Po i s son. Jego drgania wymuszone rozpatruje praca autora: „O wy- 

nużdionnych kolebaniach prizmaticzeskich stierżniej", Izw. Kij. Pol. Inst. z r. 1910 i artykuł H. N. Krylowa p. t. „Nie- 
kotoryja zamieczania o kreszerach i indikatorach“, Izw. Imp. Kkad. Nauk., z r. 1909, Nr. 9.
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Ostatecznie, zamiast rów. (c), wyprowadzonego dla pręta bez masy, otrzymamy:

— const.

Równanie ruchu jest więc takie same, jak w przypadku pręta pozbawionego masy, u którego zawieszono ciężar Q + •

Dla obliczenia okresu drgań podstawowych układu z uwzględnieniem masy pręta, można użyć poprzedniego wzoru (334), 
dodawszy jednak do ciężaru Q jedną trzecią ciężaru własnego pręta.

Jako drugi przykład rozpatrzymy drgania ciężaru umieszczonego na poziomej belce (rys. 379, fig. b). Pomijając 
masę belki znajdujemy dla okresu drgań wzór:

T = 2^ (e)

w którym f oznacza (statyczne) ugięcie belki pod ciężarem, Aby ocenić w przybliżeniu wpływ masy belki na okres drgań, 
postąpimy tak samo, jak w poprzednim przypadku. Przypuśćmy, że typ drgań pozostaje ten sam, co i dla belki bez masy. 
Energja potencjalna zgiętej belki zachowuje wartość poprzednią i trzeba tylko zmienić postać wyrażenia dla energji kine­
tycznej układu. Do energji kinetycznej drgającego ciężaru należy dołączyć energję kinetyczną belki. Obliczenia tej ostatniej 
można dokonać na podstawie następujących rozważań: Przyjęliśmy, że w rozpatrywanym przypadku typ drgań jest taki 
sam, jak dla belki pozbawionej masy. Z tego wynika, że w każdej chwili między ugięciem i| w dowolnym przekroju belki, 
a ugięciem y w środku rozpiętości zachodzi ta sama zależność, co i przy statycznem zgięciu belki. Na podstawie równa­
nia linji ugięcia belki obciążonej w środku mamy:

3 P x - 4
'i = y------ p-------

Jeżeli q oznacza ciężar jednostki długości belki, to jej energję kinetyczną w dowolnej chwili przedstawi wyrażenie:

o v'2 C 17

® Jo
£1

g 2
Energja kinetyczna jest zatem taka, jakąby miała belka pozbawiona masy z umieszczonym w środku rozpiętości ciężarem 
17^$ql. Okres drgań układu z uwzględnieniem masy belki można obliczyć w przybliżeniu według wzoru (e), jeżeli tylko

17przez f będziemy rozumieć strzałkę ugięcia powstającą pod wpływem ciężaru Q + skupionego w środku rozpiętości.

Gdy ciężar belki jest mały w porównaniu do ciężaru Q, to powyższa przybliżona metoda obliczenia okresu T jest 
bardzo dokładną. Dla praktycznych zastosowań jest okolicznością nader ważną, że nawet przy większych wartościach ql 
daje wyłożona metoda zupełnie zadowalające wyniki. Weźmy bowiem pod uwagę skrajny przypadek, kiedy Q = 0 i trzeba 
obliczyć okres podstawowych drgań belki nieobciążonej. Stosując metodę przybliżoną, znajdziemy:

T= 2^ ^yilgr g
48EIg 9,94 E/g (335)

Natomiast dokładne rozwiązanie tego zadania, oparte na całkowaniu odpowiadającego równania różniczkowego cząstko­
wego, daje:

2^-5— k
9,87 E/g

(335)'

Różnica między rozwiązaniem przybliżonem a dokładnem nie dochodzi l°/0.
Oceniając wpływ masy belki na okres drgań, wychodziliśmy z założenia, że przy drganiach ma oś belki taki sam 

kształt, jak i przy zgięciu statycznem. Można też przyjąć i inną przybliżoną postać wygięcia, dobierając ją tak, aby uczy­
nić zadość warunkom na końcach belki. Dajmy na to np., że belka zgina się przy drganiach według sinusoidy. Wtedy 
przy poprzednich znaczeniach i| i y mamy:

. nXii = y sm -y ,

a energją kinetyczną belki będzie:

=-Si /i
2 Jo « ' 2 2g ■

M———-/------
Rys. 384

Ten sam wynik otrzymalibyśmy, jeżelibyśmy przyjęli, że belka jest pozbawiona masy, a połowę ciężaru belki skupili w środku
1 17rozpiętości. A zatem, przyjąwszy zgięcie według sinusoidy otrzymaliśmy y ql zamiast Różnica obu wyników jest niewielka.

Jeżeli chcemy zbadać drgania belki jednym końcem utwierdzonej (rys. 384), to pierwsze przybliżenie dla okresu 
drgań otrzymamy, podstawiając we wzorze:

Kurs wytrzymałości materjałów 20
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zamiast f wartość statycznego ugięcia belki pod działaniem ciężaru Q. Aby ocenić wpływ własnego ciężaru belki, trzeba 
przyjąć postać linji ugięcia przy drganiach, odpowiadających typowi podstawowemu. Skoro przypuścimy, że postać zgiętej 
osi jest taka sama, jak przy statycznem działaniu siły pionowej na koniec B, to krocząc poprzednią drogą znajdziemy, że

... 33wartość energji kinetycznej będzie ta sama, co dla belki pozbawionej masy i opatrzonej na końcu ciężarem ql. Ażeby

ocenić wpływ własnej masy, trzeba we wzór dla T podstawić zamiast f ugięcie statyczne, odpowiadające obciążeniu końca 
belki siłą1):

*) Postać wygięcia belki jednym końcem utwierdzonej, powstającą przy drganiach,badano doświadczalnie; ob. Gar- 
rett, „On the laleral vibration of bars“, Phil. Mag. t. 8, str. 581.

2) Inną przybliżoną metodą badania drgań belek zajmuje się nader interesująca praca: I. Morrow, „On the lateral 
vibration of loaded and unloaded bars“, Phil. Mag. z r. 1905 i 1906.

Q + ............................................................................ (336>

Tymże sposobem można zbadać kwestję drgań belek o przekroju zmiennym2) i belek kratowych.

§ 163. DRGANIA PRZY OPORZE ŚRODOWISKA

W poprzednich wywodach nie uwzględnialiśmy wpływu oporów, jakie zachodzą przy drga­
niach. Opory środowiska, w którem układ sprężysty wykonywa drgania, zmniejszają stopniowo 
amplitudę drgań; drgania słabną, czyli „gasną". Wielkość oporu zależy od prędkości ruchu; gdy 
prędkość jest dość mała, to można niekiedy uważać opór za proporcjonalny względem prędkości 
1 Przyj$ć: D dx , .

................................................................. (a)

przyczem spółczynnik proporcjonalności a zależy od rozmiarów i postaci ciała. Ten spółczynnik 
ma znaczenie oporu, jaki zachodzi przy prędkości równej 1. Znak minus wskazuje, że opór ma 
zawsze kierunek przeciwny prędkości. Przechodząc do przypadku ciężaru Q zawieszonego na pręcie 
sprężystym pozbawionym masy (rys. 378) i rzutując wszystkie siły działające na ciężar, oraz siły 
bezwładności na oś X-ów, otrzymamy równanie:

= + . (b)' l* I g ar at ar at
przyczem _ g

ar’ £n~ q-

Ogólną całką tego równania będzie:
x = e~nt [/I sin (Vk2—n2. t) + B cos (KaF— n2. /)].

Przyjmijmy, że w chwili początkowej (/ = 0) jest x = a, natenczas B = a. .Wielkość prędkości po­
czątkowej obierzemy dla uproszczenia dalszych rozważań tak, aby A stało się zerem; dla x otrzy- 
mamy wtedy wyrażenie: ' x = e-"‘a cos . t).

Znalezione rozwiązanie poucza, że ruch jest przy k > n okresowym, lecz amplituda drgań zmniej­
sza się stopniowo. W chwili początkowej odchylenie ciężaru od położenia równowagi jest równe a; 
po upływie czasu odpowiadającego pełnemu okresowi drgań, nie wraca ciężar w pierwotne poło­
żenie; jego odchylenie od położenia równowagi będzie równe ae nT, a zatem będzie mniejsze od 
wartości początkowej. Po drugiem wahnieniu będzie odchylenie miało wartość ae-2nT i t. d. Am­
plitudy maleją tedy według szeregu geometrycznego o ilorazie e-nT. Im większą wartość ma spół­
czynnik n, t. j. im większy jest opór środowiska, tem prędzej gasną drgania.

Rozpatrzmy teraz okres drgania T. Wskutek oporów stała się jego wielkość
2n 

................................................... (337)

większą, niż w przypadku „drgań swobodnych". Gdy opory są niewielkie, jak to najczę­
ściej bywa, to n wypada małe w porównaniu do k i dlatego okres drgań mało się zmienia 
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wskutek obecności oporów. Przy większych oporach, np. w lepkiej cieczy, ma n większą 
wartość tak, że możebne są przypadki, w których n k. Wówczas traci ruch charakter okresowy 
i staje się „aperjodycznym". Nad tym 
przypadkiem nie będziemy się zatrzymywać 
dłużej.

Wygasanie drgań unaocznimy wykre- 
ślnie (rys. 385), odmierzając na osi odcię­
tych czas, a na osi rzędnych odchylenia cię­
żaru od położenia równowagi. Jeżeli przed­
tem wykreślimy dwie krzywe MN i 
których rzędne są odpowiednio równe:

x1 = ae~Rl i x2=—ae~ni, 
to krzywa falowa, wyobrażająca drgania, bę­
dzie naprzemian styczną to do pierwszej to 
do drugiej krzywej. Punkty styczności m', 
m",... n', n",... będą odpowiadać odciętym 
T, 2T, 3T,... 3^-,... Zauważymy tu­

taj jeszcze, że wielkości największych odchyleń nie odpowiadają punktom styczności m', m",... 
n', n",... i, jak widać z rys. (381), czas potrzebny do przeniesienia ciała z położenia równowagi 
w położenie skrajne jest mniejszy od czasu potrzebnego do powrotu ciała w położenie równowagi.

§ 164. DRGANIR WYMUSZONE

Wskutek oporów wygasają stopniowo drgania swobodne i dla podtrzymania ruchu okresowego 
potrzeba działania sił zewnętrznych o zmiennej wielkości. Drgania powstające w takich warunkach 
nazywamy „wy muszonemi“. Przestudjujemy ich własności na poprzednim przykładzie, przed­
stawionym na rys. (378). Dla wzbudzenia drgań ciężaru Q, zawieszonego na nieważkim pręcie /1O 
zmusimy punkt zawieszenia A do wykonywania drgań około pewnego średniego położenia. Niech 
będzie b amplitudą, a p częstością tych drgań. Jeżeli w chwili początkowej schodzi się punkt A 
ze średniem położeniem Zł0 i zaczyna ruch wdół, to położenie punktu zawieszenia względem 
punktu w dowolnej chwili t określi spółrzędna:

xr = b sin pi (a)

Zbadajmy ruch ciężaru Q. Wszystkie rozważania poprzednich paragrafów pozostają ważnemi i teraz 
skoro tylko zmienimy wyrażenia dla napięcia pręta. Zamiast wydłużenia pręta równego x, trzeba
wziąć wielkość x — xt = x — b sinpt

Warunek równowagi wszystkich sił działających na ciężar Q wraz z siłami bezwładności daje:

(x — b sin pt) EF 
l

Q d*x
l~dF

dx A
d7 =

albo:
+ k*x = q sinpt

Wielkości n i k mają tutaj poprzednie znaczenie, a

(b)

(c)
_ EFbg 

q ~ Ql

Znowu więc otrzymaliśmy równanie linjowe o stałych spółczynnikach. Od rów. (b) z poprzedniego 
paragrafu różni się ono ostatnim wyrazem. Ogólną całkę równania (b) znajdziemy, gdy do całki 

20*
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równania bez ostatniego wyrazu dołączymy szczególne rozwiązanie równania z ostatnim wyrazem 
Tego rozwiązania będziemy szukać w postaci:

x = M sin p t + N cos p f.

Podstawiwszy je w rów. (b) otrzymamy:

— Mp3 sin pt — Np2 cos pt + 2 Mnp cos pt — 2 Nnp sin pt + M k3 sin pt + Nk3 cos pt = q sin pt.

Stałe M i N wyznaczymy z równań:

— Np2 + 2 Mnp + Nk2 = 0, — Mp3 — 2 Nn p + Mk3 = q,

z których pierwsze przedstawia sumę algebraiczną spółczynników przy cospt, a drugie takąż sumę 
spółczynników przy siup/. Stąd:

M =____ - p2) _ ________ 2npq
(k2 — p2)2+4n2p2’ (ka — pa)t + 4nsp,^

Ogólna całka równania (b) ma zatem postać:

x = e | 71 sin k2 — n3. t) + B cos (V k3 — n3. t) | +

. q(k3 — p3) . 2npq .
+ smp/---- ----------< < COSP' • • -W(R8 — p3)3 4- 4 n3p2 (k3 — p2)2 + 4 n2p2

Wielkości A i B można znaleźć z warunków początkowych. Nie trudno zauważyć, że pierwsza 

część całki (d), opatrzona czynnikiem e , maleje nieustannie z upływem czasu, dążąc do zera, 
tak, iż praktycznie wystarcza liczyć się tylko z drugą częścią, niezależną od warunków początko­
wych. Ta druga część proporcjonalna względem wielkości q, przedstawi „wymuszone drgania" 
układu. Wyrażenie dla drgań wymuszonych:

q\k3 — p*) , 2 npq . , .X = . / » S Sm P / - ' A 1 i cos pt . . . (e)(k2 — p2)2 + 4 n3p3 (k2 - p2)2 + 4 n2 p3

można uprościć przez wprowadzenie oznaczeń:

. ___ = C cos <r - - - A'!?'' ..... .......= C sin a . (f)
(k2 — p2)2 + 4 n2p2 ’ (k2 — p2)2 + 4n2p2

Wyrażenie (e) przekształci się wobec tego na następujące:

x = C cos a sin pt — C sin a cos pt — C sin (p t — a) . . . . (h)

Wielkość C i a znajdujemy łatwo z wzorów (f), a mianowicie:

tgu= 2nP C =_________ S_________ = £sin«
8 k2-p2’ V(k?_ p2)2 +'4n2p2 2np

Na podstawie otrzymanych wzorów (h) i (k) wnosimy, że drgania wymuszone mają taki sam okres:

~~P’
jak i drgania punktu zawieszenia, czyli równy okresowi siły wymuszającej drganie. Porównywu- 
jąc (h) i (k) widzimy, że zależnie od znaku a będą drgania wymuszone, albo spaźniać się w sto­
sunku do drgań punktu zawieszenia, albo je wyprzedzać. Przy k>p, h j. gdy częstość „własnych 
drgań" układu jest większa od częstości drgań punktu zawieszenia (częstości drgań przyczyny 
wzbudzającej drgania wymuszone), będzie u. dodatnie; drgania wymuszone będą się wtedy opóźniać 
w odniesieniu do drgań punktu zawieszenia. Gdy k<p, to a jest ujemne, a więc drgania wymu­
szone wyprzedzają drgania punktu zawieszenia. Kiedy drgania o tym samym okresie nie zgadzają 
się, mówimy, że znajdują się w różnych „fazach". Różnicę faz określa w naszym przypadku 
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wielkość a. Jeżeli w szczególnym przypadku k = p, t. j. gdy częstość „własnych“ drgań układu 
jest taka sama, jak i częstość drgań punktu zawieszenia, to:

tg a = a = ± 2- ,

czyli drgania ciężaru spaźniają się lub wyprzedzają drgania punktu zawieszenia o ^4 okresu. Gdy 
punkt zawieszenia zajmuje swoje średnie położenie, to ciężar znajduje się w jednem z położeń 
skrajnych.

Rozpatrzymy teraz, jak się zmieniają amplitudy drgań wymuszonych wskutek zmiany często­
ści drgań p punktu zawieszenia. Największe odchylenia ciężaru Q od położenia średniego określa 
wielkość C (wzory h i k). Skoro p jest bardzo małe, t. j. gdy punktowi zawieszenia udzielono 
drgań powolnych, to w wyrażeniu dla C możemy pominąć wyrazy p1 i 4n2p2 w porównaniu do k'2. 
W takim przypadku: f i- l r-c_ ? _ EFbS EE£_ h

Cli 'Cli ’
czyli drgania ciężaru Q są takie same, jak i punktu zawieszenia. Przy bardzo wielkiej wartości p, 
t. J- gdy punkt zawieszenia wykonywa drgania bardzo szybkie, mianownik wyrażenia dla C staje 
się bardzo wielkim, a zatem amplituda drgań wymuszonych będzie bardzo mała, ciężar Q pozostaje 
prawie nieruchomym w przestrzeni. Weźmy np. przypadek, kiedy p=lQk, t. j. gdy częstość drgań 
punktu zawieszenia jest 10 razy większą od częstości własnych drgań układu. Kładąc n = 0, czyli 
pomijając wpływ oporów, znajdziemy:

~ 9^2= 99 = ~ 0’01 b-

Amplituda drgań ciężaru jest zatem jedną setną amplitudy drgań punktu zawieszenia. To zjawisko 
można wyzyskać w konstrukcji przyrządów do zapisywania drgań, jak np. sejsmografów, notu­
jących drgania skorupy ziemskiej i pallografów, zapisujących drgania w korpusie statków. 
Ciężar zawieszony na sznurze gumowym może służyć jako najprostszy aparat do notowania 
drgań ’)• Dajmy na to, że chcemy zapisać drgania w korpusie okrętu i znamy naprzód w przybli­
żeniu częstość tych drgań p. Obierzemy tedy długość sznura gumowego i wielkość ciężaru Q tak, 
aby częstość własnych drgań tego układu była kilka razy mniejszą od p. Jeżeli teraz przyczepimy 
sznur do pokładu, to przy drganiu statku będzie ciężar Q odchylać się bardzo mało od średniego 
położenia, a przymocowany do niego ołówek zapisze na obracającym się bębnie, którego oś jest 
niezmiennie połączoną z pokładem, drgania tegoż pokładu. Na tej samej zasadzie możnaby zbudo­
wać aparaty do notowania drgań mostów przy przejeździć pociągu.

Znajdziemy teraz tę częstość drgań punktu zawieszenia, której odpowiadają największe war­
tości C. Utworzywszy pochodną C względem p i przyrównawszy ją do zera, otrzymamy:

p = jZk2 — 2 n2.

Ponieważ wielkość n jest zwykle bardzo mała w porównaniu do k, więc można wygłosić twier­
dzenie następujące:

Amplituda drgań wymuszonych wzrasta ze zbliżeniem się częstości siły 
do częstości własnych drgań układu.

Na rys. (386) przedstawiono wykreślnie związek między amplitudą wymuszonych drgań 
a częstością p drgań punktu zawieszenia, na podstawie następującego przekształcenia wzoru (k):

C = — - ___  1 = b. 1
*‘^1] PV , 4n; P2 U(1-?2)! + 32r2’ 

' k2 / k2 k2

przyczem: _ p . y - —
k k

') Ob. kurs A. N. Krylowa: Teorja drgań (po ros.).
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Odcinając na osi poziomej wartości 0, a na osi rzędnych wartości czynnika przy b (w wyrażeniu 
dla C), otrzymamy dla różnych wartości y układ krzywych, na którym widać, że przy zbli­
żeniu p do k (P = l) wzrasta bardzo szybko amplituda drgań wymuszonych. Wartość C przy roz­
maitych wielkościach p podaje (dla k = 10 i n = 0,2) niżej umieszczona tablica. Wielkość b, t. j. am­
plitudę drgań punktu zawieszenia przyjęto tutaj równą jednostce. Zjawisko wzrastania amplitudy 
drgań wymuszonych, przy zbliżeniu p do k będzie tem wybitniejsze, im mniejszy jest opór środo-

Rys. 386

wiska, t. j. im mniejszy jest spółczynnik n. Przy n = 0 i p = k wypadnie czyli ampli­
tuda drgań wymuszonych rośnie bez granic. Wzrastanie amplitud drgań wymuszonych 
przy p = k nosi nazwę, zapożyczoną z akustyki, „zjawiska spółbr z mienia" czyli rezonansu. 
To zjawisko gra w niektórych przypadkach praktycznych nader ważną rolę, albowiem z wzrastaniem 
drgań, rosną zwykle naprężenia materjału, co może doprowadzić do zgoła nieoczekiwanych przy­
padków zniszczenia maszyny, lub zawalenia się budowli.

p = 1 5 8 9 9,5 10 10,5 11 12 13 15 20

c = 1 1,3 2,8 5,2 9,5 25 9,5 4,6 2,2 1,4 0,8 0,3
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§ 165. PRAKTYCZNE ZNACZENIE ZJAWISKA SPÓŁBRZMIENIA

Wywody poprzedniego paragrafu polegały na zupełnie określonym sposobie wzbudzenia drgań 
ciężaru Q, a mianowicie przez wprawienie w ruch okresowy punktu zawieszenia. Napisawszy 
warunki równowagi dla sił, działających na ciężar Q, doszliśmy do równania (b). Łatwo zauważyć, 
że nic się nie zmieni w warunkach ruchu, jeżeli punkt zawieszenia pozostanie nieruchomym, 
a drganie będzie wywoływać siła R, zmieniająca się według prawa:

7? = q ~ sin p t. 
Ś

Równanie ruchu pozostanie niezmienione także i w tych przypadkach, gdy zamiast sprężystego 
pręta mamy sprężynę śrubową, albo gdy ciężar Q przymocujemy do belki w obu końcach pod­
partej, oczywiście pod warunkiem, że zjawisko zachodzi w granicach sprężystości i ważności 
prawa Hooke’a. Wydłużenie sprężyny i ugięcie belki będą proporcjonalne względem działających 
sił; zmieni się tylko spółczynnik proporcjonalności. Jako przykład rozpatrzymy następujące zadanie, 
mające znaczenie praktyczne:

Na belce w obu końcach swobodnie podpartej ustawiono w środku motor, wywołujący przy 
pewnych prędkościach znaczne drgania. Takie drgania wywierają szkodliwy wpływ nietylko przez 
powiększenie naprężeń w materjale, lecz także przez stopniowe rozluźnianie połączeń nitowych, 
sworzniowych i t. p. Zachodzi pytanie, jak, znając ciężar motoru i rozmiary belki, ustalić te 
prędkości, przy których mogą powstać silne drgania? Jeżeliby wszystkie części motoru były zu­
pełnie zrównoważone, to nie byłoby przyczyn, wywołujących ruchy okresowe, drgania nie powsta­
łyby wcale. W rzeczywistości niema zwykle mowy o zupełnem zrównoważeniu i podczas biegu 
maszyny wytwarzają się okresowe siły bezwładności, warunkujące drgania wymuszone. Prawa, 
według których te siły bezwładności zmieniają się zczasem, mogą być dość złożone. Roztrząśniemy 
najpierw zadanie przy najprostszem założeniu. Dajmy na to, że działanie niezrównoważonych mas 
maszyny jest równowarte z działaniem obracającego się ciężaru q, skupionego w odległości r od 
wału 1). W takim przypadku siły bezwładności przy stałej prędkości kątowej motoru sprowadzają 
się do jednej siły odśrodkowej. Kierunek siły będzie się zmieniać podczas obrotu, ale jej wielkość 
pozostanie stałą i równą:

’ *) W takiej postaci było urządzone doświadczenie nad drganiami wymuszonemi w mech, labor. Kijows. Inst. Polit.
2) Podobne działanie okazują „przeciwwagi" kół lokomotyw na drgania mostów. Doświadczenia pouczają, że przy 

określonych prędkościach jazdy mogą powstać znaczne drgania mostu pod działaniem przeciwwag. Ob. F. E. T urnę aurę, 
Some experiments on bridges under moving train Loads. Trans. Hm. Soc. C. E. v. 41, str. 410.

g r g
jeżeli g oznacza przyśpieszenie ciężkości, v prędkość ciężaru q, zaś a prędkość kątową obrotu. 
Przy zaznaczonym na rys. (387) położeniu maszyny przedstawia szczególny interes pionowa skła­
dowa siły odśrodkowej, gdyż ona właśnie wywołuje poprzeczne 
drgania belki. Jeżeli kąt obrotu promienia r będziemy mierzyć 
od prostej poziomej, to rzutem pionowym siły odśrodkowej
będzie:

R — P sin to t,

czyli siła pionowa zmienia się tak, jak przyjęliśmy w rozpa­
trywanym poprzednio przypadku drgań wymuszonych. Drgania 
będą wyjątkowo silne, skoro wartość prędkości kątowej obrotu 
zbliży się do k, t. j. do częstości „drgań swobodnych", jakie 
ciężar Q bez udziału innych sił zewnętrznych2).

Rys. 387

wykonywa przymocowany do belki
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Wyznaczenie częstości drgań k nie przedstawia żadnych trudności; z dostateczną dokładnością można ją znaleźć sposo­
bem przybliżonym (§ 162). Niebezpieczną, t. zw. „krytyczną", prędkość kątową znajdziemy z wzoru:

. (338)
w którym oznacza ciężar własny belki.

Podobnego rodzaju zadanie przedstawia przypadek, opisany przez S omm erleld’a 9 (rys.388). Motor jest ustawiony,

Rys. 3s8

w lokalu wspartym na żelaznych pionowych słupach i trzeba znaleźć tę prędkość maszyny, przy której powstają silne drga­
nia. Jeżeli znamy rozmiary słupów, ciężar budowli i motoru, to obliczenie częstości własnych drgań 
układu nie przedstawia trudności. Od poprzedniego przypadku różni się niniejszy tem, że siła wzbu­
dzająca drgania jest poziomą składową siły bezwładności. Uważając słupy za belki jednym końcem 
utwierdzone, znajdziemy krytyczną prędkość kątową z wzoru:

- 2^?. (339) 
r (e+®<M's

Tutaj oznacza Q ciężar budowli wraz z motorem, a ciężar wszystkich słupów.
Przyjmowaliśmy dotąd, że siły bezwładności można zastąpić siłą odśrodkową jednego ciężaru, 

obracającego się z tą samą prędkością kątową, co i maszyna. W rzeczywistości będzie wyrażenie 
dla sił bezwładności najczęściej bardziej złożone i siła wzbudzająca drgania przedstawi się jako wy­

padkowa całego szeregu sił, przyczem każda ze składowych zmienia się według funkcji sinus albo cosinus o okresie, 
który jest całkowitą wielokrotnością okresu pełnego obrotu maszyny. W najogólniejszej postaci da się siła R przedstawić 
wyrażeniem:

R = Pi sin ic t + P2 sin 2 te / + P3 sin 3 co / + ... + Qx cos co 1 + Q2 cos 2 co / +.......................................(a)

Zasadniczej wagi jest tutaj dla nas ta okoliczność, że nawet najbardziej złożoną siłę, wzbudzającą drgania, można przed­
stawić jako sumę prostych elementów, zmieniających się według funkcji sinus lub cosinus. Umiemy już znaleźć działa­
nie każdego takiego elementu. Zlby otrzymać działanie siły R należy tylko zesumować działania oddzielnych składowych 
Te działania sumują się dzięki temu, że rówr.anie różniczkowe ruchu jest linjowe. Skoro okres jakiejkolwiek składowej 
zbliża się do okresu własnych drgań układu, to amplituda drgań, odpowiadających tej składowej, przybiera wybitną war­
tość i może osiągnąć znaczną wielkość, wobec czego może wywołać znaczne naprężenia dodatkowe. Dajmy na to. że w = k 
(t. j. częstości własnych drgań układu), wtedy główne znaczenie w wyrażeniu (a) będą mieć wyrazy P^ sin <c t i Qjcosa t. 
Jeżeliby prędkość maszyny była taka, że 2 co = k lub 3 co = k, to najistotniejszemi wyrazami byłyby P2 sin 2 co/, cos 2 co f. 
albo P3 sin 3 <r/, Q3cos3<rt i t. d. Stąd wniosek następujący: Jeżeli częstość własnych drgań układu jest 
równą albo wielokrotną prędkości kątowej obrotu maszyny, to można oczekiwać bardzo zna­
cznych drgań wymuszonych. (Tutaj ograniczamy się do głównego typu drgań układu, mającego zwykle największe 
znaczenie praktyczne). Ażeby więc uniknąć drgań i połączonych z niemi dodatkowych naprężeń, trzeba albo zmienić pręd­
kość kątową obrotu, albo też częstość własnych drgań układu. Można to osiągnąć przez zmianę rozmiarów konstrukcji. 
Zmniejszając np. rozmiary belki w omówionym powyżej przypadku, można przez to zmniejszenie usunąć drgania i po­
łączone z niemi naprężenia dynamiczne.

