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Preface

Analysis of high-dimensional data is becoming increasingly important in many
areas of contemporary science and technology due to the proliferation of massive
throughput experimental techniques. DNA microarrays used in genomics are one
of most prominent examples of such techniques, however high-dimensional data
arise also in areas ranging from proteomics, spectroscopy, �ow cytometry, mag-
netic resonance imaging, and satellite imaging to social science surveys or text
mining. Analysis of such data has posed severe challenges, and has driven devel-
opment of new, dedicated methods and algorithms in statistics, bioinformatics
and machine learning.

This book is devoted to the problem of building predictive models from
high-dimensional data, focusing mainly on feature selection and classi�cation
based on high-throughput genomic data, such as results from gene expression
studies. The key characteristic of such datasets is the small number of samples
available, which leads to di�culties with feature selection and generalization error
of classi�ers. Given such data, purely data driven methods of feature selection are
virtually unable to provide stable, unique subsets of features which account for
the di�erences between the groups of samples compared. Consequently, building
robust predictive models from such data is a challenging task.

As a remedy to this, we propose in this work to use prior domain knowledge
in the process of feature selection and classi�cation. In the context of genomic
high-throughput data, such domain knowledge may provide a priori information
abouts sets of features (genes) which are likely to be functionally related, and is
available e.g. in gene ontology or signalling pathway databases. Classi�cation of
samples relies then on activation of genes sets (pathways) rather than activation
of individual genes (features). In this work we provide a comprehensive study
as to how association of features sets with the target should, and should not,
be quanti�ed to produce statistically sound, interpretable results which stay in
line with the actual organization of the high-throughput experiment. We propose
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the algorithm of samples classi�cation based on activation of feature sets and
numerically evaluate this approach in terms of stability and generalization error.

This work builds on, and summarizes my research in the �eld of bioinformat-
ics conducted over the last years. There are many colleagues who contributed
to this work by helping me to get involved in the challenging but fascinating
area of bioinformatics. First I want to mention Dr. Michaª Jank who introduced
me to the challenges of real life high-throughput studies in genomics. The dif-
�cult questions he kept asking pertaining to the analysis of data from genomic
assays greatly inspired my research interests in these areas. Our collaboration has
brought a number of joint papers where many of the techniques discussed in this
worked were put into practice. I am also grateful to Dr. Ida Franiak-Pietryga
with whom I have worked on a number of high-throughput studies concerning
treatment of leukemia. These demanding but very exciting projects have not only
resulted in a number of joint research papers but have also given me real satisfac-
tion from working in the interdisciplinary team pursuing new leukemia therapies.
I would also like to thank Prof. Beata Sobieszcza«ska and Dr. Robert �migiel for
our common research in the interdisciplinary environment which has resulted in
joint publications.

Finally, I am deeply indebted to Prof. Witold Jacak, who hosts me at his
Studiengang Bioinformatik (Faculty of Bioinformatics) at the University of Ap-
plied Sciences in Hagenberg, Upper Austria. Numerous discussions with him con-
cerning not only analysis of high-throughput data but also various problems in
bioinformatics, machine learning and statistics have been an invaluable source of
inspiration, motivation and encouragement to pursue my research in these areas.



Chapter 1

Introduction � class prediction based on

high dimensional genomic data

In this chapter we want to provide an overview of the research problems
addressed in this monograph. We present challenges related to analysis of
high-throughput data, focusing on feature selection and predictive modelling. Al-
though we discuss this in the context of high-throughput genomic assays, many of
the issues raised are generic in nature and intrinsically apply to high-dimensional
data of any other origin.

In the second part of this chapter, we outline the novel achievements
proposed in this work which aim to improve feature selection and classi�cation
in high-dimensional data. Finally, we present the organization of this book.

Recent advancement of high-throughput experimental technologies has
brought unprecedented opportunities in many areas of contemporary science. Life
sciences is a perfect example of such an area where high-throughput techniques
have not only revolutionized research and allowed us to pose novel scienti�c ques-
tions, but have also triggered development of new, dedicated methods in statis-
tics and machine learning. These methods, broadly categorized as bioinformatics,
have become an indispensable tool for analysis and interpretation of results from
high-throughput assays in genomics or proteomics.

