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PREFACE 

The aim of this book is to build the capacity of applying statistical methods and 
tools in the professional practice of an engineer. Therefore, the focus is on 
understanding and the development of relevant skills. 

This book covers a selection of statistical methods and tools. Their theoretical 
description is provided together with examples of application in solving engineering 
problems. When advantageous, hints for using statistical software are given. 

From the scientific point of view, the presented methods and tools are elements of 
more advanced methodologies in engineering statistics which are subject to 
continuous development. It is intended that in the course of studying this book the 
Reader learns the appropriate language and lays the foundation for further 
development of knowledge and skills in the domain of engineering applications of 
statistics. 
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ORGANISATION OF THE BOOK 

This book consists of several chapters with their order corresponding to the 
increasing complexity of the discussed statistical methods and tools as well as 
engineering problems which may be solved with their application. The following is 
a brief overview of the content found in the chapters.  

• Random variable and its variability 

A random variable is a principal entity in statistics. The concept of a random 
variable is presented and different types of random variables are described.  

• Data collection 

Data collection is necessary for obtaining values of random variables. Selected 
strategies of data collection are reported.    

• Descriptive statistics 

The statistical description of data may be used for characterizing real objects. Basic 
tools for the statistical description of data sets are presented. 

• Theoretical distributions of discrete variables 

Theoretical variables are available which may be used as models of real random 
discrete variables. A selection of distributions of theoretical discrete variables is 
presented.    

• Theoretical distributions of continuous variables 

Theoretical variables are available which may be used as models of real random 
continuous variables. A selection of distributions of theoretical continuous 
variables is presented.  

• Confidence interval and confidence level 

The confidence level represents the trust that a parameter of statistical distribution 
of a random variable remains within certain limits. The method of calculating 
confidence intervals on the mean and on the variance is explained. 

• Statistical hypotheses and their testing 

The testing of statistical hypotheses allows for comparing objects. Statistical tests 
are presented which allow for comparing the average states of objects and for 
comparing variabilities of the states of objects.  

• Analysis of variance 

The analysis of variance is used for detecting the change of objects due to the 
influence of nonrandom factors. The demonstrated methodology refers to cases 
when one or two nonrandom factors are considered simultaneously. 

• Regression analysis 

Regression analysis allows for the quantitative description of object change, which 
results from the influence of nonrandom factors. The principles of building 
regression models and their diagnostics are provided. 



8 
 

INTRODUCTION 

The ENCYCLOPEDIA BRITANNICA defines engineering in the following way: “Engineering 
is the application of science to the optimum conversion of the resources of nature 
to the uses of humankind”. The definition of statistics provided by ENCYCLOPEDIA 

BRITANNICA states “Statistics is a branch of mathematics dealing with gathering, 
analyzing, and making inferences from data”. Statistics enters engineering by being 
a substantial fragment of mathematical knowledge applied in engineering. It is 
used for analyzing measurement/observation data concerning objects. Objects are 
fragments of the world, e.g. materials, structures, machines, devices, systems, 
phenomena and processes. They are studied by engineers in order to design, 
implement and control the ‘use’ of nature by humankind. 

For an engineer, statistics provides aid in solving a number of problems, for 
instance 

• characterizing objects, 
• comparing objects, 
• detecting change in objects, 
• describing relationships within and between objects. 

The engineering application of statistics consists of using statistical analysis for 
solving engineering problems. The following steps are required to implement this 
approach: (1) an engineering problem is expressed as a statistical problem, (2) a 
solution of the statistical problem is obtained, (3) the solution of the statistical 
problem is translated to the solution of the engineering problem. These principal 
elements of the approach are shown in Fig.1.  

 

Figure 1 Pathway for solving engineering problems using statistical analysis. 

For making use of engineering statistics, it is necessary that an engineer, a specialist 
in his/her own field, is additionally familiar with statistical methodology and is able 
to fuse these two domains in a proper way.   
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1 VARIABLE AND VARIABILITY 

A variable may be used for representing a feature of an object or its surroundings. 
For example, let the object be a chemical substance. Such an object has many 
features, for instance volatility. This feature may be represented by the variable 
saturated vapor pressure. 

A variable has a name, takes values or levels and is usually expressed in some units. 
For example, the levels of the variable saturated vapor pressure may be expressed 
in [Pa].  

A variable taking a value or level is called realization. For example, the realization of 
the variable saturated vapor pressure may be 10150 Pa. There must be a possibility 
to observe/measure and record realizations of a variable. 

The recorded realizations of variables are data. As already stated, statistical 
analysis operates on data. 

Establishing the correspondence between features of an object and variables is the 
key point for transitioning between an engineering problem and a statistical 
problem.  

1.1 SCALES AND TYPES OF  VARIABLES 

There are different types of variables. One of the most useful classifications divides 
variables according to scale providing levels/values of a variable. The following 
scales are available: 

1. Nominal scale, 
2. Ordinal scale, 
3. Interval scale, 
4. Ratio scale. 

The nominal scale has levels that are different, but incomparable. There is no way 
to judge the size or direction of the difference. An example of a variable which 
takes levels from the interval scale is sex. Another example is race.  

The ordinal scale also has levels. Levels of the ordinal scale are different and 
comparable. It is possible to rank the levels of an ordinal variable and to order 
them; however, it is not possible to measure the difference between the levels. An 
example of an ordinal variable is the freshness of air. Provided the air in room A is 
very fresh, the air in room B is medium fresh and the air in room C is not fresh, the 
rooms may be put in order according to the increasing freshness of air. However, 
the difference between the freshness of air in the rooms is unknown. 

An interval scale has values that are different. It is possible to order the values and 
calculate the difference between levels. However, it is not possible to use the ratio 
of levels from the interval scale. In other words, the starting point of the interval 
scale is not absolute zero. The classical example of an interval variable is 
temperature measured in degrees Celsius. For example, assume liquid A has a 
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temperature of 40 °C and liquid B has a temperature of 70 °C. Clearly, the 
temperatures of liquid A and B are different. The temperature of liquid A is lower 
than the temperature of liquid B. The difference between the temperatures of 
liquids A and B is 30 °C. However, the ratio of the temperatures is not 40/70. It is 
313/343. The ratio may be calculated if the absolute, Kelvin temperature scale is 
used. 

The ratio scale has values and is an absolute scale with an absolute origin. Values 
from the ratio scale are different, can be ordered and subtracted and additionally 
their ratios can be calculated. An example of a ratio variable is the distance from a 
fixed point. Assume the distance between points A and O is 10 m and the distance 
between points B and O is 2 m. The following is concluded: the distances of points 
A and B from point O are different. Point A is located farther from point O than 
point B. There is an 8 m difference in the distance of points A and B from point O. 
Point A is located five times farther from point O than point B. The ratio scale is the 
most informative scale. The interval scale may be transformed into the ratio scale if 
the absolute reference point is defined. 

Another method of classification uses qualitative and quantitative variables. 
Qualitative variables have levels and nominal or ordinate variables are qualitative. 
Quantitative variables have values and include interval or ratio variables. In 
general, statistics operates on quantitative variables. Qualitative variables may be 
used for representing features which have qualitative character. Oftentimes, they 
are applied for labeling classes, groups or sets of elements. 

It is important to distinguish discrete and continuous variables. Discrete variables 
take values/levels from finite or countably infinite sets. Continuous variables take 
values from infinite sets. There are substantial differences in the logic of statistical 
analysis for discrete variables and continuous variables (see Chapter 4 and Chapter 
5).  

Using still another classification system, one may describe independent and 
dependent/response variables. Independent variables represent factors which 
influence the investigated objects. Dependent variables represent features of 
objects which are influenced by the factors. If jointly considered, symbol 𝑋 is used 
for indicating the independent variables and letter 𝑌 refers to the dependent 
variables.     

The type of variable determines the selection of methods which may be used in its 
statistical analysis. Therefore, it is very important to correctly identify the type of 
variable before attempting the analysis.   
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1.2 VARIABILITY OF VARIABLES 

Variables exhibit variability in their values. There are two sources of variability 
considered in statistics: random factors and nonrandom factors. 

Random factors are always present and there is no way to eliminate or control 
them. The magnitude and direction of their influence on objects changes in a 
nondeterministic manner. Contrarily, nonrandom factors may be controlled. It is 
possible to change the magnitude and direction of their influence on objects in a 
deterministic manner. 

The random variable is represented by the following formal model: 

𝑋 = 𝜇 + 𝜀 

The first element of the sum, 𝜇 represents the influence of nonrandom factors on 
the variable. The second element of the sum, 𝜀 represents the influence of random 
factors. There are the two following possibilities: 

1. Nonrandom factors remain at a constant level. In such circumstances 
variable 𝑋 shows the variability exclusively caused by random factors which 
is equal to 𝜀 . Variable 𝑋  does not show the variability caused by 
nonrandom factors. The value of 𝜇 is constant. Observed values of the 
variable randomly change around the constant level 𝜇. 

2. The level of a nonrandom factor is changed but the object is insensitive to 
this factor. See case 1.  

3. The level of a nonrandom factor is changed and the object is sensitive to 
this factor. In such circumstances 𝑋  shows the variability caused by 
nonrandom and random factors together. The variability caused by random 
factors is equal to 𝜀 . The variability caused by nonrandom factors is 
observed as the change of 𝜇. Observed values of the variable randomly 
change around various levels of 𝜇. 

Statistics provides a means of detecting and analyzing the variability of variables. In 
this way, it is possible to make inferences about objects with analysis performed on 
a number of values/levels of variables. The set of actions aimed at their acquisition 
is usually referred to as data collection. 
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2 DATA COLLECTION 

An elementary step of data collection is a single observation or measurement from 
which a single value of a variable is acquired.  

There are different strategies for collecting data that depend on many factors, for 
example: the purpose of data collection, the constraints associated with the object, 
available methods and techniques of observation/measurement.  

From an engineering point of view, it is particularly important to distinguish 
between a passive and an active strategy for data collection. 

The data collected in a passive way provide extensive information about the 
‘natural’ behavior of an object and may be used for characterizing the object. 
However, it is not possible to study the cause-response relationship between the 
object and its surroundings using data collected in a passive manner. Only a 
relationship which has a correlation character may be analyzed. The exception is 
the availability of the theory which describes the relationship. 

With passive data collection the object is just observed. Its surroundings change 
without any deliberate action aimed at influencing the object. The recorded 
changes of the object (variability of the observed variable) usually result from a 
wide range of random and nonrandom factors. Nevertheless, the observed 
variability may not be undoubtedly attributed to changes of particular factors.  

The data collected in an active manner provide information about the object being 
influenced by known nonrandom factors. Active data collection allows for studying 
cause-response relationships between the object and its surroundings. 

Active data collection consists of observing the object while it is deliberately 
influenced by known nonrandom factors. The observer is in control of selected 
factors which may influence the object and manipulates these factors to see 
whether and how the object responds to their change.  

The discipline of science that develops the methodology of planning active data 
collection is called Experimental Design. The reader will be presented with selected 
elements of experimental design in the chapter dedicated to the Analysis of 
Variance (see Chapter 8)  

Another important distinction is made between collecting data for the entire 
population and sampling, i.e. collecting data for a part of a population.  

In statistics, population is understood as the total set. The population can be fully 
characterized if each element of the set is known. However, populations usually 
consist of a large or even an infinite number of elements. This makes the 
investigation of every element impractical or even impossible. In such cases only a 
representation of the population is considered. A sample is a set of elements 
drawn from the population. The set shall be small enough to investigate each of its 
elements. Furthermore, it is expected that the sample is representative of the 
population.  
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The representative character of a sample is assured by the appropriate strategy of 
drawing with various strategies available. The most frequently used is called 
random drawing. In order to secure random drawing, the likelihood of pulling out 
an element from the population has to be the same for all elements. It is not 
known in advance which element will turn out from the draw, although the 
respective likelihood may be known.  

Tables of random numbers and random number generators implemented in 
computer software are helpful in selecting random samples. 

The majority of statistical methods and tools were developed for analyzing data 
provided by random sampling. 

2.1.1 EXAMPLE.  

Problem. A factory employs 700 workers. They all work in similar conditions. An 
employer was asked to select 50 workers who will be subject to a very detailed 
medical examination. The sample shall be representative for the entire group of 
employees. 

Solution. In the considered problem the best representativeness is secured by 
random drawing. In order to solve the problem, we are going to use the generator 
of pseudorandom numbers, which is available in the DATA ANALYSIS TOOL in Excel. The 
path for obtaining the solution is the following: 

• There is one variable – the id of the worker.  
• The variable takes values of ordinal  numbers between 1 and 700. 
• There has to be a random sample drawn consisting of 50 elements, i.e. 

there are 50 requested values of the variable.  
• The probability of drawing any single worker shall be constant and identical 

for all workers; therefore, the distribution of the variable is uniform. 

Random numbers provided by the generator shall be rounded to integers. The 
results obtained by the author are shown in Table 2.1. The reader is encouraged to 
generate his/her own solution. 

 

Table 2.1 Sample of 50 randomly selected numbers. The population consisted of 700 
numbers from 1 to 700. 

87 503 45 364 389 62 362 577 410 243 

104 239 631 358 120 94 483 276 386 433 

191 566 693 504 189 152 457 587 225 477 

621 551 625 404 526 253 146 652 421 479 

570 571 375 699 599 488 687 36 374 105 
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3 DESCRIPTIVE STATISTICS 

An important category of engineering problems which may be addressed by the 
statistical methods and tools is related to characterizing objects. The realization of 
this task is possible by applying descriptive statistics to data sets. The data shall be 
realizations of variable, which represents a selected feature of the characterized 
object. 

A number of numerical, graphical and combined tools allows for describing the 
principal features of the data set. Their use is recommended if nothing is known in 
advance about the variable represented by the recorded data. Otherwise, 
theoretical variables may be applied for representing the empirical variable (see 
Chapter 4 and Chapter 5) and the statistical analysis is performed in a different 
way.  

The following tools are presented in this chapter: measures of centre in the data 
set, measures of spread in the data set, histogram, box and whisker plot.    

3.1 CENTER 

The center is a value representing the middle of a data set. There are a number of 
possibilities concerning the location of this feature. Three of the most frequently 
applied measures are the following: 

• Median – The value of a variable such that 50 % of all recorded values are 
smaller than the median and 50 % of them are larger than the median. If 
the values of a variable are ordered decreasingly or increasingly, the 
median is the value from the middle. For an even number of measured 
values, the median is located half way between the two adjacent middle 
values. The median is a very good measure of center location and it is 
robust regarding extreme values of the variable. 
 

• Mode or modal value – The value of a variable which occurs most 
frequently. It may happen that there are two or more modes. The mode is 
an adequate measure only in the case of discrete variables. 
 

• Mean – The mean is calculated in the following way: 

�̅� =
1
𝑛
�𝑥𝑖

𝑛

𝑖=1

 

where: 𝑥𝑖  is a single observation of variable 𝑋 , 𝑛  is the number of 
observations in the sample.  

The symbol µ denotes the mean of the variable in the entire population. 
The symbol �̅� denotes the arithmetic mean of the variable in the sample. 
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Oftentimes, the mean is automatically used as the indication of center in a 
set of data. However, this measure is sensitive to extreme values of the 
variable which may result in a false evaluation of center when the extreme 
values are actually faulty measurements. 

3.2 SPREAD  

The spread indicates the range of variability in the data set. There are a number of 
possibilities concerning the evaluation of spread. Three of the most frequently 
applied measures are the following: 

• Minimum and maximum – The minimum is the smallest and the maximum 
is the largest value of the variable. These two limits indicate the range of 
recorded values of the variable. Minimum and maximum are very sensitive 
to extreme values of the variable. If the largest and the smallest values 
originate from faulty measurements, the actual variability of the variable 
may be much smaller than delimited by the < 𝑚𝑖𝑛,𝑚𝑎𝑥 > range in the 
data set. Minimum and maximum values may be used together with any 
measure of center. 

• 𝑘𝑡ℎ order percentile – A value of a variable such that 𝑘 % of all recorded 
values are smaller than the percentile. This definition strictly refers to the 
so called lower percentile. For the case of the 𝑘𝑡ℎ upper percentile, 𝑘 % of 
variable values exceeds the percentile. The spread is indicated by the pair 
of symmetric 𝑘𝑡ℎ percentiles: lower and upper.  
Most popular is the 25𝑡ℎ percentile, called the quartile. The minimum and 
maximum are actually the 0𝑡ℎ and 100𝑡ℎ percentiles, respectively.  
Percentiles are usually used together with the median. The distance from 
the center to the 𝑘𝑡ℎ order lower and upper percentiles indicates whether 
values of the variable are symmetrically distributed around the center of 
the data set. 

• Standard deviation – Standard deviation is calculated in the following way: 

𝑠 = �
1

𝑛 − 1
�(𝑥𝑖 − �̅�)2
𝑛

𝑖=1

 

where: 𝑥𝑖  is a single observation of variable 𝑋 , 𝑛  is the number of 
observations in the sample.  

The symbol σ denotes the standard deviation of a variable in the entire 
population. The symbol 𝑠 denotes the standard deviation of a variable in 
the sample. 

Oftentimes, standard deviation is automatically used as the indicator of 
spread in a data set and it is considered together with the mean. Standard 
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deviation does not indicate the symmetry or asymmetry of the distribution 
of variable values around the center. 

• Outliers – These are observations which lie an abnormal distance from 
other values in a data set. There are mild and extreme outliers. Using the 
following notation: 𝑄𝐿 is the lower quartile, 𝑄𝑢 is the upper quartile and  
𝐼𝑄 = 𝑄𝑈 − 𝑄𝐿 is the inter-quartile range, the following holds: 

o mild outliers belong to the interval 〈�𝑄𝐿 − 1.5𝐼𝑄) ∪ (�𝑄𝑢 + 1.5𝐼𝑄〉��  
o extreme outliers belong to the interval 〈�𝑄𝐿 − 3𝐼𝑄) ∪ (�𝑄𝑢 + 3𝐼𝑄〉��.  

An outlier is a ‘strange’ observation. The engineer has to decide whether it 
resulted from a faulty measurement or is a trace of abnormal object 
behavior. In the first case, the outlier shall be removed from the data set 
prior to any statistical analysis. Otherwise, the outlier shall be considered 
with special care.  

3.3 HISTOGRAM 

By quoting the measures of center and spread in a data set, the essential 
information is provided about the variable thus also about the investigated object. 
Namely, the value is known around which the variable varies and the magnitude of 
variation is given. In other words, the usual state of the object is indicated and it is 
also known how far from this state the object wanders. 

Still a more detailed picture may be obtained by means of a histogram. In order to 
build a histogram, the range of values of the variable < 𝑚𝑖𝑛,𝑚𝑎𝑥 > is divided into 
intervals of the same size. The number of intervals depends on the size of the data 
set. It is recommended to use odd numbers for the number of intervals. The 
histogram of frequency shows the frequency of occurrence, i.e. the number of 
times the values of the variable fall into different intervals. The frequency 
histogram is convertible into a histogram of relative frequency. The relative 
frequency histogram shows the relative frequency of occurrence, i.e. the 
percentage of values of the variable which fall into different intervals. In addition, 
the histogram of cumulative frequency is sometimes used. This shows the 
cumulative frequency of occurrence, i.e. the number of values of the variable which 
are smaller or equal to the right limit of the particular interval. The histogram of 
cumulative relative frequency is built similarly by using the cumulative relative 
frequency of occurrence. The principles of construction for the frequency 
histogram, relative frequency histogram, cumulative frequency histogram and 
cumulative relative frequency histogram are summarized in Table 3.1. 
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Table 3.1 The principles of constructing the frequency histogram, relative frequency 
histogram, cumulative frequency histogram and cumulative relative frequency histogram. 

Indicator 
of interval 1 … 𝑘 … 𝑚 

Limits 
of interval 〈𝑥𝑚𝑖𝑛,𝑥𝑚𝑖𝑛 + 1∆𝑥)  〈𝑥𝑚𝑖𝑛 + (𝑘 − 1)∆𝑥, 𝑥𝑚𝑖𝑛 + 𝑖∆𝑥)  〈𝑥𝑚𝑖𝑛 + (𝑚 − 1)∆𝑥, 𝑥𝑚𝑎𝑥) 

Frequency of 
occurrence 

𝑛1  𝑛𝑘  𝑛𝑚 

Relative 
frequency 

of occurrence 

𝑛1
𝑛   

𝑛𝑘
𝑛   

𝑛𝑚
𝑛  

Cumulative 
frequency 

of occurrence 
𝑛1  𝑛1 + 𝑛2 + ⋯+ 𝑛𝑘  �𝑛𝑘

𝑚

𝑘=1

 

Cumulative 
relative 

frequency 
of occurrence 

𝑛1
𝑛   

𝑛1
𝑛 +

𝑛2
𝑛 + ⋯+

𝑛𝑘
𝑛   �

𝑛𝑘
𝑛

𝑚

𝑘=1

 

Probability 𝑛1
𝑛∆𝑥  

𝑛𝑘
𝑛∆𝑥  

𝑛𝑘
𝑛∆𝑥 

The following notation was used in Table 3.1: m is the number of intervals; 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥  
are minimum and maximum values of variable 𝑋,  ∆𝑥 = 𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛

𝑘
 is the size of a single 

interval, 𝑛𝑘 is the number of values of the variable which fall into the 𝑘𝑡ℎ interval, 𝑛 is the 
number of all observations of variable 𝑋. 

Histograms are plotted using a bar plot. The 𝑥 axis represents variable 𝑋 and the 
limits of the intervals are marked on this axis. A bar is plotted for each interval. The 
height of the bar represents the frequency of occurrence, relative frequency of 
occurrence, cumulative frequency of occurrence or cumulative relative frequency 
of occurrence, depending on the type of histogram. Graphical representations of 
frequency histograms and cumulative frequency histograms are shown in Fig. 3.1 
and Fig. 3.2, respectively. 
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Figure 3.1 Graphical representation of (a) frequency histogram, (b) relative frequency 
histogram. 

 

Figure 3.2 Graphical representation of (a) cumulative frequency histogram, (b) cumulative 
relative frequency histogram. 

The relative frequency histogram provides the basis for calculating the probability 
distribution of a variable. The probability associated with an interval is calculated 
as the ratio between the relative frequency of occurrence in the interval and the 
interval length.  

The cumulative relative frequency histogram is synonymous with the cumulative 
probability distribution of the variable. The height of the bar over the interval on 
the histogram plot is the probability that the value of the variable is smaller or 
equal to the right limit of that interval. The height of rightmost bar is always 1. It 
represents the fact that all the values in the sample are lower or equal to the 
maximum value of the variable. The associated probability is equal to one. 

The principle of calculating probability distribution is shown in the last row in Table 
3.1. 
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Figure 3.3 Graphical representation of empirical probability distribution. 

A graphical representation of empirical probability distribution is shown in Fig. 3.3. 
Please note that the probability variable 𝑋 takes a value from a selected interval is 
equal to the surface of the bar over this interval in the probability distribution plot. 
The total surface under the probability distribution plot is 1. It is the probability 
that all values of the variable in the sample fall between the minimum and the 
maximum value.   
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3.4 BOX AND WHISKER PLOT 

The box and whisker plot is a convenient synthetic graphical presentation for the 
empirical distribution of a variable including measures of center and spread for the 
data set. The main components of the box and whisker plot are shown in Fig. 3.4.  
The bottom axis displays values of the considered variable. The plot itself consists 
of a rectangle (box) and two horizontal lines (whiskers) which stretch left and right 
from the box. The vertical line inside the box represents the median. Two sides of 
the box represent quartiles. The left side refers to the lower quartile and the right 
side refers to the upper quartile. The left part of the box contains 25 % of the 
values of the variable while the other 25 % of values belong to the right part of the 
box. The left horizontal line extends between the minimum value of the variable 
and the lower quartile while the right horizontal line extends between the upper 
quartile and the maximum value of the variable. 25 % of the values of the variable 
are contained in the left whisker while another 25 % belong to the right whisker. 
The minimum and maximum are calculated for the data set after excluding outliers 
which are marked with crosses on the box and whisker plot.  

 

 

Figure 3.4 Principle of constructing a box and whisker plot. 

The box and whisker plot is much more comprehensive compared to numerical 
representations of population center and spread. It is also more synthetic than a 
histogram. With this plot the empirical distributions of different variables may be 
easily compared. An example of such a comparison is shown in Fig. 3.5 using three 
imaginary variables 𝑋𝐴, 𝑋𝐵 and 𝑋𝐶.  

 

Figure 3.5 Comparison of the empirical distributions of three variables 𝑿𝑨, 𝑿𝑩 and 𝑿𝑪 using 
box and whisker plots. 



21 
 

The distribution of variable 𝑋𝐴, shown in Fig. 3.5, is rather symmetric. The distance 
of both quartiles from the median is the same. So is the distance of minimum and 
maximum from the median. Contrarily, the distribution of variable 𝑋𝐵, also shown 
in Fig. 3.5, is asymmetric. The median is not located in the middle between the 
minimum and maximum value or half way between the lower and upper quartile. 
The distance between the median and the lower quartile is shorter than between 
the median and the upper quartile. Similarly, the distance between the median and 
the minimum is shorter than between the median and the maximum. That is 50 % 
of values, those which are greater than the median, belong to a longer interval 
than 50 % of the values which are smaller than the median. The box and whisker 
plot is ‘longer’ on the right side. The variable has right skewed or positive skewed 
distribution. An analogical plot but ‘longer’ on the left side would represent the 
left-skewed or negative skew distribution. The comparison between the box and 
whisker plot of variable 𝑋𝐶  and variable 𝑋𝐴 (Fig. 3.5) reveals another aspect of 
probability distribution. The inter-quartile range in the case of variable 𝑋𝐶  is 
smaller as compared to 𝑋𝐴 , although by definition in both cases 50  % of 
observations fall into that interval. The distribution of variable 𝑋𝐶  is more ’peaked’ 
as compared to 𝑋𝐴. The indicator of ‘peakedness’ is a quantity called kurtiosis. A 
larger kurtosis indicates a more peaked distribution.  

3.4.1 EXAMPLE 

Problem. Measurements of daily concentrations of NOx, performed in June 2009 by 
the air pollution monitoring station located in Wrocław at Wiśniowa Street  are 
given in Table 3.2. Characterize the level of pollution regarding NOx

Table 3.2 Daily concentration of NO

 at this location 
in Wrocław in June 2009 based on the provided data set. 

x

day  

 measured by the air pollution monitoring station 
located in Wrocław, at Wiśniowa Street, in June 2009. 

NOx/ µg/m Day 3 NOx/ µg/m day 3 NOx/ µg/m3 

1 194 11 180 21 195 

2 196 12 110 22 175 

3 79 13 79 23 183 

4 167 14 224 24 192 

5 151 15 275 25 192 

6 96 16 166 26 139 

7 214 17 181 27 98 

8 185 18 175 28 230 

9 202 19 144 29 259 

10 152 20 131 30 231 
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Solution. The basic components of the statistical description of the data set are the 
measures of center and spread. Nothing is known in advance about the kind of 
distribution of the variable: daily concentration of NOx

Table 3.3 Measures of center and spread for the data set given in Table 3.2. 

 at Wiśniowa Street in 
Wrocław. Therefore, we are going to use the median in order to indicate the center 
and percentiles (minimum, maximum, upper and lower quartiles) for the 
representation of spread. The numerical values of these measures are given in 
Table 3.3.  

Median 180.5 

Minimum 79 

Maximum 259 

lower quartile 144 

upper quartile 196 

Also, the graphical representation of major features of the data set is shown in Fig. 
3.6 using a box and whisker plot. Additionally, the relative frequency histogram is 
displayed in Fig. 3.7. 

 

Figure 3.6 Box and whisker plot for the data set shown in Table 3.2. 
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Figure 3.7 Relative frequency histogram for the data set shown in Table 3.2. 

Based on the provided descriptors, the following may be concluded about the level 
of NOx

• the daily concentration of  NO

 pollution in June 2009 at Wiśniowa Street in Wrocław: 

x varied around the level of 180.5 µg/m3

• 50 % of the time the concentration remained in a range between 144 and 
195 µg/m

, 

3

• the minimum observed concentration was 79 µg/m
, 

3 and the maximum 
concentration was 259 µg/m3

• the observed maximum concentration of 275 µg/m
, 

3

• the distribution of data around the center is not clearly symmetric, but also 
a definite asymmetry was not observed. 

 was considered as an 
outlier, which may indicate faulty measurement, 
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4 DISCRETE VARIABLES AND THEIR PROBABILITY DISTRIBUTIONS 

4.1 DISCRETE VARIABLES 

An important group of variables encountered in engineering practice have discrete 
character. Statistics provides a description for a number of theoretical discrete 
variables, in particular regarding their probability distributions. Theoretical discrete 
variables are actually formalized representations of certain categories of real 
discrete variables. The most commonly encountered categories of real discrete 
variables, which have their theoretical counterparts, represent  

(1) the number of elements which have a particular attribute in a sample 
drawn from a population, for example the number of faulty pumps in the 
sample from the production lot;  

(2) the size of a sample in which a defined fraction of elements has a particular 
attribute, for example the size of a sample of students in which there are 
two students with the best grade;  

(3) the number of times that a particular event occurs, for example the 
number of car crashes on the crossing during the average weekend; the 
number of times the engine starts before it fails to start for the first time; 
the number of times a batch of microprocessors has to be sampled before 
the first wrong microprocessor is found. 

Discrete variable 𝑋 takes values 𝑥𝑖 from a finite 𝑖 = 1, 2, … ,𝑛 or countably infinite 
𝑖 = 1, 2, … set. 

Each value 𝑥𝑖 has a probability of occurrence assigned to it. The probability of 
occurrence is denoted by 𝑝(𝑥𝑖). 

Discrete variable 𝑋 has its probability distribution function, 𝑃(𝑋) = 𝑝(𝑋 = 𝑥𝑖).  

The probability 𝑝(𝑋 = 𝑥𝑖) fulfills the following conditions: 

• for a finite set of values n 

(∀𝑥) 𝑝(𝑋 = 𝑥𝑖) ≥ 0 and  ∑ 𝑝(𝑥𝑖) = 1𝑛
𝑖=1  

• for an infinite set of values 

(∀𝑥) 𝑝(𝑋 = 𝑥𝑖) ≥ 0 and  ∑ 𝑝(𝑥𝑖) = 1∞
𝑖=1  

Discrete variable 𝑋 has its cumulative distribution function, 𝐹(𝑋) = 𝑝(𝑋 <= 𝑥). 

Graphical representations of the probability distribution function and the 
cumulative distribution function of discrete variable are shown in Fig. 4.1. The stem 
plot is used for plotting the probability distribution function of a discrete variable 
(Fig. 4.1 a). The height of each stem indicates the probability of occurrence for a 
single value of 𝑋. The stair-like plot is used for plotting the cumulative distribution 
function of a discrete variable (Fig. 4.1 b). Stairs climb from zero, which indicates 
zero probability that X is smaller than the minimum value, up to one, which 
indicates that all values of X are smaller or equal to its maximum. 
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Figure 4.1 Graphical representation of (a) probability distribution function and (b) 
cumulative distribution function of a discrete variable. 

The mean of a random variable which has a discrete character is calculated using 
the following formula: 

𝜇 = �𝑥𝑖𝑝(𝑥𝑖)
𝑖

 

The variance of a discrete random variable is calculated by the formula: 

𝜎2 = ∑ (𝑥𝑖 − 𝜇)2𝑝(𝑥𝑖)𝑖 . 

