

Projekt współfinansowany ze środków Unii Europejskiej w ramach
Europejskiego Funduszu Społecznego

ROZWÓJ POTENCJAŁU I OFERTY DYDAKTYCZNEJ POLITECHNIKI WROCŁAWSKIEJ

Wrocław University of Technology

Internet Engineering

Marek Piasecki

APPLICATION PROGRAMMING -

MOBILE COMPUTING
Mobile Computing

Wrocław 2011

Wrocław University of Technology

Internet Engineering

Marek Piasecki

APPLICATION PROGRAMMING -

MOBILE COMPUTING
Mobile Computing

Wrocław 2011

Copyright © by Wrocław University of Technology

Wrocław 2011

Reviewer: Czesław Smutnicki

ISBN 978-83-62098-25-5

Published by PRINTPAP Łódź, www.printpap.pl

Table of contents

1. The Course Book Outline ... 4

2. Programming Java Micro Edition (J2ME) .. 6

 2.1 Understanding J2ME, Configurations and Profiles 6

 2.2 Tools – J2ME Programming Environments ... 7

 2.3 Programming Exercises .. 10

 J2ME.ex1 Standard MIDlet Life Cycle ... 10

 J2ME.ex2 MIDlet User Interface and Input Event Handling 13

 J2ME.ex3 Drawing Low Level Graphics on the Device Screen 19

 J2ME.ex4 Wireless Messaging by SMS Texting 26

 J2ME.ex5 MIDP Persistent Data Storage Using RMS 29

3. Programming Microsoft Windows Mobile ... 36

 3.1. .NET Compact Framework Platform .. 36

 3.2 Visual Studio Integrated Development Environment 37

 3.3 Laboratory Exercises .. 37

 WM.ex1 Building the first application

 with a Windows Forms based GUI .. 38

 WM.ex2 Exploring Important .NET CF Windows Forms Controls 41

 WM.ex3 Sending and Intercepting SMS Messages 46

 WM.ex4 Data Persisting with a Mobile Database Server 49

 WM.ex5 Using the GPS to Track Geographic Position of Device 54

4. Programming Symbian S60 ... 59

 4.1 Symbian OS versions and tools for C++ development 59

 4.2 Programming Exercises .. 61

 SYM.ex1 Symbian OS C++, Basic Classes, Naming Conventions 63

 SYM.ex2 Symbian OS exception handling mechanisms 66

 SYM.ex3 User Interface and Event Handling with Qt library 69

 SYM.ex4 Accessing Mobile Phone Features with Qt Mobility API 74

5. Laboratory Class Schedule .. 79

Bibliography ... 80

3

1. The Course Book Outline

The purpose of this course handbook, is to gather together teaching and training

materials from different sources (programming documentation, Web pages of

manufacturers and IDE providers, technical journals, textbooks, etc.), to support

students activities during “Mobile Computing” laboratory. This laboratory is planned

as a supplementary class to INEA00112 academic course “Application programming –

Mobile Computing” at the Wrocław University of Technology.

 The course aims to give students most of the essential knowledge, skills and

hands-on experience indispensable in programming advanced mobile phones,

palmtops and smartphones. Apart from 30h lecture, the course comprises 15h hands-

on programming laboratory and 15h of individual project activities. As a basic pre-

requisite, it is expected that the course participants have a basic knowledge in the area

of object-oriented programming using Java and C++ languages.

 The laboratory is composed of six programming exercises which are arranged in

three series presenting three totally different mobile platforms: Sun's Java

Microedition (MIDlets), Microsoft Windows Mobile and Nokia's Symbian S60 with

Qt/QtMobility framework. The principle idea of such selection, is to create effective

learning process with slowly stepping-up curve of acquired knowledge difficulty

(from more familiar to more demanding). The second idea is to present mobile

technologies which are the most popular in the area of European Union. This is a

reason why some less popular platforms like BlackBerry or Palm were omitted.

 The course starts with the Java ME framework, which should be the easiest to

learn, because students are expected to be familiar with Java language and Java

technologies from the 1
st
 semester course "Application programming - Java and XML

technologies". Additionally, almost 100% of mobile phones support Java ME

MIDlets, so all the students will have the occasion to test the created software on their

own mobile devices, which can make the laboratory more attractive.

 The second series of exercises is related to mobile incarnation of Microsoft

.NET framework – Windows Mobile. The C# programming language will be used in

Windows Mobile section, but all examples are constructed in such a way that they

should be easy readable and understandable for people familiar with Java. Besides,

Microsoft Windows products are very popular in Europe and many students are

familiar with .NET technologies and creating Windows.Forms based UI for desktop

applications. Normally, Microsoft development environment for Windows Mobile is

an expensive commercial product. It can be even more expensive if we try to create

real business applications utilizing enterprise solutions like Web Services, Microsoft

SQL Server or Microsoft Internet Information Server. Fortunately, the Faculty of

Electronics is a member of MSDN AA program, and the course participants can use

these tools without charge (which could be perceived as an additional benefit).

4

 The last series of exercises is devoted to Nokia's Symbian, which has been the

most popular mobile platform in the world, and especially in Europe. Cumulative

number of mobile devices shipped with the Symbian OS, is estimated at about 390

million, which generates an impressive market of software-consumers. Unfortunately,

native Symbian C++ dialect with its a little antiquated software techniques developed

two decades ago (for the much more restricted mobile hardware) caused tiresome

complexity of the created software code. In two beginning exercises, we will shortly

present some of these techniques, to give the student "a taste" of traditional Symbian

programming in Carbide.C++ development environment. Final exercises will present

very attractive current Nokia's approach to Symbian and Maemo/MeeGo platform

programming, based on Qt and QtMobility frameworks.

 All the three chosen platforms have a settled reputation, confirmed by more

than 10 years of evolutionary development, multitude of shipped devices, with

complete and widely accessible documentation.

 We hope, that such selection and composition of teaching materials, based

around a series of practical exercises, will create a good starting point for further

individual studies, which are indispensable in the emerging world of mobile devices.

 In the last three years, smartphones have transformed from a niche product

category to a fast growing segment, playing a key role in competitive struggle between

mobile and Internet giants. The unprecedented success of iPhone, followed shortly

after by Google Android, changed market requirements almost overnight. Today

smartphones are all about smooth delivery of digital content, applications and Web

services.

 Most of recently emerged mobile platforms, especially iPhone and Android, are

subject to instant changes. It is considerably probable that in two years some of their

today's documentation will become out-of-date. To avoid this problem, we will

suggest them as the subject of an individual student's project, which will be the third

supplementary class form of this Mobile Computing course.

About the Author

 Marek Piasecki is an academic lecturer at the Institute of Computer

Engineering, Control and Robotics, Wrocław University of Technology. A graduate

in: Automation (MS), Computer Science (MS) and Mobile Robotics (PhD). The area

of his scientific interests includes: software engineering for mobile devices,

autonomous and adaptive systems, user modeling and user adapted interaction,

personalization, automatic recommendation, computer ontologies, semantic Web,

software agent systems and languages, infobots, soft computing and artificial

intelligence.

5

2. Programming Java Micro Edition (J2ME)

 Many mobile applications use the Java 2.0 Micro Edition (Java ME, J2ME)

platform, which was initially developed by Sun for small devices like mobile phones,

but is now used on a wide variety of devices. Examples of such devices are: TV set-

top boxes, Internet TVs, car computers, phones, pagers, Personal Data Assistants. Java

ME uses scaled down subsets of Java Standard Edition (J2SE) components, virtual

machines and APIs. It also defines several APIs that are specifically targeted at

consumer mobile and embedded devices. The most popular variant of J2ME platform

is a Mobile Information Device Profile (MIDP). An application written using the

MIDP APIs is called MIDlet, and is directly portable to any MIDP device according to

general Java motto “Write Once, Run Anywhere”.

 Important aspect of J2ME is its support from huge Java community and its

security. MIDlet suites can be cryptographically signed and verified on the device,

which gives users some security about executing downloaded code. A permissions

architecture controls an application access to critical API, allowing the user to deny

untrusted code access to certain device resources. For example, enables to block

network connections if it is not explicitly necessary. J2ME is deployed globally on

millions of phones and PDAs, and is supported by most of leading integrated

development environments.

2.1 Understanding J2ME, Configurations and Profiles

 J2ME is divided into configurations, profiles, and optional APIs, which provide

specific information about APIs and different categories of devices. A configuration

defines a Java Virtual Machine for a specific family of devices, based on memory

constraints and processor performance. It specifies a subset of the full Java 2 Platform

Standard Edition (J2SE) APIs, that will be used on the mobile device. Currently there

are two: the Connected Device Configuration (CDC) and the Connected, Limited

Device Configuration (CLDC). Device manufacturers are responsible for porting a

specific configuration to their devices. In the course of our laboratory we will

concentrate on devices with CLDC configuration.

 CLDC configuration encompasses mobile phones, pagers, PDAs, and other

small devices having: limited display and input, limited memory (160KB to 512KB),

limited CPU power, limited network throughput (data rates starting from 9.6Kbps.)

and limited battery life. CLDC 1.1 includes some enhancements to CLDC 1.0,

including support for floating-point data types.

 Profiles are more specific than configurations. They provide additional APIs,

such as user interface, necessary to develop applications running on the device. A

profile is a high level abstraction of all resources for a class of devices which can be

used by an application. It includes APIs for application life cycle, user interface, and

persistent storage. Several different profiles are being developed under the Java

Community Process. For example, the PDA Profile (PDAP) is designed for advanced

palmtop devices with an onboard memory 512KB÷16MB and an application model

using a subset of the J2SE Abstract Windowing Toolkit (AWT) for graphic user

6

interface. But at the moment, only one of them, the Mobile Information Device Profile

(MIDP) is the most frequently met on the market.

 There are two versions of MID profile: basic MIDP 1.0 (JSR 37), and extended

MIDP 2.0 (JSR 118) which features a number of enhancements (e.g. support for

multimedia, game API, HTTPS connection). During this course, we will concentrate

on MIDP 2.0, which has the following requirements:

• A minimum of 256KB of ROM for the MIDP implementation

• A minimum of 128KB of RAM for the Java runtime heap

• A minimum of 8KB of nonvolatile writable memory for persistent data

• A screen of at least 96×54 pixels

• User input by keypad, keyboard, or touch screen

• Two-way network connection
More information about MIDP could be found at http://java.sun.com/products/midp/.

The APIs available to a MIDP application come from packages in both CLDC and

MIDP (Figure 2-1).

CLDC 1.1 MIDP 2.0

java.lang javax.microedition.lcdui

+java.lang.ref +javax.microedition.lcdui.game

java.io +javax.microedition.media

java.util +javax.microedition.lcdui.control

javax.microedition.io javax.microedition.midlet

java.lang +javax.microedition.pki

java.lang javax.microedition.rms

Figure 2-1 Java packages composing basic J2ME/MIDP 2.0 application programming interface

 Optional packages provide functionality that may not be included in a specific

configuration or profile. One example of an optional package is the Bluetooth API

[BTAPI] described in JSR-82, providing a standardized API for Bluetooth networking,

which could be used on devices equipped with Bluetooth transmitter. Another

example is JSR-75 [PIM & File Data API] which enables personal information

management (phone contacts, calendar events, alarms, etc) and direct access to the

device file system and additional memory cards.

2.2 Tools – J2ME Programming Environments

 Although the MIDlets are designed to run on a small pocket-size devices, they

are programmed on regular desktop computers. There is a very wide choice of

different IDEs supporting MIDlet programming under a variety of OSes. Because

J2ME creation was led by Sun, the first programming tool could be Sun’s J2ME

Wireless Toolkit, available from http://java.sun.com/products/j2mewtoolkit/.

Unfortunately, this WTK toolkit does not contain a specialized programming editor or

7

other important developing tools enabling advanced debugging of MIDlet code.

Among other possible IDEs, the most popular are (in alphabetical order):

• Borland JBuilder X Mobile Edition,

• Eclipse J2ME Plugin,

• IBM WebSphere Studio Device Developer,

• NetBeans Mobility,

• Nokia Developer’s Suite for J2ME,

• Research In Motion BlackBerry Java Development Environment,

• Sun Java Studio Mobility.
In the course of this laboratory, NetBeans will be suggested as a professional and very

comfortable J2ME programming environment (See figure 2-2). As an alternative to

NetBeans, the Eclipse could be chosen. In general, NetBeans is an IDE for developing

Java server and client applications. By additional installation of NetBeans Mobility

Pack plug-in, its functionality is extended to Java Microedition development

(NetBeans version 6.0 and above comes integrated with mobility pack). NetBeans

with Mobility Pack supports two J2ME configurations and two additional embedded

platforms:

• Connected Limited Device Configuration (CLDC). Which includes support for
the area of our interest: Mobile Information Device Profile (MIDP).

• Connected Device Configuration (CDC). Supporting advanced smart phones,
set-top boxes, embedded servers and devices.

• JavaFX Mobile. Supporting mobile, desktop, web and television screens.

• Java Card platform which enables application development for smart cards and
other microdevices.

Figure 2-2 Game Builder - example screen of NetBeans IDE programmer interface

The first step in developing MIDlet applications is to create a new Project, which

contains information about application components: program files, resources and IDE

8

configuration settings. To create a project, select File→New Project from the main

menu of NetBeans IDE. Then select Java ME in the project Categories window and

choose Mobile Application (for totally new code) or alternatively Mobile Project

with Existing MIDP Sources (for importing from existing code). In the case of a new

project, following dialog windows of project wizard enables to set the project name,

location, select emulator platform, and give the names of new MIDlet class and

package name. Project properties can be browsed and modified by selecting

File→Project Properties (Figure 2-3). Using this option, we can review and edit:

included optional packages, application descriptor attributes for JAD and JAR

manifest, additional libraries, JAR names, MIDlet signing settings, and many other.

Figure 2-3 NetBeans IDE MIDP project properties dialog.

 After finishing the MIDlet code editing, the project should be compiled by

selecting Run→Build Project option. To run the MIDlet on the mobile device

emulator, select Run→Run Main Project option from main IDE menu

(or Debugg Main Project to initialize debugging). You will see a mobile phone

emulator window with the screen showing a list of MIDlets in the downloaded MIDlet

suite (in most cases there will be only one). Finally, click on the LAUNCH soft button

to start up the MIDlet, and see the first MIDlet screen. To finalize testing, select the

MIDlet's EXIT command to leave the MIDlet, and then close the emulator window or

hit the ESC key, to end the emulator session

 One or more MIDlets can be packaged in a single jar file and distributed as a

MIDlet suite. All of the MIDlets in a suite are installed onto a device as a single entity

and can share theirs resources. A MIDlet suite consists of Java Application Descriptor

file (.jad) and Java Archive file (.jar). The JAD file includes the archive file name, the

names and classes for each MIDlet in the suite, and more. The JAR file contains the

MIDlet classes and resource files (data, icons, sounds, etc.). In NetBeans IDE, the

9

JAD and JAR files for the MIDlet suite will be generated and placed in the "dist"

subdirectory of the project.

 The final step of our application development is a MIDlet suite deployment, i.e.

the process of transferring the application developed in the IDE to a mobile device.

NetBeans IDE supports several methods of deployment, as an example:

• Device Anywhere Deployment - website for professional mobile developers
that allows you to remotely deploy MIDlet suites to the most popular mobile

devices on the market today. (Registration required).

• File Transfer Protocol (FTP) - uses the file transfer protocol to move the MIDlet
suite files to a remote server over the Internet.

• Nokia Mobile Devices - transfers the MIDlet suite files to a Nokia Mobile
device from the IDE using Nokia's PC Suite.

• Sony Ericsson Phone - transfers the MIDlet suite files to a Sony Ericsson
phone. This deployment method also enables you to run and debug the on-

device application from the IDE.

• Windows Mobile Devices - transfers the MIDlet suite files to a Windows
Mobile device using ActiveSync and Sun's CLDC/MIDP Virtual Machine.

We may also use any file transfer tool (via USB cable or Bluetooth connection) to

copy the JAR/JAD files to the physical mobile device memory.

2.3 Programming Exercises

In the following sections, we are going to illustrate the MIDlet development process

with five practical programming exercises. These exercises are planned to be

performed in the course of the three beginning laboratory classes. Every exercise is

supported with brief theoretical introduction and contains sample code listings. In first

exercises, the laboratory participants will get familiar with MIDlet life cycle, creation

of user friendly interface from high-level components and generation of two-

dimensional graphic. Fourth exercise concerns examples of Wireless Messaging

Services based on SMS interception. The last exercise is devoted to MIDlet's

capabilities of persistent data storage.

Exercise J2ME.ex1 Standard MIDlet Life Cycle

Create a simple application (with a very limited or without user interface),

demonstrating all possible states and transpositions of MIDlet's life cycle:

a) Pure background MIDlet (console) application, which does not possess any
graphical user interface components, which notifies life cycle changes by

System.out.print() messages in debug/output window of IDE.

b) "HelloWorld" application displaying a single Form with the selected title,
which quits after counting down assigned time interval (e.g. 5 seconds).

 MIDP applications are called MIDlets, as continuation of the Java naming

pattern from applets and servlets. To be classified as a MIDlet, a mobile Java appli-

cation must extend the abstract class javax.microedition.midlet.MIDlet,

10

which controls the MIDlet lifecycle. Moreover it has to be packaged and distributed in

a Java Archive (JAR) file which includes a MANIFEST.MF file.

 The core of the MIDlet lifecycle is the Application Management Software

(AMS),which is a part of the device's operating environment and manages MIDlets

states. As the result of MIDlet launching, the AMS instantiates it by calling the

method, which starts its lifecycle. Then AMS maintains control over the MIDlet

lifecycle throughout its execution. As a response to user initiated actions, or other

events (like a phone call) the MIDlet can be send to the background (paused state).

The system can close a MIDlet at any time. Just before closing, the AMS calls the

MIDlet's destroyApp() method, then waits about 5 seconds to give it a chance to
save resources, and finally terminates the MIDlet forcefully.

loaded/paused

destroyed

active

startApp()

pauseApp()

destroyApp(boolean)

destroyApp(boolean)

startApp()

paused

Figure 2-4 The life cycle of the MIDlet [5]

To organize a MIDlet life cycle, it was decided that MIDlet can exist in four different

states: loaded, active, paused and destroyed. Figure 2-4 gives an overview of the

MIDlet lifecycle and Listing 2-1 illustrates the skeleton of typical MIDlet class code

implementation.

Listing 2-1 Skeleton of typical MIDlet class implementation

import javax.microedition.midlet.*;

public class ExampleMIDlet extends MIDlet {
 public ExampleMIDlet() {
 System.out.println(">>> Entering Constructor");
 // . . .
 }

 public void startApp() {
 System.out.println(">>> Entering StartApp");
 // . . .
 }

 public void pauseApp() {
 System.out.println(">>> Entering PauseApp");
 // . . .
 }

 public void destroyApp(boolean unconditional) {
 System.out.println(">>> Entering destroyApp");
 // . . .
 }
}

11

When a MIDlet is loaded onto the device, its constructor is called, and the MIDlet

enters the loaded state. When a user launches the MIDlet, the program manager

(AMS) starts the application by calling the startApp() method. After

startApp(), the MIDlet enters the active state, and hold it until the program

manager calls pauseApp() or destroyApp(). All state change callback methods
should perform as fast as possible, because the state is not changed before the method

returns. In the pauseApp() method, the MIDlet should release resources that are not
needed while paused, to avoid resource conflicts with other applications and to reduce

battery power consumption. Calling destroyApp() method, indicates that the
MIDlet process should terminate. The MIDlet can request that it does not enter the

destroyed state by throwing a MIDletStateChangeException. This only is a
valid response if the unconditional flag is set to false.

 State changes could be also initialized by the MIDlet itself. Being in active

state, MIDlet can call notifyPaused() method, which notify the application
manager that it decides to go to the paused state. Being in paused state, the MIDlet can

request to resume its activity by calling resumeRequest() (which would result

with startApp() callback, if AMS decides to activate this application). In order to

force termination, a MIDlet can call notifyDestroyed() method, which notifies
the application management software that it has entered into the destroyed state. Be

careful, in this case, the application management software will not call the

destroyApp() callback method, and the MIDlet must have performed all the

cleaning operations by itself. Termination by calling System.exit(), known from
standard edition, is not supported in MIDP. The MIDlet, can also send itself to the

background by calling Display.setCurrent(null) method (described in the
second exercise). In fact, this command will not change the current displayable, but

will be interpreted by AMS as a request from the application to be placed into the

background. In similar manner, to activate from the background, the MIDlet can call

Display.setCurrent(Displayable), where Displayable is a reference
to window object, which should be shown on the device screen.

