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Chapter 1Density matrix1.1 Statistial averageQuantum average value of operator Ĝ in a state ψk(x, t)

〈

Ĝ
〉

=

∫

ψ∗
kĜψkdτ =

〈

ψk

∣
∣
∣ Ĝ
∣
∣
∣ψk

〉 (1.1)Statistial ensemble onsists of N hypothetial physial systems of the sameHamiltonian whose states are determined by the wave funtions ψk(x, t), where
x = r, p symbolizes a generalized variable. We use suh a statistial ensembleto alulate a statistial average value

〈
¯̂
G
〉

=
1

N

N∑

k=1

〈

ψk

∣
∣
∣ Ĝ
∣
∣
∣ψk

〉

=
1

N

N∑

k=1

∫

ψ∗
kĜψkdτ (1.2)We have here two types of averaging: quantum and statistial over a givenensemble.1.2 Density matrixChosing a omplete system of orthonormal funtions ϕn(x) we an represent

ψk(x, t) =
∑

n

ak
n(t)ϕn(x) (1.3)7



8 CHAPTER 1. DENSITY MATRIXand write the statistial average of Ĝ
〈

¯̂
G
〉

=
1

N

N∑

k=1

∑

n,m

ak∗
n ak

m

∫

ψ∗
nĜψmdτ
︸ ︷︷ ︸

Gn,m

=

=
∑

n,m

1

N

N∑

k=1

ak
ma

k∗
n Gnm =

∑

n,m

ρmnGnm = Tr(ρ̂Ĝ) (1.4)where we have de�ned a density matrix ρ̂ in a ertain representation, that is fora given set of basis funtions {ψn}

ρmn =
1

N

N∑

k=1

ak
ma

k∗
n (1.5)Although ρ̂ is de�ned for a ertain hoie of {ψn}, the average value - an ob-servable quantity - does not depend on this hoie, what one an easily showtransforming {ψn} into another orthonormal and omplete basis {ψ′

n}








ψ′
1...

ψ′
n...  = Û









ψ1...
ψn...  (1.6)where Û is a unitary operator. In this new representation the density matrixreads

ρ̂′ = Û−1ρÛ (1.7)and
Ĝ′ = Û−1ĜÛ (1.8)The averaged Ĝ′ value

Tr
(

ρ̂′Ĝ′
)

= Tr
(

Û−1Û Û−1ĜÛ
)

= Tr
(

Û−1ρ̂ĜÛ
)

=

= Tr
(

ρ̂ĜÛ Û−1
)

= Tr
(

ρ̂Ĝ
) (1.9)is the same as the the averaged Ĝ. Therefore, we have shown that the averagingdoes not depend on a partiular hoie of a basis representation. Summarizing,



1.2. DENSITY MATRIX 9we have de�ned a quantum � statistial average of an operator Ĝ
〈

¯̂
G
〉

= Tr
(

ρ̂Ĝ
) (1.10)where ρ̂ is a density matrix. We note that the normalization ondition

〈ψk |ψk〉 = 1,
〈
ϕk

n

∣
∣ϕk

m

〉
= δnm (1.11)leads to

1 = 〈ψk |ψk〉 =
∑

n,m

ak
na

k
m

〈
ϕk

n

∣
∣ϕk

m

〉
=
∑

n,m

ak∗
n ak

mδnm =
∑

n

∣
∣ak

n

∣
∣
2 (1.12)and in onsequene to

Trρ̂ =
∑

n

1

N

N∑

k=1

∣
∣ak

n

∣
∣
2

=
1

N

N∑

k=1

∑

n

∣
∣ak

n

∣
∣
2

=
1

N

N∑

k=1

1 = 1 (1.13)whih means that ρ̂ an be regarded as a probability density matrix. Let'sonsider a density matrix of a pure state ψ when all wave funtions of a statistialensemble are idential, i.e., ψk = ψ and
ρmn =

1

N

N∑

k=1

ama
∗
n = ama

∗
n (1.14)Calulating ρ̂2 matrix element

(ρ̂2)mn =
∑

l

ρmlρln =
∑

l

ama
∗
l ala

∗
n =

= am

(
∑

l

a∗l al

)

a∗n = ama
∗
n = ρ̂mn (1.15)we obtain ρ̂2 = ρ̂ for a pure state system. If we take the energy representation,that is a set of eigenfuntions ϕn

Ĥϕn = Eϕn (1.16)
Hml =

〈

ϕm

∣
∣
∣ Ĥ
∣
∣
∣ϕl

〉

= Eδml (1.17)



10 CHAPTER 1. DENSITY MATRIXthe time evolution of ρ̂
i~
∂ρ̂

∂t
=
[

Ĥ, ρ̂
]

=
[

Ĥ, ρ̂
(

Ĥ
)]

= 0 (1.18)that is for any matrix element ρmn

0 = i~
∂ρmn

∂t
=
[

Ĥ, ρ̂
]

mn
=
〈

ϕm

∣
∣
∣ Ĥρ̂

∣
∣
∣ϕn

〉

−
〈

ϕm

∣
∣
∣ ρ̂Ĥ

∣
∣
∣ϕn

〉

=

=
∑

l

(〈

ϕm

∣
∣
∣ Ĥ
∣
∣
∣ϕl

〉

〈ϕl | ρ̂ |ϕn〉 − 〈ϕm | ρ̂ |ϕl〉
〈

ϕl

∣
∣
∣ Ĥ
∣
∣
∣ϕn

〉)

=

=
∑

l

(Hmlρln − ρmlHln) =
∑

l

(Emδlmρln − ρmlEnδln) =

= (Em − En)ρmn (1.19)and for nondegenerate states we get a diagonal density matrix
ρmn = δmnρn (1.20)where

ρn = ρnn =
1

N

N∑

k=1

∣
∣ak

n

∣
∣
2 (1.21)

ρn is a probability of �nding among the statistial ensemble a system in a state
|ϕn〉, in other words, it is a probability that a system resides in a quantum state
|ϕn〉. Therefore, in a basis of energy eigenfuntions we an represents ρ̂ as

ρ̂ =
∑

n

|ϕn〉 ρn 〈ϕn| (1.22)We will use the energy representation of the density matrix throughout thisbook. At the end let us note that 0 6
∣
∣ak

n

∣
∣
2

6 1 for eah k and aording to(1.21) we have 0 6 ρn 6 1. The density matrix element takes its maximal value,
ρn = 1, only if ∣∣ak

n

∣
∣
2

= 1 for eah k, that is when all systems of the statistialensemble are in the state |ϕn〉 and this means a pure state system for whih
ρ̂ =








1 0 · · · 0
0 0 · · · 0... ... . . . ...
0 0 · · · 0








(1.23)Note, that for ρn = 1 also ρ2
n = 1 and ρ̂2 = ρ̂.



Chapter 2EntropyThe entropy an be thought o� as a measure of the disorder in a system and isobtained by state ounting. The entropy of an N partile system is proportionalto the logarithm of the number of states available to the system and is de�nedby the Gibbs formula
S = −kBTr(ρ̂ ln ρ̂) (2.1)where kB = 1.38 · 10−23 [J/K] is the Boltzmann onstant. In the energy repre-sentation we have

S = −kB

∑

n,m

ρnm ln ρmn = −kB

∑

n,m

ρnδmn ln(ρnδmn) (2.2)and the entropy is given by a straight summation over the energy states
S = −kB

∑

n

ρn ln ρn (2.3)Very often it is more onvenient to perform an integration instead of a summa-tion using a substitution for a sum over the states of an N-partile system
∑

n

−→ (2s+ 1)V

h3N

∫

d3Np (2.4)where V is a volume of a system and s is a partile spin, we an rewrite (2.3)in a form
S = −kB

(2s+ 1)V

h3N

∫

ρ(p) ln ρ(p)d3Np (2.5)11



12 CHAPTER 2. ENTROPYwhere p = (p1, . . . ,pN ). The density matrix, whih beomes a ontinuousmomentum funtion ρ(p), obeys a normalization ondition
(2s+ 1)V

h3N

∫

d3Npρ(p) = 1 (2.6)and an be alled a probability density in the 3N -dimensional momentum spae.We need to eluidate that applying the replaement (2.4) one must pay a parti-ular attention to possible singularities of an integrated funtion and while a useof an integral is allowed for fermions or lassial partiles in a ase of bosons onemust inlude the lowest energy state element in addition to an integral (2.4).This issue will be disussed thoroughly in Chapters 7 and 10. The entropy def-inition (2.5) is very usefull, as it an be applied after a slight modi�ation toquantum as well as lassial systems. Although all partiles obey quantum laws,a lassial approah is a onvenient approximation for systems whose quantumfeatures an be negleted. Therefore, one must use an appropriate lassialstates ounting proedure to have the same number of states as in a quantumsystem and beause a single quantum state of N partiles orresponds to N !states of distinguishable lassial partiles the number of lassial states shouldbe diminished by a fator N ! whih aounts for a number of N partiles per-mutations. For that purpose we introdue a oe�ient cN of an ation unitswhih disriminates quantum and lassial systems: cN = h3N for quantum,
cN = N !h3N for lassial. We an now introdue a probability density ρ(p, r),where r = (r1, . . . , rN ), in the 6N -dimensional momentum and position spae,that is the Γ-spae, whih gives a probability of �nding a lassial system ina state with partiles momenta and positions given by p and r vetors respe-tively, and for a quantum system is de�ned as ρ(p, r) = ρ(p). The normalizationondition on the Γ-spae reads

∫
dpdr

cN
ρ(p, r) = 1, (2.7)where we have used a simpli�ed notation p = p3N , r = r3N . We note, that in aquantum system the probability density is solely a momentum funtion and theposition integral gives simply volume to the N-th power, whih together withthe cN oe�ient form the density of states in the momentum spae V N/h3N .Aording to (3.9) the entropy is de�ned

S = −kB

∫
dpdr

cN
ρ(p, r) ln ρ(p, r) (2.8)



Chapter 3Thermodynamis3.1 Fundamental lawsWe will use the �rst law of thermodynamis, that is the energy onservationlaw,
dU = δQ− PdV + µdN (3.1)and the seond law of thermodynamis

dS >
δQ

T
(3.2)where the equality holds if hanges in the thermodynami state are reversible,and the inequality applies to spontaneus or irreversible proess. In this bookwe deal with reversible proesses, exept for the last paragraph, and we have

dS =
δQ

T
(3.3)unless it is not otherwise stated. Therefore, we an ombine both thermody-nami laws into a single equation

TdS = dU + PdV − µdN (3.4)whih determines a basi thermodynami funtion - the entropy.13



14 CHAPTER 3. THERMODYNAMICS3.2 Thermodynami funtionsA thermodynami de�nition of the entropy in the relation (3.4) yields
dS =

1

T
dU +

P

T
dV − µ

T
dN (3.5)We note, that the entropy S = S(U, V,N) is a funtion of three variables:internal energy U , volume V and number of partiles N , hene an in�nitesimalhange of the entropy

dS =

(
∂S

∂U

)

V,N

dU +

(
∂S

∂V

)

U,N

dV +

(
∂S

∂N

)

U,V

dN (3.6)yields the following thermodynami identities
(
∂S

∂U

)

V,N

=
1

T
(3.7)

(
∂S

∂V

)

U,N

=
P

T
(3.8)

(
∂S

∂N

)

U,V

= − µ

T
(3.9)A hange of the internal energy U , whih aording to Eq. (3.4) reads

dU = TdS − PdV + µdN (3.10)de�nes U as a three variable funtion U = U(S, V,N). Therefore, its di�erential
dU =

(
∂U

∂S

)

V,N

dS +

(
∂U

∂V

)

S,N

dV +

(
∂U

∂N

)

S,V

dN (3.11)is determided by the following relations
(
∂U

∂S

)

V,N

= T (3.12)
(
∂U

∂V

)

S,N

= −P (3.13)



3.2. THERMODYNAMIC FUNCTIONS 15
(
∂U

∂N

)

S,V

= µ (3.14)Subsequently, we de�ne the Helmholtz free energy
F = U − TS (3.15)whose di�erential hange

dF = d(U − TS) = dU − TdS − SdT (3.16)depends on the internal energy di�erential (3.10) and reads
dF = −SdT − PdV + µdN (3.17)Therefore, we have the free energy as a funtion of T , V , and N variables

F = F (T, V,N) and its di�erential
dF =

(
∂F

∂T

)

V,N

dT +

(
∂F

∂V

)

T,N

dV +

(
∂F

∂N

)

T,V

dN (3.18)leads to the following thermodynami identities
(
∂F

∂T

)

V,N

= −S (3.19)
(
∂F

∂V

)

T,N

= −P (3.20)
(
∂F

∂N

)

T,V

= µ (3.21)A thermodynami de�nition of the grand potential (thermodynami potential)
Ω(T, V, µ) = F − µN (3.22)ombined with Eq. (3.17) gives a di�erential hange of the grand potential

dΩ = −SdT − PdV −Ndµ (3.23)whih is a funtion of T , V , and µ. A di�erential of a three variable funtion
Ω = Ω(T, V, µ)

dΩ =

(
∂Ω

∂T

)

V,µ

dT +

(
∂Ω

∂V

)

T,µ

dV +

(
∂Ω

∂µ

)

T,V

dµ (3.24)



16 CHAPTER 3. THERMODYNAMICSleads to thermodynami identities
(
∂Ω

∂T

)

V,µ

= −S (3.25)
(
∂Ω

∂V

)

T,µ

= −P (3.26)
(
∂Ω

∂µ

)

T,V

= −N (3.27)Up to now, we have de�ned the di�erentials of the internal energy, entropy,free energy and thermodynami potential. Using a saling property of extensivequantities we will derive an expliit internal energy formula and subsequentlyobtain the rest of de�ned thermodynami funtions. First, we note that theinternal energy U = U(S, V,N) is a funtion of extensive quantities: S, V , Nwhih are proportional to the mass and a size of a system, therefore U itself isalso an extensive quantity. Let us do a saling transformation of the system byextending the size of a system λ times
S −→ λS
V −→ λV
N −→ λNwhih also gives
U −→ λUWe may write this transformation as follows

U(λS, λV, λN) = λU(S, V,N) (3.28)Taking a derivative with respet to λ at λ = 1 of the right-hand side of (3.28)
d

dλ
U(λS, λV, λN) =

d

dλ
λU(S, V,N) = U(S, V,N) (3.29)and of its left-hand side

d

dλ
U(λS, λV, λN) =

(
∂

∂λS
U(λS, λV, λN)

)

V,N

(
dλS

dλ

)

+

(
∂

∂λV
U(λS, λV, λN)

)

S,N

(
dλV

dλ

)

+
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(

∂

∂λN
U(λS, λV, λN)

)

V,S

(
dλN

dλ

) (3.30)that is
d

dλ
U(λS, λV, λN) =

(
∂

∂λS
U(λS, λV, λN)

)

V,N

S+

(
∂

∂λV
U(λS, λV, λN)

)

S,N

V +

(
∂

∂λN
U(λS, λV, λN)

)

V,S

N (3.31)Hene, we obtain
U(S, V,N) =

(
∂U

∂S

)

V,N

S +

(
∂U

∂V

)

S,N

V +

(
∂U

∂N

)

V,N

N (3.32)and using the thermodynami identities (3.12)-(3.14) we �nally get a formulawhih de�nes the internal energy
U(S, V,N) = TS − PV + µN (3.33)whih yields the expliit formulas for the Helmholtz free energy
F = U − TS = −PV + µN (3.34)and the thermodynami potential

Ω = F − µN = −PV (3.35)or
Ω = F − µN = U − TS − µN (3.36)The entropy funtion is to be determined mirosopially within the statistialphysis approah.