The following distributions of theoretical discrete variables were selected for 
presentation in this book: Binomial, Poisson, Negative Binomial, Geometric, and 
Multinomial. The choice was guided by their applicability to solving practical 
engineering problems.  

4.2 BINOMIAL DISTRIBUTION 

Variable 𝑋 which has binomial distribution may be described in the following way:  

• the number of successes in a defined number of trails, 
• the number of elements which have a particular attribute in the sample of 

defined size. 

The probability distribution of a binomial variable 𝑃(𝑋)  is described by the 
following formula: 

𝑃(𝑋) = �𝑛𝑥� 𝑝
𝑥𝑞𝑛−𝑥 

where: 𝑛 is the number of trails/size of the sample; 𝑝 is the probability of success in 
one trail/probability that a single element in a set has a particular attribute; 
𝑞 = 1 − 𝑝 is the probability of failure in one trail/ probability that a single element 
does not have the certain attribute. 

 

 



26 
 

The mean µ and variance σ2 of variable 𝑋 are calculated as follows: 

𝜇 = 𝑛𝑝 
𝜎2 = 𝑛𝑝𝑞. 

4.2.1 EXAMPLE 1 

Problem. The supplier is allowed to provide no more than 2 % defective parts per 
lot. Lots are huge and consist of 1000 items each. Every lot is randomly sampled 
for testing. It is technically possible to take a sample which consists of 10 elements. 
If the number of defective parts in the sample is 0, the lot is passed. Otherwise the 
lot it is rejected. Find the probability that a lot which contains: (a) 2 % defective 
parts is accepted, (b) 10 % defective parts is accepted. 

Solution. Let us consider a theoretical discrete random variable 𝑋 described as the 
number of elements in the sample which have a particular attribute. This well 
represents a real random variable which is encountered in our problem, namely the 
number of defective parts in the sample. The variable 𝑋 has binomial distribution. 
Based on the problem description, the size of the sample is 𝑛 = 10, the probability 
𝑝 that a single part is defective is: (a) 𝑝 = 0.02 and (b) 𝑝 = 0.1, respectively. The 
probability of accepting a lot of parts is equivalent to the probability that 𝑋 = 0 in 
the sample of size 𝑛 = 10. The following are calculations for cases (a) and (b). 

(a) 𝑃(𝑋) = �𝑛𝑥� 𝑝
𝑥𝑞𝑛−𝑥 = �10

0 �0.0200.9810 = 0.82 

It is quite unlikely to reject a lot which contains 2 % faulty parts based on a 10 
element random sample. The probability of lot rejection is 𝑝 = 1 − 0.82 = 0.18. 

(b) 𝑃(𝑋) = �𝑛𝑥� 𝑝
𝑥𝑞𝑛−𝑥 = �10

0 �0.100.910 = 0.35 

It is quite likely to reject a lot which contains 10 % faulty parts based on a 10 
element random sample. The probability of rejection is 𝑝 = 1 − 0.35 = 0.75. 

The reader is encouraged to investigate how the size of a sample influences 𝑃(𝑋) 
by calculating solutions for 𝑛 = 5 and 𝑛 = 20. 

4.2.2 EXAMPLE 2 

Problem. The installation is equipped with 10 pumps. Based on the information 
from the producer, the probability that a single pump fails in one year of operation 
is approximately 0.05. Answer the following questions: 

(a) What is the probability that none of the pumps fail during one year? 
(b) What is the probability that all 10 pumps fail during one year? 
(c) What is the probability that a single pump does not fail during 10 

years? 
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(d) What is the probability that a single pump fails once every year during 
10 years? 

Solution.  

• Let us consider a theoretical discrete random variable 𝑋 described as the 
number of elements in a sample which have a particular attribute. This well 
represents a real random variable which is encountered in our problem, in case (a) 
and (b), namely the fraction of pumps which fail during one year of operation. The 
variable 𝑋 has binomial distribution. The size of the sample is 𝑛 = 10 and  the 
probability that a single pump fails in one year is 𝑝 = 0.05. We search for the 
probability that 𝑋  takes a defined value: (a) 𝑋 = 0, (b) 𝑋 = 10. The relevant 
calculations are the following: 

(a) 𝑃(𝑋) = �𝑛𝑥� 𝑝
𝑥𝑞𝑛−𝑥 = �10

0 �0.0500.9510−0 = 0.60 

The probability that none of the 10 pumps fail during year 1 is 0.60.  

(b) 𝑃(𝑋) = �𝑛𝑥� 𝑝
𝑥𝑞𝑛−𝑥 = �10

10�0.05100.9510−10 = 9.76 ∙ 10−14 

The probability that 10 of 10 pumps fail during 1 year is 9.76 ∙ 10−14.  

• Let us consider a theoretical discrete random variable X described as the 
number of successes in a defined number of trails. This well represents a real 
random variable which is encountered in our problem, in cases (c) and (d), namely 
the number of times a single pump fails during 10 years of operation. The variable 
𝑋 has binomial distribution. The size of the sample is 𝑛 = 10 and the probability 
that a single pump fails in one year is p = 0.05. We search for the probability that 𝑋 
takes a defined value: (a) 𝑋 = 0, (b) 𝑋 = 10. The relevant calculations are the 
following: 

(c) 𝑃(𝑋) = �𝑛𝑥� 𝑝
𝑥𝑞𝑛−𝑥 = �10

0 �0.0500.9510−0 = 0.60 

The probability that a single pump does not fail during 10 years is 0.60.  

(d) 𝑃(𝑋) = �𝑛𝑥� 𝑝
𝑥𝑞𝑛−𝑥 = �10

10�0.05100.9510−10 = 9.76 ∙ 10−14 

The probability that a single pump fails ten times in course of 10 years is 
9.76 ∙ 10−14. 

Please note that we ignore the possibility of a single pump failing more often than 
once a year. 

As shown by the obtained results, identical probabilities were obtained in cases (a) 
and (c), as well as in cases (b) and (d), although the paired cases represent 
conceptually different problems. 
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4.3 POISSON DISTRIBUTION 

The Poisson distribution is a special case of the Binomial distribution. The Poisson 
distribution shall be employed when the sample is large and the probability of 
success in a single trail is very small.  

Variable 𝑋 which has binomial distribution may be described as 

• the number of successes, 
• the number of elements which have a particular  attribute. 

The probability distribution of a Poisson variable 𝑃(𝑋) is described by the following 
formula: 

𝑃(𝑋) = 𝑒−λ λ𝑥

𝑥!
 , 𝑥 = 0, 1, 2, …  

where: λ is the parameter of the distribution. 

The mean µ and variance σ2 of variable 𝑋 are calculated as follows: 

𝜇 = λ 
𝜎2 = λ 

4.3.1 EXAMPLE 

Problem. There are 10 000 joints in a very complicated installation. The probability 
that a single joint fails in two years time is 0.1 %. The producer gives a 2 year 
guarantee for the installation. Calculate the probability that a) none of the joints, b) 
no more than 10 joints fail in that period of time.  

Solution. Let us consider a theoretical discrete random variable 𝑋 described as the 
number of elements which have a particular attribute. This well represents a real 
random variable encountered in our problem, namely the number of joints which 
fail during two years of installation life. The variable 𝑋 has Poisson distribution. In 
order to utilize the probability distribution of a Poisson variable, the parameter λ 
has to be calculated. Using the formula for the mean, which holds for Binomial 
distribution (§4.2.1), the mean number of parts which fail during two years is 

𝜇 = 𝑛𝑝 = 10000 ∙ 0.001 = 10  

The requested parameter λ of Poisson distribution is λ = µ = 10.  

(a) The probability that none of the parts fail during two years of installation 
life is the probability that 𝑋 = 0: 

𝑃(𝑋) = 𝑒−λ λ𝑥

𝑥!
= 𝑒−10

100

0!
= 𝑒−10 = 4.54 ∙ 10−5 

The probability that none of the parts fail during two years of installation life is 
4.54 ∙ 10−5. Such a situation is very unlikely. 
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(b) The probability that no more than 10  parts fail during two years of 
installation life is the probability that 0 or 1 or 2, …,  or 10 parts fail. That is 
𝑋 = 0 or 𝑋 = 1 ,…, or 𝑋 = 10. 

𝑋 = 1, 𝑃(𝑋) = 𝑒−λ λ𝑥

𝑥!
= 𝑒−10 10

1

1!
= 4.54 ∙ 10−4 

𝑋 = 2, 𝑃(𝑋) = 𝑒−λ λ𝑥

𝑥!
= 𝑒−10 10

2

2!
= 2.27 ∙ 10−3 

… 

𝑋 = 10, 𝑃(𝑋) = 𝑒−λ λ𝑥

𝑥!
= 𝑒−10 10

10

10!
= 1.25 ∙ 10−1 

P(X = 0, X = 1, … , X = 10) = P(X = 0) + P(X = 1) + ⋯+ P(X = 10)
= 4.54 ∙ 10−5 + 4.54 ∙ 10−4 + 2.27 ∙ 10−3 + ⋯+ 1.25 ∙ 10−1
= 0.583 

The probability that no more than 10 parts fail during two years of installation life is 
0.583. 
The reader is invited to perform the additional calculations and to plot the 
probability distribution of variable 𝑋, 𝑃(𝑋) for 𝑋 = 0, 1, … , 30.  

4.4 NEGATIVE BINOMIAL DISTRIBUTION  

Variable 𝑋  which has negative binomial distribution may be described in the 
following way: 

• the number trials which are needed to obtain a success 𝑟-times, 
• the size of a sample needed to find 𝑟 elements which have a particular 

attribute. 

The probability distribution of a negative binomial variable 𝑃(𝑋) is described by the 
following formula: 

𝑃(𝑋) = �𝑥 − 1
𝑟 − 1� 𝑝

𝑟𝑞𝑥−𝑟 

where: 𝑟 is the number of successes requested in 𝑥 trails (number of elements 
which have a particular attribute); 𝑝  is the probability of success in one 
trail/probability that a single element has the attribute; and 𝑞 = 1 − 𝑝 is the 
probability of failure in one trail/probability that a single element does not have 
the attribute.  

The mean µ and variance σ2 of variable 𝑋 are calculated as follows: 

𝜇 =
𝑟
𝑝

 

𝜎2 =
𝑟(1 − 𝑝)

𝑝2
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A special case of Negative Binomial distribution is the Geometric distribution. The 
variable 𝑋, which has Geometric distribution describes the number of trails needed 
to obtain success for the first time (the size of the sample needed to find 1 element 
which has a certain attribute). Therefore, the Geometric distribution is the 
Negative Binomial distribution with 𝑟 = 1. The Reader is invited to develop the 
formulas describing 𝑃(𝑥), µ and σ for the Geometric distribution. 

4.4.1 EXAMPLE 

Problem. The supplier is allowed to provide no more than 2 % defective parts per 
lot. Lots are huge and consist of 1000 items each. The delivered lot is randomly 
sampled for testing. Answer the following questions: 

(a) What is the average size of the test sample which contains one faulty 
element?  

(b) What is the average size of the test sample which contains three faulty 
elements? 

(c) What is the probability that the first faulty element is found in the 10th

(d) What is the probability that the third faulty element is found in the 10

 
trial? 

th

Solution:  

 
trial? 

• Let us consider a theoretical discrete random variable X described as the 
size of the sample needed to find 𝑟 elements which have certain attribute. This well 
represents a real random variable encountered in our problem, in cases (a) and (b), 
namely the size of the sample needed to find a defined number of faulty parts. The 
variable 𝑋 has negative binomial distribution. The probability that a single element 
is faulty is 𝑝 = 0.02 while the requested number of faulty parts 𝑟 is (a) 𝑟 = 1 and 
(b) 𝑟 = 3, respectively. Calculations for the average value of variable 𝑋 in cases (a) 
and (b) are given as follows. 

(a) 𝜇 = 𝑟
𝑝

= 1
0.02

= 50 

The average sample size containing 1 faulty element is 50.  

(b) 𝜇 = 𝑟
𝑝

= 3
0.02

= 150 

The average sample size containing 3 faulty elements is 150. 

• Let us consider a theoretical discrete random variable X described as the 
number of trials which are needed to obtain success 𝑟-times. This well represents a 
real random variable encountered in our problem, in cases (c) and (d), namely the 
ordinal trial number in which the 𝑟𝑡ℎ faulty element is found. The variable 𝑋 has 
negative binomial distribution. The probability of finding a faulty element in one 
trial is 𝑝 = 0.02  while the success expected is (c) 𝑟 = 1  and (d) 𝑟 = 3  times, 
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respectively in the course of 10 trials. The relevant probability calculations are 
given as follows: 

(c) 𝑃(𝑋) = �𝑥 − 1
𝑟 − 1� 𝑝

𝑟𝑞𝑥−𝑟 = �10 − 1
1 − 1 �0.0210.9810−1 = 0.017 

The probability that the first wrong part is drawn in the 10th

(d) 𝑃(𝑋) = �𝑥 − 1
𝑟 − 1� 𝑝

𝑟𝑞𝑥−𝑟 = �10 − 1
3 − 1 �0.0230.9810−3 = 0.000025 

 draw is 0.017. 

The probability that the third wrong part is drawn in the 10th

4.5 MULTINOMIAL DISTRIBUTION 

 draw is 0.000025. 
Such a situation is very unlikely. 

The binomial distribution is the special case of multinomial distribution. 
Multinomial distribution refers to 𝑚 variables 𝑋1,𝑋2, … ,𝑋𝑚.  

With multinomial distribution the probability is calculated that 𝑋1 =  𝑥1 , and  
𝑋2 =  𝑥2, …,  and 𝑋𝑚 =  𝑥𝑚. This may be described in the following way. 

• The event of the 1𝑠𝑡 type occurs 𝑥1 times, and the event of the 2𝑛𝑑 type 
occurs 𝑥2 times, …, and the event of the 𝑚𝑡ℎ type occurs 𝑥𝑚  times. There 
are 𝑛 events in total.  

• There are 𝑥1 elements of the 1𝑠𝑡 type and there are 𝑥2 elements of the 2𝑛𝑑 
type, …, and there are 𝑥𝑚 elements of the 𝑚𝑡ℎ type. The sample consist of 
𝑛-elements. 

Multinomial probability distribution 𝑃(𝑋) is described by the following formula: 

𝑃(𝑋1 = 𝑥1, … ,𝑋𝑚 = 𝑥𝑚 ) = 𝑛!
𝑥1!∙…∙𝑥𝑚!

𝑝1
𝑥1 ∙ … ∙ 𝑝𝑚

𝑥𝑚, and   ∑ 𝑥𝑘 = 𝑛𝑚
𝑘=1  

where: 𝑥𝑘 is the number of times the 𝑘𝑡ℎ event occurs during 𝑛 trials, 𝑝𝑘 is the 
probability that the 𝑘𝑡ℎevent occurs in a single trial, 𝑘 = 1 …𝑚. 

4.5.1 EXAMPLE.  

Problem. A construction element is produced which has 2 delicate holders. Based 
on experience, there is a 75 % chance that a randomly selected user will not 
destroy any holder,  a 15 % chance that the user will destroy one holder, and  
a 10 % chance that the user will break two holders while fixing the element during 
construction. 

(a) What is the probability that among 20 randomly selected users there 
are 15 who fixed the element successfully, 3 who broke 1 holder and 2 
who damaged 2 holders? 

(b) Is the probability calculated in case (a) different from the one 
associated with the following conditions: the sample consists of 100 
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users and we expect 75 successful users, 15 users who broke 1 holder 
and 10 users who broke 2 holders? 

Solution. Let us consider multinomial distribution referring to the following case: 
there are 𝑥1 elements of the 1𝑠𝑡 type, 𝑥2 elements of the 2𝑛𝑑 type, …, and there 
are 𝑥𝑚 elements of the 𝑚𝑡ℎ type in the 𝑛-element sample. This well represents our 
problem if the following assignment is performed: 𝑋1 is the number of users who 
did not do any harm to the holders, 𝑋2 is number of users who broke 1 holder, 𝑋3 is 
number of users who damaged 2 holders,  𝑝1 is the probability that a randomly 
selected user will mount the element successfully and 𝑝2 and 𝑝3 are probabilities 
that the user will damage 1 and 2 holders, respectively. Based on the problem 
formulation, the probabilities are the following: 𝑝1 = 0.75, 𝑝2 = 0.15 and 𝑝3 =
0.1. The following calculations for cases (a) and (b) are provided. 

(a) In this case the probability is calculated for 𝑋1 = 15, 𝑋1 = 3, 𝑋3 = 2 
and 𝑛 = 20.  

𝑃(𝑋1,𝑋2,𝑋3) =
𝑛!

𝑥1! ∙ 𝑥2! ∙ 𝑥3!
𝑝1
𝑥1 ∙ 𝑝2

𝑥2 ∙ 𝑝3
𝑥3 =

20!
15! 3! 2!

0.75150.1530.102

= 0.070 

The probability that the proportions of users who break none of the holders, one 
holder and two holders are 15:3:2 in a 20 element sample of users is 0.07. 

(b) In this case, the probability is calculated for 𝑋1 = 75 , 𝑋2 = 15 , 
𝑋3 = 10 and 𝑛 = 100.  

𝑃(𝑋1,𝑋2,𝑋3) =
𝑛!

𝑥1! ∙ 𝑥2! ∙ 𝑥3!
𝑝1
𝑥1 ∙ 𝑝2

𝑥2 ∙ 𝑝3
𝑥3

=
100!

75! 15! 10!
0.75750.15150.1010 = 0.015 

The probability that the proportions of users who break none of the holders, one 
holder and two holders are 15:3:2 in a 100 element sample of users is 0.015. The 
probabilities calculated in cases (a) and (b) are different.  
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5 CONTINUOUS VARIABLES AND THEIR PROBABILITY 
DISTRIBUTIONS 

5.1 CONTINUOUS VARIABLES  

A substantial group of variables encountered in engineering practice have 
continuous character. Considering their applicability, the most commonly used 
continuous variables represent physical and chemical properties of physical 
objects. Their examples are the following: temperature, humidity, concentration, 
content, age, speed, height and many others. 

Continuous variable 𝑋 takes values from an infinite set. 

In the case of continuous variables, a probability of occurrence is not assigned to a 
single value of variable 𝑋. The probability is instead assigned to an interval of 
values of variable 𝑋. This is a so called interval estimation.   

A continuous variable has a probability density function 𝑓(𝑥), with the following 
properties: 

(∀𝑥)𝑓(𝑥) > 0 

∫ 𝑓(𝑥)𝑑𝑥𝑏
𝑎 = 𝑃(𝑎 < 𝑋 ≤ 𝑏) , for any 𝑎 < 𝑏 

� 𝑓(𝑥)𝑑𝑥
∞

−∞
= 𝑃(−∞ < 𝑋 ≤ ∞) = 1 

A continuous variable has a cumulative distribution function 𝐹(𝑋), with the 
following properties: 

𝐹(𝑥) = 𝑃(𝑋 < 𝑥) = � 𝑓(𝑥)𝑑𝑥
𝑥

−∞
 

Graphical representations of the probability density function (PDF) and cumulative 
distribution function (CPDF) of continuous variable are shown in Fig. 5.1.  

 

Figure 5.1 Graphical representations of (a) probability density function,  (b) cumulative 
distribution function, of a continuous variable. 
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Both the PDF and CPDF of a variable are useful for finding the probability that 
values of the variable belong to a defined interval.  

The following features of PDF are most frequently exploited in practice: 

• ∫ 𝑓(𝑥)𝑑𝑥𝑎
−∞ , i.e. the surface under the PDF, between 𝑋 = −∞ and 𝑋 = 𝑎, 

(Fig. 5.1a) is the probability 𝑃(𝑋 ≤ 𝑎) that variable 𝑋 has values smaller or 
equal to 𝑎; 

• ∫ 𝑓(𝑥)𝑑𝑥𝑏
𝑎 , i.e. the surface under the PDF, between 𝑋 = 𝑎 and 𝑋 = 𝑏, (Fig. 

5.1a) is the probability 𝑃(𝑋∈〈𝑎, 𝑏〉)  that variable 𝑋  has values in the 
interval 〈𝑎, 𝑏〉; 

• ∫ 𝑓(𝑥)𝑑𝑥∞
𝑏 , i.e. the surface under the PDF, between 𝑋 = 𝑏 and 𝑋 = ∞, 

(Fig. 5.1a) is the probability 𝑃(𝑋 ≥ 𝑏) that variable 𝑋 has values greater 
than or equal to 𝑏. 

The following features of CPDF are most frequently exploited in practice: 

• 𝐹(𝑎), i.e. the value of CPDF, for 𝑋 = 𝑎, (Fig. 5.1b) is the probability 
𝑃(𝑋 ≤ 𝑎) that variable 𝑋 has values smaller or equal to 𝑎 

• 𝐹(𝑏) −  𝐹(𝑎), i.e. the difference between values of CPDF, for 𝑋 = 𝑏 and 
𝑋 = 𝑎, (Fig. 5.1b) is the probability 𝑃(𝑋∈(�𝑎, 𝑏〉� that variable 𝑋 has values in 
the interval (�𝑎, 𝑏〉�  

• 1 −  𝐹(𝑏), i.e. the difference between one and the value of CPDF, for 
𝑋 = 𝑏, (Fig. 5.1b) is the probability 𝑃(𝑋 > 𝑏) that variable 𝑋 has values 
greater than 𝑏.  

The mean of a continuous random variable is calculated by the following formula: 

𝜇 = � 𝑥𝑓(𝑥)𝑑𝑥
∞

−∞
 

The variance of a continuous random variable is calculated as follows: 

𝜎2 = � (𝑥 − 𝜇)2𝑓(𝑥)𝑑𝑥
∞

−∞
= � 𝑥2𝑓(𝑥)𝑑𝑥

∞

−∞
− 𝜇2 

There are a number of theoretical continuous variables which have well defined 
probability density functions. Their 𝑃𝐷𝐹𝑠 are known as equations, but they are also 
available in the form of statistical tables (see Appendix 1-5, 7).  

The following theoretical 𝑃𝐷𝐹𝑠  of continuous variables were selected for 
presentation in this book: normal, t-Student, Chi2

 

 and F-Snedecore. This choice was 
guided by their practical applicability in solving engineering problems. 

 

 



35 
 

5.2 NORMAL DISTRIBUTION 

The Normal distribution is the most desired distribution of the observed random 
variable. 

Variable 𝑋, which has the probability distribution described by the following 
probability density function: 

𝑓(𝑥) = 1
√2𝜋𝜎

𝑒−
(𝑥−𝜇)2

2𝜎2 , for 𝑥 ∈ 〈−∞, ∞〉 

where: µ is the mean of 𝑋, σ is the standard deviation of 𝑋, is considered as having 
normal distribution. 

The 𝑃𝐷𝐹  of normal distribution has two parameters: µ  and σ . This fact is 
represented using the following notation: 𝑁(µ, σ). 

A selection of probability density functions for normal variables is presented in Fig. 
5.2. 

 

Figure 5.2 Examples of normal probability density functions. 

The probability density function of normal distribution has a bell shape, as shown in 
Fig. 5.2. This shape is also called Gaussian. The normal 𝑃𝐷𝐹 function is symmetric. 
The location of the function maximum is determined by µ, whereas its flatness 
depends on σ. 

The special case of normal distribution is the standardized normal distribution, 
𝑁(0,1). It is the normal distribution with the mean µ = 0 and the standard 
deviation σ = 1. The variable having standardized normal distribution is called 𝑍. 
The 𝑍  variable is obtained by transforming the 𝑋  variable, which has normal 
distribution 𝑁(µ, σ), in the following way: 

𝑍 =
𝑋 − 𝜇(𝑋)
𝜎(𝑋)  
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The 𝑍 variable is very useful in practical applications of statistics.  

When using normal distribution for describing the distribution of the observed 
variable 𝑋, 𝑋� is used as the estimate of the mean 𝜇, and 𝑠2 is used as the estimate 
of variance σ2 of variable 𝑋 (see §3.1 and §3.2). 

Statistical tables of normal distribution refer to the 𝑍 variable. The most commonly 
used form of 𝑍 distribution tables is provided in Appendix 1. Due to the symmetric 
character of the distribution, just the right part of it, i.e. for 𝑧∈ < 0, ∞) is described 
in 𝑍 tables. 

It is very convenient to deal with a variable having normal distribution. Many 
statistical methods require that the analyzed variable has normal distribution and 
fulfilling this assumption is required for the valid use of such methods. There are a 
number of statistical tests available for checking the normality of variables (see 
§7.7).  

5.2.1 EXAMPLE 

Problem. It is known that variable 𝑋 has normal distribution 𝑁(150, 5). What is the 
probability that values of variable 𝑋  

(a) are greater than 157? 
(b) are less than 146? 
(c) belong to the following intervals: 150 ± 5; 150 ± 10; 150 ± 15. 

Solution. Considering that variable 𝑋 has normal distribution, 𝑍 distribution may be 
used to solve the problem. First, the normal variable 𝑋 has to be converted to the 
standardized variable 𝑍 . In the next step, 𝑍  statistical tables shall be used 
(Appendix 1). Solutions for cases (a), (b) and (c) are given as the following. 

 

Figure 5.3 Graphical illustration of problem 5.2.1. 

(a) 𝑧𝑐𝑎𝑙 = 𝑥−𝜇(𝑋)
𝜎(𝑋) = 157−150

5
= 0.6 

In order to use the 𝑍 tables, the calculated value of 𝑧𝑐𝑎𝑙 = 0.6 shall be substituted 
for 𝑍𝛼. In the 𝑍 distribution tables one finds 𝑃(𝑍 ≤  𝑧𝛼) = 𝑃(𝑍 ≤ 0.6) = 0.7257. 
Therefore, the requested probability is 

𝑃(𝑍 > 0.6) = 1 −  𝑃(𝑍 ≤ 0.6) = 1 − 0.7257 = 0.2743 
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The probability that the value of variable 𝑋, is greater than 157 is 0.2743. 

The graphical interpretation of the probability 𝑃𝑎 = 𝑃(𝑋 > 157) = 𝑃(𝑍 > 0.6) is 
shown in Fig. 5.3a.  

(b) 𝑧𝑐𝑎𝑙 = 𝑥−𝜇(𝑋)
𝜎(𝑋) = 146−150

5
= −0.8 

In order to use 𝑍 tables, the negative value 𝑍 = −0.8 shall be reflected in order to 
produce a positive value −𝑍 = 0.8. This is allowed due to the symmetry of normal 
distribution. Next, the calculated value −𝑧𝑐𝑎𝑙 = 0.8 is substituted for 𝑧α. From the 
table of 𝑍 distribution one reads 𝑃(𝑍 ≤  𝑧α) = 𝑃(𝑍 ≤ 0.8) = 0.7881. Therefore, 
the requested probability is 

𝑃(𝑍 < −0.8) =  𝑃(𝑍 > 0.8) = 1 − 𝑃(𝑍 ≤ 0.8) = 1 − 0.7881 = 0.2119 

The probability that the value of variable 𝑋 is less than 146 is 0.2119. 

The graphical interpretation of the probability 𝑃𝑏 = 𝑃(𝑋 < 146) = 𝑃(𝑍 < −0.8) is 
shown in Fig. 5.3b.  

(c) Two limits between which the 𝑋  variable is supposed to fall are (i) 
〈150 − 5,150 + 5〉 , (ii) 〈150 − 10, 150 + 10〉  and (iii) 〈150 − 15,150 +
15〉. Please note that intervals (i), (ii) and (iii) represent the so called  1σ, 
2σ and 3σ intervals (see §6.1).  

To make use of 𝑍  tables, right limits of the intervals of the 𝑋  variable are 
transformed into 𝑍. Next, the calculated values 𝑧𝑐𝑎𝑙 are substituted for 𝑧𝛼 in order 
to read the probability 𝑃(𝑍 ≤ 𝑧𝛼). The following are calculations for cases (i), (ii) 
and (iii). 

(i) 𝑍𝑐𝑎𝑙 = 𝑥−𝜇(𝑋)
𝜎(𝑋) = 150+5−150

5
= 1 

𝑃(−𝑍∝ ≤ 𝑍 < 𝑍∝) = 2(𝑃(𝑍 < 𝑍∝) − 0.5) = 2(0.8413− 0.5)
= 0.6826 

The probability that variable 𝑋  belongs to the interval 〈150 − 5, 150 + 5〉  is 
68.26 %. In general, the probability that variable 𝑋, which has normal distribution, 
belongs to the interval 〈µ− σ, µ + σ〉 is 0.6826. 

(ii) 𝑧𝑐𝑎𝑙 = 𝑥−𝜇(𝑋)
𝜎(𝑋) = 150+2∙5−150

5
= 2 

𝑃(−𝑍∝ ≤ 𝑍 < 𝑍∝) = 2(𝑃(𝑍 < 𝑍∝) − 0.5) = 2(0.97725− 0.5)
= 0.9545 

The probability that variable 𝑋 belongs to the interval 〈150 − 2⋅5,150 + 2⋅5〉 is 
0.9545. In general, the probability that variable 𝑋, which has normal distribution, 
belongs to the interval 〈µ− 2σ, µ + 2σ〉 is 0.9545. 

(iii) 𝑧𝑐𝑎𝑙 = 𝑥−𝜇(𝑋)
𝜎(𝑋) = 150+3∙5−150

5
= 3 



38 
 

𝑃(−𝑧∝ ≤ 𝑍 < 𝑧∝) = 2(𝑃(𝑍 < 𝑧∝) − 0.5) = 2(0.99865− 0.5)
= 0.9973 

The probability that variable 𝑋 belongs to the interval 〈150 − 3⋅5, 150 + 3⋅5〉 is 
0.9973. In general, the probability that variable 𝑋, which has normal distribution, 
belongs to the interval 〈µ− 3σ, µ + 3σ〉 is 0.9973. 

The graphical interpretation of the probability 𝑃𝑐 = 𝑃(−𝑥α ≤ 𝑋 ≤ 𝑥α) = 𝑃(−𝑧α ≤
𝑍 ≤ 𝑧α) is shown in Fig. 5.3c for case (i). 

5.3 t-STUDENT DISTRIBUTION  

The t-Student distribution is mainly applied for reasoning about the mean.  

If variable 𝑋 has normal distribution 𝑁(µ, σ), and an 𝑛-element sample is drawn 
from the population of values of 𝑋, the variable: 

𝑡 =
�̅� − 𝜇
𝑠
√𝑛

 

has 𝑡 -Student distribution, shortly, 𝑡  distribution with ν = 𝑛 − 1  degrees of 
freedom. 

The probability distribution of variable 𝑡 is described by the following probability 
density function: 

𝑓(𝑡) =
Γ�ν+1

2 �

√𝜋νΓ�ν
2�
�1 + 𝑡2

ν
�
−ν+1

2
, for 𝑡∈〈−∞, ∞〉 

where: Γ is the gamma function, ν are the degrees of freedom. 

The 𝑃𝐷𝐹  of the 𝑡 -Student distribution has one parameter ν . This fact is 
represented using the following notation 𝑡(ν). 

Examples of probability density functions of the 𝑡 variable are shown in Fig. 5.4 for 
selected degrees of freedom ν = 1 , 15 , and 35  together with the normal 
distribution 𝑁(0,1) as a reference. 
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Figure 5.4 Examples of t-Student probability density functions. 

The probability density function of 𝑡-Student distributions has a bell shape, as 
shown in Fig. 5.4 with the function being symmetric. The location of the function 
maximum is fixed, whereas its flatness depends on ν. With increasing degrees of 
freedom, the 𝑡-Student distribution approaches standard normal distribution. It is 
usually assumed that for ν > 30, normal distribution shall be used instead of 𝑡-
Student distribution. 