§ 166. DRGANIE SKRĘCAJĄCE (TORSYJNE)

Z tego rodzaju drganiami wypada się liczyć głównie przy projektowaniu wałów maszyn okrę­
towych. Okazuje się, że w pewnych warunkach mogą powstać w takich wałach znaczne drgania. 
Te drgania wywołują wielkie naprężenia dodatkowe i w niektórych przypadkach mogą dopro­
wadzić do pęknięcia wału. Inżynier niemiecki Frahm wyznaczał drogą doświadczalną 
kąt skręcenia wału okrętowego podczas pracy maszyny i z tego kąta obliczał odpowiada­
jące naprężenia. Doświadczenia pokazały, że przy pewnej prędkości wału powstawały 
silne drgania i naprężenia zmieniały się w granicach + 600 i — 166 kg/cm2, podczas gdy 
statyczne naprężenia były obliczone na 218 kg/cm2. A zatem nietylko wielkość, lecz także 
znak naprężenia ulegały zmianie. Widocznie te prędkości, przy których spostrzegamy szcze­
gólnie silne drgania, odpowiadają zjawisku spółbrzmienia. Ażeby usunąć możliwość poja­
wienia się silnych drgań, trzeba umieć obliczyć okres własnych drgań wału z jego roz­
miarów, a te rozmiary tak obrać, aby okres własnych drgań wału nie zgadzał się 
z okresem pełnego obrotu maszyny.

Studjum drgań skręcających zaczniemy od następującego najprostszego przykładu. 
Okrągły pręt /IB (rys. 389), utwierdzony pionowo górnym końcem, posiada na drugim

9 Ob. Zeitschr. d. Ver. d. Ing. z r. 1904.
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końcu krążek B, stale z nim połączony. Skoro krążek obrócimy o pewien kąt, skręcając przez to 
pręt o tenże kąt a i pozostawimy następnie układ samemu sobie, to powstaną drgania torsyjne. 
Ich okres będzie zależeć od rozmiarów pręta, własności materjału i od rozmieszczenia masy krążka. 
Weźmy pod uwagę chwilowe położenie, jakie krążek zajmie podczas ruchu i nazwijmy przez cp 
odpowiadający kąt skręcenia; wtedy moment sił sprężystości skręconego pręta, działający na krą­
żek, będzie mieć wartość: ,

Równaniem ruchu krążka (z pominięciem oporów) będzie:

albo jp + k V = °> przyczem k = V , 

a w jest momentem bezwładności krążka względem osi obrotu. Ogólną całką otrzymanego równa­
nia jest: n . . . , o > .cp = A sm k t -I- B cos k t.

Zważywszy, że w chwili początkowej jest cp = a i cp' = 0, przekształci się powyższe rozwiązanie 
na'następujące: a kt

Y — r\ tą

Mamy tedy znowu do czynienia z prostem drganiem o częstości k. Okres drgań określi wyrażenie:

T _ 2^ _ / 0/ . .
T ~ k ~ 2 \ air.......................................................... (34O)

Jeżeli na krążek działa zmienny moment
M — — N sin p t, 

skręcający pręt, oraz opór środowiska, proporcjonalny względem prędkości, lo równanie ruchu olrzjmuje postać:

W 4- q> -f" |3 </ = N sin pf, albo: <p" + 2 n q>' + h2q> = q sin p /...................................... (a)

przyczem „ B N

Równanie (a), zgodne z równaniem (b) w.§ (164\ określa drgania w przypadku działania sił zewnętrznych, wzbudzających 
je. Amplituda drgań może osiągnąć znaczną wielkość, gdy p, t. j. częstość wahań momentu wzbudzającego, zbliża się do 
wielkości k, t. j. częstości własnych drgań układu.

Stosując metodę przybliżoną, możemy bez trudności ocenić wpływ masy pręta na okres drgań krążka. Przypuśćmy, 
że przytem typ drgań będzie taki sam, jak w przypadku pręta pozbawionego masy; wówczas kąt obrotu dowolnego prze­

kroju pręta, odległego o ś od końca utwierdzonego, będzie równy , przyczem tp oznacza kąt obrotu krążka. Jeżeli 

przez d oznaczymy moment bezwładności elementu pręta o długości 1 względem jego osi, to energja kinetyczna pręta 

będzie równa: V ( V
V H 2 ~ 3 2 '

Z otrzymanego wyniku wnosimy, że dla oznaczenia wpływu masy pręta na okres drgań krążka trzeba do momentu bez­
władności krążka dodać jedną trzecią momentu bezwładności pręta.

Od rozpatrzonego najprostszego przypadku łatwo przejść do zadania bardziej złożonego, na­
potykanego w praktyce szczególnie często. Na końcach wału 
znajdują się krążki o momentach bezwładności 0t i 02 (rys. 390); 
mamy znaleźć częstość własnych drgań tego układu. Skoro 
skręcimy wał dwiema równemi i wprost przeciwnemi parami sił, 
a następnie pozostawimy układ samemu sobie, to krążki będą 
wykonywać'drgania obrotowe około osi AB. Kierunki obrotu obu 
krążków będą przytem przeciwne, można przeto między niemi 
znaleźć taki przekrój wału mn, który przy drganiach pozostaje 
nieruchomym. Ten przekrój nazwiemy „przekrojem węzłowym“. Obie części wału, rozdzielone prze­
krojem węzłowym można uważać za utwierdzone w tym przekroju, a ich długość lx i /2 znaj- 
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dziemy z warunku, że okresy drgań obu części muszą być jednakowe. Wielkości tych okresów 
będą na podstawie wzoru (340) odpowiednio równe:

t = V®1 T =
1 V G/p ’ 2 V G/p •

A zatem: /@4 7 /@ /“ L h* j — * / 2 alhn • Q / — (A ] _k — _?
\ G Ip “ V Gk ’ b l2 ©, ’

czyli przekrój węzłowy dzieli długość wału na części odwrotnie proporcjonalne względem momen­
tów bezwładności krążków. Zważywszy, że + Z2 = Z, otrzymamy:

11 ©,+©/ 2 ©,+©/

Szukany okres własnych drgań układu T i ich częstość k określą przeto równania:

T

“ T 0t02Z

• (341)

• (342)

Jako przykład liczbowy weżmiemy maszynę okrętową o potrójnej ekspanzji i dzielności 3C00 HP, wykonującą nor­
malnie 75 obrotów na minutę. Wał ma długość 50 m i średnicę d = 35 cm. Spółczynnik sprężystości G = 880000 kg/cm*. 
Ciężar śruby — 6480 kg, a odpowiadający promień bezwładności = 1 m. Ciężar korb maszyny =4500 kg przy promieniu 
bezwładności 0,40 m. Ciężar innych poruszających się części maszyny, który trzeba dodać do ciężaru korb = 7750 kg. Od­
powiadający promień bezwładności = 0,60 m.

Z tych danych wyznaczymy: moment bezwładności wszystkich obracających się części maszyny, sprowadzony do 
promienia 60 cm:

©t = • 403 + • 60^ . 60’ kg. cm. sek.2

i moment bezwładności śruby:
18000 ,2-ęgj- • 602. kg . cm . sek..

Stąd obliczymy liczbę własnych drgań układu na minutę:

60_301 / G/p (0t + 02) _ 30 l/880000 . 14700 . 27750 . 3600 . 981
T « " &i@2l n " 9750 . 18000 . 36002 . 5000

Przy dokładniejszem obliczeniu okresu własnych drgań wypadnie uwzględnić następujące dwie okoliczności1):
I) Wał miewa zwykle przekrój zmienny. W takim przypadku zamiast rzeczywistej długości wału, trzeba będzie wziąć 

pewną długość fikcyjną l', którą otrzymamy, sprowadzając oddzielne części wału do jednej, zresztą dowolnej, wspólnej śre­
dnicy. Dajmy na to, że na wale znajduje się zgrubienie o średnicy D na długości a; wskutek tego zgrubienia staje się wał 
sztywniejszym, jego kąt skręcenia przy jednym i tym samym momencie skręcającym będzie mniejszy, niż dla wału o stałej 
średnicy d. Kąty skręcenia są wprost proporcjonalne względem długości i odwrotnie proporcjonalne względem momentów 
bezwładności przekrojów poprzecznych, t. j. względem czwartej potęgi średnic, wobec czego sztywność wału się nie zmieni, 
jeżeli zamiast części o długości a i średnicy D wstawimy część o długości

i średnicy d. Tym sposobem można zawsze wał o zmiennym przekroju zastąpić pewnym wałem fikcyjnym o stałej średnicy.

II) Dla dokładniejszego obliczenia trzeba niekiedy uwzględnić masę samego wału i jego własny moment bezwładno­
ści ©0. Uwzględniając wyrażenia dla li i ł2 znajdziemy, że dla przybliżonej oceny wpływu masy wału trzeba zamiast ©i 
i % wstawić odpowiednio wielkości:

A i ©o ©2 : o I ©0 (343}, + T 0,+l.e 1 °’+y 6,+e,......................................

x) Bardziej szczegółowe badanie drgań wałów znajdzie czytelnik w pracy autora: „O zjawiskach spółbrzmienia w wa­
łach" (po ros.), Izw. Petersb. Polit. Inst. z r. 1905.

Dokładnem rozwiązaniem zadania drgania wału z dwoma krążkami zajmuje się praca autora: „O wymuszonych 
drganiach prętów pryzmatycznych" (po ros.), Izw. Kijew. Polit. Inst. z r. 1910.

Drganie wałów z trzema krążkami rozpatrzył Roth w Zeitschr. d. Ver. deutsch. Ing. z r. 1904.
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Wprowadziwszy tę poprawkę w naszym przykładzie, otrzymamy n = 315 zamiast 319. Skoro maszyna będzie wykonywać 
nie 75 lecz np. 78 lub 79 obrotów na minutę, to można oczekiwać powstania silnych drgań, ponieważ 79 . 4 — 316, 
a 78 . 4 = 312. Prędkość krytyczna będzie więc odpowiadać 78-u do 79-u obrotom na minutę. Zboczenie od prędkości 
krytycznej na 5 do 6 obrotów wystarcza zupełnie, jak wykazały doświadczenia Frahm’a, do zapewnienia spokojnego biegu 
maszyny.

Przy obliczeniach wałów maszyn okrętowych są zwykle wiadome naprzód: liczba obrotów 
wału, jego długość i rozmiary śruby. Średnicę wału trzeba dobrać tak, aby częstość własnych 
drgań wału nie była całkowitą wielokrotnością prędkości kątowej obrotu przy normalnym biegu 
maszyny. Niekiedy wypadnie w tym celu zmniejszyć średnicę wału i takie zmniejszenie rozmia­
rów, dzięki powstrzymaniu silnych drgań, obniża dodatkowe naprężenia dynamiczne, a wskutek 
tego zwiększa wytrzymałość wału.

§ 167. DRGANIE BELKI POD WPŁYWEM RUCHOMEGO OBCIĄŻENIA

Przy obliczeniach belek mostowych, podlegających działaniu ciężarów ruchomych, wyznacza się zwykłe naprężenia 
statycznie, t. zn. przyjmuje się, że z jednego położenia w drugie przechodzi obciążenie z prędkością nieskończenie małą. 
Zachodzi tedy pytanie, o ile różnią się naprężenia, otrzymane tą drogą od rzeczywistych i jak na ich wielkość wpływa
prędkość ruchu obciążenia? To zagadnienie nie ma dotąd zupełnego roz­
wiązania, atoli wpływ niektórych czynników wyjaśniono już w dostatecznej 
mierze. Tutaj rozpatrzymy wpływ sił bezwładności toczącego się ciężaru 
i wpływ drgania belki. Jeżeli poruszający się ciężar jest znaczny w po­
równaniu do ciężaru belki, to w pierwszem przybliżeniu można masę belki 
pominąć i wziąć w rachubę tylko siły bezwładności ruchomego ciężaru P 
(rys. 391). Przy nieskończenie małej prędkości ruchu będą siły bezwładno­
ści też nieskończenie małe i ugięcie pod obciążeniem można wyznaczyć 
według znanego wzoru (§ 78):

Rys. 391P(lx—
TeTi (a)

W pierwszem przybliżeniu J) można przyjąć, że i przy skończonej prędkości, ruchu D m/sek będzie rów. (a) określać tor 
ruchu ciężaru P. W takim razie łatwo obliczyć dodatkowy nacisk ciężaru na belkę, uwarunkowany siłami bezwładności. 
Wyrażenie dla pionowej składowej sił bezwładności ma postać:

* g dP

albo, zważywszy, że x = vt i wstawiwszy wartość (a) za y:

Po2 d2y 
g dx^

Pl^ 9 P

Największą wartość sił bezwładności otrzymamy dla środka rozpiętości, t. j. dla x = ^, a mianowicie:

_ Po2 PI
~ g SET

Całkowity nacisk ciężaru na belkę w tern miejscu będzie równy:

p+e = p(‘+^) = p(> + -y) = p(' + |).................‘344’
przyczem:

, _PJL < 1 _16»2 M^EP zaś p ” P ' g '

Przy zwykłych wartościach prędkości V i dopuszczalnych u mostów wielkościach stosunku fst:/, jest wartość mała 
p

i wzór (344) określa dość dokładnie wpływ sił bezwładności toczącego się ciężaru.

x) Odpowiadające przybliżone rozwiązanie podał pierwszy prof. Willis, który się zajmował kwestją drgań mostów 
w r. 1846 w sławnej angielskiej komisji dla prób żelaza. Szczegółowe traktowanie zadania w tej postaci znajdzie czytelnik 
w kursie teorji sprężystości Clebsch'a, przełożonym przez de S.-Venanta, str. 597.
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Pierwsze dokładne rozwiązanie zadania o odkształceniu belki pozbawionej masy pod wpływem ciężaru toczącego się 
po niej podał angielski uczony G. G. Stok es1). Na podstawie tego rozwiązania można napisać następujący wzór przy­
bliżony dla nacisku, wywartego przez obciążenie w środku rozpiętości:

i »K’ woprosu o wibraciach rels“, Izw. Elektrot. Inst. z r. 1915.
2) Szczegółowy wywód można znaleźć w przytoczonej powyżej książce Clebsch’a, str. 609.
3) Już Stokes zauważył, że ruch ciężarów musi wywołać w belce drgania. Do wyznaczenia tych drgań zastoso­

wał metodę przybliżoną, wyłożoną w dodatku do pracy powyżej cytowanej.
Dokładne rozwiązanie zagadnienia drgań belki w przypadku, gdy można pominąć masę toczącego się ciężaru, podał 

A. N. Kryło w w pracy: „Ober die erzwungenen Schwingungen von gleichfbrmigen elastichen Staben", Math. Annalen, Bd.61.
Inną metodą traktuje ten problem praca autora: „O wymuszonych drganiach prętów pryzmatycznych" (po ros.). 

Tam też rozpatrzono kwestję wpływu przeciwwag na drgania mostów.
4) „Der Bruckenbau", Handb. d. Ingenieurwissensch. II Bd. 2 Abt., str. 6.

P + Q = p(l+p^)........................................................................ (345)

Jeżeli obciążeniem, poruszającem się po belce, jest oś lokomotywy lub wozu, to oprócz ciężaru własnego osi z kołami P 
trzeba uwzględnić nacisk przeniesiony na oś przez sprężyny. Ten nacisk można uważać z wystarczającem przybliże­
niem za stały nie zmieniający się wskutek ugięcia belki. Wtedy nacisk osi na belkę określi wyrażenie:

p> + p(l + p%)-

Wielkość Pj jest zwykle kilkakrotnie większą od P, wobec czego nawet przy małych wartościach [3 okazuje się wpływ sił 
bezwładności nieznacznym. Według obliczeń Zimmermann’a dodatkowy nacisk, uwarunkowany siłami bezwładności, 
w najniekorzystniejszym przypadku (przy prędkości 100 km/godz i wysokości belki 30 cm) nie przekracza 14% nacisku 
statycznego.

Przyjąwszy w przybliżeniu, że rów. (a) przedstawia tor poruszającego się ciężaru, można drogą elementarną ocenić 
także i wpływ masy belki. Tutaj ograniczymy się do podania ostatecznego wyniku dla wartości największego momentu 
zginającego2):

..................................................... (3,6)

Pierwsza część tego wyrażenia przedstawia moment zginający, wywołany działaniem toczącego się ciężaru, druga zaś daje 
moment zginający wskutek ciężaru własnego belki Q.

Otrzymane wzory uwzględniają wpływ przyczyn dynamicznych tylko w tym przypadku, kiedy ciężar belki jest mały 
w porównaniu do ciężaru poruszającego się na niej. Z powiększeniem rozpiętości belki rośnie szybko wpływ jej ciężaru 
własnego i u mostów o większej rozpiętości ma ciężar własny większe znaczenie, niż ciężar ruchomy. W tym drugim 
skrajnym przypadku można, dla otrzymania przybliżonego rozwiązania, pominąć siły bezwładności ciężaru ruchomego 
i sprowadzić zadanie do badania drgań belki pod wpływem sił zmiennych3). Dla ocenien:a warunków, przy których drgania 
wymuszone mogą osiągnąć znaczną wielkość, jest nader ważną znajomość okresu podstawowych drgań belki, który można 
znaleźć metodą przybliżoną, wyłożoną w § (162). Jeżeli belka ma przekrój stały, to okres jej drgań oblicza się według 
wzoru (335). Przy pomocy tego wzoru zestawiliśmy w poniższej tablicy okresy drgań T dla różnych rozpiętości mostu. 
Przy obliczeniach wyznaczono ciężar mostu według tablic dla ciężaru własnego mostów kolejowych4), wysokość belek 
przyjęto równą 0,1 rozpiętości, a naprężenie dopuszczalne 800 kg/cm2. Wpływu odkształcenia kraty na ugięcie mostu nie 
uwzględniono, wobec czego obliczone wartości T będą prawdopodobnie mniejsze od rzeczywistych.

Rozpiętość mostu l (w metrach) 10 20 40 60

0,181

80

0,226

100

0,270Okres drgań podstawowych T (w sek.) 0,046 0,079 0,129

Wartość a dla v = 10 m/sek 0,023 0,020 0,016 0,015 0,014 0,0135

Wartość a dla o = 30 m/sek 0,069 0,060 0,048 0,045 0,042 0,040

4) „Discussion of a differential eąuation relating to the breaking of Railway Bridges". Math. and Phys. Papers, 
v. II, str. 179.

Rozwiązanie tegoż samego zadania pojawiło się pięćdziesiąt lat później w często cytowanej pracy Dra Zimmer- 
mann’a: „Die Schwingungen eines Tragers mit bewegter Last“.

Inne rozwiązanie przy pomocy rachunku różnic skończonych znajduje się w interesującej pracy N. P. Petrowa; 
„Wpływ postępowej prędkości koła na naprężenia w szynie" (po ros.). Zap. Imp. Russk. Techn. Ob-a z r. 1903.

Ob. także następujące prace autora: »K’ woprosu o procznosti rels", Sborn. Inst. Inż. Put. Soobszcz. z r. 1915 
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Amplituda drgań wzbudzonych przez ruch ciężaru po belce będzie zależeć od prędkości ruchu. Największa amplituda 
powstaje w przypadku spółbrzmienia, gdy czas, potrzebny do przebieżenia przez ciężar rozpiętości mostu, równa się po­
łowie okresu drgań podstawowych, t. j. gdy: 21

u

Z naszej tablicy widać, źe przy stosowanych obecnie prędkościach pociągów jest zjawisko spółbrzmienia wykluczone, po 
nieważ stosunek 2 la = T : — v
jest małym ułamkiem. Obliczenia wykazują,' że w przypadku poruszającego się ciężaru można stosunek ugięcia dynami­
cznego do statycznego z dostateczną dokładnością przedstawić równaniem:

fd=M(l + a)-fst(l+^).................................................................(347)

Biorąc pod uwagę zwykłe wartości a, widzimy, że przyrost ugięcia, wywołany szybkim ruchem ciężarów, jest niewielki. 
O wiele większy wpływ na rozkołysanie mostu mogą pkazać przeciwwagi kół lokomotywy. Jeżeli obrót koła dokonywa się 
w przedziale czasu, równym okresowi T drgań podstawowych, to zajdzie zjawisko spółbrzmienia i powstaną silne drgania. 
(W najniekorzystniejszych przypadkach może amplituda drgań wymuszonych, z pominięciem oporów, osiągnąć war­
tość 15 do 25 razy większą od ugięcia PP/48EI, przyczem P oznacza siłę bezwładności przeciwwagi. U szybkobieżnych 
lokomotyw dochodzi P do 51). W przypadku mostów drogowych mogą powstać znaczne drgania przy przemarszu oddzia­
łów piechoty miarowym krokiem. Tutaj okres zmiany obciążenia jest równy czasowi, odpowiadającemu jednemu krokowi 
i zjawisko spółbrzmienia może zajść u mostów z dłuższym okresem drgań własnych. Takie warunki mamy zwłaszcza 
w mostach wiszących.

Oprócz naprężeń dodatkowych, uwarunkowanych drganiami mostu, wypada uwzględnić także i wpływ innych przy­
czyn dynamicznych. Większe znaczenie, osobliwie dla mostów o małej rozpiętości, mogą- mieć uderzenia kół na stykach 
szyn, uderzenia wskutek nierównego zużycia obręczy i nierówności toru. Tych kwestyj niepodobna rozwiązać drogą czysto 
teoretyczną; tutaj są niezbędne równoległe badania doświadczalne nad drganiami mostów przy przejeździć pociągów i nad 
zmianami w naprężeniach oddzielnych części składowych. Takich doświadczeń mamy dotąd bardzo niewiele; zbyt mało 
aby w zadowalający sposób ocenić wpływ rozlicznych przyczyn dynamicznych na naprężenia.

§ 168. PRĘDKOŚĆ KRYTYCZNA DLA GIĘTKIEGO WAŁU LAVAL’A
Teorja giętkich wałów obudziła szczególne zainteresowanie dzięki szerokiemu rozpowszechnie­

niu turbin parowych w rozlicznych dziedzinach techniki. Wielkie prędkości kątowe wywołały cały 
szereg oryginalnych konstrukcyj, do których należy i giętki wał Laval’a. Nawet przy najdokładniej- 
szem sporządzeniu może środek ciężkości zbaczać od osi obrotu i przy obliczeniu trzeba uwzglę­
dnić siły bezwładności zginające wał. Przy wielkich prędkościach kątowych rośnie wpływ tych sił
i już małe niedokładności mogą być przy­
czyną bardzo znacznych naprężeń dodatko­
wych. Dla przykładu weźmiemy koło turbi­
nowe o średnicy 760 mm i prędkości obwo­
dowej 420 mfsek. Jeżeli na obwodzie umie­
ścimy dodatkową masę 0,1 kg, to odpowia­
dającą jej siłą odśrodkową będzie:

- P=S1S=50^
Jak widzimy, drobna niedokładność wykona­
nia może pociągnąć za sobą bardzo niebez­
pieczne naprężenia. Wprowadzenie do prak­
tyki giętkich wałów usuwa to niebezpieczeń­
stwo i umożliwia osiągnięcie spokojnego 
ruchu maszyny przy olbrzymich prędko­
ściach. Rozważmy następujący najprostszy 
przypadek^ Na wale AB (rys. 392), podpartym w punktach A i B, osadzono w środku krą­
żek m n. Środek ciężkości krążka O nie leży na osi obrotu AB, a jego mimośród równa się e. 
Przy obrocie koła będzie zatem wał narażony na zgięcie siłą odśrodkową:

P=m(y+e) to 2 • (a)
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jeżeli oznaczymy przez y ugięcie wału w środku rozpiętości, a przez m masę koła. (Masę wału 
pomijamy jako małą w porównaniu do masy koła). Ugięcie y da się wyrazić, w zależności od 
wielkości zginającej siły i rozmiarów wału, równaniem:

y = aP,
przyczem

48 EI w przypadku podparcia końców wału, a

l3
a~ 192 EI w przypadku utwierdzenia końców.

Po wstawieniu wartości y = aP w rów. (a), znajdziemy:
_ a m e co2 
~ 1 — amen2 . (b)

Przy małej wartości co powstaną zatem małe ugięcia, którym będą odpowiadać małe naprężenia. 
Wielkość ugięcia rośnie jednak szybko z przybliżeniem mianownika w wyrażeniu (b) do zera, dla 

1 am co2 = 0 
wypada ugięcie nieskończenie wielkie. Ten wynik wskazuje na szczególne niebezpieczeństwo przy 
prędkości

(348)

zwanej „prędkością krytyczną". Aby przy stopniowem zwiększaniu prędkości przy doświad­
czeniach przekroczyć wartość krytyczną, trzeba budować osobne urządzenia w celu zapobieżenia 
pojawieniu się silnych drgań poprzecznych. Czasem jednego obrotu przy prędkości krytycznej będzie:

T = — = 2xd-L.........................................................(349)
w \ g

Tutaj oznacza / ugięcie wału, jakieby powstało w jego poziomem położeniu pod wpływem ciężaru 
własnego koła turbinowego. A zatem prędkość krytyczna jest równa częstości wahnień 
wahadła matematycznego o długości równej ugięciu wału, albo równa się częstości 
swobodnych‘drgań poprzecznych wału z kołem osadzonem w środku. Dochodzimy tedy do 
następującego wniosku: Ażeby wyznaczyć liczbę obrotów n, przy której wał doznaje silnych drgań, 
czyli zaczyna „bić", trzeba ułożyć wał wraz z kołem osadzonem w środku poziomo na dwu pod­
porach i wywołać w jakikolwiek sposób drgania poprzeczne. Liczba tych drgań na minutę będzie 
właśnie równa liczbie obrotów n, przy której wał „bije". Zjawiska odpowiadające prędkości kryty­
cznej można przeto rozpatrywać jako drgania wymuszone pod wpływem sił bezwładności niezrów­
noważonych mas. Skoro osiągnięto prędkość krytyczną, to nawet najbardziej wytrzymały wał mu- 
siałby ulec zniszczeniu, gdyby nie było oporów przeszkadzających bocznym drganiom. Jeżeli przejść 
poza prędkość krytyczną, to, jak wykazuje doświadczenie, można znowu otrzymać spokojny ruch; 
wał przestaje „bić". Okazuje się, że w tych warunkach leży środek ciężkości koła turbinowego nie 
tak, jak przyjęliśmy na fig. (a), lecz między osią geometryczną a linją wygięcia wału (fig. b). Od­
powiadającem wyrażeniem dla siły odśrodkowej jest:

P = m(y — e) en2.

