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I. Composite fermion theory of quantum Hall effect 

 

The composite Fermion (composite fermion) picture [1] offers a simple intuitive way of 

understanding many of the surprising properties of a strongly interacting two-dimensional 

electron fluid in a large magnetic field. In this chapter, the simple way in which the mean field 

composite fermion picture describes the low lying bands of angular momentum multiplets for 

any value of the applied magnetic field is illustrated and compared with the results of exact 

numerical diagonalization of small systems. The reason for the success of the composite 

fermion approach is discussed in some detail, and a composite fermion hierarchy picture of 

the incompressible quantum fluid states is introduced. The composite fermion picture is used 

to understand the energy spectrum and photoluminescence of systems containing both 

electrons and valence band holes. 

 

1. Introduction 

The study of the electronic properties of quasi-two-dimensional (2D) systems has resulted in a 

number of remarkable discoveries in the past two decades. Among the most interesting of 

these are the integral [2] and fractional [3] quantum Hall effects. In both of these effects, 

incompressible states of a 2D electron liquid are found at particular values of the electron 

density for a given value of the magnetic field applied normal to the 2D layer. 

The integral quantum Hall effect (IQHE) is rather simple to understand. The incompressibility 

results from a cyclotron energy gap,  

cωh ,  

in the single particle spectrum. When all states below the gap are filled and all states above it 

are empty, it takes a finite (cyclotron) energy to produce an infinitesimal compression. 

Excited states consist of electron-hole pair excitations and require a finite excitation energy.  

Both localized [4] and extended single particle states are necessary to understand the 

experimentally observed behavior of the magneto-conductivity [5]. 

The fractional quantum Hall effect (FQHE) is more difficult to understand and more 

interesting in terms of new basic physics. The energy gap that gives rise to the Laughlin [6] 

incompressible fluid state is completely the result of the interaction between the electrons.  

The elementary excitations are fractionally charged Laughlin quasiparticles, which satisfy 

fractional statistics [7]. The standard techniques of many body perturbation theory are 

incapable of treating fractional quantum Hall systems because of the complete degeneracy of 

the single particle levels in the absence of the interactions. Laughlin [6] was able to determine 

the form of the ground state wave function and of the elementary excitations on the basis of 

physical insight into the nature of the many body correlations. 

Striking confirmation of Laughlin’s picture was obtained by exact diagonalization of the 

interaction Hamiltonian within the subspace of the lowest Landau level of small systems [8]. 
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Jain [9], Lopez and Fradkin [10], and Halperin, Lee and Read [11] have extended Laughlin’s 

approach and developed a composite Fermion (composite fermion) description of the 2D 

electron gas in a strong magnetic field. This composite fermion description has offered a 

simple picture for the interpretation of many experimental results. However, the underlying 

reason for the validity of many of the approximations used with the composite fermion 

approach was not immediately understood [12]. 

The object of this chapter is to present a simple and understandable summary of the composite 

fermion picture as applied to fractional quantum Hall systems. Exact numerical calculations 

for up to eleven electrons on a spherical surface will be compared with the predictions of the 

mean field composite fermion picture. The composite fermion hierarchy [13] will be 

introduced, and its predictions compared with numerical results. It will be shown that 

sometimes the mean field composite fermion hierarchy correctly predicts Laughlin-like 

incompressible ground states, and that sometimes it fails. 

The composite fermion hierarchy depends on the validity of the mean field approximation. 

This seems to work well in predicting not only the Laughlin-Jain families of incompressible 

ground states at particular values of the applied magnetic field, but also in predicting the 

lowest lying band of states at any value of the magnetic field. The question of when the mean 

field composite fermion picture works and why [12] will be discussed in some detail. As first 

suggested by Haldane [8], the behavior of the pseudopotential  

( )LV   

describing the energy of interaction of a pair of electrons as a function of their total angular 

momentum L is of critical importance. 

In the following sections some examples of other strongly interacting 2D Fermion systems 

will be presented, and some problems not yet completely understood will be introduced. The 

single particle states for electrons confined to a plane in the presence of an applied magnetic 

field [14] are explained. The integral and fractional quantum Hall effects are discussed 

briefly. Haldane's idea [8] that the condensation of Laughlin quasiparticles leads to a 

hierarchy containing all odd denominator fractions is discussed. The numerical calculations 

for a finite number of electrons confined to a spherical surface in the presence of a radial 

magnetic field are discussed. Results for a ten electron system at different values of the 

magnetic field are presented. The ideas of fractional statistics and the Chern-Simons 

transformation are introduced. Jain’s composite fermion approach [1] is outlined. The 

sequence of Jain condensed states (given by filling factor  

12 +
=

pn

n
ν  

(where n is any integer and p is a positive integer) is shown to result from the mean field 

approximation. The application of the composite fermion picture to electrons on a spherical 

surface is shown to predict the lowest band of angular momentum multiplets in a very simple 

way that involves only the elementary problem of addition of angular momenta [15]. The two 

energy scales, the Landau level separation  

cωh  

and the Coulomb energy  
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(where λ is the magnetic length) are discussed. It is emphasized that the Coulomb interactions 

and Chern-Simons gauge interactions between fluctuations (beyond the mean field level) 

cannot possibly cancel for arbitrary values the applied magnetic field. The reason for the 

success of the composite fermion picture is discussed in terms of the behavior of the 

pseudopotential V(L) and a kind of “Hund’s rule” for monopole harmonics [12]. A 

phenomenological Fermi liquid picture is introduced to describe low lying excited states 

containing three or more Laughlin quasiparticles [16]. The composite fermion hierarchy 

picture [13] is introduced. Comparison with exact numerical results indicates that the behavior 

of the quasiparticle pseudopotential is of critical importance in determining the validity of this 

picture at a particular level of the hierarchy. The systems containing electrons and valence 

holes are also investigated [17]. Photoluminescence and the role of excitons and negatively 

charged exciton complexes is also discussed. 

2. Integral and fractional quantum Hall effects 

The Hamiltonian for an electron confined to the x-y plane in the presence of a perpendicular 

magnetic field B is 

2

0
2

1







 += A
c

e
pH

µ
 

Here µ is the effective mass, p=(px,py,0) is the momentum operator and A(x,y) is the vector 

potential (whose curl gives B). For the “symmetric gauge,”  

( )0,,
2

xy
B

A −= ,  

the single particle eigenfunctions are of the form  

( ) ( )ruer nm

im

nm

φθψ −=,  

The angular momentum of the state ψnm is -m and its eigenenergy is given by 

( )mmnE cnm −++= 12
2

1
ωh  

In these equations,  

c

eB
c µ

ω =h  

is the cyclotron frequency, n=0, 1, 2, …, and m=0, ±1, ±2, …  

The lowest energy states (lowest Landau level) have n=0 and m=0, 1, 2, …, and energy  

cmE ωh
2

1
0 =  

It is convenient to introduce a complex coordinate  

iyxrez i −== − θ  
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and to write the lowest Landau level wave functions as  

( ) 4

0

2
zm

mm ez�z
−=ψ  

where Nm is a normalization constant. 

In this expression we have used the magnetic length  

eB

ch
=λ  

as the unit of length.  

The function  

( )2

0 zmψ  

has its maximum value at a radius rm which is proportional to m
1/2

. 

All single particle states belonging to a given Landau level are degenerate, and separated in 

energy from neighboring levels by the cyclotron energy. 

If the system has a “finite radial range,” then the m-values are restricted to being less than 

some maximum value  

1,,2,1,0 −= φ�m K . 

The value of Nφ (the Landau level degeneracy) is equal to the total flux through the sample, 

BC (where C is the area), divided by the quantum of flux  

e

hc
=0ϕ . 

The filling factor ν is defined as the ratio of the number of electrons, N, to Nφ. When ν has an 

integral value, an infinitesimal decrease in the area C requires promotion of an electron across 

the cyclotron gap to the first unoccupied Landau level, making the system incompressible. 

This incompressibility together with the existence of both localized and extended states in the 

system is responsible for the observed behavior of the magneto-conductivity of quantum Hall 

systems at integral filling factors [5]. 

In order to construct a many electron wave function  

( )�zzz ,,, 21 KΨ  

corresponding to a completely filled lowest Landau level, the product function which places 

one electron in each of the N=Nφ orbitals  

( )1,,1,00 −= �mm Kψ  

must be antisymmetrized. This can be done with the aid of a Slater determinant 

7



 









−=Ψ ∑

=

�

k

k

�

�

���

�

�

z

zzzz

zzzz

zzzz

1

2

321

22

3

2

2

2

1

321

4

1
exp

1111

OM

L

 

This is the well-known Vandemonde determinant. It is not difficult to show that it is equal to 

( ) ( )Kexp1 ∏
<

−=Ψ
ji

ji zz  

Of course, since each of the Nφ orbitals is occupied by one electron, the filling factor is ν=1. 

Laughlin noticed that if the factor (zi-zj) arising from the Vandemonde determinant was 

replaced by (zi-zj)
2p+1

, where p was an integer, the wave function  

( ) ( )Kexp
12

12 ∏
<

+
+ −=Ψ

ji

p

jip zz   

would be antisymmetric, keep the electrons further apart (and therefore reduce the Coulomb 

repulsion), and correspond to a filling factor  

12

1

+
=

p
ν . 

This results because the highest power of zi in the polynomial factor in Ψ2p+1 is (2p+1)(N-1) 

and it must be equal to the highest orbital index (m=Nφ-1), giving  

( )( )1121 −+=− �p�φ  

and  

12

1

+
==

p�

�

φ

ν  

in the limit of large systems. 

The additional factor  

( )∏
<

−
ji

p

ji zz
2

 

multiplying Ψ1 is the Jastrow factor which accounts for correlations between electrons. 

It is observed experimentally that states with filling factors ν=2/5, 3/5, 3/7, etc. exhibit 

fractional quantum Hall behavior in addition to the Laughlin ν=(2p+1)
-1
 states. 

Haldane [8] suggested that a hierarchy of condensed states arose from the condensation of 

quasiparticles (QP’s) of “parent” fractional quantum Hall states. 

In his picture, Laughlin condensed states of the electron system occurred when 

( ) e�p� 12 +=φ  
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where the exponent 2p+1 was an odd integer and the symbol Ne denoted the number of 

electrons. Condensed QP states occurred when Ne=2qNQP, because the number of places 

available for inserting a QP in a Laughlin state was Ne. Haldane required the exponent 2q to 

be even because in his definition of a QP it was a boson. 

This scheme gives rise to a hierarchy of condensed states which contains all odd denominator 

fractions. Haldane cautioned that the validity of the hierarchy scheme at a particular level 

depended upon the QP interactions which were totally unknown. 

 

3. 'umerical study of small systems 

Haldane [8] introduced the idea of putting a small number of electrons on a spherical surface 

of radius R at the center of which is a magnetic monopole of strength 2Sϕ0. 

The single particle Hamiltonian can be expressed as [19] 

( )2
2

2

0
ˆ

2
RS

R
H −= L

µ
h

 

where L is the angular momentum vector operator (in the units of Planck constant), R is the 

unit vector in the radial direction, and µ is the mass. 

The components of L satisfy the usual commutation rules 

[ ] γβα αβγ
ε LiLL =,  

The eigenstates of H0 can be denoted by  

ml, ; 

they are eigenfunctions of L
2
 and Lz with eigenvalues l(l+1) and m, respectively. 

The lowest energy eigenvalue (shell) occurs for l=S and has energy  

cE ωh
2

1
0 =  

The n
th
 excited shell has l=S+n, and 

\begin{equation} 

( )[ ] ( )





 +
++=−+=

S

nn
nSll

S
E c

c
n

2

1

2

1
1

2

2 ω
ω

h
h

 

where the cyclotron energy is equal to  

2

2

R
Sc µ

ω
h

h =  

and the magnetic length is  

S

R
=λ  

If we concentrate on a partially filled lowest Landau level we have only  
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12 += S�φ  

degenerate single particle states (since the electron angular momentum l must be equal to S 

and its z-component m can take on values between -l and l). 

The Hilbert space HMB of N electrons in these Nφ single particle states contains  

( )!!

!

���

�

�

�
�MB −

=







=

φ

φφ
 

antisymmetric many body states.  

The single particle configurations 

vaccccmmm
�mmm�

+++= KK
21

,,, 21  

can be chosen as a basis of HMB. Here cm
+
 creates an electron in the single particle state  

mSlm ,=≡  

and  

vac  

is the vacuum state. 

The space HMB can also be spanned by the angular momentum eigenfunctions,  

α,, ML  

where L is the total angular momentum, M is its z-component, and α is a label which 

distinguishes different multiplets with the same L.  

