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Introduction 

1. Average (mean) values, variability and the distribution of elements in a sample 

2. Random variables 

3. The normal distribution 

4. Distributions of statistics. 

5. Confidence intervals 

6. Parametric tests 
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Introduction 

 

 

Course Aims 

The course aims to: 

 

Course Objectives 

Upon completion of this course, the students should be able to: 

1. understand the techniques of selecting, collecting and organizing data; 

2. understand and apply the techniques of summarizing, analyzing and 

presenting statistical data in a business environment; 

3. understand statistical measures and inference and apply them to business 

problems;  

4. interpret quantitative and statistical analysis. 

 

General description 

Year of Study   : 1 

Number of Credits  : 3 credits 

Duration in Weeks  : 8 weeks 

Contact Hours Per Week : Lecture and Computer Laboratory  (2 hours) 

Pre-requisite Course(s)  : Probability theory 

 

1. provide a quantitative foundation in statistical analysis for business; 
2. equip students with knowledge in various statistical techniques applicable 

to business problems; 
3. enable students to interpret analytical and statistical results; and 
4. give students an overall appreciation of the role and benefit of computers 

in statistical analysis. 
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Course Outline 

1. Average (mean) values, variability and the distribution of elements in a 

sample n of data  

 2.1   Frequency distributions 

 2.2   Cumulative frequency distributions 

 2.3   Graphical means of presentation 

 2.4   Exploratory data analysis 

 

2. Measures of central tendency and dispersion 

 3.1   Mean 

 3.2   Median 

3.3   Mode 

 3.4   Range 

 3.5   Variance and standard deviation 

 3.6   Coefficient of variation 

 

3. Discrete and continuous probability distributions 

 5.1   Binomial probability distributions 

 5.2   Poisson probability distributions 

 5.3   Normal probability distribution 

 5.4   Normal approximation of the binomial and Poisson distributions 
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5.  Tests of hypotheses 

   7.1   Establishing hypotheses 

7.2   Hypotheses regarding  one or two means 

 7.3   Hypotheses regarding one or two proportions 

 

Teaching Approach 

The course will be taught via lectures and computer laboratories. Students will be 

introduced to realistic problems and various quantitative techniques used. Equal 

emphasis will be placed on the calculation of quantitative measures and the 

interpretation of results. The computer laboratories will be used to further 

develop and explore quantitative methods for problem solving. 

 

Assessment 

Final Examination 100% 

   

Resources 

Principal Reading:  

Aczel, Sounderpandian, Complete Business Statistics, 7
th
 edition, McGraw 

Hill, 2009. 
 

4. 

 6.1   Distribution of sample means 

Estimation 

 6.2   Estimators 

 6.3   Confidence intervals for means 

 6.4   Confidence intervals for proportions 
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Computer packages: 

1) MS Excel 

2) Open Office: http://download.openoffice.org/    

3) Statistical macros: 

 http://sourceforge.net/projects/ooomacros/files/OOo%20Statistics/ 

4) SPSS: the version for students can be obtained from room 317, build. B-1. 

 

The lectures presented in this script are intended to enrich students' statistical 

knowledge. Still, it is advisable to begin studying the problem from Aczel’s book  

and then to return to the appropriate lecture from the script. 

The lecture notes presented here are designed to go with the educational 

materials for the statistics laboratory. In this regard, the notes for these two 

classes constitute the basic material for the laboratory, but it is still advisable to 

return to Aczel’s book. Combined reading of all these materials should result in a 

good knowledge of statistics. 

Supplementary Reading: 
1. Levine, Statistics for Managers Using Excel and Student CD Package

2.  Aczel, 

,  
5th edition,  2008, Prentice Hall. (ISBN-10: 0136149901)  

Complete Business Statistics
 

, 6th edition, McGraw Hill, 2006. 
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Lecture I: Average (mean) values, variability and the distribution of elements in a 

sample 

The basic question when analyzing a sample is the question regarding what values 

could be used to characterise the entire sample in a synthetic way. For example, 

we know that a tram should arrive at a certain stop at 15 minute intervals and our 

requirement for regularity should not be incompatible (it seems) with the actual 

observations of the arrival rate. For example, we observed the following times 

between arrivals (in minutes): 13, 17, 16, 16, 14, and 14. By saying that the tram 

runs every 15 minutes, we mean that this is the arithmetic average (mean) of 

these observations, i.e. 

∑
=

=
+++

=
n

i

i
n x

nn

xxx
x

1

21 1...
, 

where xi denotes the i-th observation, and x  denotes the arithmetic mean of 

these observations. 

Let's characterize the properties of such a sample: 

1)
1

n

i

i

nx x
=

=∑ , that is, knowing the average value and the number of observations in 

a sample we can determine the sum of the observed values.  

In the example of the trams, we have 6 observations; the sum is 13 +17 +16 +16 

+14 +14 = 90. The average value (also called the expected value for the sample) 

is 15x = . Thus, 6 times 15 is equal to 90. This result is obvious, but how often do 

you use it without thinking about its origin? For example, if the average return on 

one share is PLN 10, you expect to get a PLN 1000 profit from 100 shares. The key 

to the correctness of this reasoning is the notion of average value, which, as we 

show next is not, however,  always a unique concept. 
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2)
min max
x x x≤ ≤ . This is another characteristic of the average of the sample, which 

seems pretty obvious. min (13, 17, 16, 16, 14, 14) = 13, max (13, 17, 16, 16, 14, 14) 

= 17. So, the average value must satisfy 13 17x< < , but none of the observed 

values are equal to it. Therefore, let us remember: the mean value may never be 

observed! 

3)
1

( ) 0
n

i

i

x x
=

− =∑ , i.e. the average value is “central" with respect to all observations 

and this "centring" is the best possible. 

It is easy to show that the functional 2

1
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i
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4) The mean of a representative sample is a good approximation of the average in 

the population. 

Note that this property is often used to justify the following practical reasoning: 

because we have a representative sample with a given average value, then we 

believe that the average in the population is similar. Underlying this reasoning is 

the so called “law of large numbers”, which ensures that we do not commit an 

error by using such an argument. Here, we refer the inquisitive reader to the 

recommended literature. 

5) The arithmetic mean is sensitive to extreme values. 

Suppose in our example of the trams that one of these trams came almost 
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immediately after the previous tram had left the stop (the phenomenon of tram 

convoys, which sometimes occurs to the annoyance of passengers,). So our data 

will look like this: 

0, 17, 16, 16, 14, 14, 

the mean value for this sample is 12,83x = , a decrease of 15%. This is a very 

radical change! 

From the above properties, we could imagine that one way to estimate the 

expected value in the population would be to use: 

* min max
1

2

x x
m

+
= , 

where *

1
m  denotes the estimated expected value for the population. We can see 

immediately that this expression is very sensitive to the extreme values (minimum 

and maximum). Hence, such estimates are very untrustworthy. One can show that 

by using the following formula we obtain a significantly better estimate: 

* min 1 max 1
2

2

x x
m − −+
= ,  

where *

2m  denotes the estimated expected value in the population, 
min 1
x −  

and
max 1
x − , denote the 2

nd
 smallest and 2

nd
 largest observations, respectively, i.e. 

the new extreme values after the minimum and maximum values have been 

deleted. 

In the example of the trams, the expected value for the sample 

was 15x = . Deletion of the extremes means that the sample looks as follows: 16, 

16, 14, 14. Its expected value (and thus the estimate of the expected value in the 

population) is still 15, although we have achieved this result with less 

effort. Unfortunately, we do not always get such good results. Hence, the 

recommendation is to use such an estimate only when we want a fast, easy way 
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to obtain results. Obviously, the larger the sample, the better the estimate 

obtained. 

 

Let us return to our considerations related to the expected value (average) from 

the sample. Does it always work? Consider the following example:  

Example. 

The work of three workers was observed for eight hours: 

Worker A: took 2 minutes to make a single component, worker B - 3 min, and 

worker C - 6 min. What is the average time needed to make a single item? 

Calculating the arithmetic mean, we obtain 
2 3 6 2

3
3 3

x
+ +

= = . Thus using property 

#1 of the arithmetic mean, we obtain that in one shift (480 min.) a "statistical" 

workman should produce 
11

480 : 130,91
3
=  items, and three workers respectively 

392.73 elements. However, how many components were produced in reality? 

Worker # 1 produced 240 items (480 / 2 = 240). 

Worker # 2 produced 160 items (480 / 3 = 160). 

Worker # 3 produced 80 items (480 / 6 = 80). 

The three workers thus produced 480 elements and not, as obtained (using the 

arithmetic mean) 392.73 elements. We should infer from this that the arithmetic 

mean is not suitable for estimating the mean of a set of rates (such as labour 

productivity in units per hour, effort in minutes per task, speed in kilometres per 

hour, etc.). Here we use a different measure, namely the harmonic mean: 

∑
=

=
n

i i

H

x

n
x

1

1
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Let’s conduct our estimates on the production of these three workers again, but 

now using the harmonic mean, 

3
3

1 1 1

2 3 6

H
x = =

+ +
. 

Thus, a worker produces an average of 160 elements per shift (480 / 3 = 160) and 

three workers 480 components, respectively. Note that this result is in line with 

their actual production. 

Example. 

The population of a town in three consecutive periods is 5,000, 6500, and 7450 

people, respectively. What is the average relative increase in population? 

We calculate the relative population increase year to year: 

1

6500
1,3

5000
x = =          2

7450
1,147

6500
x = =  

Thus the average population growth is: 

1,3 1,147
1,2230

2
x

+
= =  

Let's see whether this result is correct? Assume that in both years the population 

grew at the average rate of 1.2230, i.e. from 5000 to 6115 in the first year and 

from 6115 to 1.223 times 6115=7479 in the second year. We see that even taking 

into account the effect of approximation, this result does not give the actual size 

of the population, which is 7,450 people. 

Note that if instead of the average (arithmetic) rate of population growth, we 

use the so called geometric mean: 

n

n

i

i
n

nG xxxxx ∏
=

==
1

21 ... , 
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this result is almost exact. 

We obtain the geometric mean 1,3 1,47 1,2206
G
x = ⋅ = . Assume that the 

population grew at the geometric average rate of 1.2206 per year, i.e. in the first 

year from 5000 to 6103 and in the second year from 6103 to 1.223 times 6103 = 

7450. This is the correct result. 

We see here that the geometric mean is suitable, for example, to study the rate of 

population growth. 

At the end of our discussion of the expected values for a sample, let’s ask whether 

there may be two different samples with the same mean value. The obvious 

answer is that this is possible. For example, consider the following two trivial two-

element samples: A = (2, -2) and B = (1000000, -1000000). The average value for 

both samples is the same and equals 0. 

Variability and Measures of variability. 

One of the basic research questions regarding a sample of data is a study of its 

variability. Variability in data is so important that it can even be stated in general 

that if there is no variation in the surveyed population, it usually cannot be stated 

with certainty that we know this population on the basis of observed data.  

Of course, if we have a large number of identical observations, we are almost sure 

(statisticians say that "with 95% certainty" or greater) that the test population is 

made up of such observations, regardless of whether our knowledge is stored in 

the form of numbers (measurable characteristics) or as a categorisation. For 

example, if we pick a crop on a dark night and we only get strawberries, in a way 

we can say, almost with certainty (i.e. at least 95% certainty), that this is a field of 

strawberries. Especially if we have already have 1000 strawberries! However, 

intuitively we feel that our confidence is significantly reduced if, for example, we 

have only ten strawberries (because it might be that one farmer planted a bed of 

strawberries on the edge of a corn field, or field of cauliflowers), not to mention 
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that when we have 10 strawberries we might find, for example, a cauliflower or 

an ear of maize. Let us not forget that no prior knowledge is given to us in this 

case (as usual in practice), i.e. we cannot see the field! We must recognize this 

field before harvesting the fruit.  

Let's try to think about what characterises the variability of a sample. Here are 

examples of three data sets:  

1) (apple, apple, ... , apple) (in other words, all apples)  

2) (apple, apple, ..., apple, pear) (apples and a pear), and  

3) (apple, pear, pear, apple, ..., pear) (a mixture of apples and pears).  

Of course, these examples can also be presented in the form of sets of numbers, 

as is usually done in textbooks on statistics:  

1) (1, 1, ..., 1),  

2) (1, 1, ..., 1, 0),  

3) (1, 0, 0, 1, ..., 0).  

If we think of variability, it's pretty intuitive that we can say that the first sample is 

a set of constant (fixed) values, while the second set is much less volatile than the 

third set. Therefore, any way of measuring the variability of a set should be 

consistent with our intuition and "able to" distinguish between these sets in terms 

of volatility.  

The most basic, easy to calculate, measure of the variability of any set of numbers 

is the range, R, defined as follows:  

max minR x x= −  ,  

where maxx denotes the maximum value in a set of numbers, and minx denotes the 

minimum value in this set.  