Ugięcie wyznaczymy z równania:
CL1TI P M2 P

y = aP= am(y — e)co2, a więc y =------- ,-- r =----- .-- ,x j amen2— 1 1 ’
a m co2

albo na podstawie wzoru (348):
e
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Ten wzór jest ważny dla prędkości większych od krytycznej. Jak widać, zwiększenie prędkości po­
mniejsza wygięcia, które zdążają do granicy y = e; czyli środek ciężkości koła zdąża do zajęcia 
położenia na osi geometrycznej wału. Sam wał będzie opisywać po zgięciu pewną powierzchnię 
obrotową. Że ta postać ruchu, ustalająca się przy prędkościach większych od krytycznej jest 
trwałą, czyli stateczną, przekonano się drogą doświadczalną i wykazano analitycznie’). Korzyść 
z zastosowania giętkiego wału staje się teraz jasną, albowiem ugięcia y są tern mniejsze, im mniej­
szą wartość ma stosunek cokr: co; pomniejszymy zaś tę wartość, zmniejszając licznik, a więc zmniej­
szając sztywność wału.

Jeżeli na nieważkim wale osadzono dwa krążki (koła), to otrzymamy dwa różne typy drgań 
poprzecznych i odpowiednio do tego można znaleźć dwie wartości krytycznej prędkości kątowej. 
Z powiększeniem liczby krążków staje się badanie kwestji prędkości krytycznych coraz trudniej- 
szem, wobec czego w praktyce używają albo formuły empirycznej Dunkerley’a2), albo przybli­
żonej metody wykreślnej3)- Według Dunkerley’a krytyczną prędkość kątową co określa przy obe­
cności kilku krążków równanie:

9 Ob. A. Foppl, Vorles. iib. technische Mechanik, Bd. IV;
F. Klein u. A. Sommerfeld, „Theorie des Kreisels", Heft 4, § 9.
2) Phil. Trans. Lond. Soc., t. 185, str. 270.
8) Ob. R. Stodoła, Die Dampfturbinen, wyd. 4, str. 301.
4) Wzór (c) sprawdzili doświadczalnie z dostateczną dokładnością Dunkerley i Stodoła; ob. Die Dampfturbi­

nen, str. 306.
Teoretycznem badaniem wartości krytycznych prędkości przy kilku krążkach zajmuje się praca C. Chree w Phil. 

Mag. z r. 1904, str. 504.
W sprawie rozwiązania tegoż zagadnienia przy pomocy metody Ritz’a ob. pracę autora: „Woprosy procznosti w pa­

rowych turbinach", Wiestn. Ob-a Technołogow z r. 1912.
6) Ob. artykuł w Engineering z r. 1916, str. 152, 197.

"cuT ” S ~cu^.......................
i=l,2,3...

w którem oznacza coj krytyczną prędkość kątową, obliczoną dla przypadku, kiedy na wale znaj­
duje się tylko krążek odróżniony wskaźnikiem i. Sumowanie odnosi się oczywiście do wszystkich 
krążków4).

W poprzedzających rozważaniach przyjmowaliśmy oś wału jako pionową i tym sposobem wykluczyliśmy wpływ wła­
snego ciężaru krążka na zjawisko „bicia0. Jeżeli dla poziomego położenia osi wału ocenimy wpływ ciężaru własnego krążka 
to otrzymamy dla cokr wartości mniejsze, aniżeli znaleziono przy pionowem położeniu wału5).

Okażemy to na przypadku jednego krążka osadzonego z mimośrodem e. Wskutek działania 
ciężaru własnego punkt O, w którym skupiamy masę krążka m (rys. 393) nie będzie opisywać koła, 
ecz krzywą bardziej złożoną. Do obrotu ze stałą prędkością kątową przybywa jeszcze ruch punktu 
O w kierunku promienia.

Przy ustawieniu równania różniczkowego ruchu punktu O w kierunku Y trzeba będzie dla sił 
bezwładności napisać wyrażenie:

— m + m w2 (y + e).

Wtedy stosując zasadę d’Alembert’a i rzutując wszystkie siły ------------- r---------
działające na punkt O na kierunek osi Y, otrzymamy: — ; ■ —

d2v v @
— m 4- m co2 (y+eJ + mgcosoJ—= 0, '

4^4" -----a>ł) y = gcos w 14-a? e.
di2 \ma /J 6

Rys. 393

Otrzymaliśmy przeto równanie różniczkowe dla drgań wymuszonych na osi Y. Czynnik 

1
rna

CD2

przedstawia kwadrat częstości drgań własnych układu, zaś wielkość uj częstość siły wymuszającej drgania. Zjawisko współ­
brzmienia, odpowiadające biciu wału, powstanie, jeżeli

—------CD2 = 
ma
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"Sląd — .................................................................... (348)'
V 2 ma

Z porównania z wzorem (348) wnosimy, że przy poziomem położeniu osi wału zmniejsza się wartość mkr w stosunku 
1 : V2, w porównaniu z wartością dla położenia pionowego.

§ 169. KRYTYCZNA PRĘDKOŚĆ KĄTOWA DLA WAŁU NIEOBCIĄŻONEGO

Jeżeli przyjmiemy, że środek ciężkości każdego przekroju poprzecznego wału leży na geometrycznej osi obrotu, to 
niema przyczyn zewnętrznych, któreby mogły wywołać skrzywienie wału. W celu wyznaczenia krytycznej wartości prędko­
ści kątowej postąpimy nieco inaczej, niż w poprzednim paragrafie. Zaczniemy od rozpatrzenia poprzecznych drgań wału. 
Dopóki wał się nie obraca, to stawia opór wszelkim siłom zginającym; skoro go odchylimy z położenia równowagi i na­
stępnie pozostawimy samemu sobie, to wykonywa drgania około położenia równowagi, a częstość drgań będzie tem więk­
sza, im większą jest sztywność wału przy jednym i tym samym ciężarze własnym. Sztywność przy zginaniu mierzy war­
tość sił dążących do przywrócenia początkowej postaci równowagi wału. Jeżeli podczas obrotu wału z dowolną stałą pręd­
kością wygniemy go nieco i pozostawimy samemu sobie, to dopóki prędkość kątowa jest mniejsza od krytycznej, wykona 
wał szereg drgań poprzecznych i po ich wygaśnięciu przybierze napowrót postać prostolinjową, przyczem jednakże siła, 
dążąca do przywrócenia tej postaci, niejako słabnie. To zjawisko tłumaczy się wpływem siły odśrodkowej, działającej na 
masę zgiętego wału. Na każdy element wału o długości dx odchylonej od pierwotnego położenia o y, przypada siła od­

środkowa w2 y d x, jeżeli q oznacza ciężar jednostki długości wału. (Przekrój wału przyjmiemy stały). Wał okazuje się 

jakby narażonym na obciążenie ciągłe, proporcjonalne w każdym przekroju względem wielkości ugięcia. Powiększając pręd­
kość kątową obrotu, zwiększamy zarazem natężenie tego ciągłego obciążenia. Ostatecznie dojdziemy do takiej prędkości, 
że siły bezwładności wystarczą do zrównoważenia sił sprężystości i wał pozostanie trwale w stanie wygiętym. Odpowiada­
jąca temu prędkość będzie krytyczną, ponieważ przy niej wszelka przypadkowa przyczyna może za sobą pociągnąć silne 
skrzywienie wału, Ażeby znaleźć prędkość krytyczną ustawimy równanie różniczkowe wygiętej osi wału w postaci (151) z § (96):

El^^y- 
dx^ g

Ogólną całką tego równania będzie:
n ax । D — ax , n . r,y = 71 e + Be + C sin ax + D cos a x,

przyczem 4 / q u-2
V EIg

Szukajmy tych wartości a, a więc i <r, przy których będą spełnione warunki na końcach wału, t. j.:

. (350)

dla x = 0; y = 0 . d2 v d2 vi , dla x = l; y = 0 i 5^ = 0,
dxi J dxi

ponieważ przyjęliśmy swobodne podparcie końców. Na wyznaczenie stałych dowolnych mamy warunki:
I) A + B + D = 0, II) 71 a2 + B a3 — D a2 = 0,
in)Aeal + Be al + C sin a 1 + D cos a / = 0, IV) Aa*eal + — Ca5 sin al - Da2 cos al = 0.

Z I-go i Ii-go warunku wynika, że D = 0, A = — B. Aby uczynić zadość warunkowi Ill-mu i IV-mu, trzeba przyjąć:

sin a l = 0A = -B = 0

ĆU

Rys 394

• (a)
Otrzymany warunek (a) pozwala nam określić tę wartość a, przy kłórej staje się 
możliwą zgięta postać równowagi wału. Najmniejszą odpowiadającą wartość pręd­

kości kątowej otrzymamy, kładąc a= -y-. Po podstawieniu tej wartości w rów. (350) 
znajdziemy:

• tOkr — . (351)

Odpowiadający okres jednego obrotu wału równa się:

T = — = 2 a -4- 1^-4- •
<«kr Jt2 r EIg

Otrzymany wynik jest zgodny z wzorem (335)', a więc i w tym przypadku jest 
prędkość krytyczna identyczną z częstością poprzecznych drgań wału. Jeżeliby-

‘Tf 'T
śmy w rów. (a) podstawili kolejno a = —, -y—,..., to otrzymalibyśmy inne

formy zgięcia (rys. 394), odpowiadające wyższym typom poprzecznych drgań. 
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Każdej takiej postaci odpowiada właściwa prędkość krytyczna, a stosunek kolejnych prędkości będzie następujący:

kr : (Wjkr • <l'J3kr — 1:4:9.
Zwiększając stopniowo prędkość obrotu, można podczas doświadczenia zaobserwować różne typy drgań przy odpowiadają­
cych krytycznych prędkościach.

Jeżeli na wale znajduje się szereg krążków, to przy ich równomiernem rozłożeniu wzdłuż wału można całą masę 
krążków rozłożyć na długości wału i przy obliczeniu krytycznej prędkości użyć wzorów, wyprowadzonych dla wału o stałej 
średnicy (wz. 351). Trzeba tylko pamiętać, że krążki, zwiększając masę wału, nie powiększają jego sztywności1).

§ 170. O NAPRĘŻENIACH PRZY UDERZENIU

Przy rozpatrywaniu zagadnień statyki przyjmowaliśmy, że siły działające wzrastają od zera 
do swej końcowej wartości tak, że w każdej chwili zachodzi równowaga między siłami zewnę- 
trznemi, a wewnętrznemi siłami sprężystości. Tylko wśród takich warunków dane obciążenie nie 
wywoła w układzie sprężystym drgań i towarzyszących im dodatkowych naprężeń. W rzeczywi­
stości części składowe technicznych konstrukcyj są narażone nietylko na obciążenia, działające 
statycznie, lecz także podlegają często nagłemu działaniu sił i doznają uderzeń. Naprężenia, 
wywołane temi przyczynami osiągają nieraz wielkość bardzo znaczną i należy je wziąć w ra­
chubę. Zaczniemy od wyznaczenia odkształceń i naprężeń, wywołanych uderzeniem w prętach, 
t. j. ciałach, których dwa wymiary można uważać za małe w porównaniu do trzeciego. Odnośne 
zadania rozwiązują się w bardzo prosty sposób w przypadku, gdy można pominąć masę pręta, 
a zatem i odpowiadające jej siły bezwładności2). Tylko dzięki wpływowi sił bezwładności dzia­
łanie, wywarte na dowolny punkt pręta, przenosi się na inne punkty nie w tej samej chwili, 
lecz potrzebuje do przeniesienia pewnego skończonego przedziału czasu. Jeżeli pominiemy masę 
pręta, co można uczynić w przypadku, gdy ta masa jest małą wobec masy uderzającego ciała,
to zagadnienie sprowadza się łatwo do zadania statycznego, a mianowicie do 
szukania odkształceń pręta pod wpływem siły działającej na miejsce uderzenia. 
Wielkość tej siły będzie w każdej chwili proporcjonalna względem odkształceń 
przez nią wywołanych, przy założeniu, że naprężenia przy uderzeniu nie przekra­
czają granicy sprężystości. Sposób wyznaczenia odpowiadających naprężeń przed­
stawimy na przykładach szczegółowych.

Pionowy pręt AB (rys. 395) o długości l, utwierdzony górnym końcem, jest 
narażony na uderzenie ciężarem Q spadającym swobodnie (bez oporów) wzdłuż osi 
pręta. W chwili zetknięcia ciężaru z głową mn, umieszczoną w dolnym końcu pręta 
(początek uderzenia) będzie prędkość ciężaru równać się:

f = U 2gh.

" A

B
. Rys. 395

Dalszemu swobodnemu ruchowi spadającego ciężaru przeszkadza głowa mn. Na­
cisk wywarty przytem przez ciężar na głowę będzie rozciągać pręt tak długo, aż prędkość ciężaru 
stanie się równą zeru. Łatwo obliczyć odpowiadające tej chwili największe wydłużenie X. W tym 
celu trzeba pracę siły ciężkości, działającej na Q, przyrównać do energji potencjalnej, nagroma­
dzonej w pręcie AB przy jego wydłużeniu o k A zatem:

n tu i EFQ (h + X) — 2 j .
Rozwiązując otrzymane równanie względem X, znajdujemy:

X — Xst -|- }/”Xst2 + 2 Xst /z (352)

9 Kwestję oporu girostatycznego krążków rozpatruje Stodoła w dziele: Die Dampfturbinen, wyd. 4-e, str. 288 i 298.
2) Badanie uderzenia w tem pierwszem przybliżeniu znajduje się już w następujących dziełach:
Th. Young, „A course of lect. on natural philosophy", r. 1807, str. 135.
I. V. Poncelet, „Introd. M la mócaniąue industrielle“, wyd. III z r. 1870, str. 418.

Kurs wytrzymałości materjałów 21
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Tutaj oznacza Xst wielkość Ql:EF, przedstawiającą statyczne wydłużenie pręta AB pod działa­
niem ciężaru Q. Jeżeli wysokość spadania wyrazimy przez prędkość V, której nabywa ciężar na 
początku uderzenia, to rów. (352) można przedstawić w postaci:

X — Xst +Xst 2 + Xst —- . (352)'

Gdy w szczególności v = 0, to wzór powyższy daje X = 2Xst> t. j. ciężar działający nagle (ale bez 
uderzenia) wywołuje wydłużenie dwa razy większe od tego, jakie odpowiada położeniu równowagi. 
Ten wynik otrzymaliśmy już pierwej w § (21).

Wyznaczmy teraz wielkość naprężeń rozciągających pmax, które odpowiadają największemu 
wydłużeniu X:

Pmax = i E.

Podstawiwszy za X wartość z (352)', a zamiast Xst wielkość Ol: EF, znajdziemy: 

Pmax —
2 4-

FI ‘ g . (353)

Wielkość naprężeń zależy, jak widzimy, nietylko od pola przekroju poprzecznego pręta, lecz także 
od jego długości. Im większa jest długość /, tem mniejsze będą naprężenia przy uderzeniu. Przy 
znacznej wysokości spadku h można pominąć wielkość Xsł wobec h, a wtedy dla największego
wydłużenia otrzymamy wzór:

X = /2XI1h=l/ . • (354)

Odpowiadającem naprężeniem będzie:

. (355)

Jeżeli przez R nazwiemy dopuszczalne ciągnienie, to z wzoru (355) znajdziemy łatwo tę graniczną 
wartość energji kinetycznej ciała uderzającego, przy której naprężenie osiąga wielkość dopuszczalną,
a mianowicie: 0v* = R2Fl

2g 2E . (356)

Graniczna wartość energji kinetycznej uderzającego ciała jest przeto (w przybliżeniu) proporcjo­
nalną względem objętości pręta narażonego na podłużne uderzenie i nie zależy od stosunku jego 
wymiarów.

Rozpatrzymy teraz przypadek zgięcia. Na pręt w obu końcach podparty spada ciężar O 
z wysokości h. Dla uproszczenia przyjmiemy, że miejscem uderzenia jest środek rozpiętości i że 
zgięcie pod wpływem uderzenia zachodzi w jednej z płaszczyzn głównych. Niechaj fd oznacza 
wartość największego ugięcia przy uderzeniu (strzałka dynamiczna). Temu ugięciu odpowiada na­
cisk spadającego ciężaru O równy:

Energją potencjalną pręta, odpowiadającą ugięciu fd, będzie:
Pfd _2^Elf^

2 P ’
Jeżeli pominiemy masę pręta, to w chwili największego jego ugięcia całkowita praca ciężkości 
spadającego ciężaru zamieni się oczywiście w energję potencjalną odkształconego pręta. Do wy­
znaczenia Jd otrzymamy wtedy równanie:

24 El

z którego:
W 1Ą , 2Ql‘h 

4&E/ \48EI> + 48EI

, _ EX
P max — j FI g ’

„ _ 48£//d
P “ Z’

f* = — fsi +
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Znaleziony wzór ma tę samą postać, co formuła (352), otrzymana dla pręta narażonego na ude­
rzenie podłużne '). Znając wielkość strzałki dynamicznej, znajdziemy łatwo i odpowiadającą wartość 
największego naprężenia. Największym momentem zginającym w środku pręta będzie:

a zatem:

_Pl _ f \2EI 
"™x — — /d |2 »

_ 12 fd El _ 12Eafd
Pmax “ ~ /S

Tutaj oznacza a odległość włókna skrajnego od osi obojętnej. Jeżeli wysokość h spadku ciężaru 
jest wielka wobec ugięcia statycznego, to dla największego ugięcia otrzymamy dość dokładną 
wartość z wzoru: y y1

48El' g
Odpowiadające największe naprężenie określi równanie:

Oj8, . Ti (357)
Pma* p 48 El g.................................................... 1 J

Gdy przez R oznaczymy wielkość naprężenia dopuszczalnego przy zgięciu, to z wzoru (357) znaj­
dziemy graniczną wartość dla energji kinetycznej spadającego ciężaru Q:

Qv*_ R*Il 
2g hEa2'

W przypadku przekroju prostokątnego będzie:
Qv8 = R*Fl 
2g 18 E (358)

przyczem F oznacza pole przekroju. Znaleźliśmy więc znowu, że graniczna wartość energji kine­
tycznej spadającego ciężaru jest proporcjonalna względem objętości pręta narażonego na uderzenie.

Znaczenie uderzenia przy skręcaniu objaśnimy na następującym prostym przykładzie. Koło 
zamachowe MN (rys. 3%) obraca się z daną prędkością kątową co. Jakie powstaną naprężenia, 
jeżeli wstrzymamy nagle obrót lewego końca /I? Po zatrzymaniu końca /I będzie widocznie 
koło MN obracać się dalej tak długo, dopóki jego energją kinetyczna nie zamieni się całkowicie 
w energję potencjalną skręconego wału. Tej chwili będzie od­
powiadać największa wartość <p kąta skręcenia. Jeżeli 0 ozna­
cza moment bezwładności koła zamachowego, a Ip biegunowy 
moment bezwładności (kołowego) przekroju poprzecznego wału, 
to dla znalezienia 'p otrzymamy następujące równanie:

cp2 G7P _ 0cu2 
27“~~2~’ Rys. 396

które wyraża, że energją potencjalna skręconego wału równa się energji kinetycznej koła zama­
chowego. Wyznaczywszy 'p łatwo znaleźć i odpowiadające naprężenia.

§ 171. WPŁYW MASY PRĘTA NA WIELKOŚĆ NAPRĘŻEŃ PRZY UDERZENIU

Przy obliczeniu naprężeń dynamicznych pomijaliśmy w poprzednich zadaniach własną masą uderzonego pręta lub 
belki. Takie uproszczenie zadania nie pociąga za sobą większych błędów, dopóki masa Q spadającego ciężaru jest wielka

p
w porównaniu do masy pręta —; atoli w razie przeciwnym nie wolno pomijać masy pręta. Przedstawimy tutaj przybli-

h Takiż sam wzór można otrzymać i w najogólniejszym przypadku, jeżeli wyjdziemy z założenia, źe cała energją 
kinetyczna spadającego ciężaru zamienia się w energję potencjalną ciała uderzonego, a zarazem przesunięcie punktu, na 
który-ciężar trafia, jest w każdej chwili proporcjonalne względem nacisku tegoż ciężaru.

21*
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żony sposób oceny tego wpływu ‘)- Dopóki pomijamy masę pręta, wielkość odkształceń wyznacza się z warunku, że enega- 
kinetyczna spadającego ciężaru zamienia się w zupełności na energję potencjalną pręta. W pierwszym okresie uderzenia 
nie mamy tedy żadnej straty energji. Inny wynik otrzymamy, skoro uwzględnimy masę pręta. Prędkość V, jaką posiada 
ciężar spadający w chwili dotknięcia pręta, zmienia się tak długo, dopóki ciężar i część pręta stykająca się z nim bezpo­
średnio nie przybiorą pewnej wspólnej prędkości c. Gdyby pręt uderzony był ciałem swobodnem niespręźystem, to wiel­
kość c możnaby wyznaczyć z równania ilości ruchu:

P + Q Q—c — — u,
& g

a mianowicie Q 
c~dp+q-

W rzeczywistości zaczyna się pręt odkształcać od pierwszej chwili uderzenia i w chwili, gdy przekrój, odpowiadający 
miejscu uderzenia osiąga prędkość c, mogą inne przekroje mieć inne prędkości. Utwierdzone punkty pręta, albo podparte 
końce belki będą mieć prędkósć równą zeru. Skoro uczynimy pewne założenia co do prawa, według którego zmienia się 
prędkość wzdłuż pręta, to wpływ masy pręta na wielkość naprężeń dynamicznych można oznaczyć tąż samą drogą ele­
mentarną, jaką obraliśmy przy badaniu drgań (§ 162). Rozpatrzmy przypadek podłużnego rozciągania pręta AB przez 
spadający ciężar Q (rys. 390). Niechaj u oznacza prędkość, z którą ciężar Q dosięga dolnego końca pręta AB. Odpowia-

Q dającą energją kinety czną będzie W dalszym ciągu nastąpi wyrównanie prędkości ciężaru Q i dolnego końca pręta.

Oznaczmy wspólną prędkość przez c i przypuśćmy, że prędkości oddzielnych elementów długości pręta zmieniają się we­
dług tego samego prawa, co i przesunięcia odpowiadających przekrojów przy rozciąganiu pręta siłą działającą na koniec. 
W takim przypadku prędkość przekroju mn w odległości x od utwierdzonego końca będzie równa:

Cx = C y .

Energję kinetyczną całego pręta określi wyrażenie:

P , cx2 P c2 
„gi ■“r_*3g'T-

*) Ten sposób podał H. Cox, Cambridge Phil. Soc. Trans, z r. 1849, str. 73. Ob. Todhunter and Pearson 
A. History of the Theory of Elasticity, t. I, str. 895.

Dokładniejsze badania teoretyczne nad uderzeniem prętów zawdzięczamy de Saint-Venant’owi, który zauważył 
zadowalniającą zgodność dokładniejszej teorji i doświadczeń z wynikami metody przybliżonej. Ob. Clebsch’a: Thćorie 
de 1’ólasticitć... w przekładzie de S.-Venant’a; dodatek do § 61.

Wartość energji jest zatem taka, jak gdyby trzecia część masy pręta była skupiona na jego uderzonym końcu, a cała 
długość pręta była zresztą pozbawiona masy. Wobec tego równanie ilości ruchu przybierze postać:

Q ' . 1 P Q lłX . ...— c —---- c — — V, z której znajdziemy: c — V

Mając prędkość c możemy obliczyć energję kinetyczną układu po pierwszym okresie uderzenia. Przyjąwszy, że cała ta 
energja zamienia się na energję potencjalną, znajdziemy wyrażenie dla naprężeń dynamicznych. (To przyjęcie odpowiada 
założeniu, że uderzenie jest doskonale niespręźystem, czyli, że po przyjęciu wspólnej prędkości c ciężar pozostaje nadal 
w zetknięciu z prętem). Jeżeli nazwiemy przez X największe wydłużenie pręta przy uderzeniu, to równanie dla wyzna­
czenia tej wielkości napiszemy w postaci:

Wstawiając zamiast c wartość powyżej znalezioną i uwzględniając, że: 

Ql _ 
EF Ast’

możemy powyższe równanie przekształcić na następujące:

1 iO:-^
2« , , 1 P V 2( ' 

1 + TQ . 
Stąd: ______________________

k = Xst-|-K^t2 + ^±---------- ............................................................ ......... • -(359)

1

W podobny sposób da się ocenić wpływ masy pręta przy zgięciu wskutek uderzenia. Niechaj np. ciężar Q spada 
z wysokości h na środek rozpiętości belki w obu końcach podpartej. W pierwszym okresie uderzenia ustala się pewna 
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wspólna prędkość c ciężaru i środkowego przekroju belki. Przyjmując, że na długości belki zmieniają się prędkości według 
tego samego prawa, co i przesunięcia przy zgięciu statycznem pod wpływem siły skupionej w środku, znajdziemy, że 

17energja kinetyczna belki w pierwszej chwili uderzenia będzie taka, jak gdyby masy belki było skupione w środku 

rozpiętości. Prędkość c otrzymamy z równania ilości ruchu:

Q Z Q . 17 P \ ... Q~ v = i • -p • I c, a mianowicie: c = v-----~.
s g s '

Przyjąwszy, że energja kinetyczna ciężaru i pręta zamienia się w zupełności na energję potencjalną odkształcenia, otrzy­
mamy dla wyznaczenia ugięcia dynamicznego równanie:

, , 1 + 35 ‘ Q

‘) Liczbowy przykład tego rodzaju znajduje się w artykule proi. Tschet sche: „Berechnung dynamisch bean- 
spruchter Tragkonstruktionen®, Zeitschr. d. Ver. deutsch. Ing. z r. 1894, str. 134.