Chapter 4Miroanonial ensemble4.1 Density matrixA miroanonial ensemble onsists of all available states of an isolated system,that is states of a onstant energy E and a �xed number of partiles N . Wede�ne the density matrix ρ̂ in the energy representation {ϕn}, Ĥϕn = Enϕn,for whih ρmn = ρnδmn and the diagonal elements read
ρn =

δEn,E

Γ(E)
(4.1)where Γ(E) =

∑

n
δEn,E is a number of the energy E states. Taking into aounta small, ompared to the energy, disernibility of the energy measurement, ∆ ≪

E, we write a physially justi�ed de�nition of the miroanonial ensembledensity matrix
ρn =







1

Γ(E)
for E < En < E + ∆

0 otherwise (4.2)where now Γ(E) is a number of states in the energy interval E < En < E + ∆.We note, that
Trρ̂ =

∑

n

ρn =
1

Γ(E)

∑

n

δEn,E =
Γ(E)

Γ(E)
= 1 (4.3)whih means that ρ̂ is a properly de�ned probability density matrix. We shall seethat the miroanonial ensemble extremizes the Gibbs entropy, that is obeys19



20 CHAPTER 4. MICROCANONICAL ENSEMBLEthe seond law of thermodynamis. We use the Langrage multipliers method tolook for an extremum of the entropy (2.8) for a onstant energy states
S = −kB

∫

E<H(p,r)<E+∆

dpdr

cN
ρ(p, r) ln ρ(p, r) (4.4)subjet to the normalization ondition (2.7)

∫

E<H(p,r)<E+∆

dpdr

cN
ρ(p, r) = 1, (4.5)For the sake of simpliity, from now on we will drop o� the limits in the integralnotation minding that all integrals are taken in the same limits as in (4.5) unlessother limits are spei�ed. We take a variation

δ

[

S(ρ) + α

(∫
dpdr

cN
ρ(p, r) − 1

)]

= 0, (4.6)whih reads ∫
dpdr

cN
[−kB ln ρ(p, r) − kB + α] δρ(p, r) = 0. (4.7)Sine δρ is an arbitrary quantity, we have
ρ(p, r) = e

α−kB
kB = const (4.8)A Lagrange multiplier α is determined from the normalization ondition (4.5)whih for a onstant density matrix gives

ρ(p, r) =

(∫
dpdr

cN

)−1

= Γ−1(E) (4.9)where Γ(E) is a number of states of the energy E.Therefore we have obtainedthe miroanonial ensemble probability density (4.2).4.2 EntropyThe Gibbs entropy an be now straightforwardly evaluated
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S = −kB

∫
dpdr

cN
ρ(p, r) ln ρ(p, r) =

− kB

∫
dpdr

cN
Γ−1(E) ln Γ−1(E) = kB ln Γ(E) (4.10)and onluding, we may say that we have obtained a useful formula for theentropy in the miroanonial ensemble

S = kB ln Γ(E) (4.11)We an also rederive the entropy formula by taking a trae in the Gibbs de�ni-tion (2.3)
S = −kB

∑

n

ρn ln ρn =

− kB

∑

n

ρn ln
1

Γ(E)
= kB ln Γ(E)

∑

n

ρn = kB ln Γ(E) (4.12)4.2.1 Useful formulasSometimes it is more onvenient to use a volume Ω(E) oupied by the availablestates of the energy E in the Γ-spae instead of a number of states Γ(E), thatis Ω(E) is a thin shell volume
Ω =

∫

E<H(p,r)<E+∆

dpdr (4.13)In suh a notation we have
S = kB ln

Ω(E)

cN
(4.14)We shall now present a somewhat more onvenient method of omputing theentropy by de�ning a volume Φ(E) in the Γ-spae oupied by the states ofthe energy not exeeding the energy E, whih is usually easier to evaluate than

Ω(E)

Φ(E) = Φ(E, V,N) =

∫

H(p,r)6E

dpdr, (4.15)whih an be represented by a sum of the Ei energy thin shell volumes (Fig.4.1)
Φ(E, V,N) =

E
∆∑

i=1

Ω(Ei, V,N) (4.16)



22 CHAPTER 4. MICROCANONICAL ENSEMBLEwhere Ω(Ei, V,N) is the energy Ei thin shell volume. We note that the largest
Ω(Ei, V,N)

Φ(E, V,N)

Ei

E Ei + ∆

Figure 4.1: Ω(Ei, V,N) shell volume and Φ(E, V,N) volume of states of theenergy not exeeding Eshell volume Ω(Ei, V,N) is that within the energy interval (E,E + ∆), thus wean write
Ω(E, V,N) 6 Φ(E, V,N) 6

E

∆
Ω(E, V,N), (4.17)or by taking a logarithm whih is a monotoni funtion

ln Ω(E) 6 ln Φ(E) 6 ln Ω(E) + ln
E

∆
. (4.18)Beause Φ(E) is a volume in the 6N -dimensional spae ln Φ(E) ∼ N and theenergy E of a system is also proportional to the number of partiles ln

E

∆
∼ lnNwe get in the thermodynami limit

ln
E

∆
ln Φ(E)

∼ lnN

N
−−−−→
N→∞
V →∞

0, (4.19)



4.2. ENTROPY 23and
ln Φ(E) = ln Ω(E). (4.20)Therefore in the thermodynami limit the entropy (4.14) reads
S = kB ln

Φ(E, V,N)

cN
(4.21)where Φ(E, V,N) is volume of states of the energy not exeeding E.4.2.2 Properties1. Entropy S(E) = S(U, V,N) is a ontinuous and di�erentiable funtionof U , V , N .2. Entropy is an additive funtion, that is, for a system onsisting of independentsubsystems A, B the entropy S(U, V,N) = S(UA, VA, NA) + S(UB, VB, NB).

UB, VB ,NBUA, VA,NA

ΓA – number of states inA, ΓB – number of states inB

A B

Proof: Let us show it for the lassial entropy
S(U, V,N) = kB ln

ΩAΩB

NA!NB!h3(NA+NB)
= kB ln

ΩA

NA!h3NA
+ kB ln

ΩB

NB!h3NB
=

= S(UA, VA, NA) + S(UB, VB, NB). (4.22)3. Entropy is an extensive quantity: S(λU, λV, λN) = λS(U, V,N), for λ > 0.Proof: For the lassial entropy
S(λU, λV, λN) = kB ln

Φ(λU, λV, λN)

(λN)!h3λN
, (4.23)where Φ(λU, λV, λN) is a volume in a 6λN -dimensional Γ-spae.

Φ(λU, λV, λN) ∼ (λV )λNpλN
λ (4.24)sine the internal energy

U =
N∑

n=1

p2
n ∼ Np2 (4.25)



24 CHAPTER 4. MICROCANONICAL ENSEMBLEwe have
p =

(
U

N

) 1
2 (4.26)and for the extended system

pλ =

(
λU

λN

) 1
2

=

(
U

N

) 1
2

, (4.27)therefore
Φ(λU, λV, λN) ∼ (λV )λN

(
U

N

)λN
2

. (4.28)The entropy of the extended system reads
S(λU, λV, λN) = kB ln

(λV )λN

(
U

N

)λN
2

(λN)!h3λN
(4.29)and using the Stirling's approximation, lnN ! ≈ N lnN−N , we have the entropy

S(λU, λV, λN) = kBλ ln

V N

(
U

N

)N
2

h3N
+ kBλN lnλ− kBλN lnλN + kBλN,(4.30)whih is equivalent to

S(λU, λV, λN) = λkB ln

V N

(
U

N

)N
2

N !h3N
= λS(λU, λV, λN)λ=1 = λS(U, V,N)(4.31)4.3 Ideal lassial gasWe use an example of an ideal lassial gas to demonstrate the method of themiroanonial ensemble. In order to determine the entropy [3℄ (pp. 299-300,348)

S = kB ln
Φ(E)

N !h3N
(4.32)



4.3. IDEAL CLASSICAL GAS 25we need to ompute the volume Φ(E) in the Γ-spae oupied by states of theenergy less than E, that is
Φ(E) =

∫

V

dr1· · ·
∫

V

drN

∫

dp1· · ·
∫

dpN (4.33)where the momenta are limited by
H =

N∑

i=1

p2
i

2m
6 E (4.34)De�ning a radius R =

√
2mE we an write

Φ(E) = V NΦp, (4.35)where
Φ(E) =

∞∫

−∞

dp1· · ·
∞∫

−∞

dpNθ

(

R2 −
N∑

i=1

p2
i

) (4.36)is a volume enlosed by R in a 3N -dimensional momentum spae, thus it anbe represented as
Φp = A3NR

3N . (4.37)We obtain A3N oe�ient by evaluating the integral
∞∫

0

dR
dΦp

dR
e−R2

, (4.38)where
dΦp

dR
= 3NA3NR

3N−1. (4.39)We an do that without using an expliit form of dΦp

dR
but its de�nition (4.36)

∞∫

0

dR
dΦp

dR
e−R2

=

∞∫

0

dR
dΦp

dE

dE

dR
e−R2

=

∞∫

0

dE
dΦp

dE
e−R2

=

=

∞∫

0

dE
d

dE

∫

dp1· · ·
∫

dpNΘ

(

R2 −
N∑

i=1

p2
i

)

e−R2

=
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=

∞∫

0

dE2m

∫

dp1· · ·
∫

dpNδ

(

R2 −
N∑

i=1

p2
i

)

e−R2

=

=

∞∫

0

dR2

∫

dp1· · ·
∫

dpNδ

(

R2 −
N∑

i=1

p2
i

)

e−R2

=

=

∫

dp1· · ·
∫

dpNe
−

N
P

i=1
p2

i

=

=

∞∫

−∞

dp1x

∞∫

−∞

dp1y

∞∫

−∞

dp1z· · ·
∞∫

−∞

dpNx

∞∫

−∞

dpNy

∞∫

−∞

dpNze

„

−
N
P

i=1

p2
ix+p2

iy+p2
iz

«

=

=

∞∫

−∞

dp1xe−p2
1x

∞∫

−∞

dp1ye−p2
1y

∞∫

−∞

dp1ze
−p2

1z · · ·

· · ·
∞∫

−∞

dpNxe−p2
Nx

∞∫

−∞

dpNye−p2
Ny

∞∫

−∞

dpNze
−p2

Nz =

=





∞∫

−∞

dpe−p2





3N

= π
3N
2 (4.40)On the other hand using (4.39)

∞∫

0

dR
dΦp

dR
e−R2

= 3NA3N

∞∫

0

dRR3N−1e−R2

=
3

2
NA3NΓ

(
3

2
N

) (4.41)where
Γ(x) =

∞∫

0

tx−1e−tdt (4.42)is the gamma funtion. Therefore, omparing (4.40) and (4.41) we get
3

2
NA3NΓ

(
3

2
N

)

= π
3N
2 , (4.43)that is

A3N =
π

3N
2

Γ
(

3
2N + 1

) (4.44)



4.3. IDEAL CLASSICAL GAS 27Therefore, the volume in the momentum spae reads
Φp =

π
3N
2

Γ
(

3
2N + 1

)R3N =
π

3N
2

Γ
(

3
2N + 1

)(2mE)
3N
2 =

(2πmE)
3N
2

Γ
(

3
2N + 1

) (4.45)and the volume in the Γ-spae
Φ(E) =

V N (2πmE)
3N
2

Γ
(

3
2N + 1

) . (4.46)We are now in a position to alulate the entropy
S = kB ln

[

V N (2πmE)
3N
2

N !h3NΓ
(

3
2N + 1

)

]

. (4.47)Beause Γ
(

3
2N + 1

)
=
(

3
2N
)
! and for large N we an use the Stirling's approx-imation

lnN ! ≈ N lnN −N or N ! ≈
(
N

e

)N

, (4.48)we have
Γ

(
3

2
N + 1

)

≈
(

3N

2e

) 3N
2 (4.49)and the entropy

S = kB ln




V N (2πmE)

3N
2

N !h3N
(

3N
2e

) 3N
2



 (4.50)The entropy formula an be rearanged, using again the Stirling's approximationas follows
S =

3

2
NkB +NkB ln

[

V

(
4πmE

3h2N

) 3
2

]

− kB lnN ! =

=
3

2
NkB +NkB ln

[

V

(
4πmE

3h2N

) 3
2

]

−NkB lnN +NkB =

=
5

2
NkB +NkB ln

[

V

N

(
4πmE

3h2N

) 3
2

] (4.51)



28 CHAPTER 4. MICROCANONICAL ENSEMBLEand de�ning the internal energy U = E the entropy reads
S = NkB

[

5

2
+ ln

(

V

N

(
4πmU

3h2N

) 3
2

)]

. (4.52)We use the above equation to obtain the temperature and pressure. Taking apartial derivative ∂
∂S of (4.52) at onstant V and N we get the equation

1 = NkB

[

V

N

(
4πmU

3h2N

) 3
2

]−1

V

N

(
4πmU

3h2N

) 3
2 3

2
U

1
2

(
∂U

∂S

)

V,N

, (4.53)whih simpli�es to
U =

3

2
NkB

(
∂U

∂S

)

V,N

=
3

2
NkBT (4.54)where we have used a thermodynami relation T =

(
∂U

∂S

)

V,N

. We have ob-tained the internal energy of a monatomi ideal gas
U =

3

2
NkBT (4.55)in agreement with the energy equipartition theorem. A similar proedure oftaking a partial derivative ∂

∂V at onstant S, N yields a relation
0 =

N

V

(
4πmU

3h2N

)− 3
2

[

1

N

(
4πmU

3h2N

) 3
2

+
V

N

(
4πmU

3h2N

) 3
2 3

2
U

1
2

(
∂U

∂V

)

S,N

](4.56)whih is equivalent to
−U =

3

2
V

(
∂U

∂V

)

S,N

(4.57)Using a thermodynami identity P = −
(
∂U

∂V

)

S,N

, we get
U =

3

2
PV (4.58)Finally, ombining (4.55) and (4.58) we obtain the ideal lassial gas equationof state

PV = NkBT (4.59)



4.3. IDEAL CLASSICAL GAS 29We an also �nd the heat apaity at onstant volume
cV =

(
∂U

∂T

)

V

=
∂

∂T

(
3

2
NkBT

)

=
3

2
NkB (4.60)and the Helmholtz free energy

F = U − TS = −NkBT −NkBT ln

[

V

N

(
2πm

h2
kBT

) 3
2

]

=

= −NkBT −NkBT ln
V

N
− 3

2
NkBT ln(2πmkBT ) +NkBT lnh3 (4.61)whih yields the hemial potential

µ =

(
∂F

∂N

)

T,V

=

− kBT − kBT ln
V

N
+ kBT − 3

2
kBT ln(2πmkBT ) + kBT lnh3 =

kBT ln
nh3

(2πmkBT )
3
2

, (4.62)where n = N
V is a partile onentration.





Chapter 5Canonial ensemble5.1 Subsystem of a miroanonial systemWe onsider a system onsisting of N partiles in a thermal ontat with amuh larger system ontaining N0 partiles, N0 ≫ N , whih we all a heatbath. Although both systems are separate and their partiles do not mix, thatis partile numbers N and N0 and volumes of the systems V , V0 are onstant,they an exhange the energy.
E,N , V

E0 − E,N0, V0

heat bath

The energy E of a smaller system determined by the Hamiltonian H(p, r) = Eis muh smaller than the energy of the heat bath E0 − E, so in slowly varyingenergy funtions we an assume E0 − E ≈ E0 = const, although E is allowedto hange. Both systems an be onsidered subsystems of a onstant energy E0system desribed by a miroanonial ensemble whose number of states Γm(E0)beause of a spatial separation of the subsystems is a produt of the numbers31



32 CHAPTER 5. CANONICAL ENSEMBLEof states Γ and Γ0 in the 6N - and 6N0-dimensional spaes respetively
Γm(E0) = Γ(E)Γ0(E0 − E). (5.1)The variation of the miroanonial ensemble entropy S(E0) = kB ln Γm(E0)with respet to the energy E must ful�ll the extremum ondition

δS(E0) = 0 (5.2)
δkB ln Γm(E0) = 0 (5.3)

δ ln [Γ(E)Γ0(E0 − E)] = 0 (5.4)
δ ln Γ(E) + δ ln Γ0(E0 − E) = 0 (5.5)

[
1

Γ(E)

∂Γ(E)

∂E
− 1

Γ0(E0 − E)

∂Γ0(E0 − E)

∂(E0 − E)

]

δE = 0 (5.6)for an arbitrary δE value, that is,
1

Γ(E)

∂Γ(E)

∂E
− 1

Γ0(E0 − E)

∂Γ0(E0 − E)

∂(E0 − E)
= 0 (5.7)

1

Γ(E)

∂Γ(E)

∂E
− ∂

∂(E0 − E)
ln Γ0(E0 − E) = 0 (5.8)Beause E0 ≫ E we an assume that the energy of the heat bath E0 −E ≈ E0therefore

1

Γ(E)

∂Γ(E)

∂E
=

1

kB

∂

∂(E0)
kB ln Γ0(E0). (5.9)On the right-hand side of Eq.(5.9) we have the energy derivative of the heatbath entropy S0(E0) = kB ln Γ0(E0) whih de�nes the absolute temperature Tof the heat bath

1

T
=

(
∂S0(E0)

∂E0

)

N,V

. (5.10)Therefore
1

Γ(E)

∂Γ(E)

∂E
=

1

kBT
. (5.11)Let us note that T is a ommon temperature of both systems sine Eq. (5.9)yields

∂

∂E
ln Γ(E) =

∂

∂E0
ln Γ0(E0). (5.12)



5.1. SUBSYSTEM OF A MICROCANONICAL SYSTEM 33It means that both systems remain at the same temperature, in other words,the systems are in a thermal equilibrium. Eq. (5.11) is a simple di�erentialequation
dΓ

Γ
=

dE

kBT
, (5.13)whih integrated gives

ln Γ =
E

kBT
+ lnC, (5.14)where C is a onstant. Finally, a number of states of the energy E in the