DNA microarrays are perhaps the most prominent example of high-throughput
techniques used in genomics. Microarrays allow us to simultaneously measure ex-
pression levels of thousands of genes in a biological sample. By expression level
of a gene we mean the quantity of the transcript (mRNA) which can be later
translated into the protein coded by the gene concerned. Capacity of high-density
microarrays is high enough to measure not only expression levels of all the genes
of an organism, but also tens of thousands of non-coding regions (for instance,
a human genome microarray from Agilent returns roughly 60,000 measurements,
which encompass expression of all the 30,000 human genes as well as thousands
of non-coding RNA sequences). Although microarrays can be now regarded as
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the robust high-throughput technology, yielding reproducible results (as shown
in comprehensive comparative studies by the Microarray Quality Consortium,
(MAQC Consortium, 2006; Patterson et al., 2006)), new alternative approaches
are emerging, such as the SAGE (serial analysis of gene expression), or RNA-Seq
(next-generation sequencing of transcripts used for quantitative expression pro-
�ling). These new technologies o�er more �exibility in experiment design as they
do not rely on the probes for transcripts to be speci�ed in advance, however they
still have their own intrinsic limitations, e.g. due to limited precision for low abun-
dance transcripts (�abaj et al., 2011). Therefore, it seems that state-of-the-art
high-throughput expression pro�ling will employ both RNA-Seq and microarrays
in a combined, complementary approach (�abaj et al., 2011).

Organization of a typical high-throughput experiment in genomics involves
measuring gene (or protein) expression pro�les over a group samples (e.g. pa-
tients), where the number of samples n may reach up to a few hundreds, however
n ∼ 30−100 is more common. In any case, high-throughput experiments result in
n vectors of dimensionality d, with n ≪ d. Relatively small number of samples is
due not only to the cost of high-throughput assays (which continuously decreases),
but also to the infeasibility of gathering large, representative biological samples. In
some experiments the samples are also labelled with a quantitative or qualitative
target variable. Qualitative targets may represent such known characteristics of
samples as as the disease status (e.g. tumor vs control), response to a therapy,
risk of recurrence of a cancer, sample phenotype, etc. Note that the common con-
vention in bioinformatics is to present results of high-throughput assays as d× n
datasets, with columns representing samples and rows � features; in statistics
or machine learning a transposed representation is more common, with samples
(observation) occupying rows, and features (variables) � columns of datasets.

Based on results of high-throughput studies, we typically formulate research
questions related to:

• class discovery,
• class comparison,
• class prediction.
Class discovery is related to identifying previously unknown subgroups among

samples, which may be related to e.g. cancer subtypes or disease taxonomies
(Bittner et al., 2000). Class discovery has been performed using various methods
of clustering (Eisen et al., 1998; Tamayo et al., 1999; Sturn et al., 2002; Qin,
2006; Joshi et al., 2008). Alternatively, class discovery may consist in row-wise

clustering of expression data which reveals groups of presumably related features
(genes) based on similar expression pro�les.
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Class comparison is related to the identi�cation of genes which are di�eren-
tially expressed between the groups of samples de�ned by the target variable,
or signi�cantly associated with the target. This is one of the most important
applications of high-throughput techniques in genomics and has been extensively
employed in numerous studies which aim to identify marker genes characteristic
of di�erent types of cancer or leukemia, or markers for targeted therapies (Golub
et al., 1999; Bittner et al., 2000; West et al., 2001; van't Veer et al., 2002; Singh
et al., 2002; Chiaretti et al., 2004; Nelson, 2004; Bild et al., 2005; Xu et al., 2005;
Marincevic et al., 2010; Franiak-Pietryga et al., 2012b; Szmit et al., 2012). Class
comparison is typically realized by simultaneously testing the null hypothesis of
no association of individual genes with the target, with the p-values of the tests
multiple-testing adjusted in order to minimize the false-positive rate (Dudoit et al.,
2002b, 2003; Efron, 2007, 2008). However, it should be noted that some authors
perform class comparison using multivariate approaches, where important features
di�erentiating the classes are selected according to predictive performance of some
classi�ers (e.g. SVM). An example of such technique is the recursive feature re-
placement, RFR, (Fujarewicz and Wiench, 2003; Fujarewicz et al., 2003; Simek
et al., 2004), used by Jarz�ab et al. (2005), or recursive feature elimination, RFE,
(Guyon et al., 2002), used by Fujarewicz et al. (2007) in the thyroid cancer study.

