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1. Dynamic Systems Modelling and Analysis 
 

1.1. Differential Equation 

 

Example 1.1 – Pendulum. Let us consider a pendulum, composed of a ball attached to a solid wire 

(see Figure 1.1). The pendulum hangs down below the pivot point. Mass of the ball is m , l  is the 

wire’s length, s  stands for the distance made by the ball from its resting equilibrium position, and y  

denotes the angular displacement measured from the equilibrium position. 

 

 

 

 

 

 

 

 

 

 

After being displaced from its equilibrium position and released, pendulum begins to swing back and 

forth. Its motion may be described by changes of the angle y  over time t . This description is given 

by a function )(ty .  The question is: what does the function )(ty  look like? For a given pendulum, 

specified by parameters ml,  and for the initial displacement, function )(ty  should describe the 

system behavior. 

Later on we work out dynamic model of the pendulum in the form of differential equation and we 

introduce a method of solving linear differential equations. 

Model. We start analysis from the specification of forces that act upon a ball (see Figure 1.2). 
gF  is 

gravity,  
sF  denotes its component tangent to direction of movement and 

hF  stands for inertia. The 

force of interest is 
sF , because it acts along the ball’s trajectory. Note that 

)(sin tyFF gs  . (1.1) 

l  

m  
s  

y  

Figure 1.1. Pendulum. 
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For simplicity, let us assume that friction that acts in the pivot point is proportional to ball’s velocity: 

 
dt

tds
kFh

)(
 , (1.2) 

where k  is constant of proportionality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now, we can apply the second Newton’s law of motion, which states that: 

2

2 )(

dt

tsd
mF

i

i  ,  

where 
i

iF  is the net force acting upon the system. Thus, we have: 

2

2 )(

dt

tsd
mFF sh  . (1.3) 

Evaluating formula (1.1): 

)(sin)(sin tymgtyFF gs  ,  

and substituting it, together with (1.2), to equation (1.3), yields: 

2

2 )(
)(sin

)(

dt

tsd
mtymg

dt

tds
k  .  

Rearranging above formula in accordance with order of derivative gives: 

 

s  

l  

m

 

x  

hF  

gF  

sF  

y  

Figure 1.2. Forces acting upon a ball. 
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0)(sin
)()(

2

2

 tyg
dt

tds

m

k

dt

tsd . (1.4) 

Variable s  may be expressed it terms of y  and l . Figure 1.3 illustrates that proportion between the 

angle y  and 2 radians equals to proportion between the sector s  and the circle circumference 

l2 : 

l

sy

 22
 .  

The proportion given above results in: 

lys  .  

 

 

 

 

 

 

 

 

 

 

Equation (1.4) may be rewritten in the form: 

0)(sin
)()(

2

2

 ty
l

g

dt

tdy

m

k

dt

tyd .  

To simplify notation, let us use )(ty  to denote derivative of y  with respect t : 

0)(sin)()( 01  tyatyaty , (1.5) 

where  

l

g
a

m

k
a  01 , , 

and initial conditions )0(y  are known. 

 

Equation (1.5) is the second order nonlinear differential equation describing motion of the pendulum 

presented on Figure 1.1. 

Note, that for small angles yy sin  holds, which allows to propose linear differential equation: 

 

y

 
l  

s  

Figure 1.3. Relation between the angle y  and the distance s . 
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0)()()( 01  tyatyaty . (1.6) 

This equations describes the system behavior only for small displacements from the resting position. 

 

Example 1.2 – Damper. Let us consider a forced mass-spring-damper system, composed of a block 

attached to the spring and a dashpot filled up with liquid (see Figure 1.4). Mass of the block is m ,   

is the damping factor, k  stands for modulus of the spring elasticity, y  is displacement from the 

equilibrium position and u  is the force acting on the spring. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model. The damping force generated by the dashpot is proportional to velocity of the block:  

dt

tdy
F

)(
  . (1.7) 

The spring generates a force proportional to displacement: 

)(tykFk  . (1.8) 

The net force acting upon the block equals to 
kFFtu  )( , which gives the following form of the 

second Newton’s law of motion: 

2

2 )(
)(

dt

tyd
mFFtu k  

. (1.9) 

Substituting (1.7) and (1.8) to (1.9) yields: 

 

m    

k  

)(tu  

)(ty  

  

Figure 1.4. Forced mass-spring-damper system. 
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2

2 )(
)(

)(
)(

dt

tyd
mtky

dt

tdy
tu   ,  

and applying )(
)(

ty
dt

tdy
 : 

)()()()( tutkytytym   .  

Dividing both sides by m  gives:  

)(
1

)()()( tu
m

ty
m

k
ty

m
ty 

 .  

Denoting:  

m
b

m

k
a

m
a

1
,, 001 

 ,  

We obtain the second order differential equation: 

)()()()( 001 tubtyatyaty  . (1.10) 

Compare models (1.6) and (1.10). The first model describes linearized unforced system, but left sides 

of equations are identical. For )(0)( ttu   both models are identical. Different physical objects have 

similar description, which means that variables of both systems are related in the same way. 

Therefore, analysis made on the model (1.10) applies for all possible systems that may be described 

by this equation. Another example of the system with description (1.10) is RLC circuit. Interpretation 

of variables is different, but model remains the same. 

 

In general, differential equation is equation of the form (Bro06, Oga02): 

0)(,
)(

,,
)(

,
)(

);(,
)(

,,
)(

,
)(

1

1

1

1

















tu
dt

tdu

dt

tud

dt

tud
ty

dt

tdy

dt

tyd

dt

tyd
f

v

v

v

v

m

m

m

m

 . (1.11) 

Linear differential equation is particular example of the above equation: 

,)(
)()()(

)(
)()()(

011

1

1

011

1

1

tub
dt

tdu
b

dt

tud
b

dt

tud
b

tya
dt

tdy
a

dt

tyd
a

dt

tyd

v

v

vv

v

v

m

m

mm

m




















 (1.12) 

where vm   holds. 
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Exercises 

 

Exercise 1.1.  Work out differential equation describing the process of hot cup of coffee cooling 

down. Assume, that temperature of environment is constant during the process. As a time varying 

variable take temperature of a cup of coffee )(ty . Initial value of this variable denote by )0(0 yy  . 

Exercise 1.2. Work out the model of commonly known RLC circuit, where R stands for electrical 

resistance, L for inductance and C for capacitance. Potential drop across a capacitor equals to 
C

q , 

where  q  is the charge on the capacitor. Applied voltage )(te  is an input and resulting current )(ti  is 

an output. 

Exercise 1.3. Note similarities between models from exercise 1.1 and 1.2. Point out analogy between 

variables and parameters of both systems. 

 

1.2. State Vector Description 

  

In order to relate variables defined in the system, the following state vector description may be used 

(Oga02, Vuk03): 

 

 











)(),()(

)(),(
)(

ttGt

ttF
dt

td

uxy

ux
x

 , )(),0( tux  (1.13) 

where  
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)(

)(

)(,

)(

)(

)(

)(,

)(

)(

)(

)(

)(

)2(

)1(

)(

)2(

)1(

)(

)2(

)1(

ty

ty

ty

t

tu

tu

tu

t

tx

tx

tx

t

LSR


yux .  

The vector x  contains time-varying variables that uniquely describe system’s state. The vector u  

contains input variables associated to external action upon the system. The vector y  contains output 

variables associated to  the system action upon its environment. Vector functions F  and G  define 

the system of state equations and output equations, respectively. Note that in contrary to 

differential equations, the state vector description uses intermediate state variables x  to express 

relation between the input )(tu  and the output )(ty . There is differential equation relating )(tu  and 

)(tx  and static function G  describing the output signal )(ty .  
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State equations have form: 

 

 

 





















)(,),(),();(,),(),(
)(

)(,),(),();(,),(),(
)(

)(,),(),();(,),(),(
)(

)()2()1()()2()1(
)(

)()2()1()()2()1(

2

)2(

)()2()1()()2()1(

1

)1(

tutututxtxtxf
dt

tdx

tutututxtxtxf
dt

tdx

tutututxtxtxf
dt

tdx

SR

R

R

SR

SR









   , 
 

 

and output equations have form: 

 
 

 

















)(,),(),();(,),(),()(

)(,),(),();(,),(),()(

)(,),(),();(,),(),()(

)()2()1()()2()1()(

)()2()1()()2()1(

2

)2(

)()2()1()()2()1(

1

)1(

tutututxtxtxgty

tutututxtxtxgty

tutututxtxtxgty

SR

L

L

SR

SR









   .  

 

Linear system is described by a particular form of state vector description (1.13): 














)()()(

)()(
)(

ttt

tt
dt

td

DuCxy

BuAx
x

   , (1.14) 

where DCBA ,,,  are matrices of the form: SLRLSRRR   RRRR DCBA ,,, . 

 

Example 1.3 – Damper. Let us take differential equation (1.10) describing behavior of the forced 

spring-mass-damper system. In order to describe it by state vector description, we introduce two 

state variables: 

dt

tdx
tx

txtx

)(
)(

)()(

)2(

)1(




   .  

Variable )1(x  stands for displacement and )2(x  is velocity. These two time varying variables give full 

information about the current state of the system. Now, we work out state vector description on the 

basis of differential equation (1.10). It is required to find formulas for 
dt

tdx )()1(

 and 
dt

tdx )()2(

 as 

relations involving )1(x , )2(x  and system parameters. The first formula is a consequence of state 

variable definition: 
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)(
)()( )2(

)1(

tx
dt

tdx

dt

tdx
 .  