Listing 2-2 Example implementation of ”Hello World” flash-up MIDlet

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;

public class HelloWorld extends MIDlet {

 public void startApp() {
 Display.getDisplay(this).setCurrent(new Form("Hello World")); �

 // 1 second delay
 try{ Thread.sleep(1000); } �
 catch(InterruptedException e){}

 notifyDestroyed(); �
 }

 public void pauseApp() {}

 public void destroyApp(boolean unconditional) {}

}

12

Listing 2-2 presents more interesting example code of flash-up "Hello World"

MIDlet, which: � creates user interface window entitled "Hello World", than waits

some time interval (in milliseconds) �, and finally calls notifyDestroyed()
method �, to inform AMS about its lifecycle termination. In a more correct MIDlet

implementation, operations � and � should be transferred to a separate thread

(because startApp() method should not contain any time consuming elements).
This separate thread could randomly call all possible MIDlet's signaling methods:
notifyPaused(), resumeRequest(), notifyDestroyed(). The
resulting messages, notifying about state changes, could be observed in output console

window of NetBeans IDE.

Exercise J2ME.ex2

MIDlet User Interface and Input Event Handling

Create a MIDlet application utilizing MIDP High-Level UI API to compose

user friendly interface for standard key-pad based cell phone.

a) MIDlet implementation of currency exchange calculator.
b) MIDlet implementation of questionnaire form, collecting selected personal,

education and employment data for national census

(for future sending, by SMS or WLAN, to census office)

c) The user interface for a foreign language mini-dictionary for a tourist,
supporting self-memorizing and quick searching for popular phrases.

 The user interface requirements for mobile devices are different from those for

desktop computers. The display size of handheld devices is smaller, and the input does

not always include pointing devices like a mouse or a stylus. We cannot follow the

same user interface programming guidelines for applications running on desktop

computers and hand-held devices. The MIDP creators decided not to translate the

existing Java standard edition UI packages, like AWT or Swing, for J2ME. The reason

is, that mentioned packages are optimized for desktop computers. They support many

features not found on handheld devices. For example, extensive support for window

management, such as resizing overlapping windows. However, the limited display size

of handheld devices makes resizing a window impractical. Additionally, the shape of

mobile application window has to reflect the shape of the device screen, which is

usually diverse for different device classes. Simultaneously, the application interface

has to adopt to dynamical changes of mobile device screen orientation (vertical or

horizontal).

 To achieve high portability between different devices, the API employs a high-

level abstraction and gives you little control over its look and feel. For example, you

cannot define the visual appearance (shape, color, or font) of components. It is the

device manufacturer responsibility to define the exact implementation of components

appearance and manage all necessary adaptation to the device's hardware and native

user interface style.

The central abstraction of the MIDP UI is a displayable, i.e. an object that has

the capability of being placed on the display. Display class represents the display

13

hardware, whereas Displayable is something that can be shown on it. The high-

level API is based on Screen, i.e. an application window which fills up the whole
area of the device display (except for a thin strip at the top or bottom of the display).

Screen class inherits from Displayable, and all high-level API windows are

implemented by classes that inherit from the Screen class. Only one screen can be
visible at a time, and the user can traverse only through the items on that screen, or

switch to another screen.

 The Display class and all other user interface classes of MIDP are located in the

package javax.microedition.lcdui. To show something on a MIDP device
screen, you need to obtain the device’s display. The Display class provides a

setCurrent() method that sets the current display content of the MIDlet.
 When a MIDlet application is first started, there is nothing displayed on the

device screen and there is no current Displayable object. It is the responsibility of

the application to ensure that some Displayable is visible and can interact with the
user at all times. Therefore, the application should always call setCurrent() as part of

its initialization. The display hardware (of a device) can be accessed by calling the

static method getDisplay(), where the MIDlet itself is given as a parameter. To

show a Displayable object we must use the setCurrent() method on the Display
object, as on example listing below:

Form exampleForm = new Form ("Display some Displayable");
Display display = Display.getDisplay(this);
display.setCurrent (exampleForm);

In following subsections, we shortly review some descendants of basic Screen class

which with great probability will be used in laboratory programs:

Alert

 The simplest subclass of a Screen is an Alert. It consists of a label, text, and

an optional Image. It is possible to set a period of time the Alert will be displayed
before another Screen is shown. The parameter must either be a positive time value in

milliseconds, or the special value FOREVER. In this second case, the Alert will be

shown until the user confirms it. The following code creates an Alert with the
assigned title, content text, and displays it until it is confirmed by clicking "Done"

button:

Alert exampleAlert = new Alert ("Title of Example Alert");
exampleAlert.setTimeout (Alert.FOREVER);
exampleAlert.setString ("Text displayed in the Alert window");
display.setCurrent (exampleAlert);

Other methods of an Alert class enable to set remaining properties:

• setType(AlertType) – the type of generated alert (i.e. constant from

AlertType class: ALARM, ERROR, INFO, etc) which usually influences the
generated alert sound,

• setImage(Image) – an icon/image displayed in Alert window,

• setIndicator(Gauge) – an activity indicator showing the passing time of

the Alert displaying period.

14

Forms and Items

 The most important subclass of Screen is the class Form. In many aspects it

is analogous to Forms known from Standard Edition API. A Form can hold any

number of items such as StringItem, TextField, ChoiceGroup, etc. Items

can be added to the Form using the append() method. Possible subclasses of Item
are presented in table 2-1:

Table 2-1 Subclasses of Item, which can populate a Form (an application window)

Item Description

ChoiceGroup Enables selection of elements in a group.

DateField Used for editing date and time information.

Gauge Displays a bar graph for integer values.

ImageItem Used to control the layout of an Image.

StringItem Is a simple read-only text element.

TextField Holds a single-line input field.

All the above items have one common property Label, which can be managed by

setLabel(String) and String getLabel() methods. The Label should

give the short description of the Item meaning. It could be removed by setting to

null, but its presence and descriptiveness is very important in the case of interactive

items like TextField, values of which are usually entered in separate full screen

window entitled with the item's Label. Without the labels, it is difficult to associate
the sense of entered values.

 In contrast to the Abstract Windows Toolkit, the Item components cannot be

positioned or nested freely. Item's method setLayout(int layout) enables to

influence the relative position of Item to positions of other items in sequence, where
layout is a composition of layout constants combined using the bit-wise OR

operator '|'. Example of layout constants are:

• LAYOUT_LEFT, LAYOUT_RIGHT, LAYOUT_CENTER – values indicating
horizontal alignment

• LAYOUT_TOP, LAYOUT_BOTTOM, LAYOUT_VCENTER – values indicating
vertical alignment

• LAYOUT_NEWLINE_BEFORE, LAYOUT_NEWLINE_AFTER – constants
setting line breaking points in the stream of successive items.

Thorough description of all components of MIDlet user interface API is provided in

JavaDoc documentation of javax.microedition.lcdui package. A very good
illustration of every item functionality and appearance, is a User Interface Demo

application which can be found in File→New Project→Samples→Java ME project

category entitled as "UI Demo". In this place, we describe only two Item

components: StringItem and TextField, which certainly will be used in
student's applications created in the course of this Mobile Computing laboratory.

15

StringItem

 A StringItem is a simple display-only component with three characteristic
properties: label, textual content and appearance mode. Both the label and the textual

content of a StringItem may be modified by the application at any moment by

calling setText(String) and setLabel(String) methods, but cannot be

directly edited by the user. The appearance mode can be set at StringItem creation
phase as a third argument of the constructor. The appearance could be one of the

constants: Item.PLAIN, Item.HYPERLINK, or Item.BUTTON and influence the

way how the StringItem text is displayed on the screen (as a plain text, like a
hyperlink in a browser or as a push button). Listing 2-3 illustrates Java code which

could be used to create StringItems collection presented on figure 2-5.a.

a) b)

Figure 2-5 Illustration of StringItem and TextField appearance in "UI Demo"

a) StringItems with different appearanceMode (PLAIN, HYPERLINK, BUTTON)

b) TextFields with different constraints (ANY, EMAILADDR, NUMERIC, etc)

Listing 2-3 Snippet of StringItem Demo application code.

 Form mainForm = new Form("String Item Demo");

 mainForm.append("This is a simple label");

 mainForm.append(new StringItem("This is a StringItem label: ",
 "This is the StringItems text"));

 mainForm.append(new StringItem("Short label: ", "text"));

 mainForm.append(new StringItem("Hyper-Link ", "hyperlink",
 Item.HYPERLINK));

 mainForm.append(new StringItem("Button ", "Button", Item.BUTTON));

TextField

 Textual input is handled by the class TextField. In MIDP emulator, text can
be entered directly into a TextField either by clicking the number buttons in the

emulator or by typing on the keyboard. However, majority of MIDP real phone

16

implementations show a separate screen for edition of each. The constructor of

TextField takes four values: a label, initial text, a maximum text size, and constraints:

 TextField(String label, String text, int maxSize, int constraints);

The different constraints allow the application to request that the user's input be

restricted in a variety of ways. For example, if the application requests the NUMERIC
constraint, the implementation must allow only numeric characters to be entered.

A basic restrictive constraint settings are listed in table 2-2:

Table 2-2 Graphics constants used to restrict user input to TextField instances

Constant Meaning

ANY Allows any text to be added.

EMAILADDR Adds a valid e-mail address, for instance me@mail.com

NUMERIC Allows integer values.

PASSWORD Lets the user enter a password. Entered text is masked with '*'.

PHONENUMBER Lets the user enter a phone number.

URL Allows a valid URL.

Figure 2-5.b illustrates possible use of these constraints in a Form containing several
different text field inputs.

Event Handling with Commands and Listeners

 Receiving changes and events generated by high-level screens and items in

MIDP is based on a listener model, similar to standard edition AWT API. There are

two kinds of listeners: CommandListener and ItemStateListener. The

former, is related to a very flexible user interface concept, a Command. A Command
is something the user can invoke. It could be GUI button, hardware button, text menu

option, voice recognized command, etc. Usually Commands are implemented by so-

called soft buttons, i.e. additional hardware buttons without fixed functionality.

Typical phone device provides at least two such buttons placed just below phone

display. Their functionalities are dynamically assigned by textually displayed button

"names" (on the bottom strip of the display) depending on the application context. The

device determines how the commands are shown on the screen. If the number of

activated Commands exceeds the number of available hardware buttons, a separate
text menu is created automatically to collect all exceeding commands. To create a

Command, we need to supply a label, a type, and a priority:

 Command(String label, int commandType, int priority);

The label string contains the displayed name of the button/option. The

commandType, provided by the developer during Command construction, is an
additional hint for the device system, about where and how to arrange the displaying

of the Command. It is used to signify commonly used Commands and place them in
the manner most expected by the user. For example, if in the native phone system, the

exit operation is always assigned to the leftmost soft button, the MIDP will make the

same assignment for the Command.EXIT command. Example command types are
listed in table 2-3:

17

Table 2-3 Graphics constants used to indicate a Command type

Command type Meaning

BACK Returns to the previous screen.

CANCEL Standard negative answer to a dialog

EXIT For exiting from the application.

HELP A request for on-line help.

ITEM Specific to the Items of the Screen

or the elements of a Choice

OK Standard positive answer to a dialog

SCREEN An application-defined command

STOP A command that will stop some currently running process,

operation, etc.

Every Command has a priority. Lower numbers indicate higher priority. The

priority '0' Command will most probably be shown up on the screen directly (as the

soft button). The other Commands will most likely end up in a secondary menu. To

create a standard OK command, for example, we would do this:

 Command commandOK = new Command("OK", Command.OK, 0);

Created commands could then be added (or removed) to a Form or any other subclass

of Displayable by using the following Displayable inherited methods:

 public void addCommand(Command newCommandObject);
 public void removeCommand(Command removedCommandObject);

Added commands are shown on the related Displayable and generate appropriate
events when a user invokes them (by pressing a button or selecting a menu option). As

we stated before, the MIDP uses a classic Java listener model for detecting command

actions. The events are sent to the commandAction callback method of the

associated CommandListener. At least one of the MIDlet objects (or the MIDlet

itself) has to implement CommandListener interface, and should be registered to

the considered Displayable using the setCommandListener(listener)

method. Only one listener is allowed for each Displayable class instance, but the

same listener can be registered to several displayables. The commandAction()
method receives two parameters:

 public void commandAction(Command comm, Displayable disp);

The comm parameter object identifies the Command which was invoked. The disp

parameter identifies the Displayable on which this event has occurred. Using

these parameters the commandAction implementation can distinguish different

sources of the event and generate an adequate action on adequate Diplayable.

CommandListener method should return immediately because MIDP specification
does not require the platform to create several threads for the event delivery. Thus, if a

CommandListener method return is delayed, the system may be blocked.

Listing 2-4 illustrates single Form MIDlet with two associated Commands.

18

Listing 2-4 Example implementation of Hello World start-up MIDlet

import javax.microedition.lcdui.*;
import javax.microedition.midlet.*;

public class HelloWorld extends MIDlet implements CommandListener {

 private Form mainForm;

 public HelloWorld () {
 mainForm = new Form("Hello World");
 mainForm.append(new StringItem(null, "Welcome!"));
 mainForm.addCommand(new Command("Exit", Command.EXIT, 0));
 mainForm.addCommand(new Command("Change item", Command.ITEM, 1));
 mainForm.setCommandListener(this);
 }

 public void startApp() {
 Display.getDisplay(this).setCurrent(mainForm);
 }

 public void pauseApp() {}

 public void destroyApp(boolean unconditional) {}

 public void commandAction(Command c, Displayable s) {
 if(c.getCommandType() == Command.EXIT)
 notifyDestroyed();
 else
 ((StringItem)mainForm.get(0)).setText("Press Exit! Goodbye!");
 }
}

 Summing up, CommandListener with it's commandAction method is
dedicated to handle signals from softbuttons and menu elements.

 The second interface ItemStateListener is dedicated to receive events

that indicate changes in the internal state of the interactive Items within a Form

screen (value adjustments of an interactive Gauge, TextField value changes,

switching the state of ChoiceGroup, etc.) . Most of items in a Form can fire events
when the user changes them. Our application can listen for these events by registering

an ItemStateListener (with the method: setItemStateListener

(ItemStateListener iListener)). When an item state change is detected,

the listeners method itemStateChanged(Item item) is called.

Exercise J2ME.ex3

Drawing Low Level Graphics on the Device Screen

Create a MIDlet application utilizing Canvas object for implementing custom

user interface composed of geometrical figures and animation.

a) Implement selected two-dimensional computer game (like Ping-Pong,
PacMan or Arkanoids) which demands to perform some simple drawing and

animation.

19

b) For devices with a touch screen, supporting pointer events, create a simple
“Paint”-like graphical editor, which allows one to draw basic figures

(lines, rectangles, circles)

 MIDP profile offers a low level API based on Canvas class from package

javax.microedition.lcdui, that allow us fully control the device’s screen at

pixel level. Canvas is another subclass of Displayable, so in result, a MIDlet can

mix and match regular full screen Displayable (like Forms, Alerts, Lists, etc)

with full screen graphics Canvases. For example, a game application can be

composed of high-level Forms (to modify game setup, configuration or player

preferences in the text-based mode) and several Canvases representing different

graphic scenes of the game course. But in contrast to AWT, Canvas graphics does
not allow to mix high-level and low-level components on the same screen

simultaneously.

 The Canvas provides a paint(Graphics g) callback method, similar to the

paint() method in custom AWT or Swing components. Whenever the MIDP
system determines that it is necessary to redraw the content of the device screen, the

paint() callback method of Canvas is called. A typical Canvas implementation is
presented on Listing 2-5:

Listing 2-5 Simple demo of typical Canvas implementation

import javax.microedition.lcdui.*;

public class DrawingDemoCanvas extends Canvas {
 public void paint(Graphics g) {
 // Draw stuff using Graphics object <g>
 . . .
 g.setColor(128,255,0);
 g.drawLine(0,0,10,20);
 . . .
 }
}

In order to see our DrawingDemoCanvas on the screen, we need to set it as a current

Displayable object for the MIDlet device display. Example of such operation is

presented on Listing 2-6.

Listing 2-6 Setting example Canvas as a current Displayable

import javax.microedition.midlet.*;
import javax.microedition.lcdui.*;

public class DrawingDemoMIDlet extends MIDlet {
 public void startApp(){
 Display.getDisplay(this).setCurrent(new DrawingDemoCanvas());
 }

 public void pauseApp(){ }
 public void destroyApp(boolean unconditional){ }
}

20

Using the Canvas object, we can draw whatever we want on the screen, find out
exactly which keys a user is pressing on, and detect pointer position, if the device is

supporting stylus, touch screen or a trackball.

The Graphics class, which is an argument of a Canvas paint() method,
contains methods for drawing shapes, text, and images on the Canvas surface. MIDP’s

Graphics class is similar to the Graphics and Graphics2D classes in J2SE but it is

much smaller. Coordinate space of the drawing is based on the pixels of the device

screen. By default, the origin of this coordinate space (0,0) is located in the upper-left

corner of the Canvas. We can find out the size of the Canvas by calling getWidth()

and getHeight() methods which return surface dimensions in screen pixels. In the
case it could be useful, we can adjust the origin of this coordinate space by calling the

translate(int x, int y) method, which translates the origin of the graphics
context to the point (x, y). To find out the location of the translated origin relative to

the default origin, call getTranslateX() and getTranslateY().

Table 2-4 Drawing methods of J2ME Canvas

Method name and arguments Description

drawLine(int x1, int y1,
 int x2, int y2)

Draws a line from point (x1,y1) to (x2,y2)

drawRect(int x, int y,
 int width, int height)

Draws an empty rectangle with the upper-

left corner at the given (x,y) coordinates,

with the given width and height
drawRoundRect(int x, int y,
 int width, int height,
 int arcWidth, int arcHeight)

Like drawRect(), plus additional radii are

given for rounded corners of rectangle

drawArc(int x, int y,

 int width, int height,

 int startAngle, int arcAngle)

Draw the outline of a circular or elliptical

arc covering the specified rectangle and

angles

fillTriangle(int x1, int y1,
 int x2, int y2,
 int x3, int y3)

Fills the triangle specified by three

corners (x1,y1), (x2,y2), (x3,y3)

fillRect(int x, int y,

 int width, int height)
Fills the area of the rectangle (x,y)

(x+w,y+h)

fillRoundRect(int x, int y,
 int width, int height,

 int arcWidth, int arcHeight)

Fills the specified rounded corner

rectangle with the current color.

fillArc(int x, int y,
 int width, int height,
 int startAngle, int arcAngle)

Like drawArc(), but fills the

corresponding region with the current

color

drawImage(Image image,
 int x, int y, int align)

Draws the specified image aligned relative

to the specified anchor point (x,y)

 All basic drawing methods of the Canvas are listed in the Table 2-4. First four
methods draw only outline of a figure (using the concept of current color and line

style), the following four methods draw shapes filled with the current color. The last

primitive, draws an image which was earlier created in memory, loaded from

21

application resources or downloaded from network. Alignment for the

drawImage() method is created by composing vertical alignment constants

(Graphics.TOP, VCENTER, BOTTOM) with the horizontal alignment constant

(Graphics.LEFT, CENTER, RIGHT).

 For grayscale devices Graphics provides setGrayScale(int

greyness) as a method to control figure shade. An argument is a number from 0
(for black) to 255 (for white). Current grayscale value can be retrieved by calling

getGrayScale().
 In devices with color screen, colors are represented as combinations of red,

green, and blue, with 8 bits for each color component. We can set the current drawing

color using the method setColor(int RGB), where the color argument is
specified in the form of 0x00RRGGBB (least significant eight bits giving the blue

component, the next eight the green, and the third eight bits giving the red component,

the highest order byte is ignored). An alternate three argument method

setColor(int red,int green,int blue) accepts red, green, and blue
values as integers in the range from 0 to 255.

 Different devices can support different levels of color representation. Starting

from monochrome (black & white) known as “1-bit color”, up to full 24-bit color.