The mean 𝜇  and variance σ2  of variable 𝑡  are calculated using the following 
formulas: 

𝜇 = 0 

𝜎2 =
ν

ν− 2
 

There are statistical tables available for 𝑡-Student distributions (see Appendix 2).  

5.3.1 EXAMPLE 

Problem. A variable has 𝑡-Student distribution with ν = 7 degrees of freedom. 
What is the probability that the variable takes values which are 

(a) greater than or equal to 2.365, 
(b) belong to the interval (−2.365, 2.365). 

Solution. In order to solve the problem, statistical tables of 𝑡-Student distribution 
are needed (Appendix 2). The following are solutions for cases (a) and (b). 
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Figure 5.5 Graphical illustration of problem 5.3. 1. 

(a) In order to use t tables, 𝑡𝑐𝑎𝑙 = 2.365 shall be substituted for 𝑡α,ν. One 
reads the probability α, associated with 𝑡α,ν = 2.365, i.e. 𝑃(|𝑡|≥𝑡α,ν) and 
the following is calculated: 

𝑃�𝑡 ≥ 𝑡∝,ν� = 0.5𝑃�|𝑡| ≥ 𝑡∝,ν� = 0.5𝑃(|𝑡| ≥ 2.365) = 0.5 ∙ 0.05 = 0.025 

The probability that 𝑡 is greater than or equal to 2.365 is 0.025. 
The graphical representation of the requested probability is shown in Fig. 5.5a. 

(b) Knowing that 𝑃(|𝑡|≥𝑡α,ν) for 𝑡α,ν = 2.365, the following is calculated: 

𝑃�|𝑡| < 𝑡∝,ν� = 1 − 𝑃�|𝑡| ≥ 𝑡∝,ν� = 1 − 𝑃(|𝑡| ≥ 2.365) = 1 − 0.05 = 0.95 

The probability that 𝑡 belongs to the interval (−2.365, 2.365) is 0.95.   
The graphical representation of the requested probability is shown in Fig. 5.5b. 

5.4 CHI SQUARE DISTRIBUTION 

The χ2

If variable 𝑋 has normal distribution 𝑁(µ, σ) and an 𝑛-element sample is drawn 
from the population of values of 𝑋, the variable: 

𝜒2 =
(𝑛 − 1)𝑠2

𝜎2
 

 distribution is mainly applied for reasoning about the variance.  

has Chi square distribution with ν = 𝑛 − 1 degrees of freedom. The 𝑠2  is the 
estimate of σ2 based on the sample. 

The probability distribution of variable 𝜒2 is described by the following probability 
density function: 

𝑓(𝜒2) = 0 , for 𝜒2 ≤0 
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𝑓(𝜒2) =
�12�

ν
2

Γ�ν
2�

(𝜒2)
ν
2−1𝑒−

𝜒2

2  , for 𝜒2  > 0 

where: Γ is the gamma function, ν are degrees of freedom. 

The 𝑃𝐷𝐹  of the Chi-square distribution has one parameter ν . This fact is 
represented using the following notation: 𝜒2(ν). 

Examples of the probability density function for the 𝜒2 variable are shown in Fig. 
5.6 for the selected degrees of freedom ν = 5, 10 and 35. 

 

Figure 5.6 Examples of χ2 

The probability density function of the χ

probability density functions. 
2

The mean 𝜇  and variance σ2  of variable 𝜒2  are calculated by the following 
formulas: 

𝜇 = ν 

𝜎2 = 2ν 

 variable is asymmetric for small degrees 
of freedom, as shown in Fig. 5.6. With increasing degrees of freedom, the 
distribution loses its asymmetric character. It becomes quite well represented by 
the normal distribution for ν > 30. 

There are statistical tables available for 𝜒2 distributions (Appendix 3). 

5.4.1 EXAMPLE 

Problem. A variable has 𝜒2distribution with ν = 20 degrees of freedom. What is 
the probability that values of the variable are 

(a) greater than or equal to 10.851, 

(b) less than 7.434. 
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Solution. In order to solve the problem, statistical tables of 𝜒2 distribution are 
needed (Appendix 3). The following are calculations for cases (a) and  (b). 

 

Figure 5.7 Graphical interpretation of problem 5.4.1. 

(a) In order to use Chi2

𝑃�𝜒2 ≥ 𝜒2𝛼,ν� = 𝑃(𝜒2 ≥ 10.851 ) = 0.95 

 distribution tables, 𝜒𝑐𝑎𝑙2 = 10.851 shall be substituted 
for 𝜒𝛼,ν

2 . Then, one reads the probability α, associated with 𝜒𝛼,ν
2 = 10.851, 

i.e. the probability 𝑃(𝜒2≥ 𝜒α,ν
2 ): 

The probability that the value of the variable is greater than or equal to 10.851 is 
0.95. 

The graphical interpretation of the requested probability is shown in Fig. 5.7a. 

(b) In order to use Chi2

𝑃�𝜒2 < 𝜒2𝛼,ν� = 1 − 𝑃�𝜒2 ≥ 𝜒2𝛼,ν� = 1 − 𝑃(𝜒2 ≥ 7.434 ) = 1 − 0.995
= 0.005 

 distribution tables, 𝜒𝛼,ν
2  is substituted with 𝜒𝑐𝑎𝑙2 =

7.434 . Next, one reads the probability α, associated with 𝜒𝛼,ν
2 = 7.434, i.e. 

the probability 𝑃(𝜒2≥ 𝜒α,ν
2 ), and the following is calculated: 

The probability that the value of the variable is less than 7.434 is 0.005. 

The graphical interpretation of the requested probability is shown in Fig. 5.7b. 
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5.5 F-SNEDECORE DISTRIBUTION 

𝐹-Snedecore distribution is mainly applied for comparing variances.  

Let variable 𝑋 have normal distribution 𝑁(µ1, σ1) in one population and normal 
distribution 𝑁(µ2, σ2) in another population. If a sample consisting of 𝑛1 elements 
is drawn from the first population and a sample consisting of 𝑛2 elements is drawn 
from the second population, the variable: 

𝐹 =

𝑠12
𝜎12

𝑠22
𝜎22

 

has 𝐹-Snedecore distribution with the following degrees of freedom ν1 = 𝑛1 − 1 
and ν2 = 𝑛2 − 1. 

The probability distribution of variable 𝐹P is described by the following probability 
density function: 

    𝑓(𝐹) = 0, for 𝐹≤0 

    𝑓(𝐹) =
ν1

ν1
2 ν2

ν2
2 Γ�ν1

ν1+ν2
2 �

Γ�ν1

ν1
2 �Γ�ν2

ν2
2 �

𝐹
ν1
2 −1

(ν1𝐹+ν2)
1
2(ν1+ν2)

, for 𝐹 > 0 

where: Γ  is the gamma function, ν1 and ν2 are degrees of freedom. 

The 𝑃𝐷𝐹 of 𝐹-Snedecore distribution has two parameters ν1 and ν2. This fact is 
represented using the following notation: 𝐹(ν1, ν2). 

Plots of exemplary 𝐹-Snedecore distributions are shown in Fig. 5.8 for the selected 
pairs of degrees of freedom 𝐹(5, 5), 𝐹(5, 35), 𝐹(35, 5).  

 

Figure 5.8 Examples of 𝑭-Snedecore probability density functions. 



44 
 

The probability density function of variable 𝐹 is asymmetric for small degrees of 
freedom. With the increasing degrees of freedom the distribution loses its 
asymmetric character, as shown in Fig. 5.8.  

The mean 𝜇  and variance σ2  of variable 𝐹P  are calculated using the following 
formulas: 

𝜇 =
ν2

ν2 − 2
 

𝜎2 =
2ν22(ν1 + ν2 − 2)

ν1(ν2 − 2)2(ν2 − 4) 

There are statistical tables available for the 𝐹 distribution (Appendix 4, 5). A single 
table refers to a fixed probability α = 𝑃(𝐹≥𝐹α,ν1,ν2) and all different pairs of 
degrees of freedom ν1 and ν2. 

5.5.1 EXAMPLE 

Problem. A variable has 𝐹 -Snedecore distribution with ν1 = 15  and ν2 = 23 
degrees of freedom. What value of variable 𝐹 is neither reached nor exceeded with 
the probability 𝑝 = 0.95. 

Solution. The graphical interpretation of the problem is shown in Fig. 5.9.  

 

Figure 5.9 Graphical interpretation of problem 5.5.1. 

In order to solve the problem, statistical tables of the 𝐹P distribution are needed 
(Appendix 4, 5). 

Tables of 𝐹α,ν1,ν2 distribution are constructed for the probability α that 𝐹 exceeds 
or is equal to a certain value 𝐹α,ν1,ν2, that is α = 𝑝(𝐹≥𝐹α,ν1,ν2).  
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To solve the problem, we are going to use the probability that a certain value of the 
𝐹 variable is neither reached nor exceeded 𝑝�𝐹 < 𝐹𝛼,ν1,ν2� in the following way:  

𝛼 = 𝑝�𝐹 ≥ 𝐹𝛼,ν1,ν2� = 1 − 𝑝�𝐹 < 𝐹𝛼,ν1,ν2� = 1 − 0.95 = 0.05. 

The obtained value of α indicates that one shall refer to 𝐹-Snedecore distribution 
which was constructed for α = 0.05. In the table one reads 𝐹0.05,15,23 = 2.13, for 
ν1 = 15 and ν2 = 23 degrees of freedom. 

The value of variable 𝐹, which is neither reached nor exceeded with the probability 
0.05 is 2.13.  
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6 CONFIDENCE INTERVAL AND TOLERANCE INTERVAL  

One of the basic engineering problems is to evaluate the confidence in the 
information about objects which is obtained by means of 
measurement/observation. Examples of simple problems of that kind are 

• What is the probability that the observed/measured value of a variable, the 
mean of the variable or its spread do not deviate from their real values by 
more than a certain limit? 

• What is the range of values that contains the true value of the variable, 
true mean, or true spread with the defined probability? 

The above engineering problems may be translated into statistical problems of 
defining tolerance level and tolerance interval for a variable or defining a 
confidence level and confidence interval for the parameters of probability 
distribution of a random variable.  

6.1 CONFIDENCE INTERVAL 

Confidence level for variable 𝑉 is the probability that values of the variable fall into 
the interval (𝑎, 𝑏), which is called the confidence interval. The confidence level is 
usually denoted by 𝑃𝛼 and the following holds: 

𝑃𝛼 = 𝑃(𝑎 < 𝑉 < 𝑏) and 𝑃𝛼 = 1 − 𝛼 

where α is the significance level, as explained in §7.2. Confidence level refers to the 
parameters of statistical distribution of the observed variable 𝑋, e.g. the mean, the 
variance or standard deviation, and it does not refer to values of variable 𝑋. Those 
parameters are also random variables and have their probability distributions. They 
are represented by 𝑉 in the above definition of confidence level. 

The graphical interpretation of the confidence level and the confidence interval is 
shown in Fig. 6.1. 

 

Figure 6.1 Graphical interpretation of the confidence level and the confidence interval. 
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Based on its definition, confidence level is the surface under the 𝑃𝐷𝐹 between the 
left and right limit of the confidence interval. If the confidence interval is extended, 
the associated surface, i.e. the confidence level increases. The confidence level and 
confidence interval are related to each other. The confidence interval defines the 
confidence level in an unequivocal manner, but the opposite is not true. There are 
many possible confidence intervals for a defined confidence level. Statistics is 
interested in the narrowest of all confidence intervals at a particular confidence 
level. 

In statistics, less confidence is associated with a narrower interval and more 
confidence is associated with a wider interval. This is counterintuitive, as one tends 
to associate confidence with something precise (narrow interval) rather than with 
something vague (wide interval). However, statistical confidence is a probability. 
For a defined 𝑃𝐷𝐹, a larger probability (surface under the 𝑃𝐷𝐹) is associated with 
longer intervals (range of 𝑋) while a smaller probability is associated with shorter 
intervals. 

The most commonly used confidence levels are 𝑃α = 0.95, and 𝑃α = 0.99. 

In engineering applications, there are two ways of using confidence level and 
confidence interval. Either confidence level is known and confidence interval is 
asked for or the interval is known and the confidence level is in question.  

This chapter presents methods of calculating the 

• confidence interval on the mean, 

• confidence interval on the variance and standard deviation, 

• tolerance interval.  

6.2 CONFIDENCE INTERVAL ON THE MEAN 

There are three possibilities of calculating confidence interval on the mean of 
variable 𝑋: 

1. Variable 𝑋 has normal distribution and variance σ2 is known.  

In this case the following variable is utilized for confidence interval calculation: 

𝑍 =
𝑋� − 𝜇
𝜎
√𝑛

 

As 𝑍 distribution is symmetric, the confidence interval stretches symmetrically 
around the mean. The confidence level is the probability 𝑃𝛼 that 

𝑃𝛼 = 𝑃 �−𝑍𝛼
2

< 𝑍 < 𝑍𝛼
2
� 

Therefore, the following transformations are allowed: 

−𝑍𝛼
2

< 𝑍 < 𝑍𝛼
2
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−𝑍𝛼
2

<
𝑋� − 𝜇
𝜎
√𝑛

< 𝑍𝛼
2

 

𝑋� − 𝑍𝛼
2

𝜎
√𝑛

< 𝜇 < 𝑋� + 𝑍𝛼
2

𝜎
√𝑛

 

The confidence interval on the mean of variable 𝑋 is �𝑋� − 𝑍𝛼
2

𝜎
√𝑛

,𝑋� + 𝑍𝛼
2

𝜎
√𝑛
�, at the 

confidence level 𝑃𝛼. 

2. Variable 𝑋 has normal distribution and variance σ2 is unknown. It has to be 
estimated using 𝑠2, based on a sample drawn from the population. 

In this case, the following variable is utilized for confidence interval calculation: 

𝑡 =
𝑋� − 𝜇
𝑠
√𝑛

 

As 𝑡 -Student distribution is symmetric, the confidence interval stretches 
symmetrically around the mean. The confidence level is the probability 𝑃𝛼 that 

𝑃𝛼 = 𝑃 �−𝑡𝛼
2 ,ν < 𝑡 < 𝑡𝛼

2 ,ν� 

Therefore, the following transformations are allowed: 

−𝑡𝛼
2 ,ν < 𝑡 < 𝑡𝛼

2 ,ν 

−𝑡𝛼
2 ,ν <

𝑋� − 𝜇
𝑠
√𝑛

< 𝑡𝛼
2 ,ν 

𝑋� − 𝑡𝛼
2 ,ν

𝑠
√𝑛

< 𝜇 < 𝑋� + 𝑡𝛼
2 ,ν

𝑠
√𝑛

 

The confidence interval on the mean of variable 𝑋 is �𝑋� − 𝑡𝛼
2,ν

𝑠
√𝑛

,𝑋� + 𝑡𝛼
2,ν

𝑠
√𝑛
� at 

the confidence level 𝑃𝛼 . 
For big samples, i.e. 𝑛 > 30, the solution converges with the solution described in 
possibility 1 since the 𝑡-Student distribution converges with the normal distribution 
for 𝑛 > 30. 

3. The variable 𝑋  has unknown distribution and either variance σ2  or its 
estimate 𝑠2 is known.  

In this case the following variable is utilized for confidence interval calculation: 

𝑍 =
𝑋� − 𝜇
𝑠
√𝑛

 

where 𝑠 is the estimate of standard deviation based on an 𝑛 element sample.  
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The calculation of confidence interval is identical as in the case when variable  𝑋 
has normal distribution and variance σ2 is known. The confidence interval on the 

mean of variable 𝑋 is �𝑋� − 𝑍𝛼
2

𝑠
√𝑛

,𝑋� + 𝑍𝛼
2

𝑠
√𝑛
�, at the confidence level 𝑃𝛼; however, 

the obtained solution has an approximate character. The size of the sample used 
for estimating 𝑋�, and 𝑠 shall be big  (𝑛 > 120). 

Examples of confidence interval calculation are given regarding cases 2 and 3.  Case 
1 occurs quite rarely in practice and the solution strategy is identical with case 3; 
therefore, it was not analyzed. 

6.2.1 EXAMPLE 

Problem. It is known that the monthly concentration of NOx in city A has normal 
distribution. The monthly concentration of NOx was measured in the city over one 
year and it was found that the average monthly concentration was 100 µg/m3 with 
a standard deviation of 50 µg/m3. What is the confidence interval on the mean 
monthly concentration of NOx

Solution. The considered variable has normal distribution, but the parameters of 
the distribution are unknown. They were estimated based on an 𝑛 = 12 element 
sample (12 monthly averages) and they are 𝑋� = 100 and 𝑠 = 50. The problem falls 
into the category: the confidence interval on the mean of variable 𝑋 which has a 
normal distribution in population and the variance σ2  is unknown (case 2). 
Therefore, the formula describing the confidence interval on the mean is the 
following:     

𝑋� − 𝑡𝛼
2 ,ν

𝑠
√𝑛

< 𝜇 < 𝑋� + 𝑡𝛼
2 ,ν

𝑠
√𝑛

 

 at the confidence level of 0.98? 

The only missing value in the formula is 𝑡𝛼
2,ν. It is found in the 𝑡-Student distribution 

table (Appendix 2) for α = 1 − 𝑃𝛼 = 1 − 0.98 = 0.02, 
α
2

= 0.01 and ν = 𝑛 − 1 =
12 − 1 = 11. The missing value is 𝑡0.01,11 = 3.106. As a result of substitution 

100 − 3.106
50
√12

< 𝜇 < 100 + 3.106
50
√12

 

55.17 < 𝜇 < 144.83. 
the confidence interval on the mean monthly concentration of NOx in the city is 
(53.17, 144.83) µg/m3

6.2.2 EXAMPLE  

 at the confidence level 𝑃 = 0.98. 

Problem. The probability distribution of the daily SO2 concentration in the city in 
winter is not known. The daily concentration of SO2 was measured in the city over 
a period of 5 winter months. It was found that the average daily concentration was 
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60 µg/m3 with a standard deviation of 20 µg/m3. What is the confidence interval 
on the mean monthly concentration of SO2

Solution. The considered variable has unknown distribution. The mean value of 
variable 𝑋� = 60 and its standard deviation 𝑠 = 20 were estimated based on an 
𝑛 = 150 element sample (30 daily average concentrations for 5 months). The 
problem falls within the category: the variable 𝑋 has unknown distribution in 
population and the estimate of variance 𝑠2 is available, the size of sample is big 
(case 3). The following formula describes the confidence interval on the mean:   

𝑋� − 𝑍𝛼
2

𝑠
√𝑛

< 𝜇 < 𝑋� + 𝑍𝛼
2

𝑠
√𝑛

 

 at the confidence level of 0.99. 

The only missing value in the formula is 𝑍𝛼
2
. It is found in the 𝑍 table (Appendix 1) 

for Φ(𝑍) =  0.5 + 0.5𝑃α = 0.5 + 0.5⋅0.99 = 0.995. The value is 𝑍0.005 = 2.58. As 
a result of substitution 

60 − 2.58
20
√150

< 𝜇 < 60 + 2.58
20
√150

 

55.79 < 𝜇 < 64.21 
the confidence interval on the average daily concentration of SO2 is (55.79, 64.21) 
µg/m3

6.3 CONFIDENCE INTERVAL ON THE VARIANCE 

 at the confidence level of 𝑃α = 0.99. 

The assumption about the normality of variable 𝑋 is required for calculating the 
confidence interval on the variance.  

The following variable is utilized for the confidence interval calculation: 

𝜒2 =
(𝑛 − 1)𝑠2

𝜎2
 

As the χ2 distribution is asymmetric, the confidence interval is not symmetric with 
respect to the mean. The confidence level is the probability 𝑃α that 

𝑃𝛼 = 𝑃 �𝜒
1−𝛼2 ,ν
2 < 𝜒2 < 𝜒𝛼

2 ,ν
2 � 

Therefore, the following transformations are allowed: 

𝜒
1−𝛼2 ,ν
2 < 𝜒2 < 𝜒𝛼

2 ,ν
2  

𝜒
1−𝛼2 ,ν
2 <

(𝑛 − 1)𝑠2

𝜎2
< 𝜒𝛼

2 ,ν
2  

(𝑛 − 1)𝑠2

𝜒𝛼
2 ,ν
2 < 𝜎2 <

(𝑛 − 1)𝑠2

𝜒
1−𝛼2 ,ν
2  
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�
(𝑛 − 1)𝑠2

𝜒𝛼
2 ,ν
2 < 𝜎 < �

(𝑛 − 1)𝑠2

𝜒
1−𝛼2 ,ν
2  

The confidence interval on the variance of variable 𝑋 is �(𝑛−1)𝑠2

𝜒𝛼
2 ,ν
2 , (𝑛−1)𝑠2

𝜒
1−𝛼2 ,ν
2 � at the 

confidence level 𝑃α. 

The confidence interval on the standard deviation of variable 𝑋  is 

��
(𝑛−1)𝑠2

𝜒𝛼
2 ,ν
2 ,�

(𝑛−1)𝑠2

𝜒
1−𝛼2 ,ν
2 � at the confidence level 𝑃α. 

6.3.1 EXAMPLE 

Problem. The temperature control system is expected to stabilize the temperature 
around 50 ± 1 °C. In order to evaluate the performance of the system, the 
temperature was measured in the course of 𝑛 = 15 independent measurements. 
The obtained results are provided in Table 6.1.  What is the confidence interval on 
the spread of temperature at the confidence level of 0.95? Does the confidence 
interval satisfy the requirements? It is correct to assume that the temperature has 
normal distribution? 

Table 6.1 Results of temperature measurements. 

Measurement 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Temperature  50 50.1 50.3 49.8 50 50.6 48.7 49.1 50.4 50.1 51 49.9 50.7 49 50.3 

Solution. The standard deviation may be used as the measure of spread of 
temperature values. Based on the data provided in Table 6.1 and the relevant 
formula (see §3.2), the estimate of standard deviation is 

𝑠 = �∑ (𝑥𝑖 − 𝑥𝚤� )𝑛
𝑖=1
𝑛 − 1

= 0.64 

As the considered variable 𝑋 (here, temperature) has normal distribution, the 
following formula describes the confidence interval for standard deviation: 

�
(𝑛 − 1)𝑠2

𝜒𝛼
2 ,ν
2 < 𝜎 < �

(𝑛 − 1)𝑠2

𝜒
1−𝛼2 ,ν
2  
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The missing values 𝜒𝛼
2,ν
2  and 𝜒1−𝛼2,ν

2  are found in the Chi square distribution table 

(Appendix 3) for 
𝛼
2

= 0.5(1 − 𝑃𝛼) = 0.025, 1 − 𝛼
2

= 0.975, and ν = 𝑛 − 1 = 14. 

They are 𝜒0.025,14
2 = 26.119 and 𝜒0.975,14

2 = 5.629. 

�(15 − 1)0.642

26.119
< 𝜎 < �(15 − 1)0.642

5.629
 

0.47 < 𝜎 < 1.1 
The confidence interval on the spread of temperature is (0.47,1.1) , at the 
confidence level 0.95. It does not fully satisfy the requirements because the 
accepted value of spread was 1, which is less than the right limit of the confidence 
interval.  

In fact, the assumption concerning normality of temperature should be confirmed 
using the normality test (see §7.7). 

6.4 TOLERANCE INTERVAL 

Tolerance level and tolerance interval are calculated for variable 𝑋. These are 
notions corresponding to confidence level and confidence interval which refer to 
parameters of the statistical distribution of variable 𝑋. Tolerance level 𝑞  is a 
probability described by the following formula: 

𝑞 = 𝑃(𝐹(𝑋2) − 𝐹(𝑋1) ≥ 𝑄) 

where 𝐹(𝑋2) and 𝐹(𝑋1) are values of the cumulative distribution function of 
variable 𝑋. 𝑋1 is the lower tolerance limit while 𝑋2 is the upper tolerance limit.   

The tolerance interval 〈𝑋1,𝑋2〉 hosts at least 𝑄⋅100 % values of variable 𝑋 with the 
probability 𝑞. 𝑄 is the smallest fraction of values of 𝑋 which fall into the tolerance 
interval with the probability 𝑞. 

In practical applications, it is most frequently assumed that variable 𝑋 has normal 
distribution and in such case the tolerance interval for a single value of variable 𝑋 is 
the following: 

�̅� − 𝐾𝑛,𝑞,𝑄𝑠 ≤ 𝑋 ≤  𝑥� + 𝐾𝑛,𝑞,𝑄𝑠 

where �̅� is the estimate of the mean of 𝑋, based on an 𝑛-element sample, 𝑠 is the 
estimate of the standard deviation of 𝑋, based on an 𝑛-element sample and 𝐾𝑛,𝑞,𝑄 
is available in statistical tables. Tables are available for the most frequently used 
values of 𝑛, 𝑞 and 𝑄 (see Appendix 6). 

6.4.1 EXAMPLE 

Problem. It is known that the length 𝑋 of screws delivered by the production line 
follows a normal distribution. Based on a randomly selected sample of 70 screws, 



53 
 

the average screw length is  𝑋� = 10 mm and the standard deviation of screw 
length is 𝑠 = 0.2 mm. What is the tolerance interval which hosts at least 99 % of 
randomly selected screws at the tolerance level 𝑞 = 0.9? 

Solution. The tolerance interval is to be found for a single value of the variable 
which is known to have normal distribution. The estimates of parameters of 
distribution are known based on the sample of known size. The tolerance interval is 
given by the following formula: 

�̅� − 𝐾𝑛,𝑞,𝑄𝑠 ≤ 𝑋 ≤  𝑥� + 𝐾𝑛,𝑞,𝑄𝑠 

The value of 𝐾 is found in K-value tables (Appendix 6) for 𝑛 = 70, 𝑞 = 0.9 and 
𝑄 = 0.99. 𝐾70,0.9,0.99  = 2.92. After substitution: 

10 − 2.92⋅0.2 ≤ 𝑋 ≤ 10 + 2.92⋅0.2 
9.42 ≤ 𝑋 ≤ 10.58 

The 99 % tolerance interval for the screw length is 〈9.42, 10.58〉 at the tolerance 
level 0.9.  

In other words, one can be 90 % sure that 99 % of screws have their lengths in the 
tolerance interval 〈9.42, 10.58〉 mm. 
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7 STATISTICAL HYPOTHESES AND THEIR TESTING 

A number of engineering tasks consist of comparing objects including comparing an 
object with a reference, comparing a single object with itself in different conditions 
and comparing different objects.  

Various kinds of comparisons may be translated into statistical hypotheses. 
Especially useful hypotheses include   

• hypothesis on the mean value of a variable; this is applicable for comparing 
average states of objects, 

• hypothesis on the variance of a variable; this may be used for comparing 
the variability of object states. 

The methodology of statistical hypothesis testing is presented in this chapter 
regarding 

• test on one mean, 

• test on two means,  

• test on the variance, 

• test on two variances, 

• normality test. 

7.1 STATISTICAL HYPOTHESIS 

A statistical hypothesis is a supposition concerning the statistical distribution of a 
variable. There are two main types of suppositions. Suppositions of the first type 
are called parametric hypotheses. They refer to parameters of distribution for the 
observed variable, e.g. the mean and the variance. These hypotheses require the 
preliminary assumption about the kind of distribution of the original variable. 
Suppositions of the second type are called nonparametric hypotheses. Most 
important classes of nonparametric hypotheses refer to the randomness of a 
sample, the independence of variables or the kind of variable distribution. These 
hypotheses do not require any assumption about the kind of distribution of the 
original variable.  

A particular statistical hypothesis actually consists of a pair of complementary 
hypotheses. These are the null hypothesis and the alternative hypothesis. The 
supposition called the null hypothesis is indicated by 𝐻0. It usually states that two 
entities are equal. The contradictory supposition, denoted with 𝐻𝐴, is called the 
alternative hypothesis. It usually states that two entities are unequal or that one 
entity is greater than the other. These two cases represent two−sided and 
one−sided alternative hypotheses, respectively. 
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7.2 STATISTICAL HYPOTHESIS TESTING  

Statistical hypotheses are subject to testing. The tools designed for testing 
statistical hypotheses are called statistical tests. There are parametric and 
nonparametric tests corresponding to the types of statistical hypotheses. The main 
groups of parametric statistical tests are tests on the mean, tests of variance and 
tests for proportion. The main groups of nonparametric statistical tests are tests of 
the randomness of a sample, tests on the independence of variables and the 
goodness of fit test between the probability distribution of a variable and another 
distribution. 

The basis for statistical hypothesis testing is a random sample of variable values 
drawn from the population. The statistical test is a set of rules which allow for the 
acceptance or rejection of a hypothesis for a particular sample. In reality, 
hypotheses are either false or true. However, statistical testing is not able to 
provide such judgment. With statistical methodology, one can either reject the null 
hypothesis or accept it.  

The decision concerning the null hypothesis is not absolute. It takes into account 
the possibility that a null hypothesis which is actually true is rejected. The individual 
testing the hypothesis has to decide about the acceptable probability of rejecting a 
true hypothesis. This probability is called the significance level and it is denoted 
with α. The rejection of a true hypothesis is called a I type error. This error shall be 
low. Therefore, the typically used values of α  are 0.01 , 0.05  and 0.1 . The 
significance level is selected arbitrarily for testing particular hypotheses.  

The test statistic is used for testing statistical hypotheses. The test statistic is a 
variable 𝑉, which has a known distribution 𝑓(𝑉), if the null hypothesis is true. The 
value 𝑉𝑐𝑎𝑙 of the test statistic is calculated for a random sample of the original 
variable 𝑋 . The general rule is that the more extreme is 𝑉𝑐𝑎𝑙  regarding the 
statistical distribution of 𝑉, the more likely that the null hypothesis is rejected. This 
is because the null hypothesis assumes that 𝑉𝑐𝑎𝑙 well represents the 𝑉 distribution. 
Therefore, if the null hypothesis is true, 𝑉𝑐𝑎𝑙 is expected to match well the 𝑉 
distribution and not be too extreme.  
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Figure 7.1 Illustration of the conception of a test statistic and its distribution in statistical 
hypothesis testing. 

This idea is illustrated in Fig. 7.1. It is quite likely that if the test statistic 𝑉𝑐𝑎𝑙 has the 
distribution 𝑓1(𝑉), the calculated value of the test statistic is 𝑉𝑐𝑎𝑙1. Contrarily, it is 
quite unlikely that if the test statistic 𝑉𝑐𝑎𝑙 has the distribution 𝑓1(𝑉), the calculated 
value of the test statistic is 𝑉𝑐𝑎𝑙2. Therefore, if the test statistic takes the value 
𝑉𝑐𝑎𝑙1, the hypothesis that 𝑉𝑐𝑎𝑙 originates from the distribution 𝑓1(𝑉) would rather 
be accepted.  On the other hand, if the test statistic takes the value 𝑉𝑐𝑎𝑙2, the 
hypothesis that 𝑉𝑐𝑎𝑙  originates from the distribution 𝑓1(𝑉)  would rather be 
rejected. The reader is invited to carry out the analogue reasoning concerning  
𝑓2(𝑉). 

There are two possible approaches in the domain of statistical hypothesis testing. 
The classical approach utilizes the conception of critical interval. It is elegant and 
well suited for manual calculations. The second approach utilizes the conception of 
the 𝒑-value, which is also called the critical significance level. The possibility of 
using this approach is thanks to the development of computing.   