The second formula is derived from (1.10): 

)()(
)()(

0

)1(

0

)1(

1

)2(

tubtxa
dt

tdx
a

dt

tdx
 ,  

which gives: 

)()()(
)(

0

)2(

1

)1(

0

)2(

tubtxatxa
dt

tdx
 .  

As the output we decide to take )()( )1()1( txty  . 

Eventually, we obtain state vector description in the form: 





















)()(

)(
1

)()(
)(

)(
)(

)1(

)2()1(
)2(

)2(
)1(

txty

tu
m

tx
m

tx
m

k

dt

tdx

tx
dt

tdx

    . 
(1.15) 

Equivalent matrix representation has the form: 

 






























)(01)(

)(
1

0
)(

10)(

tt

tu
m

t
mmkdt

td

xy

x
x

    . (1.16) 

 

Example 1.4 – State vector description and SIMULINK. On the basis of state vector description it is 

easy to implement the system model in SIMULINK environment, which is a part of MATLAB software. 

Implementation of state vector (1.15) is illustrated in Figure 1.5. 

The model is composed of pre-defined building blocks representing mathematical operations. Blocks 

labeled by 
s

1  are integrators and they integrate input value over time, beginning from the initial 

value, up to the total simulation time. Initial values are set up in the block’s parameters window. 

Outputs of these two blocks are values of )()1( tx  and )()2( tx  at the time t  solved numerically by 

Runge-Kutty method (Bro06). Another blocks allow to define constant parameters: square blocks 

with no inputs give constant value as output (‘m’ is 2m ), triangle blocks are constant gains (‘k’ is 

1.1k  and ‘mu’ is 2.1 ).  
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There are also blocks that do summation, division, and multiplication (the ‘product’ block). The 

‘clock’ block returns current time t . The group of blocks on the bottom left implement input signal  

tetu t sin)( 1.0 . Output signals )()1( tx  and )()2( tx  are illustrated in Figure 1.6.  

 

 

Figure 1.5. SIMULINK implementation of a forced mass-spring-damper system model. 

 

 

Figure 1.6. Solution of the model for initial conditions 0)0(,3)0( )2()1(  xx . 

Another view on the solution is given on the so called phase plane (see Figure 1.7) where axis stand 

for state variables.  
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Note that there is no time axis. Current state of the system is represented by a point and trajectory 

of this point represents systems behavior. Trajectory may be illustrated as a motion of a point or as a 

trace of this point (which is the case in Figure 1.7). We observe, that oscillation of a mass-spring-

damper system driven by force tetu t sin)( 1.0  tends to vanish. 

 

 

Figure 1.7. Solution of the model in the  )2()1( , xx  phase plane.  

 

 

Exercises 

 

Exercise 1.4.  Simulate forced mass-spring-damper system in SIMULINK for different initial conditions 

and for different input signals: step, impulse, constant, harmonic. Draw solution in the time domain 

and the phase plane. Could you decide when the system is stable or unstable? 

Exercise 1.5.  Simulate the so called Lotka-Volterra system describing relation between numbers of 

two populations individuals: preys ( )1(x ) and predators ( )2(x ). It is assumed that the number of preys 

grows exponentially and is reduced proportionally to the number of predators. Moreover, the 

predators growth factor is proportional to the number of preys. State vector description of the Lotka-

Volterra system has the form: 

 

  )()(
)(

)()(
)(

)2(

0

)1(

1

)2(

)1()2(

10

)1(

txbtxb
dt

tdx

txtxaa
dt

tdx




,  

where 
1010 ,,, bbaa  are constant parameters, characteristic for investigated pair of population. Try out 

different initial conditions. Work out SIMULINK model of the Lotka-Volterra system.  
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For different values of parameters and initial conditions analyze its behavior on the time domain and 

the phase plane. Does the system have any equilibrium states? 

Exercise 1.6.  Simulate the human heart dynamics using the Zeeman model of the form: 

 

btx
dt

tdx

txtxtax
dt

tdx





)(
)(

)()()(
)(

)1(
)2(

3)1()2()1(
)1(

,  

where )1(x  denotes length of heart’s muscle fibers, )2(x  is electrochemical stimulus’ strength, a  

stands for effect of blood pressure and parameter b  determines position of the equilibrium point. 

Implement Zeeman model in SIMULINK. Analyze its behavior in the time domain and on the phase 

plane, trying different initial conditions. Can you observe the so called limit cycle? Simulate the 

system for different values of parameter a :  0a , small value of 0a , high value of 0a , and 

different values of parameter b :  3ab   and 3ab  . On the  ba,  parameters plane draw 

areas where the system is stable and unstable. 

Exercise 1.7.  A simplified model of the weather behavior proposed by Lorenz has the form: 

 

)(
)(

)(
)(

)()(
)(

)3()2()1(
)3(

)3()1()2()1(
)2(

)1()2(
)1(

txxx
dt

tdx

xxxtx
dt

tdx

txtx
dt

tdx













,  

where )1(x  is velocity of the air ascendance, )2(x  is the difference between ascendant and 

descendant air columns temperatures,  )3(x  is a measure of deviation of )()2( tx  over time from 

linearity,  ,,  are constant parameters. Work out SIMULINK model of the Lorenz system taking: 

38,28,10   . Analyze its behavior in the time domain and on the phase plane. How to 

visualize three dimensional trajectory covered by the system? Compare two trajectories with slightly 

different initial positions. Do they stay close to each other as long as time goes by? Try also to 

analyze the system with  170,145 . 

Exercise 1.8.  Work out state vector description for inverted pendulum on a cart (see Figure 1.8), 

described by following set of differential equations: 
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)(cos
)(1

)(sin
)(

)()(sin
)()()(

2

2

2

2

2

2

2

2

2

t
dt

txd

l
t

l

g

dt

td

tFt
dt

td
ml

dt

td
ml

dt

txd
mM



















   , (1.17) 

where x  – position coordinate along the road,   – angular displacement, F  – force driving the cart, 

m  – mass of the block, M – mass of the cart, l  – length of the wire, 81.9g – gravity constant. 

 

 

 

 

 

 

 

 

 

 

 

 

Work out SIMULINK model of the system and analyze its behavior in time domain and on the phase 

plane. Try out different values of parameters and different functions )(tF  describing driving force.  

 

1.3. Transfer Function 

 

The Laplace transform relates functions )(tf  of real variable t  with functions )(sF  of complex 

variable s . Laplace transform is defined as: 

      



o

stdtetftfsF
df

L , (1.18) 

where   0tf  for 0t . 

Inverse Laplace transform is defined as: 

 

 

F

 

  

l  

m

 

 
x  

M  

Figure 1.8. Inverted pendulum on a cart. 
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jc

jc

stdsesF
j

sFtf
2

1df
1L . (1.19) 

Example 1.5 – Working out Laplace transform using definition. Let us evaluate Laplace transform for 

function   atetf  , where Ra  is constant parameter. Following definition (1.19), we obtain: 

 

  .11

1

)(0)(

0

)(

0

)()()(

asasast

ast

o

ast

o

ast

o

stat

o

statat

ee
as

e
as

e
as

dtedtedtedteee










































 L
  

Solution exists only if real part of )( as   is greater than 0 , which holds if as Re . Then we have: 

   
asas

ee
as

asas








  1

10
11 )(0)( .  

Eventually we obtain: 

 
as

eat




1
L . 

For functions commonly used in systems analysis mathematicians worked out Laplace transform and 

put results in tables, such as Table 1.1. Instead of performing integration, we may read out the 

transform directly from the table. Note, that we may also read the table backwards, i.e. for given 

function )(sF   the table gives original function )(tf . The question arises: how to work out Laplace 

transform of more sophisticated functions, that are not found in the Laplace transforms table? 

In order to do this, properties of Laplace transform may be applied.  

 

Laplace transform properties. Laplace transform has following properties: 

 

Property 1. Linearity:               sFasFatfatfatfatfa 221122112211  LLL , 

where R21, aa  are constant parameters. 

Linearity property is a direct consequence of integral property. 
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Table 1.1. Table of commonly used Laplace transforms. 

)(tf  )(sF   )(tf  )(sF  

)(t  )(1 s   att sin  
 222

2

as

as


 

)(1 t  
s

1
  attcos  

 222

22

as

as




 

ate  
as 

1
  bteat sin    22

bas

b


 

atsin  
22 as

a


  bteat cos    22

bas

as




 

atcos  
22 as

s


  Nn

n

tn

,
!

 1

1
ns

 

   Nn
n

t
e

n
at ,

!
 

  1

1



n

as
 

 

 

Property 2. Differentiation:       )0()0(0)( )1(21)(   nnnnn ffsfssFstf L , 

where  tf n)(  is the n -th order derivative of function  tf  and   )0(,),0(,0 )1(  nfff   are initial 

values.  

Note, that when initial values are all equal to zero, we have simple rule to remember: 

 

   )()( sFstf nn L . 

Now, we prove the differentiation property in the case 1n :     0)( fssFtf L . 

Following the Laplace transform definition (1.18), we may write:    




0

)( dtetftf stL . By making 

use of integration by parts, where stst setheth   )(,)( , we obtain: 
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0
0

0

0

0

)()()()()()()( dtsetfetfdtthtfthtfdtetf ststst .  

Assuming 0Re s  gives: )0()()()0()(
0

0 fssFdtetfsefetf stss  


 . 