Two Display methods isColor() and numColors() return useful information
about the color capabilities of the device:

boolean Display.getDisplay(this).isColor(); //monochrome or color
int Display.getDisplay(this).numColors(); //number of colors

Example Listing 2-7 illustrates sequence of Canvas drawings to create smiling face

Listing 2-7 Example Canvas paint() implementation – a smiling face

 public void paint(Graphics g) {
 // Calculate face size in relation to screen dimensions
 int w = getWidth();
 int h = getHeight();
 int size = Math.min (w, h) / 2;

 // Clear the background and translate the graphics origin
 g.setColor (255, 255, 255);
 g.fillRect (0, 0, w, h);
 g.translate (w/2, h/2);

 // Draw the face filling and outline
 g.setColor (255, 255, 200);
 g.fillArc (-size/2, -size/2, size, size, 0, 360);
 g.setColor (0, 0, 0);
 g.drawArc (-size/2, -size/2, size, size, 0, 360);

 // Draw mouth and eyes
 g.drawArc (-size/6, size/7, size/3, size/6, 0, -180);
 g.setColor (150, 150, 255);
 g.fillArc (-size/6-10, -size/6-10, 20, 20, 0, 360);
 g.fillArc (+size/6-10, -size/6-10, 20, 20, 0, 360);
 }

 Lines can be drawn with two line styles represented by constants in the

Graphics class: Graphics.SOLID (the default) and Graphics.DOTTED for

22

dotted lines. We can set or retrieve the current style using methods:

setStrokeStyle() and getStrokeStyle().
 Apart from geometrical figures, graphic interfaces usually contain texts written

with different decorative fonts and sizes. Canvas graphics provide three methods for

drawing text specified as an ASCII code, an array of chars or a String:

public void drawChar(char character, int x, int y, int anchor);
public void drawChars(char[] data, int offset, int length,
 int x, int y, int anchor);
public void drawString(String str, int x, int y, int anchor);

Assigned text is drawn relative to the location and type of anchor. Anchor location is

specified with coordinates (x,y). Anchor type is defined by horizontal

(Graphics.LEFT, HCENTER, RIGHT) and vertical (Graphics.BOTTOM, BASELINE,

TOP) components. The following example shows how to locate text at various

areas/corners of the Canvas (Listing 2-8)

Listing 2-8 Demo of drawing text (drawString) on Canvas

import javax.microedition.lcdui.*;

public class TextDemoCanvas extends Canvas {
 public void paint(Graphics g) {
 int w = getWidth();
 int h = getHeight();
 g.setColor(0xffffff);
 g.fillRect(0, 0, w, h);
 // Label the four corners
 g.setColor(255,0,0);
 g.drawString("top-left", 0, 0,Graphics.TOP|Graphics.LEFT);
 g.drawString("top-right", w, 0,Graphics.TOP|Graphics.RIGHT);
 g.setColor(0,255,0);
 g.drawString("bottom-left", 0, h,Graphics.BOTTOM|Graphics.LEFT);
 g.drawString("bottom-right", w, h,Graphics.BOTTOM|Graphics.RIGHT);
 // Mark the center of the screen
 g.setColor(0,0,255);
 g.drawString("center",w/2,h/2,Graphics.BASELINE|Graphics.HCENTER);
 }
}

 It is also possible to control: face, style and size of drawn fonts. There are three

available font faces represented by constants in the Font class: FACE_SYSTEM,

FACE_MONOSPACE, and FACE_PROPORTIONAL. Font style can be combined by

binary “or” operation of STYLE_PLAIN, STYLE_BOLD, STYLE_ITALIC, and

STYLE_UNDERLINE constants. The size can be simply SIZE_SMALL,

SIZE_MEDIUM, or SIZE_LARGE.
 For example, to create a large, bold, italic, proportional font and to set it active

style for subsequent text drawings, the following two calls should be done:

 Font myFont = Font.getFont(Font.FACE_PROPORTIONAL,
 Font.STYLE_ITALIC | Font.STYLE_BOLD,
 Font.SIZE_LARGE);
 graphics.setFont(myFont);

23

a) b)

Figure 2-6 Drawing results of paint() implementation from listings a) 2-7 b) 2-8

 Because the Canvas class inherits from Displayable, it provides the same

support for Command (soft buttons) as classes from the high-level interface (e.g.

Form or Alert). To arrange user input interactions with Canvas contents, standard

approach with CommandListener interface could be used. But, Canvas also
handles events at a lower level, which enables to handle interaction with the individual

keys of a device. There are three callback methods which are called whenever the user

presses and releases a key:

 protected void keyPressed(int keyCode);
 protected void keyReleased(int keyCode);
 protected void keyRepeated(int keyCode);

All three methods provide an integer argument denoting the Unicode character code

assigned to the manipulated button on the device keyboard. If a button has no Unicode

correspondence, the given keyCode has negative value. Because most MIDP devices

have phone keypad, Canvas provides several constants corresponding to standard

keypad numeric keys from KEY_NUM0, KEY_NUM1, KEY_NUM2, ..., to KEY_NUM9,

and including KEY_STAR and KEY_POUND. Devices may have more keys than these
(pressing of which will result in device-specific key codes), but portable applications

should not rely on the presence of any additional key codes. If it is necessary, an

application can get the real name of the pressed key by calling getKeyName(key)
method.

 Nowadays, most of mobile devices support a pointing device like stylus and a

touch-sensitive screen. The Canvas API provides methods for testing pointer device

support: hasPointerEvents() and hasPointerMotionEvents(). If the
device supports pointer events, the following callback methods get called when the

pointer is pressed, released or dragged:

 protected void pointerPressed(int x, int y);
 protected void pointerReleased(int x, int y);
 protected void pointerDraged(int x, int y);

24

 While implementing any of abovementioned user input event callback methods,

please remember, that all of them and the paint() method are called serially. All
these methods should return quickly to protect against situation when the user

interface becomes frozen. Any longer processing should be served in a separate

thread.

 In the case of programming real-time graphic applications like computer games

or animations, several additional issues should be taken into account. The first one is

repainting the Canvas. If we want to refresh the display content, we can not call

paint() method directly (because we can't provide the appropriate Graphics

argument). Instead, the MIDlet should call Canvas.repaint() method, which
notifies the AMS system that a repaint is necessary. Unfortunately, the call of

paint() is not performed immediately. It may be delayed, until the control returns
from other event handling methods. The AMS system can even merge several repaint

requests. To coerce the implementation to service all the repaint requests without

delay, the method serviceRepaints() should be used. Canvas does not

automatically clear itself when we call repaint(). The application should clear the

screen in the paint() method .

 By default, Canvas supports a full-screen mode. Some devices can supports an

alternate modes for Canvas, where top or bottom strip is reserved to present
information about the state of the device. To force switching into real full-mode, we

can use the method Canvas.setFullScreenMode(true).

 All MIDlet Displayables, in some situations can go to background (hide)
and after some time get back to the foreground (become shown). Each time the

Canvas is shown, the showNotify() method will be called. If another

Displayable is shown, or the application manager switches to run a different

application, hideNotify() is called. The game interaction can be additionally

made more attractive with Display methods: vibrate(int duration),

flashBacklight(int duration), which enable to control device body
vibration and the screen backlight (duration is given in milliseconds).

 Students who are more interested in computer games can extend this third

exercise to utilize javax.microedition.lcdui.game optional package or

JSR184, the optional API for rendering of 3D graphics. The Game package contains
game API, a set of classes that simplify development of two-dimensional games. It

provides game-specific capabilities such as an off-screen graphics buffer, the ability to

query key status (useful for detecting user input in a game thread) and supports

LayerManager which can combine multiple layers to create complex scenes. The

Sprite class supports heroes animation and collision detection. Large scenes or

backgrounds can be constructed efficiently using TiledLayer.
 Using Mobile 3D Graphics (JSR 184), it is possible to render 3D graphics to a

2D MIDP component such as a Canvas by binding to the singleton Graphics3D

instance. Graphics3D controls lights for illuminating a 3D scene and camera to
determine the portion of the scene that is displayed. All the objects inside the

animation world can be located and manipulated using immediate mode API calls.

25

Exercise J2ME.ex4 Wireless Messaging by SMS Texting

Create MIDlet applications communicating with each other through SMS-based

communication channel.

a) Create a distributed implementation of tic-tac-toe (noughts and crosses) game
which enables to play the game remotely between two SMS subscribers.

b) Create an application which automates the process of SMS-based
broadcasting of selected predefined text messages, to predefined group of

phone subscribers (for example: inviting friends to a Friday party, informing

superiors about illness or absence)

 Using the Internet on the phone could be quite costly because usually

connection time is billed per minute or per packet. An interesting lower cost

alternative is the Short Message Service (SMS), which is one of the most widely

available and popular services for cell phones. The Wireless Messaging API

(WMA 1.1, JSR-120), is an optional API that enables MIDP applications to send SMS

messages. WMA version 2.0 (JSR-205), adds the support for Multimedia Message

Service (MMS) with the ability to send large binary messages consisting of multiple

parts. These messages could carry: images, sound, video, or multimedia presentations.

There are many possible applications of WMA: chat-type applications, interactive

gaming, event reminders, e-mail notification, informational services, etc.

 All the interfaces and classes in WMA are a part of the package

javax.wireless.messaging. WMA is built on top of CLDC and Generic

Connection Framework, so we get a MessageConnection by passing in an

address to the connect() method, analogically to SocketConnection and

DatagramConnection in the GCF. But in contrast to the above, we cannot open
an input or output stream from it. MessageConnections are only used to send and

receive messages. The SMS URL address has to have the format: “sms://” +

phone_number + ":" + port_number. Second part, with port_number could be omitted.

Examples of URL connection strings are:

• "sms://+111222333" → to send SMS message to the specified phone number

• "sms://+111222333:4444" → to send SMS to a port 4444 on the specified phone

• "sms://:4444" → to open server mode connection on port 4444
Server mode connections are used to receive incoming messages. The concept of a

port allows multiple applications to accept messages on the same device. It also

enables the device to differentiate between SMS messages destined for a WMA

application and standard text messages. The cost of using a port in SMS address is

eight bytes of data at the beginning of an SMS message.

 To send a single SMS message using WMA, first create an empty message

using the newMessage() method of the open MessageConnection which
works as the class factory for messages (Listing 2-9 �). We also need to specify the

message type as MessageConnection.TEXT_MESSAGE for SMS text message.

26

Listing 2-9 Example code sending SMS text message

import java.io.*;
import javax.microedition.io.*;
import javax.wireless.messaging.*;

MessageConnection smsConnection;
TextMessage smsMessage;
. . .
try {
 smsConnection=(MessageConnection)Connector.open("sms://5550000");
 smsMessage=(TextMessage) �
 smsConnection.newMessage(MessageConnection.TEXT_MESSAGE);
 smsMessage.setPayloadText("text of example SMS"); �

 smsConnection.send(smsMessage); �
} catch (IOException ex) {
 // manage an exception
}

Then, set the text string that you want to send � using setPayloadText().

Finally, use the send() method of MessageConnection to send the message �.
 There are two options to receive SMS messages by a MIDlet. The first one is to

use a MessageConnection.receive() method. Since receive() is a
blocking call, it should always be called in its own thread. Listing 2-10 demonstrates

how to use this first option.

Listing 2-10 Receiving SMS message with blocking method receive()

MessageConnection serverConnection;
Message receivedMessage;

try {
 serverConnection=(MessageConnection)Connector.open("sms://:4444");
 receivedMessage=serverConnection.receive();
 if(receivedMessage instanceof TextMessage) { �
 String smsText =((TextMessage)receivedMessage).getPayloadText();
 String senderAddress = receivedMessage.getAddress();
 Date messageDate = msg.getTimestamp(); �
 // manage received smsText
 }
} catch (IOException ex) {
 // manage an exception
}

Because received message can be of TextMessage or BinaryMessage type, we
have to check it before retrieving message payload �. In addition to the text payload,

two other interesting informations appear in the message header, which can be

retrieved by getAddress() and getTimestamp() methods �.
 MessageConnection also supports a second, nonblocking (event listener-based)

way for receiving SMS messages. To use this, we need to create and register a

MessageListener object with the setMessageListener() method, and

handle the callback on the notifyIncomingMessage() method of this

MessageListener interface. Only one listener can be registered at a time for the

serverConnection. The callback is performed by WMA on a system thread, so

27

the notifyIncomingMessage() method should return as soon as possible, and
any laborious message processing must be performed in a separate thread.

To ease testing of MIDlet SMS applications on debugger, we can use a Sun

Wireless Toolkit (WTK) utility called the WMA console, which monitors wireless

messaging activities and enable to simulate sending trial SMS/CBS/MMS messages.

WMA console can be launched, by starting:

C:\Program Files\NetBeans 6.5.1\ mobility8\WTK2.5.2\bin\ktoolbar.exe

and then selecting File→Utilities→WMA console from Wireless Toolkit main menu.

Figure 2-7 Utilizing WMA console to monitor SMS messaging activities of phone emulator

The second way of testing WMA applications is to use two or more running instances

of the device emulator. Each of the instances has its own unique phone number

displayed on the device window title bar (default are: +5550000, +5550001, etc.). If

sending messages between these numbers, the emulator environment will take care of

simulating wireless transmission between emulated devices.

 The Wireless Messaging API, extends the CLDC’s Generic Connection

Framework, adding the ability for J2ME applications to send and receive SMS

messages. The latest JSR 205, specifying WMA 2.0, extends this further to take

advantage of the content-rich Multimedia Message Service (MMS) that is becoming

available starting from 2.5G and 3G phone networks. Presented exercise, can be

extended to enable transmission of MultipartMessage carrying an image, an

audio or video clip file. A MultipartMessage is a subinterface of Message.

Apart from basic methods like setAddress() inherited from Message, additional
methods on this interface deal with the additional features owned by MMS messages

(for example: addAddress(String type, String address) to set

multiple recipients for “to”, “cc”, and “bcc” fields similarly to e-mail). Listing 2-11

illustrates how to send multipart message containing a png image.

28

Listing 2-11 Sending *.png image by multipart MMS message

//prepare an image buffer with multimedia content (image) to send
String imageName = "/images/example_image.png";
InputStream inputStream = getClass().getResourceAsStream(imageName);
byte[] imageBuffer = new byte[inputStream.available()];
inputStream.read(imageBuffer);

//compose a multipart message
String receiver = "mms://+5550000:5555";
MessageConnection mmsConnection;
MultipartMessage mmsMessage;mmsConnection = (MessageConnection)
Connector.open(receiver);
mmsMessage = (MultipartMessage)
 mmsConnection.newMessage(MessageConnection.MULTIPART_MESSAGE);
mmsMessage.setSubject("MMS with example png image");
mmsMessage.addMessagePart(new MessagePart(imageBuffer,0,
 imageBuffer.length, "image/png","id1","location", null));

//send the prepared MMS message
mmsConnection.send(mmsMessage);

Exercise J2ME.ex5

MIDP Persistent Data Storage Using RMS

Create MIDlet applications that permanently memorize data collected during

subsequent sessions or share the same data between several MIDlets (from

different Suites).

a) Implement a MIDlet with history-feature, that stores all the Data/Time
moments of its launching.

b) Create a composition of three cooperating MIDlets, which share the same
RecordStore. At least one of them should be from different MIDlet Suite.

Consider three functionalities: record owner, reader (read only) and writer.

c) Create a MIDlet implementation of a home private library database
representing books, readers and their relation in the form of three tables.

 Most of the mobile applications need to store some data in a permanent way

(even when the device is switched off). MIDP defines a set of classes for storing and

retrieving data called Record Management System (RMS). This mechanism is

modeled after a simple record oriented database and enables to persistently store data

and retrieve it later. The central concept for persistent storage is the RecordStore.

Each RecordStore consists of a collection of records that will remain persistent
across multiple invocations of a MIDlet. The records data are stored in a dedicated

memory part of mobile device which is generally called "persistent storage", but the

details of how exactly records are stored are specific to the device implementation and

are not exposed to a MIDlet.

 Any MIDlet suite that plans to use RMS memory, should specify the minimum

number of bytes for the data storage it requires, by setting the MIDlet-Data-Size

attribute (in application descriptor and the JAR manifest). If not, the device could

assume the MIDlet suite does not require any space for persistent data storage. The

RMS is not suitable for storing big amounts of data. The MIDP specification dictates

29

that the minimum amount of persistent storage, which has to be provided, is

only 8KB.

 The javax.microedition.rms.RecordStore class encapsulates all
access to persistent storage. It provides methods for accessing and manipulating

RecordStores, as well as methods for working with individual records (arrays of

bytes). All access methods are static so can be called without an instance.

 Every MIDlet in a MIDlet Suite, can access every Record Store created by its

Suite members. Since MIDP 2.0, access across suite borders is also possible. In the

case of concurrent access it is important to remember that no locking operations are

provided in RMS API. RecordStore implementations have to ensure that all
individual operations are atomic, synchronous, and serialized so that no corruption

occurs with multiple accesses. However, if a MIDlet uses multiple threads to access a

record store, it is the MIDlet's responsibility to coordinate this access.

 Every instance of RecordStore is identified by a name. Within a MIDlet
suite’s record stores, the names must be unique. We can acquire a list of all created

record stores names with method listRecordStores() returning the array of
strings:

 String[] names = RecordStore.listRecordStores();

To open an existing (and possibly create a new) record store associated with the given

MIDlet suite, openRecordStore() method should be used:

public static RecordStore openRecordStore(String recordStoreName,
 boolean createIfNecessary)
 throws RecordStoreException,
 RecordStoreFullException,
 RecordStoreNotFoundException

If the record store does not exist, the createIfNecessary parameter determines
whether a new record store will be created or not. An opened record store can be

closed by calling the closeRecordStore() method. And finally, to remove a
record store and delete all its contained records, we have to call the static

deleteRecordStore() method.
 To enable record stores sharing between different MIDlet Suites, MIDP 2.0

introduced RecorStore authorization mode. The default authorization mode is

AUTHMODE_PRIVATE, which means that a record store is only accessible from
MIDlets in the sam suite that created the record store. Record stores can be shared by

changing their authorization mode to AUTHMODE_ANY. In this case, any other MIDlet
on the device can access the record store. Shared record stores can be created and

opened using an alternate openRecordStore() method with two additional
arguments:

public static RecordStore openRecordStore(String recordStoreName,
 boolean createIfNecessary,
 byte authMode,
 boolean writable);

We can also change the authorization mode and writable flag of an open record store

using the setMode() method:

30

public void setMode(byte authmode, boolean writable);

Only the owning MIDlet suite can change the mode of a RecordStore.

SecurityException will be thrown if the MIDlet Suite is not allowed to change

the mode of the RecordStore. Other MIDlets (which are not creators of the
RecordStore) can access a shared record with third version of

openRecordStore() method:

public static RecordStore openRecordStore(String recordStoreName,
 String vendorName,
 String suiteName);

In this case, the MIDlet has to know not only the RecordStore name, but also the
name of the MIDlet suite that created it, and the name of the MIDlet suite’s vendor.

These names must be the same as MIDlet-Name and MIDlet-Vendor attributes
in the MIDlet suite JAR manifest file.

 Each record in a RecordStore is simply an array of bytes and each of them
has an positive integer identification number which starts from 1. To add a new

record, we have to supply the byte array to the addRecord() method and returned

result is the new record’s integer ID:

public int addRecord(byte[] data, int offset, int numBytes);

The added record will consist of numBytes number of bytes taken from the data

array, starting form offset position in this array. The following code snippet
(Listing 2-12) illustrates adding a new record to a RecordStore named "MyFriends"

which collects the names of somebody's friends. It starts with openinig (or creating)

suitable RecordStore, then converts newFriendName from String raw byte array and

finally adds the entire array into a new record:

Listing 2-12 Adding of a single String (text) to RMS RecordStore

 RecordStore rs = null;
 try {
 rs = RecordStore.openRecordStore("MyFriends", true);
 String newFriendName = "John Smith";
 byte[] rawByteArray = newFriendName.getBytes();
 rs.addRecord(rawByteArray, 0, rawByteArray.length);
 } finally {
 if (rs != null)
 rs.closeRecordStore();
 }

Usually we want to store custom objects which have more complicated structure than

a single text or number. Because each record has the form of single byte array, we

have to begin with serialization of memorized data and only afterwards write the

resulting array to a new record. In the case of several different values which do not

form a single class, the most comfortable serialization method is to use

ByteArrayOutput Stream. Reverse process is needed to recreate the objects

(with ByteArray InputStream for deserialization). Listing 2-13 illustrates such
serialization process for memorizing three values describing the victory in computer

game: score, playerName, victoryDate.