2) Ob. pracę autora: „W kwestji działania uderzenia na belkę" (po ros.) Izw. Petersb. Politechn. Inst. z r. 1912.
8) Przy podłużnem uderzeniu prętów grają miejscowe odkształcenia nader ważną rolę. Ob. J. E. Sears: „The 

longitudinal impact of metal rods with rounded ends“. Cambridge Phil. Soc. z r. 1907.
4) Hamburger, Wied. Ann. d. Phys. 28 z r. 1886.
A. N. Dinnik: „Trwanie uderzenia kul sprężystych® (po ros.) Izw. Kijew. Pol. Inst. z r. 1907.
A. N. Dinnik: „Udar i sżatie uprugich tieł®, tamże w r. 1909*

z ktorego:

fd = M + K W + -------‘-p............ (360)
« 1 4- _ . _35 Q

Gdy v — 0, t. j. gdy ciężar umieszczono na belce bez prędkości początkowej (ale nagle), otrzymamy znany wynik fd = 2 /st.
Od rozpatrzonych przykładów łatwo przejść do przypadku ogólniejszego. Jeżeli układ, na który spada ciężar Q jest 

taki, że przesunięcie s punktu odpowiadającego miejscu oderzenia jest proporcjonalne względem nacisku uderzającego 
ciężaru, to wielkość dynamicznego przesunięcia Sd można obliczyć według wzoru:

Sd = Sst Sst2 + •-5............. (361)
1 + k Q

Tutaj oznacza sst przesunięcie miejsca uderzenia przy statycznem działaniu ciężaru Q, zaś liczba k jest spółczynnikiem, 
który należy w każdym szczególnym przypadku wyznaczyć na podstawie przyjęcia co do rozmieszczenia prędkości 
w układzie w pierwszym okresie uderzenia *).

Ażeby osądzić o ile dokładne wyniki daje wyłożona metoda przybliżona, przytoczymy w niżej umieszczonej tablicy kilka 
liczb, otrzymanych przez de S.-Venant’a dla prętów w obu końcach podpartych i narażonych na uderzenie w środku rozpiętości.

p
Q~

1
4

1
2

1 2 4

Dokładne rozwiązanie fd/A = 1,09 0,739 0,477 0,297 0,167

Przybliżone rozwiązanie fd/A = 1,09 0,738 0,474 0,291 0,168

W tej tablicy oznacza A stalą zależną od rozmiarów i ciężaru pręta, oraz od prędkości spadającego ciężaru. Zauwa­
żyć wypada, że dokładne rozwiązanie de S.-Venant’a polega na przyjęciu pewnych określonych warunków w chwili ude­
rzenia. De S.-Venant przyjmował mianowicie, że w pierwszym okresie uderzenia przekrój pręta, odpowiadający miejscu 
uderzenia, przybiera prędkość równą prędkości spadającego ciężaru, a potem pręt wykonywa drgania razem z ciężarem. 
Atoli szczegółowe badanie pierwszego okresu uderzenia wykazuje2), że przy pewnych stosunkach masy belki do masy 
spadającego ciężaru rozpada się uderzenie na kilka po sobie następujących uderzeń, a całe zjawisko przedstawia się jako 
bez porównania bardziej złożone, aniżeli to przyjmował w swych badaniach de S.-Venant.

Rozpatrzyliśmy przypadki uderzenia prętów t. j. ciał, w których jeden wymiar jest wielki w porównaniu do dwu 
pozostałych. Dzięki temu można było pominąć rozważanie odkształceń w miejscu uderzenia, a czas, w którym te odkształ­
cenia powstają, uważać za znikomo mały w porównaniu do trwania uderzenia3). Jeżeli jednak wszystkie wymiary uderza­
jących się ciał są tego samego rzędu, np. w przypadku uderzenia dwóch kul, to odkształcenia miejscowe występują na 
pierwszy plan. Dopóki te odkształcenia zachodzą w granicach sprężystości, to ich wielkość i trwanie uderzenia można 
obliczyć bardzo dokładnie według wzorów Hertz’a (§ 37). Otrzymane tą drogą wyniki teoretyczne zostały w zupełności 
potwierdzone doświadczeniem4), (oczywiście w granicach ważności założeń teorji).
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§ 172. PĘKNIĘCIE WSKUTEK UDERZENIA

Wzory poprzedniego paragrafu rozwiązują kwestję uderzenia w tych przypadkach, kiedy od­
kształcenia nie przekraczają granic sprężystości, i między przesunięciem punktu działania nacisku 
a jego wielkością zachodzi zależność linjowa. Poza granicami sprężystości staje się zjawisko ude­
rzenia bardziej złożonem. Dla znalezienia wydłużeń lub ugięć dynamicznych, oraz tej wartości 
granicznej energji kinetycznej spadającego ciężaru, przy której pręt pęka, trzebaby mieć diagram 
rozciągania statycznego, aż do rozerwania i diagram statycznego zginania poza granicą sprężysto­
ści. Jeżeli przypuścimy, że przy rozerwaniu wskutek uderzenia zachodzi między wydłużeniami 
i napięciami taka sama zależność, jak przy rozerwaniu statycznem x), to z wielkości „właściwej 
pracy odkształcenia" (§ 10) dla danego materjału można sądzić o energji kinetycznej spadającego 
ciężaru, potrzebnej do rozerwania pręta. Przyczyny, zmniejszające wydłużenie pręta przy rozry­
waniu statycznem, zmniejszają także pracę, potrzebną do tego rozerwania, a zatem osłabiają wy­
trzymałość pręta na uderzenie.

Skoro weźmiemy pręty żelazne, przedstawione na rys. (47), i porównamy je z prętem walco­
wym o średnicy 15 mm, to znajdziemy, że przy rozerwaniu przez uderzenie, będzie stosunek ich 
wytrzymałości nie taki sam, jak przy statycznem rozrywaniu. Ten wynik łatwo objaśnić zwróciw­
szy uwagę na odkształcenie pręta. W pręcie walcowym wydłużają się przy rozciąganiu wszystkie 
elementy jednakowo, podczas gdy w prętach z szyjkami doznają grubsze części tylko nieznacznego 
wydłużenia, a główne odkształcenie koncentruje się w szyjce. Ostateczne wydłużenie pręta 
walcowego będzie znacznie większe, niż wydłużenie prętów z szyjkami, wskutek czego potrzeba 
większej pracy do jego rozerwania. Przy „próbie uderzenia" okaże się pręt walcowy wytrzymal­
szym. Wytrzymałość prętów z szyjkami będzie zależeć od długości szyjki i stopnia nagłości 
zmiany przekroju pręta. Okazuje się, że przy rozerwaniu z wielką prędkością, jaka zachodzi przy 
uderzeniach, zbyt mało czasu na wyrównanie naprężeń w płaszczyźnie osłabionego przekroju po­
przecznego, wobec czego materjały, dające znaczne wydłużenia przy rozrywaniu statycznem, mogą 
się okazać kruchemi przy uderzeniu. Wogóle przy badaniu pod uderzeniem występują na jaw 
szczególnie wyraźnie różne wady materjału, wskutek czego „próbie uderzenia" poświęcono w osta­
tnich czasach większą uwagę w laboratorjach do badania materjałów8). Powiększenie kruchości 
prętów przez osłabienie ich przekrojów poprzecznych wypada wziąć w rachubę w rozlicznych 
konstrukcjach żelaznych. Okazuje się np., że blachy i kształtówki żelazne stają się bardziej kruche 
wskutek ich osłabienia otworami na nity i ta okoliczność tłumaczy niekiedy ich pęknięcie’).

B. Blount, W. Kirkaldy, H. Sankey, Proc, of the Inst. of. Mech. Engin., r. 1910, 1—2.
3) Ob. Hackstroh, Baumaterialienkunde, r. 1905, str. 321.
Zimmermann. Zentralblatt d. Bauverw., r. 1899, str. 265.
Co do wielokrotnych uderzeń prętów z nacięciami ob. pracę Preuss’a w Zeitschr. d. Ver. d. Ing. z r. 1914.

*) Są dane doświadczalne, wskazujące na to, że przy znacznej szybkości odkształcenia powstaje inny diagram 
aniżeli w przypadku rozrywania statycznego. Granica sprężystości przy rozrywaniu przez uderzenie jest wyższą, niż przy 
zwykłem rozrywaniu. Ob. N. N. Dawidenkow, Izw. Peterb. Polit. Inst. z r. 1913.

2) Opis odpowiadających przyrządów i metod badania można znaleźć w następujących pracach:
Breuil, „Nouveaux mćcanismes et nouvelles mćthodes pour l’ćssai des mćtaux“, Paris 1910, str. 140—240.



CZĘŚĆ VIII

O STATECZNOŚCI UKŁADÓW SPRĘŻYSTYCH

ROZDZIAŁ XX

§ 173. STATECZNE I NIESTATECZNE POSTACIE RÓWNOWAGI

Przy projektowaniu konstrukcyj technicznych obiera się rozmiary części składowych w ten 
sposób, aby naprężenia materjału nigdzie nie przekraczały pewnych norm (naprężeń dopusz­
czalnych), ustanowionych na podstawie doświadczalnego badania wytrzymałości materjałów. Szereg 
wielkich katastrof wykazał, że takie obliczenie jest często nie wystarczające dla spółczesnych kon­
strukcyj inżynierskich, że przyjęte normy naprężeń dopuszczalnych niezawsze zapewniają nale­
żytą trwałość konstrukcji i że niezbędnemi są dodatkowe badania stateczności tych postaci równo­
wagi, które przyjęto za podstawę obliczenia tak części składowych, jak i całej projektowanej kon­
strukcji. Ważność sprawdzenia stateczności jest uznaną powszechnie, atoli wskutek braku teoryte- 
cznego opracowania poświęcano do ostatnich czasów bardzo niewiele uwagi kwestjom stateczności 
w technicznych obliczeniach.

W praktyce napotykamy szczególnie często zagadnienia stateczności prętów, narażonych na 
ściskanie. Skoro pręt pryzmatyczny ściskają siły osiowe, to wogóle zajdzie skrócenie pręta przy 
zachowaniu prostolinjowej postaci. Atoli w pewnych warunkach prostolinjowa postać równowagi 
może się okazać niestateczną i pręt się wygnie [jakkolwiek na początku działania sił zewnętrznych 
nie ma wcale momentów zginających, a więc napozór nie ma przyczyn, wywołujących zgięcie]. 
To zjawisko zakrzywienia osi pod wpływem samych sił podłużnych występuje tem łatwiej, im 
większą jest długość pręta w porównaniu do jego rozmiarów poprzecznych; nazywamy je („zgię­
ciem podłużnem", albo) „wyboczeniem". W przypadku bardzo giętkich prętów można zjawisko 
wyboczenia obserwować już przy bardzo małych wartościach podłużnego naprężenia. Te okoliczno­
ści wskazują, że przekrój poprzeczny prętów ściskanych należy obliczać nietylko według wielkości 
dopuszczalnego ciśnienia, lecz także według wielkości „krytycznego obciążenia", przy którem po­
stać prostolinjowa przestaje być stateczną. Obliczenie ściskanych prętów stanowi najprostsze zada­
nie, w którem trzeba roztrząsać kwestję stateczności. Ten przypadek opracowano wszechstronnie 
na drodze teoretycznej i doświadczalnej. Prócz niego napotykamy przy obliczeniu konstrukcyj in­
żynierskich o wiele więcej złożone zadania, wymagające dodatkowego sprawdzenia stateczności. 
Często np. mamy do czynienia z obliczeniem płyt, narażonych na siły ściskające, które działają 
w płaszczyźnie środkowej płyty. Przy działaniu takich sił może płaska postać równowagi płyty 
okazać się niestateczną i płyta się wyboczy. Wysokie belki kształtu I, posiadające wielką sztyw­
ność zgięcia w płaszczyźnie ścianki, mogą się okazać niedostatecznie sztywnemi w kierunku pro­
stopadłym do tej płaszczyzny i wyboczyć się pod wpływem pionowych nacisków, wywartych przez 
obciążenia zginające. Cienkościenna okrągła rura, poddana równomiernemu ciśnieniu zewnętrznemu, 
może również być w stanie niestatecznej równowagi i ulec spłaszczeniu (zaklęśnięciu), gdy ciśnie­
nie zewnętrzne przekroczy pewną wartość „krytyczną". Wszystkie tego rodzaju zadania mają nie- 
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tylko znaczenie teoretyczne, lecz są także praktycznie nader ważne. Można wymienić niemało przy­
padków zawalenia się budowli inżynierskich, które wynikły wskutek niedostatecznego uwzględnie­
nia kwestji stateczności.

Przystępując do badania stateczności układów sprężystych trzeba przedewszystkiem zbadać 
przy jakich warunkach zachodzi wogóle kwestja stateczności tej lub innej konstrukcji. Jeżeli ciało 
sprężyste może mieć tylko jedną postać równowagi, to ta postać będzie stateczną. Gdyby jakiekol­
wiek dodatkowe siły zewnętrzne tę postać zmieniły i przestały następnie działać, to ciało powróci­
łoby do pierwotnego stanu, albowiem ten stan odpowiada jedynej możliwej postaci równowagi. (Za­
kładamy, że wszelkie zmiany zachodzą w granicach sprężystości). W przypadku, kiedy istnieje 
więcej możliwych postaci równowagi, może się sprawa przedstawiać inaczej: ciało, wyprowadzone 
z jednej ze swych postaci równowagi, może nie wrócić do pierwotnego położenia i przyjąć jaką­
kolwiek inną postać równowagi. Skoro wszystkie wymiary ciała są tego samego rzędu, to w grani­
cach sprężystości są możliwe tylko drobne przesunięcia punktów i można dowieść, że wówczas 
istnieje tylko jedna postać równowagi; ta postać, jako jedyna, będzie oczywiście stateczną1)- Jeżeli zaś 
jeden lub dwa wymiary ciała są małe w porównaniu do innych, jak np. w przypadku cienkich 
płyt lub prętów, to mogą zajść znaczne zmiany postaci bez przekroczenia granic sprężystości; 
płytę można zgiąć silnie, zwinąć ją w trąbkę, cienki pręt zgiąć w pierścień i t. d. W tych warun­
kach mogą się zdarzyć przypadki, w których jednemu i temu samemu układowi sił odpowiada wię­
cej postaci równowagi. Pręt ściskany podłużnie może zachować postać prostolinjową, ale może 
także zgiąć się. Płyta, ściskana siłami leżącemi w jej płaszczyźnie środkowej, może pozostać pła­
ską, ale może w pewnych warunkach się wyboczyć.

9 Ob. G. H. Bryan, Cambridge Phil. Soc. Proc. V, 6 (r. 1888),
2) Berlin, Histoire de 1’Acadćmie, t. 13, r. 1757.

Projektowana konstrukcja będzie oczywiście trwałą tylko w tym przypadku, gdy przyjęta za 
podstawę obliczenia postać równowagi jest stateczną; z tego powodu jest dla zastosowań prakty­
cznych niezbędną znajomość tej najmniejszej wartości obciążenia, przy której istnieje więcej jak 
jedna postać równowagi. Tę wartość będziemy nadal nazywać „krytyczną". Dopóki obciążenie 
jest mniejsze od krytycznego, będzie możliwą tylko jedna postać równowagi i ta postać będzie 
oczywiście stateczną. Przy obciążeniach większych od krytycznego są możliwe przynajmniej dwie 
różne postacie równowagi. Rozmaite metody wyznaczenia krytycznej wartości obciążenia objaśnimy 
przy rozpatrywaniu poszczególnych zadań.

§ 174. ZAGADNIENIE EULERA
Pierwsze zagadnienie, odnoszące się do kwestji stateczności równowagi ciała sprężystego, 

rozwiązał Euler2). Ten uczony znalazł wartość obciążenia P, po osiągnięciu której pręt, dolnym 
końcem pionowo utwierdzony, zaczyna się wyginać (rys. 397). Dopóki siła ściskająca P jest dość 

mała, pręt AB zachowuje stale swoją postać prostolinjową i odkształcenie będzie się 
ograniczać do prostego skrócenia. Skoro dowolną siłą poziomą wywołamy zgięcie 
pręta, to po usunięciu tej siły powróci pręt do swej pierwotnej prostolinjowej postaci 

^r-j równowagi. Atoli taka stateczność prostolinjowej postaci zachodzi tylko do pewnej
/ granicy. Zwiększając w sposób ciągły siłę P, można osiągnąć taki stan graniczny,

* / w którym najmniejsza przyczyna może zakrzywić pręt, a po usunięciu przyczyny wy-
t n wołującej zgięcie, pręt nie powraca do postaci prostolinjowej. Nasze zadanie polega

j - na tem, aby wyznaczyć ową „krytyczną" wartość siły ściskającej P.
Y i Przyjmiemy, że pręt może się wygiąć swobodnie w każdym kierunku, wskutek

czego wygięcie musi widocznie zajść w kierunku najmniejszego oporu, czyli w płasz- 
| ę y czyźnie najmniejszej sztywności pręta. Tę płaszczyznę obierzemy za płaszczyznę XY. 
wfe Dajmy na to, że przy pewnej wartości P, większej od krytycznej, pręt AB wygiął

Rys. 397 się w sposób, przedstawiony na rysunku, lin ją przerywaną. Skoro teraz będziemy
zmniejszać siłę P, to zmniejszy się i wygięcie pręta. Gdy wkońcu osiągniemy kryty­

czną wartość Pkr, t. j. tę wartość, przy której dopiero zaczyna być możliwem pojawienie się skrzy­
wienia, to postać wygięta zejdzie się z prostolinjową. Jeżeli siła ściskająca przekroczy wartość 
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krytyczną o małą wielkość, to zakrzywiona postać różni się mało od prostolinjowej; z tego sko­
rzystamy, ażeby znaleźć Pkr. Pójdziemy jednak niejako odwrotną drogą, a mianowicie przyjmiemy, 
że postać zakrzywiona jest możliwa i będziemy szukali odpowiedniej wartości siły ściskającej. Mo­
mentem zginającym w dowolnym przekroju poprzecznym mn (rys. 392) jest (przy obranym ukła­
dzie spółrzędnych): m = — P (8 — y),

a zatem przybliżonem równaniem różniczkowem krzywej postaci równowagi będzie: 
EI-^ +Py-P^0 • • ■ • • • W

Ogólna całka togo równania różniczkowego linjowego ma postać:

y = cos ax + C2 sin ax +• 8, przyczem a = V . . . . . (b)

Stałe dowolne wyznaczymy z warunków na końcach zgiętego pręta:
Dla x = 0 jest I) y = 0 i II) y' = 0; dla x = Z jest III) y = 8.

Z (I) otrzymujemy: = — 8;
z (II): [ — Cj a sin ax + C2 a cos <u]x=o = 0, czyli C2 = 0;
a zatem: y = 8 (1 — cos ax).
Aby uczynić zadość warunkowi (III) musimy przyjąć:

, n r , (2n + l)* cos a Z = 0, czyli a Z = 3----«—-—.w

Uwzględniając oznaczenie (b), otrzymamy:
TT2 El (2n+l)2^.......................................................... (362)
4 Ł

Najmniejsza wartość P, przy której zakrzywienie staje się możliwem, będzie: 
u2 FIp-l-%..................................................................(3W)

To równanie określa wartość krytyczną siły ściskającej, przy której staje się 
przez nas zakrzywiona postać równowagi.

Od rozpatrzonego zadania łatwo przejść do niektórych innych przypad­
ków wyboczenia. Weźmy np. pręt, którego oba końce są przegibnie ustalone ł) 
na prostej AB (rys. 398). Styczna w środku wygiętego pręta będzie równole­
głą do jego pierwotnej osi, czyli do prostej AB, obiedwie przeto połowy zgi­
nającego się pręta będą w takich samych warunkach, jak i w przypadku roz­
ważonym powyżej. Krytyczną wartością ściskającej siły będzie:

a2 EI Jt2 EI

<2l
. (364)

Dotychczas rozpatrywaliśmy pierwszą postać wygięcia, t. j. postać, której 
odpowiada najmniejsza wartość siły ściskającej. Rozpatrzymy teraz inne mo­
żliwe kształty równowagi. W ogólnej postaci określi linję ugięcia równanie: 

oz. \ 1 (2 n + 1)y = 8 (1 — cos ax), przyczem a l = ----- -—■-.

możliwą przyjęta

Kys. 398

Rozpatrzywszy przypadek n = 0, otrzymaliśmy’pierwszą możliwą postać. Kładąc
znajdziemy:

n = 1, albo n = 2,

p _32"2 
^“-4-

EI m d 52;r2-p, albo: ^kr= 4 EI
Z2 *

x) [Skoro jest mowa o przegibnem ustaleniu obu końców ściskanego pręta, to mamy na myśli najprostszy przypa­
dek, w którym niema przeszkód do wzajemnego zbliżenia się przegubów].
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Odpowiadające krzywe przedstawia fig. (a) i (b) na rys. (399). Przedłużając je symetrycznie w kie­
runku ujemnych X-ów, jak wskazuje rysunek, otrzymamy rozliczne krzywe kształty równowagi 

Rys. 399

dla prętów o końcach przegibnie ustalonych; W miejscach przecię­
cia się kierunku sił P z zakrzywioną osią pręta powstaną punkty 
przegięcia; w tych punktach moment zginający staje się zerem. Te 
wszystkie wyższe kształty są możliwe przy większych wartościach ści­
skającej siły i wszystkie są, jak wykazuje doświadczenie, niestateczne.

Rozpatrzymy jeszcze jeden przypadek, mogący mieć praktyczne 
znaczenie, a mianowicie ściskanie pręta obu końcami utwierdzonego 
(rys. 400). Ażeby przeszkodzić obrotowi, końców trzeba na nie dzia­
łać momentami utwierdzającemi. Siła osiowa P i moment sprowa­
dzają się do jednej siły mimośrodkowej P. Na jej linji działania 
muszą leżeć punkty przegięcia aa zakrzywionej osi pręta. Rzut oka 
na rysunek wystarcza, aby zauważyć, że ten przypadek sprowadza 

się do pierwszego, jeżeli zamiast / weźmiemy a zatem w na- 

szym przypadku: ................................... (365) Rys. 400

czyli obciążenie krytyczne jest 4 razy większe, niż dla pręta o końcach prze­
gibnie Ustalonych. Ten wniosek będzie naturalnie prawdziwym tylko w tym przypadku, 
kiedy końce pręta są doskonale utwierdzone. Gdy końce mogą się obrócić choćby bardzo mało, to 
wyboczenie zajdzie przy sile znacznie mniejszej. W praktycznych obliczeniach poszczególnych 
ściskanych prętów ze względu na wyboczenie przyjmuje się możli­
wość obrotu końców, ponieważ zwykłe sposoby ustalenia końców 
nie mogą zapewnić doskonałego utwierdzenia.

Wyliczyliśmy najczęściej napotykane przypadki wyboczenia. 
Dla wszystkich można wartość obciążenia krytycznego przedstawić 
wspólnym wzorem:

.... (366)

w którym zmienia się tylko spółczynnik liczbowy p, zwany „spół- 
czynnikiem długości". Skoro tylko znaleziono wartość p dla jakie­
gokolwiek przypadku działania sił, to kwestja wyznaczenia siły kry­
tycznej sprowadza się do przypadku pręta o końcach przegibnie 
ustalonych; we wzór (364) należy wówczas zamiast długości rze­
czywistej wstawić pewną długość sprowadzoną (także „swobodną") p/. Na zakończenie przy­
toczymy bez wywodów wartość spółczynnikazp dla niektórych szczególnych przypadków (rys. 401).

Jeżeli dolny koniec pręta jest utwierdzony, a górny ustalony przegibnie (fig. a), to:
D 2,046 n2 EI

— p zaś p = 0,7.

Przy obciążeniu rozłożonem równomiernie na całej długości pręta o natężeniu q (fig. b) jest 
wartością krytyczną całkowitego obciążenia 9:

. _ jt2 El
q (1,12/)2’ a więc p = 1,12.

Przy rozłożeniu obciążenia pionowego według prawa trójkąta na całej długości pręta wypada 
jako wartość krytyczna obciążenia dolnego przekroju2):

ql _ Jt2EI 
(1,388/)2 a zatem p = 1,388.

x) To rozwiązanie podał pierwszy A. G. Greenhill, Cambridge Phil. Soc. Proc., t 4, r. 1881.
*) To zadanie rozwiązał najpierw prol. F. Jasiński; ob. zbiorowe wyd. jego prac (po ros.), t. I, str. 164. 
Szereg zadań bardziej złożonych rozwiązał A. N. Dinnik. Ob. Wiestnik Inżenierow z r. 1915, str. 94.
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§ 175. GRANICE STOSOWALNOŚCI OTRZYMANYCH WZORÓW
Obierzmy przypadek pręta o końcach przegibnie ustalonych za podstawowy i wyznaczmy tę 

wielkość ciśnienia w przekroju poprzecznym pręta, przy której może się rozpocząć wyboczenie. 
Z formuły (364) znajdujemy: pkr , r .2

Pkr = -y = *2 h [ y 1 ............................................................. (367)

*) Najobszerniejsze doświadczalne badania nad wyboczeniem przeprowadził L. Tetmajer; ob. „Die Gesetze der 
Knickuugs- und zusammengesetzten Druckfestigkeit®, wyd. 3, r. 1903.

Z nowszych badań wymienimy pracę T. Kdrmdn’a: „Untersuchungen iiber Knickfestigkeit®, Góttingen Diss.,r. 1909.

przyczem r oznacza najmniejszy promień bezwładności przekroju. Otrzymane w ten sposób na­
prężenie można uważać za pewnego rodzaju doraźną wytrzymałość, albowiem powstanie w kon­
strukcji naprężeń, przy których mogą zajść wyboczenia prętów, jest tak samo niebezpieczne, jak 
i osiągnięcie granicy wytrzymałości.

Wszystkie nasze wywody polegały na założeniu, że materjał pręta jest doskonale sprężysty 
i podlega prawu Hooke’a. Tylko w tym przypadku jest ważne podstawowe równanie (a) w § (174). 
Znaleziona wartość krytycznej siły ściskającej będzie odpowiadać rzeczywistości tylko wtedy, gdy 
otrzymane przytem ciśnienie pkr nie przekracza granicy sprężystości materjału. Dla naprężeń po­
wyżej granicy sprężystości, wyniki otrzymane według wzorów Euler’a nie mają żadnego realnego 
znaczenia. Z wzoru (367) widać, że zjawisko wyboczenia będzie zachodzić w granicach sprężysto­
ści przy stosunkowo znacznej długości /, a małym promieniu bezwładności r. Dla każdego mate­
rjału o znanym spółczynniku sprężystości E i znanej granicy sprężystości, można wyznaczyć gra­
niczną wartość stosunku /:r [czyli „smukłości“ pręta], przy której zachodzi wyboczenie jeszcze 
w granicach sprężystości, czyli przy której wolno jeszcze stosować wzór Euler’a. Jeżeli np. dla 
żelaza'spawalnego weźmiemy E = 2.106 kg/cm2, a granicę sprężystości p = 2000 kg/cm2, to otrzy­
mamy graniczną wartość [smukłości, t. j.] stosunku l:r = ~ 100, co wskazuje, że dla możliwości 
zastosowania wzoru Euler’a w przypadku podstawowym, musi smukłość pręta z żelaza spawal­
nego być 100. Weźmy np. równoramienną kątówkę 70 X 70 X 10 mm. Odpowiadający najmniej­
szy promień bezwładności r = 1,35 cm, a zatem przy długości kątówki, przewyższającej 1,35 m,

można używać wzoru Euler’a. W przypadku przekroju okrągłego jest / 
formułę Eulera można stosować przy długości l _> 25 d.

jt d4 
64 r = -y; przeto

Dla obliczenia ściskanych prętów w przypadku, kiedy wzór Eulera traci ważność dlatego, bo 
otrzymane z niego naprężenia przekraczają granicę sprężystości, należy zużytkować dane doświad­
czalne r), a zwłaszcza doświadczenia Tetmajera. Te doświadczenia potwierdziły ważność wzoru 
Eulera w granicach sprężystości i dały dostateczny materjał dla ustawienia formuły empirycznej 
dla naprężeń krytycznych poza granicami sprężystości, t. j. przy stosunkowo małej długości prę­
tów. Prof. Jasiński opracował dane doświadczalne, odnoszące się do żelaza kowalnego i przedsta­
wił wyniki wzorem: /

pkr=a — b-~.

którego spółczynniki a i b obliczył z doświadczeń Tetmajera, Bauschingera i Considere’a metodą 
najmniejszych kwadratów. Dla żelaza zlewnego otrzymał:

w granicach

pkr = | 3387—14,83-y j kg/cm2, .