Note that, in terms of variation, this measure of variability sufficiently 

distinguishes the first of the three sets above from the others, but is not sensitive 

enough to distinguish the second set from the third. The range for the first set is 0 
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(and this is true for all invariant sets) and 1-0=1 for the second and third sets (in 

general, 0>R for any set in which there is at least one element that differs from 

the others).   

Thus the range is a measure of variability that is capable of detecting samples in 

which there is no variation,  but cannot often distinguish between the intensity of 

variation when all observations are within a given range. The information that we 

obtain from the use of the range of the sample as a measure of variability is 

purely the knowledge of the difference between the extremes. Even so, we 

should start any study the variability from this measure.  

A measure which allows for a more meaningful description of the intensity of 

variability is the sample variance, s
2
. It is defined as follows: 

∑
=

−=
n

i
i

xx
n

s
1

22 )(
1

 , 

where n is the number of observations (sample size), ix  the i-th element of this 

sample and x  the arithmetic average of these numbers: ∑
=

=
n

i

ix
n

x

1

1
.  

Equivalently, we can determine the sample variance using: 

∑
=

−=
n

i
i

xx
n

s
1

222 1
. 

Again, note that the sample variance is zero when all the observations are of 

equal value and that for any set of numbers in which at least one element is 

different from the others, the sample variance is positive. So, the sample variance 

can distinguish the first set of the three considered above from the other two, as 

does the range. Moreover, the sample variance is capable of distinguishing the 

intensity of variability, which cannot be known just from the range of a 

sample. Consider the following example of two sets A = (0, 0, 0, 1), and B = (1, 0, 
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1, 0). You will notice that the set B is characterized by a greater variability than the 

set A.  

The range for both sets  is 1, so the range does not distinguish between these two 

sets in terms of variability. 

The variance of set A is 0.25. The corresponding variance for the set B is 0.33 (we 

used the definition with n-1 in the denominator to calculate these – it is so called 

unbiased variance). Thus the set B is more volatile than the set A (according to our 

intuitive understanding of variability). 

One of the problems with using the sample variance as a measure of variability is 

the unit in which it is measured. It can be seen from the definition of the sample 

variance that it is the average of the squared distance from the arithmetic mean. 

Hence, if the units of our measurements are e.g.  miles, years, etc., then the units 

of the sample variance are the square of these units i.e. miles
2
 years

2
 , 

respectively). This distorts our understanding of the ratio between such 

measures. Therefore, in practice, we most frequently use the sample standard 

deviation, which is the square root of the variance: 

∑
=

−==
n

i

i xx
n

s

1

222 1
σ  . 

The sample standard deviation (also sometimes denoted as s) has the same 

characteristics as the variance, but it is much easier to interpret the results. For 

example, for the above sets A and B, we obtain, respectively: 5,0=Aσ  and  

58,0=Bσ . The set B is therefore characterized by greater variability and the 

resulting ratio between these standard deviations probably adequately reflects 

the difference between the variability of both sets. 

Consider another example, which will allow us even greater precision in 

measuring  variability. Define the following sets: C = (0, 0, 0, 1) and D = (99, 99, 99, 

100). These samples are characterized by the same variance (one element differs 
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from the rest by 1; 5,0== DC σσ ), but we clearly see that the "consequences" of 

this variability are much smaller for the set D than the "consequences" for the set 

C: a difference of one is not so important if the point of reference is 99 or 100 

when compared to the same difference if the reference point is 0 or 1. Therefore, 

another measure of variability takes into account this aspect. This is the 

coefficient of variation, V, (usually given as a percentage): 

x
V

σ
=  . 

For the sets C and D, it is respectively: %200=CV  and %5,0=DV  . This is the 

correct measure of the variability of these samples. 

Now consider an experiment involving the analysis of 9 samples of size 12 (see 

Table 1) 

Table 1 Descriptive parameters for some experiments. 

I II III IV V VI VII VIII IX

1 2 0.99 0.98 0.97 0.96 0.92 0.88 0.75

1 1 1.01 1.02 1.03 1.04 1.08 1.12 1.25

1 1 0.99 0.98 0.97 0.96 0.92 0.88 0.75

1 1 1.01 1.02 1.03 1.04 1.08 1.12 1.25

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 0.99 0.98 0.97 0.96 0.92 0.88 0.75

1 1 1.01 1.02 1.03 1.04 1.08 1.12 1.25

1 1 0.99 0.98 0.97 0.96 0.92 0.88 0.75

1 1 1.01 1.02 1.03 1.04 1.08 1.12 1.25

Minimum 1 1 0.99 0.98 0.97 0.96 0.92 0.88 0.75

Maximum 1 2 1.01 1.02 1.03 1.04 1.08 1.12 1.25

Range 0 1 0.02 0.04 0.06 0.08 0.16 0.24 0.5

Mean value 1 1.083333 1 1 1 1 1 1 1

Sample variance 0 0.083333 7.27E-05 0.000291 0.000655 0.001164 0.004655 0.010473 0.045455

Standard deviation 0 0.288675 0.008528 0.017056 0.025584 0.034112 0.068224 0.102336 0.213201

Variability coefficient 0.00% 26.65% 0.85% 1.71% 2.56% 3.41% 6.82% 10.23% 21.32%

Data in individual experiments

Descriptive parameters

 

In the first experiment, we observed the value 1 on each of 12 occasions. What 

can we say about the phenomenon, which has just been observed in the form of 

twelve ones? Actually, nothing meaningful, except the assumption that this is a 
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constant value. However, without additional information, we cannot assess the 

certainty of this statement. Of course, if we had some additional knowledge, our 

situation would be quite different. For example, suppose we know that these 

observations represent the fact that a sample of twelve randomly drawn school 

pupils was composed entirely of girls (a frequently used coding scheme: 1 

represents a girl, a boy could be represented by 2). General knowledge tells us 

that the proportions of boys and girls among pupils should be more or less equal. 

Hence the probability that we get twelve ones in a row is 1 in 2
12

, or 

approximately 0.000244. Because this is an extremely unlikely event, our 

conclusion (and this is the domain of statistical inference) in this example should 

read: we chose pupils from a girls' school. This conclusion is almost certain. 

However, the importance of additional information should be stressed (the 

proportions of boys and girls in the population of children), without which this 

inference is not possible. 

In the second experiment, we observed 11 ones and one two. In the above 

example, the convention would mean that we have found 11 girls and one boy 

among the 12 randomly chosen school. Could we still say that we are almost 

certainly in a girls’ school? Using statistical inference, we could probably continue 

to argue for this case (although with less certainty), but, let us stress again that we 

cannot use any additional information to resolve this (assuming, of course, that 

the boy was there by chance, visiting his sister, or the "2" recorded is the result of 

an error in the coding - because after all, this happens from time to time). Note 

that such consideration is highly specific in that the observation of just one male 

student means that it is not a school that is 100% for girls. Another thing, on the 

basis of these data, can we conclude that the population of students consists of 

10% boys and 90% girls? Clearly the sample size for making such a statement is 

too small!  

Experiment 2 differs from experiment 1 in that variability is observed in 
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experiment 2 and, in an intuitive way, we can conclude that the observations in 

experiment II are more volatile than in experiment I. But is the observed 

variability so large that it already allows us to accept the hypothesis that there are 

two genders of pupils? Or put another way, is the cause of the observed variation 

the "presence" of two genders of students? This is a problem that we will return 

to in the analysis of volatility.  

In experiments III - IX, we observe more and more volatility, so we can track how 

the values of the measures of variability change . It's not surprising that these 

values increase with the volatility of the data. Some surprise may be caused by 

the fact that the introduction of just one observation different from the others 

(experiment II) can create such a strong distortion that only the clear introduction 

of variability in experiment IX is comparable, even though the coefficient of 

variation V in experiment IX, is approximately 5 percentage points less than the 

value of this coefficient in experiment II.  

In practice, it is considered that data for which the coefficient of variation V is less 

than 10% do not lend themselves to the search for the causal factors of such 

variability. This is a very important piece of information because, according to it, 

data sets for which the coefficient of variation is less than 10% are considered to 

be quasi-constant, and therefore not useful in giving the relevant 

information. Once again, this is to point out that data without volatility are 

undesirable, as they do not furnish additional information.  

Consider another measure, the coefficient of variation V. It is not dependent on 

the order of the observations (this also applies to other measures of volatility, i.e. 

the sample range, variance and standard deviation). Therefore, its value can be 

inferred from the characteristics of the ordered data. In addition, the coefficient 

of variation reacts more strongly to deviations among the data in a small sample 

than in a large sample. Consider the data in the following example:  
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 Data strings of different lengths 

 4 8 12 16 

 1 1 1 1 

 0 0 0 0 

 1 1 1 1 

 0 0 0 0 

  1 1 1 

  0 0 0 

  1 1 1 

  0 0 0 

   1 1 

   0 0 

   1 1 

   0 0 

    1 

    0 

    1 

    0 

V= 115,47% 106,90% 104,45% 103,28% 

 

The above-mentioned measure of variability will be the basis for further 

discussion in which we analyze the causes of the variability observed. 

Let us return to the problem of analysing the average of the sample. Recall the 

example regarding the existence of two samples with the same mean value.  

Consider the samples: A = (2, -2) and B = (1000000, -1000000). The average value 

is the same for both samples and equal to 0. We already know that what 

differentiates between these samples is their variability: the standard deviation 

for sample A is 2,8284
A

σ = , while for sample B the standard deviation is 
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1414214
B

σ = , i.e.  500,000 times larger. Maybe samples that have the same mean 

value and the same standard deviation (equal variability) are 

identical? Unfortunately, the answer is to this question is also no. We will show 

this in the following example. 

Example. 

Consider a study of the hourly wage rates in three different companies, For 

simplicity, assume that they employ the same number of employees: 100 people. 

    Percentage of employees 

Hourly wages Comp. I Comp. II Comp. III 

10-20  10 5 10 

20-30  20 35 25 

30-40  40 25 25 

40-50  20 25 35 

50-60  10 10 5 

Total:   100 100 100 

     

Average:  35 35 35 

Variance:   120 120 120 

 

So we have three 100-element samples, which have the same average value (35) 

and the same variability (120). But these are different samples. The diversity of 

these samples can be seen even better when we draw their histograms. 
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Thus, in addition to the average (expected) value and the variability, we should 

also consider the symmetry of the distribution of a sample. The histogram for 

company I (left chart) is symmetric. The histogram for company II (middle chart) is 

right skewed. The histogram for company III (right chart) is left skewed. It remains 

for us to find a way of determining the type of asymmetry (skewness) and 

“distinguishing” it from symmetry. 

Positional characteristics. 

It has not yet been mentioned but we should always order a sample. This involves 

ranking items according to their values. This can be done in two ways: from the 

largest (maximum) to the smallest (minimum) element, or vice versa. Note that 

such an arrangement itself provides a wealth of information about the sample: 

the observed value of the maximum, minimum, range (including the position in 

which the average value is found), etc. 

The primary way of assessing the distribution of the elements in the ordered 

sample between the minimum and maximum value is to provide the so-

called percentiles, i.e. according to position in the ordered series, which "divides" 

the ordering according to the given proportion. So, the 50-th percentile of the 

sample (also called the median) is the value below which 50% of the ordered 

sample lies (the median, depending on the exact definition of percentile, is 

defined as one of the following two divisions: 50% of observations are below or 

above the median). For example, consider the following definition of the 100 thλ -
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percentile: the [ ] 1nλ + -th observation in the ordered list, where n is the sample 

size and [a] denotes the integer part of a, we find that the median (denoted Me), 

for the tram example (after ordering the arrival times of the trams are 13, 14, 14, 

16 , 16, 17) is the value of the item in position 
1

6 1 4
2

 ⋅ + =  
, i.e. Me = 16 

Note that the question regarding the top 20% of the waiting times for the tram on 

the basis of the sample, is the question regarding the 80
th

  percentile (80% of the 

observations are to the left and 20% of the observations are to the right of it), 

which we find from the value of the element located in position [ ]6 0,8 1 5⋅ + = . 

This value is 16, or in other words 20% of the observations concerning the arrival 

times of trams are not less than 16 minutes. 

Another characterisation of the sample is given by the modal value, which is the 

value which appears most often in the sample. Note that the modal value is not 

necessarily unique: in the sample of the arrival times of trams there are two 

observations of both 14 and 16. Depending on the definition used, it is assumed 

that in this case there is no modal value for the sample in question, or we take the 

smallest of the possible modal values (for example, in calculations using Excel). 