If  

λ
ω

2e
c >>h  

the diagonalization of the interaction Hamiltonian 

∑
<

=
ji ij

I
r

e
H

2

 

in the Hilbert space HMB of the lowest Landau level gives an excellent approximation to exact 

eigenstates of an interacting N electron system. 

The single particle configuration basis is particularly convenient since the many body 

interaction matrix elements in this basis, 

�I� mmmHmmm ,,,,,, 2121 KK ′′′  

are expressed through the two body ones,  

2121 ,, mmHmm I
′′  

in a very simple way. 
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On the other hand, using the angular momentum eigenstates  

α,, ML  

allows the explicit decomposition of the total Hilbert space HMB into total angular momentum 

eigensubspaces. 

Because the interaction Hamiltonian is a scalar, the Wigner-Eckart theorem tells us that 

( )LVMLHML MMLLI ααδδαα ′=′′′
'',,,,  

where the reduced matrix element  

( ) αααα ,, LHLLV I
′=′  

is independent of M. 

The eigenfunctions of L are simpler to find than those of HI, because efficient numerical 

techniques exist for obtaining eigenfunctions of operators with known eigenvalues. 

Finding the eigenfunctions of L and then using the Wigner-Eckart theorem considerably 

reduces dimensions of the matrices that must be diagonalized to obtain eigenvalues of HI. 

Some matrix dimensions are listed in Tab. 1, where the degeneracy of the lowest Landau level 

and the dimensions of the total many body Hilbert space, HMB, and of the largest M subspace, 

NMB(M=0), are given for the Laughlin ν=1/3 state of six to eleven electron systems. Recall 

that the N electron Laughlin ν=1/(2p+1) state occurs at Nφ=(2p+1)(N-1). 

 

Tab. 1  The Landau level degeneracy �φ=2S+1 and the dimensions of the total � electron Hilbert 

space, �MB, and of the largest M-subspace, �MB(M=0), at the filling factor ν=1/3. 

 

 

For example, in the eleven electron system at ν=1/3, the L=0 block that must be diagonalized 

to obtain the Laughlin ground state is only 1160×1160, small compared to the total dimension 

of 1 371 535 for the entire M=0 subspace. 
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Fig. 1  The energy spectra of ten electrons in the lowest Landau level calculated on a Haldane sphere 

with 2S between 21 and 30. The open circles and solid lines mark lowest energy bands with the fewest 

composite Fermion quasiparticles. 

 

Typical results for the energy spectrum are shown in Fig. 1 for N=10 and a few different 

values of 2S between 21 and 30. The low energy bands marked with open circles and solid 

lines will be discussed in detail in the following sections. Frames (a) and (f) show two L=0 

incompressible ground states: Laughlin state at ν=1/3 and Jain state at ν=2/5, respectively. 

In other frames, a number of QP’s form the lowest energy bands. 
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4. Chern-Simons transformation and statistics in 2D systems 

Before discussing the Chern-Simons gauge transformation and its relation to particle 

statistics, it is useful to look at a system of two particles each of charge -e and mass µ, 

confined to a plane, in the presence of a perpendicular magnetic field 

( ) ( )rAB ×∇== B,0,0  

Because A is linear in the coordinate r=(x,y) – for example, in the symmetric gauge  

( )0,,
2

xy
B

−=A , 

the Hamiltonian separates into the center of mass (CM) and relative (REL) coordinate pieces, 

with 

( )21
2

1
rrR +=  

and 

21 rrr −=  

being the CM and REL coordinates, respectively. 

The energy spectra of CM and REL hamiltonians, HCM and HREL are identical to that of a 

single particle of mass µ and charge -e. 

We have already seen that for the lowest Landau level  

( ) 4

0

2

,
zimm

mm eer�r
−−= ϕϕψ . 

For the relative motion  

21 ϕϕϕ −=  

and an interchange of the pair, 

( ) ( )1221 ,,ˆ rrrr ψψ =P  

is accomplished by replacing ϕ by ϕ+π. 

In 3D systems, where two consecutive interchanges must result in the original wave function, 

this implies that  

πime  

must be equal to either +1 (m even; Bosons) or -1 (m odd; Fermions). 

It is well-known [20,21] that for 2D systems m need not be an integer. 

Interchange of a pair of identical particles can give  

( ) ( )1221 ,,ˆ rrrr ψψ θπieP =  

where the statistical parameter θ can assume non-integral values leading to anyon statistics. 

A Chern-Simons (CS) transformation is a singular gauge transformation [11] in which an 

electron creation operator  
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( )r+
eψ  

is replaced by a composite particle operator given by 

( ) ( ) ( ) ( ) ( )[ ]∫ ′′′−′= +++ rrrrrrr eee di ψψαψψ argexp 2 . 

Here  

( )rr ′−arg  

is the angle the vector r-r' makes with the x-axis and α is an arbitrary parameter.  

The kinetic energy operator can be written in terms of the transformed operator as 

( ) ( ) ( ) ( )∫ 





++∇−= +

rrarArr ψψ
µ c

e

c

e
idK h

2

2

1
 

Here 

( ) ( )
2

0
'

ˆ

2 rr

rr
rar

′−

′−×
=

z

π
αφ

 

and 

( ) ( ) ( ) ( )∫ ′′′= +
′ rrrarra r ψψαφ 2

0 d  

where z is a unit vector perpendicular to the 2D layer. 

The Chern-Simons transformation can be thought of as an attachment to each particle of flux 

tube carrying a fictitious flux αφ0 (where φ0=hc/e is the quantum of flux) and a fictitious 

charge 

-e which couples in the standard way to the vector potential caused by the flux tubes on every 

other particle. 

The  

( )rar '  

is interpreted as the vector potential at position r due to a magnetic flux of strength αφ0 

localized at r’, and  

( )ra  

is the total vector potential at position r due to all Chern-Simons fluxes. 

The Chern-Simons magnetic field associated with the particle at r' is  

( ) ( ) ( )ẑ0' rrrarb r
′−=×∇= δαφ  

Because two charged particles cannot occupy the same position, one particle never senses the 

magnetic field of other particles, but it does sense the vector potential resulting from their 

Chern-Simons fluxes. 

The classical equations of motion are unchanged by the presence of the Chern-Simons flux, 

but the quantum statistics of the particles are changed unless α is an even integer. 
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For the two-particle system, the vector potential associated with the Chern-Simons flux  

( )12
rar  

depends only on the relative coordinate  

21 rrr −= . 

When a(r) is added to A(r), the vector potential of the applied magnetic field, the Schrödinger 

equation has a solution  

m

i

m e ψψ αϕ−=~  

where ψm is the solution with α=0 (i.e. in the absence of Chern-Simons flux). 

If α is an odd integer, Boson and Fermion statistics are interchanged; if α is even, no change 

in statistics occurs and electrons are transformed into composite Fermions with an identical 

energy spectrum. 

The Hamiltonian for the composite particle system (charged particles with attached flux 

tubes) is much more complicated than the original system with α=0. 

What is gained by making the Chern-Simons transformation? 

The answer is that one can use the “mean field” approximation in which  

( ) ( )rarA + , 

the vector potential of the external plus Chern-Simons magnetic fields, is replaced by  

( ) ( )rarA + , 

where 〈…〉 is the mean field value obtained by simply replacing 

( ) ( ) ( )rrr ′′=′ + ψψρ  

by its average value ρ0. 

A mean field energy spectrum can be constructed in which the massive degeneracy of the 

original partially filled electron Landau level disappears. 

One might then hope to treat both the Coulomb interaction and the Chern-Simons gauge field 

interactions among the fluctuations (beyond the mean field level) by standard many body 

perturbation techniques (e.g. by the random phase approximation, RPA). 

Unfortunately, there is no small parameter for a many body perturbation expansion unless α, 

the number of Chern-Simons flux quanta attached to each particle, is small compared to unity. 

However, a Landau-Silin [22] type Fermi liquid approach can take account of the short range 

correlations phenomenologically. A number of excellent papers on anyon superconductivity 

[23] treat Chern-Simons gauge interactions by standard many body techniques. 

Halperin, Lee, and Read [11] have treated the half filled Landau level as a liquid of composite 

Fermions moving in zero effective magnetic field. Their RPA-Fermi-liquid approach gives a 

surprisingly satisfactory account of the properties of that state. 

The vector potential associated with fluctuations beyond the mean field level is given by 
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( ) ( ) ( )rarara −=δ . 

The perturbation to the mean field Hamiltonian contains both linear and quadratic terms in 

δa(r), resulting in both two body - containing  

( ) ( )21 rr ρρ  

and three body - containing  

( ) ( ) ( )321 rrr ρρρ  

- interaction terms. The three body interaction terms are usually ignored, though for α of the 

order of unity this approximation is of questionable validity. 

 

5. Jain's composite fermion picture 

Jain noted that in the mean field approximation, an effective filling factor ν* of the composite 

Fermions was related to the electron filling factor ν by the relation  

p2
1

*

1
−=

νν
. 

Remember that 1/ν is equal to the number of flux quanta of the applied magnetic field per 

electron, and 2p is the (even) number of Chern-Simons flux quanta (oriented opposite to the 

applied magnetic field) attached to each electron in the Chern-Simons transformation. 

The above equation implies that when  

K,3,2,1* ±±±=ν  

(negative values correspond to the effective magnetic field B* seen by the composite fermions 

oriented opposite to B) and a non-degenerate mean field composite fermion ground state 

occurs, then  

*21

*

ν
ν

ν
p+

=  

This Jain sequence of condensed states (ν=1/3, 2/5, 3/7, … and ν=2/3, 3/5, … for p=1) is the 

set of fractional quantum Hall states most prominent in experiment. 

When ν* is not an integer, QP’s of the neighboring Jain state will occur. 

It is quite remarkable that the mean field composite fermion picture predicts not only the Jain 

sequence of incompressible ground states, but the correct band of low energy states for any 

value of the applied magnetic field. This is very nicely illustrated for the case of N electrons 

on a Haldane sphere. 

When the monopole strength seen by an electron has the value 2S, the effective monopole 

strength seen by a composite fermion is  

( )122*2 −−= �pSS . 

This equation reflects the fact that a given composite fermion senses the vector potential 

produced by the Chern-Simons flux on all other particles, but not its own Chern-Simons flux. 
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In Tab. 2 the ten particle system is described for a number of values of 2S between 29 and 15. 

 

Tab. 2  The effective composite fermion monopole strength 2S*, the numbers of composite fermion 

quasiparticles (quasielectrons, �QE, and quasiholes, �QH), the angular momentum of the lowest 

composite fermion shell l*, the composite fermion and electron filling factors ν* and ν, and the 

angular momenta L of the lowest lying band of multiplets for a ten electron system at 2S between 29 

and 15. 

 

 

The Laughlin ν=1/3 state occurs at  

( ) 27132 3 =−= �S . 

For values of 2S different from this value,  

QP�SS ±=− 322  

 (“+” corresponds to quasiholes, QH, and “-” to quasielectrons, QE). 

Let us apply the composite fermion description to the ten electron spectra in Fig. 1. At 2S=27, 

we take p=1 and attach two Chern-Simons flux quanta each electron. This gives 2S*=9 so that 

the ten composite fermions completely fill the 2S*+1 states in the lowest angular momentum 

shell (lowest Landau level). 

There is a gap  

c

eB
c µ

ω
** =h  

to the next shell, which is responsible for the incompressibility of the Laughlin state. 

Just as |S| played the role of the angular momentum of the lowest shell of electrons, l*=|S*| 

plays the role of the composite fermion angular momentum and 2|S*|+1 is the degeneracy of 

the composite fermion shell. Thus, the states with 2S=26 and 28 contain a single quasielectron 

(QE) and quasihole (QH), respectively. 

For the QE state, 2S*=8 and the lowest shell of angular momentum l0*=4 can accommodate 

only nine composite fermions. The tenth is the QE in the l1*=l0*+1=5 shell, giving the total 

angular momentum L=5. 
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For the QH state, 2S*=10 and the lowest shell can accommodate eleven composite fermions 

each with angular momentum l0*=5. The one empty state (QH) gives L=l0*=5. 

For 2S=25 we obtain 2S*=7, and there are two QE's each of angular momentum l1*=9/2 in the 

first excited composite fermion shell. Adding the angular momenta of the two QE's gives the 

band of multiplets L=0, 2, 4, 6, and 8. 

Similarly, for 2S=29 we obtain 2S*=11, and there are two QH's each with l0*=11/2, resulting 

in the allowed pair states at L=0, 2, 4, 6, 8, and 10. 