 

Figure 7.2 Illustration of the conception of the critical interval in statistical hypothesis 
testing. 
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In the framework of the first approach, the status of the hypothesis is judged based 
on checking whether the value 𝑉𝑐𝑎𝑙 belongs to the critical interval. The critical 
interval is the interval of extreme values of the test statistic 𝑉. The probability that 
values of variable 𝑉 belong to the critical interval is equal to the significance level. 
Therefore, the size of the critical interval depends on α. If the calculated value of 
the test statistic 𝑉𝑐𝑎𝑙 belongs to the critical interval, the null hypothesis is rejected 
at the significance level α. If the calculated value of the test statistic 𝑉𝑐𝑎𝑙 remains 
outside the critical interval, the null hypothesis is accepted at the significance level 
α. The concept of using a critical interval for testing a statistical hypothesis is 
illustrated in Fig. 7.2. 

 

Figure 7.3 Illustration of the conception of the p-value in statistical hypothesis testing. 

In the framework of the second approach, the status of the null hypothesis is 
judged based on a comparison between the 𝑝-value and the significance level α. 
The 𝑝-value is the probability that variable 𝑉 takes values at least as extreme as the 
calculated value of the test statistic 𝑉𝑐𝑎𝑙. In other words, the 𝑝-value is the smallest 
probability of null hypothesis rejection. The significance level α is actually the 
largest acceptable probability of null hypothesis rejection. In case the 𝑝-value is 
smaller than α, the probability that variable 𝑉 takes values at least as extreme as 
𝑉𝑐𝑎𝑙 is lower than acceptable. In other words, 𝑉𝑐𝑎𝑙 is too extreme. Therefore, the 
null hypothesis is rejected. Contrarily, if the 𝑝-value is larger than α, the probability 
that values of variable 𝑉 are at least as extreme as 𝑉𝑐𝑎𝑙 is greater than acceptable. 
In other words, 𝑉𝑐𝑎𝑙  is not too extreme. In such case the null hypothesis is 
accepted. The concept of using the 𝑝-value for testing a statistical hypothesis is 
illustrated in Fig. 7.3.  
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7.3 TEST ON ONE MEAN 

The null hypothesis 𝐻0 in the case of a test on one mean states that the mean µ of 
variable 𝑋 in the general population is equal to a defined reference value µ0. The 
formal notation of the null hypothesis is the following:   

𝐻0:  𝜇 = 𝜇0 

The null hypothesis is tested versus one of three different alternative hypotheses:  

I. 𝐻𝑎:  𝜇 ≠ 𝜇0   two−sided hypothesis 

II. 𝐻𝑎:  𝜇 > 𝜇0    one−sided hypothesis 

III. 𝐻𝑎:  𝜇 < 𝜇0   one−sided hypothesis 

The form of the test statistic depends on the assumption concerning the 
distribution of variable 𝑋. In this book two cases are considered: (1) variable 𝑋 has 
normal distribution 𝑁(µ, σ) and σ  is unknown(§7.3.1), (2) variable 𝑋 has unknown 
distribution (§7.3.2).  

The criteria of null hypothesis rejection depend on the kind of alternative 
hypothesis which is considered together with the null hypothesis.  

7.3.1 VARIABLE 𝑋 HAS NORMAL DISTRIBUTION AND σ IS 
UNKNOWN  

The test statistic is the following:  

𝑡𝑐𝑎𝑙 =
𝑋� − 𝜇0
𝑠
√𝑛

 

where: 𝑋� is the estimate of µ and it is calculated based on a random sample, µ0 is 
the reference value, 𝑠 is the estimate of σ and it is calculated based on a random 
sample, 𝑛 is the number of elements in the random sample. 

If the null hypothesis is true, the test statistic 𝑡𝑐𝑎𝑙 has 𝑡-Student distribution, with 
ν = 𝑛 − 1 degrees of freedom.  

I. Criterion of null hypothesis rejection on one mean versus 𝐻𝑎:  𝜇 ≠ 𝜇0. 

 

• Criterion of the critical interval 

The criterion of null hypothesis rejection is the following: 

𝑃 �𝑡𝛼
2 ,ν ≤ |𝑡|� = 𝛼 

𝑃 � 𝑡 ≤ −𝑡𝛼
2 ,ν 𝑉  𝑡𝛼

2 ,ν ≤ 𝑡� = 𝛼 
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Therefore, the critical interval is 𝑡 ∈ ��−∞,−𝑡𝛼
2,ν〉� ∪ 〈�𝑡𝛼2,ν,∞��. 

The null hypothesis is rejected at the significance level α if the calculated value of 
the test statistic 𝑡𝑐𝑎𝑙 belongs to the critical interval, i.e. if the following holds: 

𝑡𝑐𝑎𝑙 ∈ ��−∞,−𝑡𝛼
2,ν〉� ∪ 〈�𝑡𝛼2,ν,∞��. 

The null hypothesis is accepted at the significance level α if the calculated value of 
the test statistic 𝑡𝑐𝑎𝑙 falls outside the critical interval, i.e. if the following is true: 

𝑡𝑐𝑎𝑙 ∈ �−𝑡𝛼
2,ν , 𝑡𝛼

2,ν�. 

 

Figure 7.4 Graphical interpretation of null hypothesis rejection based on the critical interval 
criterion. Test on one mean. 𝑯𝟎:  𝝁 = 𝝁𝟎. 𝑯𝒂:  𝝁 ≠ 𝝁𝟎. 

The graphical interpretation of null hypothesis rejection based on the critical 
interval criterion is shown in Fig. 7.4. 

• Criterion of the 𝑝-value 

The criterion of null hypothesis rejection is the following: 𝑝 ≤ 𝛼 ≡ 𝑝
2
≤ 𝛼

2
, where 

𝑝 = 𝑃(|𝑡| ≥ 𝑡𝑐𝑎𝑙) is the probability that the absolute value of the 𝑡 variable, which 
has 𝑡-Student distribution with ν = 𝑛 − 1 degrees of freedom, is greater than or 
equal to the calculated value of the test statistic 𝑡𝑐𝑎𝑙.  
The null hypothesis is rejected if the significance level 𝛼 is greater than or equal to 
𝑝.  

The null hypothesis is accepted if the significance level 𝛼 is less than 𝑝.  
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Figure 7.5 Graphical interpretation of null hypothesis rejection based on the 𝒑-value 
criterion. Test on one mean. 𝑯𝟎:  𝝁 = 𝝁𝟎. 𝑯𝒂:  𝝁 ≠ 𝝁𝟎. 

The graphical interpretation of the 𝑝-value criterion of null hypothesis 
rejection is shown in Fig. 7.5. 

II. Criterion of null hypothesis rejection on one mean versus 𝐻𝑎:  𝜇 > 𝜇0. 

• Criterion of the critical interval 

The criterion of null hypothesis rejection is 𝑃�𝑡 ≥ 𝑡α,ν� = 𝛼. Therefore, the 
critical interval is 𝑡 ∈ 〈�𝑡α,ν,∞��. 
The null hypothesis is rejected at the significance level α if the calculated 
value of test statistic 𝑡𝑐𝑎𝑙  belongs to the critical interval, i.e. if the following 
holds: 𝑡𝑐𝑎𝑙 ∈ 〈�𝑡α,ν,∞��. 
There is no reason for rejecting the null hypothesis at the significance level 
α, if the calculated value of test statistic 𝑡𝑐𝑎𝑙  remains outside the critical 
interval, i.e. if the following is true: 𝑡𝑐𝑎𝑙 ∈ 〈�0, 𝑡𝛼,ν��. 

 

Figure 7.6 Graphical interpretation of null hypothesis rejection based on the critical interval 
criterion. Test on one mean. 𝑯𝟎:  𝝁 = 𝝁𝟎. 𝑯𝒂:  𝝁 > 𝝁𝟎. 
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The graphical interpretation of the critical interval criterion of null hypothesis 
rejection is shown in Fig. 7.6.  

• Criterion of the 𝑝-value 

The criterion of null hypothesis rejection is the following: 𝑝 ≤ 𝛼 , where 𝑝 =
𝑃(𝑡 ≥ 𝑡𝑐𝑎𝑙) is the probability that the 𝑡 variable, which has 𝑡-Student distribution 
with ν = 𝑛 − 1 degrees of freedom, is greater than or equal to the calculated value 
of the test statistic 𝑡𝑐𝑎𝑙: 
The null hypothesis is rejected if the significance level 𝛼 is greater than or equal to 
𝑝.  

The null hypothesis is accepted if the significance level 𝛼 is less than 𝑝. 

 

Figure 7.7 Graphical interpretation of null hypothesis rejection based on the 𝒑-value 
criterion. Test on one mean. 𝑯𝟎:  𝝁 = 𝝁𝟎. 𝑯𝒂:  𝝁 > 𝝁𝟎. 

The graphical interpretation of the 𝑝-value criterion of null hypothesis rejection is 
shown in Fig. 7.7.  

III. Criterion of null hypothesis rejection on one mean versus 𝐻𝑎:  𝜇 < 𝜇0. 

 

• Criterion of the critical interval 

The criterion of null hypothesis rejection is 𝑃�𝑡 ≤ −𝑡α,ν� = 𝛼. Therefore, the 
critical interval is 𝑡 ∈ ��−∞,−𝑡α,ν〉�. 
The null hypothesis is rejected at the significance level α if the calculated value of 
test statistic 𝑡𝑐𝑎𝑙  belongs to the critical interval, i.e. if the following holds: 
𝑡𝑐𝑎𝑙 ∈ ��−∞,−𝑡α,ν〉�. 
There is no reason for rejecting the null hypothesis at the significance level α, if the 
calculated value of test statistic 𝑡𝑐𝑎𝑙  remains outside the critical interval, i.e. if the 
following is true: 𝑡𝑐𝑎𝑙 ∈ ��−𝑡𝛼,ν

�, 0〉. 
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Figure 7.8 Graphical interpretation of null hypothesis rejection based on the critical interval 
criterion. Test on one mean. 𝑯𝟎:  𝝁 = 𝝁𝟎. 𝑯𝒂:  𝝁 < 𝝁𝟎. 

The graphical interpretation of the critical interval criterion of null hypothesis 
rejection is shown in Fig. 7.8.  

• Criterion of the 𝑝-value 

The criterion of null hypothesis rejection is the following: 𝑝 ≤ 𝛼 , where 𝑝 =
𝑃(𝑡 ≤ 𝑡𝑐𝑎𝑙) is the probability that the 𝑡 variable, which has 𝑡-Student distribution 
with ν = 𝑛 − 1 degrees of freedom, is less than the calculated value of test 
statistic 𝑡𝑐𝑎𝑙. 
The null hypothesis is rejected if the significance level 𝛼 is greater than or equal to 
𝑝.  

The null hypothesis is accepted if the significance level 𝛼 is less than 𝑝.  

 

Figure 7.9 Graphical interpretation of null hypothesis rejection based on the 𝒑-value 
criterion. Test on one mean. 𝑯𝟎:  𝝁 = 𝝁𝟎. 𝑯𝒂:  𝝁 < 𝝁𝟎. 

The graphical interpretation of the 𝑝-value criterion of null hypothesis rejection is 
shown in Fig. 7.9.  
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7.3.1.1 EXAMPLE  

Problem. There were 𝑛 = 7 measurements of pressure inside the combustion 
chamber of a rocket engine. The measurement results are shown in Table 7.1.  

Table 7.1 Results of pressure measurements inside the combustion chamber of an engine. 

number 1 2 3 4 5 6 7 

pressure/ kPa 3123.41 3075.35 2973.36 3030.24 3108.70 3177.34 3098.89 

It is known that the pressure has normal distribution. Is the mean pressure inside 
the chamber equal to 3000 kPa at the significance level 𝛼 = 0.01? 

Solution. The problem may be solved using a test on one mean regarding variable 
𝑋, which is the pressure inside the combustion chamber of an engine. It is worth to 
consider the null hypothesis which states that the average pressure is equal to 
3000  kPa, 𝐻0:𝜇 = 3000 . The null hypothesis is tested versus the two-sided 
alternative hypothesis that the mean pressure is different than 3000  kPa, 
𝐻𝑎:𝜇 ≠ 3000. The distribution of variable 𝑋 is normal and parameters of the 
distribution are estimated based on measurement results in the following way:  

�̅� =
1
𝑛
�𝑥𝑖

𝑛

𝑖=1

= 3083.90 

𝑠 = �
1

𝑛 − 1
�(𝑥𝑖 − �̅�)2
𝑛

𝑖=1

= 66.21 

The corresponding test statistic is the following: 

𝑡𝑐𝑎𝑙 =
�̅� − 𝜇0
𝑠
√𝑛

=
3083.90− 3000

66.21
√7

= 3.35 

• The criterion of null hypothesis rejection based on the critical 
interval. 

Considering the two-sided alternative hypothesis, the critical interval is described 

by the following formula: ��−∞,−𝑡𝛼
2,ν〉� ∪ 〈�𝑡𝛼2,ν,∞��. 𝑡𝛼

2,ν is found in statistical tables 

of 𝑡 -Student distribution (Appendix 2) for 𝛼 = 0.01  and ν = 𝑛 − 1 = 6 . 
Numerically, the critical interval is (�−∞,−3.707〉� ∪ 〈�3.707,∞)�.  
The value of test statistic 𝑡𝑐𝑎𝑙 = 3.35  is located outside the critical interval; 
therefore, the null hypothesis is accepted at the significance level 𝛼 = 0.01.  

• The criterion of null hypothesis rejection based on the 𝑝-value. 

The 𝑝-value was calculated using the T.DISTRIBUTION function available in Excel. 
Considering 𝑡𝑐𝑎𝑙 = 3.35, the associated  𝑝 = 0.0154.  
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The value of 𝑝 = 0.0154 is greater than the value of 𝛼 = 0.01; therefore, the null 
hypothesis is accepted at the significance level 0.01.  

Based on the obtained results of hypothesis testing, the engineer has good reason 
to claim that the average pressure in the combustion chamber is equal 3000 kPa at 
the significance level  𝛼 = 0.01. 

7.3.2 VARIABLE 𝑋 HAS UNKNOWN DISTRIBUTION 

If the probability distribution of variable 𝑋 is unknown and one needs to test the 
hypothesis on one mean, the size of the random sample should be big. It is 
recommended that the number of sampled values of 𝑋 exceeds 20− 30 elements. 

The test statistic is the following:  

𝑍𝑐𝑎𝑙 =
𝑋� − 𝜇0
𝑠
√𝑛

 

where: 𝑋� is the estimate of µ and is calculated based on a random sample, µ0 is the 
reference value, 𝑠 is the estimate of σ and is calculated based on a random sample, 
𝑛 is the number of elements in the random sample. 

If the null hypothesis is true, the test statistic 𝑍𝑐𝑎𝑙 has normal distribution 𝑁(0,1) 
with the µ = 0 and the σ = 1.  

I. Criterion of rejection of null hypothesis on one mean versus 𝐻𝑎:  𝜇 ≠ 𝜇0. 

• Criterion of critical interval 

The criterion of null hypothesis rejection is the following: 

𝑃 �𝑧𝛼
2
≤ |𝑍|� = 𝛼 

𝑃 � 𝑍 ≤ −𝑧𝛼
2

 𝑉  𝑧𝛼
2
≤ 𝑍� = 𝛼 

Therefore, the critical interval is 𝑍 ∈ ��−∞,−𝑧𝛼
2
〉� ∪ 〈�𝑧𝛼

2
,∞��. 

The null hypothesis is rejected at the significance level α, if the calculated value of 
test statistic 𝑍𝑐𝑎𝑙 belongs to the critical interval, i.e. if the following holds:  

𝑍𝑐𝑎𝑙 ∈ ��−∞,−𝑧𝛼
2
〉� ∪ 〈�𝑧𝛼

2
,∞��. 

The null hypothesis is accepted at the significance level α if the calculated value of 
test statistic 𝑍𝑐𝑎𝑙  falls outside the critical interval, i.e. if the following is true:  

𝑍𝑐𝑎𝑙 ∈ �−𝑧𝛼
2
 , 𝑧𝛼

2
�. 

For the graphical interpretation of the critical interval criteria of null hypothesis 
rejection refer to Fig. 7.4. While analyzing replace 𝑡 with 𝑍 and ignore 𝑣. The 
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principle of interpretation is identical in case of 𝑡-Student distribution and normal 
distribution as both are symmetric. 

• Criterion of the 𝑝-value 

The criterion of null hypothesis rejection is  

𝑝 ≤ 𝛼 ≡ 𝑝
2
≤ 𝛼

2
, where 𝑝 = 𝑃(|𝑍| ≥ 𝑧𝑐𝑎𝑙) 

is the probability that the absolute value of the 𝑍 variable is greater than or equal 
to the calculated value of the test statistic 𝑧𝑐𝑎𝑙. 
The null hypothesis is rejected if the significance level 𝛼 is greater than or equal to 
𝑝. 

The null hypothesis is accepted if the significance level 𝛼 is less than 𝑝. 

For the graphical interpretation of the 𝑝-value criterion of null hypothesis rejection 
refer to Fig. 7.5. While analyzing replace 𝑡 with 𝑍 and ignore 𝑣. The principle of 
interpretation is identical in case of 𝑡-Student distribution and normal distribution 
as both are symmetric. 

II. Null hypothesis rejection criterion on one mean versus 𝐻𝑎:  𝜇 > 𝜇0. 

• Criterion of the critical interval 

The criterion of null hypothesis rejection is 𝑃(𝑍 ≥ 𝑧α) = 𝛼. Therefore, the critical 
interval is𝑍 ∈ �〈𝑧α,∞�). 

The null hypothesis is rejected at the significance level α, if the calculated value of 
test statistic 𝑍𝑐𝑎𝑙  belongs to the critical interval, i.e. if the following holds: 
𝑍𝑐𝑎𝑙 ∈ �〈𝑧α,∞�). 

The null hypothesis is accepted at the significance level α, if the calculated value of 
test statistic 𝑧𝑐𝑎𝑙  falls outside the critical interval, i.e. if the following is true: 
𝑍𝑐𝑎𝑙 ∈ (0, 𝑧𝛼). 

For the graphical interpretation of the critical interval criterion of null hypothesis 
rejection refer to Fig. 7.6. While analyzing replace 𝑡 with 𝑍 and ignore 𝑣. The 
principle of interpretation is identical in case of 𝑡-Student distribution and normal 
distribution as both are symmetric. 

• Criterion of the 𝑝-value 

The criterion of null hypothesis rejection is the following:  

𝑝 ≤ 𝛼, where 𝑝 = 𝑃(𝑍 ≥ 𝑧𝑐𝑎𝑙) 

is the probability that the 𝑍 variable is greater than or equal to the calculated value 
of test statistic 𝑧𝑐𝑎𝑙. 
The null hypothesis is rejected if the significance level 𝛼 is greater than or equal to 
𝑝. 

The null hypothesis is accepted if the significance level 𝛼 is less than 𝑝. 

For the graphical interpretation of the critical interval criteria of null hypothesis 
rejection refer to Fig. 7.7. While analyzing replace 𝑡 with 𝑍 and ignore 𝑣. The 
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principle of interpretation is identical in case of 𝑡-Student distribution and normal 
distribution as both are symmetric. 

 

III. Criterion of null hypothesis rejection on one mean versus 𝐻𝑎:  𝜇 < 𝜇0. 

• Criterion of the critical interval 

The criterion of null hypothesis rejection is 𝑃(𝑍 ≤ −𝑧α) = 𝛼. Therefore, the critical 
interval is 𝑍 ∈ (�−∞,−𝑧α〉�. 
The null hypothesis is rejected at the significance level α, if the calculated value of 
test statistic 𝑍𝑐𝑎𝑙  belongs to the critical interval, i.e. if the following holds: 
𝑍𝑐𝑎𝑙 ∈ (�−∞,−𝑧α〉�. 
There is no reason for rejecting the null hypothesis at the significance level α if the 
calculated value of test statistic 𝑍𝑐𝑎𝑙 falls outside the critical interval, i.e. if the 
following is true: 𝑍𝑐𝑎𝑙 ∈  (−𝑧𝛼 , 0). 

For the graphical interpretation of the critical interval criteria of null hypothesis 
rejection refer to Fig. 7.8. While analyzing replace 𝑡 with 𝑍 and ignore 𝑣. The 
principle of interpretation is identical in case of 𝑡-Student distribution and normal 
distribution as both are symmetric. 

• Criterion of the 𝑝-value 

The criterion of null hypothesis rejection is the following:  

𝑝 ≤ 𝛼, where 𝑝 = 𝑃(𝑍 ≤ 𝑧𝑐𝑎𝑙) 

is the probability that the 𝑍 variable is less than or equal to the calculated value of 
test statistic 𝑧𝑐𝑎𝑙. 
The null hypothesis is rejected if the significance level is greater than or equal to 𝑝. 

The null hypothesis is accepted if the significance level is less than 𝑝. 

For the graphical interpretation of the critical interval criteria of null hypothesis 
rejection refer to Fig. 7.9. While analyzing replace 𝑡 with 𝑍 and ignore 𝑣. The 
principle of interpretation is identical in case of 𝑡-Student distribution and normal 
distribution as both are symmetric. 

7.3.2.1 EXAMPLE 

Problem. The absence of workers was investigated in a huge production factory. A 
random sample of 𝑛 = 100 people was selected for the study. It was found that 
the average leave duration was �̅� = 35 days and the standard deviation of leave 
duration was 𝑠 = 17 days in that sample. Is it allowed to conclude that the average 
leave duration in the considered factory was longer than 1 month (31 days) at the 
significance level 𝛼 = 0.05? 

Solution. It is possible to solve the problem using a test on one mean regarding 
variable 𝑋, which is the leave duration. It is worth to consider the null hypothesis, 
which states that the average leave duration is equal 35 days, 𝐻0:𝜇 = 35. The null 
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hypothesis shall be tested versus the one-sided alternative hypothesis that the 
leave duration is greater than 31 days, 𝐻𝑎:𝜇 > 31. The distribution of variable 𝑋 is 
unknown, but the size of the sample is big. Estimates of µ and σ are available. 

The corresponding test statistic is the following: 

𝑧𝑐𝑎𝑙 =
�̅� − 𝜇0
𝑠
√𝑛

=
35− 31

17
√100

= 2.35 

• The criterion of null hypothesis rejection based on the critical 
interval. 

Considering the one-sided alternative hypothesis, the critical interval is �〈𝑧α,∞�).  
Based on statistical 𝑍  tables (Appendix 1), 𝑧α = 1.64  for α = 0.05 . Therefore, 
numerically the critical interval is  �〈1.64,∞�).   
The value of test statistic 𝑧𝑐𝑎𝑙 = 2.35  is located inside the critical interval. 
Therefore, the null hypothesis is rejected in favor of the alternative hypothesis at 
the significance level α = 0.05.  

• The criterion of null hypothesis rejection based on the 𝑝-value. 

The 𝑝-value was calculated using the Z.DISTRIBUTION function available in Excel. 
Considering 𝑧𝑐𝑎𝑙 = 2.35, the associated  𝑝 = 0.0094.  

The value of 𝑝 = 0.0094 is less than the value of 𝛼 = 0.05; therefore, the null 
hypothesis is rejected in favor of the alternative hypothesis at the significance level 
0.05.  

Based on the obtained results of hypothesis testing, a manager at the factory has 
good reason to claim that the average leave duration in the company was longer 
than 1 month, at the significance level α = 0.05. 

7.4 TEST ON TWO MEANS 

The null hypothesis 𝐻0 in the case of the test on two means states that the mean 
µ1 of variable 𝑋1 is equal to the mean µ2 of variable 𝑋2. The formal notation of the 
null hypothesis is the following:   

𝐻0:  𝜇1 = 𝜇2 

The null hypothesis is tested versus one of three different alternative hypotheses:  

I. 𝐻𝐴:  𝜇1 ≠ 𝜇2   two−sided hypothesis 

II. 𝐻𝐴:  𝜇1 > 𝜇2    one−sided hypothesis 

III. 𝐻𝐴:  𝜇1 < 𝜇2   one−sided hypothesis 

The selection of the test statistic depends on the assumption concerning the 
distribution of variable 𝑋. In this book  two cases are considered: (1) variable 𝑋1 
has normal distribution 𝑁(µ1, σ1), variable 𝑋2 has normal distribution 𝑁(µ2, σ2) 
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and variances σ1  and σ2  are unknown (§7.4.1), (2) variables 𝑋1  and 𝑋2  have 
unknown distributions (§7.4.2). 

The criteria of null hypothesis rejection depend on the kind of alternative 
hypothesis considered together with the null hypothesis.  

7.4.1 VARIABLE 𝑋1 HAS DISTRIBUTION 𝑁(µ1, σ1), VARIABLE 𝑋2 HAS 

DISTRIBUTION 𝑁(µ2, σ2) AND VARIANCES σ1 AND σ2 ARE 

UNKNOWN.  

Test statistic for the hypothesis on two means is the following:  

𝑡𝑐𝑎𝑙 =
𝑋�1 − 𝑋�2

�𝑠2 � 1
𝑛1

+ 1
𝑛2
�

 

where: 𝑋�1 is the estimate of µ1 and is calculated based on a random sample from 
population 1, 𝑋�2 is the estimate of µ2 and is calculated based on a random sample 
from population 2, 𝑠 is the standard deviation calculated for both random samples 
considered together, 𝑛1 is the number of elements in the random sample from 
population 1, 𝑛2 is the number of elements in the random sample from population 
2. 

If the null hypothesis is true, the test statistic 𝑡𝑐𝑎𝑙 has 𝑡-Student distribution with 
ν = 𝑛1 +  𝑛2 − 1 degrees of freedom.  

The criteria of null hypothesis rejection in the considered case are identical with 
those referring to the hypothesis on one mean in case the variable 𝑋 has normal 
distribution 𝑁(µ, σ) with unknown parameters. Please refer to §7.3.1 for more 
detailed information.  

7.4.2 VARIABLE 𝑋1 AND VARIABLE 𝑋2 HAVE UNKNOWN 
DISTRIBUTIONS  

In case the probability distributions of variables 𝑋1 and 𝑋2 are unknown, their 
random samples should be big. It is recommended that the number of elements in 
each sample exceed 20 ÷ 30. 

The test statistic for the hypothesis on two means is the following:  

𝑍𝑐𝑎𝑙 =
𝑋�1 − 𝑋�2

��𝑠1
2

𝑛1
+ 𝑠22
𝑛2
�

 

where: 𝑋�1 is the estimate of µ1 and 𝑠1 is the estimate of σ1 , both are calculated 
based on a random sample from population 1, 𝑋�2 is the estimate of µ2 and 𝑠2 is the 
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estimate of σ2

If the null hypothesis is true, the test statistic 𝑍𝑐𝑎𝑙 has normal distribution 𝑁(0,1).  

, both are calculated based on a random sample from population 2, 
𝑛1 is the number of elements in the random sample from population 1 and 𝑛2 is 
the number of elements in the random sample from population 2. 

The criteria of null hypothesis rejection in the considered case are identical with 
those referring to the hypothesis on one mean in case the variable 𝑋 has unknown 
distribution. Please refer to §7.3.2  for more detailed information. 

7.4.2.1 EXAMPLE 

Problem. It was hypothesized that the exchange of a cutting tool for a different 
kind shortens the time of workpiece tooling with a lathe. Is this hypothesis justified 
at the significance level 0.01? In order to answer the question, the durations of 
tooling 10 workpieces with an old cutting tool and the durations of tooling 10 
workpieces with a cutting tool of different kind were measured. The obtained 
measurement data is shown in Table 7.2. It may be assumed that both times have 
normal distribution. 

Table 7.2 Time of workpiece tooling with an old cutting tool and with a cutting tool of a 
different kind/ min. 

old cutting tool (I) 58 58 56 38 70 38 42 75 68 67 

cutting tool of 
different kind (II) 

57 55 63 24 67 43 33 68 56 54 

Solution. It is possible to solve the problem using a test on two means. The two 
means are the mean of variable 𝑋1, which is the time of tooling with cutting tool I 
and the mean of variable 𝑋2, which is the time of tooling with cutting tool II. It is 
worth considering the null hypothesis which states that the average time of tooling 
with cutting tool I is equal to the average time of tooling with cutting tool II, namely 
𝐻0:𝜇1 = 𝜇2 . The null hypothesis is tested versus the one-sided alternative 
hypothesis that the mean time of tooling with tool I is longer than the mean time of 
tooling with tool II, 𝐻𝑎:𝜇1 > 𝜇2. Variables 𝑋1 and 𝑋2 have normal distribution and 
their parameters are estimated based on the measurement results in the following 
way:  

�̅�1 =
1
𝑛1
�𝑥1𝑖

𝑛1

𝑖=1

= 57 

�̅�2 =
1
𝑛2
�𝑥2𝑗

𝑛2

𝑗=1

= 52 
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𝑠 = � 1
𝑛1 + 𝑛2 − 1

� (𝑥𝑘 − �̅�)2
𝑛1+𝑛2

𝑘=1

= 13.90 

The corresponding test statistic is the following: 

𝑡𝑐𝑎𝑙 =
�̅�1 − �̅�2

�𝑠2 � 1
𝑛1

+ 1
𝑛2
�

=
57 − 52

�13.902 � 1
10 + 1

10�
= 0.804 

• The criterion of null hypothesis rejection based on the critical 
interval. 

The critical interval is �〈𝑡α,∞�).  Based on 𝑡-Student tables (Appendix 2), 𝑡α = 2.539 
for α = 0.01  and ν = 𝑛1 +  𝑛1 − 1 = 19 . Therefore, numerically the critical 
interval is �〈2.539,∞�).   
The value of test statistic 𝑡𝑐𝑎𝑙 = 0.804 is located outside the critical interval; 
therefore, the null hypothesis is accepted at the significance level 𝛼 = 0.01.  

• The criterion of null hypothesis rejection based on the 𝑝-value. 

The 𝑝-value was calculated using the T.DISTRIBUTION function available in Excel. 
Considering 𝑡𝑐𝑎𝑙 = 0.804, the associated  𝑝 = 0.2156.  

The value of 𝑝 = 0.2156 is greater than the value of 𝛼 = 0.01; therefore, the null 
hypothesis is accepted at the significance level 0.01.  

Based on the obtained results of hypothesis testing, an engineer infers that the 
times of tooling with the two cutting tools are the same at the significance level  
𝛼 = 0.01. Therefore, the exchange of cutting tool I for cutting tool II does not 
shorten the time of tooling. 

7.5 TEST ON THE VARIANCE 

The null hypothesis 𝐻0 in the case of the test on the variance sates that the 
variance 𝜎2 of variable 𝑋 in the general population is equal to a certain reference 
value 𝜎02. The formal notation of the null hypothesis is the following: 

𝐻0:  σ2 = 𝜎02 

In practice, one is usually interested in a small variance because a large variance is 
disadvantageous. Therefore, the null hypothesis on the variance is typically tested 
versus the alternative hypothesis that the variance is greater than the reference 
value: 

𝐻𝐴:  σ2 > 𝜎02   one−sided hypothesis. 

In order to test the hypothesis, the assumption is required that the variable 𝑋 has 
normal distribution 𝑁(µ, σ), but it is allowed that µ and σ  are unknown. The 
assumption shall be confirmed by a normality test. 
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The test statistic for the hypothesis on the variance is the following: 

χ𝑐𝑎𝑙
2 =

(𝑛 − 1)𝑠2

𝜎0
 

where 𝑠2 is the estimate of the variance of variable 𝑋, based on a random sample 
which consists of 𝑛 elements.  

If the null hypothesis is true, the test statistic χ𝑐𝑎𝑙
2  has a χ2  distribution with 

ν = 𝑛 − 1 degrees of freedom. 

One may use the test on variance, σ2 in order to actually perform the test on 
standard deviation, σ.  

• The criterion of null hypothesis rejection based on the critical 
interval. 