Therefore, let us return to the example of the structure of the hourly wages of the 

three companies. We have found that all these samples have the same average 

value (35) and the same variance (120). What differs, however, are the median 

values: Me (I) = 35, Me (II) = 34, and Me (III) = 36. We also see that the 

corresponding modal values are (usually denoted as Mo): 35, 27.5 and 42.5, 

respectively.  

Knowing the median, modal and average values enables us to resolve the problem 

regarding the symmetry of the distribution of the sample. Hence,   

- For symmetrical distributions: x Me Mo= = ,  

- For right skewed distributions: x Me Mo> > , and  
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- For left skewed distributions x Me Mo< < .  

We obtain the following relevant indicators (measures) of asymmetry:  

- Index of skewness: x Mo− ,  

- Standardized skewness ratio: S

x Mo
A

s

−
=  and  

- Coefficient of asymmetry

( )3
3

2 2

1
i

as

x x
m n

A
s s

−
= =

∑
.  

At the end of our discussion on the structure of a sample, we present the so 

called "3 sigma" rule. This says that for sufficiently large samples (generally 

assumed to be greater than 30 observations) over 90% of the surveyed population 

(not only the observations!) is in the range [ ]3 , 3 x s x s− + . The "three sigma" rule 

comes directly from Chebyshev’s
1
 inequality (for its own sake, please read the 

recommended literature) and has a very practical significance. For example, by 

analyzing the arrival times of trams, we find that the average value is 15x =  and 

the standard deviation (sigma) 1,55s = . Assuming for simplicity that the test 

sample is sufficiently large, we find from the "three sigma" rule that 90% of the 

average waiting times are found in the range [ ]10,35; 19,65 . This result applies to 

the whole population, and therefore to the arrival times of trams other than those 

in our sample. Colloquially speaking, 90% of the time we do not have to wait for a 

tram for more than 20 minutes. 

                                                           
1
 One can find a brief description of the life and the work of Chebyshev at 

http://en.wikipedia.org/wiki/Pafnuty_Chebyshev 

24



Lecture II.  Random variables. 

 

I hope you have all seen the beginning of a match when the referee tosses a coin 

to decide which team will start on which half of the pitch. We assume that the 

coin is an honest and fair judge. By the fairness of the coin, we mean that its two 

sides have the same chance of falling in a single toss. Let's try to present the 

situation in a more formal manner. Now, let P (.) denote the probability of the 

event given in brackets. We thus assume that: 

P(head)=P(tail)= ½ 

Because there are many such scenarios that follow a similar rule, it will be more 

convenient to talk about success and failure, and the context will decide what we 

call a success and what we call a failure. So, if throwing a head is a success (in a 

football match this could mean playing with the sun behind you) our assumption 

is that: 

P(failure)=P(success)= ½ 

Note that if the chance of failure is two times greater than the chance of success, 

then the above statement would look different: 

P(success)=1/3, P(failure)=2/3, 

and this clearly does not describe a coin toss (where we expect failure and success 

with an equal chance). 

If now we code failure and success using numerical values, we obtain a 

mathematical expression, which we call a random variable, usually denoted by a 

capital letter at the end of the alphabet, such as X. Encoding success and failure in 

the following manner: 1 if a success occurred, 0 if a failure occurred, we obtain 

the so called coin pattern: 
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1
( 1) ( 0)

2
P X P X= = = = , 

or more generally: 

( 1) ; ( 0) 1 , 0 1    for P X p P X p p= = = = − < <  

Obviously, coding the values of success and failure using the numbers 0 and 1 is 

totally arbitrary, although, as we will show later, convenient. But we could equally 

well attribute a value of 1,000,000  to success and -3.14 to failure. In general, such 

a scheme, therefore, can be defined as follows: 

1 2
( ) ; ( ) 1 , 0 1    for P X x p P X x p p= = = = − < < , 

where x1 and x2, are the numerical values (generally these are real numbers) 

representing success and failure, respectively. 

It should be noted that the random variable described above is called a random 

variable with a two-point distribution. The description given here is only intuitive 

and it is suggested that the reader look in their notes or any textbook of 

probability and recall the formal definition of a random variable. 

Thus, if an event takes place according to such a two point distribution 

(sometimes we say according to the coin scheme, although it is not in general a 

fair coin), we say that the event has a two-point distribution. Note that if a 

student asked about the chances of passing the statistics examination, an answer 

given on the basis of a coin toss would give the correct answer according to the 

fair coin scheme. This clearly does not apply to students of Business Information 

Systems, since we believe that their probability of success in the statistics exam is 

significantly higher.  We shall return to the concept of significance later. 

Let us return to the two-point distribution: 

( 1) ; ( 0) 1 , 0 1    for P X p P X p p= = = = − < < . 
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The convenience of such a definition lies, among other things, in the fact that if 

we define Y as the sum of 0-1 random variables defined in such a way, then Y is 

simply the number of successes. For example, if we are dealing with n coin tosses, 

1

n

i

i

Y X
=

=∑  will be the sum of the resulting ones and zeros (i.e. just the ones) and 

hence we count the number of successes (if one denotes a success). For example, 

throwing a coin 10 times, if tails is coded as 1 (success), the situation in which we 

never throw tails ( 0Y = ) might occur and other extreme situation occurs when we 

throw only tails ( 10Y = ). Of course, we correctly think that a mixture of heads and 

tails is rather more likely than such extreme results, although they are not 

impossible. So if k is the number of successes in n trials, then k takes values from 0 

to n, which is written as 0,1,...,k n= . 

It is clear that the sum of random variables is itself a random variable, i.e. Y is a 

random variable. To complete the definition of Y we need to give the probability 

of obtaining each possible value of k, i.e. we must answer the following question: 

what is the distribution of this random variable? 

Before we give the formula for the distribution defining Y as a random variable, let 

us turn our attention to another aspect of tossing a coin. Any reasonable reader, 

based on his or her life experience, will agree that it is not possible, for example, if 

we know what we have obtained in the first five throws, to state what  will fall in 

the sixth throw: heads or tails (success or failure)? We know that the results of 

successive throws are independent: every single coin toss is carried out 

spontaneously and the results already obtained have no impact on future 

results. In probability theory, such events are called independent. Again, we ask 

the reader to refresh their knowledge on this subject. 

Returning to the variable Y, we see that we are dealing here with the sum of n 

independent random variables each from the same 0-1 distribution. The 
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distribution of the random variable Y is called the Bernoulli distribution (or 

binomial distribution) and often denoted B(n, p, k) . Its definition is as follows: 

( ) (1 )
k n k

n
P Y k p p

k

− 
= = − 

 
,  0 1, 0,1,...,   p k n< < = . 

In other words, we have answered the question regarding what is the probability 

of obtaining k successes in n independent identical trials. 

Note that this provides a general pattern for the definition of random 

variables. You must specify the values that a random variable can take and the 

likelihood of each of these values. So, generally a distribution of this type, where 

the random variable X can take m values x1, x2, … xm (sometimes we say discrete 

values xi) each with probability pi (m may be finite or infinite): 

( )
i i

P X x p= = ,  0 1
i
p≤ ≤   and  

1

m

i

i

p
=
∑ ,  1,2,...i =  

Each time we run into some random phenomenon leading to such a variable, in 

general we can define the random variable using this pattern . Fortunately, such 

distributions tend to be an example of one of a few standard distributions. In 

addition to the two-point and Bernoulli distributions (also known as the binomial 

distribution) defined above, we give a few others below. They describe the 

majority of distributions occurring in the economic analysis of random patterns. 

The negative binomial distribution is useful for determining the probability of the 

number of trials carried out until the desired number of successes is achieved in a 

sequence of Bernoulli trials
2
. It counts the number of trials X needed to achieve s 

successes with p being the probability of success on each trial.    

                                                           
2
 One can find a brief description of the life and work of Jacob Bernoulli at 

http://en.wikipedia.org/wiki/Jacob_Bernoulli 
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( )
1

( ) (1 )
1

s k s
k

P X k p p
s

−− 
= = − − 

 

Example: 

Suppose that the probability of a manufacturing process producing a defective 

item is 0.001 , which means that one item per thousand manufactured is 

defective (life experience tells us that for various reasons, ideal production is not 

possible). Suppose further that the quality of any one item is independent of the 

quality of any other item produced.  If a quality control officer selects items at 

random from the production line, what is the probability that the first defective 

item is the 10th item selected. 

Here k = 10, s = 1, and p = 0.001.   

For instance:  
1 (10 1)

10 1
( 10) 0.001 (1 0.001) 0.000991

1 1
P X −− 

= = − = − 
. 

Thus, 

( 10) 0.008955P X ≤ = , 

which is a relatively small number. This means that we are dealing with an unlikely 

event, so we either belong to a "lucky" group, which encounters an unlikely event, 

or our idea of the level of deficiencies does not reflect reality, since the already 

the tenth item is defective. Common sense dictates that it is likely that the 

proportion of defectives is higher than the declared one item produced in 1000. 
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Geometric distribution. 

Within the context of a binomial experiment, in which the outcome of each of n 

independent trials can be classified as a success or a failure, a geometric random 

variable counts the number of trials until the first success 

1( ) kP k pq −=  for k=1,2,3,… ., 

where q=1-p 

Example. 

From data from the Department of Computer Science and Management, Wroclaw 

University of Technology, it is known that 83% of students come from an urban 

area. A company interested in developing rural regions has established a 

scholarship for candidates from rural areas. Suppose that students are chosen at 

random in sequence. What is the probability that the first student selected is from 

a rural region? What number of selections should be expected before finding a 

student who comes from a rural area? Let's calculate the corresponding 

probabilities: 

- Picking a student from a rural area as the first person 

1 1(1) 0.17 0.83 0.17P −= ⋅ = , 

- Needing two selections to find such a person 

2 1(2) 0.17 0,83 0.1411P −= ⋅ =
 

- Needing three selections before finding a student from a rural area 

3 1(3) 0.17 0,83 0.1171P −= ⋅ =  

- The probabilities for four, five, six, seven and eight selections before finding a 

rural candidate are 0.0972, 0.0806, 0.0669, 0.0555 and 0.0461 respectively. 

30



It is not a coincidence that we carried out these eight calculations. In statistics, it 

is assumed that we generally compare the probability of extreme events with a 

set value. Frequently this value is 0.05. Therefore, we must reckon with the fact 

that we will need to make as many as minimum seven selections or at least the 

chances of such a course of events is (as statisticians say) significant. 

 The hypergeometric probability distribution. 

The hypergeometric probability distribution is useful for determining the 

probability of a number of occurrences when sampling without replacement.  It 

counts the number of successes (k) in n selections, without replacement, from a 

population of N elements, s of which are successes and (N-s) of which are failures.  

 s  $ − s 
   
k  n − k P(k) =  

$ 
 
n 

Example (Aczel, 2006): 

Suppose that automobiles arrive at a dealership in lots of 10 and that for time and 

resource considerations, only 5 out of each 10 are inspected for safety.  The 5 cars 

are randomly chosen from the 10 on the lot.  If 2 out of the 10 cars on the lot are 

below standards for safety, what is the probability that at least 1 out of the 5 cars 

to be inspected will be found to not meet safety standards?   

 2 (10 − 2) 28
  2! !
1 (5 1) 

8
  

  −  14 51
 = = 4!P = !1! 4!(1) = = 0.556

10 10 10! 9
   
5 5 5!5!

    

2 (10 − 2) 28
   2! 8!

  
1 − (5 2)  13 21!1! 3!5!P(2) = = = = = 0.222

10 10 10! 9
   
 5   5  5!5!
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i.e. the required probability is (1) (2) 0.556 0.222 0.778P P+ = + = . It is 

questionable from our (i.e. the car manufacturer’s) point of view that such a 

control system is acceptable,  since there is a significantly high likelihood of not 

finding either defective car. 

Poisson Scheme (distribution). 

From a formal point of view (the so called Poisson theorem), consider the 

sequence of random variables { }nX , where each Xi has a Bernoulli distribution 

B(n, p, k) with the following property:   for n p const n⋅ = → ∞ . Let lim nX X= . 

X is a random variable taking values 0,1,...k = . We say that X has a Poisson 

distribution.  To complete the definition of this random variable it is necessary to 

determine the values taken ( 0,1,...k = ) and their probabilities. The Poisson 

probability distribution is defined as follows: 

( )
!

k

P X k e
k

λλ −= =  

where 

- e is the base of the natural logarithm (e = 2.71828...) 

- k is the number of occurrences of an event - the probability of which is given by 

the function above 

- k! is the factorial of k 

- λ is a positive real number, equal to the expected number of occurrences of an 

event that occur during a given interval. For instance, if the event occurs on 

average 5 times per minute and you are interested in the probability of the event 

occurring k times in a 10 minute interval, you would use a Poisson distribution 

with λ = 10×5 = 50 as your model. 
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Required conditions for the Poisson distribution to be applied: 

The probability that two events will occur in a very small interval is close to zero. 