Class prediction consists in assigning new samples to classes represented by the
target variable, based on gene expression pro�les, with the classi�cation models
constructed from results of the high-throughput study. Clearly, this task is related
to the class comparison problem, however the emphasis is on selection of the most
informative subsets of features for classi�cation of samples, rather than identify-
ing all the genes which account for the di�erences between the classes. Numerous
feature selection methods and classi�cation models have been employed in class
prediction studies, see speci�c examples and comprehensive overviews by Dudoit
et al. (2002a); Cho and Won (2003); Guyon and Elissee� (2003); Geman et al.
(2004); Li T.et al. (2004); Lai et al. (2006); Saeys et al. (2007); Statnikov et al.
(2008); Basford et al. (2012). One of the most severe challenges in class prediction
is related to over�tting, i.e. poor prediction performance for new samples. Another
issue is related to the di�culty with fair estimation of the generalization error of
predictive models, given small number of samples (Simon et al., 2003; Simon, 2003;
Markowetz and Spang, 2005). Despite these di�culties, several authors have re-
ported building predictive models using expression pro�les from high-dimensional
data, e.g. Golub et al. (1999); West et al. (2001); van't Veer et al. (2002); Xu et al.
(2005). A few of these models have been commercialized, e.g. the MammaPrint
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assay is the �rst microarray-based medical test, approved by the US Food and
Drug Administration (FDA), designed for individualization of treatment of breast
cancer patients (this test is based on the 70-gene expression signature identi�ed
by van't Veer et al. (2002)).

Several authors have raised concerns regarding stability and reproducibility
of markers identi�ed in di�erent class comparison or class prediction studies (Xu
et al., 2005; Nelson, 2004; Ein-Dor et al., 2005). For instance, comparing three
related studies of breast cancer reported by (i) van't Veer et al. (2002), (ii) Sørlie
et al. (2001, 2003) and (iii) Ramaswamy et al. (2002), it can be observed that
only up to roughly 5% of di�erentially expressed genes identi�ed by each of the
studies are shared by the other experiments. Moreover, if we slightly change the
set of samples in training data, we generally obtain di�erent feature sets with
equally good predictive performance as the original set reported by van't Veer
et al. (2002), (Ein-Dor et al., 2005).

Other authors also observe that marker genes from di�erent studies of the
same disease seem to be to a large extent study-speci�c, e.g. Xu et al. (2005);
Nelson (2004); Miklos and Maleszka (2004); Lossos et al. (2004) (experiments
concerning prostate cancer, schizophrenia and lymphoma).

This e�ect could be, to some extent, attributed to methodological di�erences
concerning analysis of high-dimensional data (Subramanian and Simon, 2010;
Dupuy and Simon, 2007), however the main problem is related to the small sample
size (Ein-Dor et al., 2006). Low reproducibility of results seems to be an inherent
problem of class comparison/feature selection in the n ≪ d cases.

To overcome these di�culties, Subramanian et al. (2005) proposed to employ
prior domain knowledge in class comparison studies. The idea was to focus
on di�erential expression of a priori de�ned gene sets, grouping functionally
related genes, rather than on di�erential expression of individual genes. The
gene sets are de�ned as members of signalling pathways (as given in e.g. the
KEGG pathway database), or as groups of genes with the same Gene Ontology
category (as given in the GO database). This approach is motivated by the
fact that lists of di�erentially expressed genes from class comparison studies are
often too long, di�cult to interpret, and highly variable across di�erent studies.
Another motivation is related to the fact that the actual di�erences between
classes are often attributed to small changes observed over a group of related
genes (e.g. in a signalling pathways) rather than to a substantial change in a
few unrelated genes (Subramanian et al., 2005). Hence if we express results of
class comparison in terms of di�erentially expressed gene sets (e.g. activated



Introduction � class prediction based on high dimensional genomic data 11

pathways), then we expect to improve interpretability as well as reproducibility
and stability of results. See (Ackermann and Strimmer, 2009) and (Wu et al.,
2009) for a comprehensive review of the proposed approaches to gene set analysis.

Having presented the context and motivation of this work, we now present
the key novel elements in this monograph. The main objective is to improve class
prediction in high-dimensional (n ≪ d) data by employing a priori domain knowl-
edge in the process of feature selection. The key achievements in this monograph
are as follows:

• We provide theoretical results which show limitations of data-driven fea-
ture selection in high-dimensional (n ≪ d) data. These results express the
probability of selecting the relevant features as a function of the sample size
and dimensionality of the data. The conclusion from this analysis is that
low stability (i.e. poor reproducibility) of data-driven feature selection is
inherent in n ≪ d data. This motivates using additional, domain knowledge
in the process of feature selection.