31

Listing 2-13 Adding a record of three serialized values

private byte[] serializeData(int score,
 String playerName,
 long victoryDate) throws IOException
{ //auxilary function converting fields into raw byte array
 ByteArrayOutputStream baos = new ByteArrayOutputStream();
 DataOutputStream output = new DataOutputStream(baos);

 output.writeInt(score);
 output.writeUTF(playerName);
 output.writeLong(victoryDate);

 output.close();
 baos.close();
 return baos.toByteArray();
}

public void addScore(RecordStore rs,
 int score, String playerName, long victoryDate)
{
 //Each score is stored in a separate record,
 //formatted with the score, followed by the player name and date.
 byte[] byteArray = serializeData(score,playerName,victoryDate);

 // Add the array to the record store
 try {
 int recId; // record ID returned by addRecord, here not used
 recId = rs.addRecord(byteArray, 0, byteArray.length);
 }
 catch (RecordStoreException rse) {
 System.out.println(rse);
 rse.printStackTrace();
 }
}

Reverse operation can be done with getRecord() method which retrieves a byte

array of data for the supplied record ID. There are two versions of getRecord()
method. First one returns newly created byte array with the size fitted to record

content. An alternate version of this method puts the record data into an array buffer

that you supply as second parameter of the method:

public byte[] getRecord(int recordId)
 throws RecordStoreNotOpenException,
 InvalidRecordIDException,
 RecordStoreException

public int getRecord(int recordId, byte[] buffer, int offset)

This second version returns the number of bytes that were copied into your array. It is

more efficient in the case of massive readings of RecordStore content, because it
avoids superfluous repetitive creation of byte array buffer. The drawback is, that the

array we supplied could be not large enough to hold the record content (and

ArrayOutOfBoundsException will be thrown). To control this situation, we
can find out the size of a particular record ahead of time by calling

getRecordSize():

32

 byte[] fittedArray = new byte[rs.getRecordSize(id)];
 rs.getRecord(id, fittedArray, 0);
 String retrievedString = new String(fittedArray);

Replacing the data of an existing record is done by calling the setRecord() method:

public void setRecord(int recordId,
 byte[] newData, int offset, int numBytes)
 throws RecordStoreNotOpenException, InvalidRecordIDException,
 RecordStoreException, RecordStoreFullException

The RecordStore keeps an internal counter that it uses to assign record IDs. You

can find out what the next record ID will be by calling getNextRecordID(). And

you can find out how many records exist in the RecordStore by calling

getNumRecords().

 The record can be deleted by passing its ID to deleteRecord() method.
Unfortunately, record IDs are fixed and the deleted record ID is not used again by

incoming records. As a result, after several deletions record IDs sequence will not be

continuous and direct use of standard iteration process can be very tedious.

 In RMS, the RecordEnumeration is introduced to simplify traversing the

RecordStore content by iteration through a set of existing records. We can find out

if there’s a next record by calling hasNextElement(). If the next record exists, we

can retrieve its data by calling the nextRecord() method or retrieve its ID by

calling nextRecordId(). A RecordStore method enumerateRecords() is
typically used to create an enumeration for traversing a set of records in the record

store in an optionally specified order:

public RecordEnumeration enumerateRecords(RecordFilter filter,
 RecordComparator comparator,
 boolean keepUpdated)
 throws RecordStoreNotOpenExceptionReturns.

By using an optional RecordFilter, a subset of the records can be chosen that

match the supplied filter. By using an optional RecordComparator, the
enumerator can index through the records in an order determined by the comparator.

Both of them, filter and comparator can be used for implementing search and
sorting capabilities typical for every database system. A skeleton of typical full use of

RecordEnumeration will contain 5 steps:

Listing 2-14 Skeleton of filtered and sorted RMS record enumeration

// � Open a RecordStore rs
 RecordStore rs = RecordStore.openRecordStore(…);

// � Create a RecordFilter rf
// the instance of the class implementing a RecordFilter interface
// with its boolean matches(byte[] candidate) method

// � Create a RecordComparator rc
// the instance implementing a RecordComparator interface
// with its int compare(byte[] rec1, byte[] rec2) method

// � Create enumeration agregating above filter and comparator
 RecordEnumeration re = rs.enumerateRecords(rf, rc, false);

33

// � walk straight through the selected records
 while (re.hasNextElement()) {
 byte[] recordBytes = re.nextRecord();
 // Process the retrieved bytes.
 // . . .
}

Listing 2-15 illustrates example implementation of record enumeration which

traverses the whole content of "StudentNames" RecordStore and displays all the

names in a IDE console window. In this case RecordFilter and

RecordComparator are not used, so the two first parameters of

enumerateRecords() method are set to null. The last parameter is set to

false, because we do not forecast any RecordStore updates during this iteration.

Listing 2-15 Raw browsing through RecordStore composed of all Strings

 RecordStore rs = null;
 RecordEnumeration re = null;

 try {
 rs = RecordStore.openRecordStore("StudentNames", true);
 re = rs.enumerateRecords(null, null, false);
 while (re.hasNextElement()) {
 byte[] rawBytes = re.nextRecord();
 String studentName = new String(rawBytes);
 System.out.println(studentName);
 }
 } finally {
 if (re != null) re.destroy();
 if (rs != null) rs.closeRecordStore();
 }

RecordEnumeration enables to move the iteration cursor forward and backward.

It can be done by using hasPreviousElement(), previousRecord(), and

previousRecordId() methods which work just like their next counterparts.
 Finaly, to find out the whole number of bytes used by a record store, we can call

the public int getSize() method on a RecordStore instance. We can also
find out how much more space is available in RMS "persistent memory" by calling the

method: public int getSizeAvailable().
 To sum up this exercise, there are three more methods which provide access to

MIDlet persistent data. The first one utilizes resource files, which are another form of

persistent storage. Resource files can be images, text, or other types of files that are

stored in a MIDlet suite JAR. These files are read-only. You can access a resource file

as an InputStream by using the getResourceAsStream() method in a MIDlet's
class. A typical usage looks like this:

InputStream in = this.getClass().getResourceAsStream("/image.png");

The second method is to benefit from File Connection Optional Package (JSR-75).

Modern devices may have slots for optional flash memory cards that can be added

(like Secure Data / SD cards, Compact Flash, and Memory Stick). The File

Connection Optional Package provides an API that can be used by applications to

access a device’s file systems. A device may expose its file systems through this

34

optional API which is contained in the javax.microedition.io.file
package.

 The third method is to utilize the Personal Information Management (PIM)

package. Many mobile devices, especially phones, have the ability to maintain lists of

phone numbers and names. Some devices also store addresses, e-mails, events, to-do

lists, and other personal information. This PIM data is stored in PIM on-device

databases. PIM Optional Package (from the same package JSR-75) enables MIDlet

applications to access PIM databases of mobile device. Using this optional package

our MIDlets can read, add, modify, or delete records contained in contacts, events, and

to-do lists. So this database could be also treated as a sort of MIDlet's persistent

memory.

35

3. Programming Microsoft Windows Mobile

 The second group of exercises gives us an overview of techniques and tools for

developing applications for the Microsoft Windows Mobile platform, using the .NET

Compact Framework (CF). Windows Mobile platform is the fourth biggest mobile

player in the world, with about 10% of the market share. An important aspect of

Windows Mobile OS is its close correlation with other Windows Operating System

versions (2K, XP, Vista, 7) and Microsoft Office applications (Outlook, Word, Excel).

For many business customers it is easier to invest into familiar consumer brand, which

is well known to all office workers, than take a risk of innovations from mobile market

newcomers. In US, it is the 3rd most popular smartphone operating system for

business use with about 25% share among enterprise users.

3.1. .<ET Compact Framework Platform

 .NET is a programming framework originally developed by Microsoft for

servers and desktop computers with Windows Operating System. The .NET Compact

Framework (CF) is a subset of the full .NET Framework. It is adopted specifically for

resource-constrained devices, such as palmtops (Personal Digital Assistants) and smart

mobile phones. The size of memory footprint was scaled down to about 10% of the

full framework. Some components and some functionalities, that are not useful on

mobile platform, have been removed. Some extra functionalities (for example:

management of additional hardware buttons or cradle synchronization) were added.

As a result, CF greatly simplifies the process of creating and deploying applications

for mobile devices, while providing almost the same benefits as the .NET Framework

and allowing the developer to take full advantage of the capabilities of the device.

 During this course, the implementation language for Windows Mobile will be

C# − an object-oriented programming language developed by Microsoft especially for

.NET framework. Code written in C# is called managed code, it targets the .NET

Common Language Infrastructure (CLI) and takes advantage of the built-in structures

of the .NET Framework. Using "managed code" means that .NET byte-code is

executed on the Common Language Runtime (CLR), in a similar manner to Java code

being executed on Java Virtual Machine. A key benefit of managed code is that it

supports strong type-safety and handles many common errors that plague native code

programmers (bad pointers, memory leaks, etc). It is also possible to use other

languages to program Windows Mobile applications, for example Java or C++ native

code language. For students interested in C++, Visual Studio IDE subdirectory

Samples\PocketPC\Cpp contains about one hundred of C++ code examples. But

usually native C++ code is much more complicated (for instance, simple ListView
example requires about six hundreds of lines, while C# implementation requires only a

few). For a time-restricted laboratory, C# seams to be the best choice. It is also

possible to execute Java Micro Edition programs on Windows mobile device, but in

that case, low level access to device hardware is much more restricted.

36

3.2 Visual Studio Integrated Development Environment

 Microsoft Visual Studio IDE (2005 or 2008) will be used as a basic

development environment for all applications presented in this chapter. It enables

automatic targeting the .NET CF assemblies and includes a graphical drag-and-drop

designer to facilitate creation of graphical user-interface. It also contains an emulator

than can be used to execute and debug the program without having to transfer it to a

mobile device.

 Windows Mobile programming is unsupported under freely available Visual

Studio EXPRESS edition, so it is important to install commercial: Standard,

Professional and larger editions of VS. At the moment, the faculty of Electronics is a

member of Microsoft MSDN AA program, so all this software can be downloaded

(without charge) by students from Microsoft E-Academy page for EKA/PWr:

http://msdn62.e-academy.com/elms/Storefront/Home.aspx?campus=msdnaa_pd6979

 All demonstration codes in this chapter are targeted at Windows Mobile 5.0 and

higher. Because Windows Mobile 6.0 was shipped after the release of the

abovementioned versions of Visual Studio (2005/2008), downloading and installing

“Windows Mobile Professional And Standard Software Development Kit Refresh”,

has to be done from Microsoft mobility developer page. This SDK refresh adds

documentation, sample code, header and library files, emulator images and tools to

Visual Studio that let you build applications for Windows Mobile 6. The Visual Studio

device emulators are great development tools. However, real device testing and

debugging is usually unavoidable. For Windows Mobile 5.0 (and later) - powered

devices, we need Microsoft ActiveSync version 4.0 or later, or Windows Mobile

Device Center on the Windows Vista/7 operating systems.

3.3 Laboratory Exercises

For newcomers in C# programming and Visual Studio IDE, we start with the very

simple “ConsoleHello” application for desktop text console (Listing 3-1).

Listing 3-1 Example of simple C# console application

//in file "ConsoleHello.cs"

using System; �
public class Hello{

 public static void Main(string[] args){ �
 Console.WriteLine("Welcome in C# World");
 }
}

The program should be straightforward and readable for students with a background

knowledge of any other object-oriented languages like Java. First line � includes the

System namespace, which is a part of the .NET Framework class library. Namespace
in C# is an equivalent to the “package” concept in Java. The following lines define the

class ConsoleHello and the static Main method �, which is equivalent to the
“main” method of Java or C++, automatically executed when the program is started.

To try out the above program, select Tools→Visual Studio Command Prompt of the

MS Visual Studio IDE main menu. Change the directory to the location where the file

37

ConsoleHello.cs is placed. Then type a command csc ConsoleHello.cs

to invoke the line C# compiler (csc) and finally type ConsoleHello to see
“Welcome in C# Word” greeting, written on the console screen by

“ConsoleHello.exe” executable.

Exercise WM.ex1

Building the first application with a Windows Forms based GUI

Apply System.Windows.Form library to create a single Form (dialog)
application which can be compiled both for stationary desktop station (with a

standard display) and for mobile device with a very compact screen.

 Modern applications usually take advantage of a graphical interface which is

much more comfortable for application users, than primitive text-based console

applications. To ease development of such software, .NET framework provides

standard libraries which contain a large collection of different interface controls like:

Form, Button, Label, TextBox, etc. In the following code example

(on Listing 3-2), we illustrate the use of the System.Windows.Forms library to

create simple graphical application with: one Form, one Button and one

button_Click handler.

Listing 3-2 Example of user interface based on Windows.Forms

using System;

using System.Windows.Forms; �
using System.Drawing;

public class FormHello : Form �
 {
 public static void Main()
 {

 Application.Run(new FormHello()); �
 }

 public FormHello() �
 {
 this.Text = "Welcome to Windows Forms World";

 Button button = new Button(); �

 button.AutoSize = true; �
 button.Text = "Press me to close this application!";
 button.Location = new Point(10, 20);

 button.Click += new EventHandler(button_Click); �
 this.Controls.Add(button);
 }

 void button_Click(object sender, EventArgs e) �
 {
 this.Close();
 }
 }

 In this example we use three different namespaces �: basic System

namespace(as in the previous application) here for EventHandler, EventArgs,

38

the System.Windows.Forms containing Form and Button classes, and

System.Drawing for Point class. Line � defines new class FormHello, which

inherits from the basic Form class and contains application starting point: static

method Main. Line � creates and makes visible an instance of our FormHello
window and starts a new message loop for the application by executing

Application.Run method. Class constructor � sets the main window title

(this.Text), creates a single instance of Button �, sets its label to text “Press me

…”, and adds method button_Click � as the active Button.Click event
handler �. In result, clicking the button causes termination of application message

loop and application quits.

To try out the above application, save the code in FormHello.cs source

file. Start Visual Studio and select File→New→Project from existing code option

from main menu. Select Visual C# type of project, specify path to the above source

file, the name of created project (e.g. FormHello), and set Windows Application as

output type. Pay attention, that this time we have selected standard “C# project” and

created a standard desktop window application (Fig. 3-1)

Figure 3-1 Creating desktop Windows.Forms application from example source code

To debug the above code as a MOBILE application on a mobile device emulator:

1. Create a new project by selecting: File→New→Project→Visual C#

→Smart Device as the project type, Smart Device Project as a project
template, set the location directory for the code, and give it any meaningful

name, for example “MobileFormHello”

2. Choose Device Application template, mobile Target platform SDK and
Compact Framework version as shown in figure 3-2

Figure 3-2 Creating mobile device application project using WM 6.0 SDK and CF ver. 3.5

39

3. In Solution Explorer window, delete the default items “Form1.cs”,
“Program.cs” created by Visual Studio as default setup, and add our

“FormHello.cs” file instead of them, using Project→Add Existing Item

option from main menu (Fig.3-3). Then try to build and run the application by

selecting Debug→Start Debugging

Figure 3-3 Creating Smart Device project type from existing code “FormHello.cs”

At the first attempt to build the application, the C# compiler will signal the error

“error CS1061”, namely: 'System.Windows.Forms.Button' does not contain a

definition for 'AutoSize'. This error illustrates the fact, that .NET Compact Framework

omits some parts of the full Framework. The AutoSize property of Button class is
one example of omitted items. The most primitive solution is to comment or delete the

line � setting the AutoSize property, but in this case the default button surface area
will be too small to display the whole text on the button (see figure 3-4.a). Part of the

button label will be cut off. Adding the line which sets the Button.size property
will solve the problem more correctly (Fig. 3-4.b):

//button.AutoSize = true; �
button.Size = new Size(200, 40);

a) b)

Figure 3-4 Example screenshots of form “FormHello.cs” tested on mobile device emulator

a) without auto-size operation on the button b) with manually corrected button.Size

To create a UI for a mobile device application, we can generally follow the same basic

process we use to create a UI for any desktop application. However, several “mobile

40

designing” hints should be taken into account during this process. Mobile devices

have relatively small screens and designing an effective user interface usually appears

a big challenge for mobile developer. Handling and navigating forms in different

screen orientations and resolutions, handling user input from touch screen, phone

keypad, on-screen keyboard (the Software-based Input Panel - SIP) or full Qwerty

hardware keyboard makes it even more difficult.

 An obvious UI design guideline, for devices with a touch screen, is to place

near the bottom of the screen items that require the user to tap. Otherwise, the user's

hand does obscure the screen when the user taps to make a selection. Because of that,

the tabs of the TabControl and the main menu bar appear at the bottom of the screen

(opposite to desktop applications).

 Entering larger portions of text data with the phone keypad or SIP is very

tedious for a user, so we should try to minimize the amount of data a user must enter

wherever possible. It is suggested to replace text boxes, with alternative controls such

as combo boxes, check boxes, and radio buttons, if it is possible. In the case the text

boxes are unavoidable, the developer should place them at the top of the display, to

prevent them from being obscured by software keyboard panel (SIP) when it becomes

visible.

Basic mobile windows Form component is always full screen and the user can

interact with only one Form at a time. Each mobile form, by default, is given a

MainMenu control. If this control contains only one or two menu items, it is used for
naming the “soft keys”, displayed just above two additional hardware “function”

buttons placed under the screen of all Windows Mobile devices. If the menu contains

more than two items or if we use earlier versions of Windows Mobile (earlier

than 5.0), it is used for standard menu and toolbar.

Typically, the top strip of the Form contains the application title bar. The
device uses the top strip for the device start menu, clock, and signal indicators. If we

want to remove this strip, WindowsState property of the form should be set to

Maximized (instead of its default value Normal). Additionally, if we delete the
menu control from application form, it hides the bottom “menu” strip, and the whole

device screen will be accessible as Form interior.

Exercise WM.ex2

Exploring Important .<ET CF Windows Forms Controls

Make use of Visual Studio Designer to create an example Windows Mobile

application demonstrating capabilities of mobile version of Windows.Forms
library, to create an attractive and communicative graphical user interface.

Suggested subjects for applications are:

a) Scientific calculator
b) E-commerce order form editor
c) Multiple-choice tests e-learning application

 The Windows Forms controls available to mobile device projects are a subset of

the controls available to desktop projects. Additionally, the members of classes

41

existing on the mobile device platform, usually form a subset of the members we will

find in the same class on the desktop platform. For example, Compact Framework

implementation of standard Button control does not have an Image property (to

display an icon on the button) and lack the abovementioned AutoSize property.

Detailed description of all Windows.Form components can be found in free online
MSDN documentation. Below, we shortly summarize some properties of selected

components which are expected to be surely used in the course of this series of

exercises.

 The most useful is the knowledge about characteristic elements of the

Control type, which is the base class for all controls (components with visual
representation). Three following tables gather together common features: the

properties (Table 3-1), methods (Table 3-2) and events (Table 3-3) among all

Control family members.

Table 3-1 Frequently used, common properties of all Control inherited classes

Property name Property description

BackColor Gets or sets the background color for the control.
Bottom Gets the distance, in pixels, between the bottom edge of the

control and the top edge of its container's client area.
Bounds Gets or sets the size and location of the control including its

nonclient elements, in pixels, relative to the parent control.
Capture Gets or sets a value indicating whether the control has

captured the mouse.
ContextMenu Gets or sets the shortcut menu associated with the control.

Controls Gets the collection of controls contained within the control.

Enabled Gets or sets a value indicating whether the control can

respond to user interaction.

Focused Gets a value indicating whether the control has input focus.
Font Gets or sets the font of the text displayed by the control.

Height Gets or sets the height of the control.
Left Gets or sets the distance, in pixels, between the left edge of

the control and the left edge of its container's client area.
Location Gets or sets the coordinates of the upper-left corner of the

control relative to the upper-left corner of its container.
Parent Gets or sets the parent container of the control.

Text Gets or sets the text associated with this control.
Visible Gets or sets a value indicating whether the control and all its

parent controls are displayed.
Width Gets or sets the width of the control.

The use of the above properties can be illustrated with the following code snippet,

which: creates a new Button �; sets its initial Size, Location and Text �; adds

it to the main form Controls collection � and finally removes it from the screen by

switching off its Visible property �.

42

 Button button = new Button(); �
 button.Location = new Point(10, 20);
 button.Size = new Size(200, 40); �
 button.Text = "This is a text displayed on my surface";
 mainForm.Controls.Add(button); �
 . . .
 button.Text = "And now, I'm going to disappear";
 button.Visible = false; �

Table 3-2 Frequently used common methods of all classes inheriting from Control

Method <ame Method Description

BringToFront Brings the control to the front of the z-order.
CreateGraphics Creates the Graphics for the control.
Dispose Overloaded. Releases all resources used by the Control.
Focus Sets input focus to the control.

Hide Conceals the control from the user.

Invalidate Overloaded. Invalidates a specific region of the control and

causes a paint message to be sent to the control.

OnClick Raises the Click event.
OnDoubleClick Raises the DoubleClick event.

OnKeyDown Raises the KeyDown event.
OnLostFocus Raises the LostFocus event.

OnMouseDown Raises the MouseDown event.
OnPaint Raises the Paint event.

Refresh Forces the control to invalidate its client area and

immediately redraw itself and any child controls.

SelectNext
Control

Activates the next control.

Show Displays the control to the user.
ToString Returns a String containing the name of the Component, if

any.

Table 3-3 Frequently used, common events typical for all Control inherited classes

Event name Event description
Click Occurs when the control is clicked.