The criterion of null hypothesis rejection is 𝑃 �χ2 ≥ χ𝛼,ν
2 � = 𝛼. 

Therefore, the critical interval is χ2 ∈ 〈�χ𝛼,ν
2 ,∞��. 

The null hypothesis is rejected at the significance level α if the calculated value of 
test statistic χ𝑐𝑎𝑙

2  belongs to the critical interval, i.e. if the following holds: 

χ𝑐𝑎𝑙
2 ∈ 〈�χ𝛼,ν

2 ,∞��. 

There is no reason for rejecting the null hypothesis at the significance level α if the 
calculated value of test statistic χ𝑐𝑎𝑙

2  remains outside the critical interval, i.e. if the 

following is true: 𝑈𝑐𝑎𝑙 ∈ 〈�0, χ𝛼,ν
2 ��. 

 

Figure 7.10 Graphical interpretation of null hypothesis rejection based on the critical 
interval criterion. Test on the variance. 𝑯𝟎:  σ𝟐 = 𝝈𝟎𝟐. 𝑯𝑨:  σ𝟐 > 𝝈𝟎𝟐. 
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The graphical interpretation of the critical interval criterion of null hypothesis 
rejection is shown in Fig. 7.10.  

• The criterion of null hypothesis rejection based on the 𝑝-value. 

The criterion of null hypothesis rejection is the following:  

𝑝 ≤ 𝛼, where 𝑝 = 𝑃�χ2 ≥ χ𝑐𝑎𝑙
2 � 

is the probability that χ2 variable, which has χ2 distribution with ν = 𝑛 − 1 degrees 
of freedom, is greater than or equal to the calculated value of test statistic χ𝑐𝑎𝑙

2 .  

The null hypothesis is rejected if the significance level 𝛼 is greater than or equal to 
𝑝. 

The null hypothesis is accepted if the significance level 𝛼 is less than 𝑝. 

 

Figure 7.11 Graphical interpretation of null hypothesis rejection based on the 𝒑-value 
criterion. Test on the variance. 𝑯𝟎:  σ𝟐 = 𝝈𝟎𝟐. 𝑯𝑨:  σ𝟐 > 𝝈𝟎𝟐. 

The graphical interpretation of the 𝑝-value criterion of null hypothesis rejection is 
shown in Fig. 7.11.  

7.5.1.1 EXAMPLE  

Problem. The quality assurance standard requires that the variance of the diameter 
of molded pipes is not larger than 4 mm. As a routine check, 𝑛 = 11 measurements 
were performed on the diameter of molded pipes. The obtained data is shown in 
Table 7.3. 

Table 7.3 Results of measurement on the diameter of molded pipes/ mm. 

50.2 50.4 50.6 50.5 49.9 50.0 50.3 50.1 50.0 49.6 50.6 

It is known that the diameter of molded pipes has normal distribution. Is the 
quality assurance standard met by the tested production lot at the significance 
level 0.01? 
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Solution. It is possible to solve the problem using a test of variance regarding 
variable 𝑋, which is the diameter of molded pipes. It is worth considering the null 
hypothesis which states that the variance of the diameter of molded pipes is equal 
to 0.04 mm, namely 𝐻0:𝜎 = 0.04. The null hypothesis is tested versus the one-
sided alternative hypothesis that the variance of pipe diameter is greater than 0.04 
mm, 𝐻𝑎:𝜎 > 0.04. The distribution of variable 𝑋 is normal. The estimate of σ is 
calculated as follows: 

𝑠 = �
1

𝑛 − 1
�(𝑥𝑖 − �̅�)2
𝑛

𝑖=1

= 0.1 

The corresponding test statistic is the following: 

χ𝑐𝑎𝑙
2 =

(𝑛 − 1)𝑠2

𝜎0
=

(11 − 1)0.12

0.04
= 2.5 

• The criterion of null hypothesis rejection based on the critical 
interval. 

Considering the one-sided alternative hypothesis, the critical interval is 〈�χ𝛼,ν
2 ,∞��.  

Based on χ2 tables (Appendix 3), χ𝛼,ν
2 = 23.209 for α = 0.01 and ν = 𝑛 − 1 = 10 

degrees of freedom. Therefore, numerically the critical interval is  �〈23.209,∞�).   
The value of test statistic χ𝑐𝑎𝑙

2 = 2.5  is located outside the critical interval. 
Therefore, the null hypothesis is accepted at the significance level α = 0.01.  

• The criterion of null hypothesis rejection based on the 𝑝-value. 

The 𝑝-value was calculated using the CHI2.DISTRIBUTION function available in Excel. 
Considering χ𝑐𝑎𝑙

2 = 2.5, the associated  𝑝 = 0.991.  

The value 𝑝 = 0.991 is greater than the value of 𝛼 = 0.01; therefore, the null 
hypothesis is accepted at the significance level 0.01.  

Based on the obtained results of hypothesis testing, the quality assurance engineer 
has good reason to claim that the quality assurance standard concerning the 
variation of pipe diameter is met at the significance level α = 0.01 . 

7.6 TEST ON TWO VARIANCES 

The null hypothesis 𝐻0 in case of a test of two variances states that the variance 𝜎12 
of variable 𝑋1 is equal to the variance 𝜎22 of variable 𝑋2.  

𝐻0:  𝜎12 = 𝜎22 

The null hypothesis is tested versus one of three different alternative hypotheses:  

I. 𝐻𝐴:  𝜎12 ≠ 𝜎22   two−sided hypothesis 

II. 𝐻𝐴:  𝜎12 > 𝜎22    one−sided hypothesis 
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III. 𝐻𝐴:  𝜎12 < 𝜎22   one−sided hypothesis. 

For the sake of testing the hypothesis on two variances, the assumption is required 
that variable 𝑋1  has normal distribution 𝑁(µ1, σ1)  and variable 𝑋2  has normal 
distribution 𝑁(µ2, σ2). It is allowed that the parameters of these distributions 
µ1, σ1 and µ2, σ2 are unknown. The assumption shall be confirmed by a normality 
test. 

The test statistic for the hypothesis on two variances is the following: 

𝐹𝑐𝑎𝑙 =
𝑠12

𝑠22
 

where: 𝑠12 is the estimate of 𝜎12 , based on a random sample consisting of 𝑛1 
elements and 𝑠22 is the estimate of 𝜎22, based on a random sample consisting of 𝑛2 
elements. The indices 1 and 2 are assigned in a way that 𝑠12 > 𝑠22 and consequently 
𝐹𝑐𝑎𝑙  ≥1.  

If the null hypothesis is true, the test statistic 𝐹𝑐𝑎𝑙 has an 𝐹-Snedecore distribution 
with ν1 = 𝑛1 − 1 and ν2 = 𝑛2 − 1 degrees of freedom. 

The criteria of null hypothesis rejection depend on the kind of alternative 
hypothesis which is considered together with the null hypothesis.  

One may use a test on two variances, 𝜎12 and 𝜎22, in order to actually perform a test 
on two standard deviations, σ1 and σ2.  

I. Criterion of null hypothesis rejection on two variances versus 𝐻𝐴:  𝜎12 ≠ 𝜎22. 

• The criterion of null hypothesis rejection based on the critical 
interval. 

The criterion of null hypothesis rejection is the following: 

𝑃 �𝐹1−𝛼2,ν1,ν2
≤ 𝐹 ∨ 𝐹 ≤ 𝐹𝛼

2,ν1,ν2
� = 𝛼. 

Therefore, the critical interval is 𝐹𝜖 〈0,𝐹1−𝛼2,ν1,ν2
〉 ∪ 〈�𝐹𝛼

2,ν1,ν2
,∞��.  

Due to the fact that 𝐹𝑐𝑎𝑙≥1, only the right part of the critical interval is used. 

Therefore, the actual critical interval is: 𝐹𝑐𝑎𝑙𝜖 〈�𝐹𝛼
2,ν1,ν2

,∞��. 

The null hypothesis is rejected at the significance level α if the calculated value of 
test statistic 𝐹𝑐𝑎𝑙 belongs to the critical interval, i.e. if the following holds: 

𝐹𝑐𝑎𝑙𝜖 〈�𝐹𝛼
2,ν1,ν2

,∞��. 

The null hypothesis is accepted at the significance level α if the calculated value of 
test statistic 𝐹𝑐𝑎𝑙 remains outside the critical interval, i.e. if the following holds: 

𝐹𝑐𝑎𝑙𝜖 �𝐹1−𝛼2,ν1,ν2
,𝐹𝛼

2,ν1,ν2
�. 



75 
 

 

Figure 7.12 Graphical interpretation of null hypothesis rejection based on the critical 
interval criterion. Test on two variances. 𝑯𝟎:  𝝈𝟏𝟐 = 𝝈𝟐𝟐. 𝑯𝑨:  𝝈𝟏𝟐 ≠ 𝝈𝟐𝟐. 

The graphical interpretation of the critical interval criterion of null hypothesis 
rejection is shown in Fig. 7.12.  

• The criterion of null hypothesis rejection based on the 𝑝-value. 

The criterion of null hypothesis rejection is 𝑝 ≤ 𝛼
2

, where 𝑝 = 𝑃( 𝐹 ≥ 𝐹𝑐𝑎𝑙) is the 

probability that the 𝐹 variable, which has 𝐹-Snedecore distribution with ν1 = 𝑛1 −
1 and ν2 = 𝑛2 − 1 degrees of freedom is greater than or equal to the calculated 
value of test statistic 𝐹𝑐𝑎𝑙. 
The null hypothesis is rejected if half of the significance level 𝛼 is greater than or 
equal to 𝑝. 

The null hypothesis is accepted if half of the significance level 𝛼 is less than 𝑝. 

 

Figure 7.13 Graphical interpretation of null hypothesis rejection based on the 𝒑-value 
critical interval criterion. Test on two variances. 𝑯𝟎:  𝝈𝟏𝟐 = 𝝈𝟐𝟐. 𝑯𝑨:  𝝈𝟏𝟐 ≠ 𝝈𝟐𝟐. 
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The graphical interpretation of the 𝑝-value criterion of null hypothesis rejection is 
shown in Fig. 7.13.  

II. Criterion of null hypothesis rejection for two variances versus the one-sided 
alternative hypothesis (case II of 𝐻𝑎). 

• Criterion of the critical interval 

The criterion of null hypothesis rejection is the following: 

𝑃�𝐹𝛼,ν1,ν2 ≤ 𝐹� = 𝛼 

Therefore, the critical interval is 𝐹𝜖〈�𝐹𝛼,ν1,ν2 ,∞��.  

 

Figure 7.14 Graphical interpretation of null hypothesis rejection based on the critical 
interval criterion. Test on two variances. 𝑯𝟎:  𝝈𝟏𝟐 = 𝝈𝟐𝟐.  𝑯𝑨:  𝝈𝟏𝟐 > 𝝈𝟐𝟐. 

The graphical interpretation of the critical interval criterion of null hypothesis 
rejection is shown in Fig. 7.14.  

• Criterion of the 𝑝-value 

The criterion of null hypothesis rejection is 𝑝 ≤ 𝛼, where 𝑝 = 𝑃(𝐹 ≥ 𝐹𝑐𝑎𝑙) is the 
probability that 𝐹 variable, which has 𝐹-Snedecore distribution with ν1 = 𝑛1 − 1 
and ν2 = 𝑛2 − 1  degrees of freedom is greater than or equal to the calculated 
value of test statistic 𝐹𝑐𝑎𝑙. 
The null hypothesis is rejected if the significance level is greater than or equal to 𝑝. 

The null hypothesis is accepted if the significance level is less than 𝑝. 
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Figure 7.15 Graphical interpretation of null hypothesis rejection based on the 𝒑-value 
criterion. Test on two variances. 𝑯𝟎:  𝝈𝟏𝟐 = 𝝈𝟐𝟐.  𝑯𝑨:  𝝈𝟏𝟐 > 𝝈𝟐𝟐. 

The graphical interpretation of the 𝑝-value criterion of null hypothesis rejection is 
shown in Fig. 7.15.  

III. Criterion of null hypothesis rejection of the mean H0  for the one-sided 
alternative hypothesis (case III of Ha). 

The hypothesis shall be tested as shown for case II. However, prior to testing, the 
variables shall be renumbered, i.e. 𝑋1 shall take the index 2 and 𝑋2 shall take the 
index 1 so that the ratio of variances is greater than one. 

7.6.1.1 EXAMPLE  

Problem. In order to check the precision of current measurement with two 
different measuring devices, measurements of 7 A current were performed. The 
obtained results are shown in Table 7.4. 

Table 7.4 Measurement results of 7 A current with two different measuring devices. 

Device 1 7.2 6.7 6.9 6.9 7.2 7.0 7.1 

Device 2 7.4 6.8 7.4 6.6 6.3 7.5  

Is the measurement precision of the two devices equal at the significance level 
0.05? It is correct to assume that the measurement results have normal 
distribution in each case.  

Solution. Precision is indicated by the spread of replicate measurement results. It is 
possible to solve the problem using a test of two variances regarding variable 𝑋1, 
which is the result of measuring with device I and variable 𝑋2, which is the result of 
measuring with device II. It is worth considering the null hypothesis, which states 
that the variance of measurements performed with device I is the same as the 
variance of measurements performed with device II, namely 𝐻0:𝜎1 = 𝜎2. The null 
hypothesis is tested versus the two-sided alternative hypothesis that the variance 
of measurements performed with device I is different from the variance of 
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measurements performed with device II, 𝐻𝑎:𝜎1 ≠ 𝜎2. The distributions of both 
variables 𝑋1and 𝑋2  are normal. The estimates of σ12  and σ22  are calculated as 
follows: 

𝑠12 =
1

𝑛1 − 1
�(𝑥𝑖 − �̅�)2
𝑛1

𝑖=1

= 0.033 

𝑠22 =
1

𝑛2 − 1
��𝑥𝑗 − �̅��2
𝑛2

𝑗=1

= 0.252 

As 𝑠12 is greater than 𝑠22, we renumber our variables.  

The corresponding test statistic is the following: 

𝐹𝑐𝑎𝑙 =
𝑠12

𝑠22
=

0.252
0.033

= 7.56 

• Criterion of null hypothesis rejection based on the critical interval. 

Considering the two-sided alternative hypothesis, the critical interval is 

〈�𝐹𝛼
2,ν1,ν2

,∞��. Based on 𝐹  tables (Appendix 5), 𝐹𝛼,ν1,ν2 = 4.387 for α = 0.05 and 

ν1 = 𝑛1 − 1 = 5 and ν2 = 𝑛2 − 1 = 6  degrees of freedom. Therefore, numerically 
the critical interval is  �〈4.387 ,∞�).   
The value of test statistic 𝐹𝑐𝑎𝑙 = 7.56  is located inside the critical interval. 
Therefore, the null hypothesis is rejected at the significance level α = 0.05.  

• Criterion of null hypothesis rejection based on the 𝑝-value. 

The 𝑝-value was calculated using the F.DISTRIBUTION function available in Excel. 
Considering 𝐹𝑐𝑎𝑙 = 7.56, the associated  𝑝 = 0.0143.  

The value 𝑝 = 0.0143 is less than the value of 𝛼 = 0.05; therefore, the null 
hypothesis is rejected at the significance level 0.05.  

Based on the obtained results of hypothesis testing, an engineer is allowed to 
conclude that the two devices offer different measurement precision at the 
significance level α = 0.05. Device I offers measurements with significantly higher 
precision.  

7.7 NORMALITY TESTS 

For testing normality any test which belongs to a group of goodness−of−fit tests 
may be used. Goodness−of−fit tests are a class of nonparametric tests. They are 
used for testing two kinds of hypotheses. One kind refers to suppositions that two 
variables have the same statistical distribution. The other kind refers to 
suppositions that a variable has the defined statistical distribution. Normality tests 
belong here.  
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A number of tests are available for testing normality. The tests which were 
designed for testing normality are, for example, Saphiro-Wilk test and Epps-Pulley 
test.  The tests were designed for testing goodness of fit between two distributions 
including Normal are, for example, the Kolmogorov test, Kolmogorov-Smirnov test, 
χ2 test. Tests belonging to the second group are weaker when testing normality 
compared to tests in the first group. 

Goodness-of-fit tests are calculation-intensive and therefore they are usually 
performed using statistical software. This refers in particular to normality tests. 
However, they are not widely available in common access software. Therefore, the 
method of performing the λ Kolmogorov test is presented in this book.  

It may occur that the hypothesis about the normality of the probability distribution 
of variable 𝑋 is rejected by the statistical test. Such a result is disadvantageous 
because many statistical methods and tools require the assumption about the 
normality of the variable. Therefore, the transformation of the original variable is 
recommended for obtaining the variable 𝑋𝑇 which has normal distribution instead 
of the variable which does not have normal distribution 𝑋. The new variable 𝑋𝑇 is 
then statistically analyzed. The most popular, although not always successful, 
transformation of a ‘non-normal’ variable 𝑋  into a ‘normal’ variable 𝑋𝑇  is  
𝑋𝑇 = 𝑙𝑛(𝑋).  

7.7.1 λ  KOLMOGOROV TEST  

λ Kolmogorov test is a goodness-of-fit test.  

The null hypothesis states that the empirical cumulative distribution 𝐹(𝑋) of 
variable 𝑋 is equal to a hypothetical, reference continuous cumulative distribution 
𝐹0(𝑋). In particular,  𝐹0(𝑋) is a standardized normal distribution 𝑍. 

𝐻0:𝐹(𝑥) = 𝐹0(𝑥) 

The null hypothesis is tested versus the alternative hypothesis:  

𝐻𝐴:𝐹(𝑥) ≠ 𝐹0(𝑥) 
The test statistic is the following: 

λ𝑐𝑎𝑙 = 𝐷√𝑛 
where: 𝑛 is the number of elements in a sample (it should be several dozen at 
least). 𝐷 is represented by the following formula: 

𝐷 = 𝑠𝑢𝑝�𝐹𝑗(𝑥) − 𝐹0𝑗(𝑥)� 

where: 𝐹𝑗(𝑥) is the value of the empirical cumulative distribution function for the 
𝑗𝑡ℎ  interval of values of variable 𝑋, and  𝐹0𝑗(𝑥) is the value of the reference 
cumulative distribution function calculated for the right limit of the 𝑗𝑡ℎ interval of 
values of variable 𝑋. 
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If the null hypothesis is true, λ𝑐𝑎𝑙  has λ Kolmogorov distribution which is 
independent from the empirical distribution 𝐹(𝑥).  

All 𝑛 values of variable 𝑋 are grouped into 𝑗 intervals between the minimum and 
maximum value of 𝑋.  

• Criterion of null hypothesis rejection based on the critical interval 
criterion 

The criterion of null hypothesis rejection is the following: 

𝑃(λ𝛼 ≤ λ) = 𝛼 

where: λ𝛼 comes from the tables of λ Kolmogorov distribution (Appendix 7). 

Therefore, the critical interval is λ𝜖〈�λ𝛼,∞)�.  The null hypothesis is rejected if the 
following is true λ𝑐𝑎𝑙𝜖〈�λ𝛼,∞)�.   

• Criterion of the 𝑝-value 

The criterion of null hypothesis rejection is 𝑝 ≤ 𝛼, where 𝑝 = 𝑃(λ ≥ λ𝑐𝑎𝑙) is the 
probability that λ variable, which has λ Kolmogorov distribution, is greater than or 
equal to the calculated value of the test statistic λ𝑐𝑎𝑙. 
The null hypothesis is rejected if the significance level is greater than or equal to 𝑝. 

The null hypothesis is accepted if the significance level is less than 𝑝. 

7.7.1.1 EXAMPLE 

Problem.  200 sardines were caught in the Atlantic Ocean. Their size was measured 
and the results are shown in Table 7.5. Does the size of the sardines have normal 
distribution at the significance level 0.05.? 

Table 7.5 Empirical data concerning sardines caught in the Atlantic Ocean. 

Length of sardine/ cm Number of fish 

10-12 10 

12-14 26 

14-16 56 

16-18 64 

18-20 30 

20-22 14 

Solution. It is possible to solve the problem using the λ Kolmogorov  
goodness−of−fit test. The considered variable 𝑋 is the size of the sardines. The 
reference cumulative distribution is a normal distribution. The parameters of 
normal distribution are estimated based on the random sample in the following 
manner: 
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�̅� =
1
𝑛
�𝑥𝑗0𝑛𝑗

𝑟

𝑗=1

= 16.2 

𝑠 = �
1
𝑛
��𝑥𝑗0 − �̅��2𝑛𝑗

𝑟

𝑗=1

= 2.47 

where: 𝑥𝑗0 is the mean value of 𝑋 for the 𝑗𝑡ℎ interval, 𝑛𝑗 is the number of elements 
inside 𝑗𝑡ℎ interval.   

The values of 𝑋, which represent the right limits of intervals for sardine length, 𝑥𝑗, 
are standardized using the formula:  

𝑧𝑗 =
𝑥𝑗 − �̅�
𝑠

 

so that the reference normal distribution 𝑁(�̅�𝑗, 𝑠)  is converted into the 
standardized normal distribution 𝑍(0,1). Values of the cumulative 𝑍 distribution 
function 𝐹�𝑧𝑗�  are read out from the statistical tables (Appendix 1) for all 
standardized values 𝑧𝑗. In this way, the reference cumulative distribution function  
𝐹0𝑗(𝑥) is calculated. 

Values of the cumulative empirical distribution are calculated for each interval of 
sardine length using the formula: 

𝐹𝑗(𝑥) =
𝑛𝑐𝑢𝑚
∑ 𝑛𝑗𝑘
𝑗=1

 

where 𝑛𝑗 is the number of sardines with their length belonging to the 𝑗𝑡ℎ interval, 
𝑘 = 1 … 𝑗 .  
The comparison of two cumulative distributions: empirical and normal is shown in 
Table 7.6. 

Table 7.6 The comparison of cumulative empirical distribution of the length of sardines  

𝑭𝒆𝒎𝒑(𝒙) and normal distribution 𝑭�𝒛𝒋�. 

j 𝑥𝑗  𝑧𝑗  𝐹�𝑧𝑗� = 𝐹0𝑗(𝑥) 𝑛𝑗  𝑛𝑐𝑢𝑚 𝐹𝑗(𝑥) �𝐹𝑗(𝑥) − 𝐹0𝑗(𝑥)� 

1 12 -1.70 0.037 10 10 0.05 0.0054 

2 14 -0.89 0.187 26 36 0.18 0.0067 

3 16 -0.08 0.468 56 92 0.46 0.0081 

4 18 0.73 0.767 64 156 0.78 0.0127 

5 20 1.54 0.938 30 186 0.93 0.0082 

6 22 2.35 0.991 14 200 1 0.0094 
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Based on Table 7.6 the following is true: 

𝐷 = 𝑠𝑢𝑝�𝐹𝑗(𝑥) − 𝐹0𝑗(𝑥)� = 0.0127 

The corresponding value of the test statistic is 

λ𝑐𝑎𝑙 = 𝐷√𝑛 = 0.0127 ∙ √200 = 0.180 

• Criterion of null hypothesis rejection based on the critical interval. 

The critical interval for λ is 〈�λα,∞)�. Based on λ Kolmogorov distribution tables 
(Appendix 7), λα = 1.358 for α = 0.05. Therefore, numerically the critical interval 
is  �〈1.358 ,∞�).   
The value of the test statistic λ𝑐𝑎𝑙 = 0.180 is located outside the critical interval. 
Therefore, the null hypothesis is accepted at the significance level α = 0.05.  

• The criterion of null hypothesis rejection based on the 𝑝-value. 

Based on λ Kolmogorov distribution tables (Appendix 7), the 𝑝-value associated 
with λ𝑐𝑎𝑙 = 0.180 is greater than 0.999. The  𝑝-value is greater than the value 
𝛼 = 0.05; therefore, the null hypothesis is accepted at the significance level 0.05.  

Based on the obtained results of hypothesis testing, one can assume that the size 
of sardines has normal distribution at the significance level α = 0.05. 
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8 ANALYSIS OF VARIANCE 

The problem of indicating change in objects as a result of being influenced by 
different factors is daily encountered in engineering practice.  

A good example is a product. Its features are influenced by the parameters of a 
production process, e.g. temperature, concentration of ingredients, type of 
additive, intensity and/or duration of mixing and the like.  

An engineer may be interested in securing reproducible products that requires 
process parameters to remain within certain limits which do not cause significant 
variability of the object. It is also possible that an engineer is interested in 
modifying a product, e.g. improving its quality. This requires process parameters to 
be changed in a way that causes significant and desirable change of the object. 

The sensitivity of objects to nonrandom factors which act on them is statistically 
analyzed with the analysis of variance (ANOVA). The main idea of the analysis of 
variance consists of studying the variability in a response variable regarding factors 
which are responsible for it. 

The total variability of the response variable is decomposed into parts. Part of the 
variability is attributed to random factors, another part is assigned to nonrandom 
factors and yet another part is considered as resulting from interactions between 
nonrandom factors. The significance of variation caused by nonrandom factors and 
their interactions is judged versus the variability which has random origin. 

The analysis of variance shall be employed to the measurement data collected in an 
active manner (Charter 2).  

8.1 ONE WAY ANALYSIS OF VARIANCE (ANOVA) 

The simplest kind of analysis of variance, the so called one-way analysis of variance, 
is dedicated to one-factor problems. The aim of this analysis is to find out whether 
the investigated object is sensitive to one selected nonrandom factor. The feature 
of the object, which is expected to be influenced by the factor, is represented by a 
measurable response variable 𝑌. 

8.1.1 PREPARATION OF MEASUREMENT DATA FOR ONE-WAY 
ANOVA 

The main idea of the experiment providing data for one–way ANOVA is to expose 
the object to several different levels of the considered factor, 𝑋𝐴 and to measure 
values of the response variable 𝑌 several times for each level of the factor. All the 
other known and controllable factors shall remain at a constant level during the 
course of the experiment. The recommended form of the data table is shown in 
Table 8.1.  
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There are 𝑛 levels of factor 𝑋𝐴 considered. The 𝑖𝑡ℎ level of the factor is denoted by 
𝑋𝐴𝑖  and 𝑖 = 1 …𝑛. 𝑟 replicate measurements of 𝑌 at each 𝑖𝑡ℎ level of factor 𝑋𝐴are 
performed. The 𝑘𝑡ℎ replicate measurement is denoted by 𝑦𝑘𝑖 , where 𝑘 = 1 … 𝑟. 

Table 8.1 The table of measurement data prepared for the one-way analysis of variance. 
Values of response variable Y correspond to different levels of factor 𝑿𝑨. 

Level of factor 
𝑋𝐴 

Replicate measurement of response variable 𝑌 

1 … k … r 

𝑋𝐴1 𝑦11 … 𝑦𝑘1 … 𝑦𝑟1 

…      

𝑋𝐴𝑖  𝑦1𝑖  … 𝑦𝑘𝑖  … 𝑦𝑟𝑖  

…      

𝑋𝐴𝑛 𝑦1𝑛 … 𝑦𝑘𝑛 … 𝑦𝑟𝑛 

It is important to randomize the levels of the factor 𝑋𝐴 and to apply them to the 
object in randomized order. The object shall never be exposed to increasing or 
decreasing levels of the factor in sequence.  

8.1.2 DECOMPOSITION OF VARIANCE IN ONE-WAY ANOVA 

Two sources of variation of the response variable 𝑌 in the one-way analysis of 
variance are considered. These are random factors and the nonrandom factor 𝑋𝐴. 
Their contribution to the variation of 𝑌 is represented by the associated variances. 

In ANOVA, the total variation of variable 𝑌 is decomposed into two parts. The first 
part is the so called within-level or within-group variation. It is attributed to 
random factors. The second part is the so called cross-level or between group 
variation. It is attributed to the factor 𝑋𝐴. 

8.1.2.1 MEANS OF THE RESPONSE VARIABLE 

The overall mean 𝜇 of the response variable 𝑌, associated with object exposure to 
factor 𝑋𝐴 is represented by the average 𝑦� of all values 𝑦𝑘𝑖  recorded during 𝑟 
replicate measurements at each of the 𝑛 levels of the factor.  

𝑦� =
1
𝑛𝑟
��𝑦𝑘𝑖

𝑟

𝑘=1

𝑛

𝑖=1

 

The average response of the object 𝜇𝑖  to the 𝑖𝑡ℎ level of factor 𝑋𝐴 is represented by 
the average 𝑦�𝑖 of values recorded during repeated measurements while exposing 
the object to the 𝑖𝑡ℎ level of the factor. 
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𝑦�𝑖 =
1
𝑟
�𝑦𝑘𝑖
𝑟

𝑘=1

 

It is expected that values of variable 𝑌 which are recorded in the course of 
repeated measurements are different, i.e.  𝑦𝑖1 ≠ …  ≠ 𝑦𝑖𝑘 ≠ …  ≠ 𝑦𝑖𝑟, despite the fact 
that the object is exposed to a constant level of factor 𝑋𝐴. The spread of values is 
caused by random factors. 

8.1.2.2 TOTAL VARIATION OF THE RESPONSE VARIABLE 

In the one-way analysis of variance, the total variation of response variable 𝑌 is 
represented by the sum of squares 𝑆𝑆𝑇 of differences between the total mean and 
every single value of this variable.  

𝑆𝑆𝑇 = ���𝑦� − 𝑦𝑘𝑖 �
2

𝑟

𝑘=1

𝑛

𝑖=1

 

The total variability of 𝑌, represented by the sum of squares 𝑆𝑆𝑇, is the algebraic 
sum of the variability of 𝑌 attributed to random factors, which is represented by 
the sum of squares 𝑆𝑆𝐸, and the variability of 𝑌 attributed to a controlled factor 𝑋𝐴, 
which is represented by the sum of squares 𝑆𝑆𝐸. 

𝑆𝑆𝑇 = 𝑆𝑆𝐸 + 𝑆𝑆𝐴 

8.1.2.3 VARIATION ATTRIBUTED TO RANDOM FACTORS 

The within level variation of the response variable 𝑌 is observed when the level of 
factor 𝑋𝐴 is fixed. This variation is attributed to random factors. In the one-way 
analysis of variance, the within level variation of 𝑌 is represented by a sum of 
squares 𝑆𝑆𝐸. This is a sum of the squared differences between the mean value of 
the response variable associated with the 𝑖𝑡ℎ level of factor 𝑦�𝑖 and every single 
value of this variable 𝑦𝑘𝑖 recorded at this level of the factor. 

𝑆𝑆𝐸 = ���𝑦�𝑖 − 𝑦𝑘𝑖 �
2

𝑟

𝑘=1

𝑛

𝑖=1

 

Referring to Table 8.1, 𝑆𝑆𝐸 describes the variation of 𝑌 inside a single cell of the 
table. It is aggregated for all the cells. 

There are ν𝐸 degrees of freedom associated with the within level variance: 

ν𝐸 = 𝑛 ∙ 𝑟 − 𝑛 = 𝑛(𝑟 − 1) 
The within level variance of 𝑌 is given by the following mean square: 

𝑠2(𝑦)𝐸 = 𝑀𝑆𝐸 =
𝑆𝑆𝐸
ν𝐸
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8.1.2.4 VARIATION ATTRIBUTED TO A NON-RANDOM FACTOR 

The cross-level variation of the response variable 𝑌 is observed when levels of 
factor 𝑋𝐴 are changed. This variation is attributed to factor 𝑋𝐴. In the one-way 
analysis of variance, the between-level variation of 𝑌 is represented by a sum of 
squares 𝑆𝑆𝐴. This is the sum of squared differences between the overall mean 
value of the response variable 𝑦� and the mean values of the response variable 𝑦�𝑖 
associated with each level of factor 𝑋𝐴.  