6N -dimensional spae reads
Γ(E) = Ce

E
kB T . (5.15)If we limit our onsiderations to the states of a �xed energy E then we still dealwith a miroanonial ensemble and the probability density is determined bythe normalization ondition

∑

n

δEn,Eρ(En) =

∫

H(p,r)=E

dpdr

cN
ρ(p, r) = 1 (5.16)where ρ is onstant for a onstant energy sheet, that is, it redues to the miro-anonial density for a onstant energy onstraint. We an express this onditionby the relation ρ(p, r) = ρ(H(p, r)). Therefore, for a given energy we get

ρ(p, r) = Γ−1(E) (5.17)We an now inlude all states of the energy E not exeeding the heat bath energy
E0 and based on Eqs. (5.15), (5.17) we write the normalization ondition

C−1

∫

H(p,r)<E0

dpdr

cN
e
−H(p,r)

kB T = 1 (5.18)
C =

∫

H(p,r)<E0

dpdr

cN
e
−H(p,r)

kB T , (5.19)where we have extended the integral to inlude all states of the energy smallerthan the heat bath energy. Although the above integral should be limited bythe energy of the heat bath we an extend it to in�nity as in fat only a narrowrange of energy matters in the alulation of this integral or in other words we



34 CHAPTER 5. CANONICAL ENSEMBLEmay say that the energy E0 has been hosen muh larger than the energy E ofa onsidered system so we an assume it to be in�nite. In summary, we haveobtained the probability density
ρ(p, r) =

1

QN (V, T )
e
−H(p,r)

kBT , (5.20)where
QN (V, T ) = C =

∫
dpdr

cN
e
−H(p,r)

kBT (5.21)is alled the partition funtion or the statistial sum for a system onsistingof N partiles at the temperature T enlosed in a volume V . The probabilitydensity (Eq. (5.20)) de�nes a anonial statistial ensemble. Conluding, wewrite QN (V, T ) expliitely for a lassial system
QN (V, T ) =

∫
dpdr

N !h3N
e
−H(p,r)

kB T (5.22)and for a quantum one
QN(V, T ) = V

∫
dp

h3N
e
−H(p)

kB T (5.23)5.2 Density matrixThe density matrix elements in the energy representation are given by (5.20)and for the energy En state
ρmn = ρnδmn =

1

QN
δmne−βEn (5.24)where β =

1

kBT
, and the partition funtion reads

QN =
∑

n

e−βEn

︸ ︷︷ ︸sum over states =
∑

n′

gn′e−βEn′

︸ ︷︷ ︸sum over energy levelswhere we have disriminated between two possible summations: over all avail-able states or over all energy levels in whih we have inluded a possible degener-ay of an energy level. We an onstrut now a density matrix for a normalized



5.3. ENTROPY AND OTHER THERMODYNAMIC FUNCTIONS 35and omplete set of eigenfuntions ϕn, ∑
n
|ϕn〉 〈ϕn| = 1,

ρ̂ =
1

QN

∑

n

|ϕn〉 e−βEn 〈ϕn| =
1

QN
e−βĤ

∑

n

|ϕn〉 〈ϕn| =
1

QN
e−βĤ (5.25)Therefore, we obtain

ρ̂ =
1

QN
e−βĤ (5.26)where the partition funtion

QN =
∑

n

e−βEn =
∑

n

〈

ϕn

∣
∣
∣ e−βĤ

∣
∣
∣ϕn

〉

=

=
∑

n

(

e−βĤ
)

nn
= Tre−βĤ (5.27)is determined by a trae of the density matrix. Quantum statistial averagevalue of an observable Ĝ :

〈
¯̂
G
〉

= Tr
(

ρ̂Ĝ
) is given by a trae of a Ĝ and ρ̂produt

〈
¯̂
G
〉

= Tr

{
1

QN
e−βĤĜ

}

=
1

QN

∑

n

〈

ϕn

∣
∣
∣ e−βĤĜ

∣
∣
∣ϕn

〉

=

=
1

QN

∑

n

e−βEn

〈

ϕn

∣
∣
∣ Ĝ
∣
∣
∣ϕn

〉

=
1

QN

∑

n

Gnne−βEn (5.28)where
Gnn =

∫

ϕ∗
nĜϕndτ =

〈

ϕn

∣
∣
∣ Ĝ
∣
∣
∣ϕn

〉 (5.29)and
Ĥϕn = Enϕn (5.30)5.3 Entropy and other thermodynami funtionsA fundamental thermodynami funtion - entropy

S = −kBTr {ρ̂ ln ρ̂} (5.31)in the anonial ensemble is given by a relation
S = −kBTr

{

ρ
(

− lnQN − βĤ
)}

=
1

T

〈
¯̂
H
〉

+ kB lnQN (5.32)



36 CHAPTER 5. CANONICAL ENSEMBLEwhere a statistial average of a Hamiltonian represents an average energy of asystem, that is an internal energy U =
〈

¯̂
H
〉. Therefore, we obtain a relation

U = TS − kBT lnQN (5.33)whih ompared with a phenomenologial thermodynami de�nition of the Helmholtzfree energy (3.15) gives a statistial de�nition of the free energy
F = −kBT lnQN (V, T ) (5.34)where we have expliitely expressed a partile number N , volume V and tem-perature T dependene of the free energy. We an use F to express the partitionfuntion QN = e−βF and the density matrix

ρ̂ = eβ(F−Ĥ) (5.35)A statistial formula for the internal energy follows from its de�nition
U = Tr

{

ρ̂Ĥ
}

=
∑

n

Enρn

︸ ︷︷ ︸sum over states =
1

QN

∑

n

Ene−βEn (5.36)Using an identity
∂

∂T
lnQN =

∂

∂T
ln

(
∑

n

e−βEn

)

=

=
1

QN

∑

n

(

−En

kB

)(

− 1

T 2

)

e−βEn =
1

kBT 2

1

QN

∑

n

Ene−βEn (5.37)we obtain
U = kBT

2 ∂

∂T
lnQN(V, T ) = − ∂

∂β
lnQN (V, T ) (5.38)Finally, with a use of (5.33) and (5.38) we an derive the entropy formula in theanonial ensemble

S = kBT
∂

∂T
lnQN + kB lnQN (5.39)whih leads

S = kB
∂

∂T
(T lnQN(V, T )) (5.40)



5.4. IDEAL CLASSICAL GAS 37We have shown that the statistial and phenomenologial de�nitions of thethermodynami funtions are onsistent. Moreover, using a statistial approahwe an on�rm some basi thermodynami identities. Comparing the statistialde�nitions of the entropy (5.40) and the free energy (5.34), given in the anonialensemble that is for a onstant volume and a onstant number of partiles, weget
(
∂F

∂T

)

V,N

= −S (5.41)In summary, the thermodynami funtions an be expressed in the anonialensemble by the statistial sum QN

F (V, T ) = −kBT lnQN(V, T ) (5.42)
S(U, V ) = kB

∂

∂T
T lnQN (V, T ) (5.43)

U(S, V ) = kBT
2 ∂

∂T
lnQN (V, T ) (5.44)5.4 Ideal lassial gasWe will use the anonial ensemble method in a disussion of an ideal lassialgas de�ned by the Hamiltonian

H =
1

2m

N∑

i=1

p2
i . (5.45)As the basi quantity that determines the thermodynami funtions is the par-tition funtion we start our onsiderations with an evaluation of QN(V, T ). Thepartition funtion of a system of a volume V

QN =
V N

N !h3N

∞∫

−∞

exp

[

− 1

2m

N∑

i=1

(
p2

ix + p2
iy + p2

iz

)

kBT

]

dp1x· · · dpNx

dp1y· · · dpNydp1z · · ·dpNz =
V N

N !h3N





∞∫

−∞

e
− p2

2mkB T dp





3N (5.46)



38 CHAPTER 5. CANONICAL ENSEMBLEis determined by the Gauss integral
∞∫

−∞

dxe−λx2

=

√
π

λ
(5.47)and reads

QN =
V N

N !h3N
(2πmkBT )

3N
2 (5.48)For further evaluations we need a logarithm of the partition funtion

lnQN = N lnV +
3N

2
ln (2πmkBT ) − lnN ! −N lnh3 (5.49)whih for N ≫ 1 in the Stirling's approximation reads

lnQN = N lnV +
3N

2
ln (2πmkBT ) −N lnN +N −N lnh3 (5.50)or

lnQN = N ln
V

N
+

3

2
N ln (2πmkBT )−N lnh3 +N (5.51)Now, we an write down the free energy

F = −kBT lnQN = −NkBT ln
V

N

− 3

2
NkBT ln (2πmkBT ) +NkBT lnh3 −NkBT (5.52)the internal energy

U = kBT
2 ∂

∂T
lnQN = kBT

2

(
3N

2

)
1

2πmkBT
2πmkB =

3

2
NkBT (5.53)and the entropy

S = kB
∂

∂T
(T lnQN) = NkB ln

V

N

+
3

2
NkB ln (2πmkBT ) +

3

2
NkB −NkB lnh3 +N =

= NkB lnV +
3

2
NkB lnT +NkB

[

ln
(2πmkB)

3
2

Nh3
+

5

2

]

. (5.54)



5.4. IDEAL CLASSICAL GAS 39It is instrutive to hek that the obtained funtions ful�ll the thermodynamirelations
F = U − TS and 1

T
=

(
∂S

∂U

)

V,N

. (5.55)We note also, that the results agree with the ones obtained within the miro-anonial approah.





Chapter 6Grand anonial ensemble6.1 Density matrixWe de�ne the grand partition funtion as a weighted sum of a partition funtion
QN (V, T ) arried over a varying number of partiles N

θ(z, V, T ) =

∞∑

N=0

zNQN (V, T ), (6.1)where z = eβµ = e
µ

kBT is a fugaity and µ is a hemial potential. We may alsowrite
θ(z, V, T ) =

∞∑

N=0

eβµNQN (V, T ) (6.2)A quantum statistial average of an operator Ĝ in the grand anonial ensembleis de�ned also as a weighted average over anonial ensembles orresponding tovarying numbers of partiles
〈

¯̂
G
〉

=
1

θ

∞∑

N=0

zNTr
{

Ĝe−βĤN

} (6.3)where ĤN is a Hamiltonian of an N -partile system. In the energy representa-tion, ĤN |ϕN,i〉 = EN,i |ϕN,i〉, we have41



42 CHAPTER 6. GRAND CANONICAL ENSEMBLE
〈

¯̂
G
〉

=
1

θ

∞∑

N=0

zN
∑

i

〈

ϕN,i

∣
∣
∣ Ĝ
∣
∣
∣ϕN,i

〉

e−βEN,i

=
1

θ

∞∑

N=0

zN
∑

i

GN,iie
−βEN,i =

1

θ

∞∑

N=0

GN,iie
µN−EN,i

kB T (6.4)and de�ning a probability wN,i of an N -partile system to reside in the EN,ienergy state
wN,i =

1

θ
e

µN − EN,i

kBT (6.5)where
θ =

∞∑

N=0

∑

i

e
µN−EN,i

kBT (6.6)we an write
〈

¯̂
G
〉

=

∞∑

N=0

∑

i

GN,iiwN,i (6.7)If we assume, that for any N {

Ĝ, ĤN

}

= ĜĤN − ĤN Ĝ = 0, that is both opera-tors share the same set of eigenfutions, we an assign to (6.7) an interpretationof an expeted value of Ĝ. Probability wN,i an be regarded as a diagonalelement of the density matrix of the grand anonial ensemble
ρ̂ =

1

θ
e−β(Ĥ−µN̂) (6.8)where we use a symbol Ĥ for a Hamiltonian with a varying number of partiles.In fat, ρ̂ ful�lls the normalization ondition

Trρ̂ =
1

θ
Tre−β(Ĥ−µN̂) =

1

θ

∞∑

N=0

∑

j

〈

ϕN,j

∣
∣
∣ e−β(Ĥ−µN̂)

∣
∣
∣ϕN,j

〉

=

1

θ

∞∑

N=0

∑

j

e−β(EN,j−µN) =
1

θ

∞∑

N=0

eβµN
∑

j

e−βEN,j =

1

θ

∞∑

N=0

zNQN = 1 (6.9)



6.2. ENTROPY AND OTHER THERMODYNAMIC FUNCTIONS 43and using ρ̂ we an represent an average value of Ĝ given by (6.7) as a trae ofa produt Ĝ and ρ̂ over the energy states of all possible N -partile systems
〈 ¯̂
G〉 = Tr

{

ρ̂Ĝ
} (6.10)Eq. (6.8) de�nes a density matrix for a grand anonial ensemble. Obviously,for a �xed number of partiles N = N ′

θ(z, V, T ) = zN ′

QN ′(V, T ) (6.11)and the grand anonial density matrix
ρ̂ =

1

θ
zN ′

e−βĤN′ =
1

zN ′QN ′

zN ′

e−βĤN′ =
1

QN ′

e−βĤN′ (6.12)redues to the anonial density matrix, whih means that the grand anonialensemble redues to the anonial one.6.2 Entropy and other thermodynami funtionsThe entropy in the grand anonial ensemble
S = −kBTr

{

ρ̂
(

− ln θ − ln eβ(Ĥ−µN̂)
)}

=

kB ln θ + kBTr
{

ρ̂
(

β(Ĥ − µN̂)
)}

=

kB ln θ +
1

T

(
U − µN̄

) (6.13)where U = Tr
{

ρ̂Ĥ
} represents the internal energy and N̄ = Tr

{

ρ̂N̂
} standsfor the average partile number, allows us to formulate a statistial de�nitionof the grand potential (thermodynami potential) in agreement with (3.36) as

Ω = −kBT ln θ(z, V, T ) (6.14)From the above de�nition we have the grand partition funtion θ = e−βΩ andthe density matrix
ρ̂ = eβ(Ω−Ĥ+µN̂) (6.15)Therefore, a quantum statistial average of an operator Ĝ in the grand anonialensemble reads 〈

¯̂
G
〉

= Tr
{

eβ(Ω−Ĥ+µN̂)Ĝ
} (6.16)



44 CHAPTER 6. GRAND CANONICAL ENSEMBLENote that Ω plays the same role for the grand anonial ensemble as F for theanonial ensemble. It is usefull to have an operational formula for the averagepartile number and the internal energy within the grand anonial ensemble,as we have done it in the anonial ensemble, therefore we evaluate N̄ rightfrom the de�nition using the energy representation
N̄ =

1

θ

∞∑

N=0

zNTr
{

N̂e−βĤ
}

=
1

θ

∞∑

N=0

zNN
∑

i

e−βEN,i =

1

θ

∞∑

N=0

zNNQN =
1

θ
z
∂

∂z

∞∑

N=0

zNQN =
1

θ
z
∂θ

∂z
= z

∂

∂z
ln θ (6.17)and obtain

N̄ = z

(
∂

∂z
ln θ(z, V, T )

)

T,V

(6.18)From now on we will use a symbol N instead of N̄ for an average partilenumber. Similarly, we alulate the internal energy
U =

1

θ

∞∑

N=0

zNTr
{

Ĥe−βĤ
}

=
1

θ

∞∑

N=0

zN
∑

i

EN,ie
−βEN,i =

1

θ

∞∑

N=0

zN
∑

i

(

− ∂

∂β
e−βEN,i

)

=

− 1

θ

(

∂

∂β

∞∑

N=0

zNQN

)

z,V

= −
(
∂

∂β
ln θ

)

z,V

(6.19)and obtain
U = −

(
∂

∂β
ln θ(z, V, T )

)

z,V

(6.20)or
U = kBT

2

(
∂

∂T
ln θ(z, V, T )

)

z,V

(6.21)Taking into aount relations (6.21) and (6.18) formula (6.13) yields
S = kB ln θ(z, V, T )+

kBT

(
∂

∂T
(ln θ(z, V, T )

)

z,V

− µ

T
z

(
∂

∂z
ln θ(z, V, T )

)

T,V

(6.22)



6.2. ENTROPY AND OTHER THERMODYNAMIC FUNCTIONS 45where, as expliitely stated, the grand partition funtion is onsidered a fun-tion of fugaity and temperature. Applying a fugaity de�nition, z = eβµ,whih involves the temperature and the hemial potential, we an regard
θ(z, V, T ) = θ(z(µ, T ), V, T ) = θ(µ, V, T ) a funtion of the hemial potentialand temperature, whose partial derivative with respet to temperature reads
kB

(
∂

∂T
(ln θ(z(µ, T ), V, T )

)

µ,V

=

(
∂

∂T
(ln θ(z, V, T )

)

z,V

+

(
∂

∂z
(ln θ(z, V, T )

)

T,V

(
∂z

∂T

)

µ

(6.23)Sine ( ∂z
∂T

)

µ

= − µ

kBT 2
z, we have

kB

(
∂

∂T
(ln θ(z(µ, T ), V, T )

)

µ,V

=

(
∂

∂T
(ln θ(z, V, T )

)

z,V

− µ

kBT 2
z

(
∂

∂z
(ln θ(z, V, T )

)

T,V

(6.24)and the above expression an be used instead of the two last terms on theright-hand side of (6.22) whih gives
S = kB ln θ(µ, V, T ) + kBT

(
∂

∂T
(ln θ(µ, V, T )

)

µ,V

(6.25)so the entropy in the grand anonial ensemble reads
S = kB

∂

∂T
(T ln θ(µ, V, T )) (6.26)We an also get rid of the z variable in the formula (6.18) whih determines anaverage partile number and use a µ variable instead

N = z

(
∂

∂µ
ln θ

)

T,V

(
∂µ

∂z

)

T

=

z

(
∂

∂µ
ln θ

)

T,V

kBT

z
= kBT

(
∂

∂µ
ln θ

)

T,V

(6.27)



46 CHAPTER 6. GRAND CANONICAL ENSEMBLEwhere we have used ( ∂z
∂µ

)

T

= βz. Taking into aount a de�nition of thethermodynami potential (6.14) we obtain
N = kBT

∂

∂µ
ln θ (6.28)and equations (6.14), (6.26) and (6.28) yield the thermodynami identities

(
∂Ω

∂T

)

V,µ

= −S, (6.29)
(
∂Ω

∂µ

)

T,V

= −N (6.30)whih agree with a phenomenologial de�nition of Ω. Applying the grand anon-ial ensemble method we an also study the N dependene of the free energysearhing for the entropy extremum with respet to N . Taking a variation of
θ(z, V, T ) with respet to N , whih also extremizes the entropy (6.22), where

θ(z, V, T ) =

∞∑

N=0

e
µN−F (T,V,N)

kBT (6.31)we obtain
δθ =

1

kBT

∞∑

N=0

[

µ−
(
∂F

∂N

)

V,T

]

e
µN−F
kBT δN (6.32)The extremum ondition δθ = 0 for any δN leads to

(
∂F

∂N

)

V,T

= µ (6.33)whih is onsistent with phenomenologial thermodynamis.