At 2S=21, the lowest shell with l0*=3/2 can accommodate only four composite fermions, but 

the other six composite fermions exactly fill the excited l1*=5/2 shell. The resulting 

incompressible ground state is the Jain ν=2/5 state, since ν*=2 for the two filled shells. 

A similar argument leads to ν*=-2 (minus sign means B* oriented opposite to B) and ν=2/3 at 

2S=15. 

At 2S=30, the addition of three QH angular momenta of l0*=6 gives the following band of 

low lying multiplets L=1, 3
2
, 4, 5

2
, 6

2
, 7

2
, 8, 9

2
, 10, 11, 12, 13, and 15. As demonstrated on an 

example in Fig. 1, this simple mean field composite fermion picture correctly predicts the 

band of low energy multiplets for any number of electrons N and for any value of 2S. 

 

6. Energy scales and pseudopotentials 

The mean field composite Fermion picture is remarkably successful in predicting the low 

energy multiplets in the spectrum of N electrons on a Haldane sphere. 

It was suggested originally that this success resulted from the cancellation of the Coulomb 

and Chern-Simons gauge interactions among fluctuations beyond the mean field level. 

In Fig. 2, we show the lowest bands of multiplets for eight non-interacting electrons and for 

the same number of non-interacting mean field composite fermions at 2S=21. 

The energy scale associated with the Chern-Simons gauge interactions which convert the 

electron system in frame (a) to the composite fermion system in frame (b) is  

Bc ∝*ωh . 

The energy scale associated with the electron-electron Coulomb interaction is  

B
e

∝
λ

2

. 

Coulomb interaction lifts the degeneracy of the non-interacting electron bands in frame (a). 
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Fig. 2  The energy spectra of eight (a) non-interacting electrons and (b) non-interacting composite 

Fermions. The characteristic energy of the Coulomb interaction is marked in frame (a) with a shaded 

rectangle. 

 

However, for very large value of B the Coulomb energy can be made arbitrarily small 

compared to the Chern-Simons energy (as marked with a shaded rectangle in Fig. 2, i.e. to the 

separation between the composite fermion Landau levels. 

The energy separations in the mean field composite fermion model are completely wrong, but 

the structure of the low lying states (i.e., which angular momentum multiplets form the low 

lying bands) is very similar to that of the fully interacting electron system and completely 

different from that of the non-interacting electron system. 

 

6.1  Two-fermion problem 

An intuitive picture of why this occurs can be obtained by considering the two Fermion 

problem. The relative (REL) motion of a pair of electrons (ij) is described by a coordinate  

iji

ijjiij erzzz
ϕ=−= , 

and for the lowest Landau level its wave function contains a factor  

m

ijz  

where m=1, 3, 5, … 

If every pair of particles has identical behavior, the many particle wave function must contain 

a similar factor for each pair giving a total factor  

∏
< ji

m

ijz . 

As we have seen, the highest power of zi in this product is m(N-1). 
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If m(N-1) is equal to Nφ-1=2S, the maximum value of the z-component of the single particle 

angular momentum, the Laughlin ν=1/m wave function results. 

For electrons, the m
th
 cyclotron orbit, whose radius is rm, encloses a flux  

0φm , 

that is 

0

2 φπ mBrm = . 

For a Laughlin ν=1/m state the pair function must have a radius 

mrrm 1= . 

Let us describe the composite fermion orbits by radius  

m~ρ  

and require that the m
th
 orbit enclose m flux quanta. It is apparent that if a flux tube carrying 

two flux quanta (oriented opposite to the applied magnetic field B) is attached to each electron 

in the Chern-Simons transformation of the ν=1/3 state, the smallest orbit of radius  

1~=mρ  

has exactly the same size as  

3=mr . 

Both orbits enclose three flux quanta of the applied field, but the composite fermion orbit also 

encloses the two oppositely oriented Chern-Simons flux quanta attached to the electrons to 

form the composite fermions. 

In the absence of electron-electron interactions, the energies of these orbits are unchanged, 

since they still belong to the degenerate single particle states of the lowest Landau level. 

In the mean field approximation the Chern-Simons fluxes are replaced by a spatially uniform 

magnetic field, leading to an effective field B*=B/m. 

The orbits for the composite fermion pair states in the mean field approximation are exactly 

the same as those of the exact Chern-Simons Hamiltonian. The smallest orbit has radius  

1~=mρ  

equivalent to the electron orbit  

3=mr . 

However, in the mean field approximation, the energies are changed (because  

*

cωh  

replaces 

cωh . 
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This energy change leads to completely incorrect mean field composite fermion energies, but 

the mean field composite fermion orbitals give the correct structure to the low lying set of 

multiplets. 

In the presence of a repulsive interaction, the low lying energy states will have the largest 

possible value of m. For a monopole strength 2S=m(N-1), where m is an odd integer, every 

pair can have radius rm and avoid the large repulsion associated with r1, r3, …, rm-2. 

These ideas can be made somewhat more rigorous by using methods of atomic and nuclear 

physics for studying angular momentum shells of interacting Fermions. 

 

6.2  Two-body interaction pseudopotential 

As first suggested by Haldane [8], the behavior of the interacting many electron system 

depends entirely on the behavior of the two body interaction pseudopotential, which is 

defined as the interaction energy V of a pair of electrons as a function of their pair angular 

momentum. 

In spherical geometry, in order to allow for meaningful comparison of the pseudopotentials 

obtained for different values of 2S (and thus different single electron angular momenta l), it is 

convenient to use the “relative” angular momentum R=2l-L12 rather than L12 (the length of  

2112
ˆˆˆ llL += . 

The pair states with a given R=m (an odd integer) obtained on a sphere for different 2S are 

equivalent and correspond to the pair state on a plane with the relative (REL) motion 

described by angular momentum m and radius rm. 

The pair state with the smallest allowed orbit (and largest repulsion) has R=1 on a sphere or 

m=1 on a plane, and larger R and m means larger average separation. 

In the limit of  

0→
R

λ
 

 (i.e., either 2S→0 or R→∞), the pair wave functions and energies calculated on a sphere for 

R =m converge to the planar ones (ψ0m and its energy). 

The pseudopotentials V(R) are plotted in Fig. 3 for a number of values of the monopole 

strength 2S. 

The open circles mark the pseudopotential calculated on a plane (R=m). At small R the 

pseudopotentials rise very quickly with decreasing R (i.e. separation). More importantly, they 

increase more quickly than linearly as a function of L12(L12+1). The pseudopotentials with 

this property form a class of so-called “short range” repulsive pseudopotentials [12]. 

If the repulsive interaction has short range, the low energy many body states must, to the 

extent that it is possible, avoid pair states with the smallest values of R (or m) and the 

maximum two body repulsion. 
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Fig. 3  The pseudopotentials of the Coulomb interaction in the lowest Landau level calculated on a 

Haldane sphere with 2S=15, 20, and 25 (solid triangles, diamonds, and circles, respectively), and on 

a plane (open circles). 

 

6.3  Fractional grandparentage 

It is well-known in atomic and nuclear physics that eigenfunction of an N Fermion system of 

total angular momentum L can be written as 

( ) LLlLlLGLl �

L L

LL

� ;'',;,, 2

12

2

''

12'',

12

αα
α

αα
−∑∑= . 

Here, the totally antisymmetric state  

αLl � ,  

is expanded in the basis of states  

LLlLl � ;'',;, 2

12

2 α−  

which are antisymmetric under permutation of particles 1 and 2 (which are in the pair 

eigenstate of angular momentum L12) and under permutation of particles 3, 4, …, N (which 

are in the N-2 particle eigenstate of angular momentum L'). The labels α (and α’) distinguish 

independent states with the same angular momentum L (and L'). 

The expansion coefficient  

( )12'', LG LL αα  

is called the coefficient of fractional grandparentage (CFGP). 

For a simple three Fermion system, the expansion reduces to 

( )∑=
12

;;,, 12

2

12

3

L

L LlLlLFLl αα  

and  
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( )12LFLα  

is called the coefficient of fractional parentage (CFP). 

In the lowest Landau level, the individual Fermion angular momentum l is equal to S, half the 

monopole strength, and the number of independent multiplets of angular momentum L that 

can be formed by addition of angular momenta of three identical Fermions is given in Tab. 3 

 

Tab. 3  The number of times an L multiplet appears for a system of three electrons of angular 

momentum l. Top: even values of 2l; bottom: odd values of 2l. Blank spaces are equivalent to zeros. 

 

 

Low energy many body states must, to the possible extent, avoid parentage from pair states 

with the largest repulsion (pair states with maximum angular momenta Lij or minimum R). 

In particular, we expect that the lowest energy multiplets will avoid parentage from the pair 

state with R=1. If R=1 (i.e. L12=2l-1), then the smallest possible value of the total angular 

momentum L of the three Fermion system is obtained by addition of vectors L12 (of length  

2l-1) and l3 (of length l), and it is equal to  

( ) 112 −=−− lll . 

Therefore, the three particle states with L<l-1 must not have parentage from R=1. 

It is straightforward to show that if  

( )12 −−< plL  

where p=1, 2, 3, …, the three electron multiplet at L has no fractional parentage  

from 

12 −≤ pR . 

The multiplets that must avoid one, two, or three smallest values of R are underlined with an 

appropriate number of lines in Tab.3 and listed in Tab. 4. 
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This gives the results in Tab. 4, the values of 2L that avoid R=1, 3, and 5 for various 2l. 

 

Tab. 4  The allowed values of 2L for a three electron system that must have R≥3, R≥5, and R≥7. The 

listed 2L values correspond to the underlined L multiplets in Tab. 3. 

 

 

The L=0 states that appear at 2l=6 (R≥3), 2l=10 (R≥5), and 2l=14 (R≥7) are the only states 

for these values of 2l that can avoid one, two, or three largest pseudopotential parameters, 

respectively, and therefore are the non-degenerate (L=0) ground states. They are the Laughlin 

ν=1/3, 1/5, and 1/7 states. 

If only a single multiplet belongs to an angular momentum subspace, its form is completely 

determined by the requirement that it is an eigenstate of angular momentum with a given 

eigenvalue L. The wave function and the type of many body correlations do not depend on the 

form of the interaction pseudopotential. For interactions that do not have short range, the state 

that avoids the largest two body repulsion (e.g. the L=0 multiplet at 2l=6) might not have the 

lowest total three body interaction energy and be the ground state. 

If more than one multiplet belongs to a given angular momentum eigenvalue (e.g., two 

multiplets occur at L=3 for 2l=8), the interparticle interaction must be diagonalized in this 

subspace (two-dimensional for 2l=8 and L=3). 

Whether the lowest energy eigenstate in this subspace has Laughlin type correlations, i.e. 

avoids as much as possible largest two body repulsion, depends critically on the short range of 

the interaction pseudopotential. 

For the Coulomb interaction, we find that the Laughlin correlations occur and, whenever 

possible, the coefficient of fractional parentage of the lowest lying multiplets virtually 

vanishes (it would vanish exactly for an “ideal” short range pseudopotential which increases 

infinitely quickly with decreasing R). 

For example, for the lower energy eigenstate at L=3 and 2l=8, the coefficient of fractional 

parentage for R=1 is less than 10
-3
. A similar thing occurs at 2S=9 for L=9/2, at 2S=10 for 

L=4 and 6, at 2S=11 for L=9/2, 11/2, and 15/2, at 2S=12 for L=5, 6, 7, and 9, at 2S=13 for 

L=11/2, 13/2, 15/2, 17/2, and 21/2, and at 2S=14 for L=6^2, 7, 8, 9, 10, and 12. 
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At 2S=14 for L=6 there are three allowed multiplets. The diagonalization of the Coulomb 

interaction gives the lowest state that avoids R=1 (coefficient of fractional parentage ~10
-7
) 

and R=3 (coefficient of fractional parentage <10
-2
), and the next lowest state that avoids R=1 

(coefficient of fractional parentage <10
-5
) but orthogonality to the lowest state requires that it 

has significant parentage from R=3 (coefficient of fractional parentage ≈0.34). 

One can see that the set of angular momentum multiplets L that can be constructed at a given 

value of 2l without parentage from pair states with R=1 is identical to the set of all allowed 

multiplets L at 2l*=2l-4. 

For a short range repulsion (e.g. the Coulomb repulsion in the lowest Landau level), these 

multiplets will be (to a good approximation) the lowest energy eigenstates (the appropriate 

coefficient of fractional parentage for the actual eigenstates will be very small although not 

necessarily zero). 