The probability that a given number of events will occur in a given interval is 

independent of where the interval begins. 

The probability of a given number of events occurring over a given interval is 

independent of the number of events that occurred prior to that interval. 

The Poisson distribution can also be used for the number of events in other 

specified intervals such as distance, area or volume. For example, the number of 

customers waiting for service in front of a supermarket cash register can be 

modelled as a random variable with a Poisson distribution with intensity equal to 

λ.  

The random variables examined so far have one thing in common: the realizations 

of these random variables are natural numbers. Variables of this type are called 

discrete variables. But clearly we can see that some phenomena cannot be 

described as natural numbers. For example, all measurable phenomena are 

realized as positive real numbers (measured in centimetres, seconds, etc.) or even 

negative real numbers (such as profit and loss).  The essential characteristic of real 

numbers is that they are everywhere dense. This means that between any two 

real numbers one can always put another real number. Thus there is a problem 

with the definition of a random variable given above, according to which it is 

necessary to give the set of values a random variable can take and the likelihood 

of occurrence for each of these values. 

Thus, formally, a discrete variable satisfies the following: 

The probability that an event occurs in a short interval of time or space is 

proportional to the size of the interval. 
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-  Has a countable number of possible values, 

- Has discrete (discontinuous) jumps between consecutive values 

- Has a measurable probability for each possible value. 

Commonly met discrete variables are counts (i.e. number of children, number of 

occurrences of an event). 

In contrast to discrete random variables, continuous random variables have 

different characteristics: 

- Such variables are measured and not counted (e.g. height, weight, speed, etc.) 

- Take an uncountable (thus infinite) number of possible values, 

- The possible values change in a continuous manner, 

- No probability is ascribed to any single value 

- Probability can only be ascribed to ranges of values. 

Continuous random variables are defined by a function f(x), called the density 

function. It has the following characteristics: 

1) ( ) 0f x ≥ , 

2) ( ) 1f x dx

+∞

−∞

=∫ . 

Thus, the probability that some random variable X takes a value between a1 and 

a2 (a1 < a2) corresponds to the integral of the function f(x) over the interval [a1, 

a2], that is  

2

1

1 2( ) ( )

a

a

P a X a f x dx< < = ∫
 

From the properties of integral calculus, we are sure that the value of this 

expression is non-negative and less than or equal to 1. 

Now we consider a random variable with a uniform distribution on the interval  
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[a, b] (Fig. 1). 

 

 

Figure 1 Uniform probability density function on the interval [a, b]. 

 

The density function, f(x), of the uniform distribution on the interval [a, b], has the 

following analytical form: 

[ , ]

1
[ , ]

( )

0 [ , ]

 for  
  

        for  
a b

x a b
f x b a

x a b

 ∈
= −
 ∉

 

It is easy to show that this is a density function, i.e., has the properties: 

1) [ , ]( ) 0a bf x > , because a b< , and 

a b 

1/(b-a) 

f(x) 

x 
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2) [ , ]

1 1
( ) ( ) 1

b b

a b
a a
f x dx dx b a

b a b a
= = − =

− −∫ ∫ . 

 

Note that if we have two intervals [c, d] and [e, f] such that both are in the range 

[a, b] and have the same length, then the probability that such a random variable 

X takes a value from the interval [c, d] is the same as the probability of it taking a 

value in the interval [e, f]. This is called monotony or uniformity. 

Using these two properties of density functions, we can define virtually any 

number of continuous distributions (as there are any number of functions with 

these properties). Fortunately, as with discrete distributions, the number of 

continuous distributions that are useful for modelling economic and social 

phenomena is not that big. Below we describe some of them. 

 

One-sided exponential distribution. 

Suppose the number of occurrences of an event in an interval has a Poisson 

distribution. The time between two occurrences has an exponential distribution. 

Its density function is as follows: 

, 0
( )

0 0

  for  

         for  

xe x
f x

x

λλ λ− >
= 

≤
 

Example  

The time for which a particular machine operates before breaking down (time 

between breakdowns) is known to have an one sided exponential distribution 

with  parameter λ = 2 (where the units of time are hours). What is the probability 

that the machine will work continuously for at least one hour? We require, 

therefore, the probability that a variable with a one-sided exponential distribution 
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with parameter λ = 2, takes a value greater than 1, when time is measured in 

hours. 

Thus, 

2 2

1
( 1) 2 0.1353xP X e dx e

+∞ − −≥ = = =∫ . 

 

This is not a very high probability. We would say that we have a much greater 

chance that the machine breaks down within an hour (the probability of this, 

since it the complement to the phenomenon studied, is 1 - 0.1353 = 0.8647). The 

key here is the role of the parameter λ. If the parameter value λ was ½, then 

( 1) 0.6065P X ≥ = . What, then, does this parameter measure? 

Before answering the question about the role played by the parameter λ in the 

exponential distribution, we return to the concept of the expected value of a 

sample. The expected value is a numerical characteristic of the entire sample, the 

value which we would expect “on average”. We also remember that the variance 

of a sample (or a similar measure) is characteristic of the variability observed in 

the sample. Given these two values, we can estimate the range of values  that 

might appear in a sample, or in the population as a whole. A probability 

distribution describes a random phenomenon. The expected value and variance of 

such a distribution  are numeric measures of the population expected value 

(mean) and population variance. Moreover, if a sample is representative, the 

expected value and variance of the samples are approximations (estimators) of 

the expected value and variance in the population. The issue of the parameters of 

a distribution will return in a moment. 

The most important of the continuous distributions is the normal distribution, also 

called the Gaussian distribution. We will devote a separate lecture to this 

distribution. 
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The gamma distribution. 

Another important continuous probability distribution is the gamma 

distribution. Its density function (PDF) is defined as follows: 

1( ; , ) 0 , 0
( )
  for      

x

c
r

r

e
f x r c x x and r c

c r

−

−= ≥ >
Γ

 

Alternatively, the gamma distribution can be parameterized in terms of a shape 

parameter α = r and an inverse scale parameter β = 1/c, called the rate parameter: 

1( ; , ) 0
( )

  for  
xg x x e x

α
α ββ

α β
α

− −= ≥
Γ

 

If n is a positive integer, then ( ) ( 1)!n nΓ = −  . 

Both parameterizations are common, because either can be more convenient 

depending on the situation. 
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Fig. 2. Illustration of the Gamma PDF for various parameter values r = k  and 

c θ= . 

It can be shown that the one-sided exponential distribution is a special case of the 

gamma distribution with parameters 

1
1,   r c

λ
= =

. 

Note that the gamma distribution is ideal for modelling the time to carry out 

tasks, such as the estimation of the duration of activities on the basis of expert 

assessments as in the PERT method, where the expected value is estimated as  

min max4

6

spx x x
x

+ +
=

and the variance as 2

2 max min

6

x x
s

− =  
 

, where xmin, xsp 

and xmax are respectively the optimistic time, most  likely time and pessimistic 

time of a given activity’s  duration. These estimates are the result of the 

application of the gamma distribution to describe the duration time of an activity. 

Now, we return to the concept of the parameters of a distribution. From a formal 

point of view, the expected value of a random variable is called the first moment 

of this variable. 

The ordinary moment of order k (k = 1, 2, ...) of a random variable is the expected 

value of the k-th power of this variable. 

( ) ( )

( )

               (1)

       (2)

k

i i

i
k k

k
k

x p

m E X x dF x

x f x dx

∞

∞

−∞

−∞




= = = 



∑
∫

∫

 

 where: - random variable, E(X) - expected value of the random variable 

X, p - the probability function, f - a density function. 

Patterns (1) and (2) should be used for a random variable with probability 

distributions of discrete and continuous type, respectively. 

For k = 1, we obtain the formula for the expected value, so the expected value can 

X
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Similarly, the variance can be presented as a special case of a so-

called central moment of a random variable. The central moment of order k 

(k = 1, 2, ...) of the random variable X is the expected value of the function 

[ ]( )
k

X E X−
, i.e.: 

 

where: - random variable, E(X) - expected value of the random variable X, p - 

the probability function, f - a density  function. 

Patterns (1) and (2) should be used for a random variable with probability 

distributions of discrete and continuous type, respectively. 

The case k = 2 corresponds to the formula for the variance and, therefore, the 

second central moment. The third central moment is also common and allows you 

to measure the asymmetry of a distribution. The fourth central moment is useful 

in calculating the kurtosis. 

Central moments of a random variable can be expressed by means of ordinary 

moments. The following expression of the second order central moment 

(variance) is particularly useful: 2

2 2 1m mµ = −  The reader is encouraged to check 

this equality. In fact, ordinary and central moments convey all the subtleties of a 

probability distribution and allow you to distinguish between distributions that 

are very slightly different. 

In practical applications of an economic and social nature, it can be assumed that 

the moments of any order and type always exist. But this is not a general trait: 

there are probability distributions, for which there are no moments. In particular, 

note that this may lead to distributions for which there is no expected value. One 

example of such a distribution is the Cauchy distribution (with density function 

be treated as the ordinary first moment m1. 

X
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f(x)=1/(π(1+x
2
)).  It is worth raising another aspect of the distribution of 

moments.  Is it true that knowledge of the moments of all orders uniquely 

specifies a random variable? The general answer is negative, although in the 

context of our discussion: the practical issues of a socio-economic nature, 

knowledge of the first four moments is sufficient to specify a random 

variable. Note that there is a theorem stating that if there is a moment of order k, 

all the moments of order less than k exist. Using the "descriptive statistics" menu, 

Excel can find the expected value, dispersion, and excess kurtosis for a sample 

which can be used as approximations for the respective values in the 

population. Calculation of these values requires knowledge of the first four 

moments. Please refer to the appropriate definitions from the recommended 

reading. 

At the end of this section, for the convenience of the reader we state the most 

commonly used  moments for the aforementioned discrete and continuous 

distributions. 

 

distribution Mass probability function or density Expected value 

(moment of first 

order) 

Variance (central moment 

of second order) 

Two-

point 

1 2( ) ; ( )

1 , 0 1

  

  for 

P X x p P X x

p p

= = = =

− < <
 

x1p+x2(1-p) p(1-p)(x1-x2)
2
 

Binomial 

(Bernoul

li’s) 

( ) (1 )
k n k

n
P Y k p p

k

− 
= = − 

 
, 

0 1, 0,1,...,   p k n< < =  

np np(1-p) 

The 

negative 

binomial 

( )
1

( ) (1 )
1

s k s
k

P X k p p
s

−− 
= = − − 

 
1

p
s

p−
 

2(1 )

p
s

p−
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Geomet

ric  

1( ) kP k pq −=  1

p
 

2

1 p

p

−
 

Hyperge

ometric 
( )

s $ s

k n k
P k

$

n

−  
   −  =
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At the end, we introduce yet another particularly useful feature of the moments 

of random variables. Any random variable Y with expected value m and standard 

deviation σ may be standardized using the following operation 

X m
Y

σ
−

=  

This operation transforms random value Y into a random value with expected 

value 0 and standard deviation 1. 
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Lecture III. The normal distribution. 

 

The normal distribution is an extremely important probability distribution in many 

areas. It is also called the Gaussian distribution, particularly in physics and 

engineering. In fact, this is a family of infinitely many distributions, defined by two 

parameters: the average (responsible for the location of the distribution) and 

standard deviation (scale). The standard normal distribution is a normal 

distribution with mean zero and standard deviation of one. Since the graph of the 

normal distribution density function resembles a bell, it is often called the bell 

curve. As already mentioned, the normal distribution belongs to the class of 

continuous distributions. 

History 

• the normal distribution was first presented by de Moivre in an article in 1773 

(reprinted in the second edition of “The Doctrine of Chance”, 1783) in the context 

of approximating certain binomial distributions for large n. This result were 

further developed by Laplace in his book “The Analytical Theory of 

Probability” (1812) and is now called the de Moivre-Laplace assertion. 

• Laplace used the normal distribution in the analysis of errors in experiments. 

The important method of least squares, used in probability theory, was 

introduced by Legendre in 1805. Gauss, who claimed that he had used this 

method since 1794, made great advances in 1809 by assuming errors had a 

normal distribution. 

• The name of the curve comes from the bell curve of Joufrett, who coined the 

term “surface of a bell” in 1872 for a two-dimensional normal distribution with 

independent components. The name of the normal distribution was introduced 

simultaneously by Charles S. Peirce, Francis Galton and Wilhelm Lexis around the 

year 1875. This terminology is not the best, because it suggests that the vast 

majority of things have a normal distribution, while recent studies of economic 

and social phenomena indicate that most phenomena have a rather different 

distribution to the normal distribution (only about 20% of data sets show the 

characteristics of normality). 