Chapter 7Ideal quantum gas7.1 Fermi-Dira and Bose-Einstein distributionsA state of an ideal gas an be de�ned by a set of oupany numbers {np}, where
np is a number of partiles in a single partile state p. For spinless partiles
{np} uniquely de�nes the state of a system

np =

{

0, 1, 2, . . . (bosons)
0, 1 (fermions) (7.1)Therefore, we an use a summation over all possible sets {np} in a alulationof a total energy of a system

E{np} =
∑

p

Epnp (7.2)total partile number
N =

∑

p

np (7.3)whih yield the partition funtion QN and the grand partition funtion θ. Weobtain for the partition funtion
QN (V, T ) =

∑

n

e−βEn =
∑

{np}

e−βE{np} (7.4)47



48 CHAPTER 7. IDEAL QUANTUM GASand for the grand partition funtion
θ(z, V, T ) =

∞∑

N=0

zNQN(V, T ) =

∞∑

N=0

zN
∑

{np}

e
−β

P

p

Epnp

=
∞∑

N=0

∑

{np}

∏

p

(
ze−βEp

)np (7.5)A double summation ∞∑

N=0

∑

{np}

is equivalent to independent summations overeah np, therefore we get
θ(z, V, T ) =

∑

n0

∑

n1

. . .
[(
ze−βE0

)n0
(
ze−βE1

)n1
. . .
]

=

=

[
∑

n0

(
ze−βE0

)n0

] [
∑

n1

(
ze−βE1

)n1

]

. . . =
∏

p




∑

np

(
ze−βEp

)np



 (7.6)The feature of substituting a summation over sets of oupany numbers witha series of independent summations over the oupany numbers, that we haveused above in the evaluation of the grand partition funtion is really lear inthe seond quantization language in whih the grand partition funtion
θ = Tr

{

e−β(Ĥ−µN̂)
} (7.7)in the Fok spae reads

θ =
∑

n1,...,n∞

〈n1, . . . , n∞|eβ(µN̂−Ĥ)|n1, . . . , n∞〉 (7.8)Using the energy representation and assuming that Ĥ and N̂ share the sameset of ortonormal eigenstates we have
θ =

∑

n1,...,n∞

〈n1, . . . , n∞| exp

[

β

(

µ
∑

i

ni −
∑

i

Eini

)]

|n1, . . . , n∞〉 (7.9)and �nally
θ =

∑

n1,...,n∞

∏

i

e−β(Eini−µni) =
∏

i

∑

ni

e−β(Eini−µni) (7.10)



7.1. FERMI-DIRAC AND BOSE-EINSTEIN DISTRIBUTIONS 49For a Bose gas
∑

np

(
ze−βEp

)np

=

∞∑

np=0

(
ze−βEp

)np (7.11)we deal with a geometri series in (7.6) and under the ondition that ze−βEp <
1 ⇔ z < eβEp for any Ep > 0, that is z ≤ e0 = 1, we obtain

∑

np

(
ze−βEp

)np

=
1

1 − ze−βEp

=
1

1 − eβ(µ−Ep)
(7.12)We note, that for bosons in order to keep a �nite value of the grand partitionfuntion we had to limit the fugaity eβµ ≤ 1 whih yields a nonpositive hemialpotential µ ≤ 0. In a ase of a Fermi gas we are left with a two numbersummation in (7.6)

∑

np

(
ze−βEp

)np

=
1∑

np=0

(
ze−βEp

)np (7.13)and obtain ∑

np

(
ze−βEp

)np

= 1 + ze−βEp = 1 + eβ(µ−Ep) (7.14)We an now write down the grand partition funtion for quantum partiles (7.6)
θ(z, V, T ) =







∏

p

1

1 − ze−βEp

(bosons)
∏

p

(
1 + ze−βEp

) (fermions) (7.15)Having the grand partition funtion we obtain the equation of state
PV

kBT
= ln θ(z, V, T ) =







−
∑

p

ln(1 − ze−βEp) (bosons)
∑

p

ln(1 + ze−βEp) (fermions) (7.16)and the average number of partiles
N = z

∂

∂z
ln θ(z, V, t) =







∑

p

ze−βEp

1 − ze−βEp

(bosons)
∑

p

ze−βEp

1 + ze−βEp

(fermions) (7.17)



50 CHAPTER 7. IDEAL QUANTUM GASThe average number of partiles N an be regarded as a sum over states of theaverage state oupany numbers 〈np〉

N =
∑

p

〈np〉 (7.18)therefore, with a notation
〈np〉 = n(p) = f(p) (7.19)where f(p) is alled a distribution funtion, we write the average oupanynumbers

f(p) =







1

eβ(Ep−µ) − 1
bosons

1

eβ(Ep−µ) + 1
fermions (7.20)For bosons f(p) is alled the Bose-Einstein distribution, whereas for fermions- the Fermi-Dira distribution funtion. The average oupation number anbe also obtained in a diret alulation. If we onsider a system onsisting ofa single state p and onstrut a grand anonial ensemble whih orrespondsto di�erent oupations of this state, then the average oupation number 〈np〉using the grand anonial method of averaging reads

〈np〉 =
1

θp

∑

np

znpnpe−βEpnp (7.21)where
θp =

∑

np

znpe−βEpnp (7.22)and the sum runs over possible oupany numbers. It is straightforward to seethat
〈np〉 = − 1

β

∂

∂Ep

ln θp (7.23)As the sum for fermions onsists only of two terms np = 0, 1 we get θp =
1 + ze−βEp and 〈np〉 = (z−1eβEp + 1)−1. For bosons the partition funtionbeomes a sum of an in�nite geometri series, np = 0, 1, 2, ..., and reads θp =
(1 − ze−βEp)−1, then the relation (7.23) yields 〈np〉 = (z−1eβEp − 1)−1.



7.2. EQUATION OF STATE 517.2 Equation of stateWe are partiulary interested in the thermodynami limit of the above equations,that is, for V −→ ∞, N −→ ∞ with n =
N

V
kept onstant. For a large volumeof a system we an replae a sum over momenta and spin s projetions σ withan integral

∑

p,σ

−→ (2s+ 1)V

(2π~)3

∫

d3p (7.24)Therefore, in the thermodynami limit we an write, for fermions
P

kBT
=

(2s+ 1)

(2π~)3

∫

d3p ln
(
1 + ze−βEp

) (7.25)whih onstitutes the equation of state and
1

v
=

(2s+ 1)

(2π~)3

∫

d3p
1

z−1eβEp+1
(7.26)whih presents the equation for the hemial potential, where v = n−1 is aproper volume, that is, a volume per partile. For bosons, we obtain respetively

P

kBT
= − (2s+ 1)

(2π~)3

∫

d3p ln
(
1 − ze−βEp

)

− (2s+ 1)

V
ln
(
1 − z−1eβEp=0

) (7.27)and
1

v
=

(2s+ 1)

(2π~)3

∫

d3p
1

z−1e−βEp − 1
+

(2s+ 1)

V

1

z−1eβEp=0 − 1
. (7.28)We have separated here terms of the lowest energy, that is Ep=0, before replainga sum with an integral. It is obvious that both terms aside the integrals in (7.27)and (7.28) an be divergent and their values an be signi�ant, however whenintegrated they may vanish sine the assigned measure weight in the integralis proportional to p2dp and vanishes for p = 0.The real physial spetrum isdisrete and the integral is only a useful approximation whih simpli�es thealulations, nevertheless its appliation annot hide a real physis. There is noneed to pay suh a partiular attention to a zero momentum terms for fermionsas they do not lead to any singularity. Note, that we have not assumed anydispersion relation yet.



52 CHAPTER 7. IDEAL QUANTUM GAS7.3 Density of statesMomentum integrals
(2s+ 1)V

(2π~)3

∞∫

−∞

d3pF (E(p)) (7.29)an be onverted into the energy integrals whih involve a density of statesfuntion ν(E) whih ounts a number of states per an energy unit
∞∫

0

F (E)ν(E)dE (7.30)With a use of the density of states funtion we an express the equations whihdetermine the state of a system. As they look di�erent for fermions and bosonswe will speify them for eah kind of partiles separately. For fermions, thehemial potential equation
n =

∞∫

0

ν(E)dE
eβ(E−µ) + 1

(7.31)whih yields µ = µ(β, n) or determines a partile onentration, and the equa-tion
P

kBT
=

∞∫

0

ln(1 + ze−βE)ν(E)dE (7.32)yield the equation of state. For bosons, we obtain respetively
n =

∞∫

0

ν(E)dE
eβ(E−µ) − 1

+
(2s+ 1)

V

z

1 − z
(7.33)and

P

kBT
= −

∞∫

0

ln(1 − ze−βE)ν(E)dE − (2s+ 1)

V
ln(1 − z) (7.34)Sine, quite often we will work within suh an approah, below we derive thedensity of states funtion for various dimensionalities of a system.



7.3. DENSITY OF STATES 537.3.1 Three-dimensional density of statesFor a three-dimensional gas of noninterating partiles with a spin s and adispersion relation E = p2/2m we have
(2s+ 1)V

(2π~)3

∞∫

−∞

d3pF (E(p)) =
(2s+ 1)V

(2π~)3
4π

∞∫

0

F (E(p))p2dp =

(2s+ 1)V

(2π~)3
4π

∞∫

0

pF (E(p))pdp = 4π
(2s+ 1)V

(2π~)3

∞∫

0

F (E)
√

2mE mdE =

4
√

2 π
(2s+ 1)V

(2π~)3
m

3
2

∞∫

0

F (E)E 1
2 dE =

∞∫

0

F (E)ν(E)dE (7.35)where
ν(E) = ν3D(E) = α3DV

√
E (7.36)is a density of states funtion for an isotropi three-dimensional system and

α3D =
4
√

2

h3
πm

3
2 (2s+ 1) (7.37)7.3.2 Two-dimensional density of statesFor a two-dimensional gas with a paraboli dispersion:

∑

p,σ

F (Ep)) =
(2s+ 1)

(2π~)2
S

∞∫

−∞

F (E(p))d2p =

(2s+ 1)

(2π~)2
2πS

∞∫

0

F (E(p))pdp =

(2s+ 1)

(2π~)2
2πS

∞∫

0

F (E)mdE =

∞∫

0

F (E)ν2D(E)dE (7.38)where S is a system surfae area and
ν2D(E) = α2DS (7.39)



54 CHAPTER 7. IDEAL QUANTUM GASis a density of states funtion for an isotropi two-dimensional system and
α2D =

2πm

h2
(2s+ 1) (7.40)7.3.3 One-dimensional density of statesFor a one-dimensional gas with a paraboli dispersion:

∑

p,σ

F (Ep)) =
(2s+ 1)

(2π~)
L

∞∫

−∞

F (Ep))dp = 2
(2s+ 1)

2π~
L

∞∫

0

F (Ep))dp =

2
(2s+ 1)

(2π~)
L

∞∫

0

F (E)
mdE√
2mE

=

∞∫

0

F (E)ν1D(E)dE (7.41)where L is a system length and
ν1D(E) = α1DLE− 1

2 (7.42)is a density of states funtion for an isotropi one-dimensional system and
α1D =

√
2m

h
(2s+ 1) (7.43)7.4 ThermodynamisIn this setion we will derive basi thermodynami funtions for a three dimen-sional gas of free partiles whih obey a paraboli dispersion relation E(p) =

p2

2m
.We start, however, with the equation of state for fermions and bosons.7.4.1 Equation of stateFor the Fermi gas

P

kBT
= (2s+ 1)

4π

h3

∞∫

0

dpp2 ln(1 + ze−
βp2

2m ) (7.44)
1

v
= (2s+ 1)

4π

h3

∞∫

0

dpp2 1

z−1e
βp2

2m + 1
(7.45)



7.4. THERMODYNAMICS 55De�ning fermioni funtions
f 5

2
(z) ≡ 4√

π

∞∫

0

dxx2 ln
(

1 + ze−x2
)

=
∞∑

l=1

(−1)l+1zl

l
5
2

(7.46)
f 3

2
(z) ≡ z

∂

∂z
f 5

2
(z) =

4√
π

∞∫

0

dxx2 1

z−1ex2 + 1
=

∞∑

l=1

(−1)l+1zl

l
3
2

(7.47)we an write the state equation and the hemial potential equation respetively
P

kBT
=

1

λ3
s

f 5
2
(z) (7.48)

1

v
=

1

λ3
s

f 3
2
(z) (7.49)where we have introdued a thermal wavelength

λs =
1

(2s+ 1)
1
3

h√
2πmkBT

(7.50)whih sets a length sale of the order of magnitude of the de Broglie wavelength
λdB =

h

p
=

h
√

2mE(p)
∼ h√

2mkBT
∼ λs (7.51)Note, that λs agrees with a formerly introdued thermal wavelength λ0 forlassial spinless partiles when s = 0. Similarly for a Bose gas

P

kBT
= −(2s+ 1)

4π

h3

∞∫

0

dpp2 ln(1 − ze−
βp2

2m ) − (2s+ 1)

V
ln(1 − z) (7.52)and

1

v
= (2s+ 1)

4π

h3

∞∫

0

dpp2 1

z−1e
βp2

2m − 1
+

(2s+ 1)

V

z

1 − z
(7.53)or expressed with a use of the bosoni funtions

g 5
2
(z) ≡ − 4√

π

∞∫

0

dxx2 ln
(

1 − ze−x2
)

=

∞∑

l=1

zl

l
5
2

(7.54)
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g 3

2
(z) ≡ z

∂

∂z
g 5

2
(z) =

∞∑

l=1

zl

l
3
2

(7.55)we have
P

kBT
=

1

λ3
s

g 5
2
(z) − (2s+ 1)

V
ln(1 − z) (7.56)

1

v
=

1

λ3
s

g 3
2
(z) +

(2s+ 1)

V

z

1 − z
(7.57)We note, that the equations for a Fermi gas (7.48) and (7.49) do not hange whenwe take a thermodynami limit, however, suh a limiting proedure requires aseparate analysis in the ase of bosons. Although we will disuss this issuethoroughly in Chapter 10, we just brie�y state here, that the logarithm term in(7.56) vanishes for V −→ ∞ and it turns out that the seond term on the righthand side of (7.57) vanishes in the thermodynami limit for any z but z = 1 forwhih it gives a �nite value. Conluding, we an write the state equation forbosons in the thermodynami limit

P

kBT
=

1

λ3
s

g 5
2
(z) (7.58)

1

v
=

1

λ3
s

g 3
2
(z) + lim

V →∞

(2s+ 1)

V

z

1 − z
(7.59)7.4.2 Thermodynami potential and internal energyA thermodynami de�nition of the thermodynami potential Ω = −PV givesus a formula

Ω

V
=







−kBT

λ3
S

f 5
2
(z) (fermions)

−kBT

λ3
S

g 5
2
(z) +

(2s+ 1)

V
kBT ln(1 − z) (bosons) (7.60)If we alulate the thermodynami potential diretly using its statistial de�ni-tion