• We propose the method of classi�cation in high-dimensional data based on
activation of a priori de�ned feature sets. The feature sets represent the
available domain knowledge about possible relationships among features.
The feature selection algorithm will identify the feature sets which are ac-
tivated, i.e. signi�cantly associated with the target. If such feature sets are
found, then the measures of activation of the feature set in individual sam-
ples will be used for the purpose of classi�cation of samples. We propose the
formulae which quantify the level of activation of the gene set in individual
samples. Classi�cation is then done based on these signatures of gene set
activation calculated for individual samples.

• We provide a comprehensive methodological analysis of the available meth-
ods of gene set analysis. The methods are used to quantify activation of
a priori de�ned gene sets. We clarify the models of statistical experiment im-
plied by di�erent algorithms as well as the null hypotheses actually assumed.
We also analyze the models in terms of compliance with the actual biological
experiment which produced the data. Based on this, we identify the methods
which produce statistically sound and biologically interpretable results. We
also provide a comprehensive numerical analysis of di�erent methods of gene
set analysis in terms of Type I error and power as a function of correlation
among features and the signal strength (signal-to-noise ratio). Results of
this analysis have been partly published in Brie�ngs in Bioinformatics.
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• We also provide two additional speci�c results pertaining to the aforemen-
tioned methodological analysis. First, we provide an improved version of the
important gene set analysis method, GSA, proposed by Efron and Tibshirani
(2007), with the modi�cation related to correction of the �aw in estimation
of signi�cance in the original methods. Secondly, we propose a new inter-
pretation of results produced by the popular methods of gene set analysis
which use genes as sampling units. We show that results of these methods
cannot be interpreted as p-values (as claimed by authors of these methods),
however a heuristic, meaningful interpretation of the results can be proposed
instead.

• We provide a comparative analysis of e�cacy of (i) features selected with
data-driven univariate or multivariate methods and (ii) features selected us-
ing gene set analysis methods (i.e. based on domain knowledge). The analysis
is done in terms of predictive performance of classi�ers as well as stability of
features. We de�ne several measures of stability of feature selection. We also
overview recent results in the learning theory which relate CVloo-stability
(cross-validation leave-one-out stability) measures with predictivity condi-
tions of classi�ers. The concept of CVloo-stability motivated the measures
of stability used in this analysis.

This monograph is organized as follows. In Chapter 2 we discuss data driven
methods of feature selection used in high-dimensional data analysis, focusing on
univariate, multivariate and regularization-based techniques. These methods pro-
vide the baseline results in the analysis of e�ciency of the proposed methods
of features selection based on a priori domain knowledge. Chapters 3 through 5
form the methodological core of this book. In Chapter 3 we develop the theo-
retical analysis of the e�ect of small sample size on stability and reproducibility
of feature selection in high-dimensional data, which motivates the proposed prior
domain knowledge-based approach. Chapter 4 is devoted to the methodological
analysis of the di�erent approaches to gene set analysis, which will be employed
as tools for domain knowledge based feature selection. In Chapter 5 we propose
a generic algorithm for sample classi�cation in high-dimensional data using do-
main knowledge-based feature selection. We compare this with the standard ap-
proach where feature selection is done in purely data-driven way. In Chapter 6
we provide numerical evaluation of the proposed approach and compare it with
the standard approach in terms of generalization error and stability of feature
selection.

Finally, we owe the Reader some clari�cation regarding terminology and
conventions used in this monograph. Although the intention of the book is to
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tackle generic problems concerning predictive modelling in high-dimensional data,
the work was motivated by, and largely realized in the context of analysis of
high-throughput data in genomics or proteomics. This inevitably has some im-
pact on the language used in this work. For clarity of presentation, we often want
to stick to the naming conventions common in bioinformatics. And so, we use the
term �gene� interchangeably with the term �feature�; �gene expression� is simply
the signal measured for a particular feature; �selection of di�erentially expressed
genes� means �selection of features associated with the target�; a �(signalling)
pathway� is another name for a �gene set�, i.e. an a priori de�ned feature set;
when we refer to a pathway as �activated�, we mean that the gene set composed
of the pathway members is signi�cantly associated with the target; �phenotype�
is another name for the �target variable�. We also note that throughout this work
we use the �tall� representation of high-dimensional datasets, common in bioinfor-
matics, with rows of the dataset representing features (expression of genes) and
column � subjects (samples) tested in the high-throughput assay. Note that by
convention statistics and machine learning use the transposed representation of
datasets.