 

Parameters of a normal distribution: 
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The expected value    μ 

Variance    σ
2
 

Modal value (mode)     μ 

Median         μ 

Skewness    0 

Kurtosis    0 

The density function of the normal distribution with mean μ and standard 

deviation σ (equivalently: variance σ
2
) is an example of a Gaussian 

function. Typically, the normality of the random variable X is denoted 

( , )X $ µ σ  (or sometimes X $ m σ ,(when just the values of the 

parameters are given be careful to note whether the second parameter is the 

standard deviation or the variance), which means that the random variable X has 

the following density function: 

2

2

1 ( )
( ) exp

22

x
f x

µ
σσ π

 −
= − 

   

Its shape is shown below. 

 

~

44

~ ( , )



 

All normal density functions are symmetric about the mean value of the 

distribution. About 68% of the area under the graph of the density function is 

within one standard deviation of from the average, about 95.5% within two 

standard deviations and about 99.7% within three standard deviations (the three 

sigma rule). Note that the density function for the normal distribution is greatest 

around its expected value. 

The inflection point is within one standard deviation of the mean. 

 

Cumulative Distribution Function. 

We have defined random variables by using the probability mass function (for 

discrete random variables) or the density function (for continuous random 

variables.) The cumulative distribution function (cdf) can be used to define both 

types of random variable. 

By definition, the cumulative distribution function (often shortened to distribution 

function) of a random variable X is a function of the real variable x R∈ : 

( ) ( )XF x P X x= <
 

A cumulative distribution function F(x) has the following characteristics: 

1) lim ( ) 0
 x→−∞ F x = lim ( ) 1,

 x→∞ F x =
 

2) The function F(x) is a non-decreasing function, i.e. if 1 2x x< , then 

F (x1) F (x2 )≤ , and 

3) F(x) is a left-continuous function (here we refer the reader to the lectures on 

mathematical analysis)
3
.  

                                                           
3
 This property is closely related to the strict inequality used in the definition of the 

cumulative distribution function. It is worth noting that left-handed continuity turns into 

right-hand continuity if we change this strict inequality into a non-strict one,, i.e. we use 

the following definition of the cumulative distribution function ( ) ( )XF x P X x= ≤  

Such a definition of the distribution function can be found in many textbooks on statistics. 
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Example. 

Let us determine the cumulative distribution function of the two point 0-1 

distribution. 

( 1) ; ( 0) 1 , 0 1    for P X p P X p p= = = = − < < . This is illustrated by the following 

figure. 

Note that this distribution function has two points of discontinuity, namely the 

points x = 0 and x = 1. 

 

Example. 

Let us determine the cumulative distribution function of the uniform distribution 

on the interval [0, 1]. It is defined using the following density function 

[ , ]

1
[ , ]

( )

0 [ , ]

 for  
  

        for  
a b

x a b
f x b a

x a b

 ∈
= −
 ∉

 

F(x) 

0 1 

1-p 

1 

x 

46



Therefore, its cumulative distribution function is as follows: 

 

 Note that the cumulative distribution function of this distribution has no points of 

discontinuity. In general, we can say that if a cumulative distribution function is 

continuous, then we are dealing with a continuous probability distribution. 

It is also worth noting that any function which has properties 1) - 3) listed above is 

the cumulative distribution function of a probability distribution. Thus, if it turns 

out, for example, that a phenomenon studied by us has its own unique probability 

distribution, by using a cumulative distribution function we can create the 

appropriate probability distribution. 

The cumulative distribution function of the normal distribution is defined as the 

probability that the variable X takes a value less than x and in terms of the density 

function is expressed by the formula 

2

2

( )

2
( , )

1
( )

2

ux

$F x e du

µ
σ

µ σ σ π

−
−

−∞

= ∫
 

To obtain the formula for the cumulative distribution function of the standard 

normal distribution (traditionally denoted by Ф), we simply substitute μ = 0 and σ 

= 1 into this general formula. 

 

F(x) 

0 1 

1 

x 
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1. If X ~ N (μ, σ
2
) , where a and b are real numbers, then aX + b = Y ~ N (aμ + b, 

(aσ)
2
). Thus, a linear transformation of a random variable with a normal 

distribution gives another random variable with a normal distribution. 

2. If X1 ~ N (μ1, σ1
2
), X2 ~ N (μ2, σ2

2
), and X1 and X2 are independent, then  

X1 + X2 ~ N (μ1 + μ2, σ1
2
 + σ2

2
), i.e. the sum of independent normal random 

variables also has a normal distribution. 

3. If X1, ..., Xn are independent random variables with a standard normal 

distribution, then X1
2
 + ... + Xn

2
 has a chi-squared distribution with n degrees of 

freedom.  We will return to this distribution in the future. 

 

Standardizing random variables with a normal distribution 

The consequence of property 1 is that all random variables with a normal 

distribution can be transformed into a random variable with the standard normal 

distribution. 

If X is normally distributed with mean μ and variance σ
2
, then: 

X
Z

µ
σ
−

=
 

Z is a random variable with standard normal distribution N(0, 1).  

Conversely, if Z is a random variable with standard normal distribution and 

X Zσ µ= +
, 
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then X is a normally distributed random variable with mean μ and variance σ
2
. 

The distribution function of the standard normal distribution has been tabularised 

and other normal distributions are simple transformations of the standard 

distribution. In this way, we can use normal distribution tables to determine 

probabilities corresponding to any normal distribution. 

Example. 

Let us find the value of a (a> 0), for which a random variable X with normal 

distribution (0, )X $ σ takes a value in the interval [-a, a] with probability 

1 , 0 1 α α− < < . We are looking, therefore, for the area under the curve of the 

density function between –a and a to be equal to 1-α, see below. 

 

 

Standardization transforms the normal random variable X into a random variable 

with expected value 0 and standard deviation 1 (still normal). So, 

0 
-a a 

f(u) 

1 α−  

2

α
 

2

α
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,

 

 

Where: 
a

uα
µ

σ
−

=  

 

Let us calculate: 

 

Step I: ( ) 1
2

αP Y u
α

< = −   

N (0, 1) 

1
X

P u Y uα α

µ
α

σ
− − < = < = − 
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Step II: ( )
2

P Y uα
α

< − =  
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Step III: ( ) ( ) ( ) ( ) ( )Y YP u Y u P Y u P Y u F u F uα α α α α α− < < = < − < − = − −    

 

 

Let us now use the symmetry of the normal distribution: 
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( ) ( ) ( ) ( ) ( )

( ) [1 ( )] 2 ( ) 1

P u Y u P Y u P Y u P Y u P Y u

P Y u P Y u P Y u

α α α α α α

α α α

− < < = < − < − = < − > =

= < − − < = < −
 

Therefore, 

( ) 2 ( ) 1P u Y u P Y uα α α− < < = < −
 

As we know, the expression ( )P Y uα<  is the value of the cumulative distribution 

function at uα. If a random variable Y has the standardized normal distribution, its 

cumulative distribution function is denoted ( )xΦ . Thus: 

( ) 2 ( ) 1 2 ( ) 1P u Y u P Y u uα α α α− < < = < − = Φ −
 

 

The values of the distribution function for the N (0, 1) distribution are 

tabularised. They can also be read using a spreadsheet. 

For uα  equal to 1.36, from the Excel spreadsheet 
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Example 

• Let X~N(5, 4). 

• Calculate P(-3<X<20) 

 

First, we standardize: 

 

Finally, we write this as the difference between standardized cumulative 

functions, Ф (3.75)  - Ф (-2) : 

Ф(3.75) - Ф(-2) = Ф(3.75) -[1- Ф(2)] = Ф(3.75) + Ф(2) - 1  

= 0.9999 + 0.977 – 1 ≈ 0.977.  

Note we find Ф (2)  from the table as follows: 

   x     0    0.01   0.02   0.03   0.04    

 ---   --------------------------------- 

 1.9|  0.971  0.972  0.973  0.973  0.974   

 2.0|  0.977  0.978  0.978  0.979  0.979   

 2.1|  0.982  0.983  0.983  0.983  0.984   

 2.2|  0.986  0.986  0.987  0.987  0.987   

 2.3|  0.989  0.990  0.990  0.990  0.990   

 

P(-3 < XN(5,4) < 20) =  = P (-2 < YN(0,1) < 3,75) 
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 2.4|  0.992  0.992  0.992  0.992  0.993   

 2.5|  0.994  0.994  0.994  0.994  0.994   

 2.6|  0.995  0.995  0.996  0.996  0.996   

 2.7|  0.997  0.997  0.997  0.997  0.997   

 2.8|  0.997  0.998  0.998  0.998  0.998   

 2.9|  0.998  0.998  0.998  0.998  0.998   

 3.0|  0.999  0.999  0.999  0.999  0.999   

 

The same calculation is carried out in the Excel spreadsheet as follows: 

Let X~N(5, 4). Calculate P(-3<X<20) 

 

 

 

55



 

 

Final remarks. 

The first comment concerns the notation used for the normal distribution. X ~ 

N(m, σ) is widely accepted to mean that the variable X is normally distributed with 

average μ and standard deviation σ and. However, in the English speaking world, 

the variance is often given i.e. X ~ N (m, σ
2
) is commonly used notation. 

The second remark concerns the construction of tables for the standard normal 

distribution. In some tables 0.5 is substracted from the distribution function. Since 

this often leads to misunderstandings, it is worth checking what tables we are 

dealing with by finding the value of the distribution function at 0. If this value is 0 

then we are dealing with the modified table (and therefore have to add 0.5 to 

obtain the value of the distribution function). If the value of the function at zero is 

0.5, then we're dealing with a standard table. You can also read the value of the 

distribution function using Excel. Also note that some tables give P(Z>x), i.e. 1- 

Ф(x). In this case the values at the bottom of the table will be close to 0, and not 

close to 1 as in the standard table. 

If you want to calculate the density function for the normal distribution, you 

should input 0 (the Boolean representation of false) into the appropriate box 

(Cumulative).  

Note 3. The asymptotic properties of the normal distribution are particularly 

important from a practical point of view. In the literature, this phenomenon is 

often referred to as a “central limit theorem”. 
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Fourth Note. Let us return to the previously encountered concepts of the 

standardized skewness and kurtosis. If observations come from a normal 

distribution, these two measures will almost certainly be contained in the interval 

[-2, 2]. This means that given the values of the standardized kurtosis and 

skewness for a sample fall into the above range, we can presume (in statistics this 

is called hypothesizing) that the values observed come from an approximately 

normal distribution. 
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Lecture IV: Distributions of statistics. 

Basic concepts:  

General population: population of elements from which we draw and whose 

characteristics will be investigated. Typically, a characteristic is determined as a 

random variable X, Y, Z, W, ... 

A population may be finite (with a small or large number of elements) or infinite. 

 

Example. The height of athletes. 

Suppose we want to estimate the average height of athletes. Of course, our 

findings can be based only on a selected (in one way or another) group to 

examine, because investigating all athletes is non-feasible. Imagine that we were 

able to measure the height of five athletes and obtained the following results  
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Suppose the population has a distribution determined by the cumulative 

distribution function F(x), i.e. the feature X in this population has a distribution 

with distribution function F(x). This distribution is called the theoretical 

distribution function. 

A random sample is given by a vector of random variables 1 2( , ,..., )nX X X , each 

of which has the same probability distribution.  In this example, the Xi can be 

interpreted as the heights our athletes before we measured them. 

 

Mr A                    Miss B                        Mr C                      Miss D                       Mr E 

192 cm                165 cm                     183 cm                    170 cm                     175 cm 

Statistical Athlete: 

X 

Mean 177 

Standard Error 4,785394 

Median 175 

Standard Deviation 10,70047 

Sample Variance 114,5 

Kurtosis -0,84205 

Skewness 0,5142 

The observed values  

x1, x2, x3, x4 and x5 

are realizations of 

the same variable: X 

– height of statistical 

athlete 

Descriptive statistics in Excel 
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A random sample is said to be simple if 1 2( , ,..., )nX X X  is a vector of 

independent random variables with the same distribution. Continuing our 

example, we can say that the height of the ice hockey player has no bearing on 

the height of the football player. This is the practical interpretation of 

independence. Unless stated otherwise,  the samples considered here will be 

simple . 

A realization of a simple sample is the set of the observed values of the 

vector 1 2( , ,..., )nX X X , denoted by 1 2, ,..., nx x x . 

 

The sample distribution gives a statistical picture of the distribution of the 

characteristic X in the population as a whole. 

The term statistics is also used in a narrower sense: a statistic is an arbitrary 

function of n random variables. Statistics are therefore random variables, and as 

       Mr A                               Miss B                Mr C                          Miss D                  Mr E 

192 cm                 165 cm      183 cm                170 cm               175 cm 

                                                            X  -  statistical height of an athlete 

 

 

  

       X1                                    X2                      X3                                  X4                           X5 
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such have a probability distribution, exact or approximate. 