𝑆𝑆𝐴 = ��𝑦� − 𝑦�𝑖�2
𝑛

𝑖=1

 

Referring to Table 8.1, 𝑆𝑆𝐴 describes the variation of 𝑌 among rows of the table. 

There are ν𝐴 degrees of freedom associated with the cross-level variance: 

ν𝐴 = 𝑛 − 1 
The cross-level variance is given by the following mean square: 

𝑠2(𝑦)𝐴 = 𝑀𝑆𝐴 =
𝑆𝑆𝐴
ν𝐴

 

8.1.3 NULL HYPOTHESIS IN ONE-WAY ANOVA 

The null hypothesis in the one-way analysis of variance states that the average 
response of the object to different levels of factor 𝑋𝐴 is the same. In other words, 
on average the object responds in the same way to each level of factor 𝑋𝐴. The 
object is insensitive to the changes of the factor. The formal representation of the 
null hypothesis is the following: 

𝐻0: 𝜇1 = ⋯ = 𝜇𝑖 = ⋯ = 𝜇𝑛 
The null hypothesis is tested versus the alternative hypothesisstating that the 
average responses of the object are different for at least two different levels of 
factor 𝑋𝐴. In other words, the object is sensitive to the change between at least 
two levels of the factor. The formal representation of the alternative hypothesis is 
the following: 

𝐻𝑎:∃ 𝜇𝑖≠𝜇𝑙  
where 𝑖 = 1. .𝑛, 𝑙 = 1. .𝑛 and 𝑖≠𝑙.  
The following test statistic is used for testing the null hypothesis: 

𝐹𝑐𝑎𝑙 =
𝑠2(𝑦)𝐴
𝑠2(𝑦)𝐸

 

If the null hypothesis is true, the variable 𝐹𝑐𝑎𝑙 has 𝐹-Snedecore distribution with 
the degrees of freedom ν𝐴 and ν𝐸. 
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The critical interval criterion of null hypothesis rejection at the significance level α 
is 

𝑝�𝐹 ≥ 𝐹𝛼,ν𝐴,ν𝐸� = 𝛼 

where: 𝐹𝛼,ν𝐴,ν𝐸  is the value of variable 𝐹 , which comes the 𝐹 -Snedecore 
distributions with the degrees of freedom ν𝐴 and ν𝐸, for the assumed value of α.  

The critical interval for 𝐹𝑐𝑎𝑙  is  𝐹𝜖�〈𝐹𝛼,ν𝐴,ν𝐸 ,∞�� . If 𝐹𝑐𝑎𝑙𝜖�〈𝐹𝛼,ν𝐴,ν𝐸 ,∞�� , the null 
hypothesis is rejected.  

The 𝑝-value criterion of null hypothesis rejection at the significance level α is 

𝑝 = 𝑃�𝐹ν𝐴,ν𝐸 ≥ 𝐹𝑐𝑎𝑙� ≤ 𝛼 

The null hypothesis is rejected at the significance level α if α is greater than or 
equal to 𝑝. 

For the graphical interpretation of the null hypothesis rejection criteria refer to Fig. 
7.12 and Fig. 7.13.  

Based on the presented reasoning, the null hypothesis is rejected when the test 
statistic 𝐹𝑐𝑎𝑙 reaches or exceeds 𝐹𝛼,ν𝐴,ν𝐸. The test statistic is the ratio between the 
variance of the response variable which comes from nonrandom factors, 𝑠2(𝑦)𝐴 
and the variance of the response variable which is caused by random factors, 
𝑠2(𝑦)𝐸. Therefore, the null hypothesis is rejected if the variation of 𝑌 caused by 
factor 𝑋𝐴 is large enough when compared to the variation caused by random 
factors that the critical level 𝐹𝛼,ν𝐴,ν𝐸 is reached. The rejection of the null hypothesis 
indicates that the considered factor 𝑋𝐴 does significantly influence the object if 
represented by the response variable 𝑌. 

The null hypothesis is accepted on the condition that the ratio between the 
variance of response variable 𝑠2(𝑦)𝐴 , which comes from factor 𝑋𝐴 , and the 
variance of response variable 𝑠2(𝑦)𝐸, which is caused by random factors, does not 
exceed 𝐹𝛼,ν𝐴,ν𝐸. That is, the variation of 𝑌 caused by factor 𝑋𝐴 is small enough when 
compared to its variation caused by random factors that the critical level 𝐹𝛼,ν𝐴,ν𝐸 is 
not reached. The acceptance of the null hypothesis indicates that the considered 
factor 𝑋𝐴 does not significantly influence the object if represented by the response 
variable 𝑌. 

8.1.4 EXAMPLE 

Problem. Students were interested whether costs of dishwashing are influenced by 
the way the dishes are washed. They decided to carry out a relevant experiment. 
The response variable 𝑌 represented the costs of dishwashing. It was calculated as 
the sum of the following components: cost of electricity, cost of gas, cost of water, 
fee for the waste water, cost of the washing liquid, cost of dishwasher detergent 
and cost of dishwasher salt. The investigated factor 𝑋𝐴 was the method of washing. 
Three methods of washing were considered as three levels of the factor: ordinary 
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manual dishwashing, i.e. washing and rinsing with the water running (𝑋𝐴1 ), 
economical manual dishwashing, i.e. washing in the sink and rinsing with running 
water (𝑋𝐴2) and washing with a dishwasher (𝑋𝐴3). A defined set of dishes was 
washed three times using each dishwashing method. 

The results of the experiment are shown in Table 8.2.  

Table 8.2 The measurement data for the experiment considered in Example 8.1.4. 

 Level of 
factor 𝑋𝐴 

Replicate measurement of response variable 𝑌 [PLN] 

1 2 3 

𝑋𝐴1 0.34 0.41 0.8 

𝑋𝐴2 0.13 0.19 0.14 

𝑋𝐴3 0.827 0.837 0.827 

The significance level α = 0.05 was assumed. 

Solution. It is possible to solve the problem using the one-way analysis of variance. 
The considered variable 𝑌 is the cost of dishwashing. It is worth testing the 
hypothesis that the cost of dishwashing using any considered method is the same, 
𝐻0: 𝜇1 = 𝜇2 = 𝜇3 versus the alternative hypothesis that at least two methods 
produce different costs of dishwashing 𝐻𝑎:∃ 𝜇𝑖≠𝜇𝑙, 𝑖 = 1. .3, 𝑙 = 1. .3. The relevant 
calculation help is offered by the DATA ANALYSIS TOOL in Excel. The results of the one-
way ANOVA are shown in Table 8.3. 

Table 8.3 ANOVA table for the measurement data shown in Table 8.2. 

Source of 
variance 𝑆𝑆 ν 𝑀𝑆 𝐹𝑐𝑎𝑙 𝑝-value 𝐹𝛼=0.05,ν𝐴,ν𝐸 

𝑋𝐴 𝑆𝑆𝐴 = 0.689 ν𝐴 = 2 𝑀𝑆𝐴 = 0.344 16.530 0.0036 5.143 

random factor 𝑆𝑆𝐸 = 0.125 ν𝐸 = 6 𝑀𝑆𝐸 = 0.021 

   Total 𝑆𝑆𝑇 = 0.8137 ν𝑇 = 8 

    The criteria of null hypothesis rejection are fulfilled: 𝐹𝑐𝑎𝑙  ≥  𝐹𝛼,ν𝐴,ν𝐸 ≡ 𝑝 ≤  α , as 
shown by the results in the one-way analysis of variance presented in Table 8.3.  

Based on the performed analysis, students were able to infer that the method of 
washing influenced the cost of washing in a statistically significant manner at the 
significance level α = 0.05.  

8.2 MULTI-WAY ANALYSIS OF VARIANCE (MANOVA) 

A more complex version of the analysis of variance, the so called multi-way analysis 
of variance, is dedicated to multi-factor problems. The aim of the analysis is to find 
out whether the investigated object is sensitive to several selected nonrandom 
factors and possibly their interactions. The feature of the object, which is expected 
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to be influenced by the factors, is represented by a measurable response variable 
𝑌. 

The simplest multi-factor problem is a two-factor problem and the corresponding 
analysis of variance is called two-way ANOVA. The analysis of two-factor problems 
is covered in this book. 

8.2.1 PREPARATION OF MEASUREMENT DATA FOR TWO-WAY 
ANOVA 

The main idea of the experiment providing data for two–way ANOVA is to expose 
an object to all combinations of different levels of factors 𝑋𝐴 and 𝑋𝐵. The response 
variable values shall be measured several times for each combination of factor 
levels. All the other known and controllable factors shall remain at a constant level 
in the course of the experiment. The recommended form of data table is shown in 
Table 8.4.   

In the analysis, 𝑛 levels of factor 𝑋𝐴 and 𝑚 levels of factor 𝑋𝐵 are considered. The 
𝑖𝑡ℎ  level of factor 𝑋𝐴  is denoted as 𝑋𝐴𝑖  , 𝑖 = 1 …𝑛. The 𝑗𝑡ℎ  level of factor 𝑋𝐵  is 

denoted as 𝑋𝐵
𝑗 , 𝑗 = 1 …𝑚. 𝑟 replicate measurements of the response variable 𝑌 for 

each combination �𝑋𝐴𝑖 ,𝑋𝐵
𝑗� of levels of the considered factors are performed. The 

𝑘𝑡ℎ replicate measurement is denoted by 𝑦𝑘
𝑖,𝑗, where 𝑘 = 1 … 𝑟.  

Table 8.4 Table of measurement data prepared for the two-way analysis of variance. Values 
of response variable 𝒀 correspond to combinations of different levels of factors 𝑿𝑨 and 𝑿𝑩. 

             Level of  
factor 𝑋𝐵  

Level of 

factor 𝑋𝐴 

𝑋𝐵1 … 𝑋𝐵
𝑗  … 𝑋𝐵𝑚 

𝑋𝐴1 𝑦1
1,1, … , 𝑦𝑘

1,1, … ,𝑦𝑟1,1  … 𝑦1
1,𝑗 , … , 𝑦𝑘

1,𝑗 , … , 𝑦𝑟
1,𝑗 … 𝑦1

1,𝑚, … , 𝑦𝑘
1,𝑚, … , 𝑦𝑟1,𝑚 

… … … … … … 

𝑋𝐴𝑖  𝑦1
𝑖,1, … , 𝑦𝑘

𝑖,1, … , 𝑦𝑟𝑖,1 … 𝑦1
𝑖,𝑗 , … , 𝑦𝑘

𝑖,𝑗 , … , 𝑦𝑟
𝑖,𝑗 … 𝑦1

𝑖,𝑚, … , 𝑦𝑘
𝑖,𝑚, … , 𝑦𝑟𝑖,𝑚 

… … … … … … 

𝑋𝐴𝑛 𝑦1
𝑛,1, … ,𝑦𝑘

𝑛,1, … , 𝑦𝑟𝑛,1 … 𝑦1
𝑛,𝑗 , … ,𝑦𝑘

𝑛,𝑗 , … , 𝑦𝑟
𝑛,𝑗 … 𝑦1

𝑛,𝑚, … , 𝑦𝑘
𝑛,𝑚, … , 𝑦𝑟𝑛,𝑚 

It is important to randomize combinations �𝑋𝐴𝑖 ,𝑋𝐵
𝑗� of levels of the considered 

factors and to apply them to the object in a randomized order. The object shall not 
be subsequently exposed to combinations organized along the increasing or 
decreasing levels of factor 𝑋𝐴 or 𝑋𝐵.  



90 
 

8.2.2 DECOMPOSITION OF VARIANCE IN TWO-WAY ANOVA 

Four sources of variation of the measured variable 𝑌 in the two-way analysis of 
variance are considered. These are random factors, factor 𝑋𝐴, factor 𝑋𝐵 and the 
interaction between factors 𝑋𝐴 and 𝑋𝐵. Their contribution to the variation of  𝑌 is 
represented by the associated variances. 

In two-way ANOVA, the total variation of variable 𝑌 is decomposed into four parts. 
The first part is the so called within level or within group variation. It is attributed 
to random factors. The second part is the so called cross-level or between group 
variation and it is attributed to factor 𝑋𝐴. The third part is the so called cross-level 
or between group variation and it is attributed to factor 𝑋𝐵. The fourth part is the 
variation attributed to the interaction between factor 𝑋𝐴  and factor 𝑋𝐵 . The 
interaction 𝑋𝐴𝑋𝐵 can be understood as a ‘virtual’ factor resulting from the joint 
impact of two ‘physical’ factors 𝑋𝐴 and 𝑋𝐵. It is a kind of added value due to the 
exposure of the object to two factors simultaneously. The statistical significance of 
the interaction is proof that one factor magnifies or reduces the impact of the 
other factor on the object as compared to the circumstances when only one factor 
acts on the object.  

8.2.2.1 MEANS OF THE RESPONSE VARIABLE 

The overall mean 𝜇 of the response variable 𝑌, associated with object exposure to 

factors 𝑋𝐴  and 𝑋𝐵 , is represented by the average 𝑦�  of all values 𝑦𝑘
𝑖,𝑗  recorded 

during 𝑟 replicate measurements of 𝑌 at each of 𝑛 ∙ 𝑚 combinations of levels of 
factors 𝑋𝐴 and 𝑋𝐵.  

𝑦� =
1

𝑛𝑚𝑟
���𝑦𝑘

𝑖,𝑗
𝑟

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

 

The average response 𝜇𝑖  of the object to the 𝑖𝑡ℎ level of factor 𝑋𝐴 is represented by 
the average 𝑦�𝑖 of values recorded during repeated measurements while factor 𝑋𝐴 
remained at the 𝑖𝑡ℎ level and factor 𝑋𝐵 was changed. 

𝑦�𝑖 =
1
𝑚𝑟

��𝑦𝑘𝑖,𝑗
𝑟

𝑘=1

𝑚

𝑗=1

 

The average response 𝜇𝑗  of the object to the 𝑗𝑡ℎ level of factor 𝑋𝐵 is represented 
by the average 𝑦�𝑗 of values recorded during repeated measurements while factor 
𝑋𝐵 remained at the 𝑗𝑡ℎ level and factor 𝑋𝐴 was changed. 

𝑦�𝑗 =
1
𝑛𝑟
��𝑦𝑘𝑖,𝑗

𝑟

𝑘=1

𝑛

𝑖=1
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Considering fixed combination �𝑋𝐴𝑖 ,𝑋𝐵
𝑗� of levels of factors 𝑋𝐴 and 𝑋𝐵, it is expected 

that the object responds with slightly different values of variable 𝑌 in repeated 

measurements, namely 𝑦1
𝑖,𝑗≠ …  ≠ 𝑦𝑘

𝑖,𝑗 ≠ …  ≠ 𝑦𝑟
𝑖,𝑗 , for 𝑖 = 𝑐𝑜𝑛𝑠𝑡  and 𝑗 = 𝑐𝑜𝑛𝑠𝑡 . 

The differences are caused by random factors. In the two-way analysis of variance, 
the average response 𝜇𝑖,𝑗 of the object to the {𝑖, 𝑗} combination of levels of factor 
𝑋𝐴 and 𝑋𝐵 is represented by the average 𝑦�𝑖,𝑗 of values recorded during repeated 
measurements while factor 𝑋𝐴 remained at the 𝑖𝑡ℎlevel and factor 𝑋𝐵 remained at 
the 𝑗𝑡ℎ level. 

𝑦�𝑖,𝑗 =
1
𝑟
�𝑦𝑘

𝑖,𝑗
𝑟

𝑘=1

 

8.2.2.2 TOTAL VARIATION OF THE RESPONSE VARIABLE 

In the two-way analysis of variance, the total variation of response variable 𝑌 is 
represented by a sum of squares 𝑆𝑆𝑇 of differences between the total mean of the 

response variable 𝑦� and every single value of this variable 𝑦𝑘
𝑖,𝑗 observed upon all 

replicate measurements at each combination of levels of factor 𝑋𝐴 and 𝑋𝐵.  

𝑆𝑆𝑇 = ����𝑦� − 𝑦𝑘
𝑖,𝑗�

2
𝑟

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

 

The total variability of 𝑌 represented by the sum of squares 𝑆𝑆𝑇 is the algebraic 
sum of the variability of 𝑌 attributed to random factors, which is represented by 
the sum of squares 𝑆𝑆𝐸 , the variability of 𝑌 attributed to factor 𝑋𝐴 , which is 
represented by the sum of squares 𝑆𝑆𝐴, the variability of 𝑌 attributed to factor 𝑋𝐵, 
which is represented by the sum of squares 𝑆𝑆𝐵, and the variability of 𝑌 attributed 
to the interaction of factors 𝑋𝐴 and 𝑋𝐵, which is represented by the sum of squares 
𝑆𝑆𝐴𝐵. 

𝑆𝑆𝑇 = 𝑆𝑆𝐸 + 𝑆𝑆𝐴 + 𝑆𝑆𝐵 + 𝑆𝑆𝐴𝐵 

8.2.2.3 VARIATION ATTRIBUTED TO RANDOM FACTORS 

The within-level variation of the response variable 𝑌  is observed when the 

combination �𝑋𝐴𝑖 ,𝑋𝐵
𝑗�  of levels of factors 𝑋𝐴  and 𝑋𝐵  is fixed. This variation is 

attributed to random factors. In the two-way analysis of variance, the within level 
variation of 𝑌 is represented by a sum of squares 𝑆𝑆𝐸. This is a sum of differences 
between the mean value of the response variable 𝑦�𝑖,𝑗 associated with the {𝑖, 𝑗} 
combination of levels of factors 𝑋𝐴 and 𝑋𝐵  and every single value of the response 
variable 𝑦𝑘𝑖,𝑗  recorded upon repeated measurements associated with this 
combination of factor levels. 
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𝑆𝑆𝐸 = ����𝑦�𝑖,𝑗 − 𝑦𝑘
𝑖,𝑗�

2
𝑟

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

 

Referring to Table 8.4, the 𝑆𝑆𝐸 describes the variation of 𝑌 inside a single cell of the 
table. It is aggregated for all the cells. 

There are νE

The within-level variance is given by the following mean square: 

𝑠2(𝑦)𝐸 = 𝑀𝑆𝐸 =
𝑆𝑆𝐸
ν𝐸

 

 degrees of freedom associated with the within-level variance: 

ν𝐸 = 𝑛𝑚(𝑟 − 1) 

8.2.2.4 VARIATION ATTRIBUTED TO THE NONRANDOM FACTOR 𝑋𝐴 

The cross-level variation of the response variable 𝑌 which is attributed to the factor 
𝑋𝐴 is observed when levels of factor 𝑋𝐴 are changed. In the two-way analysis of 
variance, the cross-level variation of 𝑌 caused by 𝑋𝐴 is represented by a sum of 
squares 𝑆𝑆𝐴. This is a sum of square differences between the overall mean value of 
the response variable 𝑦� and the mean value of response variable 𝑦�𝑖 associated with 
every single level of factor 𝑋𝐴.  

𝑆𝑆𝐴 = ��𝑦� − 𝑦�𝑖�2
𝑛

𝑖=1

 

Referring to Table 8.4, 𝑆𝑆𝐴 describes the variation of 𝑌 among the rows of the 
table. 

There are νA

The cross-level variance attributed to factor 𝑋𝐴 is given by the following mean 
square: 

𝑠2(𝑦)𝐴 = 𝑀𝑆𝐴 =
𝑆𝑆𝐴
ν𝐴

 

 degrees of freedom associated with the cross-level variance 
attributed to factor 𝑋𝐴: 

ν𝐴 = 𝑛 − 1 

8.2.2.5 VARIATION ATTRIBUTED TO THE NONRANDOM FACTOR 𝑋𝐵 

The cross-level variation of the response variable 𝑌, which is attributed to factor 
𝑋𝐵, is observed when the levels of factor 𝑋𝐵 are changed. In the two-way analysis 
of variance, the cross-level variation of 𝑌, caused by 𝑋𝐵,  is represented by the sum 
of squares 𝑆𝑆𝐴. This is a sum of square differences between the overall mean value 
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of the response variable 𝑦� and the mean value of response variable 𝑦�𝑗 associated 
with every single level of factor 𝑋𝐵.  

𝑆𝑆𝐵 = ��𝑦� − 𝑦�𝑗�2
𝑚

𝑗=1

 

Referring to Table 8.4, 𝑆𝑆𝐵 describes the variation of 𝑌 among the columns of the 
table. 

There are νB

 The cross-level variance attributed to factor 𝑋𝐵 is given by the following mean 
square: 

𝑠2(𝑦)𝐵 = 𝑀𝑆𝐵 =
𝑆𝑆𝐵
ν𝐵

 

 degrees of freedom associated with the cross-level variance attributed 
to factor 𝑋𝐵: 

ν𝐵 = 𝑚 − 1 

8.2.2.6 VARIATION ATTRIBUTED TO THE INTERACTION BETWEEN TWO 
NONRANDOM FACTORS 

The variation of the response variable 𝑌 attributed to the interaction between 

factors 𝑋𝐴 and 𝑋𝐵, is observed when combinations �𝑋𝐴𝑖 ,𝑋𝐵
𝑗� of levels of factors 𝑋𝐴 

and 𝑋𝐵 are changed. In the two-way analysis of variance, the cross-level variation 
of 𝑌, caused by the interaction between factor 𝑋𝐴 and 𝑋𝐵, is represented by a sum 
of squares 𝑆𝑆𝐴𝐵. This is a sum of squared differences between the mean value of 
response variable 𝑦�𝑖,𝑗 associated with the {𝑖, 𝑗} combination of levels of the factors 
𝑋𝐴 and 𝑋𝐵 increased by overall mean of the response variable 𝑦�, and the sum of 
the mean value of the response variable 𝑦�𝑖, associated with the 𝑖𝑡ℎ level of factor 
XA increased by the mean value of the response variable 𝑦�𝑗, associated with the 𝑗𝑡ℎ 
level of factor XB

Referring to Table 8.4, 𝑆𝑆𝐴𝐵 describes the variation of 𝑌 among the cells of the 
table. 

.  

𝑆𝑆𝐴𝐵 = �����𝑦�𝑖,𝑗 + 𝑦�� − �𝑦�𝑖 + 𝑦�𝑗��
2

𝑟

𝑘=1

𝑚

𝑗=1

𝑛

𝑖=1

 

There are νR AB

 

 degrees of freedom associated with the cross-level variance 
attributed to the interaction between factors 𝑋𝐴 and 𝑋𝐵: 

ν𝐴𝐵 = (𝑛 − 1)(𝑚 − 1) 
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The cross-level variance attributed to the combination of factors 𝑋𝐴 and 𝑋𝐵is given 
by the following mean square: 

𝑠2(𝑦)𝐴𝐵 = 𝑀𝑆𝐴𝐵 =
𝑆𝑆𝐴𝐵
ν𝐴𝐵

 

8.2.3 NULL HYPOTHESES IN TWO-WAY ANOVA 

Three null hypotheses are considered in the two-way analysis of variance. The first 
is used for testing the influence of factor 𝑋𝐴 on the response variable 𝑌. The second 
is used for testing the influence of factor 𝑋𝐵 on the response variable 𝑌. The third is 
used for testing the influence of the interaction between factors 𝑋𝐴 and 𝑋𝐵 on the 
response variable 𝑌. All three hypotheses are tested in parallel. The result of the 
two-way analysis of variance consists of the summarized results of their testing.  

1. NULL HYPOTHESIS ON FACTOR 𝑋𝐴 

The null hypothesis, which tests the influence of factor 𝑋𝐴  on the response 
variable, states that the average responses of the object to different levels of factor 
𝑋𝐴 are the same in the whole range of variability of factor 𝑋𝐴. In other words, on 
average, the object responds in the same way to any level of factor 𝑋𝐴. It is 
insensitive to changes in this factor. The formal representation of the null 
hypothesis is the following: 

𝐻0: 𝜇1 = ⋯ = 𝜇𝑖 = ⋯ = 𝜇𝑛 
The null hypothesis is tested versus the alternative hypothesis which states that the 
mean responses of the object are different for at least two different levels of factor 
𝑋𝐴. In other words, the object is sensitive to the change between at least two levels 
of factor 𝑋𝐴 . The formal representation of the alternative hypothesis is the 
following: 

𝐻𝑎: ∃𝜇𝑖≠𝜇𝑙  
where 𝑖 = 1. .𝑛, 𝑙 = 1. .𝑛 and 𝑖≠𝑙.  
The following test statistic is used for testing the null hypothesis which refers to the 
influence of factor 𝑋𝐴 on the response variable: 

𝐹𝑐𝑎𝑙 =
𝑠2(𝑦)𝐴
𝑠2(𝑦)𝐸

 

If the null hypothesis is true, the variable 𝐹𝑐𝑎𝑙 has 𝐹-Snedecore distribution with 
the degrees of freedom νA and νE. 

The critical interval criterion of null hypothesis rejection at the significance level α 
is 

𝑃�𝐹 ≥ 𝐹𝛼,ν𝐴,ν𝐸� = 𝛼 
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where: 𝐹𝛼,ν𝐴,ν𝐸  is the value of variable 𝐹 , which comes the 𝐹 -Snedecore 
distributions with the degrees of freedom ν𝐴 and ν𝐸, for the assumed value of α.  

The critical interval for 𝐹𝑐𝑎𝑙  is  𝐹𝜖�〈𝐹𝛼,ν𝐴,ν𝐸 ,∞�� . If 𝐹𝑐𝑎𝑙𝜖�〈𝐹𝛼,ν𝐴,ν𝐸 ,∞�� , the null 
hypothesis is rejected.  

The 𝑝-value criterion of null hypothesis rejection at the significance level α is 

𝑝 = 𝑃�𝐹ν𝐴,ν𝐸 ≥ 𝐹𝑐𝑎𝑙� ≤ 𝛼 

The null hypothesis is rejected at the significance level α if α is greater than or 
equal to 𝑝. 

For the graphical interpretation of the null hypothesis rejection criteria refer to Fig. 
7.12 and Fig. 7.13.  

Based on the presented reasoning, the null hypothesis is rejected when the test 
statistic 𝐹𝑐𝑎𝑙 reaches or exceeds 𝐹𝛼,ν𝐴,ν𝐸. The test statistic is the ratio between the 
variance of response variable 𝑠2(𝑦)𝐴 , which comes from factor 𝑋𝐴 , and the 
variance of response variable 𝑠2(𝑦)𝐸which is caused by random factors. Therefore, 
the null hypothesis is rejected if the variation of 𝑌 caused by factor 𝑋𝐴 is large 
enough when compared to its variation caused by random factors that the critical 
level 𝐹𝛼,ν𝐴,ν𝐸 is reached. The rejection of the null hypothesis indicates that the 
considered factor 𝑋𝐴 does significantly influence the object if represented by the 
response variable 𝑌. 

The null hypothesis is accepted on the condition that the ratio between the 
variance of response variable 𝑠2(𝑦)𝐴 , which comes from factor 𝑋𝐴 , and the 
variance of response variable 𝑠2(𝑦)𝐸, which is caused by random factors, does not 
exceed 𝐹𝛼,ν𝐴,ν𝐸. That is, the variation of 𝑌 caused by factor 𝑋𝐴 is small enough when 
compared to its variation caused by random factors that the critical level 𝐹𝛼,ν𝐴,ν𝐸 is 
not reached. The acceptance of the null hypothesis indicates that the considered 
factor 𝑋𝐴 does not significantly influence the object if represented by the response 
variable 𝑌. 

2. NULL HYPOTHESIS ON FACTOR XB 

The null hypothesis testing the influence of factor XB on the response variable is the 
following: 

𝐻0: 𝜇1 = ⋯ = 𝜇𝑗 = ⋯ = 𝜇𝑚 
The null hypothesis claims that the average responses of the object to different 
levels of factor 𝑋𝐵 are the same in the whole range of variability of factor 𝑋𝐵. In 
other words, on average, the object responds in the same way to any level of factor 
𝑋𝐵. It is insensitive to changes in this factor.  
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The null hypothesis is tested versus the alternative hypothesis: 

𝐻𝑎: ∃𝜇𝑗≠𝜇𝑙  
where 𝑖 = 1. .𝑚, 𝑙 = 1. .𝑚 and 𝑖≠𝑙.  
The alternative hypothesis states that the average responses of the object are 
different in case of at least two levels of factor 𝑋𝐵. In other words, the object is 
sensitive to the change between at least two levels of factor 𝑋𝐵. 

The null hypothesis referring to the influence of factor 𝑋𝐵 on the response variable 
is tested using the following test statistic: 

𝐹𝑐𝑎𝑙 =
𝑠2(𝑦)𝐵
𝑠2(𝑦)𝐸

 

If the null hypothesis is true, the variable 𝐹𝑐𝑎𝑙 has 𝐹-Snedecore distribution with 
the degrees of freedom νB and νE. 

The critical interval criterion of null hypothesis rejection at the significance level α 
is 

𝑃�𝐹 ≥ 𝐹𝛼,ν𝐵,ν𝐸� = 𝛼 

where: 𝐹𝛼,ν𝐵,ν𝐸  is the value of variable 𝐹 , which comes the 𝐹 -Snedecore 
distributions with the degrees of freedom ν𝐵 and ν𝐸, for the assumed value of α.  

The critical interval for 𝐹𝑐𝑎𝑙  is  𝐹𝜖�〈𝐹𝛼,ν𝐵,ν𝐸 ,∞�� . If 𝐹𝑐𝑎𝑙𝜖�〈𝐹𝛼,ν𝐵,ν𝐸 ,∞�� , the null 
hypothesis is rejected.  

The 𝑝-value criterion of null hypothesis rejection at the significance level α is 

𝑝 = 𝑃�𝐹ν𝐵,ν𝐸 ≥ 𝐹𝑐𝑎𝑙� ≤ 𝛼 

The null hypothesis is rejected at the significance level α if α is greater than or 
equal to 𝑝. 

For the graphical interpretation of the null hypothesis rejection criteria refer to Fig. 
7.12 and Fig. 7.13.  

Based on the presented reasoning, the null hypothesis is rejected when the test 
statistic 𝐹𝑐𝑎𝑙 reaches or exceeds 𝐹𝛼,ν𝐵,ν𝐸. The test statistic is the ratio between the 
variance of response variable 𝑠2(𝑦)𝐵 , which comes from factor 𝑋𝐵 , and the 
variance of response variable 𝑠2(𝑦)𝐸 , which is caused by random factors. 
Therefore, the null hypothesis is rejected if the variation of 𝑌 caused by factor 𝑋𝐵 is 
large enough when compared to its variation caused by random factors that the 
critical value 𝐹𝛼,ν𝐵,ν𝐸 is reached. The rejection of the null hypothesis indicates that 
the considered factor 𝑋𝐵 does significantly influence the object if represented by 
the response variable 𝑌. 

The null hypothesis is accepted on the condition that the ratio between the 
variance of response variable 𝑠2(𝑦)𝐵 , which comes from factor 𝑋𝐵 , and the 
variance of response variable 𝑠2(𝑦)𝐸, which is caused by random factors, does not 
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exceed 𝐹𝛼,ν𝐵,ν𝐸. That is, the variation of 𝑌 caused by factor 𝑋𝐵 is small enough 
when compared to its variation caused by random factors that the critical value 
𝐹𝛼,ν𝐵,ν𝐸 is not reached. The acceptance of the null hypothesis indicates that the 
considered factor 𝑋𝐵 does not significantly influence the object if represented by 
the response variable 𝑌. 