 

Property 3. Integration:    )(
1

sF
s

df

t

o









 L .  

Recall, that in SIMULINK the integration block is labeled by 
s

1
. 

 

Property 4. Multiplication of a function by t :     )(sF
ds

d
ttf L . 

Now, we present short proof of the property above: 

     ttfdtettfdttftedttfe
ds

d
dtetf

ds

d
tf

ds

d stststst LL  
















0000

)()()()( . 

 

Property 5. Division of a function by t : 
 













s

dssF
t

tf
)(L . 

Now, we present short proof of the property above: 

  

.
)()(

1
0)(

1
)()()(

0

0000



































































  














 



 





t

tf
dte

t

tf

dte
t

tfdte
t

tfdtdsetfdsdtetfdstf

st

st

s

st

s

st

s

st

s

L

L

  

Property 6. Multiplication of a function by ate :      asFtfeat L . 

 

Property 7. Change of time scale:    









a

s
F

a
atf

1
L , where 0a . 

Now, we prove the property above. Following the Laplace transform definition (1.18), we may write: 
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0

)( dteatfatf stL . Taking atx   we obtain: 







 







a

s
F

a
dxexf

aa

x
dexf

x
a

s

a

x
s 1

)(
1

)(
00

. 

 

Property 8. Delay:      )(1 0

00 sFettttf
st

L . 

Now, we prove the delay property. Following the Laplace transform definition (1.18), we may write: 

          






 

0

0

0

0000 11
t

stst dtettfdtettttfttttfL . Taking 0tt   we obtain: 

        )()( 00000

000

)(
sFetfedefedeefdtef

ststsstststs 












  L 

. 

 

Property 9. Convolution:  

      )()()()()()()()( 2121

0

2121 sFsFtftfdftftftf

t









  LLLL  , 

where )()( 21 tftf   is convolution of functions )(1 tf  and )(2 tf . 

Now, we prove the convolution property. At the beginning note, that 0)(1)(1   ttf  holds for 

t , which was assumed while defining Laplace transform (1.18). Following the Laplace transform 

definition (1.18), we may write: 



0

21

0

21 )()(1)()()(  dfttfdftf

t

. Then: 

 
 

































0 0

21

0

21

0

21 )()(1)()()(1)()()( dtdfttfedfttfdftf st

t

 LL . 

Substituting  t  and changing the order of integration gives: 

    ).()()()()()(

)()()()()()()()(

2121

0

2

0

1

0
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0

)(
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0

2

0

21
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21

sFsFtftfdefdef

dfdefdfdteftatfdftf
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sst
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LL
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Example 1.6 – Using table of Laplace transforms. Work out Laplace transform of function 

42sin53)( 2   tetf t . 

With use of linearity property no. 1 together with table 1, we write: 
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Let us consider linear system with zero initial conditions, where dynamic relation between input 

)(tu and output )(ty  is described by differential equation (1.12): 

.)(
)()()(

)(
)()()(

011

1

1

011

1

1

tub
dt
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tyd
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tyd
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 (1.20) 

To transform both sides of this equation: 
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  LL .  

Applying linearity property yields: 
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Applying differentiation property no. 2, with zero initial values assumed, gives: 

).()()()()()()()( 01

1

101

1
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Pulling )(sY  and )(sU  before the bracket gives: 

   .)()( 01

1

101

1

1 bsbsbsbsUasasassY v

v

v

v

m

m

m  





    

 

The transfer function )(sK  of linear system with zero initial conditions is the ratio between Laplace 

transform of  the system output and the system input: 
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 . (1.21) 

Example 1.7 – Evaluation of transfer function from differential equation. A linear system is 

described by differential equation: 

   
 

 
 tu

dt

tdu
ty

dt

tdy

dt

tyd
223

2

2

 . (1.22) 

Passing both sides by Laplace transform gives: 

)(2)()(2)(3)(2 sUssUsYssYsYs  .  

Pulling )(sY  and )(sU  before the bracket gives: 
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   2)(23)( 2  ssUsssY .  

Rearranging above equation gives transfer function: 

)(
23

2

)(

)(
2

sK
ss

s

sU

sY





 . (1.23) 

Note, that description (1.23) makes sense for the system (1.22) only for zero initial conditions. 

Example 1.8 – Evaluation of differential equation from transfer function. A linear system is 

described by following transfer function: 

1

1
)(




s
sK . (1.24) 

We ask about differential equation describing the system: 

1

1

)(

)(




ssU

sY .  

Cross multiplication gives: 

  )(1)( sUssY  ,  

which is  

)()()( sUsYssY  .  

Now we may deduce original difference equation: 

)()(
)(

tuty
dt

tdy
 . (1.25) 

Let us take a closer look at solution (1.23) of example 1.7: 

1

1

)1)(2(

2

23

2
)(

2 












sss

s

ss

s
sK .  

We observe that two different differential equations (1.22) and (1.25) have the same transfer 

function. Transfer function loses some information about the system. Differential equation is more 

accurate description, however, transfer function is more convenient. When dealing with complex 

systems, that are composed of many input-output dynamic elements, it is easy to work out the 

complex system model on the basis of its elements transfer functions.  

Example 1.9 – SIMULINK model. Consider a system described by transfer function (1.23): 

23

2
)(

2 




ss

s
sK . SIMULINK implementation of the system is illustrated in Figure 1.9. Two vector of 

parameters were set up in the ‘Transfer Fcn’ block parameters window. The first one,  21 , is for 

nominator and the second one is for denominator  231 . As an input signal, Dirac delta )(t  is 

applied. For such an input signal the output signal is called impulse response (see Figure 1.10). 
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Figure 1.9. SIMULINK implementation of a system described by transfer function (1.23). 

 

 

Figure 1.10. Impulse response of a system described by transfer function (1.23). 

 

Exercises 

 

Exercise 1.9. Find Laplace transforms of the following functions: 

a) 23cos)(  ttf  d) )(sin)( 2 ttetf t    

b)  ttttf sin2cos
3

1
)(   e) tettf 323)(   

c) 
t

ee
tf

tt

2
)(

4 
  

f) tetttf 2322)(   

Exercise 1.10. Proof: – linearity, – differential, – integration, – multiplication of a function by ate ,   

properties of Laplace transform. 

Exercise 1.11. Linear system fed up with step function )(1)( ttu  , returned the output signal 

tety )( . Work out the system’s transfer function )(sK . 

Exercise 1.12. Work out transfer function of forced mass-spring-damper system described by 

differential equation (1.10). 
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Exercise 1.13. With use of SIMULINK implement models of systems described by transfer functions 

(1.23), (1.24) and differential equations (1.22), (1.25). Compare their responses for different input 

signals. What do you observe? 

 

1.4. Linear Systems Analysis 

 

In general, we treat the system as a black box with input )(tu  and output )(ty  (see Figure 1.11). 

Dynamic relation between input and output signals may be expressed it terms of state vector 

description, differential equation or transfer function. 

 

System
)(tu )(ty

 

Figure 1.11. An input-output system. 

 

The task of system analysis is to find output signal )(ty  (system’s behavior) for a given input signal 

)(tu (describing our activity upon the system). Having differential equation describing system’s 

dynamics and initial conditions determining system’s state at the beginning of the dynamic process, 

we ask about an unknown function )(ty , which is solution of differential equation. Thus, the task of 

system analysis reduces to solving differential equations describing the process.   

The procedure of solving differential equations using Laplace transform involves the following steps 

(Bro06):  

Step 1. Pass both sides of differential equation through Laplace transform. As a result, algebraic 

equation of complex variable is obtained. 

Step 2. Rearrange algebraic equation in order to find formula for transform )(sY  of unknown 

function )(ty . As a result, rational function of complex variable s  is obtained. 

Step 3. If needed, apply partial fraction decomposition of rational function worked out in the 

previous step. 

Step 4. Apply inverse Laplace transform in order to find solution )(ty . 

The procedure described above applies for linear differential equations only. 
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Example 1.10 – Solving linear differential equation.  

Let us consider an input-output system described by following differential equation: 

)()(
)(

2

2

tuty
dt

tyd
 .  

Let us analyze the systems’ behavior activated by input signal ttu 2cos)(   from zero initial 

conditions: 0
)0(

)0( 
dt

dy
y . What does the output signal )(ty  look like? 

The problem reduces to solving unknown function )(ty  from differential equation: 

tty
dt

tyd
2cos)(

)(
2

2

 . (1.26) 

At first, we pass both sides of the equation above by Laplace transform: 

 tty
dt

tyd
2cos)(

)(
2

2

LL 







 .  

Applying linearity property yields: 

   tty
dt

tyd
2cos)(

)(
2

2

LLL 






 .  

Using differentiation property for the left side and Laplace transform table for the right side gives 

algebraic equation: 

22

2

2
)(

)0(
)0()(













s

s
sY

dt

dy
sysYs .  

Since all initial conditions are zero, we have: 

22

2

2
)()(




s

s
sYsYs .  

Taking )(sY  before the bracket gives: 

 
4

1)(
2

2




s

s
ssY .  

We obtain rational function: 

)1)(4(
)(

22 


ss

s
sY ,  

which partial fraction decomposition has the following form: 

14)1)(4(
)(

2222 












s

DCs

s

BAs

ss

s
sY , (1.27) 
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where DCBA ,,,  are coefficients to be determined in such a way, that equation above holds true. To 

determine values of these coefficients, let us multiple both sides by denominator )1)(4( 22  ss : 

     41 22  sDCssBAss .  