For example, having a random sample 1 2( , ,..., )nX X X , we can create the 

“mean” statistic (always labelled as X ) as follows: 

1

1 n

i

i

X X
n =

= ∑  

X  is simply the arithmetic mean of the n random variables from the sample and 

a sum of random variables is itself a random variable. Thus, X  also has a 

probability distribution, which in turn has moments, such as the expected value, 

variance, standard deviation, etc. 

Of course, there is the following relationship between the statistic X for the 

sample and the corresponding population parameters: 

 

Note that we have already met one example of such a statistic. A binomial 

distribution can be expressed as the sum of n independent random variables, 

each of which has a two-point 0-1 distribution. If one denotes a success, then the 

number of successes in a  sample of size n has a binomial distribution. Each trial 

has the same probability of success, and the result does not depend on the results 

of other trials. 

We may seek rules for various statistics (functions of random variables), in order  

to describe their probability distribution. For example, what is the distribution of 

the mean value of a sample? 

The average for the sample: x  

(number!). 

Realization of the statistic X  

The average for the 

population: an unknown or 

known parameter called the 

expected value  of the 

statistic X  
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Suppose the population mean and variance are m and σ
2
. Let's calculate the 

expected value and variance of the sample mean: 

1 1 1

1 1 1 1
( ) ( )

n n n

i i

i i i

E X E X E X E X n m m
n n n n= = =

   
= = = = ⋅ =   

   
∑ ∑ ∑  

( )
2

2 2 2 2 2

2 2 2
1 1 1

1 1 1 1
( )

n n n

i i i

i i i

D X D X D X D X n
n n n n n

σ
σ

= = =

   
= = = = ⋅ =   

   
∑ ∑ ∑  

 

Therefore,  

- If 1 2( , ,..., )nX X X  have (the same) normal distribution N(m,σ) and describe a 

simple sample (i.e. they are independent), then X  is also normally distributed 

and ~ ,X $ m
n

σ 
 
 

. 

- If 1 2( , ,..., )nX X X  have the same distribution with average m and standard 

deviation σ, the sample is simple (independency!) and the sample is large (i.e. n> 

30), then based on the so-called central limit theorem (the “sum of a large 

number of independent random variables has approximately a normal 

distribution”), X has approximately the same distribution as given above. We draw 

the reader's attention to the fact that this does not require knowledge of the 

distribution of the characteristic X! 

Distributions of statistics play a central role in statistical inference (posing and test 

hypotheses), and therefore we will now review some useful statistics (functions of 

random variables.) 

Independency 
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The 
2χ  statistic

4
 

If X1, …, Xk are independent, standard normal random variables, then the sum of 

their squares 

2 2

1

( )
k

i

i

k Xχ
=

=∑  

is distributed according to the chi-square distribution with k degrees of freedom. 

Tables for this distribution — usually in its cumulative form — are widely available 

and the function is included in many spreadsheets and all statistical packages. 

 

    Fig. Density function of the
2χ  distribution. 

The 
2χ   distribution is tabularised for different n (called the number of degrees of 

freedom) , u0 and for 1σ = . One may find the probability: ( )2

0P uχ ≥  from 

                                                           
4
 Those readers who are interested in the origin of the names used in mathematics are 

encouraged to have a look at the following page http://jeff560.tripod.com/c.html.  
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such a table.  For different values of the standard deviation of the terms in the 

sum above, i.e. 1σ ≠ , the formula  ( )2

0P uχ ≥   should be replaced by 

( )
2

2 2

0 02
P z P z

χ
χ σ

σ
 

≥ = ≥ 
 

. 

The t-Student (Gosset
5
) statistic. 

Statistic: 

1
X m

t n
S

−
= −  

is called the t-student statistic with n-1 degrees of freedom. 

Generally, the t-statistic with n-1 degrees of freedom is any expression of the type 

2

~ 0,

~
1

 with (n-1) df

X $
n

Y

n

σ

χ

 
 
 

−

 

Theorem: The sequence {Fn(t)} of distribution functions of random variables with 

the t-Student distribution with n-1 degrees of freedom satisfies the equation: 

2

2
1

lim ( )
2

t
t

n F t e dt
π

−

→∞ −∞
= ∫  

So, the t-distribution converges to the standard normal distribution. In practice, 

when the number of degrees of freedom exceeds 30, then the difference between 

the standard normal distribution and the Student t-distribution is 

                                                           
5
 The derivation of the t-distribution was first published in 1908 by William Sealy Gosset, 

while he worked at the Guinness brewery in Dublin. He was not allowed to publish under 

his own name, so the paper was written under the pseudonym Student. We encourage the 

reader to become familiar with his biography 

http://en.wikipedia.org/wiki/William_Sealy_Gosset 
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insignificant. This explains why in most textbooks the table for the t-Student 

distribution stops at 30 degrees of freedom. This is evident from the graph of the 

density of the t-Student distribution. 

 

   Fig. Density function of the t-Student distribution. 

 

The U statistic. 

Let 
1 21 2 1, ,... , ,...,n nX X X Y Y  be two sequences of independent random variables 

from the ( , )$ m σ  distribution: 

∑
=

=
1

1
1

1 n

k
k

X
n

X

 

∑
=

=
2

1
2

1 n

k
k

X
n

Y

 

( )∑
=

−=
1

1

2

1

2

1

1 n

k
k

XX
n

S

 

( )∑
=

−=
2

1

2

2

2

2

1 n

k
k

YY
n

S

 

 

The mean statistics have the following distributions: 
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),(~
1
n

m$X
σ

 

),(~
2

n
m$Y

σ

 

Thus: 

1 2

1 2

~ (0,1)
X Y n n

Z $
n nσ

−
=

+
 

and 

2 2
21 1 2 2

1 22
~ 2with     df

n S n S
W n nχ

σ
+

= + −  

The U statistic is defined as: 

1 2 2

Z
U

W

n n

=

+ −

  

 U has a t-Student distribution with 1 2 2  dfn n+ −  

1 2

1 2 1 2
1 22 2 2 2

1 21 1 2 2 1 1 2 2

2

1 2

( 2)

2

X Y n n

n n X Y n n
U n n

n nn S n S n S n S

n n

σ

σ

−
+ −

= = + −
++ +

+ −

 

Note: it is assumed that the standard deviations of the X’s and the Y’s are equal. 

Since the t-distribution is asymptotically normal, we conclude from this that the 

U-statistic is asymptotically normal. This means that for large samples (n> 30), the 

distribution of the U-statistic is approximately normal 
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The S Statistic  (sample standard deviation). 

It can be shown that the statistic S has a gamma distribution with parameters  

1
( 1)

2
p n= −   and  

22

n
b

σ
=   . 

The Z Statistic. 

The Z statistic is defined as 
2Z nS= . One can show that it has a gamma 

distribution with parameters 
1
( 1)

2
p n= −  and 

2

1

2
b

σ
= , which is equivalent to 

the  
2χ distribution with n-1 degrees of freedom. 

 

The F-Snedecor
6
 Statistic. 

Let 
1 21 2 1, ,... , ,...,n nX X X Y Y  be sequences of independent random variables with  

the ( , )$ m σ  distribution.  

A random variable with an F-distribution arises as the ratio of two chi-squared  

variables: 

2

1

2

2

S
F

S
=  

with (d1=n1-1, d2=n2-1)  degrees of freedom. 

Note: normally it is assumed that the numerator is larger than the denominator 

(due to the form of standard tables for the F distribution). 

                                                           
6
 To find out more about the author see: http://en.wikipedia.org/wiki/George_W._Snedecor 
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  Fig. Density function of the F-Snedecor random variable. 

If the characteristic X has a normal probability distribution, the distribution of 

selected statistics are given in the following  table: 

Distribution Definition Expected value Variance 

X  
    

1

1 n

i

i

X
n =
∑  

0   

if (0, )X $ σ  
n

σ
 

2χ  
    

2

1

k

i

i

X
=
∑  

k  

if (0,1)X $  

2k 

t-Student 
1

X m
n

S

−
−     

0  

if 

( , )X $ m σ  

1

3

n

n

−
−

 for  n>3 

U 
1 2

1 22 2
1 21 1 2 2

( 2)
X Y n n

n n
n nn S n S

−
+ −

++
  

0  

if 

1 2

1 2

n n

n n

+
 

~

~

~
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 ( , )X $ m σ  

S 
2

1

1
( )

n

i

i

X m
n =

−∑  
21n

n
σ

−
 

if ( , )X $ m σ  

4

2

2( 1)n

n

σ−
 

Z 2nS  
2( 1)n σ−  

if ( , )X $ m σ  

42( 1)n σ−  

F-Snedecor 2

1

2

2

S

S
 

2

2

1

3

n

n

−
−

  

 for n2 > 3  

if (0,1)X $  

2

2 1 2

2

1 2 2

2( 1) ( 4)

( 1)( 3) ( 5)

n n n

n n n

− + −
− − −

 

 for n2 > 5 

 

~

~

~

~
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Lecture V.  Confidence intervals. 

 

The fact that it is not possible, based on a sample, to perfectly estimate an 

unknown parameter underlies the concept of confidence intervals. i.e. we cannot 

give one numerical value which corresponds to a given parameter, because by 

obtaining another sample from the population the estimated value of that 

parameter will almost certainly be different from the previously calculated value. 

Consider the following example. 

When we analyzed the binomial distribution, we found that the probability of 4 

successes in a sample of 10 elements with p = 0.5 is the same as the probability of 

six successes in such a sample, i.e. ( 4) ( 6) 0.205078P X P X= = = = . Now 

imagine that we toss a coin 10 times and each result is written as 1 if you throw 

heads, and 0 if tails are thrown. Define the random variable X to be the sum of ten 

individual variables, each describing a single coin toss. The probability that heads 

is thrown 4 times in 10 throws (call it sample I) is the same as the probability that 

heads are thrown 6 times in 10 throws (sample II). Thus, each of these two 

situations are equally likely. However, calculating the mean for sample I we obtain 

0.4x = , while the mean for sample II is 0.6x = .  Note that both sample means 

can be used to estimate the expected value in the population! Both values are 

equally likely, and intuitively these two situations are quite possible in reality. So, 

what can we say in relation to the population mean. It is reasonably certain that 

the population mean is in the range [0.4, 0.6] and such an estimate is good 

enough, i.e. we wish to define an interval which includes the population mean 

with a high probability. 

Suppose the distribution of some trait X in a population is dependent on some 

parameter Q (e.g. the population average and/or variance). It is assumed that the 

form of the density function ( , )f x Q  or probability function 

( ) ( )k kP X x p Q= = is known. 
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Let E be a vector of observations: ( )1 2, ,..., nX X X . E is an n - dimensional 

random variable dependent on the parameter Q. 

Let ( ), ( )   U E U E  be functions of the random variable E such that 

( ) ( )U E U E≤ . 

Let α be a real number 0 1α< < .  

If the following holds: 

( ( ) ( )) 1        P U E Q U E α≤ ≤ ≥ −  

(for continuous random variables = 1 - α), then the interval ( ), ( )U E U E  is 

called a confidence interval for Q, and 1 α−  the confidence level. 

Theoretically, you can build a confidence interval for each parameter of the trait’s 

distribution, but in practice they are used to construct confidence intervals for the 

population average (Q = m) and variance (Q = Var(X)). Below we show the 

corresponding confidence intervals for both parameters. 

 

Confidence interval for the population mean (Q=m) 

Suppose a trait in some population has a N(m,  σ) distribution. Let’s assume that  - 

m - is unknown, σ is known, and the sample is small (n < 30). 

The estimate of the population average is the sample mean statistic 

Model I. 

X . Given 

these conditions, X  has a ( , )N m
n
σ

 distribution. 

Thus, the standardized random variable 
X mU

n
σ
−

=  has a N(0, 1) distribution. 
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     f(u) 

 

 

                1-α 

                  
2

α
                  

2

α
 

      αu−                0       αu  

Hence, the random variable U satisfies: 

( ) 1P u U uα α α− < < = −  

For a given α, the value uα  can be read from the tables of the standardized 

normal distribution: 

( ) 1
2

uα
α

Φ = −  

Since U has a N(0, 1) distribution and we have 
X m

U

n

σ
−

= : 

1
X m

P u u

n

α α α
σ

 
 −
− < < = − 
  
 

 , 
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Model II. 

1P X u m X u
n nα α
σ σ α − < < + = − 

 
 . 

Thus, for example for α = 0.05, the confidence interval is as follows (from the 

table uα = 1.96): 

1,96 1,96,X X
n n
σ σ

− + . 

This means that in 95 cases out of 100, the estimated „m” is in this range. In other 

words, the error in estimation is not greater than 
1,96

n
σ

 in 95% of cases. 

 

Example.  