Ω = −kBT ln θ(z, V, T ) =

− kBT ln
∏

p

(

1 + ze−βE(p)
)

= −kBT
∑

p

ln
(

1 + eβ(µ−E(p))
) (7.61)



7.4. THERMODYNAMICS 57then we get it determined by an integral
Ω = ∓kBTαV

∞∫

0

ln
(
1 ± ze−βE

)√
E dE (7.62)where the upper sign onerns fermions and the lower sign orresponds tobosons. Integrating by parts we get

∞∫

0

ln
(
1 ± ze−βEp

)√
E dE =

2

3

∞∫

0

(

E 3
2

)′

ln
(
1 ± ze−βE

)
dE =

=
2

3
E 3

2 ln
(
1 ± ze−βE

)
∣
∣
∣
∣

∞

0

± 2

3
β

∞∫

0

E 3
2
ze−βE

1 ± e−βE
dE =

= ±2

3
β

∞∫

0

E 3
2 dE

z−1eβE ± 1
= ±2

3
β

∞∫

0

f(E)E 3
2 dE (7.63)therefore

Ω = −2

3
αV

∞∫

0

f(E)E 3
2 dE (7.64)and when we ompare it to the internal energy

U =
∑

p

E(p)np =
∑

p

E(p)

z−1eβE(p) ± 1
=

αV

∞∫

0

E
z−1eβE ± 1

√
E dE == αV

∞∫

0

f(E)E 3
2 dE (7.65)we see that

Ω = −2

3
U (7.66)and also obtain a relation between pressure and the internal energy

PV =
2

3
U (7.67)



58 CHAPTER 7. IDEAL QUANTUM GASFinally, we an write the internal energy
U

V
=







3kBT

2λ3
s

f 5
2
(z) (fermions)

3kBT

2λ3
s

g 5
2
(z) − 3

2

(2s+ 1)

V
kBT ln(1 − z) (bosons) (7.68)Conerning our disussion of the equation of state, we an write the thermody-nami potential and the internal energy in the thermodynami limit

Ω

V
=







−kBT

λ3
S

f 5
2
(z) (fermions)

−kBT

λ3
S

g 5
2
(z) (bosons) (7.69)

U

V
=







3kBT

2λ3
s

f 5
2
(z) (fermions)

3kBT

2λ3
s

g 5
2
(z) (bosons) (7.70)7.4.3 EntropyThe thermodynami potential or the internal energy an be used to determinethe entropy

S = −
(
∂Ω

∂T

)

V,µ

= −
(
∂

∂T

(

−2

3
U

))

V,µ

=
2

3

(
∂U

∂T

)

V,µ

(7.71)For fermions we have
S = V kB

(
∂

∂T

[
T

λ3
s

f 5
2
(z)

])

V,µ

=

V kB

[

5

2

1

λ3
s

f 5
2
(z) +

T

λ3
s

1

z
f 3

2
(z)

(
∂z

∂T

)

V,µ

] (7.72)and sine
(
∂z

∂T

)

V,µ

=

(
∂

∂T
e

µ
kBT

)

V,µ

= − µ

kBT 2
z = − 1

T
z ln z (7.73)
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S = NkB

v

λ3
s

[
5

2
f 5

2
(z) − f 3

2
(z) ln z

] (7.74)For bosons
S = V kB

(
∂

∂T

[
T

λ3
s

g 5
2
(z) − 2s+ 1

V
T ln(1 − z)

])

V,µ

=

V kB

[
5

2

1

λ3
S

g 5
2
(z) − 1

λ3
s

g 3
2
(z) ln z−

2s+ 1

V
ln(1 − z) − 2s+ 1

V

z

1 − z
ln z

] (7.75)therefore
S = NkB

v

λ3
s

[
5

2
g 5

2
(z) − g 3

2
(z) ln z

]

−

(2s+ 1)kB

[

ln(1 − z) +
z

1 − z
ln z

] (7.76)In summary, we an write the entropy formula
S

NkB
=







v

λ3
s

[
5

2
f 5

2
(z) − f 3

2
(z) ln z

] (fermions)
v

λ3
s

[
5

2
g 5

2
(z) − g 3

2
(z) ln z

]

− 2s+ 1

N

[

ln(1 − z) +
z

1 − z
ln z

] (bosons)(7.77)Finally, in the thermodynami limit we get
S

NkB
=







v

λ3
s

[
5

2
f 5

2
(z) − f 3

2
(z) ln z
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v

λ3
s

[
5

2
g 5

2
(z) − g 3

2
(z) ln z

] (bosons) (7.78)



60 CHAPTER 7. IDEAL QUANTUM GAS7.4.4 Free energyThe internal energy and the entropy determine the free energy, F = U − TS,whih reads for fermions and bosons, respetively
F

NkBT
=







v
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s
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−f 5
2
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2
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s
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2
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z
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] (bosons)(7.79)and in the thermodynami limit
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] (fermions)
v

λ3
s

[

−g 5
2
(z) − g 3

2
(z) ln z

] (bosons) (7.80)7.4.5 Heat apaity CVA heat apaity at a onstant volume CV

CV =

(
∂U

∂T

)

V,N

=

(
∂U

∂T

)

V,n

(7.81)for fermions is given by
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3

2
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f 5
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] (7.82)where we have used a property
∂

∂z
f 5

2
(z) =

1

z
f 3

2
(z) (7.83)A partial derivative ( ∂z

∂T

)

V,n

we obtain from the ondition
n =

1

λ3
s

f 3
2
(z), (7.84)
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∂T

)

V,n

= 0 and using
∂

∂z
f 3

2
(z) =

1

z
f 1

2
(z) (7.85)we get
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f 3
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∂T
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= 0 (7.86)whih yields
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2

z

T

f 3
2
(z)

f 1
2
(z)

(7.87)and �nally, the heat apaity of a Fermi gas at a onstant volume reads
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] (7.88)Following the same rules for bosons we have
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] (7.89)and similarly to fermions we have used ∂
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2
(z). Again, a partialderivative ( ∂z
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is determined by the hemial potential equation
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]−1 (7.92)therefore
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(7.93)Conluding, we gather the formulas for the heat apaity at a onstant volumeof free fermions and bosons
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(bosons)(7.94)One an show, that in the thermodynami limit (7.94) redues to
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Chapter 8Degenerate quantum gasA gas degeneray means a deviation from the lassial gas behavior and our-rene of quantum features. It starts when a partile de Broglie wavelength λdBis of the order of magnitude of an average interpartile distane d
λdB ∼ d (8.1)therefore when the de Broglie waves of partiles begin to overlap and interfere.Weakly degenerate gas for whih
λdB ≪ d (8.2)reveals small quantum orretions to the equation of state whih very often arenegligible and the system an be onsidered lassial. On the other hand for astrongly degenerate gas we have
λdB ≫ d (8.3)and the quantum e�ets prevail. Strongly degenerate quantum system is de-sribed solely by a quantum statistis. Knowing that the de Broglie wavelength

λdB is of the order of magnitude of the thermal wavelength λs we an use amodi�ed degeneray riterion with (λs/d) as a degeneray parameter
λs

d
≪ 1 weak degeneray (8.4)
λs

d
= 1 degeneray (8.5)63
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λs

d
≫ 1 strong degeneray (8.6)A degeneray ondition λs = d de�nes a moment when a signi�ant degenerayof a system takes plae and physis is no longer determined by a mere smallorretion to lassial equations but it obeys quantum laws. The degenerayondition yields a degeneray temperature Te

1 =
λs

V
=

nh3

(2s+ 1) (2πmkBTe)
3
2

(8.7)
kBT =

1

(2s+ 1)
2
3

~

m
n

2
3 ∼ ~

2

m
n

2
3 (8.8)For temperatures T 6 Te we have a degenerate gas (eletrons in metal), whilefor T ≫ Te we have a weakly degenerate gas or even an ideal lassial gas. Theaverage interpartile distane d determines a proper volume v, that is a volumeoupied by a single partile, v = d3 or a partile onentration n =

1

v
= d−3,and beomes large for a low partile onentration

d = n− 1
3

n→0−−−→ ∞ (8.9)The thermal wavelength is small for high temperatures
λs ∼ 1√

T

T→∞−−−−→ 0 (8.10)Therefore, a weak degeneray ondition
(

λs ∼ 1

T

)

≪
(

d ∼ n− 1
3

) (8.11)is ahieved in systems of a low partile onentration at high temperatures. Theopposite ase of a strongly degenerate gas determined by a onstraint
(

λs ∼ 1√
T

)

≫
(

d ∼ n− 1
3

) (8.12)orresponds to low temperatures
λs ∼ 1√

T

T→0−−−→ ∞ (8.13)



8.1. WEAK DEGENERACY 65and high partile onentrations
d ∼ n− 1

3
n→∞−−−−→ 0 (8.14)Having the degeneray parameter λs/d we an write the hemial potentialequations for fermions and bosons, respetively

λ3
s

v
= f 3

2
(z) =

∞∑

l=1

(−1)l+1zl

l
3
2

(8.15)
λ3

s

v

(

1 − (2s+ 1)

N

z

1 − z

)

= g 3
2
(z) =

∞∑

l=1

zl

l
3
2

(8.16)and based on these equations we an obtain an equivalent degeneray onditiondetermined by a value of the fugaity z. We see that the weak degeneray,
λs ≪ d, for both fermions and bosons orresponds to z ≪ 1 whih means anegative hemial potential µ < 0 and |µ|/kBT ≫ 1. For a weak degeneraylimit we an neglet a term proportional to N−1 in the Bose gas equation as itis negligibly small for a large N and vanishes in the thermodynami limit when
N → ∞. From now on, as far as the weak degeneray limit is onerned, wewill drop o� this small term and onsider a modi�ed equation

λ3
s

v
= g 3

2
(z) (8.17)A strong degeneray, λs ≫ d, orresponds to z ≫ 1 for fermions, that is to

µ/kBT ≫ 1. We note, that for bosons z ≤ 1 and the left hand side of thehemial potential equation (8.17) is upper bounded
λ3

s

v

(

1 − (2s+ 1)

N

z

1 − z

)

= g 3
2
(1) ≃ 2.612 (8.18)Therefore, we see that in order to ful�ll λs ≫ d riterion we need z ≃ 1 and inthe thermodynami limit z = 1.8.1 Weak degenerayFor a weak degeneray

z = eβµ ≪ 1 (8.19)



66 CHAPTER 8. DEGENERATE QUANTUM GASand we an easily evaluate the integral, where the upper sign onerns fermionsand the lower sign orresponds to bosons,
∞∫

0

√
E dE

z−1eβE ± 1
=

∞∫

0

ze−βE
√
E dE

1 ± zeβE
=

= z

∞∫

0

e−βE
[
1 ∓ ze−βE + . . .

]√
E dE =

= zβ− 3
2

∞∫

0

[√
x e−x ∓ z

√
x e−2x + . . .

]
dx = /x = βE/ =

= zβ− 3
2

√
π

2

[

1 ∓ z

2
3
2

+ . . .

] (8.20)thus, negleting the higher order terms, we have
n =

√
π

2
β− 3

2αz

[

1 ∓ z

2
3
2

] (fermions/bosons) (8.21)In the zeroth order approximation z = z0

n =

√
π

2
β− 3

2αz0, (8.22)whih gives
z0 =

2n√
π α

β
3
2 =

nh3

(2s+ 1)(2πmkBT )
3
2

(8.23)Therefore in the zeroth order of approximation
z0 = nλ3

s (8.24)Fugaity in the �rst order approximation
n =

√
π

2
β− 3

2 az

[

1 ∓ z

2
3
2

] (8.25)
z =

2n
√
π a(kBT )

3
2

[

1 ∓ z

2
3
2

]−1

= z0

[

1 ∓ z

2
3
2

]−1

=
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=

z0
1 ∓ z0

2
3
2

= z0

[

1 ± z0

2
3
2

] (8.26)therefore the hemial potential
µ = kBT

[

ln z0 + ln

(

1 ± z0

2
3
2

)]

= kBT

[

ln z0 ±
z0

2
3
2

] (8.27)whih is the hemial potential in the �rst order approximation (�rst iteration).In this approximation
z0 = e

µ
kBT (8.28)thus

µ = µ0 ±
1

2
3
2 kBT e

µ0
kB T

(8.29)where
µ0 = kBT ln z0 = kBT ln

nh3

(2s+ 1) (2πmkBT )
3
2

(8.30)8.2 Strong degenerayFor a strongly degenerate Fermi gas
z = eβµ ≫ 1 (8.31)whih yields µ > 0 and µ≫ kBT . We start with the evaluation of an integral
∞∫

0

F (E)
∂f

∂E dE (8.32)where F (E) is a di�erentiable slowly varying funtion of the energy whih anbe approximated by the expansion
F (E) = F (µ) + (E + µ)F ′(µ) +

(E − µ)2

2
F ′′(µ) (8.33)

f(E) is the Fermi-Dira distribution funtion
f(E) =

1

eβ(E−µ) + 1
(8.34)
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00.5
1

µ

E

f(E = µ) = 1
2

−
(
∂f

∂E

)

T>0

f(E)T>0

Figure 8.1: Fermi-Dira distribution and its derivativewhih for a degenerate gas is plotted in Fig. 8.1
∂f

∂E = − βeβ(E−µ)

(
eβ(E−µ) + 1

)2 =

− 1

eβ(E−µ)

βeβ(E−µ)

(

e
1
2β(E−µ) + e−

1
2β(E−µ)

)2 = −β
4

cosh−2

[
β

2
(E − µ)

] (8.35)We ompute the integral (8.32) using a new variable
x = β(E − µ) (8.36)

E =
x

β
+ µ (8.37)

dE =
1

β
dx (8.38)
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∂f

∂E =
∂f

∂x

dx

dE = β
∂f

∂x
(8.39)hene

∞∫

0

F (E)
∂f

∂E dE = β

∞∫

−βµ

F

(
x

β
+ µ

)
∂f

∂x

dx

β
=

∞∫

−βµ

F

(

µ+
x

β
+ µ

)
∂f

∂x
dx (8.40)Beause for a strongly degenerate Fermi gas

βµ =
µ

kBT
≫ 1 ⇒ −βµ→ −∞ (8.41)we an substitute −∞ for the lower limit in the integral (8.40) whih reads

∞∫

−∞

F

(

µ+
x

β

)
∂f

∂x
dx =

∞∫

−∞

[

F (µ) + F ′(µ)
x

β
+

1

2
F ′′(µ)

x2

β2

]
∂f

∂x
dx =

= F (µ)

∞∫

−∞

∂f

∂x
dx+

F ′(µ)

β

∞∫

−∞

x
∂f

∂x
dx+

1

2

F ′′(µ)

β2

∞∫

−∞

x2 ∂f

∂x
dx =

= F (µ) [f(x = ∞) − f(x = −∞)] − 1

8

F ′′(µ)

β2

∞∫

−∞

x2 cosh−2 x

2
dx (8.42)where we have used

∂f

∂x
=

1

β

∂f

∂E = −1

4
cosh−2 x

2
(8.43)and noted that x∂f

∂x
is an odd funtion
∞∫

−∞

x
∂f

∂x
dx = −1

4

∞∫

−∞

x cosh−2 x

2
dx = 0 (8.44)Sine f(x = ∞) = 0 and f(x = −∞) = 1 we have
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F (µ) [f(x = ∞) − f(x = −∞)] − 1

8

F ′′(µ)

β2

∞∫

−∞

x2 cosh−2 x

2
dx =

− F (µ) − 1

8

F ′′(µ)

β2

∞∫

−∞

x2 cosh−2 x

2
dx =

− F (µ) − 1

8

F ′′(µ)

β

∞∫

−∞

4y2 cosh−2 yd(2y) =

− F (µ) − F ′′(µ)

β2

∞∫

−∞

y2

cosh−2 y
dy = −f(µ) − π2

6

F ′′(µ)

β2
(8.45)where we have used

∞∫

−∞

y2

cosh2 y
dy =

π2

6
(8.46)Therefore, we have obtained

∞∫

0

F (E)
∂f

∂E dE = −F (µ) − π2

6
k2

BT
2F ′′(µ) (8.47)In the zeroth order approximation in temperature

∞∫

0

F (E)
∂f

∂E dE = −F (µ) (8.48)so we may write ∂f
∂E = −δ(E − µ). In the seond order approximation

∞∫

0

F (E)
∂f

∂E dE = −F (µ) − π2

6
k2

BT
2F ′′(µ) (8.49)where kBT

µ
is a small parameter. If F is a power funtion of the energy, like

E 1
2 in a alulation of the number of partiles or E 3

2 in the internal energy



8.2. STRONG DEGENERACY 71alulation, we an estimate a seond derivative with respet to the energy
F ′′(µ) ∼ F (µ)/µ2 and obtain the order of magnitude of the seond order term

−π
2

6
k2

BT
2F ′′(µ) ∼ F (µ)