More generally, in the lowest Landau level (remember that l=S), the set of multiplets L that 

can be constructed at given 2S without parentage from R≤2p-1 (i.e. with R≥2p+1 for all 

pairs; p=1, 2, …) is identical to the set of all allowed multiplets L at  

( )122*2 −−= �pSS . 

The multiplets L forming the lowest Coulomb energy band at a given 2S are all multiplets 

allowed at 2S*. But 2S*=2S-2p(N-1) is just the effective magnetic monopole strength in the 

mean field composite fermion picture! 

Thus the composite fermion picture with 2p attached flux quanta simply picks the subset of 

angular momentum multiplets which have no parentage from pair states with R≤2p-1, and 

neglects the long range part of the pseudopotential, V(R) for R≥2p+1. 

 

6.4  Definition of the short range pseudopotential 

For systems containing more than three Fermions in an angular momentum shell, the simple 

addition of angular momentum to determine the smallest possible L that has parentage from 

pair states with L12=2l-1 is of no help. 

Instead, we make use of the following operator identity 

( ) ∑
<

=−+
ji

ijLl��L 222 ˆˆ2ˆ  

Here  

∑=
i

ilL ˆˆ  

and  

jiij llL ˆˆˆ +=  

The identity is easily proved by writing out the expression for 

2L̂  

and for  
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∑
< ji

ijL2ˆ  

and eliminating  

∑
<

⋅
ji

ji ll ˆˆ  

from the pair of equations. 

Taking matrix elements of the operator identity between states  

αLl � ,  

gives 

( ) ( ) ( )

( ) ( ) ( )∑

∑

+−=

=+−++
<

12

11
2

1

,ˆ,121

121212

2

L

L

�

ji

ij

�

LLL��

LlLLlll��LL

α

αα

G
 

where 

( ) ( )∑=
''

2

12'',12

α
ααα

L

LLL LGLG . 

The coefficients of grandparentage satisfy the relation 

( ) ( ) αβ
α

αβαα δ=∑∑
12 ''

12'',12'',

L L

LLLL LGLG  

Of course, the energy of the multiplet  

αLl � ,  

is given by 

( ) ( ) ( ) ( )∑−=
12

12121
2

1

L

L LVL��LE αα G  

where V(L12) is the electron pseudopotential. 

It is important to make the following observations: 

1. The expectation value of  

∑
< ji

ijL2ˆ  

in a many body state  

αLl � ,  

increases as  

( )1+LL ,  
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but it is totally independent of α; 

2. If the pseudopotential  

( )12LVH   

were a linear function of  

2ˆ
ijL   

(we refer to VH as the “harmonic pseudopotential”), all many body multiplets with the 

same value of L would be degenerate; 

3. The difference  

( ) ( ) ( )121212 LVLVLV H−=∆   

between the actual pseudopotential V and its harmonic part VH lifts this degeneracy.  

If NL many body multiplets of VH occur at angular momentum L, the anharmonic term 

∆V in the pseudopotential causes them to “repel one another” and results in a band of 

NL non-degenerate multiplets. 

Because the expectation value of  

∑
< ji

ijL2ˆ  

in a many body state of angular momentum L increases as L(L+1), a strict Hund's rule holds 

for harmonic pseudopotentials: 

For VH that increases as a function of L12, the highest energy state is always at the 

maximum possible value of L equal to  

( )1
2

1
−−= ���lLMAX , 

and the lowest energy state is at the minimum allowed value of L equal to L
MIN

. 

If VH decreases as a function of L12, the opposite occurs: 

The lowest energy state is at L
MAX

, and the highest energy state is at L
MIN

  

(this is a standard Hund's rule of atomic physics). 

Neither of these Hund's rules may remain true in the presence of a large anharmonic term ∆V. 

For example, if the number of multiplets NL at a value slightly larger than L
MIN

 is very large 

compared to NL at L=L
MIN

, the strong level repulsion due to ∆V within this L subspace can 

overcome the difference in the expectation values of VH, and the lowest eigenvalue of V at L 

can be lower than that at L
MIN

. 

However, only very few multiplets occur at large values of L:  

NL=1 for L=L
MAX

 (for M=L=L
MAX

, the only state is 1,,1, +−− �lll K ); 

NL=0 for L=L
MAX

-1;  

NL≤1 for L=L
MAX

-2; 
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NL≤1 for L=L
MAX

-3; etc. 

As a result, breaking of the Hund's rule that refers to the behavior of energy at large L 

requires stronger anharmonicity than at small L. 

For the Coulomb pseudopotential in the lowest Landau level we always find that the highest 

energy indeed occurs at L
MAX

. 

However, the ability to avoid parentage from pair states having large Lij often favors many 

body states at small L>L
MIN

 with large NL, as prescribed by the composite fermion picture. 

The anharmonicity of the Coulomb pseudopotential in the lowest Landau level (which 

increases with increasing L12) is critical for the behavior of the fractional quantum Hall 

systems. We have found that the condition for the occurrence of subbands separated by gaps 

in the energy spectrum, and, in particular, for the occurrence of non-degenerate 

incompressible fluid ground states at specific values of the filling factor, is that the 

anharmonic term ∆V(L12) is positive and increases with increasing L12. 

In other words, the total pseudopotential V(L12) must increase more quickly than linearly as a 

function of L12(L12+1). 

 

6.5  Hidden symmetry of the short range repulsion 

From our numerical studies we have arrived at the following conjectures: 

1. The Hilbert space  

�lH  

of N identical Fermions each with angular momentum l contains subspaces  

( )p

�lH  

of states that have no parentage from R≤2p-1. 

The subspaces  

( ) ( ) ( )1~ += p

�l

p

�l

p

�l \HHH  

can be defined; they hold states without parentage from R≤2p-1, but with some 

parentage from R=2p+1. 

Then 

( ) ( ) ( )
K⊕⊕⊕= 210 ~~~

�l�l�l�l HHHH  

2. For an “ideal” short range repulsive pseudopotential VSR, for which  

( ) ( )2+>> RR SRSR VV  

the huge difference between energy scales associated with different pair states results 

in the following (dynamical) symmetry: 

(a) subspaces  

( )p

�lH
~

 are the interaction eigensubspaces,  
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(b) p is a good quantum number,  

(c) energy spectrum splits into bands (larger p corresponds to lower energy), and  

(d) energy gap above the pth band scales as  

( ) ( )pVpV 222 −−  

3. For a finite short range pseudopotential V (increasing more quickly than VH as a 

function of L12), the above symmetry is only approximate, but the correlation between 

energy and parentage from highly repulsive pair states persists, and so do the gaps in 

the energy spectrum.  

The mixing between neighboring subbands is weak, although the structure of energy 

levels within each subband depends on the form of V(L12) at R≥2p+1. 

4. The set of angular momentum multiplets in subspace  

( )p

�lH  

is identical to  

*�lH  

where l*=l-p(N-1). 

A general analytic proof for the last conjecture can be found in [24]. 

All of the above conjectures can be immediately translated into the planar geometry. 

The harmonic pseudopotential VH(m), used to define the class of short range 

pseudopotentials, is that of a repulsive interaction potential V(r) which is linear in r
2
. 

Then,  

( ) ( ) ( )
K⊕⊕⊕= 210 ~~~

νννν HHHH  

where  

νH  

is the Hilbert space of electrons filling a fraction ν of an infinitely degenerate Landau level, 

and subspaces  

( )p

νH
~

 

contain states without parentage from m≤2p-1, but with some parentage from m=2p+1. 

The (approximate) dynamical symmetry holds for the Coulomb interaction, and the low 

energy band  

( )p

νH  

contains the same angular momentum multiplets as  

*νH , 

with ν* defined by the composite fermion prescription. 
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The validity of our conjectures for systems interacting through the Coulomb pseudopotential 

is illustrated in Fig. 4 for four electrons in the lowest Landau level at 2S=5, 11, 17, and 23. 

Different symbols mark bands corresponding to (approximate) subspaces  

( )p

�lH
~

 

with different p. The same sets of multiplets reoccur for different 2S in bands related by  

( )
*~ �l

p

�l HH  

 

 

Fig. 4  The energy spectra of four electrons in the lowest Landau level calculated on a Haldane sphere 

with 2S=5, 11, 17, and 23. All those values of 2S are equivalent in the mean field composite Fermion 

picture (the Chern-Simons transformation with p=0, 1, 2, and 3, respectively). Different symbols mark 

states with different numbers of avoided pair states with highest energy. 

 

6.6  Comparison with atomic shells: Hund’s rule 

Our conjectures (verified by the numerical experiments) are based on the behavior of systems 

of interacting Fermions partially filling a shell of degenerate single particle states of angular 

momentum l. This is a central problem in atomic physics and in nuclear shell model studies of 
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energy spectra. It is interesting to compare the behavior of the spherical harmonics of atomic 

physics with that of the monopole harmonics considered here.  

For monopole harmonics l=S+n, where S is half of the monopole strength (and can be integral 

or half integral) and n is a non-negative integer. For the lowest angular momentum shell l=S. 

For spherical harmonics S=0 and l=n. 

If in each case electrons are confined to a 2D spherical surface of radius R, one can evaluate 

the pair interaction energy V as a function of the pair angular momentum L12. 

The resulting pseudopotentials, V(R) for the fractional quantum Hall system in the lowest 

Landau level, and V(L12) for atomic shells in a zero magnetic field, are shown in Fig. 5 for a 

few small values of l. 

 

 
Fig. 5  The pseudopotentials V of the Coulomb interaction for the pair of electrons each with angular 

momentum l: (a) lowest Landau level on a Haldane sphere, monopole harmonics, n=0, l=S, V plotted 

as a function of relative pair angular momentum R; (b) atomic shell, spherical harmonics, S=0, l=n, 

V plotted as a function of pair angular momentum L. 

 

In obtaining these results we have restricted ourselves to spin-polarized shells, so only orbital 

angular momentum is considered. It is clear that in the case of spherical harmonics the largest 

pseudopotential coefficient occurs for the lowest pair angular momentum, exactly the 

opposite of what occurs for monopole harmonics. 

As a consequence of the relation between the total angular momentum L and the average pair 

angular momentum L12, the standard atomic Hund's rule predicts that the energy of a few 

electron system in an atomic shell will, on the average, decrease as a function of total angular 

momentum, which is opposite to the behavior of energy of electrons in the lowest Landau 

level. 

The difference between the energy spectra of electrons interacting through atomic and 

fractional quantum Hall pseudopotentials of Fig. 5 is demonstrated in Fig. 6, where we plot 

the result for four electrons in shells of angular momentum l=3 and 5. 
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Fig. 6  The energy spectra of four electrons in a degenerate shell of angular momentum l=3 (a) and 

l=5 (b), interacting through the pseudopotentials of Fig. 5: open circles - atomic shell (S=0 and l=n), 

solid circles - lowest Landau level (n=0 and l=S). 

 

The solid circles correspond to monopole harmonics and the open ones to spherical 

harmonics. Note that at L
MAX

 the former give the highest energy and the latter the lowest. 

Due to anharmonicity of the pseudopotentials, the behavior of energy at low L does not 

always follow a simple Hund's rule for either fractional quantum Hall or atomic system. 

The fractional quantum Hall ground state for l=3 occurs at L=0 (this is the Jain ν=2/3 

incompressible state). However, for l=5, the lowest of the three states at L=2 has lower energy 

than the only state at L=0. This ground state at L=2 contains one quasihole in the Laughlin 

ν=1/3 state and it is the only four electron state at this filling in which electrons can avoid 

parentage from the R=1 pair state. 

Exactly opposite happens for the atomic system at l=5, where the anharmonicity is able to 

push the highest of the three L=2 states above the high energy state at L=0. 

 

6.7  Higher Landau levels 

Thus far we have considered only the lowest angular momentum shell (lowest Landau level) 

with l=S. The interaction of a pair of electrons in the n
th
 excited shell of angular momentum 

l=S+n can easily be evaluated to obtain the pseudopotentials V(L12) shown in Fig. 7. 

Here we compare Vn(L12) as a function of L12(L12+1) for n=0, 1, and 2. 

It can readily be observed that Vn=0 increases more quickly than L12(L12+1) in entire range of 

L12, while Vn=1 and Vn=2 do so only up to certain value of L12 (i.e., above certain value of 

R=2l-L12). 
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Fig7  The pseudopotentials V of the Coulomb interaction in the lowest (a), first excited (b), and second 

excited (c) Landau levels, calculated on a Haldane sphere, as a function of squared pair angular 

momentum L(L+1). Different symbols correspond to different Landau level degeneracy 2l+1. 

 

For n=1, Vn=1 has short range for R≥3 but is essentially linear in L12 (L12+1) from R=1 to 5. 