Brackets multiplication gives: 

DDsCsCsBBsAsAss 44 2323  .  

After elements of the same order are joined: 

       DBsCAsDBsCAs 4423  .  

The equation above holds still if and only if the system of equations: 





















)d(04

)c(14

)b(0

)a(0

DB

CA

DB

CA

  

holds true. By subtraction of equation )a(  from )c(  and equation )b(  from )d( : 









)b()d(03

)a()c(13

D

C
  

we find that 0D  and 31C .  Then, from )b(  we find that 0B  and from )a( we have 

31A . Going back to expression (1.27), we may write its form after partial fraction 

decomposition:   

13

1

43

1

)1)(4(
)(

2222 








s

s

s

s

ss

s
sY .  

Now, it is easy to apply inverse Laplace transform: 
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1

22

1

22
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s

s

s

s

s

s

s

s
sYty LLLL .  

Eventually, using Laplace transforms table backwards, we obtain solution of differential equation 

(1.26): 

ttty cos
3

1
2cos

3

1
)(  . (1.28) 

As a result of analysis we found that considered system, driven by the signal ttu 2cos)(   from the 

zero state, responds with the signal ttty cos312cos31)(  .  
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Exercises 

 

Exercise 1.14. Work out numerical solution of differential equation (1.26) and compare it with the 

exact one (1.28). 

Exercise 1.15. Solve following differential equations: 

 

a) tty
dt

tyd
sin)(4

)(
2

2

 , 

     zero initial conditions 

g) tety
dt

tdy

dt

tyd

dt

tyd  6)(
)(

3
)(

3
)(

2

2

3

3

 

     zero initial conditions 

b) t
dt

tyd

dt

tyd
cos

)()(
3

3

4

4

 , 

     zero initial conditions 

h) tty
dt

tdy

dt

tyd
sin

2

1
)(14

)(
9

)(
2

2

 , 

    1
)0(

,0)0( 
dt

dy
y  

c) 2)(
)(

2 2  tty
dt

tdy ,  

    4)0( y  

i) tety
dt

tdy

dt

tyd 3

2

2

4)(2
)(

3
)(

 , 

   6
)0(

,2)0( 
dt

dy
y  

d) ttty
dt

tyd
3cos10sin3)(4

)(
2

2

 , 

    3
)0(

,2)0( 
dt

dy
y  

j) tetty
dt

tdy

dt

tyd

dt

tyd 2

2

2

3

3

)(
)(

3
)(

3
)(

 , 

   3
)0(

,2
)0(

,1)0(
2

2


dt

yd

dt

dy
y  

e) tety
dt

tdy

dt

tyd 2

2

2

3)(5
)(

2
)(  , 

    1
)0(

,1)0( 
dt

dy
y  

k)  33)(
)( 2

2

2

  ttety
dt

tyd t , 

    1
)0(

,1)0( 
dt

dy
y  

f) )(
)(

3)(4
)()(

2

2

tu
dt

tdu
ty

dt

tdy

dt

tyd
  

    zero initial conditions 

 

Exercise 1.16. Try to solve differential equation 
3

3

2

2 )(
)(

)(

dt

tud
ty

dt

tyd
  for zero initial conditions. Use 

analytical method and numerical (in SIMULINK). Do you find anything wrong about this equation? 

Exercise 1.17. Work out step response )(1)( ttu   of linear system described by the transfer function 

1

1
)(




s
sK . 

 



 28 
 

 

Exercise 1.18. Work out impulse and step responses of a system described by differential equation: 

)()(
)(

2
)(

2

2

tuty
dt

tdy

dt

tyd
 . 

 

1.5. Nonlinear Systems Analysis 

 

Analysis of nonlinear systems is more challenging problem, due to limited possibilities of solving 

nonlinear differential equations. There are some analytical methods, but for most nonlinear 

equations that arise in practice only numerical solutions may be obtained. However, it is possible to 

work out linear approximation of nonlinear system around a given state (usually called set point). 

Usually set point is chosen as an equilibrium state of interest. Results of linearized system analysis 

also apply for original nonlinear system in the neighborhood of a set point. For example, the stability 

of nonlinear system may be stated on the basis of its linear approximation around a set point of 

interest. Control algorithms may be designed for linearized systems and they should perform well as 

long as the systems’ state stays close to the set point. If the systems goes far away from the chosen 

set point , it should be linearized once again for different set point. 

One of the simplest linearization procedure (Vuk03), based on the Taylor’s expansion, is given below. 

Let us consider nonlinear system with the state vector description: 

 

 











)(),()(

)(),(
)(

ttGt

ttF
dt

td

uxy

ux
x

  .    (1.29) 

Nonlinear functions GF ,  are vector functions of the form: 
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Let us denote a set point of interest by:    
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Linear approximation of the system (1.29) has the general form: 
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   , (1.30) 

where DCBA ,,,  are matrices containing constant number determined using the following 

definitions: 
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(1.31) 
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(1.34) 

Example 1.11 – Linearization of state vector description.  

Let us take a system described by the following state vector description: 

   























)()()(

)(2)(sin)(2
)(

)()()()()(3
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)1()()1(
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22)2()2()1()2(
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tutxty

tutxetx
dt
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tutxtxtxtx
dt

tdx

tx     
(1.35) 

State vector for the system above has two dimensions: 
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tx , and  )()( tut u .     
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Functions GF ,  also have two dimensions: 
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where functions gff ,, 21
 are: 
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Matrices introduced in (1.30) have the form given by (1.31)-(1.34): 
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(1.36) 

Components of these matrices are evaluated as: 
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Introducing the formulas above to (1.36), we obtain description of linearized systems: 
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As an example, we chose the set point as the zero vector: 
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For this particular point the system (1.37) has the form: 
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Exercises 

 

Exercise 1.19. Linearize the system below: 
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around the zero set point: 
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Exercise 1.20. 

Linearize the state vector description of inverted pendulum, obtained when solving exercise 1.8 

around the unstable equilibrium position (zero angle of displacement and zero angular velocity). 

When the system is more sensitive to control actions and disturbances: for long or for short 

pendulum?  
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2. Identification 
 

Identification is the term describing mathematical tools and algorithms to build models of real 

systems from measured data. These models are significant in many disciplines. They can be used to 

formulate both new research and engineering problems. The models are useful for system analysis, 

to get  better understanding of the real systems (Bub80, Nel01). 

In Figure 2.1., the process of model development and its applications is illustrated. In order to build a 

model of a real system, the process or phenomenon investigator collects measured data, information 

and observations. Then, applying identification tools and algorithms model of the real system is 

obtained. It must be stressed that the first results cannot be satisfying for investigator. In Figure 2.1, 

the process of model improvement is indicated in a block comparison and adaptation. 

The real system model can be useful for formulating some new investigation problems, control and 

management. Other problems, in which models may be helpful, are related to diagnosis or fault 

detection.  

 

Hypothesis

Methods, algorithms:

- Projects

- Management

- Control
- Diagnosis

Review

Effect:

- New knowledge,

- New plant,

- Management rolls,

- New controllers,
- Measurement and 

diagnostic devices.

Identification 

system

Experiment Data

Investigator

Model Comparison

Adaptation

Goal:
- investigation,
- project,

- management,
- control,

- diagnosis,

 

Figure 2.1. The Model in a System Analysis. 
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As the result of findings mentioned above problems, we have obtained some hypothesis and 

methods for new control, management and diagnosis algorithms. After verification of acquired 

outcomes, we have some new knowledge on investigated real systems. Developed control and 

management algorithms are applied in a design process of new controllers and management systems 

(Figure 2.1).  

 

2.1 Determination of the System Parameters  

 

Let us assume that we have a static system characteristic of the identification system (Figure 2.2) but 

we do not know its parameters (Bub80).  

Identification 

system

nu ny

 

Figure 2.2. The identification system. 

The problem formulation: 

The static system characteristic:  ,uFy  ; 

F - known function; 

u - input vector Su RU  ,U - input domain; 

y  - output vector Ly RY  ,Y - output domain; 

  - unknown vector of the system characteristics parameters RR ; 

 - parameters’ domain. 

As it was mentioned, in order to determine some parameters of the static system characteristic 

 ,uFy  , collected data are needed.  

In this case we assume, that we have noise free measurements, which means that these collected 

data are some selected points in the static system characteristic (Figure 2.4). In this case our problem 

is to determine parameters of the static system characteristic. Next few examples illustrates main 

issues connected with this problem. 
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y

ny

u

 ,uFy 

nu
 

Figure 2.3. The static system characteristic. 

 

Example 2.1 – Determination of the system parameters. Let us assume, that we have the static 

system characteristic described by the following set of equations: 

         

         22

2

11

2

2

22

1

11

1

1

uuy

uuy








. (2.1) 

As a result of an experiment, the following data are collected: 

Table 2.1. Measurements for 1.1. 

n 1 2 3 4 5 6 
 1u  1 0 -1 -1 1 2 

 2u  1 1 1 -1 0 1 

 1y  0 -1 -2 0 1 1 

 2y  5 3 1 -5 2 7 

 

The problem: To calculate some parameters of the static system characteristic (2.1). 

The solution: 

A given description of the system can be rewritten in the form: 

uy  , (2.2) 

where: 
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 . (2.3) 

In the first step we have to decide, how many measurements are needed to solve the  given 

problem. As we know, to calculate unknown parameters of the static system characteristic (2.1), 

following condition must be fulfilled: 

RLN  , (2.4) 

where: 

N - number of measurements; 

L - dimensionality of the output vector; 

R - dimensionality of unknown vector of parameters for the static system characteristic. 