70 < — < 110. r

. (368)

Dla żelaza lanego można używać wzoru Euler’a przy długościach l 80 r. Przy mniejszych dłu­
gościach wypadnie obliczać naprężenie krytyczne według empirycznego wzoru Tetmajera:

pkr= | 7760 -120 T + 0,53 (y) ]kg/cm2.

Dla drzewa podaje Tetmajer: pkr = [ 293-1,944-] ftg/cm2(

jeżeli /^HOr. [Dla l > 110 r należy używać wzoru Euler’a].
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Rys. (402) przedstawia wykreślnie wyniki wzoru Euler’a i wzoru empirycznego dla żelaza 
zlewnego. Jako odcięte figurują wartości stosunku l : r, zaś jako rzędne odpowiadające naprężenia

[krytyczne plir. Formule empiry­
cznej odpowiada część prosta 
AB, a wzorowi Euler’a część 
BC hiperboli sześciennej.

Prof. Jasiński ułożył tablicę 
wartości naprężenia krytyczne­
go, albo łamiącego1) dla smu- 
kłości l: r > 20. Tę tablicę przy­
taczamy poniżej w skóceniu. Po­
sługując się nią łatwo dobierać 
przekroje ściskanych prętów. 
Najpierw przyjmujemy w przy­
bliżeniu rozmiary przekroju po­
przecznego i znajdujemy jego 
najmniejszy promień bezwła­
dności r. Z danej długości obli­
czamy smukłość / : r, a nastę­
pnie szukamy odpowiadającego 
naprężenia łamiącego pkr. Wiel­
kość F . pkr będzie obciąże­

THBLICA naprężeń krytycznych w kglcm* dla słupów z żelaza zlewnego, ściskanych w warunkach przypadku podstawowego.

niem łamiącem, które powinno 4 do 5 razy przewyższać daną siłę ściskającą pręt.

l 
r = 20 30 40 50 60 70 80 90 100 110 120 130

? = 0,88 0,84 0,80 0,76 0,71 0,67 0,63 0,59 0,54 0,50 0,42 0,36

Pkr = 3090 2940 2790 2650 2500 2350 2200 2050 1900 1760 1480 1260

/ 
r = 140 150 160 170 180 190 200 210 220 .230 240 250

? = 0,31 0,27 0,24 0,21 0,19 0,17 0,15 0,14 0,13 0,11 0,10 0,10

Pkr - 1090 946 831 736 657 589 532 483 440 402 369 340

Oprócz wzorów Euler’a i formuł zbudowanych na danych doświadczalnych istnieje w litera­
turze technicznej niemało innych formuł do obliczenia ściskanych prętów, pozbawionych naukowej 
podstawy, które się pojawiły w czasach, kiedy granice stosowalności wzorów Euler’a nie były do­

ki ne’a. Według niego obliczają często ściskane pręty w konstrukcjach żelaznych2). Wzór Schwarz-
statecznie wyjaśnione. Z pośród nich zyskał największe rozpowszechnienie wzór Schwarz-Ran­

Rankine’a:
p*-—....................................... (3&9)

9 [Przy bardzo wielkiej smukłości, nie mającej, co prawda, zastosowania praktycznego, nie jest naprężenie łamiące 
identyczne z naprężeniem krytycznem, lecz jest od niego większe, albowiem po przekroczeniu przez naprężenie wartości 
krytycznej zachodzi zrazu wygięcie zupełnie sprężyste i dopiero obciążenie większe od krytycznego wywoła pojawienie się 
odkształceń trwałych i w dalszym ciągu złamanie pręta].

2) Rozpowszechnienie tego wzoru można po części objaśnić tern, że wyznaczone według niego wartości pkr są zwy­
kle większe od wyznaczonych z wzoru Euler’a, a więc obliczone pręty wypadają lżejsze, [Jeszcze ważniejszą zapewne oko­
licznością, decydującą o powodzeniu formuły Schwarz-Rankine’a wśród praktycznych inżynierów, była jej uniwersalność 
i wynikająca stąd wygoda obliczenia jednym wzorem zamiast dwu. Jedynym zaś argumentem, usprawiedliwiającym opozycję 
przeciw -wzorowi Eulera jest niezaprzeczony fakt, że bardzo często mamy w praktyce do czynienia ze zboczeniami obcią­
żenia od środka przekroju, a odpowiadających mimośrodów nie można nieraz wyznaczyć z jaką taką dokładnością. To je-
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przyczem R' oznacza doraźną wytrzymałość materjału, zaś a stały spółczynnik. W Rosji przyj- 

mują dla żelaza kowalnego a = 0,00008. Przy małych długościach prętów jest wyraz a mały 

i można go pominąć wobec 1. Wzór pkr daje wówczas wielkość stałą, równą doraźnej wytrzyma- 

łości. Przy bardzo wielkich długościach będzie a (~) wielkie, wobec czego można w mianowniku 

opuścić 1, a wzór Schwarz-Rankine’a przybierze postać wzoru Eulera. Stosowanie formuły Schwarz- 
Rankine’a w granicach sprężystości nie ma racji, ponieważ tam obowiązuje ściśle wzór Euler’a 
[przy zupełnie środkowem obciążeniu]. Poza granicami sprężystości, t. j. dla żelaza zlewnego przy 
l > 110 r, daje wzór Schwarz-Rankine’a, jak wykazały głównie doświadczenia Tetmajera, niezawsze 
wyniki zadowalające. Przy mniejszych wartościach / : r wypadają z tego wzoru zbyt wielkie war­

tości naprężeń łamiących, ale przy 40 < ~ < 110 można jej używać kładąc a = 0,0001.

Przy pomocy przytoczonych wzorów możemy w poszczególnych przypadkach znaleźć wiel­
kość naprężenia krytycznego lub łamiącego. Dla zapewnienia należytej trwałości obiera się roz­
miary ściskanych prętów tak, ażeby rzeczywiste naprężenia stanowiły tylko pewną część naprężeń 
łamiących. Wielkość naprężeń bezpiecznych (dopuszczalnych) określa się na tej podstawie, że stan, 
odpowiadający obciążeniu krytycznemu, uważa się za równie niebezpieczny, jak i stan, odpowia­
dający granicy wytrzymałości. W takim razie stosunek naprężenia bezpiecznego przy wyboczeniu 
do bezpiecznego naprężenia przy prostem rozciąganiu powinien być ten sam, co stosunek „naprę­
żenia krytycznego" do doraźnej wytrzymałości R'. Oznaczywszy ten stosunek przez cp, znajdziemy, 
że naprężenie bezpieczne przy ściskaniu prętów równa się yR, przyczem R oznacza naprężenie 
bezpieczne przy prostem rozciąganiu. „Spółczynnik zmniejszenia" cp da się w każdym szczególnym 
przypadku obliczyć z danej wielkości naprężenia łamiącego i doraźnej wytrzymałości R'. Przyto­
czona powyżej tablica zawiera wartości cp przy założeniu, że doraźna wytrzymałość materjału jest 
równa 3500 kgl cm2.

Oprócz wzorów czysto empirycznych można dla wyznaczenia pkr poza granicami sprężystości zbudować także for­
mułę analityczną1), analogiczną z wzorem Euler’a (367). Trzeba tylko dla materjału pręta znać zależność między odkształ­
ceniami i naprężeniami przy ściskaniu poza granicą sprężystości. Za tą granicą rosną odkształcenia prędzej od naprężeń, 
a stosunek przyrostu naprężenia do przyrostu odkształcenia będzie pewną funkcją naprężenia; oznaczymy ją przez EP 
Dajmy na to, że pręt o przekroju poprzecznym prostokątnym, ściskany poza granicą sprężystości, zaczyna się wyginać; 
wtedy powiększy się ściskanie włókien po stronie wklęsłej, a zmniejszy się po stronie wypukłej. Tym zmianom odkształceń 
odpowiadają dodatkowe naprężenia zgięcia. Gdyby całe zjawisko zachodziło w granicach sprężystości, to te naprężenia 
zmieniałyby się linjowo na wysokości przekroju. W naszym przypadku przedstawia się zadanie nie tak prosto. Po stronie 
wklęsłej zachodzi dodatkowe ściskanie poza granicami sprężystości i zależność między naprężeniami a odkształceniami 
określa się zmienną wielkością E15 zależną od początkowego ściskania pręta. Po stronie wypukłej zachodzi przy zgięciu 
zmniejszenie pierwotnego ciśnienia, wobec czego zależność odkształceń od naprężeń określi zwykły spółczynnik sprężysto­
ści E. Rozkład naprężeń przy zakrzywieniu pręta ściskanego poza granicą sprężystości będzie przeto taki, jak w przypadku 
zgięcia prętów, których materjał ma różne spółczynniki sprężystości przy rozciąganiu i ściskaniu (ob. § 99). Ogólna postać 
równania różniczkowego zgiętej osi pozostaje niezmieniona, tylko zamiast spółczynnika sprężystości E wstawimy wielkość:

(Ke+^e,)2'

Odpowiednio do tego zmieni się i wzór dla obciążenia krytycznego, który w podstawowym przypadku przybierze postać: 

.• . (370)

dnakże nie przemawia na korzyć uniwersalnej formuły Schwarz-Rankine’a, lecz każę w przypadkach obciążeń o znanym 
mimośrodzie używać ogólniejszych wzorów teoretycznych, o których poniżej będzie mowa; w przypadkach zaś, kiedy mi- 
mośród obciążenia nie da się dokładnie wyznaczyć, kiedy zatem ten mimośród waha się między pewnemi granicami, będzie 
najracjonalniej przyjąć za podstawę obliczenia mimośród, odpowiadający granicy wyższej i również zastosować wzory teo­
retyczne. (Por. M. T. Hub er „O wytrzymałości słupów", Przegl. techn. 1907). W ten sposób wprowadzamy niejako nowy 
rodzaj pewności].

f) Pierwszą próbę analitycznego rozwiązania zagadnienia wyboczenia poza granicą sprężystości zrobił Engesser, 
ob. Zeitschr. f. Arch. u. Ing. (Hannover) z r. 1889.

Dalszem opracowaniem tej kwestji zajął się T. Kórmdn; ob. cytowaną powyżej pracę: Untersuchungen iiber 
Knickfestigkeit.
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Dla każdej wartości podłużnego ciśnienia można znaleźć Eu a zatem i E' z uprzednich doświadczeń nad ściskaniem 
poza granicami sprężystości, a następnie na podstawie wzoru (370) ułożyć tablicę krytycznych naprężeń dla różnych war-

kiedy ciśnienia odpowiadają punktowi krytycznemu [granicy plastyczności], pręt znajduje się w

tości stosunku l: r. O ile 
otrzymane tą drogą war­
tości pkr zgadzają się 
z doświadczalnemi, widać 
z załączonego diagramu 
(rys. 403), przedstawiają­
cego wyniki doświadczeń 
Kńrmdn’a nad prętami ze 
stali Martinowskiej o do­
raźnej wytrzymałości przy 
rozciąganiu 6800 kg/cm2 
i całkowitem wydłużeniu 
16,7%. Kółeczkami zazna­
czone wyniki poszczegól­
nych doświadczeń, linją 
ciągłą zaś wyniki obliczeń. 
Zgodność dat doświadczal­
nych i teoretycznych jest 
widocznie bardzo dobra. 
W odróżnieniu od wyni­
ków Tetmajera widzimy, 
że przy zmniejszeniu dłu­
gości prętów, począwszy 
od l: r = 40, zaczyna war­
tość pkr szybko wzrastać. 
Zaznaczymy, że w chwili, 
położeniu równowagi nie­

statecznej ; przekroczyć ten punkt i dojść do wysokich wartości naprężeń krytycznych można tylko przy najstaranniejszem 
urządzeniu doświadczeń1).

Co się tyczy wyboru kształtu przekroju poprzecznego ściskanych prętów, to zaznaczymy 
przedewszystkiem, że wielkość krytycznego obciążenia zależy od wielkości stosunku l: r. Im ten 
stosunek jest mniejszy, tem większą wartość ma naprężenie łamiące, tem mniejszem będzie po­
trzebne pole przekroju, a więc i ciężar własny pręta. Przy obiorze poprzecznego przekroju będzie 
przeto korzystnem możliwe powiększenie promienia bezwładności, co prowadzi do przekrojów ru­
rowych. Im większą obierzemy średnicę rury, tem cieńsza wypadnie ścianka i tem mniej wyjdzie 
materjału na rurę. Jednakowoż nie można tutaj iść zbyt daleko. Są granice w zmniejszaniu gru­
bości ścianki, poniżej których nie należy schodzić. We wzór Euler’a wchodzi wielkość momentu 
bezwładności przekroju poprzecznego, którą uważamy za stałą, przyjmując, że kształt poprzecznego 
przekroju pozostaje niezmiennym. Atoli przy zbyt cienkiej ściance może się pojawić miejscowe 
wyboczenie samej ścianki rury i wzór Euler’a traci swą ważność. Kwestja stateczności 
ściskanej ścianki rury jest jeszcze mało opracowana; pewne wyniki, odnoszące się do niej, 
podamy poniżej.

Co do jakości materjału zauważymy, że przy większej długości, dla której zachodzi ważność 
wzoru Euler’a, zależy wielkość naprężenia krytycznego tylko od spółczynnika sprężystości E; 
zważywszy więc, że E mało się zmienia z podwyższeniem jakości materjału, widzimy, że obcią­
żenie dopuszczalne pręta zmieni się także nie wiele. Przy krótszych prętach, w których zjawisko 
wyboczenia zachodzi poza granicami sprężystości, wypada używać danych doświadczalnych. Wiel­
kość naprężenia krytycznego zależy wówczas w znacznej mierze od jakości materjału, a szcze­
gólnie od wysokości granicy sprężystości. Stosowanie np. w konstrukcji mostów stali niklowej 
pozwala znacznie podwyższyć naprężenia dopuszczalne dla ściskanych prętów.

9 [Chodzi tutaj o możliwie dokładne spełnienie warunków, t. j. prostolinjowość osi pręta, jednolitość materjału i osio- 
wość obciążenia].
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§ 176. WPŁYW MIMOŚRODU OBCIĄŻENIA I POCZĄTKOWEGO ZAKRZYWIENIA PRĘTA 
NA WIELKOŚĆ SIŁY KRYTYCZNEJ

Przy wyprowadzeniu podstawowej formuły dla wyboczenia przyjęliśmy, że oś pręta jest ści­
śle prostolinjową, a siły ściskające trafiają dokładnie w środki ciężkości przekrojów końcowych. 
Te idealne założenia nie odpowiadają w praktyce rzeczywistości. Zobaczymy tedy, jak się zmienią 
wywody poprzednich paragrafów w przypadku, kiedy oś pręta posiada pewną początkową krzy­
wiznę 1 : r, a siła P działa na mimośrodzie e (rys. 404) 9 Oznaczywszy przez 8 wygięcie górnego 
końca pręta, a przez p promień krzywizny po odkształceniu, mamy:

£/(---) = «; = - +-^(^ + e-y),
\ p r f dx* r El

p
albo po podstawieniu = a2:

2) Niektórzy autorowie proponują, zamiast obliczenia według wzoru Euler’a, wyjść z wzorów dla ugięcie wskutek
mimośrodkowego działania siły ściskającej i dobierać tak wymiary przekroju, aby naprężenia nie‘przekraczały nigdzie do­
puszczalnych norm, ob. Ostenfeld, „Exzentrische und .zentrische Kriickfestigkeit", Zeitschr. d. Ver. d. Ing. z r. 1898,
str. 1462. W tych obliczeniach pozostaje dowolna wielkość mimośrodu. [Por. uwagę tłumacza w poprzednim paragrafie].

4- a y = — 4- a8 (5 + e). 
dxl r ' '

2

Ogólną całkę tego równania różniczkowego otrzymamy w postaci: 
. 1y = C. cos + C, sin 4- + e d—. J 1 2 a8 r

Dla x = 0 jest y — 0 i y' = 0. Tym warunkom uczyni zadość wyrażenie następujące:

y = — ( 8 4- e 4—cos ax 4- 6 + e 4- -4-.
\ a2 r / a2 r

Dla x = l jest y — 8, a zatem:
1 \ 1 — cos al& 4—.— )----------- i—

a2 r / cos a l (371)

Dopóki P jest małe, będzie a także małą wielkością, a cos al będzie się niewiele różnić od 1,
a zatem ugięcia będą bardzo małe. Skoro jednakże P zaczyna się zbliżać do war- 

tości-Eulerowskiej, to a/, jak widzieliśmy, zbliża się do y, a cos a Z zdąża do 

wartości zera. Ugięcie 8, jak widać z wzoru (371), zdąża wówczas do nieskoń­
czoności. Trzeba jednak pamiętać, że nasz wzór jest dostatecznie dokładny 
tylko dla małych ugięć, wobec czego wynik powyższy znaczy tyle, że z przy­
bliżeniem obciążenia do wartości Eulerowskiej zaczynają ugięcia rosnąć bar­
dzo szybko. Stąd wniosek, że przy obliczeniu prętów rzeczywistych, czyli 
prętów z małemi przypadkowemi zboczeniami od prostolinjowości osi etc., 
musimy uczynić zadość tym samym warunkom, co w idealnym przypadku 
pręta prostolinjowego i osiowo obciążonego. Atoli te warunki mogą się okazać 
dla prętów rzeczywistych niewystarczającemi. Przy mimośrodzie obciążenia 0,1 r 
i pierwotnej krzywiźnie pręta < 0,008 (m-1) (według rachunków Jasińskiego) wy­
starcza przeprowadzić obliczenie pręta na podstawie wzorów z poprzednich paragra­

Rys. 404

fów. Przy większych zboczeniach wypadnie stosować ogólniejsze wzory, do wyprowadzenia których 
nadaje się bardzo dobrze metoda przybliżona (ob. § 137)2).

4 [Trzeci rodzaj możliwych zboczeń od idealnych warunków, t. j. niejednolitość materjału, da się sprowadzić do 
nieprostolinjowości osi],
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Przy doświadczalnem badaniu wybaczenia 
prętów niepodobna uniknąć zboczeń od pro- 
stolinjowości osi i środkowego działania obcią­
żenia; całe zjawisko przebiega zatem według 
wzoru (371). Już przy małych obciążeniach 
rozpoczyna się wyginanie pręta, które jednakże 
jest bardzo małe, dopóki obciążenie jest dość 
dalekie od wartości Eulerowskiej. W miarę 
zbliżenia obciążenia do tej wartości zaczynają 
ugięcia szybko wzrastać, w przybliżeniu we­
dług prawa hyperbolicznego. Im staranniej 
urządzono doświadczenia, tem wyraźniej można 
obserwować zjawisko nagłego wzrostu ugięć, 
a nacisk odpowiadający tej chwili jest tem 
bliższy obciążeniu Eulerowskiemu. Dla przy­
kładu przytaczamy diagram (rys. 405), na któ­
rym przedstawiono prawo wzrostu obserwowa­
nych ugięć z powiększeniem obciążenia przy 
doświadczeniach B. K i r s c h’a, L. Tetmajera 
i T. Karman’a.

§ 177. PRZYBLIŻONA METODA ROZWIĄZYWANIA ZAGADNIEŃ STATECZNOŚCI >)

Wzory Euler’a wyprowadziliśmy z założenia, że wyboczenie (sprężyste) pręta już zaszło i po 
zcałkowaniu odpowiadającego równania różniczkowego szukaliśmy wielkości siły ściskającej, która 
utrzymuje w równowadze zgięty pręt. Trudności napotykane często przy całkowaniu równań 
różniczkowych zniewalają szukać innych metod dla rozwiązywania zagadnień stateczności, a mia­
nowicie takich, któreby pozwalały znaleźć wielkości obciążeń krytycznych bezpośrednio, bez ucie­
kania się do całkowania równań różniczkowych. Ponieważ chodzi tutaj o badanie stateczności 
różnych postaci równowagi, więc naturalnym punktem wyjścia będzie wyrażenie dla energji poten­
cjalnej układu. Zwykle znamy postać równowagi, odpowiadającą obciążeniom mniejszym od kry­
tycznego. Otóż można bez trudności utworzyć wyrażenie dla zmiany energji układu przy małem 
odchyleniu od tej postaci równowagi. Jeżeli przy wszelkiem możliwem odchyleniu energją poten­
cjalna układu rośnie, to rozpatrywana postać równowagi będzie stateczną. Do zmiany tej postaci 
trzeba zużyć pewną pracę. Skoro zaś przy dowolnem odchyleniu od położenia równowagi energją 
układu się zmniejsza, to ta postać równowagi jest niestateczną. „Krytyczną" będzie ta wartość 
obciążenia, przy której zmiana energji układu dla dowolnego możliwego przemieszczenia staje się 
zerem. Oznaczmy przez V zmianę energji wewnętrznych sił sprężystości, a przez T pracę obcią­
żeń działających na układ przy odchyleniu od rozpatrywanej postaci równowagi; wówczas kry­
tyczną wartość obciążenia znajdziemy.z równania:

T=V..........................................................................(a)

Ze wszystkich możliwych odchyleń trzeba oczywiście wybrać to, przy którem rów. (a) daje 
dla sił zewnętrznych najmniejszą wartość. Taki sposób szukania obciążeń krytycznych umożliwia 
przybliżone rozwiązanie zadania. Podobnie jak w przypadku przybliżonego badania zgięcia prętów 
(rozdz. XV), przyjmujemy, na podstawie danych doświadczalnych i warunków podporowych, przy­
bliżone wyrażenie dla odchylonej postaci równowagi układu i dla tej postaci tworzymy wyraże­
nia V i T. Wstawiwszy je w rów. (a) znajdziemy obciążenie krytyczne. Ażeby tą drogą otrzymać 
rozwiązanie możliwie zbliżone do dokładnego, będziemy obierali dla odchylonej postaci wyrażenie

*) Ob. pracę autora; „O stateczności układów sprężystych" (po ros.), Izw. Kij. Pol. Inst. z r. 1910, a także: „Kurs 
tieorji uprugosti", cz. II, str. 98.
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z dowolnemi parametrami, których wielkości dobierzemy następnie tak, aby wyrażenie dla kryty­
cznego obciążenia otrzymało wartość minimum.

Objaśnimy to bliżej na kilku przykładach. Rozpatrzmy podstawowy przypadek wyboczenia 
pręta obu końcami przegibnie podpartego. Oś pręta zakrzywi się przytem, jak widzieliśmy (§ 174) 
według sinusoidy o równaniu:

- . XX

Zmianą energji odkształcenia, odpowiadającą temu wygięciu, będzie [z pominięciem wpływu naprę­
żeń ścinających] (wz. 220):

eiV = f2 LJElL 1 •

Siły ściskające P wykazują przytem pracę (wz. 227):

t — f2 P
' 41 ’

Po wstawieniu tych wyrażeń w rów. (a) i rozwiązaniu względem P znajdziemy:

n* El

W danym przypadku znaliśmy wyrażenie dla wygiętej postaci równowagi i dlatego rów. (a) dało 
nam dokładną wartość Pkr.

Weźmy teraz zadanie bardziej złożone. Pręt utwierdzony pionowo dolnym końcem ściskają siły rozłożone równo­
miernie na długości pręta (rys. 396, fig. b). Dla linji ugięcia przyjmiemy wyrażenie w postaci szeregu trygonometrycznego:

3TX , ,y — at cos + a^ cos —— |— ... (b;

czyniącego zadość następującym warunkom krańcowym:

I) y = 0 dla x = / i II) y — 5 i y' = 0 dla x = 0.

Jeżeli ograniczymy się do dwu wyrazów tego szeregu, to energja potencjalna zgięcia [z pominięciem energji ściskania] 
będzie:

F r C1 ^FIv=2\ (y,Tdx = ~^(al^81a^.

Znajdziemy teraz pracę sił zewnętrznych przy wygięciu pręta. Każdy element obciążenia qdx, wydzielony w odległości
1 Cx . 1 Cx

od dolnego końca, obniży się o wielkość — \ (y')2 dx i wykona przytem pracę: —qdx\ {y')idx. Całkowita praca ob-
2 Jo 2 Jo

ciążenia, wykonana przy skrzywieniu pręta, równa się:
i r»x pi
dx \ (y)2 dx = \ (l — x) (y)2 dx.

o Jo 2 Jo
Wstawiwszy zamiast y dwa pierwsze wyrazy szeregu (b) i wykonawszy potrzebne działania, znajdziemy:

r= łTf*1' II" + + 2 ' T(0,1487a>! + °’6078a>a’ + 2>1487

Mając wyrażenia dla T i V otrzymamy z rów. (a):

ai2 + 81a22 __ ^EJ 1 + 81 z2
8Z2 ' 0,1487 a^ 0,6078 ata2 + 2,1487 a22~ 8Z2 ' 0,1487 + 0,6078 z + 2,1487 z2

przyczem stosunek a2: aj oznaczono przez z. Ażeby znaleźć możliwie dokładne wyrażenie dla (ąZ)kr, trzeba tak obrać 
stosunek z, aby wyrażenie (c) stało się minimum. Utworzywszy pochodną tego wyrażenia względem z i przyrównawszy 
ją do zera, otrzymamy dla wyznaczenia z równanie:

z2 + 0,4020 z =0,01235
o pierwiastkach:

Zi =0,0286 i z2 =—0,4306.
Kurs wytrzymałości materjałów 22
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Po wstawieniu zt w wyrażenie (c), znajdziemy: , n - n*El(q )kr (1,12/)2 ‘
Ten wynik zgadza się dokładnie z tem, co podaliśmy poprzednio (§ 174). Gdybyśmy się ograniczyli w wyrażeniu dla y 
tylko do pierwszego wyrazu szeregu (b) i podstawili zatem a2 = z = 0, to znaleźlibyśmy:

Mkr =
n^EI 

(1,09 Z)2'

Pierwsze przybliżenie dałoby przeto w danym przypadku błąd około 5°/0.