For n=2, Vn=2 has short range for R≥5 but is sublinear in L12 (L12+1) from R=1 to 7. 

More generally, we find that the pseudopotential in the nth excited shell (Landau level) has 

short range for R≥2n+1. 

Because the conclusions of the composite fermion picture depend so critically on the short 

range of the pseudopotential, they are not expected to be valid for all fractional fillings of 

higher Landau levels. 

For example, the ground state at ν=2+1/3=7/3 does not have Laughlin type correlations (i.e. 

electrons in the n=1 Landau level do not avoid parentage from R=1) even if it is non-

degenerate (L=0) and incompressible (as found experimentally [25]). 

 

7.  Fermi Liquid model of composite fermions 

The numerical results of the type shown in Fig. 1 have been understood in a very simple way 

using Jain's composite Fermion picture.  
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For the ten particle system, the Laughlin ν=1/3 incompressible ground state at L=0 occurs for 

2S=3(N-1)=27. 

The low lying excited states consist of a single QP pair, with the QE and QH having angular 

momenta lQE=11/2 and lQH=9/2. In the mean field composite fermion picture, these states 

should form a degenerate band of states with angular momentum L=1, 2, …, 10. 

More generally,  

( )1
2

1
+= �lQE  

and 

( )1
2

1
−= �lQH  

for the Laughlin state of an N electron system, and the maximum value of L is N. 

The energy of this band would be  

ccE ωω hh
3

1* ==  

which is the effective composite fermion cyclotron energy needed to excite one composite 

fermion from the (completely filled) lowest to the (completely empty) first excited composite 

fermion Landau level. 

From the numerical results, two shortcomings of the mean field composite fermion picture are 

apparent. 

First, due to the QE-QH interaction (neglected in the composite fermion picture), the energy 

of the QE-QH band depends on L, and the “magnetoroton” QE-QH dispersion has a minimum 

at L=5. Second, the state at L=1 either does not appear, or is part of the continuum (in an 

infinite system) of higher energy states above the magnetoroton band. 

At 2S=27-1=26 and 2S=27+1=28, the ground state contains a single quasiparticle (QE or QH, 

respectively), whose angular momenta  

5
2

1
=== �ll QHQE  

result from the Chern-Simons transformation which gives  

( )122*2 −−= �SS  

which is 8 for QE and 10 for QH, and  

1*+= SlQE  

and 

*SlQH = . 

States containing two identical QP's form lowest energy bands at 2S=25 (two QE's) and 

2S=29 (two QH's). The allowed angular momenta of two identical composite fermion QP's 

(which are Fermions) each with angular momentum lQP are L=2lQP-j where j is an odd integer. 
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Of course, lQP depends on 2S in the composite fermion picture, and at 2S=25 we have  

( )
2

9
111* =+−−=+= �SSlQE  

yielding L=0, 2, 4, 6, and 8, while at 2S=29 we have  

( )
2

11
1* =−−== �SSlQH  

and L=0, 2, 4, 6, 8, 10. 

More generally,  

2

1−
=

�
lQE  

and  

2

1+
=

�
lQH  

in the 2QE and 2QH states of an N electron system, and the maximum values of L are N-2 for 

QE's and N for QH's. 

Similarly as for the magnetoroton band at 2S=27, the composite fermion picture does not 

account for QP interactions and incorrectly predicts the degeneracy of the bands of 2QP states 

at 2S=25 and 27. 

The energy spectra of states containing more than one composite fermion quasiparticle can be 

described in the following phenomenological Fermi liquid picture. 

The creation of an elementary excitation, QE or QH, in a Laughlin incompressible ground 

state requires a finite energy, εQE or εQH, respectively. 

In a state containing more than one Laughlin quasiparticle, QE’s and/or QH’s interact with 

one another through the appropriate QE-QE, QH-QH, and QE-QH pseudopotentials. 

An estimate of the QP energies can be obtained by comparing the energy of a single QE (for 

the N=10 electron system, the energy of the ground state at L=N/2=5 for 2S=27-1=26) or a 

single QH (L=N/2=5 ground state at 2S=27+1=28) with the Laughlin L=0 ground state at 

2S=27. There can be finite size effects here, because the QP states occur at different values of 

2S than the ground state, but using the correct magnetic length  

S

R
=λ  

(R being the radius of the sphere) in the unit of energy  

λ

2e
 

at each value of 2S, and extrapolating the results as a function of 1/N to an infinite system 

should give reliable estimates of εQE and εQH for a macroscopic system. 
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The QP pseudopotentials VQP-QP can be obtained by subtracting from the energies of the 2QP 

states obtained numerically at 2S=25 (2QE), 2S=27 (QE-QH), and 2S=29 (2QH), the energy 

of the Laughlin ground state at 2S=27 and two energies of appropriate non-interacting QP's. 

As for the single QP, the energies calculated at different 2S must be taken in correct units of  

R

e
S

e 22

=
λ

 

to avoid finite size effects. This procedure was carried out in references [16,26]. 

In Fig. 8 we plot the QE-QE and QH-QH pseudopotentials for Laughlin ν=1/3 and 1/5 states. 

 

 
Fig. 8  The pseudopotentials of a pair of quasielectrons (left) and quasiholes (right) in Laughlin ν=1/3 

(top) and ν=1/5 (bottom) states, as a function of relative pair angular momentum R. Different 

symbols mark data obtained in the diagonalization of between six and eleven electrons. 

 

As we have seen for two electrons (see Fig. 3), the angular momentum L12 of a pair of 

identical Fermions in an angular momentum shell (or a Landau level) is quantized, and the 

convenient quantum number to label the pair states is R=2lQP-L12 (on a sphere) or relative 

(REL) angular momentum m (on a plane). When plotted as a function of R, pseudopotentials 

calculated for systems containing between six to eleven electrons (and thus for different QP 

angular momenta lQP) behave similarly and, for N → ∞ (i.e., 2S → ∞), they seem to converge 

to the limiting pseudopotentials VQP-QP(R=m) describing an infinite planar system. 

In Fig. 9 we plot the QE-QH pseudopotentials for Laughlin ν=1/3 and 1/5 states. 
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Fig. 9  The pseudopotentials of a quasielectron-quasihole pair in Laughlin ν=1/3 (a) and ν=1/5 (b) 

states as a function of wavevector k. Different symbols mark data obtained in the diagonalization of 

between five and eleven electrons. 

 

As for a conduction electron and a valence hole pair in a semiconductor (an exciton), the 

motion of a QE-QH pair which does not carry a net electric charge is not quantized in a 

magnetic field. The appropriate quantum number to label the states is the continuous 

wavevector k (or momentum), which on a sphere is given by  

S

L

R

L
k

λ
==  

(remember that L is given in units of the Planck constant).  

When plotted as a function of k, the pseudopotentials calculated for systems containing 

between six to eleven electrons fall on the same curve that describes a continuous 

magnetoroton dispersion VQE-QH(k) of an infinite planar system (the lines in Fig. 9 are only to 

guide the eye). Only the energies for L≥2 are shown in Fig. 9, since the single QE-QH pair 

state at L=1 is either disallowed (hard core) or falls into the continuum of states above the 

magnetoroton band. 

The magnetoroton minima for the Laughlin ν=1/3 and 1/5 states occur at about  
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λ
4.1

0 =k  

and 

λ
1.1

0 =k , 

respectively. 

The magnetoroton band at ν=1/3 is well decoupled from the continuum of higher states 

because the band width ~0.05e
2
/λ is much smaller than the energy gap εQE+εQH=0.1e

2
/λ for 

additional QE-QH pair excitations. 

At ν=1/5, the band width ~0.015 e
2
/λ is closer to the single particle gap εQE+εQH=0.021e

2
/λ 

and the state of two magnetorotons each with k≈k0 can couple to the highest energy QE-QH 

pair states at k≤2k0. 

Knowing the QP-QP pseudopotentials and the bare QP energies allows us to evaluate the 

energies of states containing three or more QP's. Typical results are shown in Fig. 10. 

 

 
Fig. 10  The energy spectra of three quasielectrons (a) and three quasiholes in the Laughlin ν=1/3 

state. The crosses correspond to the Fermi-liquid calculation using pseudopotentials from Fig. 8(a,b); 

the solid circles give exact spectra obtained in full diagonalization of the Coulomb interaction of 

eleven (a) and nine (b) electrons. 

 

In frame (a) we show the energy spectra of three QE's in the Laughlin ν=1/3 state of eleven 

electrons. The spectrum in frame (b) gives energies of three QH's in the nine electron system 

at the same filling. The exact numerical results obtained in diagonalization of the eleven and 

nine electron systems are represented by plus signs and the Fermi liquid picture results are 

marked by solid circles. The exact energies above the dashed lines correspond to higher 

energy states that contain additional QE-QH pairs. 

It should be noted that in the mean field composite fermion picture which neglects the QP-QP 

interactions, all of the 3QP states would be degenerate and the energy gap separating the 3QP 

states from higher states would be equal to  
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ccE ωω hh
3

1* == . 

Although the fit in Fig. 10 is not perfect, it is quite good and justifies the use of the Fermi 

liquid picture to describe (compressible) states at  

12

1

+
≠

p
ν . 

 

8. Composite fermion hierarchy 

The sequence of Laughlin-Jain states with filling factor \nu given by  

*21

*

ν
ν

ν
p+

=  

where p=1, 2, …, and the composite fermion filling factor ν* is any non-zero integer, is the 

most prominent set of condensed states observed experimentally. However, this sequence 

(together with the conjugate “hole” states, ν→1-ν) does not contain all odd denominator 

fractions the way the Haldane hierarchy scheme does. 

The question arises quite naturally of how to treat the composite fermion values of ν* which 

are not integers. The answer leads to the composite fermion approach to the hierarchy of 

incompressible quantum fluid ground states [13]. 

Consider a state of N0 electrons at a monopole strength 2S0 with a filling factor ν0. The 

Chern-Simons transformation that attaches to each electron 2p0 flux quanta oriented opposite 

to the applied magnetic field results in the composite fermion system at an effective filling 

factor ν0* given by  

0

00

2
1

*

1
p−=

νν
 

and an effective monopole strength  

( )122*2 0000 −−= �pSS  

The procedure for handling non-integral values of composite fermion filling factor ν0* is to 

set it equal to  

110* νν += n  

where n1 is an integer and ν1 is the fractional filling of the composite fermion quasiparticle 

level (same sign as n1 for QE's and opposite for QH's). 

The problem is then that of placing N1 quasiparticles into 2l1+1 available states of a 

composite fermion shell (Landau level) of angular momentum l1: 

the QE's into the lowest empty shell with  

1* 101 ++= nSl  

or the QH's into the highest filled shell with  
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101 * nSl +=  

We now ignore all completely filled and completely empty composite fermion shells, and 

reapply the Chern-Simons transformation by setting S1=l1 and attaching 2p1 flux quanta to 

each of the N1 quasiparticles in the partially filled composite fermion shell. 

This produces a new type of QP's and a new QP filling factor ν1* given by  

1

11

2
1

*

1
p−=

νν
. 

If ν1* is an integer, we obtain a daughter states in the hierarchy. If it is not, we write  

221* νν += n  

where ν2 represents the partial filling of the new QP shell, and repeat the mean field 

composite fermion procedure. 

This leads to the set of equations: 

11

1
2

1

++ +
+=

ll

l

l n
p

νν
 

where νl is the QP filling factor and 2pl is the number of flux quanta attached to each Fermion 

at the l
th
 level of the composite fermion hierarchy. 

As an example, consider a system of N0=12 electrons at 2S0=30. 

We apply the mean field composite fermion approximation by attaching to each electron 

2p0=2 flux quanta. This gives the effective composite fermion monopole strength 2S0*=30-

2(12-1)=8. The lowest composite fermion shell is filled with nine particles, and there are 

N1=3 quasielectrons in the first excited (n1=1) composite fermion shell of angular momentum 

l1=5. The filling factor at this level of hierarchy is ν0*=1+ν1. 

We now reapply the composite fermion transformation by attaching 2p1=4 flux quanta to each 

of N1=3 QE's at 2S1=10 and obtain 2S1*=10-4(3-1)=2. The lowest composite fermion shell of 

l1=1 is now completely filled yielding ν1*=1. 

Using the appropriate above filling factor relations we obtain  

5
1

1
4

1

1

=+=
ν

 

and  

6

17

511

1
2

1

0

=
+

+=
ν

 

If the mean field composite fermion picture worked on all levels of hierarchy, the twelve 

electron system at 2S=30 should have an incompressible L=0 ground state corresponding to 

the filling factor ν=6/17. 