(
kBT

µ

)2 (8.50)8.2.1 Chemial potential and partile onentrationThe ondition for the hemial potential reads
n = α

∞∫

0

√
E dE

eβ(E−µ) + 1
(8.51)and we an easily evaluate this integral

∞∫

0

√
E dE

eβ(E−µ) + 1
=

∞∫

0

(
2

3
E 3

2

)′

dE

eβ(E−µ) + 1
=

2

3

∞∫

0

(

E 3
2

)′

f(E)dE =

2

3
E 3

2 f(E)

∣
∣
∣
∣

∞

0

− 2

3

∞∫

0

E 3
2
∂f

∂E dE =
2

3
µ

3
2 +

2

3

1

6
π2k2

BT
2
(

E 3
2

)′′

E=µ
=

2

3
µ

3
2 +

2

3

1

6
π2k2

BT
2 3

4

1√
µ

=
2

3
µ

3
2 +

2

3

π2

12

k2
BT

2

√
µ

(8.52)Therefore
n = α

[
2

3
µ

3
2 +

π2

12

k2
BT

2

√
µ

] (8.53)We de�ne the hemial potential µ0 in the zeroth order approximation (for
T = 0)

n = α
2

3
µ

3
2
0 (8.54)that is

µ0 =

(
3n

2α

) 2
3 (8.55)and substitute

a =
4
√

2

h3
πm

3
2 (2s+ 1) (8.56)
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µ0 =

(
3nh3

2 · 4
√

2 πm
3
2 (2s+ 1)

) 2
3

=
h2

2m

(
3n

8π

) 2
3 (8.57)Note, that we an obtain the same result by taking a diret produt of thedensity of states in the momentum spae and the volume oupied by the groundstate in the momentum spae

N =
2V

(2π~)3
4

3
πp3

F (8.58)
N =

2V

h3

4

3
πp3

F (8.59)
n =

8π

3

p3
F

h3
(8.60)where pF is the Fermi momentum

pF = h

(
3n

8π

) 1
3 (8.61)

µ0 =
p2

F

2m
=

h2

2m

(
3n

8π

) 2
3 (8.62)The Fermi energy EF = µ0 = µ(T = 0) is the maximal energy of oupiedstates at T = 0, states with energy larger than EF are empty, see Fig 8.2,

〈np〉T=0 = lim
T→0

1

e
Ep−µ

kBT + 1
= lim

T→0

1

e
Ep−EF

kB T + 1
=

θ(EF − Ep) =

{

1 for Ep < EF

0 for Ep > EF

(8.63)8.2.2 Fermi temperature and Fermi energyWe apply the following ondition for a gas degeneray
z ≪ e � lassial or weakly degenerate eletron gas (8.64)

z > e = 2.71 ∼ 1 � degenerate eletron gas (8.65)
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Fermisurfae unoupiedstates

oupiedstates
sphere for Ep =

p2

2m

px

pz

py

Figure 8.2: Fermi sphere
z ≫ e ∼ 1 � strongly degenerate eletron gas (8.66)

z = e
µ0

kB T > e = e
µ0

kBTF (8.67)where µ0

kBTF
= 1 and TF is the Fermi temperature

kBTF = µ0 =
h2

2m

(
3n

8π

) 2
3 (8.68)Note, that

kBTF =
h2

m
n

2
3 · 1

2

(
3

8π

)

∼ h2

m
n

2
3 ∼ kBTe. (8.69)Therefore, gas is degenerate for temperatures

T 6 TF � degenerate eletron gas (8.70)and gas is lassial (weakly degenerate) for
T ≫ TF � lassial eletron gas (8.71)
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EF =

h2

2m

(
3n

8π

) 2
3 (8.72)with one free eletron per atom and an interatomi distane a = 1.5 Å =

1.5 · 10−10 m
n =

1

a3
=

1

(1.5)3
· 1030 m−3, (8.73)eletron mass m = 9.11 · 10−31 kg, h = 6.63 · 10−34 Js, kB = 1.38 · 10−23 JK weget

EF ≈ 0.26 · 10−17 J ≈ 10 eV (8.74)and
TF =

EF

kB
=

0.26 · 10−17

1.38 · 10−23
K ≈ 1.9 · 104 K ∼ 104 K (8.75)Conlusion: eletrons in metals form a degenerate eletron gas.8.2.3 Temperature dependene of the hemial potentialIn the seond order approximation, that is when we keep terms of the order ofmagnitude (kBT

µ

)2 we have the following ondition for the hemial potential
µ:

n = a

[
2

3
µ

3
2 +

π2

12

k2
BT

2

√
µ

]

= a
2

3
µ

3
2

[

1 +
π2

8

(
kBT

µ

)2
] (8.76)whih yields

µ =

(
3n

2a

) 2
3

[

1 +
π2

8

(
kBT

µ

)2
]− 2

3

= µ0

[

1 +
π2

8

(
kBT

µ

)2
]− 2

3 (8.77)We have obtained a self-onsistent equation for the hemial potential whih anbe solved through a series expansion with respet to a small term (
kBT

µ

)2

≈
(
kBT

µ0

)2

=

(
T

TF

)2

≪ 1
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µ = µ0







1 +

π2

8

(
kBT

µ

)2

︸ ︷︷ ︸small 






− 2
3

≈ µ0

[

1 +

(

−2

3

)
π2

8

(
kBT

µ0

)2
]

=

µ0

[

1 − π2

12

(
kBT

µ0

)2
] (8.78)Therefore, we have obtained a temperature dependene of the hemial potentialwith the order of magnitude of (kBT

µ0

)2

=

(
T

TF

)2.8.3 Role of system dimensionality8.3.1 Two-dimensional ideal gasThe hemial potential equation
n = α2D

∞∫

0

dE
eβ(E−µ) ± 1

(8.79)where we have used a two-dimensional density of states, ν2D(E) = α2DV with
V = S representing the system surfae area, is easily integrated for fermions

n = − α2D

β
ln
[

eβ(µ−E) + 1
]
∣
∣
∣
∣

∞

0

= α2DkBT ln[1 + z] (8.80)and for bosons
n =

α2D

β
ln
[

eβ(µ−E) − 1
]
∣
∣
∣
∣

∞

0

= −α2DkBT ln[1 − z] (8.81)where we note, that n > 0 sine 0 > z > 1. We have obtained the aboveequations for an arbitary value of the fugaity, whih means that we an easilyestablish the hemial potential for an ideal two-dimensional gas based on ananalytial formula. Then we an obtain the equation of state through a relation
P = ±kBTα2D

∞∫

0

ln
(
1 ± ze−βE

)
dE (8.82)



76 CHAPTER 8. DEGENERATE QUANTUM GASWhen we introdue an average interpartile distane d
n =

1

v
= d−2 (8.83)and de�ne a two-dimensional system the thermal wavelength

λs2D
=

1

(2s+ 1)
1
2

h√
2πmkBT

. (8.84)we an write the hemial potential equation in the form
(
λS2D

d

)2

= ln [1 ± z] (8.85)where we have used a relation between the density of states and the thermalwavelength α2DkBT = λ−2
S2D

and note that
α2DkBT =

2πm

h2
(2s+ 1)kBT = λ−2

s2D
, (8.86)We see that the weak degeneray limit orresponds to z ≪ 1 whereas the strongdegeneray is determined by z ≫ 1 for fermions and z ≈ 1 for bosons. For aweak degeneray, z ≪ 1,

(
λs2D

d

)2

= z ∓ z2

2
(8.87)and solving this equation in an iterative way keeping up to the seond orderterms in (λs2D

d

)2 we get
z =

(
λs2D

d

)2

± 1

2

(
λs2D

d

)4 (8.88)and the hemial potential
µ = kBT

[

ln z0 + ln

(

1 ± 1

2
z0

)]

≈ kBT

[

ln z0 ±
1

2
z0

] (8.89)where
z0 =

(
λs2D

d

)2

=
λ2

S2D

v
(8.90)



8.3. ROLE OF SYSTEM DIMENSIONALITY 77is the fugaity in the zeroth order approximation and orresponds to µ0

µ0 = kBT ln z0 = kBT ln
nh2

(2s+ 1)2πmkBT
. (8.91)Therefore, one an write the hemial potential

µ = µ0 ±
1

2
kBT e

µ0
kB T (8.92)The equation of state for a weakly degenerate gas is obtained by an expansionwith respet to a small term ze−βE of (8.82)

P = ±kBTα2D

∞∫

0

(

±ze−βE ∓ 1

2
z2e−2βE

)

dE (8.93)and rearanged into
P

kBT
= α2Dz

∞∫

0

(

e−βE ∓ 1

2
ze−2βE

)

dE (8.94)Substituting z = z0 we obtain
P

kBT
=

1

v





∞∫

0

e−xdx∓ 1

2
z0

∞∫

0

e−2xdx



 (8.95)and after the integral the equation of state of a weakly degenerate gas reads
Pv

kBT
= 1 ∓ z0

22
(8.96)or written for N partiles

PV

NkBT
= 1 ∓ z0

22
. (8.97)A quantum orretion to the lassial equation of state PV = NkBT reads

NkBTz0/4 and sine z0 ∼ (kBT )
−1 is temperature independent.



78 CHAPTER 8. DEGENERATE QUANTUM GAS8.3.2 One-dimensional ideal gasApplying a one-dimensional density of states
ν1D(E) = α1DV E− 1

2 , (8.98)where V = L is the system length yields the hemial potential equation
n = α1D

∞∫

0

E− 1
2 dE

eβ(E−µ) ± 1
(8.99)where the upper sign onerns fermions and the lower sign orresponds tobosons. Introduing the interpartile distane d = n−1 and the thermal wave-length in one dimension

λs1D
=

1

(2s+ 1)

h√
2πmkBT

(8.100)we have
λs1D

d
=

z√
π

∞∫

0

x−
1
2 dx

ex ± z
(8.101)where we have used a relation α1D =

(√
πkBTλs1D

)−1. We note, that again aweak degeneray orresponds to z ≪ 1 and for a weakly degenerate gas we have
z√
π

∞∫

0

x−
1
2 dx

ex ± z
≈ z√

π





∞∫

0

x−
1
2 e−xdx∓ z

∞∫

0

x−
1
2 e−2xdx





=
z√
π

Γ

(
1

2

)[

1 ∓ 1√
2
z

]

= z

[

1 ∓ 1√
2
z

] (8.102)Thus we have
λs1D

d
= z

[

∓ 1√
2
z

] (8.103)and an iterative solution for z yields
z =

(
λs1D

d

)

± 1√
2

(
λs1D

d

)2 (8.104)
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µ = kBT

[

ln z0 + ln

(

1 ± 1√
2
z0

)]

≈ kBT

[

ln z0 ±
1√
2
z0

] (8.105)where z0 =

(
λs1D

d

) is the fugaity in the zeroth order approximation andorresponds to µ0

µ0 = kBT ln
nh

(2s+ 1)
√

2πmkBT
(8.106)Therefore, one an write the hemial potential

µ = µ0 ±
1√
2
kBT e

µ0
kB T (8.107)Equation of state of a weakly degenerate gas

Pv

kBT
=

1√
π





∞∫

0

x−
1
2 e−xdx∓ 1

2
z0

∞∫

0

x−
1
2 e−2xdx



 (8.108)after the integral reads
Pv

kBT
=

1√
π

Γ

(
1

2

)[

1 ∓ z0

2
3
2

] (8.109)and sine Γ
(

1
2

)
=

√
π we have

Pv

kBT
= 1 ∓ z0

2
3
2

, (8.110)where the quantum orretion to the lassial equation of state
kBT

z0

2
3
2

∼ kBT (kBT )
− 1

2 ∼
√

kBT (8.111)vanishes at zero temperature.





Chapter 9Thermodynamis of a FermigasWe start with the grand potential
Ω = −kBT ln θ(z, V, T ) =

− kBT ln
∏

p

(
1 + ze−βEp

)
= −kBT

∑

p

ln
(

1 + eβ(µ−Ep)
) (9.1)and using the density of states we an write

Ω = −kBTαV

∞∫

0

ln
(

1 + eβ(µ−Ep)
)√

E dE (9.2)We evaluate the above integral
∞∫

0

ln
(

1 + eβ(µ−Ep)
)√

E dE =
2

3

∞∫

0

(

E 3
2

)′

ln
(

1 + eβ(µ−Ep)
)

dE =

=
2

3
E 3

2 ln
(

1 + eβ(µ−E)
)
∣
∣
∣
∣

∞

0

−
∞∫

0

2

3
E 3

2
−βeβ(µ−E)

1 + eβ(µ−Ep)
dE =

=
2

3
β

∞∫

0

E 3
2 dE

eβ(Ep−µ) + 1
=

2

3
β

∞∫

0

f(E)E 3
2 dE (9.3)81



82 CHAPTER 9. THERMODYNAMICS OF A FERMI GASand omparing it with the internal energy
U =

∑

p

Epnp =
∑

p

Ep

eβ(Ep−µ) + 1
= αV

∞∫

0

E
eβ(E−µ) + 1

√
E dE =

= αV

∞∫

0

E 3
2 dE

eβ(E−µ) + 1
= αV

∞∫

0

f(E)E 3
2 dE (9.4)we get

Ω = −kBT
2

3
βU = −2

3
U (9.5)From the thermodynami de�nition of the grand potential

Ω = −PV (9.6)we have
PV =

2

3
U (9.7)whih is the same relation as holds for the Boltzmann gas. Using the identity(9.5) we an represent the entropy as a temperature derivative of the internalenergy

S = −
(
∂Ω

∂T

)

V,µ

= −
(
∂

∂T

(

−2

3
U

))

V,µ

=
2

3

(
∂U

∂T

)

V,µ

(9.8)In the following subsetions we disuss thermodynami properties a Fermi gasin a low and strong degenaray regimes.9.1 Weak degenerayThe internal energy is determined by an integral whih for a weakly degeneratesystem an be approximated as follows
U = αV

∞∫

0

E 3
2 dE

z−1eβE + 1
= αV z

∞∫

0

e−βE
[
1 − ze−βE + . . .

]
E 3

2 dE =

αV zβ− 5
2

∞∫

0

[

x
3
2 − zx

3
2 e−2x + . . .

]

dx = αV β− 5
2 Γ

(
5

2

)

z

[

1 − z

2
5
2

] (9.9)



9.2. STRONG DEGENERACY 83where we have used a de�nition of the gamma funtion Γ(z) =
∞∫

0

xz−1e−xdx forthe evaluation of the integrals above
∞∫

0

x
3
2 e−xdx =

∞∫

0

x
5
2−1e−xdx = Γ

(
5

2

) (9.10)
∞∫

0

x
3
2 e−2xdx =

∞∫

0

(x

2

) 3
2

e−y dy

2
=

1

2
5
2

∞∫

0

y
3
2 e−ydy =

1

2
5
2

Γ

(
5

2

) (9.11)and Γ

(
5

2

)

=
3

4

√
π . Taking the fugaity in the seond order approximation

z = z0 +
1

23/2
z2
0 , where z0 =

2n√
π α

β
3
2 , and keeping up to the �rst order termsin z0 we obtain the internal energy

U =
3

2
NkBT

[

1 +
z0

2
5
2

] (9.12)and by a virtue of relation (9.5) the equation of state
PV =

2

3
U = NkBT

[

1 +
z0

2
5
2

] (9.13)We note that the pressure exeeds that of an ideal lassial gas.9.2 Strong degenerayThe internal energy integral for a strong degeneray system an be evaluatedby the integration by parts
U = αV

∞∫

0

f(E)E 3
2 dE = αV

2

5

∞∫

0

f(E)dE 5
2 =

2

5
αV f(E)E 5

2

∣
∣
∣
∣

∞

0

− 2

5
αV

∞∫

0

E 5
2
∂f

∂E dE = −2

5
αV

∞∫

0

E 5
2
∂f

∂E dE =

− 2

5
αV

[

−µ 5
2 − 1

6
π2k2

BT
2
(

E 5
2

)

E=µ

]

=
2

5
αV

[

µ
5
2 +

1

6
π2k2

BT
2 5

2

3

2
µ

1
2

] (9.14)



84 CHAPTER 9. THERMODYNAMICS OF A FERMI GASTaking into aount a temperature dependene of the hemial potential
µ = µ0

[

1 − π2

12

(
kBT

µ0

)2
] (9.15)and its dependene on the partile onentration

α
2

3
µ

3
2
0 = n (9.16)we get, with the order of magnitude of (kBT

µ0

)2

U =
3

5
nV µ0

[

1 +
5π2

12

(
kBT

µ0

)2
]