§ 178. O WYBOCZENIU PRĘTft W SPRĘŻYSTEM ŚRODOWISKU 9

Dajmy na to, że pręt pryzmatyczny w końcach podpartych ściskają dwie siły wprost przeciwne P. Wszelkiemu 
skrzywieniu pręta przeszkadzają reakcje środowiska. Zrobimy założenie, że reakcyjne napięcie, przypadające na element 
pręta, jest proporcjonalne względem długości rzutu elementu na oś pręta i względem wielkości ugięcia y w rozpatrywanym 
przekroju. Te warunki można uważać w przybliżeniu za spełnione w całym szeregu zadań technicznych. Przy szukaniu Pkr 
trzeba uwzględnić energję odkształcenia nietylko pręta, lecz także i sprężystego środowiska. Podstawowe równanie dla 
wyznaczenia Pkr napiszemy tedy w postaci:

P E I\ k \y \ (y'Ydx = — \ (y")2cte + — \ y^dx...................................... . (a)
12 Jo z Jj Jo

Lewa strona równania przedstawia pracę sił zewnętrznych przy skrzywieniu pręta, po prawej stronie mamy energję zgięcia 
pręta i energję odkształcenia środowiska; k oznacza stały spółczynnik, przez który trzeba pomnożyć ugięcie y, aby otrzy­
mać reakcję środowiska, odniesioną do jednostki długości pręta. Ogólną postać zgiętej osi pręta otrzymamy przez super­
pozycję oddzielnych sinusoid (ob. wz. 223), a mianowicie:

. , . 2nx , . 3nxy = at sin -j- + a2 sin —- ---- a3 sin —j— . m n x sin —-— • (b)
m =1, 2, 3, ...

Wstawiwszy to wyrażenie dla ugięcia w rów. (a) i wykonawszy potrzebne obliczenia, otrzymamy:

^2 o m
P = 2 . (372)

Najmniejszą wartość otrzyma powyższe wyrażenie, gdy wszystkie spółczynniki am, prócz jednego, staną się zerami. 
Pierwszą możliwą zakrzywioną postacią równowagi będzie przeto sinusoida. W odróżnieniu od przypadków poprzednio 
roztrząśniętych (§ 174) może tutaj pierwsza postać mieć więcej punktów przegięcia. Ich liczba będzie zależeć od wielkości 
spółczynnika k, charakteryzującego sztywność środowiska. Im większe k, tem większa liczba półfal powstaje w pręcie przy 
wyboczeniu. Oznaczenie liczby półfal można w każdym szczególnym przypadku wykonać na podstawie następującego 
rozumowania: Przypuśćmy, że pierwsza postać zakrzywiona tworzy m półfal, czyli, że:

. mnxy = am sm —j—.

Wtedy wz. (372) daje:
+ ............................................................................ (c)

Wprowadziwszy oznaczenie: .
kl* ^=1^1................................................................................... ""

napiszemy wzór dla Pkr w postaci:

.................................................... .(373)
P \ mWI (r/)2

przyczem „spółczynnik długości":

-i- = ................(374)

r ^m2^4

‘) Ob. pracę autora: „O wyboczeniu prętów w sprężystem środowisku" (po ros.), Izw. Petersb. Pol. Inst. z r. 1907 
i pracę cytowaną w poprzednim paragrafie, a nadto prace: Zimmermann’a w Zentralblatt d. Bauv. z r. 1906
i Sitzungsber. d. Akad. d. Wiss., Berlin, z lat 1906, 1907 i 1909.
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Dopóki sztywność środowiska jest mała i odpowiednio małym jest spółczynnik k, będzie zupełnie naturalnem przyjąć, 
że pierwsza zakrzywiona postać równowagi nie posiada punktów przegięcia, tak jak w podstawowym prostym przypadku wy- 
boczenia. Zwiększając k, albo, co na jedno wychodzi, powiększając B2, dojdziemy kolejno do wartości granicznych, przy 
których niejako łatwiej przychodzi prętowi zgiąć się według krzywej z dwiema półfalami, a dalej z trzema, czterema i t. d. 
półfalami. Niechaj pierwsza krzywa postać równowagi przy danej wartości B2 posiada m półfal, a B2 ulega teraz zwięk­

4) Zanotujemy tutaj pewien wynik, mający znaczenie w teorji giętkich wałów. Przy obrocie wału z prędkością ką- 
t.„ .» p.j.wi.j, się wskutek jakiegokolwiek zakrzywienia osi waiu sity odśrodkowe f przypadają na jednostkę 

długości wału o ciężarze q. Te siły dążą do powiększenia zakrzywienia, a więc wał zachowuje się tak, jak pręt w spręży- 
stem środowisku o ujemnej wartości k = -^. Jak widać z wzoru (c) wygnie się wał bez współudziału siły podłużnej, 

gdy: El(m^ = —

Krytyczną wartość prędkości kątowej (wz. 351) otrzymamy stąd, przyjąwszy m = l.

2) To zadanie rozwiązał najpierw F. S. Jasiński; ob. zbiór, wyd. dzieł, t. I, str. 215. Uproszczenie rozwiązania
i niektóre poprawki podał autor w pracy: „O stateczności układów sprężystych", str. 31.

szeniu; zachodzi pytanie, przy jakiej warto­
ści B2 przybierze pręt postać o (m + 1) pół- 
falach? Ta ostatnia będzie oczywiście pierw­
szą zakrzywioną postacią równowagi przy 
tej wartości B2, która odpowiada spółczyn- 
nikowi długości p, jaki wypadnie z wz. (374), 
jeżeli w nim zastąpimy m przez (m + 1). 
Graniczną wartość B2, odpowiadającą chwili 
przejścia od m do (m + 1) półfal, określi 
zatem równanie:

16 B2
m2 jt4

16 B2 
(m + 1)2%4,

z którego: g, _ £m,(m + 1)> . . (e)
16

'^LP P

Kładąc m = 1 znajdziemy: Ba = 24,35. Dopóki B2 < 24,35, pierwsza krzywa postać równowagi nie ma punktów przegięcia. 
Podstawiając kolejno zamiast m w rów. (e) liczby 2, 3, 4,..., otrzymujemy szereg wartości B2, przy których zachodzi 
przemiana jednej postaci równowagi na drugą o większej liczbie półfal. Te wartości zestawiono w następującej tablicy:

m = 1 . 2 3 4 5 6 7

B2 = 24,35 219,2 876,7 2435 5479 10739 19091

Górny szereg cyfr daje liczbę półfal dla pierwszej zakrzywionej postaci równowagi, dolny zaś krańcowe wartości B2, przy 
których te postacie powstać mogą. Wyznaczywszy B2 na podstawie danych odnoszących się do sprężystych własności 
układu, możemy w powyższej tablicy znaleźć liczbę półfal m, na które pręt się dzieli przy wyboczeniu. Wstawiwszy tę war­
tość we wzór (374), znajdziemy wielkość spółczynnika długości p. i z wzoru (373) odpowiadającą wartość Pkr *)• Przy więk­
szej wartości m postąpimy w sposób następujący: Wyrażenie (ej napiszemy w postaci:

Pkr = El n2 k / l \2 1 "
J_\i+ El \ ml 
m * _

.2
(f)

k S*

Tutaj oznacza s długość jednej półfali. Najmniejszą wartość przybiera to wyrażenie przy

S = rt

Z powiększeniem liczby półfal zbliża się ich długość do znalezionej granicy s, a wielkość Pkr, jak widać z wyrażenia (f)
do wartości:

Pkr = = 2/^E/ = 2
L El El J

Jako drugi przykład rozpatrzymy zagadnienie stateczności ściskanych pasów u mostów otwartych2) (rys. 406). Jeżeli 
przez Q oznaczymy całkowite obciążenie jednej belki, rozłożone równomiernie na rozpiętości /, to przy wielkiej liczbie wę­

22*
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złów, nacisk, przeniesiony przez jakąkolwiek przekątną na pas górny belki, przedstawi z dostateczną dokładnością 
wyrażenie: O i l \

l (27—2~ / cotg "p’

^-^a-—jest ścinaJ^ w przekroju mn. Dla uproszczenia dalszych obliczeń zastąpimy te siły skupione ob­

ciążeniem ciągłem, którego rozkład przedstawia wykreślnie lig. (c). Natężenie obciążenia w jakimkolwiek przekroju mn 
znajdziemy, dzieląc wielkość nacisku, przeniesionego odpowiadającą przekątną na pas, przez odstęp węzłów a. Znaj-
dziemy więc: Q . Q ( t q

al ( X - ~2 ) clg l ( X “ T) " ’ ( X “ T)' prZyCZe,n

Natężenie zastępczego obciążenia rośnie zatem od środka rozpiętości ku podporom według prawa trójkąta. Największy na' 

cisk zachodzi w środkowym przekroju pasa, gdzie go określa pole jednego z zakreskowanych trójkątów (fig. c), t. j. .

W otwartych mostach niema połączeń między górnemi pasami, to też, kiedy naciski przekroczą pewną granicę, może 
zajść wyboczenie pasów, któremu towarzyszy wygięcie słupów i przekątnych belki kratowej (fig. b). Przy wyznaczeniu kry- 

tycznej wartości siły ściskającej można górny pas każdej belki kratowej rozpatrywać jako pręt ściskany siłami rozłożo- O 
nemi według fig. (c), przyczem wyboczeniu pręta przeszkadza sprężyste środowisko o sztywności zcharakteryzowanej spół- 
czynnikiem k. Wielkość k, jak i poprzednio (§ 97), da się obliczyć drogą zastąpienia skupionych oporów poszczególnych 
słupów, oporami, rozłoźonemi na długości a1). Uważając każdy słup za belkę jednym końcem utwierdzoną, mamy;

x) Otrzymana tą drogą krytyczna wartość siły ściskającej będzie naturalnie tern dokładniejszą, im gęściej są rozmiesz­
czone słupy. Przy małej liczbie, a znacznej sztywności słupów wypadnie wziąć pod uwagę reakcje skupione. Zamiast 
pręta w sprężystem środowisku będziemy mieli pręt na sprężystych podporach. Zadania tego rodzaju znajdzie czytelnik 
w książce I. G. Bubnowa: „Mechanika budowlana okrętu" (po ros.), str. 260

Ob. także H. Ostenfeld, Die Seitensteifigkeit offener Briicken, Beton u. Eisen z r. 1916.
2) Zakładamy, że sztywność zginania pasu jest stała, a w przypadkach, kiedy ta sztywność zmienia się na długości

pręta, będziemy wstawiać za El tę warto-ść, dla której z wzoru (h) wypadają najmniejsze wartości naprężenia krytycznego.

Pb3 
y 3Eh ’

W przypadkach, kiedy słupy podlegają znacznemu naciskowi podłużnemu, trzeba uwzględnić wpływ sił ściskających na 
wielkość ugięcia (wz. 229) i zastosować wzór:

= Pbl 1 
y 3EE 1 — a2’

w którym a2 oznacza stosunek siły ściskającej do obciążenia krytycznego dla słupa o dolnym końcu utwierdzonym, a gór­
nym swobodnym. Dla „reakcji" P górnego końca słupa otrzymujemy tedy wyrażenie:

3 Eh ,, ?
p = -y- ^-^)y-

Rozłożywszy tę siłę na długość a (odstęp międzywęzłowy), znajdziemy:

— = —(1 — a2) y 1 k = —a abs J ab3
. (375)

Wyznaczywszy siły działające na pręt i sprężyste własności środowiska, znajdziemy krytyczną wartość siły ściskającej 
przez porównanie pracy sił zewnętrznych przy wyboczeniu ze zmianą energji potencjalnej układu. Wydzielmy dwa ele­
menty pręta, położone symetrycznie względem jego środka. Pracę odpowiadających sił zewnętrznych

q f ~ — rei da

przy wygięciu osi pręta przedstawi wyrażenie:

(y')2da.

Pracą wszystkich sił zewnętrznych pręta będzie więc:

2
2 \

J o

„ C2(y')2dx=^\ a (l-a) (y'f da.
J o

Przyrównawszy ją do zmiany energji potencjalnej odkształcenia, otrzymamy podstawowe równanie2): 
£

a C 2 El? 1 k ?1a (l -x)(y'y da = — \ (y"p da + ~ \ y2 da,
Jo Jo Jo
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z którego f 1 f 1

2) Należy brać ten słup, dla którego k, obliczone według wz. (375), ma najmniejszą wartość, oraz ten przekrój pasa, 
dla którego wielkość pJ: r (r jest promień bezwładności przekroju) jest najmniejsza.

2) Zakładając, że spółczynnik długości p. zachowuje swoją wartość i poza granicami sprężystości popełniamy pewien 
błąd, który jednakże idzie na korzyść pewności; ob.: ,0 stateczności układów sprężystych", str. 73.

EM (y”)2 dx + k\ y2dx 
qP ___Jo____________Jo___
8^8 j ri

—\ x (l - x) (y')2 dx
(h)

W ten sposób sprowadza się kwestja znalezienia krytycznej wartości sił wewnętrznych w pasie do szukania minimum 
ułamka (h). Jeżeli słupy narożnikowe są tak sztywne, że ich zgięcie można pominąć, to ściskany pas wypada uważać za 
pręt o końcach podpartych i wziąć dla linji ugięcia ogólne wyrażenie (b). Aby uprościć obliczenia, najlepiej rozpatrzyć od­
dzielnie każdą z możliwych postaci równowagi. W przypadku środowiska bardzo podatnego będzie pierwszą zakrzywioną 
postacią równowagi krzywa bez punktów przegięcia, tworząca jedną półfalę. Ta krzywa będzie symetryczna względem 
środka, wobec czego, poprzestając na dwu wyrazach szeregu (b), trzeba przyjąć:

. nx . 3nxy = a sin —|- aj sin —— .

2 TT CC Ą TC ccW yrazy sin —j—, sin —— odpadają, albowiem odpowiadają postaciom niesymetrycznym względem środka). Wsta­

wiwszy to wyrażenie w ogólny wzór (h) i wykonawszy potrzebne obliczenia, znajdziemy:

qF = n2EI
8 P

16 B2 i+8iz2-n-^|-(i + z2)
(k)

Wielkości z i B2 mają przytem poprzednie znaczenie. Dla otrzymania krytycznej siły ściskającej trzeba dobrać taką war­
tość z, przy której wyrażenie (k) staje się minimum. Dokonaliśmy tego dla kilku wartości B2, a odpowiadające wielkości 
spółczynnika długości p zestawiliśmy w poniższej tablicy:

B2 = 0
li = 0,694

5 
0,524

10 
0,443

15
0,394

22,8 
0,363

56,5 
0,324

B2 = 100 162,8 200 300 500 1000
P = 0,289 0,257 0,245 0,224 0,204 0,174

Począwszy mniej więcej od B2 = 18 tworzy pręt przy wyboczeniu dwie półfale z punktem przegięcia w środku długości. 
Wtedy, poprzestając na dwu wyrazach szeregu (b), trzeba przyjąć:

. 2nx . 4nx y — a sin —-— + aj sm —-— .

Wstawiwszy nową wartość y w ogólną formułę (h) możemy obliczyć w poprzedni sposób wartości spółczynnika długości 
dla drugiej zakrzywionej postaci równowagi i t. d. Wyniki obliczeń zawiera powyższa tablica. Wprowadzając w rachunek 
najniekorzystniejszy słup i najniekorzystniejszy przekrój pasa wyznaczamy wielkość B2 na podstawie wzorów (375) i (d), 
a z tablicy znajdujemy odpowiadającą wartość spółczynnika długości p. Dalszy rachunek prewadzi się tak samo, jak dla 
podstawowego przypadku wyboczenia2).

§ 179. O WYBOCZENIU PRĘTÓW ZŁOŻONYCH

W praktyce stosuje się bardzo często pręty złożone z kilku równoległych kształtówek, połączo­
nych kratą; zachodzi tedy pytanie, jakie są warunki stateczności takich prętów. Okazuje się, że w tych 
przypadkach na wielkość krytycznego obciążenia może istotny wpływ wywrzeć siła poprzeczna, 
pojawiająca się przy wyboczeniu pręta. Rolę siły poprzecznej objaśnimy najpierw na podstawowym 
przypadku wyboczenia. Przyjmijmy, że pręt pryzmatyczny o końcach przegibnie ustalonych wy- 
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boczył się pod działaniem podłużnych sił ściskających P (rys. 407). Wskutek zakrzywienia osi, 
w każdym poprzecznym przekroju pręta wystąpi oprócz siły podłużnej także i siła poprzeczna

0, =P , przedstawiająca rzut siły P na normalną do zgiętej osi w rozpatrywanym 

przekroju mn. ftżeby ocenić wpływ tej siły na wielkość obciążenia krytycznego, 
trzeba wziąć pod uwagę nietylko energję zgięcia, lecz także i energję ścinania 
zakrzywionego pręta. Ponieważ krzywizna zależy w danym przypadku nietylko 
od momentu zginającego, lecz także od siły poprzecznej, więc do wyrażenia dla 
energji zgięcia:

Jo 2E1 ” 2EI V dx
dołączymy wyrażenie dla energji ścinania:

n

przyczem

Cx b' O2 k'

^=8
FG p

Rys. 407
przedstawia kąt odkształcenia postaciowego, uwarunkowany działaniem siły po­

przecznej Q. Podstawowe równanie dla wyznaczenia obciążenia krytycznego przybierze tedy postać
p f1 P2 C1 k' P*  C1

*) Ob. pracę autora: „K’woprosu o prodołnom izgibie", Izw. Kij. Pol. Inst. z r. 1908. 
Ten sam wynik otrzymał inną drogą inż. Nussbaum, Zeitschr. f. Math. u. Ph., t. 55.

TVy'>'dx=2ElV‘dx + 2^ ' • (a)

Lewa strona równania przedstawia pracę sił ściskających przy zakrzywieniu pręta; po stronie pra-
wej mamy energję zgięcia i energję ścinania. Najmniejszą wartość 
otrzymamy, przyjmując zakrzywienie według sinusoidy 
bez punktów przegięcia. Wstawiwszy w rów. (a) zamiast 
ugięcia wyrażenie:

y = f sm -j-

i wykonawszy wskazane operacje, znajdziemy:
p 1
"kr - p k' ' '

1PEI + ~FG

Po wprowadzeniu oznaczeń:
P p „fgP^ - p , Pd - k, 

otrzymamy z wzoru (376):

. (376)

dla obciążenia krytycznego

Pk,-P.. -<(P..

Ponieważ Pa jest bardzo wielkie w porównaniu do Pe, więc 
spółczynnik cp różni się niewiele od 1, a zatem wpływ 
siły poprzecznej na wielkość krytycznego obciążenia bę­
dzie wogóle mały1). Wzór (376) wyprowadziliśmy tylko dlatego, ponieważ on ułatwia przejście do 
badania stateczności prętów złożonych, jeżeli zwrócimy uwagę na tę okoliczność, że dodatkowy 

k'wyraz -pg- w mianowniku otrzymanego wzoru przedstawia czynnik, przez który trzeba pomnożyć 

siłę poprzeczną, aby otrzymać kąt odkształcenia postaciowego p.
Dajmy na to, że wyboczenie pręta, złożonego z dwu pasów RB i R.BXi połączonych kratą 

(rys. 408, fig. a), może zajść w płaszczyźnie XY. Do zwykłego wzoru Eulera wejdzie zatem mo­
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ment bezwładności Io względem osi OZ. Przy ocenie wpływu siły poprzecznej przyjmiemy, że 
liczba przedziałów kraty jest bardzo wielka i znajdziemy kąt odkształcenia postaciowego p z roz­
ważania odkształceń jednego przedziału (fig. b). Oznaczmy przez Fd pole przekroju poprzecznego 
przekątnych, a przez Fg i Fp odpowiednio pole przekrojów pasów i słupków (rozpór). Jeżeli wiel­
kość Fd jest mała w porównaniu do Fg i Fp, to można przyjąć, że odkształcenie przedstawione na 
fig. (b) linjami przerywanemi będzie głównie wynikiem wydłużenia przekątnej. To wydłużenie <3 
określi równanie:

6 = _____
cos a EFd sin a ’

Bezwzględne posunięcie mn wyrazimy przez 6 przy pomocy trójkąta mnp, a mianowicie:
mn — 8; cos a. Stąd: -----

0 TTL Tl 
p =--------— =-----------------------------------

a EFd cos2 a sin a

Wstawiwszy we wzór (376) zamiast k':FG spółczynnik przy Q w wyrażeniu (b), otrzymamy szu­
kaną wartość Ąr dla pręta złożonego, przedstawionego na fig. (a) 9:

(377)

EFd cos8 a sin a

Łatwo zauważyć, że wpływ siły poprzecznej na wielkość może 
być znacznym tylko w przypadku małych wartości przekroju prze­
kątnych Fd.

Skoro przy obliczeniu kąta p uwzględnimy ściskanie słupków 
(rozpór) kraty, to znajdziemy bez trudności:

o ______Q______  ,Q^=Qj_____ 1_____ _____li
E Fd cos8 a sin a + EFP a E \Fd cos2 a sin a ' Fptga / ^c'

A zatem analogicznie, jak powyżej:

Pt = ~p-------------------------------------j------ . . (378)
^EIq + EFd cos8 a sin a EFptga

Jeżeli krata ma podwójne przekątne (rys. 409, fig. a), to zamiast Rys. 409

Fd trzeba we wzór (378) wstawić wielkość 2Fd. U prętów o prze­
kroju rurowym (fig. b) trzeba uwzględnić dwie kraty łączące i z tego powodu wstawić we wz. (378)
zamiast Fd wielkość 4Fd, a zamiast Fp wielkość 2FP. Przy obliczeniu pręta przedstawionego na 
fig. (c), można zastosować wzór (377), ale przez a należy pojmować kąt wskazany na rysunku. 
We wszystkich rozpatrzonych przypadkach jest wielkość krytycznego obciążenia mniejszą od ob­
ciążenia Eulerowskiego:

i da się przedstawić formułą:

FIp _  31

Ar = yPe.

Znalazłszy przy pomocy wzoru (377), albo (378) liczbę ę, sprowadzamy obliczenie prętów złożo­
nych do podstawowego przypadku wyboczenia; poza granicami sprężystości możemy przeto posłu­
żyć się znowu podanemi poprzednio formułami empirycznemi lub tablicą Jasińskiego.

*) Ten wzór otrzymał najpierw Engesser. Późniejsza publikacja jego rozwiązania znajduje się w Zentralblatt der 
Bauverw. z r. 1909, str. 136.

Badaniem tejże kwestji w związku z rozpatrywaniem przyczyn zawalenia się mostu pod Quebec zajął się również 
L. Prandtl; ob. „Die Knicksicherheit von Gitterstaben", Zeitschr. d. Ver. d. Ing. z r. 1907. W obu pracach stosowano 
metodę badania odmienną od wyłożonej powyżej.

Co do zastosowań w konstrukcjach mostowych ob. N. P. Winogradów, „Obliczenie ściskanych prętów krato­
wych" (po ros.), Wiest. Ob-a Technołogow z r. 1914.
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Przejdziemy teraz do przypadku, kiedy pasy złożonego pręta są połączone tylko szeregiem 
słupków (bez przekątnych) (rys. 410). Tego rodzaju konstrukcje pozyskały w ostatnich czasach 
szerokie rozpowszechnienie, jako ściskane elementy kratownic mostowych. Przyjmijmy, że przy 
ściskaniu nasz pręt złożony może się wyboczyć w płaszczyźnie X Y. Oznaczmy przez /0 moment 
bezwładności całego przekroju względem osi Z-ów, a odpowiednio przez Ą i 1, momenty bezwła­
dności przekroju jednego pasa i jednego słupka. Tutaj możemy znowu użyć wzoru (376), skoro

tylko znajdziemy związek między kątem odkształce­
nia postaciowego 3, a siłą poprzeczną Q. W tym 
celu wydzielimy z pręta przekrojami mn i rn}nr 
część o długości a. Odkształconą postać tej części 
w zwiększonej skali przedstawia fig. (b). Jej ukos 
zależy od zgięcia pasów i słupka. Z fig. (b) widać, że

0 = (8, + M : 4-

Korzystając ze znanych wzorów, znajdziemy:
. _ . a _ Qab s _ Qa3

11 2 ~2.6E72’ 2~ 3.2.

Ten wzór daje wyniki bliskie znalezionym doświadczalnie przez prof. Rudeloff’a; ob. Eisenbau z r. 1913, str. 41.
2) Dalsze badania tej kwestji i dane doświadczalne zawiera praca autora: „O stateczności układów sprężystych", 

str. 57.
Inny wywód wzoru (379) podał prof. Kayser; ob. Eisenbau z r. 1910.
Ob. także prace Muller-Breslau’a w Eisenbau z lat 1911 — 1913.
3) Błędy, powstające przy takim sposobie obliczenia, idą na korzyść pewności; ob.: „O stateczności ukł. spr.“, str. 75.

a zatem: Q i ab t a2 \

Wstawiwszy otrzymany spółczynnik przy Q we wzór 
(376) zamiast k' : FG, znajdziemy:

Ph=—ii--------- L---------- j- ') . (379)
l2 ab a2 v 7

n2El.\2ET^2AEQ

Znowu tedy okazuje się wielkość Pkr mniejszą od obciążenia Eulerowskiego, obliczonego według 
wzoru dla pręta jednolitego. Różnica między prętem litym a złożonym będzie tern większa, im 
mniejszą jest sztywność słupków poprzecznych i im większy ich odstęp a. W przypadkach, kiedy 

a jest wielkie, albo sztywność pasów EĄ mała, może się zdarzyć, że wielkość -yEkr, obliczona

^2 F /z wzoru (379) nie będzie mała w porównaniu do wielkości ----~ obciążenia krytycznego, obliczo- a~
nego dla części pasa zawartej między dwoma słupkami poprzecznemi. W tych warunkach daje 
wz. (379) nieco za wielkie wartości dla Pkr2)-

Trzeba jeszcze zauważyć, że wz. (379) wyprowadziliśmy przy założeniu, że zjawisko zachodzi 
w granicach sprężystości. Można go jednak używać i poza temi granicami do znalezienia stosunku 
między obciążeniem krytycznem dla pręta złożonego, a obciążepiem krytycznem dla odpowiadają­
cego pręta litego, aby następnie zastosować formuły empiryczne, znalezione dla prętów litych3). 
Co się tyczy doświadczeń przeprowadzonych nad statecznością złożonych prętów, to one nie wy­
starczają jeszcze do ustawienia dobrze ugruntowanych wzorów empirycznych.