 

Because, in our example, 2L , 4R , it means that the minimal number of measurements, which 

are needed to solve the problem, is 2N . 

In the next step we have to select N = 2 measurements from the table 2.1, which fulfills identification 

conditions. It means that for matrix of input measurements NU  we must obtain: 

  0det NU . (2.5) 

Let us choose from table 2.1 measurement 1n  and 4n . Matrix NU  has form: 















11

11
NU . (2.6) 

The identification condition can be verified in the following way: 

  0
11

11
det 












NU . (2.7) 

The obtained result means that for selected measurements ( 1n  and 4n ) it is not possible to 

find the solution: a proposed sequence does not form identifiable sequence. 

Let us try with a new set of measurements: 2n  and 5n . Determinant of NU  is as follows: 

  1
01

10
det 








NU . (2.8) 

Because   0det NU   means that we have found identifiable sequence, it can possible  determine a 

set of parameters of static system’s characteristic (2.1).  

In the next step we have to determine identification algorithm, to calculate unknown parameters of a 

given characteristic (2.1).  
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Let us rewrite an equation (2.2), taking into account that 2N : 

22 UY  , (2.9) 

where: 

 212 yyY  ,  212 uuU  , (2.10) 

and 
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u . (2.11) 

In order to determine  , we have to solve the matrix equation (2.9): 
1

22

1

22

  UUUY  . (2.12) 

Finally, the algorithm to determine vector of parameters   has the form: 
1

22

 UY . (2.13) 

Now, we can substitute in (2.13) measurements 2n  and 5n . As the result, the following matrix 

equations are obtained: 
1

01

10

23

11


















 , (2.14) 

and then we can get this solution: 
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11

01

10

23

11

01

10

23

11
1

 . (2.15) 

Verification of the solution: 

Let us choose 1n  and 6n . We can verify obtained results substituting in matrix 2U (2.9) data 

1n , 6n  and check that the determined values of the output are the same, as in the table 2.1: 

 

























 


75

10

11

21

32

11
2Y . (2.16) 

It is easy to notice that the same results will be obtained for other measurements set, providing that 

they form identifiable sequence. 

Example 2.2 – Determination of the system’s parameter. Let us assume that we have some static 

system characteristic described by following equation: 

      2321 uuy   . (2.17) 
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The problem: To determine the parameters of the given characteristic (2.17) for the following set of 

measurements: 

Table 2.2. Measurements for example 2.2. 

n 1 2 3 4 5 6 

u  -2 2 0 -1 3 1 

y  9 25 5 4 44 12 

 

Let us rewrite (2.17) in the form: 

      

















2

321

1

u

uy  . 

 

(2.18) 

Substituting: 

      321  T , 

 

 

and 

   Tuuuf 21 , 

 

(2.19) 

we can write connection (2.17) in the following form: 

 ufy T . 

 

(2.20) 

As it was considered in the first example, now we have to find some measurements, which form an 

identifiable sequence. Since, in this example 1L  and , 3R , it means that we need 3N  

measurements. For a given model (2.20) the system of equations has the form: 

 

  3,2,1,  nufy n

T

n  . (2.21) 

The system of equations (2.21) can be rewritten in the form (for 3N ):  

        3213213 ufufufyyyY TTT  , (2.22) 

or:  

 33 UfY TT  , (2.23) 

where:  
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        3213 ufufufUf  , (2.24) 

is square matrix. 

In our example, (2.24) can be written as follows (for 3,2,1n ): 
 

 


















044

022

111

3Uf , 
 

(2.25) 

and 3Y :  

 52593 Y . (2.26) 

Let us verify the identification condition:  

   16det 3 Uf . (2.27) 

It means that the proposed sequence is identifiable. 

Now we may determine a vector of parameters  . Taking into account (2.23), the 

identification algorithm has the form: 

     TT YUfYU 3

1

3333 ,


 . 

 

 

(2.28) 

In the next step, substituting (2.25) and (2.26) to (2.28) results in obtaining some values of 

the parameter vector  : 

 
























































3

4

5

5259

044

022

111
1

T

T

 . 

 

 

(2.29) 

Verification of the solution: 

Let us choose 4n , 5n  and 6n . We can verify obtained results substitute in (2.23) matrix 

 3Uf T  for 4n , 5n , 6n and deduce that the determined values of the output are the same 

as in table 2.2: 

 




















































12

44

4

3

4

5

191

131

111

33

T

TT UfY  . (2.30) 
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It is easy to notice that the same results will be obtained for other measurements set, provided that 

they form the identifiable sequence. 

Exercises 

Exercise 2.1. Let us assume that we have some static system’s characteristic, described by the 

following set of equations: 

             

             33

2

22

2

11

2

2

33

1

22

1

11

1

1

uuuy

uuuy








 

 

 

As a result of the experiment, the following data are collected: 

Table 2.3. Measurements for exercise 2.1. 

n 1 2 3 4 5 6 

 1u  1 -1 -1 2 1 1 

 2u  1 1 1 -1 -1 -1 

 3u  1 2 1 -1 1 2 

 1y  6 7 4 -3 2 5 

 2y  4 -9 -6 11 0 -3 
 

The problem: To calculate some parameters of the static system’s characteristic. 

Exercise 2.2. Let us assume that we have the static system’s characteristic, described by the 

following set of equations: 

            
            233

2

22

2

1

2

2

233

1

22

1

1

1

1

uuy

uuy








 

 

 

As the result of the experiment, the following data are measured: 

Table 2.4. Measurements for exercise 2.2. 

n 1 2 3 4 5 6 

 1u  2 -2 1 1 1 3 

 2u  0 -2 -1 3 1 1 

 1y  1 -3 0 8 0 4 

 2y  2 -6 0 -8 0 2 
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The problem: To calculate some parameters of the static system’s characteristic. 

 

2.2. The choice of the Best Model: Deterministic Case 

 

In this case we do not have any exact model of the static characteristic for investigated system, 

process or phenomenon.  In order to solve given identification problem, an investigator determines 

arbitrary class of a model.  Then, taking into account measured data, it is possible to find the best 

model for arbitrary given class of the model. This problem is called “the choice of the best model” 

(Bub80). In this section we assume, that the collected data are free noise measurements (Figure 2.4). 

 

ny  

u

yy,

 uFy   

ny  

 ,uy   

uD  1u  2u  nu  Nu  … … 

 

Figure 2.4. The choice of the best model – measurements and model’s output. 

As it is shown in Figure 2.4, our problem is to find approximation of the static system’s characteristic, 

 uF  by use an arbitrary given function ),( u based on collected data of inputs and outputs.  

In order to compare obtained results with collected data for each measurement point, it is necessary 

to define performance index, which is the measurement of difference between  uF  and ),( u  

(Figure 2.5). 
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system

Model

Performance 
index

nynu

ny
 

Figure 2.5. The choice of the best model. 

 

The problem formulation: 

Approximation function (model): ),( uy  ; 

  - arbitrary given function; 

y  - model output vector Ly RY  , Y - output domain; 

u - input vector Su RU  ,U - input domain; 

 - vector of model parameters: RR ; 

Experiment  NN uuuU ...21 ,  NN yyyY ...21 ; 

Measure of difference: Nn ,,2,1       ,,, nnnn uyqyyq  . 

 

Example 2.3 – The choice of the best model. Let us assume that we have one dimensional system 

(SISO - Single Input Single Output) and measurements for three different values of the input and 

output: 

Table 2.5. Measurements for  2.1. 

u  -2 0 3 

y  -2 1 3 
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Figure 2.6. Measurements for  2.1. 

 

The problem: To determine the optimal parameter value  for model uy   for given  

measurements and the following performance index: 

   



N

n

nnN yyQ
1

2
 . 

 

 

 

(2.31) 

In the first step we can substitute given measurements (table 2.5) in the performance index  NQ  

(2.31): 

       222
330122  NQ . (2.32) 

After a few simple transformations, we determine: 

  142613 2  NQ . (2.33) 

In order to calculate some optimal value of  for model uy  , some data (from table 2.5) and the 

performance index (2.31), we have to solve the following equation: 

 
0

*


 N

d

dQN




. (2.34) 

Taking into account (2.33) and (2.34), we obtain such equation as: 

02626 * N , (2.35) 

which means, that the optimal value of   for given conditions is: 

y 
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1* N . (2.36) 

Our model has form: uy  . The results of the model determination are shown in Figure 2.7: 

 

Figure 2.7. The results of parameters estimation. 

 

Example 2.4 – The choice of the best model. For given measurements matrix NU , NY  and quadratic 

performance index, the identification algorithm for following models must be found: 

a) uy  ; 

b)    01   uy . 