The waiting time for a tram has been studied and the following values obtained 

(in minutes): 12, 15, 14, 13, 15. Suppose that the waiting time for a tram has a 

normal distribution with unknown mean value (m) and a known standard 

deviation 2σ = . 

Construction of the confidence interval for the mean involves finding the 

appropriate values in tables and some simple calculations . In our example, we 

find that 13.8x = . Assuming that the confidence level is 0.95 (i.e. 0.05α = ) , we 

read the value 1.96uα =  from the table. Substituting these values into the 

formula, we obtain 1.753; 1.753 12.0469;15.5530x x− + = . Thus with a 

probability of not less than 1 0.95α− = , the desired population average lies in 

this  interval. 
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     f(t) 

 

 

                1-α 

                  
2

α
        

2

α
 

      αt−    0       αt  

The value αt  is read from the tables for the Student distribution with n-1 - 

degrees of freedom: 

( ) 1  P t t tα α α− < < = −  

 

1

1

X m
P t t

S

n

α α α

 
 −
− < < = − 
  − 

 , 

 

The trait X has a N(m, σ) distribution in some population, where neither m nor σ 

are known. To build a confidence interval for m, we will use the t-statistic with n-1 

degrees of freedom: 

1X mt n
S
−

= −  

74



Model III. 

For large samples (n> 30), the central limit theorem states that 

1
1 1

S SP X t m X t
n nα α α − < < + = − − − 

 . 

 

Thus, for example for α = 0.05, the confidence interval is as follows ( tα  is read 

from the table for the Student distribution); 

 e.g. for n = 26, this value is 2.056): 

2,056 2,056;
5 5

S SX X− + . 

This means that in 95 cases out of 100, „m” lies in this range. In other words, the 

error in estimation is not greater than
2.056

5
S

 in 95% of cases. 

Note: this length of this interval is variable, since it depends on the value of S. 

 

Example. Suppose that in the previous example, on the average waiting time for a 

tram, there was no information on the standard deviation in the population.   

Again, we calculate the average value x , which is 13.8.  We calculate the 

standard deviation for the sample 1.3038s = : and read the value 

2.7764tα =  for α= 0.05 from the tables. We thus calculate the confidence 

interval to be: 

1.618931187; 1.618931187 12.18107;15.41893x x− + = . Thus with a 

probability of not less than 1 0.95α− = , the desired population mean lies within 

this confidence interval 
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 ( , ) X $ m
n

σ
→  for n→∞ ,  while the law of large numbers states that 

S σ→ . 

Therefore, by substituting the population standard deviation  into model I with 

the sample standard deviation s,  we get: 

1
s s

P X u m X u
n n

α α α − < < + ≅ − 
 

. 

 

Example. Suppose that in the analysis of the example on the average waiting time 

for a tram there was no information on the standard deviation in the population, 

but we managed to gather much more data: n = 34. From these data we 

computed 13.9411x = , 1.1791s = . Hence, the required confidence interval is 

0.41142; 0.41142 13.5297;14.3525x x− + = . Thus with a probability of 

not less than 1 0.95α− = , the desired  population mean lies in this confidence 

interval. Note that, in accordance with our intuition, as a consequence of the large 

number of observations the length of this interval has decreased significantly, i.e. 

estimates become more accurate. 

 

Model IV (confidence interval for a proportion). 

If we examine a population according to the presence or absence of a certain 

characteristic (e.g. quality control - products classed as good and bad, non-

smokers and smokers, etc.), it can be described by a two-point distribution: 

( 1) , ( 0) 1   P X p P X p= = = = − , 

where the random variable X takes the value 1 if the feature is present and 0 if 

not present. 
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Thus, if a feature is observed m times in an n-element sample, an approximation 

of p is given by
1

1 n

i

i

m
X X p

n n=

= = =∑ )
. 

We find that for 0.05 <p<0.95 and n> 100: 

1 1

1

m m m m

m mn n n n
P u p u

n n n n
α α α

    − −        − < < + ≈ − 
 
  

 

Estimation of the percentage of smokers among students. In an 1800-element 

sample, the number of smokers m = 600.  For 1 - α = 0.95, 1,96uα = . Thus, 

600
0,333

1800

m

n
= = ,   

1

0,011

m m

n n

n

 − 
  ≅   . Thus the 95% confidence level for 

the fraction of students smoking is: 

32,19% < p < 34,40%. 

 

 

 

Confidence interval for the standard deviation - variance (Q = σ). 

The second most commonly used population parameter is a measure of its 

volatility. Depending on ones requirements, this is measured using the variance or 

standard deviation. In general, deriving a confidence interval for the variance or 

standard deviation is not easy. However, if you assume that the feature X has a 
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normal distribution, or at least approximately normal, we can use the 
2χ  and Z 

distributions, already known to us . 

 

Model V: 

Suppose that the population mean m and population standard deviation  are not 

known and the sample is large (n > 30). The statistic 

2

2

nS
Z

σ
=  has a 

2χ
 

distribution with n-1 degrees of freedom: 

 

 

 

       1/2α      1/2α 

 

 

              c1   c2 

 

2

1 22
1

nS
P c c α

σ
 

< < = − 
 

 

where: { } { }2 2

1 2

1 1

2 2
   P c P cχ α χ α< = ≥ =   . 
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Note: Most tables give values of the form { }2P aχ ≥  and therefore the 

derivation of the value of c1 will require some transformations. 

We obtain the following confidence interval for the variance: 

2 2
2

2 1

1
nS nS

P
c c

σ α
 

< < = − 
 

. 

Example. Consider again the data used in model III. 

We calculate the sample variance: s=1.3903. Thus the observed value of the non-

standardized
2χ  statistic (the numerator of the equation) is given by 1.3903 * 34 

= 47.2727. 

We now calculate the values of c1 and c2: c1= 19.0466 and c2=50.7251. Hence, the 

required confidence interval for the variance is: 

47.2727 47.2727
; 0.9319;2.4819

50.725 19.0466
≡  

 

Model VI. 

Assume that the trait of interest has a normal or close to normal distribution and 

the sample is large, i.e. n> 30. Interval estimation of the standard deviation is 

obtained from the following formula 

1

1 1
2 2

s s
P

u u

n n

α α
σ α

 
  

< < ≈ − 
 + −
  

 

where: uα  is read from tables for the standard normal distribution,  N(0, 1). 
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Example. Again, we use the data from the example for model III. In this case, n = 

34, 1.1791s = . The value 1.96uα =   (from the table for the N(0, 1) distribution). 

Thus we obtain the following confidence interval for the population standard 

deviation 

 [0.9527; 1.5467]. 

Note that the confidence interval obtained in the previous example can also be 

used to obtain an interval estimate for the standard deviation. This is done by 

taking the square root of both ends of the interval. In this case, we obtain the 

following confidence interval: [0.96535, 1.5754]. As you can see, the interval 

estimate obtained is similar to the interval given above. 

 

Determination of the sample size required for interval estimates of the average 

with a given precision and confidence level. 

As already mentioned, the use of confidence intervals to estimate the unknown 

parameters of a population is due to constraints related to the information 

available about the population: we only observe a sample rather than the entire 

population. It is assumed that, as well as specifying a level of confidence, we also 

set the precision of estimates and thus meet expectations associated with 

obtaining an accurate estimate. Looking for more precision is not desirable in this 

context. Admittedly, the narrower the range of the interval, the better an 

estimate is. However, it must be remembered that the "price" we pay for this 

accuracy is an increased sample size. For various reasons, we use small samples, 

e.g. because it is not possible to obtain a larger sample, or the cost of collecting a 

greater amount of data is too large. In this case, we want to make sure that the 

sample size is not greater than required from the assumed level of confidence and 

accuracy of the estimate. 

Note that in each case we give the required length of the interval, as the 
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difference between the right and left end of the confidence interval. This 

knowledge allows us to determine the necessary sample size, so that one can give 

interval estimates with a predetermined confidence level and precision. 

We would like, therefore, to determine the appropriate sample size to obtain a 

confidence interval of a given length (accuracy) with the chosen confidence level 1 

- α. Let 2d be the length of the interval. 

 

Model VII 

Using the formula for the confidence interval for the population mean in model I, 

we find that the length of the interval is 2 2
u

d
n

ασ= . Hence, the required sample 

size is: 

2 2

2

u
n

d

ασ= . 

For example, using model I, it is assumed that 2σ = . The value 1.96uα =  is read 

from the table for the standard normal distribution. We can therefore answer the 

question of whether estimating the average waiting time for a tram, with an 

accuracy of, e.g. 30 seconds, is possible using the sample we have, i.e. of 5 

elements. Calculating n for d = 0.5, we find that 

2 2

2

1.96 2
61.47

0.5
n

⋅
= = . Thus with 

a confidence level of 95%, it is not possible for us to estimate the population 

mean with an accuracy of 1 minute. For this purpose, we need a minimum sample 

size of 62 observations. 
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Model VIII 

Similarly, calculating the length of the interval from model II, we proceed as 

follows: 2 2
1

t s
d

n

α=
−

. Thus: 

2 2

2
1

t s
n

d

α= + . However, given  that we do not 

know the population standard deviation, we need an estimate. Hence, we take an 

initial sample (s is calculated from this sample) of size n0. If n > n0 , then the 

remaining n - n0 elements required must be sampled. 

Returning to the data from the example for model II. We calculate the average 

value x , which is 13.8.  Then, we calculate the sample standard deviation: 

1.3038s =  and read from the table the value of 2.7764tα =  for α = 0.05. As 

before, we ask whether it is possible to estimate the average duration of the 

waiting for a tram to the nearest 30 seconds (d = 0.5)? Calculating the required 

sample size, we obtain  n = 53.41. Hence, it is necessary to draw 49 more 

observations (54 - 5), in order to estimate the average waiting time for a tram to 

the nearest 30 seconds. 

 

Model IX: 

Under model III, the determination of the required sample size for a given level of 

accuracy d is the same as in model II. Let's use the data from the example for 

model III. We managed to collect much more data: n0 = 34. First, the necessary 

statistics are computed, 13.9411x =  and 1.1791s = . Assuming that the 

confidence level is 0.95 (i.e. 0.05α = ), we read the value 1.96uα =  from the 

table. The required value of n is thus 

2 2

2
1

u s
n

d

α= + . Again, as before, we ask 

whether it is possible to estimate the average duration of the waiting for a tram 

to the nearest d = 30 seconds (d = 0.5)? We calculate the value of n = 22.36. Thus, 
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in this case it is possible to estimate with a predetermined precision (d = 30 

seconds) for a given confidence level ( 0.05α = ), because we have a sample of 34 

items, and the required sample size is only 23. 

 

Model X: 

In assessing the sample size required to estimate a population proportion, one 

can use the following two options: 

a) if we know the magnitude of p, the required sample size is 

2

2

(1 )u p p
n

d

α −
= : 

Let's look at this using the data from the example for model IV.  We estimated the 

percentage of smokers among students. We observed m = 600 smokers in the 

sample of 1800. For  

1-α= 0.95 1.96uα = . Hence, the estimate of the proportion of all students who 

smoke is 600
0,333

1800

m

n
= =

 i.e. 33.3%. Is it possible to estimate this proportion 

to the nearest 5%? 

If we know (e.g. from studies by other authors) the expected value of the 

percentage of students smoking, for example, 30%, the desired sample size is n = 

322.69. So the sample size of 1800 students used is sufficient for this purpose. 

If you do not know the expected value of the percentage of students smoking, 

then use the second formula and we obtain n = 384.16. The resulting sample size, 

although it is greater than the one previously calculated, still indicates that the  

b)  If we do not know the order of magnitude of p, we use the inequality 

1(1 )
4

p p− ≤ . Thus: 
2

24
un
d
α= . 
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sample of 1800 students is sufficient for our purposes. 

In both situations, to achieve the required precision for the estimate of the 

population proportion (5%) with a 95% confidence level it is always possible to 

use a 385-element sample. Collecting data for 1800 students is clearly redundant! 
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Lecture 6. Parametric tests. 

Any claim regarding the unknown distribution of a characteristic is called a 

statistical hypothesis. 

 

A hypothesis which specifies only the numerical values of unknown parameters of 

the distribution of a characteristic is called a parametric hypothesis. In order to 

verify such hypotheses, we use parametric tests. 

 

A hypothesis regarding other features of the distribution of a character (including 

its parameters) is called a non-parametric hypothesis. To verify such hypotheses, 

we use non-parametric tests. 

 

Hypothesis testing is necessary to decide whether a given hypothesis can be 

considered to be true or false. Hence, we specify an initial hypothesis (called H0 – 

the null hypothesis) and formulate an alternative hypothesis (called H1), which will 

be considered to be true if it is concluded that the hypothesis H0 is not true. 