DoubleClick Occurs when the control is double-clicked.
EnabledChanged Occurs when the Enabled property value has changed.
GotFocus Occurs when the control receives focus.

KeyDown Occurs when a key is pressed while the control has focus.
LostFocus Occurs when the control loses focus.

MouseDown Occurs when the mouse pointer is over the control and a

mouse button is pressed.

MouseMove Occurs when the mouse pointer is moved over the control.
Paint Occurs when the control is redrawn.

Resize Occurs when the control is resized.

43

Most of the controls can be considered as isolated visual objects, but there are three

controls which are grouping containers for other controls. First one is the earlier

discussed main Form control, second is a Panel, and the third one is a very popular

TabControl.
 Panel control can be used, for example, to group together multiple

RadioButton controls. Another use of the Panel control is for hiding and
showing a group of controls. We can create and place two or more panels on the same

Form, populate them with various controls, and then toggle the boolean Visible

property of each Panel. This technique can be used to avoid creating multiple forms.
Instead of switching between forms, we can switch between different panels on the

same form by toggling the visibility properties of the panels.

Listing 3-3 Example use of the TabControl container component

public class FormTabControlExample : Form
 {
 private System.Windows.Forms.TabControl tabControl;
 private System.Windows.Forms.TabPage tabPage1;
 private System.Windows.Forms.TabPage tabPage2;
 private System.Windows.Forms.Label label1;

 public FormHello()
 {
 //create the main tabControl and add it to the form.
 tabControl = new System.Windows.Forms.TabControl();
 tabControl.Location = new System.Drawing.Point(16, 16);
 tabControl.Size = new System.Drawing.Size(264, 240);
 Controls.Add(tabControl);

 //create the first tabPage and add it to the TabControl
 tabPage1 = new System.Windows.Forms.TabPage();
 tabPage1.Text = "tabPage1";
 tabPage1.Size = new System.Drawing.Size(256, 214);
 tabPage1.TabIndex = 0;
 tabControl.TabPages.Add(tabPage1);

 //create example Label on tabPage1
 label1 = new System.Windows.Forms.Label();
 label1.Location = new System.Drawing.Point(10, 10);
 label1.Text = "Example Label on tabPage1";
 label1.Size = new System.Drawing.Size(250, 100);
 tabPage1.Controls.Add(label1);

 //create the second tabPage and add it to the TabControl
 tabPage2 = new System.Windows.Forms.TabPage();
 tabPage2.Text = "tabPage2";
 tabPage2.Size = new System.Drawing.Size(256, 214);
 tabPage2.TabIndex = 1;
 tabControl.TabPages.Add(tabPage2);

 tabControl.SelectedIndex = 1; //bringing tabPage2 to front
 }
 }

 The TabControl contains tab pages, which are represented by TabPage

objects, that we can add through the TabPages property. The order of tab pages in
this collection reflects the order in which the tabs appear in the control. The user can

change the current TabPage by clicking one of the tabs in the control. We can use

44

this control to load the form with many controls while allowing the user to switch

quickly between different tabs. The currently displayed TabPage can be also

changed programmatically by using one of the following TabControl properties:

SelectedIndex or SelectedTab. The code example in listing 3-3 illustrates

creation of a TabControl with two tab pages. Each tab page can contain several

controls. In this example, only one Label is placed on tabPage1. By default,

tabPage1 (with index property equal to 0) will be selected. The last line of the code,

use the SelectedIndex property to force bringing tabPage2 to forefront.
Other useful controls are:

• Label − a control used to display textual information or description of other

controls. Text property enables setting and retrieval of displayed textual
content .

• Button − a class representing a Windows button control. Basic properties are:

Text, Enabled, Visible and BackColor. The most useful events are the

Click, GotFocus / LostFocus, KeyDown. Illustration of how to set up a
new event handler for the button can be found in listing 3-2 (in lines ��).

• TextBox − a control that enables the user to enter a string into a text field.

PasswordChar property can be set to mask all entered chars. The most

interesting event is the TextChanged, which is usually used to filter out or
enable/disable another controls related to the entered content.

• ListBox − represents a Windows control for displaying a list of items. It is
one of the most frequently used controls on mobile devices, because it enables

to avoid onerous data readings (from key-pad or SIP) by simple selecting of

predefined or memorized data.

The Windows Forms designer can be used to build GUI applications using Windows

Forms. It includes a palette of UI widgets and controls (including buttons, progress

bars, labels, layout containers and other controls) that can be dragged and dropped on

a form surface (Figure 3-5).

Figure 3-5 Drag&Drop composition of User Interface in MS Visual Studio Designer

45

Exercise WM.ex3

Sending and Intercepting SMS Messages

Create a Windows Mobile application that allows to use an SMS as a messaging

transport medium between two (or more) mobile devices, with minimal input

from the user.

a) Automate the process of SMS auto-reply, informing that somebody will be
unable to manage the message for some reason (e.g. illness or vacation)

b) Automate mass SMS correspondence – e.g. create an application informing
the group of receivers about some event, by automatically sending SMS

messages to phone subscribers selected from application database, based on

some selection rule.

c) A client application, for a mass entertainment-event booking system,
assisting the user in making a ticket reservation by SMS.

 Windows Mobile operating system contains a number of application

programming interfaces (APIs) that are exclusive to Windows Mobile - powered

devices. One of the most widely used is the Microsoft.WindowsMobile.

PocketOutlook library, which is responsible for accessing and managing personal
information data (contacts, calendar, tasks, etc.) and other messaging functionalities

typical for phone devices. In particular, it contains Windows CE Mail API (CEMAPI),

which handles all e-mail and Short Message Service (SMS) functionalities. This

library gives us the ability to send and intercept SMS messages and perform some

basic automation of the messaging application. Pay attention that Windows Mobile 6

“Standard” or "Professional" Development Kit have to be installed to utilize SMS

functionality (it is unsupported under WM “Classic” SDK, targeting devices that have

a touch-sensitive screen but no phone capabilities, such devices were formerly known

as Pocket PCs).

The main class for SMS services is SmsMessage which is derived from the

base Message class. Below are listed 8 properties (in majority inherited from

Message) which we will use to prepare a message content (see table 3-4):

Table 3-4 Basic properties of SmsMessage class

Property name Description of SmsMessage properties

Body Gets the SMS message’s text body.

From Gets the Recipient who sent the message.

ItemId Gets the the message’s Item ID.

LastModified Gets the date the message was sent.

Read Gets or sets the read state of the message.

Received Gets the date that the message was received.

RequestDeliveryReport Gets and set an indication whether a delivery report
is requested.

To Gets the collection of Recipient for the SMS.

46

Body property of SmsMessage can be a string of unrestricted length, but it
should be taken into account, that an individual billed SMS message is 160 characters

long. This limitation is usually worked around by splitting a long message across

multiple SMS messages, which are then reassembled on the receiving device. But

longer messages will obviously create bigger telephone charges. After message

preparation, the SmsMessage method send() is used to immediately dispatch of
the SMS (Listing. 3-4.�)

Listing 3-4 The operations to send a single SMS message

using Microsoft.WindowsMobile.PocketOutlook;

void SendSimpleSMS ()
 {

 SmsMessage msg = new SmsMessage("555-666-777","Message Text"); �

 msg.Send(); // Send the SMS message �
 }

void SendCompoundSMS()
 {
 SmsMessage s = new SmsMessage();
 Recipient r = new Recipient("John Smith", "333-444-555");
 s.To.Add(r); // Adding SMS recipents

 s.To.Add(new Recipient("Anna Nowak”, "666777888")); �
 s.Body = "This is an example of automatically generated SMS";

 s.RequestDeliveryReport = true; �
 s.Send();
 }

In simple case, the SmsMessage constructor � is sufficient to set all necessary

properties. In more complex situation, we can send an SMS message to multiple

recipients by passing several Recipient objects to the To collection� or optionally
we can request a delivery report for the message � when the recipient device

acknowledges receipt of the message (the report will be received in the form of

separate SMS in device Inbox).

 When we test the code utilizing SMS messages on the device emulator, we can

send a loopback SMS by using the fake phone number 14250010001. This allows us

to avoid paying real network charges.

 To intercept incoming SMS we will use objects of class

MessageInterception that can intercept messages matching a rule defined in

MessageCondition. We can set up a comparison rule to match messages
beginning or ending with a specific phrase or messages containing the phrase in any

location. When a matching message is received, you can then access the message

properties, such as sender and body text, from your code.

// default comparison type is Equal, and the match is case sensitive
MessageCondition(MessageProperty property, string comparisonValue);

MessageCondition(MessageProperty property,
 MessagePropertyComparisonType comparisonType,
 string comparisonValue,
 bool caseSensitive);

47

A MessageCondition rule consists of: a property, a comparison type, a string
comparison value and a setting whether the match is case sensitive. As an analyzed

property can be used either the message Body, Sender or Subject from

MessageProperty enumeration. A comparisonType specifies the ways that
you can match message property values with a filter criteria. It has to be one of the

values from MessagePropertyComparisonType enumeration (see tab 3-5).

Table 3-5 Possible values of MessagePropertyComparisonType

Enumeration name Description of the value

Contains Part of the property value contains the filter criteria.

EndsWith The property value finishes with the filter criteria.

Equal The property value is an exact match.

NotEqual The property value does not match.

StartsWith The property value begins with the filter criteria.

The default value of last caseSensitive argument (if omitted) is true. For
example, we can create a filter criteria to catch all SMS containing the word “mobile”

(case sensitive) inside the message body:

new MessageCondition(MessageProperty.Body,
 MessagePropertyComparisonType.Contains, "mobile");

Finally we have to use MessageInterceptor rule object � (see listing 3-5)

to enable SMS application launcher. Add MessageCondition � to the interceptor
rule and register it �, so that even if our application is not currently running on the

device, the system will launch it, allowing to process the message by adequate

handler �.

 There are two versions of MessageInterceptor constructor. First
constructor is used to load an existing interceptor rules � and the second version is

used to create and set up a new interceptor �. IsApplication-

LauncherEnabled method � informs which one of them should be used. There
are also two variants of interception actions specifying how a Pocket Outlook manages

an intercepted message. In case of InterceptionAction.Notify, Pocket
Outlook notifies our interception application, creates a copy of that message for it to

process, then immediately notifies the next interception application. In case of

NotifyAndDelete, it notifies our application and deletes the original message
when it has finished processing the message. In this second case, no more applications

intercept this message. The following code example (listing 3-5) demonstrates the

whole registering process and a simple event handler, which just displays notification

MessageBox that interception of rule-matching SMS was detected.

48

Listing 3-5 Example of SMS message interception code

using Microsoft.WindowsMobile.PocketOutlook.MessageInterception;

MessageInterceptor rule; �

// example interception handler

void SMS_Received(object sender, MessageInterceptorEventArgs e) �
{
 MessageBox.Show(((SmsMessage)e.Message).Body, "SMS Received");
}

void RegisterSMSInterceptor(void)
{

if(MessageInterceptor.IsApplicationLauncherEnabled("Intercept_1")) �
 { //Load existing settings.

 rule = new MessageInterceptor("Intercept_1"); �
 }
 else

 { //Set up and register a new rule �
 rule=new MessageInterceptor(InterceptionAction.NotifyAndDelete);
 rule.MessageCondition=new MessageCondition(MessageProperty.Body,
 MessagePropertyComparisonType.Contains,
 "mobile");

 //Enable current application to be launched (if not running)
 //when a MessageReceived event is raised

 rule.EnableApplicationLauncher("Intercept_1"); �
 }

 // activate SMS interception handler

 rule.MessageReceived += �
 new MessageInterceptorEventHandler(SMS_Received);
}

To enable automatic start of SMS-processing application, we have to call

EnableApplicationLauncher which stores the rule in the registry for future
use, and the application path. The last statement of the above code sets up an event

handler that is called each time a matching message is received. The method

SMS_Received receives a MessageInterceptorEventArgs object that

contains details of the message. Because the message is of the type Message, we

must cast it to the SmsMessage type to access all of the message properties.

Exercise WM.ex4

Data Persisting with a Mobile Database Server

Use the visual designer tools in Microsoft Visual Studio 2005 to define project

data sources and bind them to controls in your graphical user interface (GUI).

a) Program the SqlCeResultSet object, which allows fast, updatable access to
example datatable in a SQL Server 2005 Compact Edition database.

b) Implement a small database composed of three datatables (books, friends,
lendings) keeping the information about books borrowed from mobile

device owner's personal library.

49

 Most of mobile applications require some data to be permanently stored. The

easiest way is to persist data in a simple binary file. But usually, more complex

applications have to organize data in tables, provide some searching functionalities

(using indexes to speed up the searching process), and representing relationships

between data in different tables through foreign keys. This exercise is a short

introduction to how Windows Mobile application can organize and persist data using

Microsoft SQL Server Compact Edition (CE) database.

 SQL Server Compact Edition is a lightweight relational database that supports

data types that are compatible with full Microsoft SQL Server. It runs in-process in

mobile application, so it does not require a separate server application to operate. At

the beginning, this database solution branch was supported only on mobile devices

and Tablet PCs. In result, it was called SQL Server Mobile Edition. Since the year

2005, it has been supported on all Windows desktop platforms like Windows 2000,

Windows XP, Windows Vista, etc (including mobile devices). To emphasize the fact

that it is a small database solution, which can be used not only on mobile devices, it

has been renamed to Compact Edition.

 To run an application that uses SQL Server CE, the suitable runtime software

has to be installed on the mobile device. All Windows Mobile 6 and newer devices

come with SQL Server CE already installed, but in the case of earlier OS versions, we

have to ensure that the server components are downloaded before launching the

application. The SQL Server CE runtime comes in three .cab files, which can be found

in SmartDevices\SDK\SQL Server\Mobile\v3.0 subdirectory of Microsoft Visual

Studio installation base. The installation can be done by copying the files onto the

mobile device memory and opening them in File Explorer.

 In the case of database application debugging performed on mobile device

emulator, these additional operations are not necessary. Visual Studio automatically

installs the run-time components on emulator (or development device) when we debug

an application that uses SQL Server CE.

 The firs step of the exercise, is to create an example instance of mobile database

containing two tables (Products and ProductCategories) and add it to our
application project. This can be done by using the Add New Item dialog (from Project

menu), with selected Category: Data, and Template: Database File (see figure 3-6).

Figure 3-6 Creation of new compact database with Add New Item option.

50

The second way is to click Connect to database icon from Server Explorer window, or

click Connect To Database on the Tools menu. In this second case, we can

alternatively connect to existing database (using button Browse) or connect to a newly

created database (using button Create). During database creation we can specify a

database password, and additionally we can specify that the data in the database is

encrypted. To simplify the laboratory exercises, we can omit both these options, but it

is strongly recommended to use them in all commercial applications.

 As a creation result, in a Server Explorer window we can see new database

instance under Data Connections category with the name which was given in the first

step (MyDatabase#1.sdf in our case). Now we create two tables: one called

ProductCategories that stores details of different categories in example product

catalog and one called Products that contains details of individual products. In the
Server Explorer window we expand the folders under the connection to our database,

right-click the Tables folder, and click Create Table option. In the New Table dialog

box, we can define the columns suitable for our Products table. It could be:

ProductID, Name, Price, Quantity and ProductCategoryID to create

relation with ProductCategories table. All the columns have to be initialized
with suitable database parameters (for example: ProductID, int, 4, not null, unique,

primary key, identity) as we can see on Figure 3-7.

Figure 3-7 "New Table" dialog box used to set up columns definition for Products database

51

In the case of the ProductCategories table, we create only two columns:

ProductCategoryID (int, 4, not null, unique, primary key, identity) and Name
(nvarchar, 40, not null). After successful creation of both tables we can connect them

with relation based on ProductCategoryID primary key. Visual Studio IDE is not
a dedicated database design environment, so it does not offer any direct tool to create

new database relations. It can be done indirectly, by executing following SQL query

against the database:

 ALTER TABLE Products
 ADD CONSTRAINT Product_ProductCategory_FK
 FOREIGN KEY (ProductCategoryID) REFERENCES
 ProductCategories(ProductCategoryID)
 ON DELETE CASCADE
 ON UPDATE CASCADE

To execute the above (or any other) SQL query, right-click the name of processed

database in Server Explorer, and then click New Query, which opens the Query

Graphical Designer. The Designer is typically used to build SELECT statements to

read data from the database. At this time, close the initial Add Table dialog box, and

then copy the above SQL query in the place of automatically generated SELECT

FROM statement in the query pane. Finally, right-click the query pane, and then select

Execute SQL command from pop-up menu.

 At this stage, both created tables possess automatically generated index files to

assist database lookups connected with primary keys. Other index files, can be created

by right-clicking Indexes category under the selected table, and executing

Create Index option from the pop-up menu. In the New Index dialog box, we give the

index a suitable name, and click Add to select the column that create the index. In this

way, we can create an index on the foreign key field in a child table to help searching

of all Products for selected ProductCategory.
 After completing all operations described above, we have an example mobile

database instance ready to process every standard database operation. Listing 3-6

illustrates example code which enable to execute a SQL query against database which

is placed in the same place as the binaries of the application and is protected with

example "pass" password.

Listing 3-6 Example code executing SQL querry against SQL CE database

using System.Data.SqlServerCe;
using System.IO;

public static void ExecuteQuery(String commandText)
{
 // Set up the connection string
 string databasePath = Path.GetDirectoryName(
 Assembly.GetExecutingAssembly().GetName().CodeBase);

 string connString = "Data Source=" + databasePath +
 "\\MyDatabase#1.sdf; Password=pass";

52

 using (SqlCeConnection conn = new SqlCeConnection(connString))
 {
 using (SqlCeCommand cmd = new SqlCeCommand(commandText, conn))
 {
 conn.Open();
 cmd.ExecuteNonQuery();
 conn.Close();
 }
 }
}

To facilitate code development for interactions between database and application user

interface, we can use the visual designer tools from Microsoft Visual Studio. Visual

designer automates definition of project data sources and binding them to controls in

the graphical user interface (GUI).

 The easiest way to work with data sources is through the Data Sources dialog

box. We can open this dialog box by clicking Show Data Sources or Add Data Source

link on the Data menu. In our case, a data source has not been yet defined, so we

should use the second option.

 With the Data Source dialog, we have to choose between: database, Web

service, or object as the source of our data. We should choose Database and then bind

to our example MyDatabase#1.sdf CE database. The Data Source Configuration

Wizard displays the Choose Your Database Objects page on which we select the

tables and views to include in the data source. By default, the wizard builds a strongly

typed DataSet object and adds it to the project in the form of an XML schema (.xsd

file). Instead of DataSet, we can also use the strongly typed SqlCeResultSet
object (or both of them simultaneously) by changing Custom Tool property of

_MyDatabase_1DataSet2.xsd file (in Solution Explorer window) from initial

MSDataSetGenerator to MSResultSetGenerator or MSDataSetResultSetGenerator.

 Finally, we can switch to Data Sources window, assign DataGrid visualization

type to Products table, and drag-n-drop the Products onto Form1 surface of the

application user interface. The wizard adds ProductBindingSource to Form1

resources and automatically generates Products data grid, which enables to browse

the data contained in Products table (see Figure 3-8).

Figure 3-8 Automatic generation of DataGrid user interface assigned to Products DataSet

53

Clicking the SmartTag menu in the right-upper corner of the DataGrid component

(in the Form1 designer window) enables us to select some design options, one of

which is Generate Data Forms. By executing this option, the Visual Studio Forms

Designer generates a set of forms to manipulate the records from a DataTable: to add

new records, and to view or edit existing ones. This tool is very useful for building

quick test programs, which is very comfortable during time-restricted laboratory

exercises. More complete examples and discussions of Compact Edition database

server can be found in "Chapter 3: Using SQL Server 2005 Compact Edition and

Other Data Stores" of the "Mobile Development Handbook" [7]. In this exercise we

have only described the solution where application data is stored directly on the

device. In real enterprise world, most applications are not isolated and running entirely

self-contained on a mobile device, with no need to communicate with the outside

world. Usually, they are mobile components of a bigger enterprise solution. Chapter 7

of the abovementioned handbook, discusses how to synchronize data between

applications running on the Windows Mobile device and backend servers, or fetch and

store data in a SQL Server database on a network.

Exercise WM.ex5

Using the GPS to Track Geographic Position of Device

Develop a location aware application that obtains mobile device context (current

geographic position) through GPS lookup and demonstrates some context-aware

behavior (i.e. use the context passively or continually adapt/reconfigure itself to

the new contextual information, to better solve the problem at hand).