We want to note that although these conventions and terminology are char-
acteristic of bioinformatics, the very methodology proposed in this work, i.e. the
algorithms of feature selection and classi�cation based on prior domain knowledge
are generic. These methods could be used e.g. in text mining studies where the
task is to categorize documents based on high-dimensional vectors of attributes
(terms), providing that prior domain (e.g. expert) knowledge is gathered de�ning
sets of terms characteristic of some categories (this could be done e.g. for catego-
rization of medical documents from the MEDLINE database, Yang and Pedersen
(1997)).

This monograph builds on my previous research in such areas as machine
learning, statistical data analysis, data mining and bioinformatics, as my expe-
rience gathered in these �elds proved invaluable to tackle the speci�c problem
of domain knowledge-based analysis of high-dimensional data. My research in
these areas was published in a number of IF-journal papers: Maciejewski (2013);
Pawªowski et al. (2013a,b); Rogali«ska et al. (2013); Walkowicz et al. (2013);
Franiak-Pietryga et al. (2012a,b); Król et al. (2012); Ostrzeszewicz et al. (2012);
Sobieszcza«ska et al. (2012); Szmit et al. (2012); Walkowicz et al. (2011); Szmit
et al. (2010); Wieteska et al. (2009); Maciejewski and Caban (2008); Maciejewski
et al. (2008); Anders et al. (2006); Berenguel et al. (2005a,b).
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Other publications which further develop speci�c ideas presented in this mono-
graph or put them into practice are: Maciejewski (2012, 2011a,b); Maciejewski and
Twaróg (2009); Maciejewski (2008a,b, 2007); Maciejewski and Jasi«ska (2005);
Maciejewski et al (2005).



Chapter 2

Feature selection for sample classi�cation

based on high throughput data

In this chapter we present generic approaches to feature selection developed in
machine learning as well as methods developed in bioinformatics literature which
are focused on analysis of high throughput data. All the methods discussed here
select subsets of features in a purely data-driven way, i.e. they do not include do-
main knowledge on possible associations among features in the process of feature
selection. We discuss limitations of data-driven methods when dealing with data
from high-throughput studies. These limitations motivate development of prior
domain knowledge-based methods of feature selection proposed in this work.

2.1. Introduction

We introduce the following notation. Let X = (xij), i = 1, ..., d, j = 1, ..., n
denote the matrix with results of a high throughput study (e.g., gene expres-
sion data). Rows of this matrix, denoted Xi•, i = 1, ..., d represent features, e.g.
expression of d genes, while columns denoted X•j , j = 1, ..., n represent the n
samples tested. We also de�ne Y = (yj), j = 1, ..., n as the (1× n) target vector
with labels of the samples. The methods of feature selection will be presented
here in the context of binary classi�cation, however generalization of many of the
methods to multiclass, regression or survival time problems is possible. Here we
assume that the samples belong to one of the classes represented by yi ∈ {c1, c2},
i = 1, ..., n, and we denote the indices of the samples in each of the classes as
C1 = {i : yi = c1} and C2 = {i : yi = c2}. The number of samples in each
class is denoted n1 = |C1|, n2 = |C2|. It is convenient to represent the vectors
(xij : j ∈ C1) and (xij : j ∈ C2) of expressions of gene i in classes c1 and c2,

respectively, as V (1)
i = (v

(1)
ik ), k = 1, 2, ..., n1 and V

(2)
i = (v

(2)
ik ), k = 1, 2, ..., n2.

Feature selection is primarily done to reduce dimensionality of the feature
space and thus to reduce the risk of over�tting of classi�cation models. Over�tting
is the major di�culty to overcome when building classi�ers from data with large
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number of features d and relatively small number of samples n. To illustrate this
problem, let us consider randomly generated training data Xd×n with n samples
and d features, with the binary class labels yi ∈ {−1, 1}, i = 1, ..., n, randomly
assigned to the samples. Let us consider �tting the simplest linear classi�er (linear
decision function) to the training data, i.e. �tting the d-dimensional hyperplane:

f(x1, ..., xd) = β0 + β1x1 + . . .+ βdxd,

where sign(f(x)) is the classi�cation of x ∈ Rd. We want to �nd the hyperplane
separating the training data, i.e. such that sign(f(x)) > 0 for x in class �+1�, and
sign(f(x)) < 0 for x in class �−1�. This is equivalent to �nding the coe�cients
β0, β1, . . . , βd such that:

y1(β0 + β1x1,1 + β2x2,1 + . . .+ βdxd,1) > 0

y2(β0 + β1x1,2 + β2x2,2 + . . .+ βdxd,2) > 0

. . .