In Fig. 11(a) we show the low energy sector of the spectrum calculated for this system using 

the Fermi liquid picture (only the lowest energy states containing three QE's in the Laughlin 

ν=1/3 state are calculated). 
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Fig. 11  (a) The low energy spectrum of three quasielectrons in the Laughlin ν=1/3 state of twelve 

electrons calculated using quasielectron pseudopotential from Fig. 8(a). (b) The energy spectrum of 

three quasiholes in the Laughlin ν=1/3 state of eight electrons obtained in full diagonalization of 

electron-electron Coulomb interaction. 

 

Indeed, the ν=6/17 hierarchy ground state at L=0 is separated from higher states by a small 

gap in the twelve electron spectrum (although it is not clear that this small gap will persist in 

the thermodynamic limit [26]). 

Though the composite fermion hierarchy picture seems to work in some cases, there are 

others where it is clearly in complete disagreement with numerical results. For example, a 

composite fermion transformation with 2p0=2 applied to an N0=8 electron system at 2S0=18 

gives 2S0*=18-2(8-1)=4, n1=1, and N1=3 QE's left in the shell with l1=3. 

Adding the three QE angular momenta of l1=3 gives a low energy band at L=0, 2, 3, 4, and 6.  

Reapplication of the composite fermion transformation with 2p1=2 gives 2S1*=6-2(3-1)=2, 

i.e. the completely filled lowest shell, ν1*=1 (n2=1 and ν2=0). 

From this we get ν1=1/3 and ν0=4/11. 

In Fig. 11(b) we show the spectrum obtained by exact  numerical diagonalization of an eight 

electron system at 2S=18. It is apparent that the set of multiplets at L=0, 2, 3, 4, and 6 form 

the low energy band. However the reapplication of the mean field composite fermion 

transformation to the three QE's in the l1=3 shell (which predicts an L=0 incompressible 

ground state corresponding to ν=4/11) is definitely wrong. 

The reason why the composite fermion hierarchy picture does not always work is not difficult 

to understand. The electron (Coulomb) pseudopotential in the lowest Landau level Ve(R) 

satisfies the “short range” criterion (i.e. it increases more quickly with decreasing R than the 

harmonic pseudopotential VH) in the entire range of R, which is the reason for the 

incompressibility of the principal Laughlin ν=1/(2p+1) states. However, this does not 

generally hold for the QP pseudopotentials on higher levels of the hierarchy. 

In Fig. 8 we plotted VQE-QE(R) and VQH-QH(R) for the ν=1/3 and ν=1/5 Laughlin states of six 

to eleven electrons. Clearly, the QE and QH pseudopotentials are quite different and neither 

one decreases monotonically with increasing R. On the other hand, the corresponding 

pseudopotentials in ν=1/3 and 1/5 states look similar, only the energy scale is different. 

41



 

The convergence of energies at small R obtained for larger N suggests that the maxima at 

R=3 for QE's and at R=1 and 5 for QH's, as well as the minima at R=1 and 5 for QE's and at 

R=3 and 7 for QH's, persist in the limit of large N (i.e. for an infinite system on a plane). 

Consequently, the only incompressible daughter states of Laughlin ν=1/3 and 1/5 states are 

those with νQE=1 or νQH=1/3 and (maybe) νQE=1/5 and νQH=1/7. 

It is clear that no incompressible daughter states of the parent Laughlin ν=1/3 state will form 

at e.g. ν=4/11 (νQE=1/3) or 4/13 (νQH=1/5), but that they will form (at least, in finite systems 

[26]) at \nu=6/17 (νQE=1/5) or 6/19 (νQH=1/7). 

From the composite fermion hierarchy scheme we find the Jain-Laughlin states when the 

Chern-Simons transformation is applied directly to electrons (or to holes in a more than half-

filled level). These states occur at integral values of ν*, the effective composite fermion 

filling factor, and correspond to completely filling a QP shell. 

For example, the ν=2/5 state occurs when ν*=2, and the composite fermions in the first 

excited shell (which are Laughlin QE's of the ν=1/3 state) have νQP=1. 

The angular momenta of the two lowest composite fermion shells are  

**0 Sl =  

and 

1**1 += Sl  

so they contain 2l0*+1 and 2l1*+1 states, respectively. 

Since νQP=1, there are NQP=2l1*+1 composite fermion quasiparticles. The total number of 

states filled by the N Fermions is  

( ) ( ) 221*21*2 10 −=+++ QP�ll  

giving  

22 −= QP�� . 

For an infinite system this is just Haldane's relation between the number of quasiparticles and 

the number of electrons,  

QPq�� 2=  

for the integer q=1. 

This demonstrates that integrally filled composite fermion shells correspond to νQP=1, a 

completely filled shell of Laughlin QP's. 

Adding new Fermions to a system with νQP=1 requires creating a new type of QP's, and the 

counting of available QP states turns out to be exactly the same in the composite fermion 

hierarchy and Haldane's Boson hierarchy pictures. 

Integral composite fermion filling (i.e., νQP=1) gives a valid mean field picture independent of 

QP-QP interactions provided that the gap for creating new QP's is positive. 
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When ν* is non-integral, the mean field picture is valid only at values of L for which the 

“short range” requirement on the pseudopotential VQP-QP(L) is satisfied. 

The form of the QP-QP interactions obtained from our numerical calculations makes it clear 

that the mean field approximation is not valid at certain quasiparticle fillings (e.g. for νQP=1/3 

filling of the quasielectron levels of the electron ν=1/3 state). 

43



 

 

II. Electron-hole systems in high magnetic fields 

 

1. Excitonic complexes 

There has been a great deal of interest in photoluminescence (PL) of 2D systems in high 

magnetic fields. An important ingredient in understanding PL is the negatively charged 

exciton, alternatively also called a trion (X
-
). 

The trion consists of two electrons bound to a valence band hole. If the total spin of the pair of 

electrons, Je, is zero, the trion is said to be a singlet  

−
sX ;  

if Je=1 the trion is called a triplet  

−
tX . 

Only the singlet is bound in the absence of a magnetic field, but in infinite magnetic field (so 

that only a single Landau level is relevant) only the triplet is bound in a 2D system. 

It often occurs that the photoexcited hole is separated from the plane of the electron system by 

a small distance (this can happen, e.g., in wide GaAs quantum wells when the electron gas is 

confined to one GaAs/AlGaAs interface by remote ionized donors, and the photoexcited holes 

reside close to the other GaAs/AlGaAs interface). 

Several remarkable effects associated with electron-hole systems and charged excitons can be 

understood using the composite Fermion picture. 

 

2. Charged exciton and the hidden symmetry in the lowest Landau level 

First let us consider the idealized 2D system at so large a magnetic field that only the lowest 

electron and hole Landau levels need be considered. The energy spectrum for a two-electron-

one-hole system at 2S=20 is shown in Fig. 12. 

The triplet trion with angular momentum  

1−=− Sl
X

 

is the only bound state, with binding energy ~0.05e
2
/λ. A pair of (unbound) singlet and triplet 

states occur at the energy equal exactly to the exciton energy EX. In these so-called 

“multiplicative” states a neutral exciton X in its ground state is decoupled from the second 

electron. 
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Fig12  The energy spectrum (binding energy vs. angular momentum) of a two-electron-one-

hole system in the lowest Landau level at 2S=20. Open and solid circles mark singlet and 

triplet spin configurations, respectively. 

 

Addition of exciton and electron angular momenta LX=0 and le=S gives a state of total angular 

momentum L=S, and addition of two electron spins of 1/2 gives both Je=0 and 1 spin 

configurations. 

 

3. Hidden symmetry 

The occurrence of unbound 2e+1h states at E=EX and L=S is a manifestation of the following 

“hidden symmetry:” 

Because of the exact overlap of electron and hole orbitals in the lowest Landau level (scaled 

with the same magnetic length λ), and thus independence of the strength of interaction of the 

type of particles involved, the commutator of an operator  

+
Xd  

which creates an exciton in its LX=0 ground state (on a sphere,  

( )∑ +++ −=
m

mm

m

X hcd 1 ,  
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where cm
+
 and hm

+
 are electron and hole creation operators), with the interaction Hamiltonian 

H is  

[ ] ++ = XXX dEdH , . 

As a result, if Ψ is an eigenstate of Ne electrons and Nh holes with an eigenenergy E and 

angular momentum quantum numbers L and M, then the multiplicative state  

Ψ+
Xd  

Ne+1 electrons and Nh+1 holes is also an eigenstate with energy E+EX and the same L and M. 

A good quantum number conserved due to the “hidden symmetry” is the number of decoupled 

excitons, NX. 

In particular, the ground state for Ne=Nh=N is the totally multiplicative state 

( ) vacd
�

X

+  

with NX=N; for an infinite system this ground state can be viewed as a Bose condensate of 

non-interacting excitons. 

It can be readily found that the application of the PL operator that annihilates an optically 

active exciton (dX) reduces its NX by one, and therefore that only the multiplicative electron-

hole states with NX>0 are optically active (have non-vanishing PL intensity). 

In Fig. 12, the two multiplicative states at E=EX and L=S have NX=1, and all others have 

NX=0. 

It is essential to realize that two independent symmetries forbid the recombination of a triplet 

trion ground state in Fig. 12: 

1. Due to the 2D translational/rotational space invariance, the PL operator dX conserves 

two angular momentum quantum numbers. On a sphere, these are is L and M, and the 

resulting optical selection rule allows only a state with L=S to decay by e-h 

recombination. On a plane, these are the projection of total angular momentum M and 

an additional angular momentum quantum number K associated with partial 

decoupling of the center-of-mass motion of a charged system in a homogeneous 

magnetic field, and the radiative channel for a trion is that of M+K=0. 

This (geometrical) symmetry can be broken by collisions, but persists in systems with 

a finite quantum well width, finite electron and hole layer separation, or Landau level 

mixing. 

2. Due to the equal strength of e-e, h-h, and e-h interactions, NX is a good quantum 

number. Since NX is decreased in a PL process, only the multiplicative (NX>0) states 

are radiative.  

This (dynamical) symmetry is not broken by collisions, and requires breaking 

electron-hole orbital symmetry. 

Since a number of independent factors are needed to allow for the recombination of a triplet 

trion, this complex (in narrow and symmetric quantum wells and in high magnetic fields) is 

expected to be a well defined long-lived quasiparticle. The correlations, optical properties, 
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etc. are expressed more easily in terms of this quasiparticle than in terms of individual 

electrons and holes. 

The finite angular momentum of a trion in spherical geometry (partial decoupling of the 

center-of-mass excitations from the relative motion on a plane) can be viewed as the 

formation of a degenerate Landau level of this (charged) quasiparticle. 

As will be shown later, the interaction of trion quasiparticles with one another and with 

electrons can be described using the ideas familiar in the context of fractional quantum Hall 

systems (Laughlin correlations, composite Fermions, parentage, etc.). 

 

4.  Interaction of charged excitons 

The simplest system in which to study trion-trion interaction contains four electrons and two 

holes. Its energy spectrum at 2S=17 is shown in Fig. 13. 

The low energy spectrum is characterized by four bands which we have identified as follows: 

1. The lowest band taking on all even values between L=0 and 12 consists of a pair of 

charged excitons, each with angular momentum  

1−=− Sl
X

; 

2. The next band contains an electron with le=S and a negatively charged biexciton (a 

bound state of an exciton and a trion)  

−− += XXX 2  

with angular momentum  

2
2

−=− Sl
X

; 

the allowed angular momenta go from 2
2

=−= −Xe llL  to 141
2

=−+= −Xe llL  

3. A band of multiplicative states containing an exciton, a trion, and an electron; it begins 

at 1=−= −Xe llL  and goes to 151=−+= −Xe llL . 

4. A band of multiplicative states containing two neutral excitons and two free electrons; 

it takes on all even values of L between zero and 2le-1=16. 

One interesting feature of Fig. 13 is that it gives us the effective pseudopotential VAB(L) for 

the interaction of the pair of Fermions AB (where A and B can be an electron, charged 

exciton, charged biexciton, etc.) as a function of angular momentum. 

As for electrons, it is convenient to use the relative pair angular momentum  

Lll BA −+=R  
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Fig. 13  The energy spectrum of a four-electron-two-hole system in the lowest Landau level calculated 

on a Haldane sphere with 2S=17. Different symbols mark states with zero, one, or two decoupled 

excitons. The lines connect states identified as pseudopotentials of different pairs of bound charged 

complexes. 

 

For identical Fermions with angular momentum l, the allowed values of L are 2l-j, where j is 

an odd integer, i.e., R=1, 3, 5, …, and R≤2l. 