3. NULL HYPOTHESIS ON THE INTERACTION BETWEEN FACTORS 
XA AND XB 

The null hypothesis testing the influence of the interaction between factors 𝑋𝐴 and 
𝑋𝐵 on the response variable is the following: 

𝐻0: 𝜇1,1 = ⋯ = 𝜇𝑖,𝑗 = ⋯ = 𝜇𝑛,𝑚 

This is tested versus the alternative hypothesis: 

𝐻𝑎: ∃𝜇𝑖,𝑗≠𝜇𝑙,𝑜 

where: 𝑖 = 1. .𝑛, 𝑙 = 1. .𝑛, 𝑗 = 1. .𝑚, 𝑜 = 1. .𝑚  and 𝑖≠𝑙 or 𝑗≠𝑜.  

The null hypothesis claims that the average responses of the object to different 
combinations of levels of factors 𝑋𝐴 and 𝑋𝐵 are the same in the whole range of 
variability of both factors. In other words, on average, the object responds in the 
same way to any combination of levels of factors 𝑋𝐴  and 𝑋𝐵 . The object is 
insensitive to the changes in the combination of levels for the two factors. The 
alternative hypothesis states that average responses of the object are not the same 
in case of at least two different combinations of levels of factors 𝑋𝐴 and 𝑋𝐵. In 
other words, the object is sensitive to the change between at least two 
combinations of levels of factors 𝑋𝐴  and 𝑋𝐵 . This implies a sensitivity to the 
interaction between factors. 

The null hypothesis referring to the influence of the interaction between factors 𝑋𝐴 
and 𝑋𝐵 on the response variable is tested using the following test statistic: 

𝐹𝑐𝑎𝑙 =
𝑠2(𝑦)𝐴𝐵
𝑠2(𝑦)𝐸

 

If the null hypothesis is true, the variable 𝐹𝑐𝑎𝑙 has 𝐹-Snedecore distribution with 
the degrees of freedom νAB and νE. 

The critical interval criterion of null hypothesis rejection at the significance level α 
is 

𝑃�𝐹 ≥ 𝐹𝛼,ν𝐴𝐵,ν𝐸� = 𝛼 

where: 𝐹𝛼,ν𝐴𝐵,ν𝐸  is the value of variable 𝐹 , which comes the 𝐹 -Snedecore 
distributions with the degrees of freedom ν𝐴𝐵 and ν𝐸, for the assumed value of α.  

The critical interval for 𝐹𝑐𝑎𝑙  is  𝐹𝜖�〈𝐹𝛼,ν𝐴𝐵,ν𝐸 ,∞��. If 𝐹𝑐𝑎𝑙𝜖�〈𝐹𝛼,ν𝐴𝐵,ν𝐸 ,∞��, the null 
hypothesis is rejected.  
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The 𝑝-value criterion of null hypothesis rejection at the significance level α is 

𝑝 = 𝑃�𝐹ν𝐴𝐵,ν𝐸 ≥ 𝐹𝑐𝑎𝑙� ≤ 𝛼 

The null hypothesis is rejected at the significance level α if α is greater than or 
equal to 𝑝. 

For the graphical interpretation of the null hypothesis rejection criteria refer to Fig. 
7.12 and Fig. 7.13.  

Based on the presented reasoning, the null hypothesis is rejected when the test 
statistic 𝐹𝑐𝑎𝑙 reaches or exceeds 𝐹𝛼,ν𝐴𝐵,ν𝐸. The test statistic is the ratio between the 
variance of response variable 𝑠2(𝑦)𝐴𝐵, which comes from the interaction between 
factors 𝑋𝐴 and 𝑋𝐵, and the variance of response variable 𝑠2(𝑦)𝐸 , which is caused 
by random factors. Therefore, the null hypothesis is rejected if the variation of 𝑌 
caused by the interaction between factors 𝑋𝐴  and 𝑋𝐵  is large enough when 
compared to its variation caused by random factors that the critical value 𝐹𝛼,ν𝐴𝐵,ν𝐸 
is reached. The rejection of the null hypothesis indicates that the interaction 
between factors 𝑋𝐴 and 𝑋𝐵 does significantly influence the object if represented by 
the response variable 𝑌. 

The null hypothesis is accepted on the condition that the ratio between the 
variance of response variable 𝑠2(𝑦)𝐴𝐵, which comes from the interaction between 
factors 𝑋𝐴 and 𝑋𝐵, and the variance of response variable 𝑠2(𝑦)𝐸, which is caused 
by random factors does not exceed 𝐹𝛼,ν𝐴𝐵,ν𝐸. That is, the variation of 𝑌 caused by 
the interaction between factors 𝑋𝐴 and 𝑋𝐵 is small enough when compared to its 
variation caused by random factors that the critical value 𝐹𝛼,ν𝐴𝐵,ν𝐸 is not reached. 
The acceptance of the null hypothesis indicates that the interaction between 
factors 𝑋𝐴 and 𝑋𝐵 does not significantly influence the object if represented by the 
response variable 𝑌. 

8.2.4 EXAMPLE  

Problem. The owner of the greenhouse wants to buy soil and fertilizer in order to 
grow a new variety of plant. It is important to know whether the kind of soil and 
the kind of fertilizer influences the fruitage of the plant. Otherwise any soil and any 
fertilizer is good.  

The owner of the greenhouse performed an agricultural experiment which could 
help him in selecting the right soil and fertilizer. Namely, he grew plants on 
different soils, he used different fertilizers and he observed the fruitage. The 
fruitage was indicated by the number of pieces of fruit delivered by a single plant. 
This was considered as the response variable 𝑌. The fruitage was influenced by two 
factors. The first factor was the type of soil. It was denoted 𝑋𝐴. The factor had 
three levels 𝑋𝐴1, 𝑋𝐴2 and 𝑋𝐴3, which were three different types of soil. The second 
factor was the type of fertilizer. It was denoted 𝑋𝐵. This factor had four levels 𝑋𝐵1, 
𝑋𝐵2, 𝑋𝐵3, and 𝑋𝐵4, which were four different types of fertilizer. Seven plants were 
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grown for each combination of soil-fertilizer. The results of the experiment are 
shown in Table 8.5. 

8.5 Table of the measurement data for the problem considered in Example 9.2.4. 

𝑋𝐵  

𝑋𝐴 

𝑋𝐵1 𝑋𝐵2 𝑋𝐵3 𝑋𝐵4 

𝑋𝐴1 33 15 31 24 34 36 34 39 34 29 26 29 26 30 34 26 25 24 24 31 

𝑋𝐴2 29 25 29 19 36 26 15 27 27 27 25 25 21 29 28 29 33 36 25 23 

𝑋𝐴3 33 28 29 25 31 43 38 31 26 47 34 30 33 27 37 43 30 28 32 39 

Solution. It is possible to study the problem using the two-way analysis of variance. 
It is worth testing three null hypotheses: 

1. The fruitage of the plant is the same irrespective of the soil used, 
𝐻01: 𝜇1 = 𝜇2 = 𝜇3,  versus the alternative hypothesis that at least two 
different soils provide different fruitage 𝐻𝑎1:∃ 𝜇𝑖≠𝜇𝑙 , 𝑖 = 1 … 3 , 
𝑙 = 1 … 3. 

2. The fruitage of the plant is the same irrespective of the fertilizer used, 
𝐻02: 𝜇1 = 𝜇2 = 𝜇3 = 𝜇4,  versus the alternative hypothesis that at least 
two different fertilizers provide different fruitage 𝐻𝑎2:∃ 𝜇𝑖≠𝜇𝑙 , 
𝑖 = 1 … 4, 𝑙 = 1 … 4. 

3. The fruitage of the plant is the same irrespective of the combination of 
the soil and fertilizer used, 𝐻03: 𝜇11 = 𝜇12 = … = 𝜇43 = 𝜇44,  versus 
the alternative hypothesis that at least two different soils provide 
different fruitage, 𝐻𝑎3: ∃𝜇𝑖,𝑗≠𝜇𝑙,𝑜 , 𝑖 = 1 … 3 , 𝑙 = 1 … 3 ,  𝑗 = 1 … 4 , 
𝑜 = 1 … 4 . 

The relevant calculation help is offered by the DATA ANALYSIS TOOL in Excel. The 
results of the two-way ANOVA are shown in Table 8.6. 

Table 8.6 ANOVA table for the measurement data shown in Table 9.5. 

Source of variance 𝑆𝑆 ν 𝑀𝑆 𝐹𝑐𝑎𝑙 𝑝-value 𝐹𝛼=0.05 

𝑋𝐴 𝑆𝑆𝐴 = 436.156 ν𝐴 = 2 𝑀𝑆𝐴 = 218.078 7.644 0.0013 3.191 

𝑋𝐵 𝑆𝑆𝐵 = 130.775 ν𝐵 = 3 𝑀𝑆𝐵 = 43.592 1.528 0.2193 2.798 

𝑋𝐴𝑋𝐵 𝑆𝑆𝐴𝐵 = 328.430 ν𝐴𝐵 = 6 𝑀𝑆𝐴𝐵 = 54.738 1.919 0.0969 2.295 

random factor 𝑆𝑆𝐸 = 1369.391 ν𝐸 = 48 𝑀𝑆𝐸 = 28.529 

   total 𝑆𝑆𝑇 = 2264.751 ν𝑇 = 59 

    The obtained results of null hypotheses testing at the significance level α = 0.05, 
based on ANOVA are shown in Table 8.6: 
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1. the criterion of rejection of the null hypothesis 𝐻01 was fulfilled because 
it was shown that 𝐹𝑐𝑎𝑙  ≥  𝐹𝛼,ν𝐴,ν𝐸, 

2. the criterion of rejection of the null hypothesis 𝐻02 was not fulfilled 
because it was shown that 𝐹𝑐𝑎𝑙 <  𝐹𝛼,ν𝐵,ν𝐸, 

3. the criterion of rejection of the null hypothesis 𝐻03 was not fulfilled 
because it was shown that 𝐹𝑐𝑎𝑙 <  𝐹𝛼,ν𝐴𝐵,ν𝐸. 

Based on the performed analysis, the owner of the greenhouse is able to infer that 
the type of soil influences the fruitage of the plant while the type of fertilizer does 
not at the significance level α = 0.05 . Also, a significant interaction between the 
soil and the fertilizer concerning the fruitage of the plant was not observed.  

8.3 PAIRWISE COMPARISON - FISHER’S LEAST SIGNIFICANT 
DIFFERENCE (LSD) METHOD  

The analysis of variance examines the change of an object as a result of being 
influenced by different factors. If results of ANOVA/MANOVA show that the object 
is sensitive to a factor, further and more detailed questions may be asked. For 
example: How big is the change of a factor which makes the object respond? Is the 
size of change independent from the initial level of the factor?  

Pairwise comparison is a method useful for solving this kind of problem. It consists 
of comparing mean values of the response variable associated with various levels 
of the considered factor. The differences between the means are evaluated versus 
a certain reference regarding their statistical significance. The formula describing 
the reference depends on the selected method of pairwise comparison. 

It is worth to employ pairwise comparison if the considered factor is a nominal or 
ordinal variable. Otherwise, a regression analysis may be attempted, which is still 
more informative (see Chapter 9). 

Fisher’s Least Significant Difference (LSD) method was selected for presentation in 
this book as an exemplary pairwise comparison method. In the framework of this 
approach, the reference is the least significant difference which is defined in the 
following way: 

𝐿𝑆𝐷 = 𝑡𝛼,𝑣�𝑀𝑆𝐸 �
1
𝑟𝑖

+
1
𝑟𝑙
� 

where: 𝑡 is the variable which has 𝑡-Student distribution, α is the significance level, 
ν are degrees of freedom associated with 𝑀𝑆𝐸 ,  𝑀𝑆𝐸  is the mean square 
representing the within level variance of the collected measurement data, 𝑟𝑖 is the 
number of replicate measurements at the 𝑖𝑡ℎ level of considered factor, 𝑟𝑙 is the 
number of replicate measurements at the 𝑙𝑡ℎ level of the considered factor. 
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The difference between responses of the object to two different levels of the factor 
is compared with the 𝐿𝑆𝐷 . The difference is considered significant at the 
significance level α if the following is true: 

�𝑦�𝑖 − 𝑦�𝑙� ≥ 𝐿𝑆𝐷 

where: 𝑦�𝑖 is the average object response to the 𝑖𝑡ℎlevel of the factor and 𝑦�𝑙 is the 
average object response to the 𝑙𝑡ℎ level of the factor. 

The difference is considered insignificant, at the significance level α, if the following 
is true: 

�𝑦�𝑖 − 𝑦�𝑙� < 𝐿𝑆𝐷 

Calculations are done for each pair (𝑖, 𝑙) of levels of the factor. 

8.3.1 EXAMPLE  

Problem. It was shown in the solution of Example 8.1.4 that the method of 
dishwashing significantly influenced the cost of dishwashing. It is interesting to find 
out which methods are really different in that respect. 

Solution. It is possible to solve the problem using pairwise comparison. For 
example, the least significant difference method may be employed. The considered 
response variable 𝑌 is the cost of dishwashing while the considered factor 𝑋𝐴 is the 
method of dishwashing.  

The mean value of the response variable associated with each level of factor 𝑋𝐴, 
was calculated as shown in Table 8.7.  

Table 8.7  Mean value of the response variable associated with each level of factor 𝑿𝑨. 

Level of factor 
𝑋𝐴 

Level description mean value of 𝑌 

𝑋𝐴1 ordinary manual dishwashing 𝑦�1 = 0.5167 

𝑋𝐴2 economic manual 
dishwashing 

𝑦�2 = 0.1533 

𝑋𝐴3 washing with a dishwasher 𝑦�3 = 0.8303 

Assuming the significance level α = 0.05, the LDS is: 

𝐿𝑆𝐷 = 𝑡𝛼,𝑣�𝑀𝑆𝐸 �
1
𝑟𝑖

+
1
𝑟𝑙
� = 𝑡0.05,6�0.0208 �

1
3

+
1
3
� = 2.447�0.0208 �

1
3

+
1
3
�

= 0.2882 
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The value of 𝑡𝛼,𝑣 = 𝑡0.05,6 was found in the tables of the 𝑡-Student distribution. All 
the other values were found in the corresponding ANOVA table (Table 8.3). Due to 
the equal number of replicate measurements at each level of the factor 𝑋𝐴, the 
𝐿𝑆𝐷 is the same for all the pairs of compared levels of factor 𝑋𝐴. 

The table of pairwise comparisons is presented in Table 8.8.  

Table 8.8 Table of pairwise comparisons. 

Pair of levels of 
factor XA, i-l 

�𝑦�𝑖 − 𝑦�𝑙� LSD Conclusion 

1 - 2 |0.3643| 0.2882 µ�1≠µ�2 

1 - 3 |-0.3136| 0.2882 µ1≠µ�3 

2 - 3 |-0.677| 0.2882 µ�2≠µ�3 

As shown in Table 8.8, the difference �𝑦�𝑖 − 𝑦�𝑙�  is greater than the 𝐿𝑆𝐷 for any two 
levels {𝑖, 𝑙} of factor 𝑋𝐴 .  Therefore, changing between any two levels of the 
considered factor 𝑋𝐴 caused significant change in the response variable 𝑌, at the 
significance level α = 0.05.  

Based on the performed statistical analysis, it is inferred that changing between 
any two methods of dishwashing caused significant change in the costs of 
dishwashing. Additionally, by looking at values of differences 𝑦�𝑖 − 𝑦�𝑙   and at their 
signs, one may notice that the most disadvantageous was the replacement of 
economic manual dishwashing by the dishwasher. Switching between the 
economic manual dishwashing and ordinary manual dishwashing increased the cost 
in a similar manner as changing ordinary manual dishwashing for the dishwasher. 
Surprisingly, the analysis has shown that machine dishwashing is the least 
beneficial (largest 𝑦�3) .  
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9 REGRESSION ANALYSIS 

The problem of objects changing as a result of being influenced by different factors 
may be studied in various aspects. The analysis of variance, which was introduced 
in Chapter 8, is adequate for detecting the statistically significant change of an 
object. However, in many cases such conclusions are insufficient. A more advanced 
approach consists of forming a quantitative description of object change  resulting 
from the influence of factors.  

The quantitative description of the relationship between the values of factors and 
the values of a response variable is of great practical importance. For example, 
knowing this relationship an engineer is able to predict the response variable based 
on values of factors. Also, the engineer may be able to identify the values of factors 
which make the response variable take a particular, desired value. 

Regression analysis is used for the quantitative representation of the relationship 
between two or more random variables. Regarding their status in the relationship, 
variables are divided into two groups: independent, also called explanatory, or 
predictor variables and dependent, also called response variables. The main idea of 
the regression analysis is to explain the variability of the dependent variable using 
the variability of independent variables.  

There are several types of regression regarding the number of independent 
variables. The most frequently used in engineering applications are: 

• Simple or univariate regression. It is used for representing the relationship 
between one independent variable and one dependent variable. 

• Multiple regression. It is used for representing the relationship between 
several independent variables and one dependent variable. 

Considering the kind of mathematical relationship regarding model parameters: 

• Linear regression. Observational data are modeled by a function which is a 
linear combination of the model parameters. 

• Nonlinear regression. Observational data are modeled by a function which 
is a nonlinear combination of the model parameters. 

Regression analysis consists of building a regression model and its diagnostics. 

One shall distinguish two kinds of relationships described using regression analysis. 
Some relationships have a cause–response character while others represent only 
correlations. The difference is substantial from a practical point of view. The cause-
response relationship is when the dependent variable is really influenced by 
independent variable(s), i.e. the change of an independent variable causes the 
change in a dependent variable. The relationship having a correlation character 
occurs when the dependent variable varies together in a synchronized manner with 
the independent variable(s). The change of independent variable(s) does not cause 
the change of the dependent variable, but there is another, third factor which 
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influences both variables in a cause-response  manner and makes them change 
together in a correlated way. 

The regression model which represents a cause-response relationship shall be built 
exclusively using the measurement data provided in the course of an active 
experiment (see Chapter 2). This model may be used for prediction purposes. 

The regression model which has a correlation character may be built using the 
measurement data provided in course of a passive experiment (see Chapter 2). It is 
not allowed to use this model for prediction purposes unless the theoretical 
justification of the cause-response relationship is available. 

9.1 REGRESSION MODEL  

The general form of the regression model is the following: 

𝑌 = 𝑓��⃗�,𝛽� + 𝜀 

where: 𝑌  is the dependent variable, 𝑓  indicates a mathematical function, 
�⃗� = [𝑋1,𝑋2, … ,𝑋𝑘] is the vector of 𝑘 independent variables, 𝛽 is the vector of 
coefficients in the regression equation, ε is a random component.  

The regression model states that the total variability of the dependent variable 𝑌 is 
composed of two elements. The first element is the deterministic component 
𝑓��⃗�,𝛽�, which can be described using the mathematical function 𝑓. This element is 
also referred to as 𝑌� , which indicates the part of variable 𝑌 accounted for by the 
deterministic part of the regression model. The second element of the regression 
model is the random component ε. It is the difference between the actual 
measured variable 𝑌 and its part which is calculated from the deterministic part of 
the regression model: 

𝜀 = 𝑌 − 𝑓��⃗�,𝛽�  

𝜀 = 𝑌 − 𝑌� 
The random component is also referred to as a residual or an error.  

Principal assumptions upon the regression analysis refer to a random component. 
These are: the mean of random component is zero; the variance or random 
component is constant across the observations and it is independent of �⃗�; the 
random component is not autocorrelated. Another important assumption refers to 
the independent variables and it states they should be uncorrelated.   

From the computational point of view, the regression analysis is aimed at 
calculating the vector of coefficients 𝛽. The resulting deterministic component of 
the model shall allow for good separation of the variability of the dependent 
variable caused by the deterministic factors from the variability resulting from 
random component. The type of function 𝑓 is either known or its convenient form 
is assumed, e.g. linear. It is required that the number of data points which are used 
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in calculations exceed the number of coefficients in the regression equation. 
Otherwise, there is not enough data to calculate all coefficients or the coefficients 
may be obtained directly using a set of algebraic equations.  

The most commonly applied strategy aimed at calculating coefficients in a 
regression equation is called the ordinary least-squares method (OLSM). The main 
idea of this method is to minimize the sum of squared distances between the 
variable 𝑌 and the deterministic component of the regression model 𝑌� for all data 
points which are used for building the regression model. 

For explaining the concept behind the LSM, the case of univariate linear regression 
is considered here. The simple regression model has the following form: 

𝑦 = 𝛽1𝑥 + 𝛽0 + 𝜀 
A scatter plot representing an example of the relationship between the random 
variables 𝑌 and 𝑋 may be described using simple regression as shown in Fig. 9.1.  

 

Figure 9.1 Scatter plot of the relationship between random variables 𝐘 and 𝐗, which may be 
described using simple regression. 

In the case of simple regression the vector of model coefficients 𝛽  consists of two 
elements: β1 and β0. As a result of using the OLSM for calculating the values of β1 
and β0 for the regression line, their estimates �̂�1 and �̂�0 will have such values that 
the location of the regression line will be driven by the minimization of the sum of 
square areas, which are shown in Fig. 9.1. If the criterion of the minimum sum of 
squares, i.e. min(∑ (𝑦𝑖 − 𝑦�𝑖)𝑛

𝑖=1 ) is fulfilled, the estimates �̂�1 , �̂�0  are calculated 
from the following  equations: 

�̂�1 =
∑ (𝑥𝑖 − �̅�)(𝑦𝑖 − 𝑦�)𝑛
𝑖=1
∑ (𝑥𝑖 − �̅�)2𝑛
𝑖=1

 

�̂�0 = 𝑦� − �̂�1𝑥 
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The ordinary least squares method is also applicable in the case of multiple linear 
regression. The multiple linear regression model is the following: 

𝑦 = 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯𝛽𝑘𝑥𝑘 + 𝛽0 + 𝜀 
where 𝑘 is the number of independent variables in the regression model. It is 
recommended to use statistical software or adequate tollboxes for calculating the 
values of regression coefficients 𝛽0,𝛽1, … ,𝛽𝑘  in the case of multiple linear 
regression. Manual calculations are too complex and time consuming. The reader is 
referred to the relevant functionality available in Excel.  

In the case that the ranges of independent variables  are very different, e.g. they 
differ by one or more order of magnitude, it is recommended to standardize the 
variables (see §5.2) before including them in the regression model.  

9.2 DIAGNOSTICS OF THE REGRESSION MODEL  

A number of diagnostic tools are available for checking the quality of the regression 
model. Regression model diagnostic tools may be divided into two groups. The first 
group is used for checking if the particular regression model is the right selection 
for describing the relationship between the dependent variable and independent 
variable(s). This group includes statistical tests of significance for the entire model, 
statistical tests of significance of coefficients in the regression model and tests 
dedicated to verifying the assumptions which were made prior to model 
construction. The second group of tools is used for assessing the goodness-of-fit, 
i.e. how well the regression model explains the variability of the response variable 
𝑌. The most useful tools are the diagnostic plot, coefficient of determination and 
standard error.  

9.2.1 SIGNIFICANCE OF THE REGRESSION MODEL  

The significance of the regression model is investigated by testing the 
corresponding statistical hypothesis. The null hypothesis states that all the 
coefficients which stand next to the independent variables in the regression model 
are equal zero. The formal representation of the hypothesis is the following: 

𝐻0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑘 = 0 

If the null hypothesis is true, the regression model, for example multiple regression 
model:  

𝑦 = 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯𝛽𝑘𝑥𝑘 + 𝛽0 + 𝜀 

is reduced to the form: 

𝑦 = 𝛽0 + 𝜀 
which indicates that none of the independent variables contribute to explaining the 
variation of the dependent variable.  
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The null hypothesis is tested versus the alternative which states that at least one 
coefficient in the regression model is different from zero. The formal 
representation of the alternative hypothesis is the following: 

𝐻𝐴: ∃𝛽𝑗 ≠ 0 

The test statistic employed for null hypothesis testing is 

𝐹𝑐𝑎𝑙 =
𝑀𝑆𝑅
𝑀𝑆𝐸

 

where 𝑀𝑆𝑅 is the mean square regression and it is calculated as follows: 

𝑀𝑆𝑅 =
𝑆𝑆𝑅
𝑘

=
∑ (𝑦�𝑖 − 𝑦�)𝑛
𝑖=1

2

𝑘
 

and 𝑀𝑆𝐸 is the mean square error and it is calculated using the formula:  

𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑛 − 𝑘 − 1
=
∑ (𝑦𝑖 − 𝑦�𝑖)𝑛
𝑖=1

2

𝑛 − 𝑘 − 1
 

where: 𝑆𝑆𝑅 is the sum of square regression, 𝑆𝑆𝐸 is the sum of square error, 𝑛 is the 
number of data points used for developing the regression model, 𝑘 is the number 
of independent variables in the model, 𝑦�𝑖  is the 𝑖𝑡ℎ calculated value of the response 
variable, 𝑦� is the mean of the measured values of the response variable, 𝑦𝑖  is the 
𝑖𝑡ℎ measured value of the response variable. 

If the null hypothesis is true, the test statistic has 𝐹-Snedecore distribution with, 
ν1 = 𝑘 and ν2 = 𝑛 − 𝑘 − 1 degrees of freedom. 

The mean square regression, 𝑀𝑆𝑅 indicates the variability of the response variable 
calculated from the regression model around the mean of the response variable 𝑌�. 
The mean square error, 𝑀𝑆𝐸 indicates the discrepancy between measured values 
of the response variable 𝑌 and values calculated from the regression model 𝑌�.  

The criterion of null hypothesis rejection at the significance level α, is the following: 

𝑝�𝐹 ≥ 𝐹𝛼,ν1,ν2� = 𝛼 ≡ 𝑝 = 𝑃�𝐹ν1,ν2 ≥ 𝐹𝑐𝑎𝑙� ≤ 𝛼 

The critical interval for 𝐹𝑐𝑎𝑙  is  𝐹𝜖�〈𝐹𝛼,ν1,ν2 ,∞�� . If 𝐹𝑐𝑎𝑙𝜖�〈𝐹𝛼,ν1,ν2 ,∞�� , the null 
hypothesis is rejected. The same holds if the 𝑝-value is less than or equal to the 
significance level 𝛼.  

For the graphical interpretation of the criteria of null hypothesis rejection see Fig. 
7.12 and Fig. 7.13. 

The rejection of the null hypothesis is synonymous with considering the regression 
model as significant, i.e. able to explain the variability of the response variable with 
a set of independent variables at the significance level α.  

The acceptance of the null hypothesis is synonymous with considering the 
regression model as insignificant, i.e. unable to explain the variability of the 
response variable with a set of independent variables at the significance level α. 
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9.2.2 SIGNIFICANCE OF REGRESSION MODEL COEFFICIENTS  

The test on the significance of a regression model refers to the entire model and 
does not offer any knowledge about the elements of the model. It may happen that 
the entire regression model is significant, but some of the model coefficients are 
statistically insignificant. If so, the independent variables which stand by these 
coefficients do not contribute much to the explanation of the variability of the 
dependent variable. One may consider removing them from the model, which 
results in model simplification.  

The significance of a coefficient in the regression model is evaluated by testing the 
corresponding statistical hypothesis.  

The null hypothesis on the significance of the 𝑘𝑡ℎ coefficient in the regression 
model states that this coefficient is equal to zero. The formal representation of the 
hypothesis is the following: 

𝐻0: 𝛽𝑘 = 0 
The null hypothesis is tested versus the alternative hypothesis, which states that 
the coefficient is different from zero, as follows: 

𝐻𝐴: 𝛽𝑘 ≠ 0 
The test statistic employed for null hypothesis testing is 

𝑡𝑐𝑎𝑙 =
�̂�𝑘
𝑠𝛽�𝑘

 

where: �̂�𝑘 is the estimate of coefficient 𝛽𝑘  in the regression model,  𝑠𝛽�𝑘  is the 
standard error of estimation of 𝛽𝑘. The formula describing 𝑠𝛽�𝑘is out of the scope of 
this book. The reader shall understand that a large value of 𝑠𝛽�𝑘  indicates that the 

estimate of  𝛽𝑘 with �̂�𝑘 is unstable, which is unwanted.    

Significant coefficients are clearly different from zero and the error of their 
estimation is low. For such coefficients the value of  𝑡𝑐𝑎𝑙  is relatively high.  
Insignificant coefficients are close to zero and/or the error of their estimation is 
high. For such coefficients the value of  𝑡𝑐𝑎𝑙 is relatively low. 

If the null hypothesis is true, the test statistic 𝑡𝑐𝑎𝑙 has 𝑡-Student distribution with 
ν = 𝑛 − 𝑘 − 1 degrees of freedom.  

The criterion of null hypothesis rejection at the significance level α is the following: 

𝑃 �|𝑡| ≥ 𝑡𝛼
2 ,ν� = 𝛼 ≡ 𝑝 = 𝑃(|𝑡| ≥ 𝑡𝑐𝑎𝑙) ≤ 𝛼 

The critical interval for 𝑡𝑐𝑎𝑙  is  𝑡𝜖 ��(−∞, �−𝑡𝛼
2,ν〉 ∪ 〈𝑡𝛼2,ν,∞�� . If 𝑡𝑐𝑎𝑙𝜖 ��(−∞, �−𝑡𝛼

2,ν〉 ∪
〈𝑡𝛼

2,ν,∞��, the null hypothesis is rejected. The same holds if the 𝑝-value is less than 

or equal to the significance level α. 
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For the graphical interpretation of the criteria of null hypothesis rejection see Fig. 
7.4 and Fig. 7.5.  

The rejection of the null hypothesis for a particular coefficient 𝛽𝑘 in the regression 
model is synonymous with considering the coefficient as significant at the 
significance level α. In other words, the independent variable 𝑋𝑘, which stands next 
to the coefficient, is considered as significantly contributing to the explanation of 
the variability of the response variable 𝑌.  

The acceptance of the null hypothesis for a particular coefficient 𝛽𝑘  in the 
regression model is synonymous with considering the coefficient as insignificant at 
the significance level α. In other words, the independent variable 𝑋𝑘, which stands 
next to the coefficient, is considered as insignificantly contributing to the 
explanation of the variability of the response variable 𝑌 . One shall consider 
removing this variable from the regression model and recalculating.   

The relevant hypothesis shall be formulated and tested for every coefficient in the 
model. 

9.2.3 DIAGNOSTIC PLOT  

The simplest diagnostic tool which indicates the goodness-of-fit has a graphical 
character. The diagnostic plot is a scatter plot. Values of the response variable, 𝑌 
are represented on the horizontal axis and values calculated from the regression 
model, 𝑌� are represented on the vertical axis. A single point in the plot has the 
coordinates (𝑦𝑖 ,𝑦�𝑖). Both values are associated with the 𝑖𝑡ℎ  set of values of the 
independent variables [𝑥1𝑖 ,𝑥2𝑖 , … , 𝑥𝑘𝑖 ].    

 

Figure 9.2 Examples of various diagnostic plots. 

There are two extreme layouts of points in a diagnostic plot. The one shown in Fig. 
9.2a indicates a perfect fit. The points in the diagnostic plot are located along the 
line 𝑦 = 𝑦�. In this case, the regression model explains the entire variability of the 
response variable. This ideal case is unrealistic due to the existence of variability of 
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𝑌 caused by random factors. If this identity is obtained in the course of regression 
model parameterization, it indicates that the data is overfitting. The other extreme 
layout is shown in Fig. 9.2b. This represents a lack of fit. The cloud of points in the 
diagnostic plot takes the form of a circular shape. In this case, the regression model 
is totally unable to explain the variability of the response variable. Between these 
two extremes there are scatter plots which show different degrees of goodness-of-
fit. In general, the slim oval shape of the cloud of points along the line 𝑦 = 𝑦� 
indicates that the particular kind of regression model was a good selection. A 
smaller spread of points along the reference line 𝑦 = 𝑦�, indicates a better fit. Also, 
more specific information is carried by the diagnostic plots. An example of a plot 
which indicates underestimation is presented in Fig. 9.2c. The cloud of points has a 
lower tilt than the reference line. The range of values of 𝑌 which are represented 
by the regression model is smaller than the entire range of the response variable. 
The inappropriateness of linear regression for representing the variability of  𝑌 is 
visible in the diagnostic plot shown in Fig. 9.2d. The bent form of the scatter 
indicates that there is a nonlinear component missing in the regression model. 