§ 180. UWAGI CO DO USTALENIA KOŃCÓW I OSŁABIENIA PRZEKROJÓW 
POPRZECZNYCH ŚCISKANYCH PRĘTÓW

Przy wywodzie wzorów dla obciążenia krytycznego rozróżniają końce swobodne, podparte 
(przegibnie ustalone) i utwierdzone. W praktyce napotykamy często i warunki pośrednie. Zwykle 
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bowiem są końce pręta przynitowane do innych części konstrukcji, wobec czego nie można ich 
uważać za ustalone przegibnie. Ale również nie wolno uważać ich za doskonale utwierdzone. Na­
wet przy najzupełniejszem przymocowaniu mogą końce obracać się częściowo i ta okoliczność 
obniża wielkość obciążenia krytycznego. Jeżeli kąty obrotu ko.ńców są proporcjonalne względem 
pojawiających się momentów podporowych, to będziemy mieli do czynienia ze sprężystem utwier­
dzeniem końców i przy danej sztywności utwierdzenia będziemy mogli ocenić jego wpływ na wiel­
kość obciążenia krytycznego. Przy użyciu metody przybliżonej wypadnie uwzględnić nietylko 
energję odkształcenia rozpatrywanego pręta, lecz także i tych części konstrukcji, z któremi pręt się 
łączy. W ten sposób dochodzimy do badania stateczności układów prętów x). W takich przypadkach, 
dla uproszczenia obliczeń, pomija się zwykle w praktyce wpływ utwierdzeń na korzyść pewności 
i używa się wzorów, wyprowadzonych dla prętów o końcach przegibnie podpartych. Zaznaczymy 
tutaj, że wpływ utwierdzeń końców na wielkość obciążenia krytycznego maleje ze zmniejszeniem 
długości pręta. Dla przykładu porównamy pręt o końcach podpartych i pręt, którego końce są do­
skonale utwierdzone. W ostatnim przypadku spółczynnik długości p =0,5. Dopóki zjawisko wybo- 
czenia zachodzi dla obu prętów w granicach sprężystości, jest obciążenie krytyczne przy utwier­
dzonych końcach cztery razy większe, niż przy końcach podpartych. Poza granicami sprężystości 
zachowuje swoją wartość spółczynnik długości p, atoli stosunek obciążeń krytycznych będzie już 
inny. Przy pomocy tablicy Jasińskiego (str. 332) łatwo otrzymać wyniki następujące:

1 = 
r ~ 200 150 100 50

(Dla końców podpartych) pkt = 532 946 1904 2646 kg/cm2

= 
r 100 75 50 25

(Dla końców utwierdzonych) p\r ~ 1904 2275 2646 3016 kg/cm2

P kr • Pkr = 3,58 2,40 1,39 1,15

9 Jako przykład zadania tego rodzaju można przytoczyć badanie stateczności ściskanych prętów kratownicy wielo­
krotnej, ob. Jasiński, t. I, str. 177.

Ob. także: Vianello, „Die Knickfestigkeit eines dreiarmigen ebenen Systems", Zeit. d. Ver. d. Ing. z r. 19C6, 
tr. 1753.

Pewien przypadek szczególny rozpatruje praca autora: »K’ woprosu o prodołnom izgibie". Izw. Kij. Pol. Inst. 
z r. 1908.

2) Ob. cytowaną powyżej pracę autora.

Z tej tablicy widać, jak ubywa stosunek p\r: pkr ze zmniejszeniem długości pręta. U krótkich 
prętów jest wpływ utwierdzenia końców na wielkość naprężeń krytycznych wcale nieznaczny.

Pręty ściskane posiadają zwykle pewne przekroje osłabione otworami na nity, lub innego 
rodzaju niedoborami; zachodzi tedy pytanie, o ile wskutek tych osłabień zmniejsza się wielkość 
obciążenia krytycznego. Rozwiązanie tego zadania jest związane z badaniem wyboczenia prętów 
o zmiennym przekroju. W przypadkach, kiedy długość osłabionej części pręta jest niewielka2), 
okazuje się jej wpływ na wielkość obciążenia krytycznego równoważnym z wpływem przyrostu 
długości pręta o wielkość:

^l = d.l^-cos2-~........................................................ (380)

Tutaj oznacza odpowiednio / i I' moment bezwładności nieosłabionego i osłabionego przekroju, 
c odległość osłabionego miejsca od środka pręta, d długość osłabionej części. Największy wpływ 
na Ąr objawia osłabienie w samym środku pręta, t. j. gdy c=0. Jeżeli na pręcie znajduje się 
szereg osłabień równych i równoodległych od siebie, to ich ogólny wpływ na Ąr otrzymamy przez 
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sumowanie wpływów oddzielnych osłabień i, na podstawie wz. (380), można ten wpływ zastąpić 
przyrostem długości pręta o wielkość:

61 ........................................... (381) w 1

przyczem n jest liczbą miejsc osłabionych. Na liczbowym przykładzie można okazać, że u prętów 
żelaznych jest wpływ otworów na nity na wielkość dość mały.

Weźmy np. kątówkę 75X75X10 mm o długości /=2,5m, opatrzoną 10-ciu otworami na nity 
o średnicy 20 mm. Taki otwór osłabia przekrój pręta w przybliżeniu o 14% i o tyleż mniej więcej 
zmniejszy się moment bezwładności. A zatem:

(/—/'):/' = ~ 0,17.

Skoro we wz. (381) podstawimy zamiast długości osłabionej części średnicę nitu, to znajdziemy:

6 Z = 1,7 cm.

Zważywszy, że obciążenie krytyczne jest odwrotnie proporcjonalne względem kwadratu długości 
pręta, obliczone przez nas zastępcze zwiększenie jego długości 5/ pomniejsza Pkr o:

100^ = ~ 1,47..

Zmniejszenie Pkr zachodzi zatem w znacznie mniejszym stopniu, niż osłabienie przekroju i dlatego 
przy obliczeniu kształtówek żelaznych ze względu na wyboczenie bierzemy w rachubę moment 
bezwładności przekroju brutto, nie uwzględniając otworów na nity. (Te ostatnie trzeba jednak 
uwzględnić przy obliczeniu naprężeń dla sprawdzenia warunku wytrzymałości).

Na tem zakończymy rozpatrywanie kwestji stateczności ściskanych prętów. Wyłożone tutaj 
metody można także zastosować przy rozwiązywaniu bardziej złożonych zadań, jak np. kwestji 
stateczności prętów o zmiennym przekroju ’), prętów o równej wytrzymałości na wyboczenie8) 
i prętów w kilku punktach podpartych3). Do przybliżonego rozwiązania tych zadań można też 
zastosować metodę wykreślną4).

l) Ob. Franke, „Die Tragkraft der Saulen bei verand. Querschnitt“. Zeit. f. Math. u. Ph. z r. 1901.
Franke, „Die Knicksicherheit bei entspr. Zunahme d. Tragheitsmomentes®, Zeitschr. fur Rrch. u. Ing. z r. 1907.
A. Dinnik, Wiest. Ob-a Technołogow z r. 1913 i Wiest. Inż. z r. 1915, str. 94.
H. Kayser, „Knickwiderstand v. Druckstaben mit veranderlichem Querschnitt“, Eisenbau z r. 1910, str. 451.
2) Ob. Yerhandl. d. Gewerbefleiss. z r. 1910, zesz. VI.
s) Ob. Wittenbauer, „Die Knicklast mehrfach befestigter Stabe®, Zeit. d. V. d. Ing., r. 1902.
Johnson, „The Theory of continuons columns®, Amer. Soc. of. civ. Eng. z r. 1906.
®) Ob. Yianello, Zeit. d. Yer. d. Ing. z r. 1898, str. 1436.
5) Ob. pracę autora: „Zastosowanie spółrzędnych normalnych...® (po ros.). Izw Kijew. Pol. Inst. z r. 1910.

§ 181. O STATECZNOŚCI OKRĄGŁEGO PIERŚCIENIA I WALCOWEJ RURY

Jeżeli okrągły pierścień, albo cienkościenna rura o przekroju kołowym i promieniu a jest 
narażona na działanie równomiernie rozłożonych nacisków zewnętrznych, to, jak pokazuje doświad­
czenie, można przez powiększenie ciśnienia p osiągnąć taki stan graniczny, przy którym okrągła 
postać równowagi przestaje być stateczną, a pierścień lub rura zaczynają się spłaszczać. Dla wy­
znaczenia krytycznej wartości zewnętrznego ciśnienia możnaby naturalnie użyć ogólnego sposobu 
i otrzymać potrzebne równanie, przyrównywując pracę zewnętrznych nacisków przy spłaszczaniu 
rury do zmiany energji potencjalnej odkształcenia układu5). W tym jednak przypadku dojdziemy 
prędzej do celu, stosując równanie różniczkowe równowagi dla linji ugięcia krzywego pręta (§ 137):

..................................... <•>
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Dla uproszczenia wywodów przyjmiemy, że pierścień ma przekrój poprzeczny prostokątny, a sze­
rokość przekroju w kierunku prostopadłym do płaszczyzny pier­
ścienia jest równa 1; wtedy nacisk, przypadający na każdą jedno­
stkę długości pierścienia, będzie równy ciśnieniu p. Dajmy na to, 
że pod działaniem tych nacisków powstało spłaszczenie pierście­
nia i niech linja pełna na rys. (411) przedstawia zgiętą oś pier­
ścienia, a proste 0/1 i OB jej osie symetrji. Przetnijmy pierścień 
w punkcie A Działanie dolnej części pierścienia na górną można 
zastąpić naciskiem podłużnym p. c (przyczem c oznacza mniej­
szą półoś spłaszczonej postaci równowagi) i momentem Mo. 
Moment zginający w dowolnym punkcie C będzie równy:

M = —M0-pcz+^-, Rys. 411

jeżeli tak samo, jak przy wyprowadzeniu równania (a) będziemy uważać ten moment za dodatni, 
któremu odpowiada zwiększenie krzywizny osi. Tutaj zastąpiono ciśnienie wzdłuż łuku AC ciśnie­
niem na cięciwę AC=l. Długość cięciwy znajdziemy z trójkąta O AC'.

s 72 > s o • P r* — c* (a+y)2 — (a+y0)2 ( AOC’=r8 = /2+c8—2cz, a więc: 9—cz = —9---- = -—————— =a(y—y0).
Ci Ci Ci

Uwzględniwszy to i wstawiwszy wyrażenie dla M w rów. (a), otrzymamy:

+ pay.

...................................

Ogólną całką tego równania jest:
y = ^lo+payo £cos as 4- ci sin as................................................(c)

Ela* 1 v 7
przyczem a2 -^4.1

Ela"
zaś C i Ct są dowolnemi stałemi. Przesunięcie y w kierunku promienia r posiada największą 

ujemną i największą dodatnią wartość odpowiednio w punktach A i B, gdzie s = 0 i 5=^-; w tych 

punktach jest = 0. Aby uczynić zadość tym warunkom trzeba przyjąć:

Ct = 0 i | sin as =0,

a zatem: aan albo Ela* “ a
Najmniejszą wartość ciśnienia, przy której będzie możliwe spłaszczenie pierścienia, otrzymamy, 
przyjmując n=\; wtedy: $EI

Pkr — 3 ........ (382)
a

•W przypadku cienkościennej rury, możemy z niej wydzielić dwoma przekrojami pierścień, którego 
szerokość w kierunku osi rury jest równa 1. Stateczność takiego pierścienia można sprawdzać 
według wzoru (382), skoro w nim sztywność EI zastąpimy sztywnością „walcową", a zatem:

3E/z8
Pkr 12(1- <s«) a8 . (383)

jeżeli h oznacza grubość ściany rury. Otrzymany wzór zgadza się dobrze z doświadczeniami *) 
i pozwala obliczać długie rury ze względu na stateczność ich sprężystej równowagi. W przypadku

0 Ob. P. E. Carman, Univ. of Illinois Bulletin Nr. 5, r. 1906.
Sio cum, „The collapse of tubes under external pressure". Engineering, r. 1909, str. 35.
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rury o skończonej dowolnej długości 9 l, będzie wartość ciśnień krytycznych większa, aniżeli to 
wypada z wzoru (383) (ponieważ końce rury są przymocowane, np. do den kotła parowego) i da 
się wyznaczyć z wzoru2):

2) R. v. Mis es, Zeit. d. V. d. Ing. z r. 1914, str. 750.
Ob. także „Kurs tieorji uprugosti“, cz. II, str. 387.
3) Ob. pracę autora: Ob ustojcziwosti uprugich sistem“, str. 66. Nadto: Mayer-Mita, Zeit. d. V. d. Ing. z r. 1914, 

str. 649 i Eisenbau z r. 1913, str. 361.
4) Co się tyczy innych zadań stateczności rury ob. pracę autora: „Einige Stabilitatsprobleme d. Elastizitatstheorie", 

Z. f. Math. u. Ph. z r. 1910, a nadto:
Lorenz, „Die nichtachsensymmetrische Knickung diinnwandiger Hohlzylinder", Phys. Zeitschr. z r. 1911, str. 241;
S. Timoszenko, ,,K’ woprosu o deformaciach i ustojcziwosti cilindriczeskoj obołoczki“, Wiest. Ob-a Techn., z r. 1914

E h 
a (384)

Tutaj oznacza n (całkowitą) liczbę półfal, na które dzielą się przy wyboczeniu równoległe 
pierścienie elementarne walcowej rury. Liczbę n należy tak dobrać, aby naprężenie krytyczne, 
wyznaczone z wzoru 384 miało najmniejszą wartość. W niżej umieszczonej tablicy podano szereg 
wartości pkr w kglcm2, obliczonych dla E=2.106 kglcm2 i s=0,3. Przy spółczynniku E', odmien­
nym od E, trzeba dane tablicy pomnożyć przez ułamek E': E. Linja gruba oddziela na tablicy 
ciśnienia, odpowiadające naprężeniom większym od 1800 kglcm2.

100/1 _ 
a —

T

0,4 0,8 1,2 1,6 2,0 2,4 2,8 3,2

Zewnętrzne ciśnienie krytyczne w kglcm2

0 0,035 0,28 0,95 2,25 4,4 7,6 12 18

0,1 0,18 L0 2,9 6,6 12,3 17 23 31

0,2 0,37 2,1 5,9 13 21 32 47 66

0,3 0,56 3,2 9,3 18 32 51 76 111

0,4 0,76 4,5 11,6 25 45 70 101 140

0,5 0,97 5,5 15 32 55 87 132 190

Jeżeli zamiast całkowitego pierścienia mamy tylko jego część o końcach przegibnie ustalonych, to krytyczną wartość 
normalnego nacisku p, przypadającego na jednostkę długości zakrzywionego pręta i rozłożonego równomiernie, określi równanie:

' El 14^ 1

Rys. 412

(d)

w którem cp oznacza kąt środkowy, odpowiadający osi krzywego pręta3). Na podstawie tego wzoru można 
nabrać wyobrażenia o stateczności łuków dwuprzegubowych lub trójprzegubowych i ustalić graniczne 
wartości dla ich grubości. Przy małej krzywiżnie można wzór (d) z wystarczającem przybliżeniem na­
pisać w postaci: _ 4n2 El _ 4n2 El

^kr a3cp2 as2 ’

przyczem s oznacza długość pręta. Wówczas krytyczna wartość podłużnej siły ściskającej w łuku:
„ 4h2EIPkr = a pkr = ——.........................................................(385)

Ten wzór jest identyczny z otrzymanym pierwej dla przypadku wyboczenia pręta prostego o końcach 
utwierdzonych4).

4) Ob. R. V. Southwell, Phil. Mag. z r. 1913, str. 503 i z r. 1915, str. 67.
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Cienkościenna prosta rura może okazać niestateczność sprężystej równowagi także przy podłużnem ściskaniu 
siłami rozłożonemi równomiernie na przekrojach końcowych. Skoro odpowiadające tym siłom naprężenia przekroczą pewną 
granicę, to rura może się pomarszczyć poprzecznie w sposób uwidoczniony na rys. (412). Nie trudno znaleźć wielkość 
obciążenia krytycznego, rozpatrując element rury, wydzielony dwiema nieskończenie bliskiemi tworzącemi, jako pręt 
w sprężystem środowisku (§ 179). Stopień sztywności środowiska określa się w sposób wskazany w § 155.

§ 182. O STATECZNOŚCI ŚCISKANYCH PŁYT1)

Ł) Szczegółowe rozwiązanie szeregu zadań i tablice liczbowe znajdzie czytelnik w dziele autora: „Kurs tieorij 
uprugosti", cz. II, str. 317—362.

2) Zagadnienie stateczności ściskanych płyt rozwiązano także w przypadku konturu kołowego; ob. A. N. Dinnik, 
Izw. Kij. Pol. Inst. z r. 1911.

Ob. także: Nd da i, Z. d. V. d. Ing. r. 1915, str. 169.
8) To zadanie rozwiązał pierwszy G. H. Bryan, Lond. Math. Soc. Proc, z r. 1891, t. 22.

Jako części dodatkowych żelaznych konstrukcyj używa się nierzadko blach, których grubość bywa zwykłe małą 
w porównaniu do innych rozmiarów. Do tych blach można tedy stosować z dostateczną dokładnością wszystkie wywody
odnoszące się do cienkich płyt. Jeżeli płyta jest narażona na siły ściskające, które 
to, zwiększając te siły, można osiągnąć granicę, przy której płaska postać równo­
wagi przestąje być stateczną i nastąpi wyboczenie płyty. Możliwość tego zjawiska, 
analogicznego do wyboczenia cienkich prętów, należy uwzględnić przy obliczeniu 
konstrukcyj złożonych z blach, naprzykład przy obliczeniu ściskanych pasów belek 
kratowych o przekroju T, U i rurowym, przy obliczeniu grubości ścianek belek nito­
wanych i t. d.

Do najprostszych, a zarazem praktycznie najważniejszych należą zagadnienia 
stateczności płyt, ograniczonych konturem prostokątnym2). Brzegi płyty przyjmiemy 
za podparte i rozpatrzymy kilka szczególnych przypadków, odpowiadających różnym 
sposobom rozłożenia sił ściskających (rys. 413). Przy szukaniu krytycznej wartości 
sił będziemy się posługiwać metodą przybliżoną. Przyjąwszy zbliżoną postać dla 
powierzchni wygięcia płyty, obliczymy odpowiadającą zmianę potencjalnej energji 
odkształcenia i przyrównamy ją do pracy wykonanej przez siły ściskające przy wy- 
boczeniu płyty. Jeżeli się nam uda obrać dla powierzchni ugięcia wyrażenie dokła­
dne, to otrzymamy także dokładne wyrażenie dla krytycznej wartości sił ściskających.

1) Przy ściskaniu płyty siłami równomiernie rozłożonemi na brzegach poprze­
cznych (fig. a) ), zachodzi wyboczenie według powierzchni, której przekroje płasz­
czyznami x = const., albo y = const. są sinusoidami. Jeżeli długość płyty jest nie­
wielka (a <51^2), to z każdej ż tych sinusoid realizuje się tylko jedna półfala, 
a równanie powierzchni wygięcia ma postać:

3

działają w jej płaszczyźnie środkowej,

Rys. 413„ . nx . ny m = /i sin — sm ,a b (a)

Łatwo sprawdzić, że wyrażenie (a) dla ugięcia w czyni zadość warunkom na podpartym obwodzie płyty. Wyrażenie dla 
energji potencjalnej zgięcia, odpowiadające przyjętej powierzchni równowagi, znaleźliśmy już poprzednio (§ 154) w formie:

Co się tyczy pracy T sił ściskających, to oznaczając przez P wielkość nacisku, przypadającego na jednostkę długości 
obwodu i uwzględniając, że zbliżenie dwu jakichkolwiek punktów, leżących na brzegach poprzecznych i odpowiadających

* • • 1 C / b u? 1 ®
tej samej wartości y, jest równe — \ I __ I możemy napisać: 

£ jg \ U /

t 1 r o a c1 Dat> a,

Porównawszy ten wynik z energją potencjalną zgięcia, otrzymamy wartość krytyczną nacisku:
. ftr=C«>(l + £)* . . ......................................................... (386)

Zwiększając stopniowo długość płyty a, możemy otrzymać warunki, przy których płyta się wyboczy w dwie pólfale, przy 
dalszem powiększaniu długości powstają trzy, cztery pólfale i t. d. Z powiększeniem długości płyty zmienia się obraz zja­
wiska wogóle tak, jak przy wyboczeniu pręta w sprężystem środowisku (§ 179). Przy podziale płyty na m półfal będzie

każda półfala w takich samych warunkach, jak płyta o brzegach podpartych i długości —, a szerokości b. Krytyczną war-
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£
tość sił ściskających znajdziemy, wsławiwszy we wz. (386) zamiast a wielkość —. Przejście od postaci o m półfalach 

do postaci o (m + 1) półfalach odpowiada takim warunkom, przy których wielkość Pkr obliczona przy założeniu m, albo 
(m + 1) półfal przybiera tę samą wartość, czyli kiedy:

...... w

Przyjmując m = 1, otrzymujemy a = bV~2; począwszy więc od tego stosunku wyboczy się płyta w dwie półfale. Dla 
m = 2, a = b 1^6. Ten stosunek odpowiada przejściu od wyboczenia w dwie półfale do trzech półfal i t. d. Przy bardzo 
wielkiej długości płyty jest liczba m wielką i zamiast równania (b) możemy napisać a — bm, albo a: m = b, czyli długa 
płyta dąży przy wyboczeniu do podziału na kwadraty [naprzemian wklęsłe i wypukłe]. Dla zastosowań praktycznych do­
godniej przejść od wielkości Pkr do odpowiadających naprężeń krytycznych:

_ Pkr _ En2 I b a \2 h2
pkr~ T~12(T-g2) l a “b / ~b2‘

Tutaj wstawiliśmy zamiast sztywności walcowej jej wyrażenie przez stałe sprężystości i grubość płyty h. Na podstawie otrzy­
manego wyniku wnosimy, że przy określonym stosunku a: b są naprężenia krytyczne proporcjonalne względem stosunku 
h2:b2. Podwajając grubość płyty zwiększamy tem samem czterokrotnie pkr. Z tego można skorzystać dla ułożenia tablicy, 
ułatwiającej obliczenie ściskanych płyt ze względu na wyboczenie. Taka tablica, umieszczona poniżej, zawiera wartości pkr, 
odpowiadające różnym wartościom stosunku a: b, i obliczone przy założeniu, że b:7i=100, E = 2.10®kg/cm2. Jeżeli 
w praktyce mamy do czynienia ze stosunkiem b: h = n, to dla otrzymania odpowiadających naprężeń krytycznych trzeba 

liczby tablicy pomnożyć przez ( — .

0*1
 O

l

11 0,5 0,6 0,7 0,75 0,8 0,9 1,0 1,1 1,2 1,3 1,4 1,5

(dla b: fi = 100) pkr = 1097 900 795 761 738 709 702 709 725 750 784 823 kg/cm2

*) Rozwiązanie tego zadania znajduje się w pracy autora: „O stateczności układów sprężystych*.

Z tablicy widać, że znacznym zboczeniom wartości stosunku a: b od jednostki odpowiadają tylko małe zmiany w wartości 
pkr. Wobec tego można dla dostatecznie długich płyt nie szukać liczby półfal i przyjąć, że półfale dzielą płytę na kwa­
draty. W takim przypadku będzie naprężenie krytyczne:

Pkr = 702 2 (kg/cm2)................................................................ (387)

W całkiem podobnych do rozpatrzonego przypadku warunkach znajdują się ściany rury o przekroju kwadratowym, ści­
skanej siłami rozłoźonemi równomiernie na przekrojach końcowych.

2) Przy rozłożeniu nacisków, przedstawionem na fig. (b), t. j. w przypadku zginania płyty w jej płaszczyźnie,, odpo­
wiadające ciśnienia w dowolnym punkcie przekroju określą wyrażenie:

Do wyznaczenia Pkr można użyć poprzedniej metody. Nie będziemy tutaj zastanawiać się nad pbiorem przybliżonej postaci 
powierzchni wyboczenia i utworzeniem wyrażeń dla V i T, lecz ograniczymy się tylko do przytoczenia wyników końco­
wych 2). Okazuje się, że i w tym przypadku jest, dla określonej wartości stosunku a: b, wielkość pkr proporcjonalną wzglę­
dem h2 : b2. Poniżej podajemy wartości pkr, obliczone dla różnych stosunków a:b przy założeniu, że b:h—100 
i E = 2.10® kg/cm2. Jeżeli przy obliczeniu będziemy mieć b : h = n, to odpowiadającą wartość pkr znajdziemy, mnożąc liczby 
tablicy przez (100 Ti: b)2.

II

<8

0,2 0,4 0,5 0,6 . 0,707 0,8 1,0 1,2

(dla b : h = 100) pkr = 14680 5780 4870 4500 4390 4440 4870 5560 kg/cm2

Z tablicy widać, że najmniejsza wartość pkr odpowiada stosunkowi a: b = 0,707, że zatem w przypadku długiej płyty musi 

wyboczenie zachodzić według powierzchni z szeregiem półfal. Liczba półfal m jest taka, że stosunek —: b zbliża się mo- 
m

żliwie^Ho liczby 0,707, odpowiadającej najmniejszej wartości pkr. Wzór dla obliczeń ma postać:

pkr = 4390 (’ (kg/cm2)................................................................ (388)
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Tym wzorem należy się posługiwać przy sprawdzeniu stateczności ścianki wysokich belek J w środku rozpiętości, gdzie 
naprężenia zginające mają największą wartość, a ścianka znajduje się mniej więcej w takich warunkach, jak rozpatrywana 
właśnie płyta. Wpływ pasów, przeszkadzających swobodnemu obrotowi brzegów ścianki przy wyboczeniu, można pominąć 
na korzyść bezpieczeństwa (pewności). Zaznaczymy tutaj, że pionowe żebra, któremi się usztywnia ścianki wysokich nito­
wanych belek J, nie mogą przeszkodzić wyboczeniu tych ścianek i wpływają tylko na długość półfal, podług których za­
chodzi wyboczenie. To zaś, jak widać z tablicy, odbija się niewiele na wielkości pkr.

W pobliżu podpór belek nitowanych mają największą wartość naprężenia styczne. Dla wyznaczenia ich krytycznej 
wartości można użyć następującej tablicy1), w której, w zależności od stosunku a: b, podano wartości naprężeń kryty­
cznych (pt)kr dla prostokątnej płyty na całym obwodzie podpartej i narażonej na działanie naprężeń stycznych, rozłożo­
nych równomiernie na obwodzie.

*) Ob. S. P. Timoszenko, „Ob ustojcziwosti płastinok...*, Sborn. Inst. Inż. Put. Soobszcz. z r. 1914.
2) Ob. „O stateczności układów sprężystych®, str. 163.
8) W interesującej książce W. E. Lilly, „The design of piąte girders and columns*, r. 1908, znajduje się opis kilku 

doświadczeń, wyjaśniających wpływ żeber na stateczność ścianki belki I.
Pewne wskazówki co do obioru sztywności żeber znajdują się w pracy autora: „O stateczności płyt wzmocnionych 

sztywnemi żebrami* (po ros.), Petrograd 1914.
4) Ob. Sommerfeld, „Ober die Knicksicherheit der Stege v. Walzwerkprofilen*, Z. f. Math. u. Ph. z r. 1907.
S. P. Timoschenko, „Einige Stabilitatsprobleme der Elastizitatstheorie*, Z. f. Math. u. Ph. z r. 1910.
5) Ob. pracę autora: „Ob ustojcziwosti sżatych płastinok*. Izw. Kij. Pol. Inst. z r. 1907.