We start with first example (a). Taking into account the performance index and the model uy  , 

we can write the following formula: 

   



N

n

nnN uyQ
1

2
 . (2.37) 

In order to determine the optimal parameter  , we have to solve the following equation: 

 
0

*


 N

d

dQN




. (2.38) 

Next, we can make some transformations: 

 
    




N

n

nnnn

N

n

nn
N uyuuuy

d

dQ

1

2

1

22 



, (2.39) 

y 
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and then 

  02
1

2* 


N

n

nNnn uyu  , 

 

(2.40) 

0
1

2*

1

 


N

n

nN

N

n

nn uyu  , (2.41) 





N

n

nn

N

n

nN yuu
11

2* . (2.42) 

Finally, the algorithm to calculate the optimal value of parameter   has a form: 








N

n

n

N

n

nn

N

u

yu

1

2

1* . (2.43) 

Let us now consider the same problem of calculating some optimal values of the parameters vector, 

 but for the second model (b)    01   uy . All conditions remain the same. The performance 

index for this problem has the form: 

            



N

n

nn

N

n

nnN uyuyQ
1

201

1

201  . (2.44) 

In this example the performance index depends on two variables i.e.:  0  and  1 . It means that we 

have to solve the set of equations which fulfills the following condition: 

  20* 
 N

Q
  . (2.45) 

We can rewrite it as: 

 
 

 

0
0*

0






 N

Q





, (2.46) 

 
 

 

0
1*

1






 N

Q





. (2.47) 

Taking into account equations (2.44) and (2.45), we can determine such derivatives for 

variable  0 : 
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 N

n

nn

N

n

nn uyuy
Q

1

01

1

01

0
212 




, (2.48) 

and  1 :  

 
 

           





 N

n

nnnn

N

n

nnn uuyuuuy
Q

1

021

1

01

1
22 




. 

 

(2.49) 

 

Now, we focus on the equation (2.48): 

     02
1

0*1* 


N

n

NnNn uy  , 

 

(2.50) 

    0
1

1*

1

0*

1

 


N

n

nN

N

n

N

N

n

n uy  , (2.51) 

  

    01
1

1*

1

0*

1

 


N

n

nN

N

n

N

N

n

n uy  , (2.52) 

    



N

n

n

N

n

nNN yuN
11

1*0*  , (2.53) 

    



N

n

n

N

n

nNN y
N

u
N 11

1*0* 11
 , (2.54) 

and (2.49): 

     02
1

0*21* 


N

n

nNnNnn uuyu  , 

 

 

(2.55) 

 

    0
1

21*

1

0*

1

 


N

n

nN

N

n

nN

N

n

nn uuyu  , 

 

(2.56) 
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N

n

nn

N

n

nN

N

n

nN yuuu
11

21*

1

0*  . 
(2.57) 

 

For sake of simplicity, let us substitute: 



N

n

nu
N

u
1

1
ˆ and 




N

n

ny
N

y
1

1
ˆ . Now, we can rewrite some 

connections between (2.54) and (2.57) in the form: 

    yuNN
ˆˆ1*0*  , (2.58) 

    



N

n

nn

N

n

nNN yu
N

u
N

u
11

21*0* 11
ˆ  . 

 

(2.59) 

 

From (2.58) we can determine: 

   uy NN
ˆˆ 1*0*   . (2.60) 

Substituting (2.60) in (2.59) we obtain: 

     



N

n

nn

N

n

nNN yu
N

u
N

uuy
11

21*1* 11
ˆˆˆ  , 

 

(2.61) 

and then 

    



N

n

nn

N

n

nNN yu
N

u
N

uuy
11

21*21* 11
ˆˆˆ  . 

 

(2.62) 

 

We can rewrite (2.61) in the form: 

  












N

n

nn

N

n

nN yu
N

uyuu
N 1

2

1

21* 1
ˆˆˆ

1
 , 

 

(2.63) 

 

and finally: 

 

2

1

2

11*

ˆ
1

ˆˆ
1

uu
N

uyyu
N

N

n

n

N

n

nn

N













 . 

 

 

(2.64) 

 

Let us summarize our calculations determining the algorithm to estimate two-dimensional variable 

 , i.e.: 
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   uy NN
ˆˆ 1*0*   , (2.65) 

 

2

1

2

10*

ˆ
1

ˆˆ
1

uu
N

uyyu
N

N

n

n

N

n

nn

N













 . 

 

(2.66) 

 

Example 2.5 – The static system’s approximation with the weight function. For system described by 

the following static characteristic   2uuFy  find the best approximation   uuy   , in 

 10:  uuu RD  with weight function  ugu , presented in Figure 2.8: 

 

 ugu

u

2

1  

Figure 2.8. The weight function. 

 

and the performance index:         duuguuFQ

u

u 
D

2, . The given problem of the static 

system’s approximation is illustrated in the Figure 2.9. 

Let us start with the substituting system’s characteristic and model to the quadratic performance 

index: 

      

u

duuuuQ
D

222  . 

 

(2.67) 
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yy ,

u

1

1

  2uuFy 

  uuy   ,

 ugu

u

2

1  

Figure 2.9. Approximation of the static system’s characteristic with the weight function  ugu . 

In order to find the optimal value of the parameter  , we have to solve the following equation: 

      04
*

2 











u

duuuuu
d

dQ

D

. (2.68) 

Since  10:  uuu RD : 

  0
1

0

3*4  duuu  , (2.69) 

and then:  

0
45

1

0

4
*

1

0

5


uu

 , (2.70) 

0
4

1

5

1 *   . (2.71) 
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Finally, the optimal value of  is: 
5

4*  . (2.72) 

Verification of the solution: 

 

Figure 2.10. Characteristic of the system and its approximation. 

 

Exercises 

Exercise 2.3. Let us assume that we have one dimensional system (SISO - Single Input Single Output) 

and some measurements for three different values of the input and output: 

Table 2.6. Measurements for exercise 2.3. 

u  -1 1 3 

y  -2 1 2 

The problem: To determine the optimal parameter value   for the model uy   for given 

measurements and the following performance index:    



N

n

nnN yyQ
1

2
 . 

Exercise 2.4. For the system described by following characteristic   2uuFy  , find the best 

approximation   uuy   , in  10:  uuu RD  with the weight function  ugu , as in 

the Figure 2.11, and the performance index:         duuguuFQ

u

u 
D

2, . 

 

 

 

y 

u 
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 ugu

u

2

1  

Figure 2.11 The weight function in Exercise 2.4. 

Exercise 2.5. For the model described by the following characteristic   2uuFy  , find the best 

approximation      01,   uuy in  10:  uuu RD  with the weight functions 

 ug u , as below: 

 ugu

u

2

1

 ugu

u

2

1  

Figure 2.12. The weight functions for Exercise 2.5. 

and the performance index:         duuguuFQ

u

u 
D

2, . 
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2.3 Parameter Estimation of the System’s Characteristic 

 

In section 2.1 we have considered the problem of the system parameters’ determination, based on 

the noise free measurements. Here, we take into account that collected data are not free noise 

measurements, i.e. for the given input collected output is not free noise (Bub80). This problem is 

illustrated in Figure 2.13. 

 

Immeasurable 
random  

parameter 

input 

 

output 

 

Measurement 

noise 

Result of 

measurements 

 

Parameter  

estimate 

Identification  

system 

nu  ny  Measurement 

system 

nz  

nw  

Estimation 

algorithm 

 

N  

n  

 

Figure 2.13. System parameter estimation problem. 

This problem is called “parameter estimation of the system’s characteristic”. It is possible to 

distinguish such following cases as: 

a) Noised measurements of the physical values; 

b) Estimation of the system parameter with noisy measurements; 

c) Estimation of the system parameter with random value. 

 

Noised measurements of the physical values 

 

 
 

 

 
 

 

 

Figure 2.14. Noised measurements of the physical values. 
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The problem formulation: 

Measurement noise: 

nz – value of random variable z from space Z ; 

 zf z – probability density function; 

  – observed vector of parameters, value of random variable  , RR ; 

 f  – probability density function; 

Measurements:  NN vvvV 21 . 

 

Estimation of the system parameter with noisy measurements 

 

 
 

 
 

 

 

 

 

 

Figure 2.15. Estimation of the system parameter with noisy measurements. 

 

The problem formulation: 

Measurement system’s description:  zyhw , ; 

Where: W,w h is known one-to-one function such as W,ZY :h ; 

W – measurements domain  Lzy  dimdim ; 

Measurement noise: 

nz  – the observed vector of parameters, value of random variable  , RR ; 
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 f  – value of random variable  f  from space Z ; 

 zf z – probability density function; 

Measurements:    NNNN wwwWuuuU  2121 ,  . 

 

Estimation of the system parameter with random value 

 

N

 

  ,,uF  
nu

 

n  

ny  

 NNN YU ,  

 

Figure 2.16. Estimation of the system parameter with random value. 

 

The problem formulation: 

Static system characteristic:   ,,uFy  ; 

Random system parameter:  LyL   dimdim,R ; 

F – one-to-one mapping  yuF ,,1  
 ; 

n – value of random variable   from LR ; 

Probability density function  f  is given; 

Measurements:    NNNN yyyYuuuU  2121 ,  . 

 

 

 



 54 
 

Example 2.6 – Estimation of the system parameter with noisy measurements: Least Squares 

Method. For linear system with static characteristic  uy T , we have N measurements. Input 

and output sequences are collected in matrix  NN uuuU ...21 and 

 NN wwwW ...21  respectively. We also know that the noise is additive, i.e. nnn zyw  , 

with 0zm  (which means that expected value of the noise signal is zero) and z (variance of 

the noise is not infinite). The problem: To determine the estimator of   parameter. 

The solution: The given problem of the parameter estimation is depicted in the figure below:  

 

 ,uF  

  
  nu  ny  

nz  

nw  

 

Figure 2.17. Noised measurements of the identification system known as static’s characteristics. 