=
3

5
Nµ0

[

1 +
5π2

12

(
kBT

µ0

)2
] (9.17)At T = 0 we have U = U0 =

3

5
Nµ0 and we an alulate the energy per partile

U0

N
=

3

5
µ0 =

3

5
EF =

3h2

10m

(
3n

8π

) 2
3 (9.18)for eletrons (s = 1

2 ). Pressure of a degenerate Fermi gas
P =

1

V

2

3
U =

2

5
nµ0

[

1 +
5π2

12

(
kBT

µ0

)2
] (9.19)For T = 0 we have P = P0

P0 =
2

5
nµ0 =

1

5

(
3

8π

) 2
3

n
5
3 (9.20)for eletrons s = 1

2 . Note a nonzero pressure even for T = 0 � Pauli exlusionpriniple. The entropy of a strongly degenerate Fermi gas
S =

2

3
αV

∂

∂T

∞∫

0

f(E)E 3
2 dE =

2

3
kBαV

∂

∂(kBT )

∞∫

0

f(E)E 3
2 dE

=
2

3
kBαV

∞∫

0

∂f(E)

∂(kBT )
E 3

2 dE =
2

3
kBαV

∞∫

0

(

− ∂f(E)

∂(kBT )

) E − µ

kBT
E 3

2 dE (9.21)



9.2. STRONG DEGENERACY 85and using
∂f

∂kBT
= −E − µ

kBT

∂f

∂E (9.22)we get
S =

2

3
kB

αV

kBT





∞∫
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2

(

−∂f
∂E

)

dE − µ

∞∫

0

E 3
2

(

−∂f
∂E

)

dE



 =

=
2

3
kB

αV

kBT

[

µ
5
2

(

1 +
5π2

8

(
kBT

µ

)2
)

− µ
5
2

(

1 +
π2

8

(
kBT

µ

)2
)]

=

=
2

3
kB

αV

kBT
µ

5
2

[

5

8
π2

(
kBT

µ

)2

− π

8
π2

(
kBT

µ

)2
]

=

=
π2

3
kB

αV

kBT
µ

5
2

(
kBT

µ

)2

=
π2

3
kBαV µ

1
2 kBT =

π2

2
kBN

(
kBT

µ0

) (9.23)
α

2

3
µ0 = n (9.24)

µ = µ0 (9.25)Finally
S =

π2

2
kBN

(
kBT

µ0

) (9.26)Note, that
lim
T→0

S = 0 (9.27)Heat apaity at a onstant volume CV

dU = TdS − PdV (9.28)
dU = δQ− δW = CV dT (V = onst) (9.29)
CV =

(
δQ

dT

)

=

(
∂U

∂T

)

V

= T

(
∂S

∂T

)

V

(9.30)
U =

3

2
Nµ0

[

1 +
5π2

12

(
kBT

µ0

)2
] (9.31)

CV =
3

5
Nµ0

5

6
π2 k

2
B

µ0
T =

π2

2
NkB

kBT

µ0
(9.32)



86 CHAPTER 9. THERMODYNAMICS OF A FERMI GASor alternatively using the entropy for a monatomi Fermi gas (9.26)
CV = T

dS

dT
= T

d

dT

(
π2

2
kBN

kBT

µ0

)

=
π2

2
NkB

kBT

µ0
(9.33)



Chapter 10Bose-Einstein ondensation10.1 Marosopi oupany of the lowest energylevelWe assume a spin s = 0 and Ep =
p2

2m
, then the state equation reads

P

kBT
=

1

λ3
0

g 5
2
(z) − 1

V
ln(1 − z) (10.1)and the hemial potential (8.17)

1

v
=

1

λ3
0

g 3
2
(z) +

1

v

z

1 − z
(10.2)with the thermal wavelength for spin s = 0

λ0 =
h√

2πmkBT
(10.3)the same as for lassial spinless partiles. We fous now on (10.2). It is easyto see that the last term on the right hand side of the equation is proportionalto an average number of partiles in the lowest, p = 0, energy level

〈n0〉 =
1

z−1eβEp=0 − 1
=

1

z−1 − 1
=

z

1 − z
(10.4)87



88 CHAPTER 10. BOSE-EINSTEIN CONDENSATIONtherefore we an write
1

v
=

1

λ3
0

g 3
2
(z) +

〈n0〉
V

(10.5)or
λ3

0

〈n0〉
V

=
λ3

0

v
− g 3

2
(z) (10.6)The fugaity z = eβµ for bosons hanges in the range 0 6 z 6 1, that is µ 6 0.For this domain range the g 3

2
(z) funtion is a monotoni upper bounded positivefuntion and its upper limit at z = 1 an be obtained via a series expansion

g 3
2
(z) =

∞∑

l=1

zl

l
3
2

(10.7)whih for z = 1 gives
g 3

2
(1) =

∞∑

l=1

1

l
3
2

= ζ

(
3

2

)

≈ 2.612 (10.8)where ζ(x) is the Riemann zeta funtion. Note, that a g 3
2
(z) derivative

d

dz
g 3

2
(z) =

1

z
g 1

2
(z) =

1

z

∞∑

l=1

zl

√
l

(10.9)is divergent at z = 1. Sine for any 0 6 z 6 1 we have g 3
2
(z) 6 g 3

2
(1) =

ζ

(
3

2

)

≈ 2.612 we obtain
λ3

0

v
− g 3

2
(z) >

λ3
0

v
− g 3

2
(1) (10.10)and if the temperature and volume per partile (the thermal wavelength istemperature and proper volume dependent) ful�ll the ondition

λ3
0

v
> g 3

2
(1) (10.11)then based on (10.6) and (10.10) we get

〈n0〉
V

> 0 (10.12)



10.1. MACROSCOPIC OCCUPANCY OF THE LOWEST ENERGY LEVEL89This result means that a �nite fration of all partiles oupies a lowest energylevel E(p = 0). This is the e�et of Bose-Einstein ondensation (BEC), whihis partiularly spetaular for the thermodynami limit, i.e., in large systemswhen volume V −→ ∞, number of partiles N −→ ∞ and a onentration ofpartiles n =
N

V
= const, then

lim
V →∞

〈n0〉
V

= lim
N→∞

n
〈n0〉
N

> 0 (10.13)and we obtain
lim

N→∞

〈n0〉
N

> 0 (10.14)whih means that 〈n0〉 −→ ∞, that is the oupany of the lowest energy levelbeomes marosopi, or in other words, a �nite 〈n0〉
N

fration of all partilesresides in the lowest energy level. As the oupany of the lowest energy levelis given by
〈n0〉 =

z

1 − z
−→ ∞ (10.15)its divergeny leads to the fugaity z −→ 1 or the hemial potential µ =

1

β
ln z −→ 0. It means that in our disussion of a Bose-Einstein ondensationin the thermodynami limit we should use z = 1. In this ase a ondition

λ3
0

v
= g 3

2
(1) (10.16)de�nes a moment when the ondensation begins, that is a phase transition:Bose gas to BEC takes plae. The Eq. (10.16) de�nes a surfae in the P , v, Tspae whih seperates gas and BEC phases. Expliitly, using λ0 de�nition theondition (10.16) reads

h3

v(2πmkBT )
3
2

= ζ

(
3

2

) (10.17)At a given partile onentration n =
1

v
it determines the ritial temperature

TC

TC =
h2n

2
3

2πmkBζ
2
3

(
3
2

) (10.18)



90 CHAPTER 10. BOSE-EINSTEIN CONDENSATIONFor temperatures T 6 TC a marosopi oupany of the lowest energy leveltakes plae. Alternatively, at a given temperature we obtain a ritial density
nC = ζ

(
3

2

)(
mkBT

2π~2

) 3
2 (10.19)or a ritial proper volume vC =

1

nC
whih lead to the BEC phase transition.At the ritial temperature TC the thermal wavelength λ0 beomes of the orderof magnitude of the average interpartile distane d

λ0(TC) =
h√

2πmkBTC

=

(

vζ

(
3

2

)) 1
3

=

(

d3ζ

(
3

2

)) 1
3

=

d(2.612)
1
3 ≈ 1.377d (10.20)We remember, that λ0 ∼ λdB, so at TC we have λdB ∼ d whih means that thede Broglie waves of single partiles start to overlap and interfere. As we ontinueon dereasing the temperature the thermal wavelength inrease and the overlapbeomes more and more signi�ant until a omplete interferene into a singlewave when the zero temperature is reahed. We show this proess in Fig. 10.1.10.2 Uniqueness of the lowest energy levelWe will show that the ondensation an our only at the lowest energy level.Although we an always extrat a �nite number of terms from the integral in(7.28) and instead of Eq. (10.5) deal with

n =
1

λ3
0

g 3
2
(z) +

〈n0〉
V

+

( 〈n1〉
V

+
〈n2〉
V

+ · · · + 〈nl〉
V

) (10.21)in the thermodynami limit, every but the 〈n0〉 term vanishes. If we take, forinstane, a term
〈nm〉
V

=
1

V

1

z−1eβEm − 1
(10.22)where Em =

p2
m

2m
is the energy level determined by the quantum number m, thenusing the relations z 6 1 and βEm > 0 we an establish an upper limit on 〈nm〉

〈nm〉
V

6
1

V

1

eβEm − 1
(10.23)
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λdB

d

(a) d ≫ λdB, T > TC

λdB

d

(b) d ∼ λdB, T = TC

λdB

d

() d ≪ λdB, T ≪ TCFigure 10.1: Bosons and their de Broglie waves at di�erent temperatures.whih an be upper bounded through a Taylor's expansion
1

V

1

eβEm − 1
6

1

V

1

1 + βEm − 1
=

1

V

kBT

Em
(10.24)Applying a periodi boundary ondition on the plane wave funtion ψ(r) =

exp (ipr/~)

ψ(r) = ψ(r + R) (10.25)where R is any of the three vetors (L, 0, 0), (0, L, 0), (0, 0, L) and L3 = Vis a volume of system, we obtain the momentum
p =

2π~

L

(
m1, m2, m3

) (10.26)
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Em =

(2π~)2

2m

m

V
2
3

(10.27)where m = m2
1 +m2

2 +m2
3. Therefore, a quantized energy level gives the 〈nm〉oupany
〈nm〉
V

6
1

V

2mkBTV
2
3

(2π~)2m
∼ 1

V
1
3

(10.28)whih vanishes in the thermodynami limit
lim

V →∞

〈nm〉
V

= lim
V →∞

V − 1
3 = 0 (10.29)It is noteworthy, that the presented limiting proedure does not work in two orone dimensional systems, where partiles are spread all over all aessible statesand the Bose-Einstein ondensation does not take plae.10.3 Chemial potentialWe have established that in the thermodynami limit the fugaity z = 1 for theBEC phase, that is for temperatures determined by a ondition

λ3
0

v
> ζ

(
3

2

) (10.30)In the gas phase, that is when λ3
0

v
< ζ

(
3

2

), the fugaity is given by a relation
λ3

0

v
− g 3

2
(z) = 0 (10.31)Let us note, that due to the above ondition there is no �nite oupany of thelowest energy level in a gas phase as

〈n0〉
V

=
λ3

0

v
− g 3

2
(z) = 0 (10.32)Summarising we an write

z =







1 for λ3
0

v
> ζ

(
3

2

) (BEC)solution of λ3
0

v
= g 3

2
(z) for λ3

0

v
< ζ

(
3

2

) (gas) (10.33)



10.4. CONDENSATE 93Finally, using the relation µ = kBT ln z we an determine the temperaturedependene of the hemial potential
µ =







0 for T 6 TCsolution of λ3
0

v
= g 3

2

(
eβµ
) for T > TC

(10.34)where the ritial temperature is determined by
λ3

0

v
= ζ

(
3

2

)

. (10.35)10.4 CondensateThe Bose-Einstein ondensate onsists of partiles in the state of zero momen-tum whose number 〈n0〉 represents a �nite fration of a number of all partiles
N = nV , where n is a partile onentration. Based on

1

v
=

〈n0〉
V

+
1

λ3
0

g 3
2
(z) (10.36)we obtain the total partile number

N = 〈n0〉 +
V

λ3
0

g 3
2
(z). (10.37)We know that for the ondensate, that is for T 6 TC , the fugaity z = 1 and afration of all partiles in the ondensate reads

〈n0〉
N

= 1 −
g 3

2
(1)

nλ3
0

, (10.38)where λ0 = λ0(T ). Sine g 3
2
(1) = nλ3

0(TC) determines the ritial temperaturewe get the temperature dependene of the lowest energy level oupany
〈n0〉
N

= 1 − λ3
0(TC)

λ3
0(T )

(10.39)and using λ0(T ) =
h√

2mkBT
we obtain
〈n0〉
N

= 1 −
(
T

TC

) 3
2 (10.40)



94 CHAPTER 10. BOSE-EINSTEIN CONDENSATIONthat is the fration of all partiles in the lowest energy level, in other words,the fration of partiles whih reate the ondensate, see Fig. 10.2 . This resultholds when the hemial potential vanishes, whereas there is no ondensationfor a negative µ. So we an write
〈n0〉
N

=







0 for µ < 0

1 −
(
T

TC

) 3
2 for µ = 0

(10.41)Similarly, evoking a de�nition of the ritial proper volume

0

1

0 TC

〈n
0
〉

N

TFigure 10.2: Oupany of the lowest energy level as a funtion of temperaturefor a �xed partile onentration
1

vC
=
g 3

2
(1)

λ3
0

(10.42)we derive using (10.38) a dependene of 〈n0〉 on the proper volume v =
1

n

〈n0〉
N

= 1 − v

vC
(10.43)



10.5. EQUATION OF STATE 95plotted in Fig. 10.3. For an arbitrary hemial potential value we have
〈n0〉
N

=







0 for µ < 0

1 − v

vC
for µ = 0

(10.44)

0

1

0 vC

〈n
0
〉

N

vFigure 10.3: Oupany of the lowest energy level as a funtion of proper volumefor a �xed temperature10.5 Equation of stateWe know, that in general we deal with two phases of a Bose system: a Bosegas and a Bose-Einstein ondensate. The phase transition is determined by theritial proper volume vC for a �xed temperature or by the ritial temperature
TC at a given interpartile distane.Phases at a given temperature:{BEC for v 6 vCBose gas for v > vC

(10.45)Phases at a given proper volume:{BEC for T 6 TCBose gas for T > TC

(10.46)



96 CHAPTER 10. BOSE-EINSTEIN CONDENSATIONWe need to eluidate that in a so de�ned BEC phase the Bose-ondensate formsa part of a system and oexists in a thermal equilibrium with a Bose gas untilthe temperature falls down to zero and the whole system will ondensate. Wehave derived the temperature dependene of the ondensate volume in a formersetion. Presently, we will study the state equation (10.5). To disuss theproperties of the system in the thermodynami limit we need to take a V −→
∞ (v = const) limit in (10.1)

P

kBT
=

1

λ3
0

g 5
2
(z) − lim

V →∞

1

V
ln(1 − z). (10.47)Note, that for a gas phase we have z < 1 and

lim
V →∞

1

V

z

1 − z
=

〈n0〉
V

= 0 (10.48)therefore the state equation for a Bose gas reads
P

kBT
=

1

λ3
0

g 5
2
(z) (10.49)Below the Bose-Einstein phase transition, that is for T < TC or v < vC , thefugaity in the thermodynami limit, limV →∞ z = 1, and we deal with thefollowing limits in (10.1)

lim
V →∞

1

V
ln(1 − z) (10.50)In order to evaluate the above expression we evoke the result for the oupanyof the lowest energy level in the BEC phase

lim
V →∞

1

V

z

1 − z
= lim

V →∞

〈n0〉
V

<∞, (10.51)whih upper binds the left hand side of Eq.(10.51) and leads to the relation
lim

V →∞

1

V
ln

(
1

V

z

1 − z

)

= 0 (10.52)Now, when we look at (10.52) as at a sum of three terms
lim

V →∞

[

− 1

V
lnV +

1

V
ln z − 1

V
ln(1 − z)

]

= 0, (10.53)
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lim

V →∞

1

V
ln(1 − z) = 0. (10.54)and the equation of state (10.1) below the BEC phase transition reads

P

kBT
=

1

λ3
0

g 5
2
(1) (10.55)Summarizing, we have obtained the state equation for bosons in the thermody-nami limit

P

kBT
=







1

λ3
0

g 5
2
(z) for v > vC (Bose gas)

1

λ3
0

g 5
2
(1) for v 6 vC (BEC) (10.56)where g 5

2
(1) = ζ

(
5
2

)
≈ 1.342.10.6 Thermodynami propertiesWe use general results of Chapter 7 to determine the thermodynami funtionsof a Bose gas and a Bose-Einstein ondensate phases.10.6.1 Internal energy

U

NkB
=







3

2
v

1

λ3
0

Tg 5
2
(z) for v > vC (Bose gas)

3

2
v

1

λ3
0

Tg 5
2
(1) for v 6 vC (BEC) (10.57)In partiular, we see that in the BEC phase the internal energy

U =
3

2
V ζ

(
5

2

)(
2πm

h2

) 3
2

(kBT )
5
2 (10.58)and pressure given by PV = 2

3U is only temperature dependent
P = ζ

(
5

2

)(
2πm

h2

) 3
2

(kBT )
5
2 (10.59)