 

If only one hypothesis is formulated and the object of a statistical test is to check 

whether this hypothesis is true or not and we do not check other hypotheses, 

such a test is called a test of significance. 

 

The following is an algorithm for testing a parametric hypothesis (significance 

testing): 

1. We formulate the hypothesis H0: (Q = Q0). 

2. We set the significance level α. 

3. Next, we observe an n - element simple sample. 

4. Calculate the realization u of the relevant U statistic (significance test). 
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5. We look for the critical value u0 of the statistic U for the selected 

satisfying the following inequality: 

 ( )0P U u α≥ ≤  

6. If   0u u≥   , then we reject the hypothesis H0, 

      If   0u u<   , there is no reason to reject the hypothesis H0. 

 

Note: For small samples we use the exact distribution of the statistic U; for large 

samples the limiting distributions of these statistics is used. 

Example. 

Let X be a trait with a normal distribution  in the population of interest, 

where m is unknown.  We believe that the unknown average value is 0, i.e., we 

test the hypothesis H0: m = 0 against the alternative hypothesis H1: m ≠ 0. 

The only way to test our hypothesis is to compare it with a sample from the 

general population. Hence, a random sample of 10 items was chosen and the 

following results obtained: 

-0.30023 

-1.27768 

0.244257 

1.276474 

1.19835 

1.733133 

-2.18359 

-0.23418 

1.095023 

-1.0867 

 

( ,1)N m
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We need to assess whether the probability of obtaining such specific values, as in 

our 10 -element sample, is large enough to be able to claim that this does not 

conflict with the hypothesis H0. In normal circumstances, it is usually assumed 

that if the probability of obtaining more extreme results under H0 than those 

observed is less than 0.05 (the significance level), then we reject H0. 

We calculate the sample mean and standard deviation and obtain 0.04649x =  

and s = 1.2924. Thus, the difference between the average value from the null 

hypothesis and the average value calculated from the sample is 0.04649. Is this 

difference so significant (important) to believe that we must reject the null 

hypothesis? To assess this fact the t-statistic is used. 

1
X m

t n
S

−
= −  

where: 

0.04649x = , 

s=1.2924, 

n = 10, 

m=0. 

The realisation of the t-statistic 9 degrees of freedom  is equal to 0.114. The 

probability that the absolute value of the realisation of the test statistic is greater 

than this value (i.e. that the mean of such a sample is further away from 0 than 

0.04649) under H0 is 0.912. We interpret this as meaning that if the null 

hypothesis is true, then the chances (measure of the likelihood) of obtaining such 

a result amounts to 0.912. Quite a lot, if we remember that the upper limit is set 

to 1. 

Technically, the value of this probability is called the p-value Our intuition is that a  

p-value close to 1 does not allow the rejection of the null hypothesis. But what 
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should be the lowest p-value for which we accept the null hypothesis? After all, 

rare events happen. For example, throwing a coin 10 times, we expect an equal 

number of heads and tails. However, what imbalance between these results 

would compromise our certainty about the reliability of the coin? 7:3? 8:2?  But 

10:0 could happen! It is necessary to compromise between certainty and 

presumption. In practice, it is assumed that this lowest p-value is 0.05 and this is 

called the level of significance α = 0.05. This means that we consciously accept the 

possibility of rejecting a true null hypothesis H0 after a rare event, given that this 

could happen. In our example, in order to get the p-value for this test given there 

are 8 heads, we should calculate the probability of either 8,9 or 10 heads or 8,9 or 

10 tails – i.e. results that are at least as far away from the expected 5 heads and 5 

tails, hence we do not reject if 8 heads (or tails) appear 

p=2*(1+10+45)/1024≈0.11, but reject if 9 heads (or tails) appear 

p=2*11/1024≈0.02. Thus, if the number of heads (or tails) was 8, we would not 

reject H0 (that the coin is fair). If there were 9 or 10 heads (or tails), we would 

reject H0. To reiterate: the level of significance is a compromise accepted by 

practitioners.  The significance level can be changed: in fact, the more we are 

afraid of rejecting H0, the lower the significance level should be. It is assumed that 

this level should be in the range [0.02, 0.1]. 

At the end of this section, considerations reaffirm that the similarity to a 

confidence level of 1-α is not incidental. The same symbol α is used, and very 

often the same value of 0.05.  The confidence interval for a parameter can also be 

used to test hypotheses relating to the value of this parameter. If, for example, 

the null hypothesis is that the average value in the population  m = 0, and the 

confidence interval for the population mean based on a sample has a negative left 

endpoint and positive right endpoint, then this result states that it is quite 

possible that the population average is zero (i.e. we do not reject H0) , because 0 

is inside the confidence interval. If both endpoints of the confidence interval for 
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the population mean have the same sign, it means that 0 is not in it, and we reject 

H0  at a significance level of α = 0.05 (i.e. it is not credible that the population 

mean is zero at this significance level). 

 

For the record, let us also recall that if we accept the null hypothesis, it only 

means that there are no grounds for its rejection and this is to be interpreted as 

treating H0 as true as long as we cannot find strong evidence contradicting it. 

Rejection of the null hypothesis is unconditional. However, in both cases, we may 

be wrong and e.g. the probability of rejecting H0 when is true is given by α – the 

level of significance. 

Let us now divide the test sample into two parts (two samples) by including  the 

even-numbered observations in the first sample and odd-numbered observations 

in the second sample. Such a method can be used to test the homogeneity of the 

original sample. If it is homogeneous, the parameters (e.g. mean value and 

standard deviation) in the two new samples should not significantly differ. Thus 

we have the following two samples: 

X  Y 

-0.30023  -1.27768 

0.244257  1.276474 

1.19835  1.733133 

-2.18359  -0.23418 

1.095023  -1.0867 

 

Let us examine whether both samples come from populations with the same 

population mean (which should be the case as they come from the same 

population), i.e. X Ym m= . We will use the statistic 
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1 2
1 22 2

1 21 1 2 2

( 2)
X Y n n

U n n
n nn S n S

−
= + −

++
 

We calculate the appropriate statistics: 

  Variable 1 Variable 2 

Mean 0.010762 0.0822094 

Variance 1.888100953 1.866891821 

Observations 5 5 

 

The realisation of the U statistic is -0.08244548. The critical value for the t-Student 

distribution with 8 degrees of freedom found in the tables is 2.306tα = . Thus, 

any realisation of U contained in the interval [-2.306, 2.306] is not inconsistent 

with the null hypothesis stated above. There are, therefore, no grounds for its 

rejection. 

 

Depending on the context, the alternative hypothesis (to the null hypothesis H0: 

(Q = Q0)) can have one of the following forms: 

1 0: ( )H Q Q≠ , 

1 0: ( )H Q Q> , 

1 0: ( )H Q Q< . 

The first case is called a two-sided alternative and the corresponding parametric 

test is a two-sided test. The other two cases are called right-sided and left-sided 
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alternatives,  respectively. The examples considered above were two-sided tests. 

For example, examining the earnings of men and women we may formulate the 

following hypotheses: 

a) two-sided, for example, the earnings of men and women in the same positions 

differ significantly. This hypothesis is two-sided, because we did not assume a 

particular direction for the difference. 

b) One-sided (directional), for example, men earn significantly more than women 

in the same job. This hypothesis implies the direction of difference, thus  it is one-

sided. 

The two types of one-sided tests using t-statistics are illustrated below: 

 

Q0 

f(u) 

0 

1 α−  

α  

1 0: ( )H Q Q>  
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Returning to the example concerned with the samples X and Y, now suppose that 

we think that the sample Y comes from a population with a mean value greater 

than the average in the population represented by the sample X. So we formulate 

the null hypothesis X Ym m=  against the alternative hypothesis X Ym m< . The 

realisation of the U statistic is t =- 0.08244548. The critical value for the t-Student 

distribution with 8 degrees of freedom (one-sided test) found in the tables is 

1.8595tα =  . So, therefore, there is no reason to reject the null hypothesis. 

To finish, the data are used to illustrate another test: a comparison of variance 

with two small samples. We will use the F-Snedecor test: 

2

1

2

2

S
F

S
=  

with (n1-1=4, n2-1=4) degrees of freedom. 

We get: 

-Q0 

f(u) 

0 

1 α−  

α  

1 0: ( )H Q Q< −  
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  Variable 1 Variable 2 

Mean 0.010762 0.0822094 

Variance 1.888100953 1.866891821 

Observations 5 5 

Df 4 4 

F 1.011360665  

P(F<=f) one-tail 0.495763859  

F Critical one-tail 6.388232909   

 

We see that the assumption of the equality of variances is reasonable: you 

cannot reject the hypothesis of the equality of the variances in the 

populations from which these samples come. The realisation of the F statistic 

is 1.01136 and is much smaller than the critical value 6.3882. 

 

Example. 

A factory produces product A. Characteristic X has an ( , )$ m σ distribution with an 

unknown value of σ. Technical requirements mean that the standard deviation of 

this characteristic should be 4. 

To verify the quality of production, a simple sample was taken with n = 20 

elements.  The standard deviation for this sample is s = 4.4. Does production 

satisfy the technical requirements? 

We therefore hypothesize
0( 4)H σ = . 

We calculate the realisation of the statistic

2

Z

σ
, which has a 2χ distribution with 

n-1 degrees of freedom: 
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2

2 2

20 (4.4)
24.2

4

Z

σ
⋅

= ≅  

Let’s assume α=0.01. We look for the value of z0 which satisfies: 

02
0.01

Z
P z
σ
 > = 
 

 

From the table for the
2χ

distribution, we found that for 19 degrees of freedom   

z0  = 36.19.  

Thus, assuming that the hypothesis H0 is true, the probability 
2

24.2
Z

P
σ
 > 
 

is 

greater than α=0.01. 

Conclusion: there is no reason to reject the hypothesis that the technical 

requirements are satisfied.  Note that even a change in the level of significance 

from   α = 0.01 to α = 0.05 does not affect this result: the critical value is then z0 = 

30.1435, and is still greater than 24.2.  

 

Example. 

Pieces of art from a given workshop are either good or flawed. The probability p 

of a piece being flawed is not known. A sample of 30 pieces was taken and 4 

pieces were found to be defective. The workshop declares that the proportion of 

flawed items is 10%. Is this declaration realistic? 

We put forward the hypothesis 0( 0,1)H p = . The alternative is right-sided, i.e. 

(p>0.1).  

Denote: 

 ,   
30

1

k

k

X X
=

=∑  . 

If the hypothesis is true, then: 

30
30

( ) 0,1 0,9r rP X r
r

− 
= = ⋅ ⋅ 

 
 

We observe  x = 4 . The p-value is given by: 
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Conclusion: there is no reason to reject the hypothesis that the proportion of 

items that are flawed is 10%. 

 

At the end of this lecture, let us examine an example of the series test used to test 

the quality of mass-produced products, which can be regarded as a non-

parametric test, i.e. a test used to examine the compatibility of the empirical 

distribution with a theoretical distribution. Such tests are called nonparametric 

tests or tests of compliance. 

We are examining the quality of manufactured components.  50 successive items 

are taken from a production line and classified as good (D) or defective (Z): 

 

 

Length of 

series 

6 1 8 1 2 1 13 

Classified 

elements 

DDDDDD Z DDDDDDDD Z DD Z DDDDDDDDDDDDD 

Number of 

series 

1 2 3 4 5 6 7 

 

2 13 1 1 50 

ZZ DDDDDDDDDDDDD Z D  

8 9 10 11 11 

 

Hypothesis H0: good and bad components are produced in a random way. 

The alternative hypothesis H1: the technological process leads to subsequences in 

which defects are more likely than usual . Acceptance of the alternative 

3527.09.0134.1119.01.0
30

1)4(1)4( 27
3

0

30 =⋅−=⋅⋅







−=<−=≥ ∑

=

−

r

rr

r
XPXP  
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hypothesis means that there may be a systematic trend in the process, which may 

enable the identification of ways to improve the quality of production. 

For the data presented here, we use a test called the series test, whose test 

statistic has  the following form: 

U

U

U
Z

µ
σ
−

= , 

which for n> 20 has an approximately normal distribution. 

where: U - the number of series, n1 - number of bad elements, n2 - the number of 

good elements 

-  Mean value:  1 22
1U

n n

n
µ = +  , 

      - Standard deviation 1 2 1 2

2

2 (2 )

( 1)
U

n n n n n

n n
σ

−
=

−
 

In our example: n = 50,  n1 = 6,   n2 =  44,   U = 11 : 

1 2

1 2 1 2

2

2
1

0,39
2 (2 )

( 1)

n n
U

n
Z

n n n n n

n n

 − + 
 = = −

−
−

 

0,05 1,645Zα= = −
  (a left-sided test). 

Conclusion: there is no reason to reject the hypothesis of homogeneity of 

production - there are no systematic changes in the likelihood of errors. 
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