Example context-aware behavior could be:

a) Proximate selection – interaction technique where a list of objects
(e.g. services, places, printers, options, commands, etc.) is presented in the

way emphasizing items relevant to the user's context, making them easier to

choose.

b) Context-triggered actions – application that is continually monitoring the
context changes and automatically executes some services when the right

combination of context is detected.

 The availability of low-cost, and usually integrated, GPS hardware for

Windows Mobile devices makes it possible to develop applications that are aware of

their current physical location. Adding location awareness to your application opens a

lot of possibilities for many different kinds of consumer applications. In this exercise,

we will get familiar with programming techniques for retrieving user/device location

by using GPS lookup. Then applications can use such geographic data for: mapping,

location reporting or "geo-tagging" other items of data.

 There are several ways to retrieve location information inside a Windows

Mobile device. All consumer GPS receivers output data over a serial port in a text

format devised by the National Marine Electronics Association (NMEA). The most

ordinary approach is to establish a connection to the attached device by a serial port,

or a virtual serial port for devices connected by Bluetooth, to receive incoming NMEA

data, and then parse it yourself. Unfortunately, receiving and analyzing rough data

54

from GPS is very laborious. To illustrate the complexity of such task, let us see

GpsPosition structure (Listing 3-7).

Listing 3-7 The structure of GPS receiver output data in NMEA format

[StructLayout(LayoutKind.Sequential)]
public class GpsPosition
{
 internal int dwVersion; // Current version of GPSID
 internal int dwSize; // sizeof(_GPS_POSITION)
 internal int dwValidFields; // Valid fields
 internal int dwFlags;
 internal SystemTime stUTCTime; // UTC according to GPS clock.
 internal double dblLatitude; // Degrees latitude
 internal double dblLongitude; // Degrees longitude
 internal float flSpeed; // Speed in knots
 internal float flHeading; // Degrees heading
 internal double dblMagneticVariation; // Magnetic variation
 internal float flAltitudeWRTSeaLevel; // Altitute to sea level
 internal float flAltitudeWRTEllipsoid; // Altitude to ellipsoid
 internal FixQuality fixQuality; //Quality of this fix
 internal FixType fixType; // Is this 2d or 3d fix
 internal FixSelection selectionType; // Auto or manual select.
 internal float flPositionDilutionOfPrecision; //Position Dilut.
 internal float flHorizontalDilutionOfPrecision;//Horizontal Dil.
 internal float flVerticalDilutionOfPrecision; //Vertical Dil.
 internal int dwSatelliteCount; // Number of satellites
 internal SatelliteArray rgdwSatellitesUsedPRNs;//PRN num.of sat.
 internal int dwSatellitesInView; // Satellites in view
 //PRN numbers of satellites in view
 internal SatelliteArray rgdwSatellitesInViewPRNs;
 // Elevation of each satellite in view
 internal SatelliteArray rgdwSatellitesInViewElevation;
 // Azimuth of each satellite in view
 internal SatelliteArray rgdwSatellitesInViewAzimuth;
 // Signal to noise ratio of each satellite
 internal SatelliteArray rgdwSatellitesInViewSignalToNoiseRatio;
 . . .
}

 To make the work easier, Microsoft provides the GPS Intermediate Driver

(GPSID), which is a software layer that sits between applications and the device driver

for GPS hardware. This layer of abstraction allows applications to be written once and

work with multiple GPS devices. The GPS Intermediate Driver API is exposed

through a native code library. You can gain access to this library from managed code

by using the sample that is included with the Windows Mobile Professional SDK (in

subdirectory …\Samples\PocketPC\CS\GPS). Important benefit from GPSID, is that

multiple applications can use the same physical GPS hardware. It was not possible

with devices earlier than Windows Mobile 5.0. In those earlier Windows Mobile

devices, only one application at a time could use GPS hardware.

To make use of GPSID, you have to add a reference to the abovementioned output

assembly to your project and add the following using directive to your code.

using Microsoft.WindowsMobile.Samples.Location;

55

Once you have added a reference to the sample assembly to your application, you can

access the GPS device through the Gps object. The GpsDeviceState and

GpsPosition helper objects store information about the GPS device and your
current location.

 GpsDeviceState device = null;
 GpsPosition position = null;
 Gps gps = new Gps();

The gps.Opened property and methods gps.Open() / gps.Close() should be
used to activate and deactivate GPS receiver:

 if (!gps.Opened)
 {
 gps.Open(); // activates GPS receiver
 }
 . . .

 if (gps.Opened)
 {
 gps.Close(); // deactivates GPS receiver
 }

The location information can be retrieved synchronously, by direct call of method
GetPosition, e.g.:

position = gps.GetPosition();

which returns an object of class GpsPosition with public properties:

float Heading; // degrees heading, North=0
double Latitude; // latitude in decimal degrees, North positive
double Longitude; // longitude in decimal degrees, East positive
bool HeadingValid;
bool LatitudeValid; // validity of the above properties
bool LongitudeValid;

Be careful, this method blocks until a position reading is returned from GPSID and

with that from the underlying hardware. It waits until location data is received from

one or more satellites. Second implementation of the method

GetPosition(TimeSpan maxAge) gets the position reported by the GPS
receiver, that is no older than the max age. If there is no data within the required age,

null is returned. If maxAge is equal TimeSpan.Zero, then the age of the data is
ignored. With it, you can retrieve locations more efficiently by returning a cached

location reading as long as it is not older then the specified time. Following

UpdateData method illustrates how GPS device state and retrieved position can be

displayed on the screen in a internal text of System.Windows.Forms.Label

status component.

56

Listing 3-8 Example of GPS data managing code

void UpdateData(object sender, System.EventArgs args)
{
 if (gps.Opened)
 {
 string str = "";
 if (device != null)
 {
 str = device.FriendlyName + " " +
 device.ServiceState + ", " +
 device.DeviceState + "\n";
 }

 if (position != null)
 {
 if (position.LatitudeValid)
 {
 str += "Latitude (DD):\n " +
 position.Latitude + "\n";
 str += "Latitude (D,M,S):\n " +
 position.LatitudeInDegreesMinutesSeconds +
 "\n";
 }

 if (position.LongitudeValid)
 {
 str += "Longitude (DD):\n " +
 position.Longitude + "\n";
 str += "Longitude (D,M,S):\n " +
 position.LongitudeInDegreesMinutesSeconds +
 "\n";
 }

 if (position.SatellitesInSolutionValid &&
 position.SatellitesInViewValid &&
 position.SatelliteCountValid)
 {
 str += "Satellite Count:\n " +
 position.GetSatellitesInSolution().Length + "/" +
 position.GetSatellitesInView().Length +
 " (" + position.SatelliteCount + ")\n";
 }

 if (position.TimeValid)
 {
 str += "Time:\n " +
 position.Time.ToString() + "\n";
 }
 }
 status.Text = str; // update the User Interface
 }
}

More interesting is the second position retrieving approach, by subscription to the

LocationChanged and DeviceStateChanged events handlers, which generate

57

continuing asynchronous updates when there is any change in the data that the GPS

radio receives. The subscription can be set by commands:

gps.DeviceStateChanged +=
 new DeviceStateChangedEventHandler(gps_DeviceStateChanged);
gps.LocationChanged +=
 new LocationChangedEventHandler(gps_LocationChanged);

where gps_LocationChanged and gps_DeviceStateChanged are
appropriate event handlers. Asynchronous updates are received on a separate thread.

 Because it is not allowed to update User Interface controls on other threads than

their creator, updating User Interface controls requires indirect

Invoke(updateDataHandler) call to the presented UpdateData method.

private EventHandler updateDataHandler;
updateDataHandler = new EventHandler(UpdateData);

void gps_LocationChanged(object sender,
 LocationChangedEventArgs args)
{
 position = args.Position;
 Invoke(updateDataHandler); // update the User Interface
}

void gps_DeviceStateChanged(object sender,
 DeviceStateChangedEventArgs args)
{
 device = args.DeviceState;
 Invoke(updateDataHandler); // update the User Interface
}

In order to experiment with GPS Location retrieval, the mobile device should have

either built-in or external GPS hardware or a running instance of FakeGPS

application, installation cabinet file of which can be found in subdirectory

Windows Mobile SDK\Tools\Gps.

58

4. Programming Symbian S60

 The last series of exercises is dedicated to Symbian Operating System. On the

contrary to the Java ME and Windows Mobile, which were evolutionally adopted

from server and desktop solutions, Symbian OS has been developed for low power,

small memory, mobile devices from the ground up. It has been derived from the

"EPOC" operating system developed by "Psion Ltd." in the late 1980s and early

1990s, for Psion's "SIBO" (SIxteen Bit Organisers) devices. The main purpose of that

company was to innovate and create a totally new branch of electronic devices called

PDA (Personal Digital Assistant).

 Psion-originated software was then adopted by Symbian Limited consortium,

which was founded in 1998 by a group of major founders: Ericsson, Nokia, Psion,

Motorola, and following shareholders: Matsushita, Siemens, Panasonic, Sony

Ericsson, Samsung. The main goal of this organization is to develop and promote

Symbian OS as a global industry standard for mobile phone systems and other WIDs

(Wireless Information Devices). In result, Symbian has become a market-leading

operating system and a de-facto industry standard for majority of wireless devices.

 In 2008/9, the former Symbian Software Limited was acquired by Nokia and a

new independent non-profit organisation called the Symbian Foundation was

established to promote Symbian platform as a Open Source Software under the OSI-

and FSF-approved Eclipse Public License (EPL).

 Statistics published for the second quarter of 2010 showed that Symbian devices

constituted a 41.2% share of smart mobile devices sold. There are estimates indicating

that the cumulative number of mobile devices shipped with the Symbian OS, up to the

end of Q2 2010, is about 390 million [12]. Nokia, in official documents and on the

Web pages announces more than 250 million Symbian devices. Actually on the

mobile market, we can observe a kind of "software war" in which the legacy

smartphone platforms like Symbian have to keep up with mobile newcomers like

iPhone or Android. In this grappling, the most undeniable advantage of Symbian is its

huge penetration of the smartphone market and totally determined support from Nokia

company.

4.1 Symbian OS versions and tools for C++ development

 Symbian OS was designed to provide a consistent software platform for very

broad range of phones. It scales from souped-up general use "feature phones" like

6120, through business-oriented phones like E71, to rich multimedia phones like N96.

Before we proceed to Symbian software development, it is useful to understand which

SDKs are available for particular devices. Nokia's phone devices can be split into

several series named by following numbers from the sequence: Series 20, 30,40, 50,

60, 70, 80, 90. Currently the most widespread series, which use the Symbian as an

operating system, is the series S60. In this course our focus will be on Symbian C++

programming for the S60 platform. Symbian devices can also be programmed using

other programming languages/frameworks like: Python, Java ME, Flash Lite, Ruby,

Visual Basic and Web Runtime (WRT) Widgets. But only native Symbian C++,

59

which is a domain specific dialect of general purpose C++ language, give us the full

access to the device capabilities. There have been four major releases of S60 SDK:

• S60 1st Edition (since year 2001) with Symbian OS v6.*, which has been
supporting only SMS, EMS, MMS, J2ME, XHTML services, with strong

restriction that the devices' display resolution has been fixed to 176x208 pixels.

• S60 2nd Edition (since year 2003) with Symbian OS v7.*, supporting scalable
UI with multiple resolutions and orientations, which includes HTML browser

extensions, support for EDGE and WCDMA (UMTS).

• S60 3rd Edition (since 2005) with Symbian OS v9.*, featuring several security
improvements (Secure Platform) where a user may install only programs that

have a certificate from a registered developer.

• S60 5th Edition" (since 2008) with Symbian OS v9.4, where the major feature is
support for high-resolution 640x360 touch screens.

In the lab, we will utilize S60 SDK starting from 3th Edition and Symbian OS v9.*.

There are three main integrated development environments available to Symbian OS

C++ developers, namely:

• CodeWarrior, formerly the IDE of choice for Palm programmers and for
PlayStation development, which is now being deprecated.

• Carbide.c++, an Eclipse-based IDE developed by Nokia. Offered in four
different versions: Express, Developer, Professional, and OEM, with increasing

levels of capability. The Express version is available for free and provides the

necessary functionality to build and compile applications. The Developer

version has additional tools for on-device debugging and graphical tools for

Rapid Application Development

• Microsoft Visual Studio also supports Symbian development through the
Carbide.vs plugin.

For early versions of Symbian OS, the commercial IDE CodeWarrior for Symbian OS

was favoured. The CodeWarrior tools were replaced in 2006 by Nokia's Carbide.c++

which currently is the most recommended IDE. Visual Studio .NET is used by some

groups of keen Microsoft Windows programmers. There is also a version of a Borland

IDE for Symbian OS, but it is not very popular. The totally new Qt-Creator IDE

emerged in 2009 and is receiving Nokia's very strong support. But this tool is more

related to Trolltech Qt multiplatform library, rather than native Symbian C++ and will

be separately presented in introduction to the last Qt-Symbian exercise of this course.

 Correct configuration of Carbide.c++ and Series 60 SDK development

environment requires some steps, which unfortunately will not be performed

automatically. Firstly, the Carbide.c++ tools require an installation of Perl to run build

scripts. ActivePerl installer can be downloaded from (http://www.activestate.com/).

Be careful, ActivePerl version 5.6.1 is required by Symbian tools, and later versions

will not work. Additionally, take into account, that you have to install Carbide.c++ to

the same drive as Perl. Make sure that there are no space characters contained in any
directory name utilized by Perl, Carbide.c++ or Symbian project workspace directory.

If you allow spaces in directory names, your code can't be compiled. Secondly, from

the page (http://www.forum.nokia.com/main/resources/tools_and_sdks/) download

and install Carbide.c++, an IDE which is designed from the ground up for developers

60

creating Symbian C++ and Qt software for Symbian devices. Choose Developer

version 2.* or later. Finally, depending on the type of accessible target device, use the

page (http://www.forum.nokia.com/main/platforms/s60/) to download the proper

version of S60 SDK. In the lab, to speed up exercise pace, we will generally use

device emulators, so it does not matter which S60 SDK will be chosen (3rd Edition

FP1, 3rd Edition FP2 or 5th Edition). It is suggested, to use S60 3rd SDK FP2 for

button-based application and S60 5th SDK 1.0 for touch-based applications.

4.2 Programming Exercises

 Following the good practice of most programming tutorials, we will not start

from programs with attractive graphical user interface, but utilize an old fashioned

text-mode console applications. It is especially important in the case of Symbian OS,

which is infamous for a steep learning curve. Symbian C++ programming requires the

use of special techniques such as: leaves, two phase constructors, cleanup stack,

descriptors and active objects. This can make even relatively simple programs harder

to implement. According to some experiments performed by VisionMobile, as a part

of "Developer Economics 2010" research, the Symbian platform takes on average 15

months or more to learn (two to three times more than other mobile frameworks) [12].

 The goal of the first exercise is to get to know the basic data types of Symbian

OS as well as the console mode of the Symbian OS emulator. Note, that there is no

built-in way to execute a console application on a real Symbian device. To run a

console application on the phone you have to launch it using either a program like

FExplorer or a remote console like QConsole. Fortunately, Carbide.c++ environment

provides special "Basic console application" wizard (see Figure.4-1) which will

simplify the creation of template code for console application.

Figure 4-1 Setting up template code of text-console application in Carbide.C++ IDE

The structure of IDE generated template *.cpp file for console application is

illustrated in Listing 4-1. The entry point of the application is the E32Main()
function �, which firstly builds the rest of the necessary Symbian framework (cleanup

stack � and text console instance 	, pointer of which is stored in the global variable

named console �), than runs the main user created function MainL() �, and

61

finally will catch and output any errors (leaves) that the code might produce. Because

user function MainL() might generate some leaves, its name is marked with
suffix "L" and is called within TRAP harness
.

Listing 4-1 Template source code of simple console application

// Include Files
#include <e32base.h>
#include <e32std.h>

#include <e32cons.h> // Console class definition �

// Text constants definitions

_LIT(KTextConsoleTitle, "Console window title"); �
_LIT(KTextFailed, " application failed, leave code = %d");

// Global Variables, in this case only console object

LOCAL_D CConsoleBase* console; �

LOCAL_C void MainL() �
 { // add your program code here, example code below
 . . .

 console->Write(_L("Hello, world!\n")); �

 _LIT(KTxtHello, "Hello, world! (once more)\n "); �
 console->Printf(KTxtHello);
 . . .
 }

// Starting point of Symbian console application
GLDEF_C TInt E32Main() // Global Function: E32Main �
 {
 // Create auxiliary cleanup stack and output console object

 CTrapCleanup* cleanup = CTrapCleanup::New(); �
 TRAPD(createError,

 console = Console::NewL(KTextConsoleTitle, 	
 TSize(KConsFullScreen, KConsFullScreen)));
 if (createError) { delete cleanup; return createError; }

 // Run our code <MainL()> inside TRAP harness
 TRAPD(mainError, MainL());

 // Resolve eventual errors and clean up all auxiliary objects
 if (mainError)
 console->Printf(KTextFailed, mainError);
 delete console;
 delete cleanup;
 return KErrNone;
}

Other important elements of presented code are: inclusions of necessary C++

definitions (header) files � and _LIT() macros converting text constants into a

literal string descriptors ��. Symbian implementation of Printf() requires a

parameter as literal string (TLitC class object, which defines a number of operator

overloads). In some cases the separately used _LIT() macro can be replaced by

shorter inline _L() version which can be placed inside function call �, but it works

less efficiently, so the use of _LIT() is generally more recommended.

62

For the sake of code clarity, the unchanging parts of console template main.cpp

source file (i.e. includes global console definition and E32Main() starting function)

can be shifted to accompanying main.h C++ definition file. In such a case, the
example code is more clear and much more similar to standard C++ main template

(see Listing 4-2). We will use this approach in subsequent example code snippets and

inside "fill-in" example projects utilized in the course of the laboratory classes.

Listing 4-2 Simplified version of Symbian console application
 with function E32Main() hidden in the file "main.h"

#include "main.h"

LOCAL_C void mainL(CConsoleBase* console) {
 . . .
 console->Write(_L("Hello, world!\n"));
 . . .
}

Advanced Symbian applications most likely make use of "active objects", which are

another example of Symbian specific technique helping to ensure longer battery life

(the CPU is powered down when applications are not directly dealing with events). To

enable the use of active objects, an instance of CActiveScheduler has to be

installed and activated before MainL() call. Usually it is done, by replacing the first

call of MainL(), by the intermediate call of DoStartL() harness, which wraps up

user MainL() function, with the code managing the CActiveScheduler creation
and destruction (see Listing 4-3). But these operations can also be shifted to

accompanying main.h definition file, so the final main.cpp source file will not
change.

Listing 4-3 Installing CActiveScheduler to enable "active objects"

LOCAL_C void DoStartL() {
 // Create active scheduler (to run active objects)
 CActiveScheduler* scheduler = new (ELeave) CActiveScheduler();
 CleanupStack::PushL(scheduler);
 CActiveScheduler::Install(scheduler);

 MainL(console);

 // Delete active scheduler
 CleanupStack::PopAndDestroy(scheduler);
}

Exercise SYM.ex1

Symbian OS C++, Basic Classes, <aming Conventions

Create Symbian C++ console application which illustrates the use of Symbian

specific data representation (numbers, chars, texts), demonstrates reading and

writing of user data to text-console, and performs some elementary flow control

instructions (conditionals and loops):

a) Define example constants and variables for every category of data type
(integer and float numbers, single char, boolean and text data), set initial

constant or store the results of calculated expressions.

63

b) Familiarize yourself with the help description of CConsoleBase class

methods, which enable to read/write the data from console (getch(),

Printf(), Write()) and control console cursor position (SetPos(),

WhereX(), WhereY(), ClearScreen()). Write a text version of ping-
pong simulation where flying ball is rebounding from display borders.

c) Use <e32math.h> library and Math::Random() function to generate
random integer numbers. Engage the random generator to simulate variable

disturbance of ping-pong motion simulation.

d) Test how to use objects of R-Type Symbian class. Define a local variable of

the RBuf class, which owns string data on the heap and manages it

automatically. RBuf is one of the Symbian OS descriptors which is the

Symbian way of C++ strings representation. Use CreateL() and

Close() methods to allocate and free the memory utilized for the RBuf.

Remember! Do not use new or delete operators for R-Type variables.

Symbian C++ is a domain specific dialect of general purpose C++ programming

language. It provides a number of Symbian specific standard type definitions that

should be used instead of the native built-in C++ types (such as int, float or

char). These definitions are guaranteed to be compiler-independent and should be

included with <e32def.h>.
 Symbian OS has its own naming convention for classes, variables and

functions. Naming conventions are used to improve code readability, as they allow the

programmer to determine the nature of an item without looking at its implementation.