98 CHAPTER 10. BOSE-EINSTEIN CONDENSATIONFor T > 0 it is also a pressure of the Bose gas whih oexists in a thermalequilibrium with the ondensate. Note, that the Bose ondensation takes plaein a real spae (not only in the momentum spae), that is, we an distinguishthe part of a system whih underwent a phase transition. The balane betweenthese two oexisting phases requires a onstant pressure throughout the wholesystem.10.6.2 EntropyUsing the hemial potential equation for the gas phase, g 3
2
(z) = λ3

0/v, andtaking into aount that z = 1 in the BEC phase we get
S

NkB
=







5

2

v

λ3
0

g 5
2
(z) − ln z for v > vC (Bose gas)

5

2

v

λ3
0

g 5
2
(1) for v 6 vC(BEC) (10.60)For the Bose-Einstein ondensate

S =
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2
V k

5
2

Bζ

(
5

2

)(
2πm

h2

) 3
2

T
3
2 (10.61)and at T = 0 the entropy S = 0 in agreement with the Nernst rule. We may alsoonlude, that the ondensate whih is the only existing phase at T = 0 has zeroentropy, therefore the obtained entropy desribes the gas in thermal equilibriumwith the ondensate. Note, that the entropy is a ontinuous funtion of v or T .Both formulas in (10.60) beome equal at z = 1 that is when we ross vC or TC .10.6.3 Spei� heat cV

cV =
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4
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0
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4
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v

g 3
2
(z)
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2
(z)
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4
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λ3
0

g 5
2
(1) ∼ T

3
2 for v 6 vC(BEC) (10.62)For low temperatures, T 6 TC , cV ∼ T

3
2 , whereas when the temperature is high

lim
T→∞

z = lim
T→∞

e
µ

kB T = 0 (10.63)



10.6. THERMODYNAMIC PROPERTIES 99and for z → 0 we may write
lim

T→∞
cV = lim

z→0

kB

v

[

15

4

g 5
2
(z)

g 3
2
(z)

− 9

4

g 3
2
(z)

g 1
2
(z)

] (10.64)where we have used λ3
0 = vg 3

2
(z). Beause
g 1

2
(z) = z

d

dz
g 3

2
(z) (10.65)

g 3
2
(z) = z

d

dz
g 5

2
(z) (10.66)and g 1

2
(z = 0) = g 3

2
(z = 0) = g 5

2
(z = 0) = 0, we may write

lim
T→0

[

15

4

g′5
2

(z)

g′5
2

(z)
− 9

4

g′3
2

(z)

g′3
2

(z)

]

=
3

2
(10.67)where for shortness we used a notation g′(z) =

d

dz
g(z). We note, that for hightemperatures a Bose gas behaves like a monatomi lassial gas and obeys theequipartition rule

lim
T→∞

cV =
1

V
lim

T→∞

(
dU

dT

)

=
3

2

kB

v
(10.68)

U =
3

2
NkBT (10.69)10.6.4 Free energyHaving the internal energy and the entropy we an write down the Helmholtzfree energy F = U − TS formula

F

NkB
=







− v

λ3
S

Tg 5
2
(z) + T ln z for v > vC (Bose gas)

− v

λ3
S

Tg 5
2
(1) for v 6 vC(BEC) (10.70)



100 CHAPTER 10. BOSE-EINSTEIN CONDENSATION10.7 Role of a system dimensionality [7℄Knowing the physial nature of the BEC we an work out a short and onvenientway to obtain the ritial parameters. Writing the Eq. (7.28) for µ = 0 we getthe equation
n = α

∞∫

0

√
E dE

e
E

kB T − 1
(10.71)whih determines the ritial partile onentration nC = nC(T ) as a funtionof the temperature or the ritial temperature TC = TC(n) as a funtion of theonentration. Introduing x =

E
kBT

we get for the ritial onentration
nC = ζ

(
3

2

)

(2s+ 1)

(
mkBT

2π~2

) 3
2 (10.72)where we have used

∞∫

0

√
x dx

ex − 1
= Γ

(
3

2

)

ζ

(
3

2

)

, (10.73)
Γ

(
3

2

)

=

√
π

2
(10.74)and

α =
4
√

2

h3
πm

3
2 (2s+ 1). (10.75)Therefore for spinless bosons

nC = ζ

(
3

2

)(
mkBT

2π~2

) 3
2 (10.76)or

TC =
2π~

2

mkB

(

n

ζ
(

3
2

)

) 2
3 (10.77)We will use the above method of establishing the ritial Bose ondensationritial parameters in a short disussion of the BEC in arbitrary dimension,



10.7. ROLE OF A SYSTEM DIMENSIONALITY [7℄ 101that is for a D-dimensional gas of bosons whih obey the dispersion relation
E = Apσ and arry spin s. The ritial onentration

nC =
(2s+ 1)

(2π~)D

∞∫

−∞

dDp

e
E

kB T − 1
(10.78)in the D-dimensional spherial oordinates for an isotropi system reads

nC =
(2s+ 1)B

(2π~)D

∞∫

0

pD−1dp

e
E

kB T − 1
(10.79)whereB is a dimension dependent onstant whih results from the angle integral,and for physially relevant dimensions

B =







2 for D = 1,

2π for D = 2,

4π for D = 3.

(10.80)Using the dispersion relation
p =

( E
A

) 1
σ (10.81)and

dp =
1

σ
A− 1

σ E 1
σ
−1dE (10.82)we have

nC =
(2s+ 1)B

(2π~)D

A− 1
σ

σ

∞∫

0

E D
σ
−1dE

e
E

kB T − 1
. (10.83)Now, letting x =

E
kBT

we obtain the ondition (onstraint) for the ritialonentration
nC = c

∞∫

0

x
D
σ
−1

ex − 1
dx (10.84)

c =
(2s+ 1)

(2π~)D

A− 1
σ

σ
(kBT )

D
σ (10.85)



102 CHAPTER 10. BOSE-EINSTEIN CONDENSATIONBose-Einstein ondensation ours if the above formula yields a �nite ritialonentration nC , that is only when the integral
∞∫

0

x
D
σ
−1

ex − 1
dx <∞ (10.86)is onvergent. For its estimation we split (10.86) into two integrals

∞∫

0

x
D
σ
−1

ex − 1
dx =

δ∫

0

x
D
σ
−1

ex − 1
dx+

∞∫

δ

x
D
σ
−1

ex − 1
dx (10.87)where δ > 0. Obviously, the seond integral is onvergent,

δ∫

0

x
D
σ
−1

ex − 1
dx ∼

δ∫

0

x
D
σ
−2dx =







x
D
σ
−1

D

σ
− 1

∣
∣
∣
∣
∣
∣
∣

δ

0

for D
σ

6= 1

lnx|δ0 for D
σ

= 1

(10.88)
We onlude, that for D

σ
6 1 the integral is divergent whereas for D

σ
> 1 itis onvergent. It means that the Bose-Einstein ondensation ours for D
σ
> 1and there is no suh a ondensation for D

σ
6 1. The ratio of the dimensionalityof the system and the power oe�ient in the dispersion relation deides abouta possibility of system to Bose-ondense.BEC =







no for D
σ

6 1yes for D
σ
> 1

(10.89)If we look now at the gas of paraboli dispersion, σ = 2, in one, two or threedimensions, we note that for D = 1, D
σ

=
1

2
, for D = 2, D

σ
= 1, for D = 3,

D

σ
=

3

2
. Suh a gas annot Bose-ondense in D = 1 and D = 2 dimensions.



10.7. ROLE OF A SYSTEM DIMENSIONALITY [7℄ 103Nevertheless, photons whose dispersion E = cp an ondense in D = 2 dimen-sions: D
σ

= 2.





Chapter 11Kineti equation approah tononequilibrium proesses [5℄11.1 Boltzmann equation and ollision integralWe take a quasilassial approah assuming that partiles, although subjet toquantum statistis, have a determined momentum as well as a position. Suhan approah an be arried out when we disuss the wave pakets instead ofplane waves. For the quasilassial partiles the distribution funtion in generaldepends on partiles momenta, positions and time as we speak of nonequilib-rium proesses, f = f (r,p, t). A time hange of the distribution funtion isset by ollisions of partiles with lattie defets or impurities, phonons or otherpartiles. These sattering proesses, if indued by external �elds like an ele-tri �eld or a temperature gradient, lead to sudden hanges in the oupationof allowed states and in this way a�et the Fermi-Dira distribution. Quantita-tively a time evolution of the distribution funtion is determined by a ollisionintegral I(f) through the Boltzmann equation or the kineti equation whih inthe most general form reads
df

dt
= I(f) (11.1)Taking into aount the momentum, position and time dependene of the dis-tribution funtion we an write the kineti equation in a more expliit form

∂f

∂t
+
∂f

∂r

dr

dt
+
∂f

∂p

dp

dt
= I(f) (11.2)105



106CHAPTER 11. KINETIC EQUATION APPROACH [5℄This equation an be applied for small external perturbations to the systemlike an eletri or magneti �eld or an inrement in temperature whih an beinluded through a perturbational nonequilibrium orretion f1 to the Fermi-Dira distribution, i.e., f = f0 + f1. For a wave paket propagates with agroup veloity v =
∂E(p)

∂p
we have dr

dt
= v. A time hange of a quasipartileenergy dE(p)

dt
=
∂E(p)

∂p

dp

dt
in an eletri �eld is determined by the Coulombinteration dE(p)

dt
= v · eE and we an write for a time hange of a momentum(quasimomentum) dp

dt
= eE. Therefore, the kineti equation of a nonuniformlyheated system in the presene of an eletri �eld reads

∂f

∂t
+ v

∂f

∂r
+ eE

∂f

∂p
= I(f) (11.3)The ollision integral in an isotropi medium for elasti ollisions an be repre-sented by a simple formula

I(f) = −f1
τ
, (11.4)where f1 = f − f0 is a nonequilibrium ounterpart of a distribution funtionand τ is an average life time of quasipartiles or an average sattering time,that is an average time between two onseutive ollisions of a quasipartile. τis a natural time-sale in a system, we annot onsider partiles existing longerthan τ . Applied to a momentum, or rather a quasimomentum, time hage thisstatement shows that a quasipartile aeleration annot last longer than τ .When a defet or impurity sattering potential is isotropi, that is, it does notdepend on any partiular diretion and its magnitude w(θ) depends solely on ade�etion angle θ we obtain

1

τ
=

∫

W (θ)(1 − cos θ)
dΩ

4π
(11.5)and we an write the kineti equation in a form

∂f

∂t
+ v

∂f

∂r
+ eE

∂f

∂p
= −f − f0

τ
(11.6)



11.2. ELECTRICAL CONDUCTIVITY 10711.2 Eletrial ondutivityIn the presene of a stationary and uniform eletri �eld the kineti equation(11.6) redues to
eE

∂f

∂p
= −f − f0

τ
(11.7)Assuming a weak eletri �eld we look for a linear in the eletri �eld nonequi-librium orretion f1 to the distribution funtion f = f0 + f1, where f1 ≪ f0and f1 ∼ E. Therefore, keeping up to the linear terms in E we get

eE
f0
∂p

= −f1
τ

(11.8)Sine the Fermi-Dira distribution is energy dependent we an straightforwardlyevaluate its momentum derivative
∂f0
∂p

=
∂f0
∂E

∂E
∂p

= v
∂f0
∂E (11.9)and obtain

f1 = −eEvτ
∂f0
∂E (11.10)We are now in a position to alulate an eletri urrent density

j = 2e

∫

vf
d3p

(2π~)3
= 2e

∫

v(f0 + f1)
d3p

(2π~)3
=

= 2e

∫

vf0
d3p

(2π~)3
+ 2e

∫

vf1
d3p

(2π~)3
= 2e

∫

vf1
d3p

(2π~)3
(11.11)where we have used the property that f0 is an even and v is an odd momentumfuntion. Substituting the nonequilibrium distribution funtion formula we get

j = −2e2
∫

v(vE)τ
∂f0
∂E

d3p

(2π~)3
= −e2

∫

v(vE)τ
∂f0
∂E ν(E)dE dΩ

4π
(11.12)In the �rst approximation, negleting a small orretion of the order of magni-tude of (kBT

µ )2, ∂f0
∂E ≃ −δ(E − µ) and the energy integral reads

j = e2
∫

v(vE)τν(µ)
dΩ

4π
= e2

∫

v vE cos θ τ ν(µ)
dΩ

4π
(11.13)



108CHAPTER 11. KINETIC EQUATION APPROACH [5℄If we �x the z-axis of a oordinate system along the eletri �eld, E = (0, 0, E),then
j = e2Ev2(µ)τ(µ)ν(µ)×

∫ 2π

0

dφ

4π

∫ π

0

dθ sin θ(cosφ sin θ, sinφ sin θ, cos θ) cos θ (11.14)therefore we obtain the Ohm's law
j = σE (11.15)with the eletrial ondutivity σ given by the integral

σ = e2
∫

v2 cos2 θτν(µ)
dΩ

4π
=

= e2v2 cos3 θ

3
τν(µ)

1

2

∣
∣
∣
∣
∣

1

−1

=
1

3
e2v2(µ)τ(µ)ν(µ) (11.16)Thus, we have obtained the eletrial ondutivity

σ =
1

3
e2
[
v2(µ)τ(µ)ν(µ)

] (11.17)whih is determined by the values of the veloity, life time and density of statesat the Fermi level.11.3 Thermal ondutivityIn a nonuniformly heated system the kineti equation (11.6) redues to
v
∂f

∂r
= −f − f0

τ
(11.18)We onsider a small temperature gradient and look for a nonequilibrium orre-tion f1 ∼ ∇T to the Fermi-Dira distribution, f = f0 + f1. A partial derivativeon the left hand side of the equation above in the linear approximation withrespet to ∇T

v
∂f

∂r
=
∂f

∂T
∇Tv =

∂f0
∂T

∇Tv +
∂f1
∂T

∇Tv ≃
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∂f0
∂T

(v∇T ) = − ζ

T

∂f0
∂E (v∇T ) (11.19)where ζ = E(p)−µ is a quasipartile energy. Therefore the nonequilibrium or-retion to the equilibrium Fermi-Dira distribution is determined by the kinetiequation

−∂f0
∂E

ζ

T
(v∇T ) = −f1

τ
(11.20)and reads

f1 = (v∇T )τ
ζ

T

∂f0
∂E (11.21)We alulate now a kineti energy �ux

q = 2

∫

ζvf
d3p

(2π~)3
(11.22)whih again is determined by f1, as ζvf0 is an odd momentum funtion

q = 2

∫

ζvf1
d3p

(2π~)3
(11.23)After using an expliit f1 formula we ome to an integral

q = 2

∫

ζ2 τ

T

∂f0
∂E v(v∇T )

d3p

(2π~)3
=

∫

v(v∇T )τν(E)
ζ2

T

∂f0
∂E

dΩ

4π
dE (11.24)whih after the energy integration turns into an angle integral over the Fermisurfae

q = −π
2k2

BT

3

∫

v(v∇T )τ(µ)ν(µ)
dΩ

4π
(11.25)and similarly to the eletri urrent �ow gives the thermal �ux determined bythe Fourier law

q = −κ∇T (11.26)where κ is the thermal ondutivity given by the following integral
κ =

π2k2
BT

3

∫

v2(µ)τ(µ)ν(µ)
dΩ

4π
=

1

9
π2k2

BTv
2(µ)τ(µ)ν(µ) (11.27)Therefore, we have obtained the thermal ondutivity

κ =
1

9
π2k2

BTv
2(µ)τ(µ)ν(µ) (11.28)



110CHAPTER 11. KINETIC EQUATION APPROACH [5℄determined by values at the Fermi level of the same quantities whih determinethe eletrial ondutivity. A omparison of these two oe�ients leads to theWiedemann-Franz law of a universal ratio
κ

σT
=

π2

3e2
(11.29)given by the Lorentz onstant π2

3e2
. In onlusion, it is important to note thatruial for this law to hold is the assumption of elasti sattering.11.4 Free eletron gasAlthough not appliable to real metals, the free eletron gas model gives usefulestimations of both eletrial and thermal ondutivities. For a dispersion E =

p2/2m the hemial potential µ = p2
0/2m, and the veloity at the Fermi surfae

v(µ) = p0/m. As we have shown
ν(µ) =

mp0

π2~3
=

3

2

n

µ
(11.30)The eletrial ondutivity formula gives

σ =
1

3
e2v2(µ)τ(µ)ν(µ) =

2

3
e2

1

m
µτ(µ)ν(µ) =

2

3

e2

m
τ(µ)

3

2

n

µ
µ (11.31)that is

σ =
ne2τ(µ)

m
(11.32)and the Wiedemann-Franz law gives the thermal ondutivity

κ =
π2

3e2
σT =

π2

3

nτ

m
T (11.33)
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