Since the noise is additive, the expected value of the noise signal is zero ( 0zm ) and  the variance 

of the noise is not infinite ( z ). It means that it is possible to apply Lest Squares Method. Our 

problem is to find N , which minimize an empirical variance of a noise signal, i.e.: 

      



N

n

n

T

n

N

n

nnNNz uw
N

yw
N

Var
N

1

2

1

2 11
,;  YU . (2.73) 

Let us formulate the given problem as an optimization task: 

   NNzNNNzN WUVarWUVar
NN

,;min,; 
 

 . (2.74) 

To determine N  (2.74) we have to solve the following set of equations: 

  RNNz
N

N
WUVar 0,; 


  . (2.75) 

Taking into account (2.73) and (2.75), we can write the following connection: 

   R

N

n

n

T

Nn uw 0
1

2
 



 . (2.76) 

In order to solve the following equation, we have to make some transformations: 
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      R

N

n

nn

T

Nn uuw 02
1




 , (2.77) 

we can simplify our connection: 

        R

N

n

T

n

T

Nn

N

n

nn uuuw 0
11

 


 , (2.78) 

       R

N

n

N

T

nn

N

n

nn uuuw 0
11

 


 , (2.79) 

      R

N

n

N

T

nn

N

n

nn uuuw 0
11

 


 . (2.80) 

Finally, an algorithm to determine N  has form: 

      







N

n

nn

N

n

T

nnN uwuu
1

1

1

 . (2.81) 

Example 2.7 – Estimation of the system parameter with noisy measurements: Maximum Likelihood 

Method. For fixed sequence of inputs Nuuu ,...,, 21  and for linear system with characteristic uy  , 

it was collected following sequence of  noised outputs Nwww ,...,, 21 . The problem: to determine the  

estimator of  parameter for the additive noise ( nnn zyw  ) and probability density function 

 
 













 


2

2

2
exp

2

1

z

z
z

mz
zf


. 

The solution: A given problem of the parameter estimation is illustrated in Figure 2.17. 

Since these following assumptions are fulfilled: 

a) The measurement system is described by nnn zyw  ,which is one-to-one invertible 

function, 

b) Probability density function for  zf z  is given, 

it is possible to apply Maximum Likelihood Method. 

At the beginning, let us denote a measurement system nnn zyw  as: 

 nnn zyhw , . (2.82) 



 56 
 

In order to build the likelihood function, we need to determine  ,nw wf ,which is probability 

density function of w  variable. Because the function describes the influence of noise, 

( nnn zyw  ) is one-to-one invertible function, we can find unknown connection from the 

following equations: 

     hnnzznw Jwyhfwf   ,, 1 , (2.83) 

where hJ is Jacobi matrix of inverse transformation and 1

zh is inverse function with respect to z . 

In our example, function  nnz wyh ,1  is equal: 

  nnnnz ywwyh  ,1 . (2.84) 

Now, we can determine Jacobi hJ matrix by using the following formula:  

 
  1

,1









nn
nnz

h yw
dw

d

w

wyh
J . (2.85) 

The likelihood function has the form: 

      







N

n

hnnzz

N

n

nwNNN JwyhfwfUWL
1

1

1

,,,;  . (2.86) 

Because 1hJ and uy  , we can rewrite (2.86) as below: 

    



N

n

nnzzNNN wuhfUWL
1

1 ,,;  . (2.87) 

In order to find the optimal value of the parameter  for the connection (2.87), we have to formulate 

and then solve an optimization problem. In our example, the optimization task can be formulated as 

follows: 

   NNNNNNN UWLUWL ,;max,; 
 

 . (2.88) 

Taking into account given probability density function for  zf z , we can rewrite (2.88) as: 

 
 
















 


N

n z

znn

z

NNN

muw
UWL

1
2

2

2
exp

2

1
,;






 . (2.89) 
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Let us now rewrite (2.89) in the form: 

 
 
















 


N

n z

znn

z

NNN

muw
UWL

1
2

2

2
exp

2

1
,;






 . (2.90) 

It is possible to write (2.90) in the form: 
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znn

z

NNN
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UWL

1
2

2

2
exp

2

1
,;






 . (2.90) 

To find the estimated value of  , we need to consider only a part of connection(2.90). Let us denote: 

 
 







N

n z

znn muw

1
2

2

2


 . (2.91) 

Let us formulate the following optimization problem: 

 
0



 N
d

d




. (2.92) 

Substituting (2.91) in (2.92), we obtain: 

   
0
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2

2
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d

d








. (2.93) 

In the next few steps, we will determine an algorithm to find the optimal value of  : 

  0
2

1

1

2

2
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, (2.94) 

   0
2

2

1
2

 


N

n

nznNn

z

umuw 


, (2.95) 
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. (2.96) 

Since 2

z  is constant:  
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2 . (2.97) 
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Finally, the formula to determine the optimal value of N has the form: 
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11 . (2.98) 

Example 2.8  – Estimation of the system’s parameter with noisy measurements: Bayesian Method. 

For linear system uy  it was obtained N measurements, i.e. for input sequence Nuuu ,...,, 21  

output sequence Nwww ,...,, 21  was collected. It is assumed that the noise is additive ( nnn zyw  ) 

and probability density function is Gaussian, which means 0zm  and variance 0z . The 

problem: to determine the estimator of  parameter for following loss function 

    ,L  and probability density function for   parameter population described by 

 
 













 


2

2

2
exp

2

1















m
f . 

The solution: The given problem of the parameter estimation is illustrated in Figure 2.17. 

To solve the problem by use of Bayesian method, we have to start with the verification that following 

conditions for this method are fulfilled: 

a) Measurement system is described by nnn zyw  which is one-to-one invertible function; 

b) Probability density functions for  zf z  and  f are given; 

c) Loss function is defined i.e.:     ,L , where  is Dirac delta function. 

Since     ,L , the condition risk has form: 

       NNN WfdWfWr   


, . (2.99) 

For (2.99) we can formulate an optimization problem: 

   NNNN WfWf 





max , (2.100) 

such as 
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N

n

hnNnzzN JwuFhffJwuFhff
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1

1

1 ,,max,,  


 . (2.101) 
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In this example the noise is additive i.e.: nnn zyw  . Let us denote it as follows: 

  nnnnn zyzyhw  , . (2.102) 

Because  nnn zyhw ,  is one-to-one invertible function, we can find: 

 nnzn wyhz ,1 . (2.103) 

which 1

zh is an inverse function with respect to z .  

Substituting nn uy  in (2.102), we have obtained: 

  nnnnzn uwwuhz    ,1 . (2.104) 

Let us now determine Jacobi matrix: 

 
  1

,1









nn
nnz

h uw
dw

d

w

wuh
J 


. (2.105) 

Taking into account above calculations (2.102 – 2.105), we can determine probability density 

function of the observed value  nw wf  i.e.: 
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 , (2.106) 

and rewrite the connection(2.101): 
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, (2.107) 

which is a posteriori  of probability density function. 

Let us rearrange the formula (2.107): 
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. (2.108) 
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In order to find value of N ,we have to maximize the following part of (2.108) the equation: 
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nn uwm
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 , (2.109) 

which means that we have to solve the following equation: 
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 N

d

d





. (2.110) 

Substituting (2.109) in (2.110): 
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. (2.111) 

Then, we obtain an algorithm to determine the value of N : 
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 . (2.112) 

We can simplify this equation (2.112): 
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Finally: 
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Discussion of the results: 

1. N  is a small number,   z  - some poor quality measurements and  mN  . 

2. N ,   z  - some good quality measurements and 
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n
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n

nn

N

u

uw

1

2

1 . 

Example 2.9 – Estimation of the system parameter with noisy measurements: Maximum Likelihood 

Method. Parameter of the system was measured with some noise. Probability density function of 

the noise is described by    

 











020
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1

z

z
z

zf z . It is known that the noise is additive, which 

means that nn zv  for .2,1n  The measurements of noised value of the parameter  are 

11 v and 22 v . The problem: determination of the parameter  estimator for given 

measurements and probability density function. 

The solution: 

In the first step we have to decide which method can be applied in this example. Let us calculate 

mean value of variable z : 
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. (2.117) 

Mean value of z is not equal 0. We are limited to methods such as Maximum Likelihood Method 

(MLM). Let us check some conditions for MLM: 

d) Measurement system is described by nn zv  which is one-to-one invertible function; 

e) Probability density function for  zf z  is given. 

Let us denote nn zv  in general form: 

 nn zhv , . (2.118) 

Next, we have to calculate the probability density function  ,vfv  of observed variable v . To end 

it, we can apply the following formula: 
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     hzzv Jvhfvf   ,, 1  , (2.119) 

where hJ is Jacobi matrix of the inverse transformation. 