The first idea of using prefixes is similar to Hungarian notation, with different letters

being used for different objects. There are six basic naming rules:

• the first letter of a class or function name should be capitalized,

• function parameters and automatic variable names should start
with a lower-case letter,

• constants are prefixed with the upper-case letter ‘K’,

• non-static class member variables are prefixed with the lower-case letter ‘i’,

referring to an instance of a class.

• function parameters are prefixed with the letter ‘a’ which stands for argument

• the name of an enumerated type is prefixed with ‘T’ (because it is a Type)

and its members’ names are prefixed with ‘E’ (from Enumeration).
Following listing (4-4) demonstrates how to use the above rules in example definitions

of: a class, a global variable, a constant and an enumeration.

Listing 4-4 Illustration of Symbian C++ naming conventions

class TExampleClass //prefix T → indicates a class/a new Type name
 {

 //upper case first letter → all Function names begin with upper
 void FunctionName(TInt aExampleArgument);

 //prefix a → indicates an argument of a function

 //prefix i → indicates an instance / member variable of the class
 TInt iExampleInstance;
 };

64

TExampleClass exampleObject; //lower case letter → any variable

#define KExampleConstant 100 //prefix K → indicates constant
const TInt KMaxSize = 256;

enum TExampleEnumeration (EFirst, ESecond, EThird); //Enumeration

Another naming convention is related to Symbian's classes definition. Every class has

it's own prefix (i.e C, T, R or M), which denotes the nature of the class and makes the

creation, usage and destruction of objects more straightforward. There are five class

types:

• T-class – A simple class that does not use dynamic data (heap-allocated
memory). It behaves much like the C++ built-in types and can be seen as an

equivalent of a C++ struct. As no cleanup is required, there is no need for a

destructor. All Symbian basic types defined in file <e32def.h> also have the
prefix T. Below there are the tables describing the basic type characteristics:

Table 4-1 Symbian basic types defined in file <e32def.h>

Signed integer Unsigned integer Void Floating point Character

Name Bytes Name Bytes Name Type Name Size Name Size

TInt ≥4 TUint ≥4 TAny Void TReal 8 TText8 1

TInt8 1 TUint8 1 TReal32 4 TText 2

TInt16 2 TUint16 2 Boolean TReal64 8 TText16 2

TInt32 4 TUint32 4 Name Size TRealX 12 TChar 4

TInt64 8 TUint64 8 TBool 4

Note, that the use of floating-point numbers should be avoided because they are

not natively supported and floating point calculations may seriously slow down

application execution.

• C-class - A class that derives from CBase or another class already derived

from CBase. The ‘C’ prefix indicates that the class is constructed on the heap.
Unlike T-classes, C-classes own pointers to other objects, and have a destructor

to clean up these member variables. Such classes should be used with caution to

avoid memory leaks.

• R-class - The R prefix indicates that such class holds an external resource
handle, for example a handle to a server session. It will typically have a

constructor to set this resource handle to null. The object must be associated

with a resource by calling initializing methods such as Open(), Create() or

Initialize(). There are corresponding Close() or Reset() methods to
free resources, otherwise memory leaks can occur. A common mistake when

using R classes is to forget to call Close() or to assume that there is a
destructor which cleans up the owned resource.

• M-class – "mixin" class - defines an abstract interface (class consisting of

purely virtual functions). Usually used to define callback interfaces or observer

classes. Important issue involving inheritance list is that the first implemented

class should be CBase and after that will come the M-interfaces.

65

• S-class - An ordinary C++ struct (without any member functions) should be
prefixed with a uppercase S.

The last set of naming rules uses single-letter suffixes in function names, to signalize

possible changes in program flow or clarify heap memory state after function

execution:

• The suffix ‘L’ is used to indicate that the function may leave.

• The suffix ‘C’ indicates that the function will return a pointer that has been
pushed onto the cleanup stack.

• The suffix ‘D’ indicates that the calling object will be deleted from heap by
called function.

Exercise SYM.ex2

Symbian OS exception handling mechanisms

(Leaves, Traps and Cleanup Stack)

Create your own example code illustrating typical application of Symbian

exception handling techniques, to manage memory resource allocation fails

and utilize CleanStack to protect your application against memory leaks,

a) Intentionally trigger a Leave inside different points of your application

code (e.g. by a direct call to User::Leave(KErrGeneral) method)

and debug changes in execution sequence caused by the Leave occurrence.
b) Create an example code which dynamically allocates several (at least two)

CBase inherited objects, with a random possibility of a Leave generation.

Utilize CleanupStack mechanism to protect allocated memory against
orphaning. Check the state of the heap memory preservation during your

code execution with macros: __UHEAP_MARK and __UHEAP_MARKEND.

 Important aspect of Symbian OS programming is effective exceptions handling

and smart allocation of very limited resources of a mobile device. Traditionally, C++

programming language employs conventional (but resource consuming) paradigm of

try/throw/catch sequence. Unfortunately this mechanism is unsupported in
Symbian environment (before version 9) since it was considered too much memory

intensive at the time the Symbian OS was designed. Instead, Symbian C++ introduces

lighter programming concepts: Leave, TRAP and CleanupStack, that will help us
to maintain memory-leak free code. In general, working with leaves and traps is very

similar to using throws. A Leave can be perceived as an equivalent to a throw, and

a TRAP as an equivalent to the try and catch statements. A Leave can occur in
three ways:

• By explicit call of the variant of system function User::Leave()

 IMPORT_C static void Leave(TInt aReason);
 IMPORT_C static void LeaveNoMemory();
 IMPORT_C static TInt LeaveIfError(TInt aReason);
 IMPORT_C static TAny* LeaveIfNull(TAny* aPtr);

66

• by calling another function which can do Leave (the name of such function is
traditionally marked with suffix L).

• by use of the Symbian C++ overloaded form of operator new, which takes

ELeave as a parameter (which generates Leave(KErrNoMemory) if there
is not enough memory to allocate the object)

At the point of the leave, the program execution stops and returns immediately to the

TRAP, from within which the function was called. As additional information, an error

code (integer value) is returned. Symbian provides two trap macros: TRAP and

TRAPD.

 TRAP(ErrorVariable, PotentiallyLeavingFunctionL());
 TRAPD(ErrorVariable, PotentiallyLeavingFunctionL());

The difference between TRAP and TRAPD is that, in the first case we must define the

TInt ErrorVariable object by ourselves while the second macro TRAPD (with

suffix D, from Definition) will do it instead of us. An illustration of TRAPD use is
shown below:

 . . .
 TRAPD(err,ExampleFunctionL()); //trapped call of a leaving function
 if(err != KErrNone)
 {

 //a Leave occurred → exception handling have to be done here
 }
 . . .

TRAP macros can also be nested to catch and handle leaves at different levels.

A typical reason of a leave is a resource allocation fail. In the case of mobile devices

such fail is usually caused by memory allocation under low-memory conditions.

Standard C++ solution is to check validity of returned pointer after every allocation

call:

 CTypeClass *pointer = new CTypeClass; //potential allocation fail
 if(pointer==NULL) //check the pointer validity
 {
 User::Leave(KErrNoMemory); //signalize an error by a Leave
 } //with KErrNoMemory err code

To avoid tedious repetition of the above sequence, Symbian C++ provides an

overloaded version of the new operator (recognized by a parameter ELeave) which

will automatically generate a Leave with KErrNoMemory, if it fails to allocate the
required memory. In result, an equivalent of the above allocation code will have the

one line form:

 CTypeClass *pointer = new(ELeave) CTypeClass;

From Symbian OS version 9.1 leaves are implemented in terms of standard C++

exceptions, but still leaves are the fundamental part of Symbian error handling and are

used throughout the system.

CleanupStack

 Symbian platform was designed to be used on devices with limited memory that

are often not rebooted for weeks or months. In result, such applications are left

running almost indefinitely, rather than being closed after every use. They are

67

vulnerable to memory errors. If resources are not properly cleaned up in the event of a

leave, then memory leaks will occur. Such memory loss will accumulate with time and

finally the system will crash.

 CleanupStack is a static resource (stack) that can be used for safe handling
of pointers to dynamically allocated memory on the heap, which could be lost in the

case of a Leave occurrence. The GUI applications and servers both have cleanup
stacks created for them as part of their respective frameworks. Our simple console

programs, created for test and demonstration purposes, require a cleanup stack to be

explicitly allocated for every thread which uses cleanup processing.

Listing (4-1�) illustrates typical CleanupStack framework for console application
with E32Main root function. Note that the cleanup stack variable can have any name

(in our case cleanup) because it is only used to reference the stack when it needs to
be destroyed. All other calls to the active stack will be done through the static

functions from class CleanupStack. In the CleanupStack there are three

overloads of the PushL() method:

static IMPORT_C void PushL(TAny* aPtr);
static IMPORT_C void PushL(CBase* aPtr);
static IMPORT_C void PushL(TCleanupItem anItem);

where PushL() argument determines how the item is destroyed when it is cleaned up

in case of a leave or a call is made to CleanupStack::PopAndDestroy(). In
the case of anonymous TAny* pointer, the memory referenced by the pointer is simply

deallocated by invoking User::Free(), delete is not called on it, so no

destructor is invoked. In the case of CBase-derived object, cleanup operation is

performed by invoking delete operator, thus calling the virtual destructor of the

CBase-derived object. TCleanupItem can be used to allow cleanup to be more
sophisticated than simply deleting objects, for example, releasing access to some

shared resource.

 If a Leave occurs while an object pointer is on the stack, it is cleaned up
automatically. Otherwise it has to be manually removed by direct call of one of eight

Pop function variants:

static IMPORT_C void Pop();
static IMPORT_C void Pop(TInt aCount);
static IMPORT_C void PopAndDestroy();
static IMPORT_C void PopAndDestroy(TInt aCount);
static inline void Pop(TAny* aExpectedItem);
static inline void Pop(TInt aCount,TAny* aLastExpectedItem);
static inline void PopAndDestroy(TAny* aExpectedItem);
static inline void PopAndDestroy(TInt aCount,TAny* aLastExpectedItem);

The general CleanupStack protecting procedure goes as follows:
1. Before calling a potentially Leaving function, we have to call

CleanupStack::PushL(pointer) to add every locally scoped

pointer to cleanup stack.
2. If the function does not leave, just after function return, we must place the
code which removes added pointers from the stack, by calling

CleanupStack::Pop(). Alternatively we can merge Pop stack

68

operation with simultaneous delete of pointed resources from the heap by

call of CleanupStack::PopAndDestroy() method.

3. In the event of a Leave, program execution returns immediately to the TRAP
(from within which the function was called) and all heap items, that were

memorized on the CleanupStack, since the last TRAP are freed.
Symbian C++ provides a set of debug-only macros that can be added directly to code

to check that memory is not leaked. The most commonly used are defined as follows:

#define __UHEAP_MARK User::__DbgMarkStart(RHeap::EUser)
#define __UHEAP_MARKEND User::__DbgMarkEnd(RHeap::EUser,0)

 The macros verify that the default user heap is consistent. If heap cells have not

been freed, a panic is raised and application stops. Calls to this macros can be nested,

but every time each call to __UHEAP_MARK must be matched by corresponding

call to __UHEAP_MARKEND (see Listing 4-5).

Listing 4-5 Utilizing __UHEAP macros to check heap preservation
 at the time of E32Main() execution

GLDEF_C TInt E32Main()
 {
 __UHEAP_MARK; // marking initial state of the memory heap

 // any code which allocate memory on the heap,
 // in this case creation of CleanupStack and example function call
 CTrapCleanup* cleanup=CTrapCleanup::New();
 TRAPD(error,callExampleL());
 delete cleanup;
 // at this point application is going to be terminated,
 // all allocated memory should be released

 __UHEAP_MARKEND; // checking if the initial state was recovered
 return 0;
 }

Note. The function name suffixes are not checked during compilation. It is possible to

forget to append suffix ‘L’ to a function that leaves, especially when modifying

previously non-leaving functions. Such oversight does not generate immediate error,

but critically affects the readability of the code. Symbian provides a tool called

LeaveScan, that checks code for incorrectly named leaving functions. This tool should

be used regularly on large projects created by a team of several developers.

Exercise SYM.ex3

User Interface and Event Handling with Qt library

a) Create your own Qt demo application, demonstrating possibilities of User

Interface construction from basic Qt Widgets: QLabel, QLineEdit and

QPushButton.
b) Create your implementation of general purpose number calculator.

As a starting point, use CalculatorWidget definition from listing 4-9.

69

 Classical Nokia’s User Interface layer, on top of the Symbian OS, was

called ”S60”. In fact, there are several different user interfaces available for Symbian

OS, which are designed to allow manufacturers to produce a range of phones in

different styles. They can be generally divided into three categories: S60 (formerly

known as Series 60), Series 80, and UIQ. There was a fourth category, Series 90, but it

has been now merged into S60.

 S60 User Interface consists of a suite of libraries and is intended to be provided

with fully-featured modern mobile phones with large color screens, which are usually

referred to as smartphones. S60 is most often associated with Nokia, but it is also

licensed to other mobile-phone manufacturers such as: BenQ–Siemens, Samsung and

Panasonic.

 Standard approach to create S60 UI is to utilize rather complicated native

Symbian C++ framework architecture consisting of: an application class (inherited

from CEikApplication), a document class (inherited from CEikDocument) and

an application user interface class (inherited from CAknAppUi), several views or

containers classes (inherited from CCoeControl). The set of these classes creates
the fundamental application behaviour and is mixed with other Symbian specific

programming techniques like: leaves, cleanup stack, two-phase constructors, etc. As a

result, the final application structure and application code is hardly readable for most

beginners in Symbian C++ programming. It has been slowly becoming evident, that

techniques, developed for the much more restricted mobile hardware of the 1990s,

simply caused unnecessary complexity in source code. Current Nokia's strategy, to

overcome this problem is to utilize standard C++, with the totally new Qt SDK. In this

and following exercises, we will get familiar with what the "Qt" is and how it can be

used for efficient development of applications and user interfaces for S60.

Qt Framework

 Qt - pronounced as cute (/kju:t/) or as Q.T. (/'kju:ti/), is a cross-platform

application framework that is widely used for developing application software with

Graphical User Interface. In fact, the Qt is not so new, because it has been available on

the market since 1996. It has been developed and marketed by Qt Software, formerly

known as Trolltech (the Norwegian company which is the original producer of Qt).

Nokia acquired Trolltech in 2008 and renamed it to "Qt Development Frameworks".

 Qt uses standard C++ but makes extensive use of a special code generator. It

runs on all major platforms and has extensive internationalization support. Non-GUI

features include: SQL database access, XML parsing, thread management, network

support, and a unified cross-platform API for file handling. Qt is free and open source

software. It is distributed under the terms of the free GNU General Public Licence and

Lesser General Public Licence.

 Qt is released by Nokia for the following platforms: Linux/X11, Mac OS X,

Windows, Embedded Linux, Windows CE / Mobile, Symbian, Maemo and MeeGo.

According to many opinions on different programmer's forums, the Qt greatly reduces

development effort through intuitive APIs that "deliver more functionality from less

code".

 Qt programmers can use the integrated development environments they are

most comfortable with because Qt has been integrated with several of the most

70

commonly used IDEs. These include Microsoft Visual Studio .NET, Eclipse, and

Carbide.c++. Qt Software also provides Qt Creator, which is a lightweight IDE

tailored specifically to the needs of Qt developers. During the lab we will utilize

Nokia Qt SDK with included Qt Creator, which can be downloaded from page:

http://www.forum.nokia.com/Develop/Qt/Tools/

Note, that the Linux distribution of Nokia Qt SDK does not have tools for Symbian

development. For Symbian Qt programming Windows XP or Vista is needed.

 The Qt framework has been designed with ease of development in mind. It is a

cross-platform application framework which means that applications written with Qt

can be used in many target platforms. The Qt API is implemented in C++ and expands

this programming language with a meta-object model which adds following new

features to C++:

• Qt class library which contains about 700 classes with hierarchical object-
oriented architecture,

• object to object communication mechanism called "signals and slots",

• events, event filters and timers,

• string translation to support internationalization,

• guarded pointers that are automatically set to NULL when the referenced object
is destroyed,

• class type identification and dynamic casting without using the C++ run-time
type identification (RTTI),

• dynamic and discoverable object properties, which allow interaction with
classes unknown during the compile time.

QApplication is the central class of every Qt application, that handles the event loop

and the main settings of application. It is responsible for managing application events

such as keyboard, mouse or touch events on touch screen devices. It also manages the

screen size as well as the font and style used by the application.

 QWidget is the basic user interface element in Qt and it is inherited from

QObject. It receives mouse, keyboard and other events from the windowing system

and does the widget painting or drawing on the screen. All user interface elements:

buttons, labels, views inherit from QWidget. Listing 4-8 illustrates the general

structure of "Hello, world" Qt demonstration for Symbian S60 and other platforms.

Listing 4-8 Qt "Hello, world!" demonstration code

#include <QtGui/QApplication> �
#include <QtGui/QLabel>

int main(int argc, char *argv[]) �

{ QApplication app(argc, argv); �

 QLabel label("Hello, world!"); �
 #if defined(Q_WS_S60)

 label.showMaximized(); �
 #else
 label.show();
 #endif

 return app.exec(); �
}

71

As we can see, Qt looks like standard C++ code. A the beginning the required classes

are included �. Including the classes directly like #include <QApplication>
also works, but the recommended convention is the use of the Qt module name in

front. The entry point for Qt applications is function int main() like for normal
C++ programs �. In fact, every Symbian program enters execution from

TInt E32Main(), but the Qt for S60 port handles this conversion automatically

through a library called libcrt0. For GUI programs we need to create a

QApplication object that initializes program settings and later will handle the

application event loop �. Then, we create one QWidget, or more precisely, a

QLabel which is for showing one label with the text ”Hello world!” �. All the

QWidgets can take another QWidget in the constructor to become its parent. This
label does not have a parent, which means that it will become a window of its own. As

Widgets are not visible by default, we make this label visible �. In the case of S60

mobile device, the application window should occupy the whole screen, so for S60 the

label will be maximized. For other platforms simple label.show() will be better

solution. Finally, we enter the actual execution by calling exec() for the

QApplication object. This starts the applications event loop. When the window is

closed, the exec() function is exited and we exit the main function as well.
 As a more advanced example of user defined Qt Widget we can use

CalculatorWidget (see listing 4-9)

Listing 4-9 Example implementation of user defined CalculatorWidget

#include <QWidget>
#include <QLineEdit>
#include <QLabel>

class CalculatorWidget : public QWidget
{ Q_OBJECT
public:
 explicit CalculatorWidget(QWidget *parent = 0);
private slots: �
 void valueChanged();
private:
 QLineEdit *m_firstValue;
 QLineEdit *m_secondValue;
 QLabel *m_result;
};

72

Listing 4-9 (continuation from previous page)

#include <QHBoxLayout>
#include <QFont>

CalculatorWidget::CalculatorWidget(QWidget *parent) :
 QWidget(parent)
{
 QHBoxLayout *layout = new QHBoxLayout(this);
 layout->addWidget(m_firstValue = new QLineEdit());
 layout->addWidget(new QLabel("+"));
 layout->addWidget(m_secondValue = new QLineEdit());
 layout->addWidget(new QLabel("="));
 layout->addWidget(m_result = new QLabel());
 QFont font = m_result->font();
 font.setBold(true);
 m_result->setFont(font);
 connect(m_firstValue, SIGNAL(textChanged(QString)), �
 this, SLOT(valueChanged()));
 connect(m_secondValue, SIGNAL(textChanged(QString)), �
 this, SLOT(valueChanged()));
 m_firstValue->setText("0");
 m_secondValue->setText("0");
}

void CalculatorWidget::valueChanged()
{
 QString firstValueText = m_firstValue->text();
 QString secondValueText = m_secondValue->text();

 bool first_ok,second_ok;
 int firstValue = firstValueText.toInt(&first_ok);
 int secondValue = secondValueText.toInt(&second_ok);

 if(first_ok && second_ok)
 m_result->setText(QString::number(firstValue+secondValue));
 else
 m_result->setText("no result");
}

Figure 4-2 Visualization of running CalculatorWidget in Qt Symbian device simulator.

 Take a look at lines ��� defining signals, slots and theirs interconnections.

Signals and slots offer a way to communicate between objects. A signal can be

emitted by any QObject. A slot is a member function that can be connected to

73

particular signal, and which gets called in a response to the emitted signal. The signals

and slots mechanism is more flexible since it doesn't require implementing interfaces

and it offers loosely coupled many-to-many relationship.