9.2.4 COEFFICIENT OF DETERMINATION 

The coefficient of determination is one of the basic diagnostic tools indicating the 
goodness-of-fit of experimental data by the regression model.  

The coefficient of determination is calculated by the following formula: 

𝑟2 =
∑ (𝑦�𝑖 − 𝑦�)2𝑛
𝑖=1

∑ (𝑦𝑖 − 𝑦�)2𝑛
𝑖=1

 

The graphical representation of the idea behind the coefficient of determination is 
shown in Fig. 9.3 considering a single data point. 

The denominator in the 𝑟2 formula contains the difference |𝑦𝑖 − 𝑦�|. It is the key 
element in the formula describing the variance of variable 𝑌. The difference tells 
the distance between the 𝑖𝑡ℎ value of the variable and the overall mean value of 
the variable (Fig. 9.3). Part of this distance is the difference |𝑦�𝑖 − 𝑦�|, which is 
placed in the nominator of the 𝑟2 formula. It may be understood as the key 
element of variance of variable  𝑌�. This part of the distance is accounted for by the 
regression model. The other part |𝑦�𝑖 − 𝑦𝑖| remains unexplained. It comes from 
random factors and independent variables not included in the regression model. 
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Figure 9.3 Illustration of the elements of the formula describing the coefficient of 
determination. 

The coefficient of determination shows the fraction of variance of the response 
variable explained by the regression model. The coefficient takes values from the 
interval 𝑟2 ∈ 〈0,1〉. 
In the ideal case the entire variability of the response variable is explained by the 
regression model and 𝑟2 = 1. In the worst imaginable case none of the variability 
of the response variable is explained by the regression model and 𝑟2 = 0. The 
coefficient of determination indicates that the regression model well explains the 
variation of the response variable if its value is close to one. Such models are called 
adequate. Small values for the coefficient of determination are obtained for models 
which poorly explain the response variable. Close to zero values of 𝑟2 indicate 
highly inadequate models.  

In the case of multiple regression models, the basic formula for the coefficient of 
determination is slightly modified in order to obtain the corrected coefficient of 
determination, which shall be used for assessing the goodness-of-fit: 

�̅�2 = 1 − (1 − 𝑟2)
𝑛 − 1

𝑛 − 𝑘 − 1
 

The correction prevents the increase of the value of this coefficient in case the 
number of independent variables is increased in the model while they do not 
contribute substantially to explaining the variance of the response variable. By 
using the significance test together with this coefficient, it is possible to point out 
redundant variables in the regression model and remove them.  

9.3 PREDICTION WITH THE REGRESSION MODEL 

One very useful application of the regression model is prediction. Prediction is the 
calculation of the value of the response variable for the set of values of 
independent variables. The principle restrictions to be obeyed when using the 
regression model for prediction concern the range of values of independent 
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variables. It is allowed to predict the response variable based on a regression 
model within the range of the values of independent variables considered while 
parameterizing the regression model. It is not allowed to predict the response 
variable with the regression model outside the range of the values of independent 
variables considered while parameterizing the regression model. The quality of 
prediction is quantifiable and the example of the relevant indicator is the standard 
error of prediction.  

9.3.1 STANDARD ERROR  

Standard error represents the distance between the real values of the response 
variable and its values obtained from the deterministic part of the regression 
model. The error formula is the following: 

𝑠 = �𝑀𝑆𝐸 

where: 𝑀𝑆𝐸 is the mean square error (see §9.2.1). The standard error is obtained in 
the units of the response variable. 

Small values of standard error indicate good fit between the measured values of 
the response variable and their counterparts calculated from the regression model.  

The standard error may be calculated for the pool of data which were used at the 
stage of model parameterization. In such case, it acts as the diagnostic tool. Also, 
standard error may be calculated for the pool of data which are different from 
those used at the stage of model parameterization. In such case, this measures the 
predictive ability of the model. 

For the sake of obtaining a relative indicator, the standard error is referred to the 
average value of the response variable. 

𝐼 =
𝑠
𝑦�
∙ 100% 

Again, preferred indicator values are close to zero. Depending on their planned use, 
models characterized by up to 5 %, 10 % or even a 20% level of relative error may 
be considered satisfactory. 

9.3.2 EXAMPLE 

Problem. An engineer uses his car daily for driving to work, shopping and reaching 
many other destinations not far from home. He was interested in the relationship 
between fuel consumption and the distance driven as well as the number of stops 
encountered during travel. Stops are mainly enforced by traffic lights. He collected 
data concerning fuel consumption at various travel distances including the number 
of stops encountered during travel. They are shown in Table 9.1. 
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9.1  Experimental data concerning fuel consumption, travel distance and number of stops 
encountered during travel. 

Fuel 
consumption 

(Y) / mL 

Travel  
distance 
(𝑋1)/ km 

Number of 
stops (𝑋2) 

Fuel 
consumption 

(Y) / mL 

Travel  
distance 
(𝑋1)/ km 

Number of 
stops (𝑋2) 

27 0.9 2 49 7.4 4 

104.5 9.6 8 96.9 11.5 9 

163.3 9.7 11 24.3 1 2 

36 1.6 2 110 11.5 10 

100 9.7 9 14.4 1.2 1 

91.8 10.1 10 14.4 0.8 2 

132.5 11 12 55.3 1.9 6 

85 12 8 72 4.4 8 

31.5 1.6 4 93.1 10.1 10 

84.5 4.3 11 35.6 1.5 2 

135 11.3 16 95.2 10.7 7 

78 10.6 7 33.5 1.6 3 

41 1.1 2 72 4.3 7 

124.2 4.9 11 114.4 11.5 10 

83.2 13.1 5 105 11.1 9 

105 11.1 9    

Solution. It is possible to analyze the problem using multiple linear regression. One 
needs to assume that the relationship between the response variable - fuel 
consumption (𝑌) and the two independent variables: travel distance (𝑋1) and 
number of stops (𝑋2) is linear and it can be represented by the following equation: 

𝑌 = 𝛽1𝑋1 + 𝛽2𝑋2 + 𝛽0 + 𝜀 

This is a good starting assumption as theoretical knowledge concerning the 
character of such a relationship is not available. 

The relevant calculation help is offered by the DATA ANALYSIS TOOL in Excel. The 
results of the regression analysis are shown in Table 9.2 - 9.4. 

Table 9.2 Regression analysis for the data shown in Table 9.1 - Regression statistics. 

𝑟2 0.881 

�̅�2 0.872 

𝑀𝑅𝐸 14.126 
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Table 9.3 Regression analysis for the data shown in Table 9.1– Significance of the regression 
model. 

 

ν 𝑆𝑆 𝑀𝑆 𝐹𝑐𝑎𝑙 𝐹α=0.05 

Regression 2 𝑆𝑆𝑅 = 39725.97 𝑀𝑆𝑅 = 19862.99  99.55 3.47𝐸 − 13 

Random 27 𝑆𝑆𝐸 = 5387.34 𝑀𝑆𝐸 = 199.53 

  Total 29 𝑆𝑆𝑇 = 45113.31 

   Table 9.4 Regression analysis for the data shown in Table 9.1 – Significance of model 
coefficients. 

 

�̂� 𝑠𝛽�  𝑡𝛽�  𝑝-value 

𝑋1 7.26 0.983 7.381 6.1𝐸 − 08 

𝑋2 2.53 0.840 3.013 0.00557 

constant term 9.41 5.433 1.731 0.09478 

 

9.4 Diagnostic plot for the regression model developed in example 10.3.2 

Based on the results of the regression analysis shown in Table 9.2 - 9.4, a number 
of conclusions can be drawn about the considered regression model. 

• The model is statistically significant at the significance level 𝛼 = 0.05. The 
condition of rejection of the null hypothesis about all model coefficients 
being zero is not fulfilled (𝐹𝑐𝑎𝑙 > 𝐹α=0.05).  

• The model offers high goodness-of-fit. The corrected coefficient of 
determination �̅�2 = 0.872 has a high value.  

• The multiple linear regression model was a good choice for representing 
the relationship between the considered variables. The points in the 
diagnostic plot do not retract systematically from the line 𝑦 = 𝑦�.  
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• The two variables 𝑋1 and 𝑋2 contribute to the explanation of the response 
variable 𝑌 in a statistically significant manner. The associated 𝑝-values are 
smaller than α = 0.05 . The constant term �̂�0  is not significant. The 
associated 𝑝-value is greater than α. 

• The contribution of 𝑋1 to the explanation of the response variable 𝑌 is over 
two times higher than the contribution of 𝑋2. 

Considering the real meaning of the variables included in the regression model, it is 
possible to infer about the relationship between the fuel consumption and travel 
distance together with the number of stops encountered during travel. Namely, 
there is a statistically significant relationship between these variables. The linear 
function is a good approximation of the relationship. Interestingly, the fuel 
consumption is more strongly influenced by the number of stops encountered 
during travel than by the travel distance. These conclusions are valid for the 
particular considered case, i.e. the car, the driver and the city. They do not have a 
general character.  
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APPENDIX 1 NORMAL DISTRIBUTION  

 

Table 1 𝑭(𝒁) = 𝒑(𝒁 ≤ 𝒛) 

Z 0 0.01   0.02   0.03   0.04   0.05   0.06   0.07   0.08   0.09 

0 0.50000  0.50399  0.50798  0.51197  0.51595  0.51994  0.52392  0.52790  0.53188  0.53586 

0.1  0.53983  0.54380  0.54776  0.55172  0.55567  0.55962  0.56356  0.56749  0.57142  0.57535 

0.2  0.57926  0.58317  0.58706  0.59095  0.59483  0.59871  0.60257  0.60642  0.61026  0.61409 

0.3  0.61791  0.62172  0.62552  0.62930  0.63307  0.63683  0.64058  0.64431  0.64803  0.65173 

0.4  0.65542  0.65910  0.66276  0.66640  0.67003  0.67364  0.67724  0.68082  0.68439  0.68793 
                                

0.5  0.69146  0.69497  0.69847  0.70194  0.70540  0.70884  0.71226  0.71566  0.71904  0.72240 

0.6  0.72575  0.72907  0.73237  0.73565  0.73891  0.74215  0.74537  0.74857  0.75175  0.75490 

0.7  0.75804  0.76115  0.76424  0.76730  0.77035  0.77337  0.77637  0.77935  0.78230  0.78524 

0.8  0.78814  0.79103  0.79389  0.79673  0.79955  0.80234  0.80511  0.80785  0.81057  0.81327 

0.9  0.81594  0.81859  0.82121  0.82381  0.82639  0.82894  0.83147  0.83398  0.83646  0.83891 
                                

1 0.84134  0.84375  0.84614  0.84849  0.85083  0.85314  0.85543  0.85769  0.85993  0.86214 

1.1  0.86433  0.86650  0.86864  0.87076  0.87286  0.87493  0.87698  0.87900  0.88100  0.88298 

1.2  0.88493  0.88686  0.88877  0.89065  0.89251  0.89435  0.89617  0.89796  0.89973  0.90147 

1.3  0.90320  0.90490  0.90658  0.90824  0.90988  0.91149  0.91308  0.91466  0.91621  0.91774 

1.4  0.91924  0.92073  0.92220  0.92364  0.92507  0.92647  0.92785  0.92922  0.93056  0.93189 
                                

1.5  0.93319  0.93448  0.93574  0.93699  0.93822  0.93943  0.94062  0.94179  0.94295  0.94408 

1.6  0.94520  0.94630  0.94738  0.94845  0.94950  0.95053  0.95154  0.95254  0.95352  0.95449 

1.7  0.95543  0.95637  0.95728  0.95818  0.95907  0.95994  0.96080  0.96164  0.96246  0.96327 

1.8  0.96407  0.96485  0.96562  0.96638  0.96712  0.96784  0.96856  0.96926  0.96995  0.97062 

1.9  0.97128  0.97193  0.97257  0.97320  0.97381  0.97441  0.97500  0.97558  0.97615  0.97670 
                                

2 0.97725  0.97778  0.97831  0.97882  0.97932  0.97982  0.98030  0.98077  0.98124  0.98169 

2.1  0.98214  0.98257  0.98300  0.98341  0.98382  0.98422  0.98461  0.98500  0.98537  0.98574 

2.2  0.98610  0.98645  0.98679  0.98713  0.98745  0.98778  0.98809  0.98840  0.98870  0.98899 

2.3  0.98928  0.98956  0.98983  0.99010  0.99036  0.99061  0.99086  0.99111  0.99134  0.99158 

2.4  0.99180  0.99202  0.99224  0.99245  0.99266  0.99286  0.99305  0.99324  0.99343  0.99361 
                                

2.5  0.99379  0.99396  0.99413  0.99430  0.99446  0.99461  0.99477  0.99492  0.99506  0.99520 

2.6  0.99534  0.99547  0.99560  0.99573  0.99585  0.99598  0.99609  0.99621  0.99632  0.99643 

2.7  0.99653  0.99664  0.99674  0.99683  0.99693  0.99702  0.99711  0.99720  0.99728  0.99736 

2.8  0.99744  0.99752  0.99760  0.99767  0.99774  0.99781  0.99788  0.99795  0.99801  0.99807 

2.9  0.99813  0.99819  0.99825  0.99831  0.99836  0.99841  0.99846  0.99851  0.99856  0.99861 
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APPENDIX 2 T-STUDENT DISTRIBUTION 

 

Table 2 𝒕𝜶,ν such that 𝒑�𝒕𝜶,ν ≤ |𝒕|� = 𝜶 

ν 
  

α   

0.5  0.4  0.3  0.2  0.1  0.05  0.04  0.03  0.02  0.01  0.001 

1 1.000  1.376  1.963  3.078  6.314  12.706  15.894  21.205  31.821  63.656  636.578 

2 0.816  1.061  1.386  1.886  2.920  4.303  4.849  5.643  6.965  9.925  31.600 

3 0.765  0.978  1.250  1.638  2.353  3.182  3.482  3.896  4.541  5.841  12.924 

4 0.741  0.941  1.190  1.533  2.132  2.776  2.999  3.298  3.747  4.604  8.610 

5 0.727  0.920  1.156  1.476  2.015  2.571  2.757  3.003  3.365  4.032  6.869 
                                   

6 0.718  0.906  1.134  1.440  1.943  2.447  2.612  2.829  3.143  3.707  5.959 

7 0.711  0.896  1.119  1.415  1.895  2.365  2.517  2.715  2.998  3.499  5.408 

8 0.706  0.889  1.108  1.397  1.860  2.306  2.449  2.634  2.896  3.355  5.041 

9 0.703  0.883  1.100  1.383  1.833  2.262  2.398  2.574  2.821  3.250  4.781 

10 0.700  0.879  1.093  1.372  1.812  2.228  2.359  2.527  2.764  3.169  4.587 
                                   

11 0.697  0.876  1.088  1.363  1.796  2.201  2.328  2.491  2.718  3.106  4.437 

12 0.695  0.873  1.083  1.356  1.782  2.179  2.303  2.461  2.681  3.055  4.318 

13 0.694  0.870  1.079  1.350  1.771  2.160  2.282  2.436  2.650  3.012  4.221 

14 0.692  0.868  1.076  1.345  1.761  2.145  2.264  2.415  2.624  2.977  4.140 

15 0.691  0.866  1.074  1.341  1.753  2.131  2.249  2.397  2.602  2.947  4.073 
                                   

16 0.690  0.865  1.071  1.337  1.746  2.120  2.235  2.382  2.583  2.921  4.015 

17 0.689  0.863  1.069  1.333  1.740  2.110  2.224  2.368  2.567  2.898  3.965 

18 0.688  0.862  1.067  1.330  1.734  2.101  2.214  2.356  2.552  2.878  3.922 

19 0.688  0.861  1.066  1.328  1.729  2.093  2.205  2.346  2.539  2.861  3.883 

20 0.687  0.860  1.064  1.325  1.725  2.086  2.197  2.336  2.528  2.845  3.850 
                                   

21 0.686  0.859  1.063  1.323  1.721  2.080  2.189  2.328  2.518  2.831  3.819 

22 0.686  0.858  1.061  1.321  1.717  2.074  2.183  2.320  2.508  2.819  3.792 

23 0.685  0.858  1.060  1.319  1.714  2.069  2.177  2.313  2.500  2.807  3.768 

24 0.685  0.857  1.059  1.318  1.711  2.064  2.172  2.307  2.492  2.797  3.745 

25 0.684  0.856  1.058  1.316  1.708  2.060  2.167  2.301  2.485  2.787  3.725 
                                   

26 0.684  0.856  1.058  1.315  1.706  2.056  2.162  2.296  2.479  2.779  3.707 

27 0.684  0.855  1.057  1.314  1.703  2.052  2.158  2.291  2.473  2.771  3.689 

28 0.683  0.855  1.056  1.313  1.701  2.048  2.154  2.286  2.467  2.763  3.674 

29 0.683  0.854  1.055  1.311  1.699  2.045  2.150  2.282  2.462  2.756  3.660 

30 0.683  0.854  1.055  1.310  1.697  2.042  2.147  2.278  2.457  2.750  3.646 
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Table 2 continuation,  𝒕𝜶,ν such that 𝒑�𝒕𝜶,ν ≤ |𝒕|� = 𝜶  

ν α   

  0.5  0.4  0.3  0.2  0.1  0.05  0.04  0.03  0.02  0.01  0.001 

31 0.682  0.853  1.054  1.309  1.696  2.040  2.144  2.275  2.453  2.744  3.633 

32 0.682  0.853  1.054  1.309  1.694  2.037  2.141  2.271  2.449  2.738  3.622 

33 0.682  0.853  1.053  1.308  1.692  2.035  2.138  2.268  2.445  2.733  3.611 

34 0.682  0.852  1.052  1.307  1.691  2.032  2.136  2.265  2.441  2.728  3.601 

35 0.682  0.852  1.052  1.306  1.690  2.030  2.133  2.262  2.438  2.724  3.591 

            
36 0.681  0.852  1.052  1.306  1.688  2.028  2.131  2.260  2.434  2.719  3.582 

37 0.681  0.851  1.051  1.305  1.687  2.026  2.129  2.257  2.431  2.715  3.574 

38 0.681  0.851  1.051  1.304  1.686  2.024  2.127  2.255  2.429  2.712  3.566 

39 0.681  0.851  1.050  1.304  1.685  2.023  2.125  2.252  2.426  2.708  3.558 

40 0.681  0.851  1.050  1.303  1.684  2.021  2.123  2.250  2.423  2.704  3.551 
                                   

41 0.681  0.850  1.050  1.303  1.683  2.020  2.121  2.248  2.421  2.701  3.544 

42 0.680  0.850  1.049  1.302  1.682  2.018  2.120  2.246  2.418  2.698  3.538 

43 0.680  0.850  1.049  1.302  1.681  2.017  2.118  2.244  2.416  2.695  3.532 

44 0.680  0.850  1.049  1.301  1.680  2.015  2.116  2.243  2.414  2.692  3.526 

45 0.680  0.850  1.049  1.301  1.679  2.014  2.115  2.241  2.412  2.690  3.520 
                                   

46 0.680  0.850  1.048  1.300  1.679  2.013  2.114  2.239  2.410  2.687  3.515 

47 0.680  0.849  1.048  1.300  1.678  2.012  2.112  2.238  2.408  2.685  3.510 

48 0.680  0.849  1.048  1.299  1.677  2.011  2.111  2.237  2.407  2.682  3.505 

49 0.680  0.849  1.048  1.299  1.677  2.010  2.110  2.235  2.405  2.680  3.500 

50 0.679  0.849  1.047  1.299  1.676  2.009  2.109  2.234  2.403  2.678  3.496 
                                   

51 0.679  0.849  1.047  1.298  1.675  2.008  2.108  2.233  2.402  2.676  3.492 

52 0.679  0.849  1.047  1.298  1.675  2.007  2.107  2.231  2.400  2.674  3.488 

53 0.679  0.848  1.047  1.298  1.674  2.006  2.106  2.230  2.399  2.672  3.484 

54 0.679  0.848  1.046  1.297  1.674  2.005  2.105  2.229  2.397  2.670  3.480 

55 0.679  0.848  1.046  1.297  1.673  2.004  2.104  2.228  2.396  2.668  3.476 
                                   

56 0.679  0.848  1.046  1.297  1.673  2.003  2.103  2.227  2.395  2.667  3.473 

57 0.679  0.848  1.046  1.297  1.672  2.002  2.102  2.226  2.394  2.665  3.469 

58 0.679  0.848  1.046  1.296  1.672  2.002  2.101  2.225  2.392  2.663  3.466 

59 0.679  0.848  1.046  1.296  1.671  2.001  2.100  2.224  2.391  2.662  3.463 

60 0.679  0.848  1.045  1.296  1.671  2.000  2.099  2.223  2.390  2.660  3.460 
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APPENDIX 6 K VALUES FOR CALCULATING TOLERANCE LIMITS 

 

 confidence, q 

 90% 95% 99% 

 percentage, Q 
n 95% 99% 99.90% 95% 99% 99.90% 95% 99% 99.90% 
2 18.800 24.167 30.227 37.674 48.430 60.573 188.491 242.300 303.054 
3 6.919 8.974 11.309 9.916 12.861 16.208 22.401 29.055 36.616 
4 4.943 6.440 8.149 6.370 8.299 10.502 11.150 14.527 18.383 
5 4.152 5.423 6.879 5.079 6.634 8.415 7.855 10.260 13.015 
6 3.723 4.870 6.188 4.414 5.775 7.337 6.345 8.301 10.548 
7 3.452 4.521 5.750 4.007 5.248 6.676 5.488 7.187 9.142 
8 3.264 4.278 5.446 3.732 4.891 6.226 4.936 6.468 8.234 
9 3.125 4.098 5.220 3.532 4.631 5.899 4.550 5.966 7.600 
10 3.018 3.959 5.046 3.379 4.433 5.649 4.265 5.594 7.129 
15 2.713 3.562 4.545 2.954 3.878 4.949 3.507 4.605 5.876 
20 2.564 3.368 4.300 2.752 3.615 4.614 3.168 4.161 5.312 
25 2.474 3.251 4.151 2.631 3.457 4.413 2.972 3.904 4.985 
30 2.413 3.170 4.049 2.549 3.350 4.278 2.841 3.733 4.768 
35 2.368 3.112 3.974 2.490 3.272 4.179 2.748 3.611 4.611 
40 2.334 3.066 3.917 2.445 3.213 4.104 2.677 3.518 4.493 
45 2.306 3.030 3.871 2.408 3.165 4.042 2.621 3.444 4.399 
50 2.284 3.001 3.833 2.379 3.126 3.993 2.576 3.385 4.323 
55 2.265 2.976 3.801 2.354 3.094 3.951 2.538 3.335 4.260 
60 2.333 2.248 2.955 3.774 3.066 3.916 2.506 3.293 4.206 
65 2.235 2.937 3.751 2.315 3.042 3.886 2.478 3.257 4.160 
70 2.222 2.920 3.730 2.299 3.021 3.859 2.454 3.225 4.120 
75 2.211 2.906 3.712 2.285 3.002 3.853 2.433 3.197 4.084 
80 2.202 2.894 3.696 2.272 2.986 3.814 2.414 3.173 4.053 
85 2.193 2.882 3.682 2.261 2.971 3.795 2.397 3.150 4.024 
90 2.185 2.872 3.669 2.251 2.958 3.778 2.382 3.130 3.999 
95 2.178 2.863 3.657 2.241 2.945 3.763 2.368 3.112 3.976 

100 2.172 2.854 3.646 2.233 2.934 3.748 2.355 3.096 3.954 
110 2.160 2.839 3.626 2.218 2.915 3.723 2.333 3.066 3.917 
120 2.150 2.826 3.610 2.205 2.898 3.702 2.314 3.041 3.885 
130 2.141 2.814 3.595 2.194 2.883 3.683 2.298 3.019 3.857 
140 2.134 2.804 3.582 2.184 2.870 3.666 2.283 3.000 3.833 
150 2.127 2.795 3.571 2.175 2.859 3.652 2.270 2.983 3.811 
160 2.121 2.787 3.561 2.167 2.848 3.638 2.259 2.968 3.792 
170 2.116 2.780 3.552 2.160 2.839 3.527 2.248 2.955 3.774 
180 2.111 2.774 3.543 2.154 2.831 3.616 2.239 2.942 3.759 
190 2.106 2.768 3.536 2.148 2.823 3.606 2.230 2.931 3.744 
200 2.102 2.762 3.529 2.143 2.816 3.597 2.222 2.921 3.731 
250 2.085 2.740 3.501 2.121 2.788 3.561 2.191 2.880 3.678 
300 2.073 2.725 3.481 2.106 2.767 3.535 2.169 2.850 3.641 
400 2.057 2.703 3.453 2.084 2.739 3.499 2.138 2.809 3.589 
500 2.046 2.689 3.434 2.070 2.721 3.475 2.117 2.783 3.555 
600 2.038 2.678 3.421 2.060 2.707 3.458 2.102 2.763 3.530 
700 2.032 2.670 3.411 2.052 2.697 3.445 2.091 2.748 3.511 
800 2.027 2.663 3.402 2.046 2.688 3.434 2.082 2.736 3.495 
900 2.023 2.658 3.396 2.040 2.682 3.426 2.075 2.726 3.483 

1000 2.019 2.654 3.390 2.036 2.676 3.418 2.068 2.718 3.472 
inf 1.960 2.576 3.291 1.960 2.576 3.291 1.960 2.576 3.291 
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APPENDIX 7   λ  KOLMOGOROV DISTRIBUTION (LIMIT) 

 

Table 7 𝑲(λ) = 𝒑�𝑫√𝒏 ≤ λ� 

λ K(λ) λ K(λ) λ K(λ) λ K(λ) λ K(λ) 
0.28 0.000001 0.75 0.372833 1.22 0.898104 1.69 0.993389 2.16 0.999822 
0.29 0.000004 0.76 0.389640 1.23 0.902972 1.70 0.993828 2.17 0.999838 
0.30 0.000009 0.77 0.406372 1.24 0.907648 1.71 0.994230 2.18 0.999852 
0.31 0.000021 0.78 0.423002 1.25 0.912132 1.72 0.994612 2.19 0.999864 
0.32 0.000046 0.79 0.439505 1.26 0.916432 1.73 0.994972 2.20 0.999874 
0.33 0.000091 0.80 0.455857 1.27 0.920556 1.74 0.995309 2.21 0.999886 
0.34 0.000171 0.81 0.472041 1.28 0.924505 1.75 0.995625 2.22 0.999896 
0.35 0.000303 0.82 0.488030 1.29 0.928288 1.76 0.995922 2.23 0.999904 
0.36 0.000511 0.83 0.503808 1.30 0.931908 1.77 0.996200 2.24 0.999912 
0.37 0.000826 0.84 0.519366 1.31 0.935370 1.78 0.996460 2.25 0.999920 
0.38 0.001285 0.85 0.534682 1.32 0.938682 1.79 0.996704 2.26 0.999926 
0.39 0.001929 0.86 0.549744 1.33 0.941848 1.80 0.996912 2.27 0.999934 
0.40 0.002808 0.87 0.564546 1.34 0.944872 1.81 0.997146 2.28 0.999940 
0.41 0.003972 0.88 0.579070 1.35 0.947756 1.82 0.997346 2.29 0.999944 
0.42 0.005476 0.89 0.593316 1.36 0.950512 1.83 0.997533 2.30 0.999949 
0.43 0.007377 0.90 0.607270 1.37 0.953142 1.84 0.997707 2.31 0.999954 
0.44 0.009730 0.91 0.620928 1.38 0.955650 1.85 0.997870 2.32 0.999958 
0.45 0.012590 0.92 0.634286 1.39 0.958040 1.86 0.998023 2.33 0.999962 
0.46 0.016005 0.93 0.647338 1.40 0.960318 1.87 0.998145 2.34 0.999965 
0.47 0.020022 0.94 0.660082 1.41 0.962486 1.88 0.998297 2.35 0.999968 
0.48 0.024682 0.95 0.672516 1.42 0.964552 1.89 0.998421 2.36 0.999970 
0.49 0.030017 0.96 0.684636 1.43 0.966516 1.90 0.998536 2.37 0.999973 
0.50 0.036055 0.97 0.696444 1.44 0.968382 1.91 0.998644 2.38 0.999976 
0.51 0.042814 0.98 0.707940 1.45 0.970158 1.92 0.998744 2.39 0.999978 
0.52 0.050306 0.99 0.719126 1.46 0.971846 1.93 0.998837 2.40 0.999980 
0.53 0.058534 1.00 0.730000 1.47 0.973448 1.94 0.998924 2.41 0.999982 
0.54 0.067497 1.01 0.740566 1.48 0.974970 1.95 0.999004 2.42 0.999984 
0.55 0.077183 1.02 0.750826 1.49 0.976412 1.96 0.999079 2.43 0.999986 
0.56 0.087577 1.03 0.760780 1.50 0.977782 1.97 0.999179 2.44 0.999987 
0.57 0.098656 1.04 0.770434 1.51 0.979080 1.98 0.999213 2.45 0.999988 
0.58 0.110395 1.05 0.779794 1.52 0.980310 1.99 0.999273 2.46 0.999989 
0.59 0.122760 1.06 0.788860 1.53 0.981476 2.00 0.999329 2.47 0.999990 
0.60 0.135718 1.07 0.797636 1.54 0.982578 2.01 0.999380 2.48 0.999991 
0.61 0.149229 1.08 0.806128 1.55 0.983622 2.02 0.999428 2.49 0.999992 
0.62 0.163225 1.09 0.814342 1.56 0.984610 2.03 0.999474 2.50 0.9999925 
0.63 0.177753 1.10 0.822282 1.57 0.985544 2.04 0.999516 2.55 0.9999956 
0.64 0.192677 1.11 0.829950 1.58 0.986426 2.05 0.999552 2.60 0.9999974 
0.65 0.207987 1.12 0.837356 1.59 0.987260 2.06 0.999588 2.65 0.9999984 
0.66 0.223637 1.13 0.844502 1.60 0.988048 2.07 0.999620 2.70 0.9999993 
0.67 0.239582 1.14 0.851394 1.61 0.988791 2.08 0.999650 2.75 0.9999994 
0.68 0.255780 1.15 0.858038 1.62 0.989492 2.09 0.999680 2.80 0.9999997 
0.69 0.272189 1.16 0.864442 1.63 0.990154 2.10 0.999705 2.85 0.99999982 
0.70 0.288765 1.17 0.870612 1.64 0.990777 2.11 0.999723 2.90 0.99999990 
0.71 0.305471 1.18 0.876548 1.65 0.991364 2.12 0.999750 2.95 0.99999994 
0.72 0.322265 1.19 0.882258 1.66 0.991917 2.13 0.999770 3.00 0.99999997 
0.73 0.339113 1.20 0.887750 1.67 0.992438 2.14 0.999790 

  0.74 0.355981 1.21 0.893303 1.68 0.992928 2.15 0.999806 
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