In our example  ,vfv  has form: 

    hnzv Jvfvf  , . (2.120) 

Jacobi matrix can be determined using the following formula: 
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,1
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h v
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d
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J . (2.121) 

Finally, we can write the probability density function of  ,vfv  as:  

     nzv vfvf , . (2.122) 

Taking into account the probability density function of  zf z , which is given, we can rewrite the 

formula (2.122) in the form: 
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vf . (2.123) 

Now we rewrite (2.123) in the form: 
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 . (2.124) 

The maximum likelihood function has form: 

       ,,,,
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where  NN vvvV ...21 . For our example formula (2.125) can be written as: 

     















 








 




otherwise0

22for
2

1
2

1
, 2211

21 vvvv
vv

VL NN




 . (2.126) 

Taking into account 11 v and 22 v , we can rewrite (2.126): 
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NN VL . (2.127) 

Let us rewrite (2.127) in the form: 
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2
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NN VL . (2.128) 

After a few simple transformations we obtain: 

   











otherwise0

32for3
4

7

4,

2




NN VL . (2.129) 

Now, we can formulate an optimization problem: 

   


,max, NNNNNN VLVL


 . (2.130) 

In order to find N ,we have to solve the following equation: 

 
0

,


 N
d

VdL NN




. (2.131) 

Substituting (2.129) in (2.131) we obtain: 

03
4

7

4

2











 N

d

d







. (2.132) 

Before we solve the problem (2.132), we have to take into account that it is the optimization 

problem with some inequality constraints (2.129).  Let us solve the problem graphically. The 

likelihood function, for example, is shown in Figure 2.18. It can be seen that this is a quadratic 

function, which has the minimal value (without taking constraints into account): 

2

7

0
4

7

2





N

N





. (2.132) 

It is worth stressing that the considered function is convex and monotonic decreasing at the left on 

the minimal point and monotonic increasing at the right side on minimal point (Figure 2.18).  
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  03 L

Figure 2.18. Likelihood function in solved example. 

Our problem is to find the maximum value of the likelihood function  NL   for given range 

 32N . Because the considered function is monotonic decreasing at the left on the minimal 

point and we know that minimal point is outside the range  32N , it means that we may find 

the proper value of N  in point 2N  or 3N . After the function’s analysis in Figure 2.18, we 

can say that the solution of a given problem is the point 2N  where  
2

1
2 L . 

 

Exercises 

Exercise 2.6. Parameter was measured with additive noise described by Gaussian function with 

mean 0zm and variance z . The problem: determination of Bayesian estimator of   parameter 

for loss function     ,L . Probability density function characterising  parameter 

population has the following form:   
   ef . 

Exercise 2.7. The problem: To determine an algorithm based on the Maximum Likelihood Method, to 

determine estimation of the   parameter for N noised measurements which are additive: 

nn zv  , for Nn ,...,2,1 . It is assumed that the probability density function is Gaussian with 

mean equal zm and variance z . 

Exercise 2.8. For some fixed sequence of inputs Nuuu ,...,, 21 for linear system with 

characteristic uy  ,it was given following sequence of  outputs Nwww ,...,, 21 .  
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The problem: to determine the estimator of  parameter for the additive noise ( nn zv  ) and 

the probability density function  
 
 









10for0

10for1

z

z
zf z . 

 

2.4 The choice of the Best Model: Probabilistic Case 

 

In this section the choice of the best model problem in probabilistic conditions is considered. We 

start with the explanation why for the same value of input nu  different values of output ny  are 

collected. It can be caused by immeasurable variable   which is changing randomly. It is illustrated 

in Figure 2.19: 

 

 ,uF  
nu ny  

  

 

Figure 2.19. System identification with random immeasurable variable. 

Consequently, it can be assumed that the investigated system is described by a set of characteristics 

indexed by random value   (Bub80). These problem is pictured in Figure 2.20.  

 

The problem formulation: 

The system’s characteristic:  ,uFy  ; 

n – value of random variable – system parameter,    LR ,  f ; 

ny – value of random variable y – transformation of variable  ; Ly RY  ; 

F – invertible function with respect  :  yuF ,1  ; 

nu  – value of random variable u ,  ufu ; Su RU  ; 
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)|( uyf y  – Probability density function y  on condition that uu  :   Fy JyuFfuyf   ),()|( 1

 , 

where 
y

yuF
JF






 ),(1

 . 

 

Figure 2.20. Static characteristic of SISO system with immeasurable variable. 

 

Example 2.10 – Regression of the type I. The problem: to determine regression of the type I, for 

given probabilistic density function:      











otherwise0

0,20for
, 2

uyu
u

y

yuf . 

The solution: 

In order to solve regression of problem I, we have to find the best model by use the following 

equation: 

   dyuyfyuuyEuy
y 

Y

)(* . (2.137) 

The problem is illustrated in the Figure 2.21. 
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Figure 2.21. Regression of the type I. 

 

First, we have to find the probability density function  ufu : 
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uuu

u
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y
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u

y
dyyufuf . (2.138) 

Then, we determine the conditional probability density function  uyf y  from the connection: 
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y  . (2.139) 

Finally, we can solve some regression of the type I problem applied equation (2.137): 
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. (2.140) 

It means that the best model for given conditions is uy
3

2
 for  20u . 
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Example 2.11 – Regression of the type II. The problem: to determine regression of the type II for 

given conditional probability density function:      










otherwise0

0,20for
,

2

3
uyu

u

y

yuf . 

Assume: model      01,   uuy  and the quadratic performance index 

       dudyyufuyQ ,,
2

  
UY

 . 

The solution: 

Taking: 

     ufuyfyuf uy |,  , (2.141) 

we can rewrite proposed quadratic performance index as: 

         
U

duufuyfuyQ uy |,
2

 . (2.142) 

In order to find an optimal value of the   ,we have to solve the following optimization problem (see 

lecture 10): 

         

U

duufuuQ u

2* ,minmin 


. (2.143) 

We have to start with solving regression of the type I problem   u* . To be patterned on 

calculations from example 2.10, first we have to find the probability density function: 
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uuu

u   . (2.144) 

Then, the conditional probability density function (see 2.141) must be determined: 
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and 
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Then, we can rewrite the performance index  Q  in the form: 
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duufuuQ u

2

2 ,
3

2
 . (2.147) 

Taking into account, that  
2

u
ufu   and      01,   uu , we can rewrite (2.147) in the form: 
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u

uuQ
23

2
2

012  . (2.148) 

In order to solve the optimization problem (2.147) we have to consider the following system of 

equations: 

  20* 
 Q . (2.149) 

Substituting (2.148) in (2.149) and taking into account that  20:  uu RU , we obtain: 
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uuQ . (2.150) 

In order to find the optimal value of parameters vector  , we have to solve the following set of 

equations (2.150): 
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. (2.151) 

After a few transformations,  we obtain the following equations: 
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 duuuu  , (2.152) 

And 
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2

0
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 duuuu  . (2.153) 

Let us now focus on a connection (2.152): 
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(2.154) 

Then, we obtain: 
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  . (2.155) 

In the next step, we determine 
 1*  from  the equation (2.153): 
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3
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 , (2.156) 

and then we obtain: 

   0*1*

3

2

15

16
  . (2.157) 

Finally, taking (2.155) and (2.157), we obtain such optimal values of parameters vector  as:   

   

5

8
,

5

4 1*0*   . (2.158) 

It means, that the best model as regression of the type II  for given system is  
5

4

5

8
,  uuy  . 
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Verification of the solution: 

 

Figure 2.22. Results for determination of regression of the type II. 

 

Exercises 

 

Exercise 2.9. Determine regression of the type I for given probabilistic density function: 

 
   



 


otherwise0

1,20for1
,

22 uuyu
yuf . 

Exercise 2.10. Determine regression of the type II for given conditional probability density function: 

 
   



 


otherwise0

11,10for2
,

uyu
uyf . Assume: model      01,   uuy  and 

quadratic performance index        dudyyufuyQ ,,
2

  
UY

 . 

 

2.5 Example Application of the System Identification for Real Life 

Problem 

 

One of the most popular model in the system identification is Takagi-Sugeno system (T-S). In this 

system we have a sequence of If…Then sentences (antecedents) and affine linear functions 

(consequents). For example, one rule of T-S can be written as follows (Nel01, Bab03): 
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 0  THEN    is    IF: k

T

kkkk uyAuR   , (2.159) 

where iA  are some antecedent linguistic terms such as “small”, “large” and Kk ,...2,1 is the 

number of rules. Takagi-Sugeno model combines the linguistic description with some regression 

functions. In order to determine the input of the system,  we usually use the following formula: 
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, (2.160) 

where  uk  is the degree of fulfillment for k-th rule. Taking into account that  0

k

T

kk uy   , we 

can rewrite above formula as: 
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. (2.161) 

Example 2.12 – Simple example. 

Let us propose T-S system with the following set of rules: 
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1111

  THEN  mall  is    IF:

  THEN  ormal  is    IF:

  THEN  arge  is    IF:













uySuR
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. (2.162) 

and 
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y
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11arg
. (2.163) 

At the computational level, rules in the form (2.163) are not easy to implement. In a real life 

applications, in order to describe the antecedent linguistic terms, we usually use some smooth 

function, such as Gaussian function. This function in Takagi-Sugeno models is called membership 

function.  It has the following form: 

        
    

   











 


2

2

exp,;
s

k

s

k

s
s

k

s

k

ss

k

mu
mu


 , (2.164) 
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where  s

km  is the mean value for s-th input and k-th rule and  s

k  is the standard deviation for s-th 

input and k-th rule of Gaussian function. Taking into account (2.164), we can rewrite (2.161) as: 
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. (2.165) 

Example 2.13 – Takagi-Sugeno model. In the figure below some data set is shown. Our task is to find 

an estimation of the Takagi-Sugeno model’s parameters, based on given measurements. 

 

Figure 2.23. Data set for example 2.13. 

At the beginning, let us set Takagi-Sugeno system with only 2 rules. The results are shown in the 

figure below: 

 

Figure 2.24. The results for 2 rules. 
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In the next figure, results obtained from 5 rules are presented: 

 

Figure 2.25. The results for 5 rules. 

 

In the last figure, the results obtained from 11 rules are illustrated: 

 

Figure 2.26. The results for 11 rules. 
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