For distinguishable Fermions A and B, all values of L between |lA-lB| and |lA+lB| are expected, 

i.e., R=0, 1, 2, …, and R≤2min(lA,lB).  

However, our numerical results display a “hard core” repulsion for composite particles, and 

one or more of the pair states with the largest values of L (smallest R) are forbidden (i.e. the 

corresponding pseudopotential parameters are effectively infinite). 

For  

−= nXA  

and 

−= mXB  

the smallest allowed value of R is given by  

( ) 1,min2 += mnMI�

ABR  
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The identification of pair states AB in Fig. 13 (as marked with lines) was possible by 

comparing the displayed 4e-2h spectrum with the pseudopotentials of point charge particles 

with appropriate angular momenta lA and lB and binding energies εA and εB [17]. 

The appropriate values of angular momenta lA and lB, and of the binding energies εA and εB 

are obtained by diagonalizing smaller systems (e.g. the 2e-1h system in Fig. 12 for the trion), 

and the point charge pseudopotentials are used to approximate the AB interaction. 

The approximate AB energies obtained in this way are rather close to the exact 4e-2h 

energies. This implies that, due to different energy scales, the internal dynamics of charged 

excitons is weakly coupled to their scattering off one another or off electrons, and allows for 

the interpretation of an electron-hole system in terms of well-defined charged excitonic 

quasiparticles interacting with one another and with excess electrons through Coulomb like 

forces. 

Slight difference between the actual pseudopotentials in Fig. 13 and the pseudopotentials of 

point charge particles comes from the larger size of charged excitons and their (nearly frozen) 

internal degrees of freedom. The latter can be accounted for phenomenologically by 

attributing each type of composite particles a finite electric polarizability to describe their 

induced electric dipole moment in the presence of an electric field of other charged particles. 

Due to an increased charge isotropy, the polarization effects are expected to be greatly 

reduced in larger systems, and disappear completely in the fluid type states discussed in the 

following paragraphs. 

 

5.  Generalized composite fermion picture for charged excitons 

Suppose we have a system of different (distinguishable) charged Fermions (A, B, …). They 

can be distinguished either because they are different species (e.g., electrons and charged 

excitons) or because they are confined to different, spatially separated layers.  

If all particles in such system repel one another through short range pseudopotentials (as 

defined for the electron fractional quantum Hall systems), one can think of many body states 

with Laughlin-type correlations [6,7] given by a generalized Laughlin-Jastrow factor 

( ) ( )( )∏ −
ji

B

j

A

i zz
,

 

where z’s are the complex coordinates for the positions of the i
th
 Fermion of type A and j

th
 

Fermion of type B, and the product is over all pairs. 

The restrictions on the integers mAB are that mAA and mBB must be odd, mBA=mAB, and mAB 

must not be smaller than certain minimum values RAB
MIN

 to avoid the infinite hard cores for 

all pairs. 

In a state with Laughlin correlations, a number of pair states with largest repulsion are 

avoided for each pair,  

ABAB m≥R  

This is equivalent to saying that the high energy collisions (in which any pair of particles 

would come very close to one another) are forbidden in such state. This intuitive property of 
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the Laughlin fluid states will be very useful in the discussion of collision assisted trion 

recombination. 

A generalized composite fermion picture can be constructed for a system with Laughlin 

correlations. In this picture, fictitious flux tubes carrying an integral number of flux quanta φ0 

are attached to each particle. 

In the multi-component system, each particle of type A carries flux (mAA-1)φ0 that couples 

only to charges on all other particles of the same type A, and fluxes mABφ0 that couple to 

charges on all particles of other types B (A and B are any of the types of Fermions). 

On a sphere, the effective monopole strength seen by a composite fermion of type A 

(composite fermion-A) is  

( )( )∑ −−−=
B

ABBABABA �mSS δδ2*2  

For different multi-component systems we expect generalized Laughlin incompressible states 

(for two components denoted as [mAA, m
BB

, m
AB

]) when all the hard core pseudopotentials are 

avoided and composite fermions of each kind fill completely an integral number of their 

composite fermion shells (e.g. NA=2lA*+1 for the lowest shell). 

In other cases, the low lying multiplets are expected to contain different kinds of composite 

fermion quasiparticles (generalized QE's or QH's),QP-A, QP-B, …, in the neighboring 

incompressible state. 

It is interesting to realize that the effective monopole strengths 2SA*, i.e. the effective 

magnetic fields BA* seen by particles of different type are not generally equal. One can think 

of effective Chern-Simons charges and fluxes of different colors, but the resulting number of 

different effective composite fermion magnetic fields of different color can no longer be 

regarded as physical reality, and no cancellation between gauge and Coulomb interactions is 

possible. 

The multi-component (multi-color) composite fermion picture can be applied to electrons and 

charged excitons in an electron-hole system. We have checked that the pseudopotentials 

describing interaction of identical composite particles in Fig. 13 all satisfy the short range 

criterion in the entire range of R. 

For a pair of different particles, the pseudopotential may increase sufficiently quickly for 

some values of R but not the others and, for example, for e- and X- only the correlations 

described by exponents  

1
,

=−−
Xe

m    or even 

are expected to occur. 

As an example, let us consider the 12e-6h system. In Fig. 14 we present its low energy 

spectrum at 2S=17, calculated by diagonalizing systems of different combinations of electrons 

and composite particles interacting through effective pseudopotentials determined in Fig. 13. 
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Fig. 14  The approximate lowest energy bands corresponding to different combinations of six bound 

charged complexes interacting through appropriate pseudopotentials, in the twelve-electron-six-hole 

spectrum in the lowest Landau level, calculated on a Haldane sphere with 2S=17. The lines mark 

lowest subbands of two lowest excited bands. 

 

The following combinations (groupings of 12e and 6h into bound complexes) have the highest 

total binding energy and thus form the lowest energy bands in the 12e-6h spectrum: 

(i) −X6 ,  

(ii) −− + Xe 5 , 

(iii) −−− ++ 24 XXe , 

(iv) −−− ++ 2222 XXe , 

(v) −−− ++ 332 XXe , 

(vi) −−− ++ 232 XXe  

(vii) −− + Xe 42  

Groupings (ii), (vi), and (vii) also contain neutral excitons that however do not interact with 

charged particles due to the hidden symmetry. 
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For each of these groupings, the composite fermion transformation can be applied to 

determine correlations and identify number and type of quasiparticles that occur in the lowest 

energy states. For example, for groupings (i)-(iii) the generalized composite fermion picture 

makes the following predictions. 

1. For 3=−− XX
m  we obtain the Laughlin ν=1/3 state with total angular momentum L=0. 

Because of the hard core of −− XX
V , this is the only state of this grouping. 

2. We set 3=−− XX
m  and 3,2,1=−− Xe

m .  

For 1=−− Xe
m  we obtain L=1, 2, 3

2
, 4

2
, 5

3
, 6

3
, 7

3
, 8

2
, 9

2
, 10, and 11.  

For 2=−− Xe
m  we obtain L=1, 2, 3, 4, 5, and 6. 

For 3=−− Xe
m  we obtain L=1. 

3. We set 3=−− XX
m , 1

2

=−− Xe
m , 3

2

=−− XX
m , and 3,2,1=−− Xe

m . 

For 1=−− Xe
m  we obtain L=2, 3, 4

2
, 5

2
, 6

3
, 7

2
, 8

2
, 9, and 10. 

For 2=−− Xe
m  we obtain L=2, 3, 4, 5, and 6. 

For 3=−− Xe
m  we obtain L=2. 

In groupings (ii) and (iii), the sets of multiplets obtained for higher values of −− Xe
m   

are subsets of the sets obtained for lower values, and we would expect them to form lower 

energy bands since they avoid additional small values of  

−− Xe
R . 

However, note that the (ii) and (iii) states predicted for  

3=−− Xe
m   

(at L=1 and 2, respectively) do not form separate bands in Fig. 14. This is because  

3=−− Xe
V  

increases more slowly than linearly as a function of L(L+1) in the vicinity of  

3=−− Xe
R  

(see Fig. 13). In such case the composite fermion picture fails [12,17]. 

We conclude that different kinds of long-lived Fermions (electrons and different charged 

excitonic complexes) formed in an electron-hole plasma in high magnetic fields can exhibit 

generalized incompressible fractional quantum Hall ground states with Laughlin-type 

correlations, and that these states can be described using a generalized composite fermion 

model. 
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6.  Spatially separated electron-hole system 

Even in very high magnetic fields (in the lowest Landau level), an asymmetry between e-e, h-

h, and e-h interactions can be introduced by spatially separating 2D electron and hole layers. 

Such separation, which occurs for example in asymmetrically doped wide quantum wells, 

breaks the hidden symmetry and allows for a rich photoluminescence (PL) spectrum, which 

(unlike that for a co-planar system) can be therefore used as a probe of the low lying electron-

hole states. 

Let us consider an ideal system, in which electrons and holes occupy 2D parallel planes 

separated by a distance d. The interaction potentials are  

( ) ( )
r

rVrV hhee

1
==  

and  

( )
22

1

dr
rVeh

+
−= . 

The energy spectrum of a seven-electron-one-hole system is shown in Fig. 15 for 2S=15 and 

values of d going from 0 to 5 (measured in units of the magnetic length \lambda). 

For d=5λ, the e-h interaction is weak and, as a first approximation, we can say that that the 

lowest band of states will consist of the lowest composite fermion band of the electron system 

plus the (constant) hole energy. 

The allowed angular momenta will be given by Le, the angular momenta of the low lying 

electron states, added to the hole angular momentum lh of length lh=S=15/2. 

At 2S=15, the composite fermion picture for the electrons gives  

( ) ( ) 317215122*2 =−⋅−=−−= �pSS . 

The seven electrons fill the l0*=3/2 shell plus three of the QE states in the shell lQE=5/2. The 

resulting electron angular momenta are Le=3/2, 5/2, and 9/2. This gives three bands of low 

lying states, with total angular momenta 6 ≤ L ≤ 9, 5 ≤ L ≤ 10, and 3 ≤ L ≤ 12, respectively. 

These three bands can be clearly distinguished at d=5λ and the states within each band 

become nearly degenerate at d~10λ. 

For d=0, it is more useful to consider bound excitonic complexes (X and X
-
) and Laughlin 

quasiparticles of the e
-
-X

-
 fluid. 

First consider the multiplicative state with a single X and six electrons. At 2S=15 six electrons 

have the Laughlin ν=1/3 ground state since  

( ) ( ) 516215122*2 =−⋅−=−−= �pSS  

gives a composite fermion shell which accommodates all six composite fermions. This is the 

lowest state at L=0, marked with a circle in frame (a). For a charge configuration containing 

one trion and five electrons, we can use the generalized composite fermion model with  
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Fig. 15  The energy spectrum of a seven-electron-one-hole system in the lowest Landau level 

calculated on a Haldane sphere at 2S=15, for different values of the separation d between electron 

and hole planes. In frames (a) and (b), the circle marks a multiplicative state and solid lines mark 

states containing a charged exciton X
-
. In frame (d), the dashed lines mark three lowest bands. 

 

3=−− Xe
m  

2=−− Xe
m  

This gives  

( )( ) ( )( ) 512151315112*2 =⋅−−−−=−−−−= −−−−−−− XXeeeee
�m�mSS   

and 

552152*2 =⋅−=−= −−−− eXeX
�mSS  

and the angular momenta  

2

5
** == −− ee

Sl  

and 
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2

3
1** =−= −− XX

Sl . 

There is one empty state in the lowest composite-fermion-electron shell giving Le=5/2, and 

the composite-fermion-trion has LX-=3/2. Adding these two angular momenta gives L=1, 2, 3, 

and 4 as the lowest band of 5e
-
-X

-
 states.  

The multiplicative state at L=0 (open circle) and the band of four multiplets containing a trion 

at L=1 to 4 (line) can clearly be seen at d=0 in frame (a). 

Although the hidden symmetry is only approximate at d>0, these bands can be easily 

identified at d=0.5λ in frame (b). 

At an intermediate separation of d=1.75λ in frame (c), neither description used for d<λ nor 

d>>λ is valid, and it seems that a low energy band occurs at L=0, 1, 2, 3
2
, 4, 5, and 6. 

Most likely, the trion unbinds but the hole is still able to bind one electron, forming an exciton 

with a significant electric dipole moment. This dipole moment results in repulsion between 

the exciton the remaining six electrons, so that the correlations are quite different than at d=0, 

where the exciton decouples. 