 Qt for Symbian port is adapted on top of Open C/C++ and native Symbian

libraries (Qt base libraries are compiled as Symbian DLLs). S60 porting code

implements the Symbian OS entry point E32Main() for Qt for Symbian and calls

the standard main() entry point used by Qt. During the QApplication
initialization, the Symbian application UI framework is initialized. The Nokia's SDK

for Symbian can be used with either Qt Creator, or Carbide.c++. For our laboratory

exercises, the most important is the fact that Qt for Symbian offers:

• Cross-platform application development without need to know the details of
native Symbian C++.

• Qt Mobility APIs for taking advantage of mobile features.

• Advanced simulator for testing Qt programs for mobile devices which also
supports Qt Mobility APIs (battery levels, charging states, profiles, storage,

network connections, locations, contacts, messaging and sensors can be easily

simulated) with different skin types including Maemo, Symbian Touch and

Symbian NonTouch phones.

• Running and debugging the programs directly on Maemo or Symbian devices
(there are debugging applications available for both platforms: App TRK for

Symbian and Mad Developer for Maemo)

• On-device-debugging can be done by setting breakpoints and checking the
variables.

Qt applications must conform to the Symbian OS security policies, just like any native

Symbian programs. To enforce the security measures introduced in Symbian 9.x, a

collection of software known as the Trusted Computing Base (TCB) is used. The TCB

contains the kernel, the file system, and the software installer, and is responsible for

ensuring that only applications with the necessary permissions and authority can be

installed and are allowed to access restricted areas of the device.

Exercise SYM.ex4

Accessing Mobile Phone Features with Qt Mobility API

Innovate and implement any mobile application which utilizes Qt Mobility API

to read/set mobile phone specific features (battery levels, locations, contacts,

messaging or mobile device sensors). "Fall Detector" application, which detects

if phone/person falls down and send an emergency email to predefined contact

with current position, could be used as an example.

(Required Mobility APIs: Sensors – Acceleration, Location – GPS,

Contacts - address book, Messaging - email)

 Qt Mobility Project is a project that is creating a new suite of Qt cross-platform

APIs for mobile devices functionality. It provides new APIs for: Sensors, Location,

Messaging, Contacts, System information, Multimedia, etc. Successive new APIs are

heavily developed as well: Camera, Telephony, Calendar. To use these APIs, a proper

74

configuration definition has to be added to *.pro project file. For example, the

following definition �� should be added to inform about use of location and

systeminfo API:

 TEMPLATE = app
 TARGET =
 DEPENDPATH += .
 INCLUDEPATH += .
 CONFIG += mobility �

 MOBILITY = location systeminfo �
 # Input
 SOURCES += main.cpp

These APIs allow the developer to use features from one framework with ease and

apply them to phones, netbooks and non-mobile personal computers. The framework

not only improves many aspects of a mobile experience, because it improves the use

of these technologies, but has applicability beyond the mobile device arena.

 In the following subsections we briefly browse through short descriptions of

available mobile API modules and illustrate their use with example code snippets:

System Information API

 The System Information API provides a set of APIs to discover system related

information and capabilities. Returned system information is related to a number of

categories:

• Version - contains version information for a range of supporting software on the
device. For example, from the Operating System and Firmware to the version of

WebKit, Qt and the Service Framework.

• Features (hardware) - this lists the supported hardware on the device. Features
include items such as the camera, bluetooth, GPS, FM radio etc.

• Network - the state of the network connection, and also the type of network e.g.
gsm, cdma, ethernet etc.

• Display Information

• Storage Information - the presence of various storage devices. Including: none,
internal, removable, cdrom.

• Device Information - Battery Status, Power State, Profile (silent, vibrating,
normal etc), Sim, Input Method (key/buttons, keypad, qwerty, single touch

screen, multitouch etc)

• Screensaver

A good illustration of QSystemDeviceInfo use is the following code snippet

implementing visualization of device's battery state (in %) with QProgressBar

widget. Every time, the system detects signal batteryLevelChanged the

following signal-slot connection triggers the call of setValue slot function of

batteryLevelBar.

75

// A code example: visualising the state of device's battery level

#include <QSystemInfo>
QTM_USE_NAMESPACE

void BatteryIndicator::setUp()
 {
 deviceInfo = new QSystemDeviceInfo(this);
 ui->batteryLevelBar->setValue(deviceInfo->batteryLevel());
 connect(deviceInfo, SIGNAL(batteryLevelChanged(int)),
 ui->batteryLevelBar, SLOT(setValue(int)));
 }

Messaging API

 A unified interface for manipulation and storage of SMS , MMS , Email and

XMPP messages It enables access to messaging services to search and sort messages,

send messages, retrieve message data, and launch the preferred messaging client on

the system to either display an existing message, compose a new message, or respond

to an existing message. As an illustration we can use an example code which

implements sending an email:

 // A Qt Mobility code example: sending an e-mail

 QMessage message;

 message.setType(QMessageAddress::Email);
 QString recipient("user@gmail.com");
 message.setTo(QMessageAddress(QMessageAddress::Email, recipient));
 message.setSubject("Qt Mobile API e-mail sending example");
 message.setBody("Example body text");

 QMessageService *m_service = new QMessageService();
 if (!m_service->send(message))
 QMessageBox::warning(0, "Failed", "Unable to send message");

Contacts API

 The Contacts API allows developers to manage contact data in a platform-

independent way. A contact consists of a set of contact details with own semantics of

usage and storage with different context info (like separate phone number for work

and home).

 // A Qt Mobility code example: Creating a new contact

 QContact Manager* cm = new QContactManager(this);

 QContact alice; // Create a new contact
 QContactName aliceName;
 aliceName.setFirst("Alice");
 aliceName.setLast("Jones");
 alice.saveDetail(&aliceName);

 QContactPhoneNumber number; // Add a phone number to the contact
 number.setContexts(QContactDetail::ContextHome);
 number.setSubTypes(QContactPhoneNumber::SubTypeMobile);
 number.setNumber("12345678");
 alice.saveDetail(&number);
 alice.setPreferredDetail(”DialAction”, number);

 cm->saveContact(&alice);

76

Multimedia API

 Multimedia provides a set of APIs that allow the developer to play, record and

manage a collection of media content. There are several benefits this API brings to Qt.

The developer can now implement fundamental multimedia functions with minimal

code, mostly because they are already implemented. Also there is a great deal of

flexibility with the media source or the generated multimedia. The source file does not

need to be local to the device, it could be streamed from a remote location and

identified by a URL. Finally, many different codecs are supported 'out of the box'. The

Audio Player example is a good illustration to the basic use of the API:

 // A Qt Mobility code example: Playing an audio file

 QMediaPlayer *player = new QMediaPlayer(this);
 ...
 player->setMedia(QUrl::fromLocalFile("audiofile.raw"));
 player->setVolume(50);
 player->play();

Sensors API

 The Sensors API provides access to sensors. This covers both high-level sensors

such as screen orientation (portrait, landscape) and low-level, real-time sensors such

as accelerometer data. Sensor classes provide convenience wrappers that reduce the

need for casting. Each of these classes represents a sensor type that the Sensors API

knows about. Note that additional types may be made available at run-time. Currently,

Sensors API supports following sensor classes:

• QAccelerometer (Linear acceleration along the X, Y and Z axes)

• QAmbientLightSensor

• QCompass

• QMagnetometer

• QOrientationSensor

• QProximitySensor (if something is close to the device)

• QRotationSensor (X, Y, Z –rotation of the device)

• QTapSensor (Registers tap and double tap events in 6 directions)

 // A Qt Mobility code example: utilising device's orientation sensor

 #include <QOrientationSensor>
 #include <QPalette>
 QTM_USE_NAMESPACE

 class SensorWidget : public QWidget
 {
 Q_OBJECT
 public:
 SensorWidget(QWidget *parent = 0);
 private slots:
 void onOrientationChanged();
 };

77

 static QOrientationSensor oSensor;

 SensorWidget::SensorWidget(QWidget *parent) : QWidget(parent)
 {
 connect(&oSensor,SIGNAL(readingChanged()),
 this, SLOT(onOrientationChanged()));
 oSensor.start();
 }

 void Widget::onOrientationChanged()
 {
 QOrientationReading::Orientation orientation;
 orientation = oSensor.reading()->orientation();
 QPalette pal = palette();

 if (orientation == QOrientationReading::TopUp ||
 orientation == QOrientationReading::TopDown)
 pal.setColor(QPalette::Background, Qt::blue);
 else
 pal.setColor(QPalette::Background, Qt::green);

 setPalette(pal);
 }

Other currently supported Qt Mobile APIs are:

• Qt Service Framework API – which defines a unified way of finding,
implementing and accessing services across multiple platforms.

• Publish and Subscribe API – which enables applications to read item values,
navigate through and subscribe to change notifications.

• Bearer Management API – which controls the connectivity state of the system

so that the user can start or stop interfaces or roam transparently between access

points.

• Location API – which provides a library for distributing and receiving
geographical location data using arbitrary data sources. The location info is

obtained from satellite or other sources, e.g. GPS, Cell ID.

Such location data usually involves a precisely specified position on the Earth's

surface (provided by a latitude-longitude coordinates) along with associated

data, such as:

 – the date and time at which the position was reported,

 – the velocity of the device that reported the position,

 – the altitude of the reported position (height above sea level),

 – the bearing of the device in degrees, relative to true north.

Detailed documentation of listed modules and for all the Qt Mobility Project APIs is

included in Qt Creator local Help. It can be also found on page:

http://doc.trolltech.com/qtmobility-1.0/

Overview of the purpose and the main functionality of the Qt Mobility is described in

the white paper: http://qt.nokia.com/files/pdf/qt-mobility-whitepaper-1.0.0

Since Trolltech acquisition, Nokia Company has been actively creating and sharing

many e-learning Qt materials, which can be found on the "Qt in education" page:

http://qt.nokia.com/services-partners/qt-in-education/

78

5. Laboratory Class Schedule

 The Mobile Computing course is planned on the last semester of the second

level MSc diploma study. The auditory lecture, provides complete overview of

fundamental paradigms, technologies and characteristic limitations related to mobile

systems. The accompanying project will expand this overview, by individual studies

on modern mobile trends including user focused and context-dependent services.

 The objective of the laboratory class is to provide a real hands-on experience in

software development for various hardware and programming environments, namely:

Java Micro Edition, Windows Mobile, Symbian and Qt/QtMobility framework. This

includes handling essential limitations of mobile environment: restricted user

interface, limited computational performance, memory-awareness, power management

and security in mobile applications. All laboratory participants are expected to posses

theoretical and practical abilities suitable for fast creation of medium difficulty

programs (about one hundred lines of code) in the time not exceeding one hour.

 To speed up the pace of laboratory exercise, most of training exercises will have

the form of small pre-prepared (pre-programmed) application frameworks, with some

highlighted gaps (edit positions) to fill-in with the proper code. The assigned task, to

be solved with the student's code, will be described in accompanying commentary.

Knowledge of the theoretical concepts is required to solve these tasks. It is expected

that the students have taken a look at the course slides and studied related chapters

from this course book before the lab. Some “Repetition Forms” will be provided to

repeat the theoretical foundations just before the class. According to tentative

schedule, the laboratory will consists of following modules:

<o MODULE <AME / EXERCISE DESCRIPTIO< TIMI<G

1 Java Microedition – Introduction

Exercises: J2ME.ex1, J2ME.ex2

2h

2 Java Microedition – Continuation

Exercises: J2ME.ex3, J2ME.ex4, J2ME.ex5

2h

3 Windows Mobile – Introduction

Exercises: WM.ex1, WM.ex2

2h

4 Windows Mobile – Continuation

Exercises: WM.ex3, WM.ex4, WM.ex5
2h

5 Symbian – Introduction

Exercises: SYM.ex1, SYM.ex2

2h

6 Symbian with Qt / QtMobility framework

Exercises: SYM.ex3, SYM.ex4

2h

7 Final presentation: teamwork implementation of selected

multiplayer computer game (e.g. Asteroids or Star Wars)

using wireless personal area networks (based on Bluetooth or WiFi)

to enable collective game making use of many different mobile

terminals accessible in the lab.

2h

8 Final assessment and examination 1h

Total: 15h

79

Bibliography

[1] Coulton P., Edwards R., Clemson H., "S60 Programming: A Tutorial Guide",
Wiley Publ., 2007.

[2] Fitzek F., Reichert F., "Mobile phone programming and its application to
wireless networking", Springer, 2007.

[3] Ilyas M., Mahgoub I., "Mobile computing handbook", Auerbach Publ., 2005.

[4] Jipping, M. "Smartphone Operating System Concepts with Symbian OS",
(Symbian Academy), Wiley Publ., 2007.

[5] Kroll M., Haustein S., "J2ME Application Development", Sams Publ., 2002.

[6] Knudsen J., Li S., "Beginning J2ME: From Novice to Professional",
Apress Publ., 2005.

[7] Mikkonen T., "Programming mobile devices: an introduction for practitioners",
Wiley Publ., 2007.

[8] Morris B., "The Symbian OS Architecture Sourcebook: Design and evolution of
a mobile phone OS", Wiley Publ., 2007.

[9] Rischpater R., "Beginning Java ME Platform", Apress Publ., 2008.

[10] Stroustrup B., "The C++ Programming Language", Addison-Wesley
Professional, 2000.

[11] Wigley A., Moth D., Foot P., "Microsoft® Mobile Development Handbook",
Microsoft Press, 2007.

[12] VisionMobile Ltd, "Developer Economics 2010", report, 2010
http://www.visionmobile.com/blog/devecon/

80

	Contents
	1. The Course Book Outline
	2. Programming Java Micro Edition (J2ME)
	2.1 Understanding J2ME, Configurations and Profiles
	2.2. Tools – J2ME Programming Environments
	2.3. Programming Exercises
	J2ME.ex1 Standard MIDlet Life Cycle
	J2ME.ex2 MIDlet User Interface and Input Event Handling
	J2ME.ex3 Drawing Low Level Graphics on the Device Screen
	J2ME.ex4 Wireless Messaging by SMS Texting
	J2ME.ex5 MIDP Persistent Data Storage Using RMS

	3. Programming Microsoft Windows Mobile
	3.1. .NET Compact Framework Platform
	3.2. Visual Studio Integrated Development Environment
	3.3. Laboratory Exercises
	WM.ex1 Building the first application with a Windows Forms based GUI
	WM.ex2 Exploring Important .NET CF Windows Forms Controls
	WM.ex3 Sending and Intercepting SMS Messages
	WM.ex4 Data Persisting with a Mobile Database Server
	WM.ex5 Using the GPS to Track Geographic Position of Device

	4. Programming Symbian S60
	4.1. Symbian OS versions and tools for C++ development
	4.2. Programming Exercises
	SYM.ex1 Symbian OS C++, Basic Classes, Naming Conventions
	SYM.ex2 Symbian OS exception handling mechanisms (Leaves, Traps and Cleanup Stack)
	SYM.ex3 User Interface and Event Handling with Qt library
	SYM.ex4 Accessing Mobile Phone Features with Qt Mobility API

	5. Laboratory Class Schedule
	Bibliography

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.508 inches / 165.0 x 241.5 mm
 Shift: move left by 28.35 points
 Normalise (advanced option): 'original'

 32

 D:20101021003038
 684.5669
 CANON pojed.
 Blank
 467.7165

 Tall
 1
 0
 No
 1047
 129
 Fixed
 Left
 28.3465
 14.1732

 Both
 17
 AllDoc
 17

 CurrentAVDoc

 Uniform
 11.3386
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 11
 80
 79
 80

 1

 HistoryItem_V1
 Nup

 Trim unused space from sheets: no
 Allow pages to be scaled: yes
 Margins and crop marks: none
 Sheet size: 6.496 x 9.508 inches / 165.0 x 241.5 mm
 Sheet orientation: tall
 Layout: scale to rows 1 down, columns 1 across
 Align: centre

 0.0000
 10.0001
 20.0001
 0
 Corners
 0.2999
 Fixed
 1
 1
 0.9500
 0
 0
 1
 0.0000
 0

 D:20110808011334
 684.5669
 CANON pojed.
 Blank
 467.7165

 Tall
 630
 275
 0.0000
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 0
 1
 0

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.508 inches / 165.0 x 241.5 mm
 Shift: move up by 14.17 points
 Normalise (advanced option): 'original'

 32

 D:20101021003038
 684.5669
 CANON pojed.
 Blank
 467.7165

 Tall
 1
 0
 No
 1047
 129
 Fixed
 Up
 14.1732
 14.1732

 Both
 17
 AllDoc
 17

 CurrentAVDoc

 Uniform
 11.3386
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 12
 80
 79
 80

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 6.496 x 9.508 inches / 165.0 x 241.5 mm
 Shift: move left by 5.67 points
 Normalise (advanced option): 'original'

 32

 D:20101021003038
 684.5669
 CANON pojed.
 Blank
 467.7165

 Tall
 1
 0
 No
 1047
 129
 Fixed
 Left
 5.6693
 14.1732

 Both
 17
 AllDoc
 17

 CurrentAVDoc

 Uniform
 11.3386
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 12
 80
 79
 80

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 13 to page 80; only odd numbered pages
 Font: Times-Roman 11.0 point
 Origin: bottom right
 Offset: horizontal 42.52 points, vertical 51.02 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 BR

 13
 TR
 1
 0
 1005
 173
 0
 11.0000

 Odd
 68
 13
 SubDoc

 CurrentAVDoc

 42.5197
 51.0236

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 12
 80
 78
 34

 1

 HistoryItem_V1
 DelPageNumbers

 Range: all pages

 1
 560
 315

 AllDoc

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 12
 80
 79
 80

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 13 to page 80; only odd numbered pages
 Font: Times-Roman 11.0 point
 Origin: bottom right
 Offset: horizontal 56.69 points, vertical 42.52 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 BR

 13
 TR
 1
 0
 1005
 173
 0
 11.0000

 Odd
 68
 13
 SubDoc

 CurrentAVDoc

 56.6929
 42.5197

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 12
 80
 78
 34

 1

 HistoryItem_V1
 DelPageNumbers

 Range: all pages

 1
 560
 315

 AllDoc

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 12
 80
 79
 80

 1

 HistoryItem_V1
 AddNumbers

 Range: From page 13 to page 80; only odd numbered pages
 Font: Times-Roman 11.0 point
 Origin: bottom right
 Offset: horizontal 51.02 points, vertical 42.52 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 BR

 13
 TR
 1
 0
 1005
 173
 0
 11.0000

 Odd
 68
 13
 SubDoc

 CurrentAVDoc

 51.0236
 42.5197

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 12
 80
 78
 34

 1

 HistoryItem_V1
 DelPageNumbers

 Range: all pages

 1
 560
 315

 AllDoc

 CurrentAVDoc

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 12
 80
 79
 80

 1

 HistoryItem_V1
 AddNumbers

 Range: all odd numbered pages
 Font: Times-Roman 11.0 point
 Origin: bottom right
 Offset: horizontal 51.02 points, vertical 42.52 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 BR

 1
 TR
 1
 0
 1005
 173
 0
 11.0000

 Odd
 80
 1
 AllDoc

 CurrentAVDoc

 51.0236
 42.5197

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 0
 80
 78
 40

 1

 HistoryItem_V1
 AddNumbers

 Range: all even numbered pages
 Font: Times-Roman 11.0 point
 Origin: bottom left
 Offset: horizontal 51.02 points, vertical 42.52 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 BL

 1
 TR
 1
 0
 1005
 173
 0
 11.0000

 Even
 80
 1
 AllDoc

 CurrentAVDoc

 51.0236
 42.5197

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 0
 80
 79
 40

 1

 HistoryItem_V1
 StepAndRepeat

 Trim unused space from sheets: no
 Allow pages to be scaled: no
 Margins: left 0.00, top 0.00, right 0.00, bottom 0.00 points
 Horizontal spacing (points): 0
 Vertical spacing (points): 0
 Crop style 1, width 0.30, length 20.00, distance 10.00 (points)
 Add frames around each page: no
 Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
 Sheet orientation: tall
 Layout: rows 50 down, columns 50 across
 Align: centre
 Registration colour: All separations
 PDF/X handling: Ignore PDF/X
 Annotations and form fields: UNKNOWN

 0.0000
 Prompt
 10.0001
 20.0001
 1
 Corners
 0.2999
 ToFit
 50
 50
 1.2000
 FormsAndFields
 0
 0
 1
 0.0000
 0
 IgnoreAll

 D:20110808011559
 841.8898
 a4
 Blank
 595.2756

 Tall
 886
 110

 0.0000
 AllSeps
 C
 0

 CurrentAVDoc

 0.0000
 0
 2
 1
 0
 0

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.0d
 Quite Imposing Plus 2
 1

 1

 HistoryList_V1
 qi2base