W przypadku długich płyt można wartość (pt)kr określić wzorem2):

<x
r| c

u

II 1 1,2 1,4 1,6 1,8 2,0 2,5 3,0

(dla b: h = 100) (pt)kr = 1650 1406 1280 1230 1190 1160 1100 1070 kg/cm*

(pt)kr = 990 (kg/cm*) . (389)

Tutaj okazują żebra usztywniające istotny wpływ na stateczność ścianki8).
3) Zagadnienia stateczności płyt, ściskanych siłami skupionemi, są jeszcze zawilsze. Obecnie posiadamy rozwiązanie 

tylko na przypadku przedstawionego na fig. (c) (rys. 408) ). Przy znacznej długości płyty można wartość krytyczną ści­
skającej siły (w przypadku podpartych brzegów 
płyty) obliczyć według wzoru:

4

Pkr=^ . . . (390)
b

4) Rozpatrzymy teraz kilka przypadków, w któ­
rych jeden z długich brzegów płyty jest zupełnie 
swobodny. Te zadania mają praktyczne znaczenie 
w związku z obliczeniem ściskanych pasów kształtu 
T lub U (rys. 414). Przy powiększeniu nacisków P 
można osiągnąć granicę, kiedy płaska postać rów­
nowagi pionowej blachy przestaje być stateczną i zachodzi wyboczenie dolnej swobodnej krawędzi. Wielkość naprężeń kry­
tycznych zależy od stopnia utwierdzenia pionowej blachy wzdłuż górnej krawędzi. W przypadku przekroju T można zwy­
kle na rzecz pewności pominąć wpływ poziomej wstęgi i kątówek, a blachę „stojącą* rozpatrywać jako płytę o trzech brze­
gach podpartych, a jednym swobodnym; wtedy znajdziemy naprężenia krytyczne na podstawie następującej tablicy5):

a _ 1 1,2 1,4 1,6 1,8 2,0 2,5 3 4 5 10 oo

(dla b: h = ICO) pkr = 253 199 167 147 133 123 107 98,9 90,5 86,8 81,6 80,0 kg/cm*

Naprężenia krytyczne maleją z powiększeniemi długości płyty, a zatem przy wyboczeniu będzie zgięcie zachodzić według 
powierzchni o jednej półfali. Wielkość pkr obliczono przy założeniu, że b:h = 100; dla innej wartości tego stosunku należy 
postąpić tak samo, jak i w przypadkach poprzednio rozpatrywanych.

W przypadku przekroju U (fig. b) utwierdzenie górnych krawędzi blachy stojącej posiada zwykle dostateczną sztyw­
ność; można ją zatem rozpatrywać jako płytę, której brzegi poprzeczne są podparte, jeden z podłużnych doskonale utwier­
dzony, a drugi swobodny. Wielkość odpowiadających naprężeń krytycznych podaje następująca tablica dla stosunku b : h = 100
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a _ 
b

(dla b : h = 100) pkr =

1,0

298

1,1

274

1,2

257

1,3

247

1,4

239

1,5

235

1,6

234

1,7

234 kg/cm2

a _
V"

(dla b : h — 100) pkr =

1,8

235

1,9

239

2,0

243

2,1

249

2,2

255

2,3

262

2,4

270

2,5

280 kg/cm2

*) Obliczył je inżynier K. Czałyszew; ob. Sborn. Inst. Inż. Put. Soobszcz. z r. 1914.
2) Ogólniejsze zadanie rozpatruje W. Rak w artykule „Ob ustojcziwosti priamougolnoj płastinki, podkrjepliennoj po 

kraju ugołkom żestkosti". Sborn. Inst. Inż. Put. Soobszcz. r. 1916.

Przy innych wartościach tego stosunku trzeba postąpić tak, jak w przypadkach powyżej omawianych. Wszystkie wywody 
odnoszą się oczywiście do wyboczenia sprężystego; jeżeli wyboczenie zachodzi poza granicami sprężystości, to nasze 
tablice dadzą dla naprężeń krytycznych za wielkie wartości.

Bez szczególnych trudności da się też rozwiązać zadanie o stateczności płyty prostokątnej, której jeden lub dwa 
brzegi, równoległe do osi X-ów (ob. rys. 408) są sprężyście podparte. Wielkość naprężeń krytycznych będzie zależeć na­
turalnie od stosunku sztywności El tej belki, która podpiera brzeg płyty, do sztywności bC samej płyty. Poniżej przyta­
czamy parę dat1) dla przypadku płyty kwadratowej, obciążonej według fig. (a) (rys. 408) i podpartej wzdłuż brzegów y = 0 
i y = b przez giętkie belki o sztywności El2).

EI_ 
bC~ oo 29,1 14,2 5,2 2,15 1,15 0,60

(dla b : h = 100) pkr = 702 685 667 614 526 439 351 kg/cm2

§ 183. O STATECZNOŚCI PŁASKIEJ POSTACI ZGIĘCIA BELEK I
Rozpatrzymy tutaj te przypadki niestatecznej równowagi, jakie powstają niekiedy przy zginaniu prętów w płaszczy' 

źnie ich największej sztywności. Jeżeli jedna z głównych sztywności zgięcia jest mała w porównaniu do drugiej, to, zgr 
nająć pręt w płaszczyźnie największej sztywności, można przez powiększenie sił osiągnąć granicę, kiedy płaska postać zgię­
cia przestaje być stateczną. Oś pręta zakrzywia się w kierunku łatwiejszego zginania,-przyczem przekroje poprzeczne pręta 
obracają się nietylko około osi prostopadłych do płaszczyzny zginania, lecz także dokoła osi prostopadłych do płaszczyzny 

przekroju. Zamiast płaskiego zgięcia powstanie zgięcie osi pręta
według krzywej przestrzennej, a więc zgięcie połączone ze skrę­
ceniem. To zjawisko da się najłatwiej zademonstrować na zwy­
kłym linjale. Zginając linjał rękoma w płaszczyźnie jego najwięk­
szej sztywności, łatwo wyczuć tę graniczną wartość momentu zgi­
nającego, przy której płaska postać linji ugięcia przestaje być sta­
teczną. Rys. (415) przedstawia wyboczenie bslki I, jednym koń­
cem poziomo utwierdzonej, pod działaniem pionowego obciążenia

na końcu swobodnym. Zjawisko niestateczności 
jest możliwe przy różnych kształtach poprze­
cznego przekroju. Rozpatrzymy tutaj przypadek 
przekroju prostokątnego i dwuteowego. Ten drugi 
zwłaszcza ma większe znaczenie praktyczne z po­
wodu ogromnego rozpowszechnienia belek o prze­
kroju I. Dążenie do możliwie wielkiej oszczędno­
ści materjału, a zarazem jak największej sztyw­
ności w płaszczyźnie działania sił zniewala kon­
struktora do powiększania wysokości belki. Ze 
względów konstrukcyjnych nie można przytem 
zbytnio zwiększać szerokości pasów. W rezulta­
cie wypada przekrój, którego jeden z głównych 

momentów bezwładności jest wielokrotnie większy od drugiego. Belka ma wskutek tego niewystarczającą sztywność w kie­
runku prostopadłym do płaszczyzny działania sił i staje się możliwem zjawisko niestateczności. W konstrukcjach inżynier­
skich ten niedobór sztywności wynagradza się zwyczajnie dodatkowemi połączeniami, ale niekiedy nie można tych połą­
czeń wykonać ze względów konstrukcyjnych, to znów bywają niewystarczające; w obu przypadkach może belka okazać 
się znacznie mniej wytrzymałą, niż to wynika ze zwykłych obliczeń, polegających na wyznaczeniu największych naprężeń.

Przy badaniu stateczności płaskiej postaci zgięcia przyjmiemy, że skrzywienie osi w kierunku najmniejszej sztywno­
ści towarzyszy tylko obrót przekrojów poprzecznych belki, ich postać zaś pozostaje przytem niezmienioną. Takie zjawiska, 
jak wyboczenie pionowej ścianki lub poziomych stopek, rozpatrzyliśmy już w poprzednim paragrafie.
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Do wyznaczenia wielkości obciążenia krytycznego w różnych szczególnych przypadkach będziemy stosować metodę 
przybliżoną1). Na podstawie danych doświadczalnych i warunków podporowych obieramy przybliżoną postać wyboczenia; 
dla tej postaci obliczamy zmianę energji potencjalnej odkształcenia i porównywamy, ją z odpowiadającą pracą sił zewnę­

L. Prandtl, „Kipp-Erscheinungen“, Miinch. Diss., r. 1899;
S. P. Timoszen ko, „Ob ustojcziwośti płoskoj formy izgiba dwutawrowych bałok“, Izw. Petersb. Pol. Inst. z r. 1906;
A. N. Dinnik, „Ob ustojcziwosti płoskoj formy izgiba“, Izw. Dons. Pol. Inst. z r. 1913;
A. Korobow, Izw. Kij. Pol. Inst. z lat 1911 i 1913.

Kurs wytrzymałości materjałów

trznych. Rozpatrzmy zginanie wysokiej belki prostokątnej 
w obu końcach podpartej i obciążonej siłą 2 P (rys. 416), 
działającą w środku ciężkości środkowego przekroju 
poprzecznego. Warunki podporowe pozwalają na swo­
bodny obrót końców około głównych osi bezwładności 
przekroju, ale nie dopuszczają obrotu około osi belki. 
Zwiększając obciążenie, można osiągnąć granicę, przy 
której płaska postać ugięcia stanie się niestateczną i oś 
belki wyboczy się w kierunku naiłatwiejszego wygięcia, 
jak to wskazuje fig. (b). Postać tego wyboczenia da się 
określić wielkością wygięcia y w płaszczyźnie XY 
i wielkością kąta <p, określającego obroty oddzielnych 
przekrojów poprzecznych (lig. c). Przy obiorze przybli­
żonej postaci wyboczenia musimy uwzględnić, że mię­
dzy wielkościami y i y zachodzi związek, który łatwo 
ustawić przy pomocy różniczkowych równań równowagi.

Rys. 416

W dowolnym przekroju poprzecznym mn, moment zgięcia, działający w płaszczyźnie pionowej, równa się P(l — x). Wskutek 
obrotu przekroju przy wyboczeniu belki płaszczyzna momentu nie schodzi się już z głównemi płaszczyznami belki i zgięciu 
w kierunku najmniejszej sztywności będzie odpowiadać moment P(l—cc) ęp. Równanie różniczkowe zgiętej osi belki w płasz­
czyźnie XY ma tedy postać:

B = P (/ - x) cp dcc2 (a)

przyczem B oznacza najmniejszą sztywność zginania. (Tutaj pomijamy nachylenie płaszczyzny XY do płaszczyzny naj­
łatwiejszego wygięcia). Otrzymane równanie przedstawia potrzebną nam zależność między yay. Skrzywieniu belki w kie­
runku najłatwiejszego wygięcia odpowiada energja potencjalna zgięcia w płaszczyźnie najmniejszej sztywności i energja 
skręcenia. Obie postacie energji określają wzory:

pi C1
tfydcc i V2 = C\ (cp')2^, Jo Jo

przyczem C oznacza sztywność skręcania belki. W dalszym ciągu, dla przekroju I, będziemy się posługiwać przy oblicze­
niu C wzorem (48). Dla wyznaczenia pracy sił zewnętrznych, odpowiadającej przyjętemu wyboczeniu belki, trzeba znaleźć 
wyrażenie dla obniżenia punktu działania O ciężaru 2 P. W tym celu będziemy uważać punkt O za nieruchomy i obli­
czymy o ile podniosą się względem niego końce belki wskutek przyjętego skrzywienia. To podniesienie będzie oczywiście 
równać się szukanemu obniżeniu punktu O. Z powodu skrzywienia elementu belki, leżącego w przekroju mn, jej prawy 
koniec opisze łuk y"dx(l— x). Ponieważ skrzywienie zachodzi w płaszczyźnie największej giętkości, więc znalezione prze­
sunięcie końca belki jest nachylone do poziomu pod kątem cp, wskutek czego odpowiadającem podwyższeniem tego końca 
będzie: y" dcc (/ — x) <p. Uwzględniając skrzywienie wszystkich elementów belki, znajdziemy dla podniesienia końców, albo, 
co na jedno wychoclzi, dla obniżenia punktu O wyrażenie:

pi
\ y" (l — cc) cp dcc.
Jo

Podstawowem równaniem do wyznaczenia obciążenia krytycznego będzie przeto:
p i (*1 p1

2P\ y"(l — cc)cpdcc = B\ (y")2dx+c\ (cp')2dx ............................................... (b)
Jo Jo Jo

Przy obiorze przybliżonej postaci wyboczenia przyjmiemy wyrażenie dla kąta cp w postaci szeregu trygonometrycznego:

_ nx , „ ' 3jix , „ 5nx , , .<p = A COS -yj- + Aj cos -yj- + Aa COS -^y- + . . ...........................................................(c)

czyniącego zadość warunkom podporowym. Dla x = l wszystkie wyrazy stają się zerem, ponieważ końce belki nie obracają 
się względem osi X-ów. Dla x = 0 osiąga cp największą wartość. Wstawiwszy wyrażenie dla cp w rów. (a), znajdziemy od-

ł) Rozwiązanie kilku zadań tego rodzaju, drogą całkowania odpowiadających równań różniczkowych równowagi, 
znajduje się w pracach następujących:

23
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powiadającą wartość y". Następnie znajdziemy krytyczne obciążenie 2 Pkr z rów. (b) jako funkcję spółczynników A, Au As,... 
Pozostaje dobrać wartość tych spółczynników tak, aby wielkość Pkr była minimum. Ograniczywszy się do pierwszych dwu 
wyrazów szeregu (c) i wykonawszy potrzebne rachunki, znajdziemy w rów. (b):

Pkr2 = BC 
/*

O
i , i ~io /1 i \
6 + + 4 rc2 Z \ 6 + W '

(d)

Tutaj, podobnie jak pierwej, oznacza z stosunek Ai‘.A.
odpowiada:

Najmniejszą wartość dla Pkr otrzymamy, kładąc z = 0,051; temu

D _3,117/BC
^kr p

_D 16,936/BC
albo 2Pkr =------ -------------- • (391)

Krytyczną wartość zginającej siły określa przeto iloczyn z najmniejszej sztywności zgięcia przez sztywność skręcania, tu­
dzież rozpiętość belki. Wzory tejże postaci otrzymamy i przy innych sposobach działania sił. Np. przy zgięciu belki prosto­
kątnej jednym końcem utwierdzonej siłą P, działającą w środku ciężkości przekroju na drugim końcu (rys. 410), otrzymamy:

Pkr —
4,01 VBC 

l*
(392)

Przy zgięciu belki obciążonej równomiernie na rozpiętości 2/ (od podpory do podpory) jest:

, n 3,54/BC m 28,32/BC..
(ql^r =-----p----- , albo (2ą/)kr=——*)...................................................(393)

Badanie stateczności w przypadku zgięcia belek J komplikuje się nieco wskutek tego, że trzeba uwzględnić niejednakowe 
zgięcie pasów belki przy skrzywieniu jej osi w kierunku najłatwiejszego wygięcia. Jeżeli przez y będziemy, jak i poprzednio, 
oznaczać ugięcia osi belki w płaszczyźnie XY (rys. 411), to ugięcia górnego i dolnego pasa będą odpowiednio równe:

. h . h 
y + y T 1 J ~ y V,

jeżeli h jest wysokością belki. Oznaczywszy przez D sztywność pasa (względnie stopki) przy zgięciu w kierunku prosto­
padłym do płaszczyzny ścianki, otrzymamy dla energji zgięcia przy wyboczeniu belki w płaszczyźnie XY wyrażenie:

l 1 / h \2 l / h \2 l Dh2 \V^(B-2D) \ {y"Ydx + D \ y"+y<P2 + y"-??" dx = B\ (y")2 dx + \ W'^dx.
Jo Jo' z ' Jo' 0 ' Jo Jo

0
(Dla zwykłych belek J można z dostateczną dokładnością przyjąć D = y). Podstawowe rów. (b) do wyznaczenia obciąże­

nia krytycznego napiszemy teraz w postaci:

c1 c1 ę1 Dh2^1

l) Tutaj, podobnie jak we wz. (391) i wszystkich dalszych przypadkach belek w obu końcach podpartych, ozna­
cza l połowę rozpiętości, a P i ql połowę obciążenia.

2) Szereg tablic dla k, przy rozmaitych sposobach obciążenia i różnych ustaleniach końców, znajduje się w pracy 
autora: „O stateczności układów sprężystych".

Ob. także: „Kurs tieorji uprugosti", cz. II, str. 152.

2P\ y" (l-x)dx = B\ (y")2 dx + c\ (cp'j2 dx + ~-\ (cp")2 dx.......................................... (e)
Jo Jo Jo Jo

Ograniczając się, jak i w poprzednim przypadku, do dwu wyrazów w formule (c) dla kąta cp, znajdziemy z rów. (e) po
wykonaniu kwadratur:

D -2-BC 
Pkr - Z4 '

6

^(1 + 9z2)+^y2(1+81z2) 
O 04

1 10
i" 4 n2 Z z2

(D

Tutaj ma z znaczenie poprzednie, a prócz tego wprowadzono dla uproszczenia oznaczenie:

\2 = Dh*-.2Cl2.

Pozostaje teraz dobrać z w ten sposób, aby otrzymać dla obciążenia krytycznego najmniejszą wartość. Wzór dla Pkr za­
chowa poprzedni wygląd ogólny, a mianowicie: r—

Pkr^-^^................................................................................................... (394)

tylko spółczynnik k będzie się zmieniać w zależności od wielkości y. Szereg wartości dla k zawiera tablica A. Wzór (394) 
zachowuje swą ważność także przy innych sposobach działania sił, skoro-tylko wstawimy odpowiadającą wartość k 2). 
Jeżeli np. siła 2P nie działa w środku ciężkości środkowego przekroju, lecz w punkcie, odpowiadającym górnej krawędzi
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belki, to dla wyznaczenia k trzeba użyć tablicy B. Przy działaniu obciążenia równomiernie rozłożonego na górnej krawędzi 
belki w obu końcach podpartej, należy spółczynnik k we wzorze:

(ql)kr =
wyznaczyć według tablicy C.

kVBC 
P

TABLICA A

1
Y2 k

Pkr dla
O -0,0001

E=2.106 kg/cm2

_1_
Y2 k

Pkr dla 
0=0,0001 

E=2.106 kg/cm2

0,1 10,8 680 kg/cm1 24 2,24 2190 kg/cm2

1 3,99 800 „ 32 2,21 2500 „

2 3,20 910 „ 40 2,19 2770 „

4 2,73 1090 „ 50 2,18 3080 „

6 2,54 1250 „ 60 2,17 3360 „

8 2,45 1380 „ 70 2,16 3620 „

12 2,37 1620 „ 80 2,15 3860 „

16 2,29 1830 „ 90 2,15 4080 „

20 2,26 2020 „ 100 2,15 4300 ' „

1
oo 2,115

TABLICA B

Y2 k
pkr dla

<D=0,0001 
E=2.106 kg/cm2

£
Y2 k

pkr dla 
0=0,0001 

E=2.106 kg/cm2

0,1 6,42 405 kg/cm2 16 1,86 1490 kg/cm?

1 2,52 505 „ 24 1,88 1840 „

2 2,13 600 „ 32 1,89 2140 v

3 1,99 690 „ 40 1,92 2420 „

4 1,93 770 „ 50 1,93 2740 „

6 1,88 920 „ 60 1,94 3020 ,

8 1,86 1050 „ 70 1,95 3260 „

10 1,85 1170 „ 80 1,96 3500 B

12 1,85 1280 „ 100 1,97 3940 „

oo 2,115|

TABLICA C dla 0=0,0001 i E=2.106 kg/cm2

1__
Y2-

0,1 1 2 4 6 8 12 16 20

k = 11,6 4,54 3,80 3,43 3,31 3,28 3,27 3,22 3,23

Pkr = 367 454 538 684 813 923 1120 1290 1440 (kg/cm2)

1_
Y2-

24 32 40 50 60 70 80 90 ICO oo

k = 3,25 3,26 3,27 3,29 3,30 3,30 3,31 3,32 3,33 3,54

Pkr = 1590 1840 2080 2330 2560 2770 2980 3160 3330 (kg/cm2)

Przy obliczeniach praktycznych najdogodniej używać wartości krytycznych naprężeń, zamiast krytycznych obciążeń. 
Obliczenie pkr w powyżej przytoczonych przypadkach nie przedstawia żadnych trudności. Weźmy np. zgięcie belki w obu 
końcach podpartej pod wpływem siły 2P, działającej w środku rozpiętości. Największy moment zginający równa się PI,
a naprężenie krytyczne:

_ Pkr/ _EPkrl 2
Pkr- w - Bi

23*
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przyczem B} oznacza (największą) sztywność belki w płaszczyźnie ścianki. Wstawiwszy zamiast Pkr wartość z wzoru (394)
i uwzględniwszy, że:

znajdziemy:

c_ Dh2 _ Bh2
L 2l*yj ~ ~ 4Py2

P k B h2 „ k ....
"'‘’=e7'b;-(W=e'V*’ ,czcl‘ • (395)

W podanych powyżej tablicach obliczono wartości pkr przy założeniu, że 0=0,0001. Gdy dla obliczonej belki będzie O=— , 

to trzeba naprężenia znalezione z tablic pomnożyć przez — .

Ogólny tok obliczenia belki J ze względu na stateczność jest następujący: Z danych rozmiarów belki oznaczamy 
wielkości: F, t. j. pole przekroju poprzecznego, B = EI, t. j. najmniejszą sztywność zgięcia, Bi = EIt, t. j. największą 

. • • n B * • • • • j ~ 1 F4 . .1 2C12sztywność zgięcia, U =—t. j. sztywność zgięcia jednego pasu, C = jj-j- G, t. j. sztywność skręcania,

• B
1 - B.

2 1 .= —, h, t. j. wysokość przekroju i nakoniec l, t. j. połowę rozpiętości w przypadku belek, spoczywają­

cych na dwu podporach. Według obliczonej wartości znajdujemy z tablic naprężenie krytyczne dla przypadku, 

gdy 0=0,0001. Szukane pkr będzie równe temu naprężeniu pomnożonemu przez .

Weźmy np. nitowaną belkę J złożoną z blachy stojącej 70X0,8 (cm) i czterech kątówek 70X70X8 (mm). Rozpiętość 
belki 2/=3,25m. A zatem F=98,2cm2; B=446 Ekg. cm2; Bt=59140 Ekg. cm2; D=^B=223 E kg.cm2. Przyjąwszy dla że­

laza kowalnego F=2.106kglcm2 i G=8.105kg/cm2, znajdziemy: C=31,2.106 kg. cm2, ^=0,75 i

Jeżeli belka się zgina pod działaniem siły skupionej w środku ciężkości środkowego przekroju, to trzeba użyć 

tablicy /I. Dla obliczonej wartości znajdziemy drogą interpolacji: pur=767 kg/cm2. Bżeby otrzymać rzeczywistą wartość 

104 naprężenia krytycznego, trzeba znalezioną wielkość pomnożyć przez ;==. = ~3,5.
2860

Jeżeli na belkę działa obciążenie równomiernie rozłożone na górnej powierzchni belki, to należy zastosować tablicę C 

Dla -9=0,75
Y2

znajdujemy drogą interpolacji: pkr=430 kg/cm2. W celu otrzymania naprężeń krytycznych trzeba znalezioną

wielkość pomnożyć przez 3,5.
Wszystkie wywody odnoszące się do badania stateczności belek J polegają na założeniu, źe zjawisko wyboczenia 

zachodzi przy naprężeniach nieprzekraczających granicy sprężystości. Poza tą granicą będą nasze wzory dawać za wielkie 
wartości dla naprężeń krytycznych. Przy obliczeniach można przyjąćl), że rzeczywiste naprężenia krytyczne pkr są tyle 
razy mniejsze od naprężeń p'kr, określonych wzorami ważnemi w granicach sprężystości, ile razy rzeczywiste naprężenia 
przy prostem wyboczeniu pręta są mniejsze od naprężeń określonych wzorami Euler’a. Oto szereg p'kT i odpowiadających 
im rzeczywistych naprężeń krytycznych2) w kg/cm2:

p'kr = 2000 2500 3000 3500 4000 5000 7000 10000 13000 20000 30000 50000

P = 1860 2020 2140 2230 2310 2420 2570 2710 2790 2890 3000 3080

Posługując się wyłożonemi sposobami, możemy według rozmiarów belki i sposobu działania sił znaleźć wielkość p'kr; 
powyższa tablica pozwala wówczas znaleźć wielkość rzeczywistego naprężenia krytycznego pkr. Wyznaczywszy tą drogą 
naprężenia krytyczne dla obliczanej belki, możemy, znając doraźną wytrzymałość materjału, znaleźć spółczynnik zmniej­
szenia, przez który trzeba mnożyć naprężenie R, dopuszczalne przy prostem rozciąganiu.

Na tem kończymy badanie kwestji stateczności układów sprężystych. Dalsze szczegóły można znaleźć w pracach 
powyżej cytowanych.

4) Ob. „O stateczności układów sprężystych", str. 147.
2) Liczby otrzymane na podstawie tablicy Jasińskiego.

Poli t e<h fi i ki



KOŃCOWE SŁOWO TŁUMACZA

Nieprzewidziane trudności wydawnicze sprawiły, że zgórą rok minął od napisania przedmowy, 
która wobec tego straciła po części aktualność. (W ciągu r. 1921 ukazała się bowiem „Wytrzy­
małość Tworzyw" prof. L. Karasińskiego w drugiem wydaniu, obejmującem całość. Ory­
ginalna ta książka stanowi pod pewnemi względami pożądane uzupełnienie niniejszej i nawzajem). 
Wzgląd na koszta i brak czasu stanęły niestety na przeszkodzie w dodaniu dalszych własnych 
uzupełnień, wskutek czego musiałem poprzestać na odesłaniu Sz. Czytelników do źródeł. Dotyczy 
to szczególnie nowszych teoryj wytrzymałości, zagadnienia ściskania kul i wałków (str. 65), na­
prężeń termicznych w grubościennej rurze (str. 277) i kwestji wytrzymałości prętów ściskanych 
(str. 333). Zapowiedziana w odsyłaczu na str. 286 moja praca p. t. „Teorja płyt prostokątnie- 
różnokierunkowych...“ już opuściła prasę drukarską i znajduje się na składzie w księgar­
niach Gubrynowicza i Syna we Lwowie i w Warszawie, oraz Gebethnera i Spki w Krakowie. 
Inżynierowie, chcący pracować naukowo w dziedzinie obliczeń konstrukcyj żelazno-betonowych, 
znajdą tam podostatkiem nowego materjału do pracy.

Wielce pomocnymi korekcie byli mi pp. dr. Z. Fuchs, adjunkt katedry mechaniki techni­
cznej i K. Górka, asystent tejże katedry, za co im obu składam gorące podziękowanie. Nie mogąc 
pominąć milczeniem szczegółu, że, wskutek długiego trwania druku książki, nastąpiło ustalenie jej 
pisowni dopiero w dalszych arkuszach, poczuwam się nakoniec do miłego obowiązku szczerego 
podziękowania Sz. Zarządom „Książnicy Polskiej" T-wa Nauczycieli Szkół Wyższych i drukarni 
„Grafia" za wytworną, jak na obecne czasy, wydawniczą szatę książki.

We Lwowie w marcu 1922

M. T. HUBER
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