The PL spectrum can be evaluated from the eigenfunctions obtained in the numerical 

diagonalization of finite systems. For d>>0, between one and three peaks are observed in the 

PL spectrum [27]. Their separations are related to the Laughlin gap (for creation of a QE-QH 

pair) and to the energy of interaction between the valence band hole and the electron system. 

 

7.  Charged excitons in a finite magnetic field 

One final point is worth mentioning. The numerical calculations described so far were 

performed for an idealized model in which electrons and holes were confined to infinitely thin 

2D layers, and only the lowest Landau level was considered. For realistic systems, effects due 

to spin, finite width of the quantum well, and Landau level mixing are very important. The 

energy spectra of the simple 2e-1h system calculated at 2S=20 for parameters appropriate to a 

11.5nm GaAs/AlGaAs quantum well are shown in Fig. 16. 

Two frames correspond to the magnetic field of B=13T and 68T. We used five electron and 

hole Landau levels (n≤4) in the calculation, with the realistic magnetic field dependence of 

the hole cyclotron mass and the appropriate Zeeman splittings. The interaction matrix 

elements included finite (and different) effective widths of electron and hole quasi-2D layers. 

There are a number of bound trion states in both frames, in contrast to only one singlet bound 

state at B=0 or only one triplet bound state predicted for an idealized system at infinite B. 

Three of these bound states are of particular importance. 

−
sX  

and 

−
tbX  

 (b for “bright”), the lowest singlet and triplet states at L=S, are the only well bound radiative 

states, while −
tdX  (d for “dark”) has by far the lowest energy of all non-radiative (L≠S) states. 
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Fig. 16  The energy spectra (binding energy vs. angular momentum) of the two-electron-one-hole 

system calculated on a Haldane sphere with the Landau level degeneracy of 2S+1=21. Five electron 

and hole Landau levels are included, and the parameters are appropriate for the 11.5nm GaAs 

quantum well in the magnetic field of B=13T (a) and 68T (b). 

 

The dark triplet trion state is the state discussed in the preceding sections; it is the only bound 

state in the lowest Landau level, but unbinds at low magnetic fields. The bright singlet trion 

state is the only bound state at B=0, but unbinds at very high fields due to the hidden 

symmetry. These states cross at B≈30T, as predicted in an earlier calculation [28]. 

The bright triplet trion has been discovered more recently [29]. It occurs only at intermediate 

fields and crosses neither the singlet trion nor the dark triplet trion. It also has a larger PL 

intensity than the singlet trion state. 

Although an isolated dark triplet trion is non-radiative because of the angular momentum 

selection rule, its collisions with other trions or with electrons (which break the translational 

symmetry) could be expected to allow for its recombination. 

However, the Laughlin correlations limit high energy collisions at low filling density (ν≈1/5 

or less) and the PL intensity of a dark triplet trion remains very low also in a presence of other 

particles [29]. In consequence, the dark triplet dark triplet trion state is not seen in PL, and 

there is no contradiction between experiment [30], which sees recombination of a triplet state 

at the energy above the singlet state up to 50T, and theory [29], which predicts that the lowest 

triplet state crosses the singlet at roughly 30T. 

 

Summary 

We have introduced the Jain composite fermion mean field picture and shown how the low 

lying states can be understood by simple addition of angular momentum. The mean field 

composite fermion picture gives the correct spectral structure not because of some 

cancellation between Chern-Simons and Coulomb interactions beyond the mean field level, 

but because it selects a low angular momentum subset of the allowed multiplets that avoids 

the largest pair repulsion. The Laughlin correlations, which describe incompressible quantum 

fluid states, depend critically on the electron pseudopotential being of “short range” (by which 

we mean that V(L12) increases more quickly than L12(L12+1)).  
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The validity of Jain’s picture also depends upon V(L12) being of short range. Pseudopotentials 

describing quasiparticles of a Laughlin condensed state display short range behavior only at 

certain values of L12. We have used this fact to explain why only certain states in the 

composite fermion hierarchy give rise to incompressible states of the quasiparticle fluid (or 

daughter states in the hierarchy). The pseudopotentials Vn(L12) for higher Landau levels (n>0) 

do not display short range behavior at all values of L12, implying that Laughlin-like 

correlations will not necessarily result at ν'=2p+ν, where p is an integer and ν is a Laughlin-

Jain filling factor. 

The composite fermion ideas have been applied successfully to multicomponent plasmas 

containing different types of Fermions with the prediction of possible incompressible fluid 

states for these systems. Finally, the energy spectrum and PL of electron-hole systems can be 

interpreted in terms of composite fermions and Laughlin correlations. 

57



 

 

Literature 

[1] Jain J K, Science 266 1199 (1994) 

[2] von Klitzing K, Dorda G, and Pepper M 1980 Physical Review Letters 45 494 

[3] Tsui D C, Störmer H L, and Gossard A C, Physical Review Letters 48 1559 (1982) 

[4] Anderson P W, Physical Review 112, 1900 (1958) 

[5] Laughlin R B, Physical Review B 23, 5632 (1981) 

[6] Laughlin R B, Physical Review Letters 50, 1395 (1983) 

[7] Halperin B I, Physical Review Letters 52, 1583 (1984) 

[8] Haldane F D M, Physical Review Letters 51, 605 (1983) 

[9] Jain J K, Physical Review Letters 63, 199 (1989) 

[10] Lopez A and Fradkin E, Physical Review B 44, 5246 (1991) 

[11] Halperin B I, Lee P A, and Read N, Physical Review B 47, 7312 (1993) 

[12] Wójs A and Quinn J J, Solid State Communications 108, 493 (1998) 

[13] Sitko P, Yi K S and Quinn J J, Physical Review B 56, 12417 (1997) 

[14] Gasiorowicz S, Quantum Physics, New York: John Wiley and Sons (1974) 

[15] Chen X M and Quinn J J, Solid State Communications 92, 865 (1994) 

[16] Sitko P, Yi S N, Yi K S, and Quinn J J, Physical Review Letters 76, 3396 (1996) 

[17] Wójs A, Hawrylak P and Quinn J J, Physical Review B 60, 11661 (1999) 

[18] Wójs A, Szlufarska I, Yi K S and Quinn J J, Physical Review B 60, R11273 (1999) 

[19] Fano G, Ortolani F and Colombo E, Physical Review B 34, 2670 (1986) 

[20] Leinaas J M and Myrheim J, Il Nuovo Cimento B 37, 1 (1977) 

[21] Wilczek F, Physical Review Letters 48, 1144 (1982) 

[22] Silin V P, Sov. Phys.-JETP 8, 870 (1959) 

[23] Laughlin R B, Science, 242, 525 (1985) 

[24] Benjamin A T, Quinn J J, Quinn J J, and Wójs A, J. Combinat. Theory A 95, 390 (2001) 

[25] Willet R L, Eisenstein J P, Störmer H L, Tsui D C, Gossard A C and English J H 

        Physical Review Letters 59, 1776 (1987) 

[26] Wójs A and Quinn J J, Physical Review B 61, 2846 (2000) 

[27] Chen X M and Quinn J J, Physical Review B 50, 2354 (1994) 

[28] Whittaker D M and Shields A J, Physical Review B 56, 15185 (1997) 

[29] Wójs A, Quinn J J and Hawrylak P, Physical Review B 62, 4630 (2000) 

[30] Hayne M, Jones C L, Bogaerts R, Riva C, Usher A, Peeters F M, Herlach F, 

       Moshchalkov V V and Henini M, Physical Review B 59, 2927 (1999) 

58


	Contents
	I. Composite fermion theory of quantum Hall effect
	1. Introduction
	2. Integral and fractional quantum Hall effects
	3. Numerical study of small systems
	4. Chern-Simons transformation and statistics in 2D systems
	5. Jain's composite fermion picture
	6. Energy scales and pseudopotentials
	6.1. Two-fermion problem
	6.2. Two-body interaction pseudopotential
	6.3. Fractional grandparentage
	6.4. Definition of the short range pseudopotential
	6.5. Hidden symmetry of the short range repulsion
	6.6. Comparison with atomic shells: Hund’s rule
	6.7. Higher Landau levels

	7. Fermi Liquid model of composite fermions
	8. Composite fermion hierarchy

	II. Electron-hole systems in high magnetic fields
	1. Excitonic complexes
	2. Charged exciton and the hidden symmetry in the lowest Landau level
	3. Hidden symmetry
	4. Interaction of charged excitons
	5. Generalized composite fermion picture for charged excitons
	6. Spatially separated electron-hole system
	7. Charged excitons in a finite magnetic field

	Summary
	Literature


 
 
    
   HistoryItem_V1
   Nup
        
     Trim unused space from sheets: no
     Allow pages to be scaled: yes
     Margins and crop marks: none
     Sheet size: 6.496 x 9.508 inches / 165.0 x 241.5 mm
     Sheet orientation: tall
     Scale by 95.00 %
     Align: centre
      

        
     0.0000
     10.0001
     20.0001
     0
     Corners
     0.2999
     ToFit
     1
     1
     0.9500
     0
     0 
     1
     0.0000
     0
            
       D:20110726145329
       684.5669
       CANON pojed.
       Blank
       467.7165
          

     Tall
     630
     275
     0.0000
     C
     0
            
       CurrentAVDoc
          

     0.0000
     0
     2
     0
     1
     0 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0d
     Quite Imposing Plus 2
     1
      

   1
  

    
   HistoryItem_V1
   TrimAndShift
        
     Range: all pages
     Trim: fix size 6.496 x 9.508 inches / 165.0 x 241.5 mm
     Shift: move up by 14.17 points
     Normalise (advanced option): 'original'
      

        
     32
            
       D:20101021003038
       684.5669
       CANON pojed.
       Blank
       467.7165
          

     Tall
     1
     0
     No
     1047
     129
     Fixed
     Up
     14.1732
     14.1732
            
                
         Both
         1
         AllDoc
         42
              

       CurrentAVDoc
          

     Uniform
     11.3386
     Bottom
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0d
     Quite Imposing Plus 2
     1
      

        
     4
     58
     57
     58
      

   1
  

    
   HistoryItem_V1
   AddNumbers
        
     Range: all odd numbered pages
     Font: Times-Roman 11.0 point
     Origin: bottom right
     Offset: horizontal 62.36 points, vertical 42.52 points
     Prefix text: ''
     Suffix text: ''
     Use registration colour: no
      

        
     
     BR
     
     1
     TR
     1
     0
     1005
     173
     0
     11.0000
            
                
         Odd
         58
         1
         AllDoc
              

       CurrentAVDoc
          

     62.3622
     42.5197
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0d
     Quite Imposing Plus 2
     1
      

        
     0
     58
     56
     29
      

   1
  

    
   HistoryItem_V1
   AddNumbers
        
     Range: all even numbered pages
     Font: Times-Roman 11.0 point
     Origin: bottom left
     Offset: horizontal 62.36 points, vertical 42.52 points
     Prefix text: ''
     Suffix text: ''
     Use registration colour: no
      

        
     
     BL
     
     1
     TR
     1
     0
     1005
     173
     0
     11.0000
            
                
         Even
         58
         1
         AllDoc
              

       CurrentAVDoc
          

     62.3622
     42.5197
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0d
     Quite Imposing Plus 2
     1
      

        
     0
     58
     57
     29
      

   1
  

    
   HistoryItem_V1
   StepAndRepeat
        
     Trim unused space from sheets: no
     Allow pages to be scaled: no
     Margins: left 0.00, top 0.00, right 0.00, bottom 0.00 points
     Horizontal spacing (points): 0 
     Vertical spacing (points): 0 
     Crop style 1, width 0.30, length 20.00, distance 10.00 (points)
     Add frames around each page: no
     Sheet size: 8.268 x 11.693 inches / 210.0 x 297.0 mm
     Sheet orientation: tall
     Layout: rows 50 down, columns 50 across
     Align: centre
     Registration colour: All separations
     PDF/X handling: Ignore PDF/X
     Annotations and form fields: UNKNOWN
      

        
     0.0000
     Prompt
     10.0001
     20.0001
     1
     Corners
     0.2999
     ToFit
     50
     50
     1.2000
     FormsAndFields
     0
     0 
     1
     0.0000
     0
     IgnoreAll
            
       D:20110802222208
       841.8898
       a4
       Blank
       595.2756
          

     Tall
     886
     110
    
    
     0.0000
     AllSeps
     C
     0
            
       CurrentAVDoc
          

     0.0000
     0
     2
     1
     0
     0 
      

        
     QITE_QuiteImposingPlus2
     Quite Imposing Plus 2.0d
     Quite Imposing Plus 2
     1
      

   1
  

 HistoryList_V1
 qi2base