yn(β0 + β1x1,n + β2x2,n + . . .+ βdxd,n) > 0

(2.1)

It is a well known fact from linear algebra that if the vectors X•j , j = 1, . . . , n
are not linearly dependent, then for d + 1 ≥ n there always exist coe�cients
β0, β1, . . . , βd satisfying the set of inequalities (2.1). This means that if su�-
ciently many dimensions are available (i.e. if d + 1 ≥ n) then we can always
�t a linear decision function which separates the training data with zero training
error, even if there is no relationship between the features and Y (as in this exam-
ple). This model has over�tted the data and thus has no generalization property
and, consequently, is expected to realize 50% prediction error for new independent
data. Note that for massive throughput data we usually have d ≫ n, hence in
such studies the major challenge is to avoid over�tting of classi�cation models.

Some training algorithms are less prone to over�tting, as they perform fea-
ture subset selection rather than building models based on all inputs provided.
Examples include decision trees or methods that use some form of regularization,
e.g. Support Vector Machines or ridge regression. However, empirical studies show
that for high dimensionality data even these methods bene�t from prior feature
selection. For instance, Kohavi and John (1997) report a number of high dimen-
sionality studies where decision tree (ID3 algorithm) with prior features selection
step outperforms the the decision tree trained using all the features; similar results
are reported by Guyon et al. (2002) in the context of Support Vector Machines.



Feature selection for sample classi�cation based on high throughput data 17

It should be also noted that the methods of feature selection discussed here
are also used in the task of class comparison (Golub et al., 1999), which consists
in identi�cation of subsets of genes, or genetic �signatures�, which account for the
di�erences between the groups of samples compared. Feature selection methods
are then used to �lter out relatively few genes most associated with the target
(such as the phenotype, disease state or response to therapies, etc.) out of the
vast data from the high throughput study. The purpose of this is to obtain in-
sight into the biological process of interest. For this reason, methods which reduce
dimensionality by projecting data onto the directions corresponding to the �rst
few principal components (such as PCA or PLS, see e.g. Basford et al. (2012))
have not gained wide-spread application in class comparison and class prediction
studies based on e.g. gene expression datasets. The key drawbacks of these meth-
ods are (i) interpretability problems: it is di�cult to interpret the components
obtained in terms of genetic �signatures� which provide insight into the biological
processes, and (ii) these methods do not allow us to discard any of the features
measured in the massive throughput study in order to focus in further analysis on
relatively small subset of the most relevant features. For these reasons, we omit
these methods from further discussion in this chapter.

Some authors proposed to use computationally intensive approaches to se-
lect the most informative subsets of features from high-throughput datasets. For
instance, Li L.et al. (2001) and Li L.et al. (2004) used genetic algorithms cou-
pled with the k-nearest neighbours classi�er for feature selection from genomic
or proteomic studies, respectively. Ooi and Tan (2003) and Peng et al. (2003)
used genetic algorithms, coupled with the SVM classi�er. Robbins et al. (2007)
applied the heuristic, nature-inspired method (more speci�cally, ant colony) to the
problem of features selection. Drami«ski et al. (2008) proposed the Monte Carlo
feature selection (MCFS) procedure, which ranks the features according to how
frequently they tend to be selected by (many) decision trees �tted to randomly
drawn subsets of observations represented in randomly selected subspaces of fea-
tures. In (Drami«ski et al., 2010), the authors also showed how this procedure can
be extended to discover interdependencies among the features identi�ed as most
important for classi�cation. However, due to extreme computational burden of
these methods given high-throughput genomic or proteomic datasets, as well as
their intrinsic non-deterministic nature, we omit these methods from this work.

In the next part of this chapter, we present univariate and multivariate meth-
ods of feature selection. We will refer to these methods as the standard methods,
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as they perform selection of features in the data-driven way, as opposed to the
methods which use prior domain knowledge about relationships among features,
which we propose in this work.

2.2. Univariate methods of feature selection

Univariate methods evaluate association of each feature with the target in-
dividually. The limitation of this is that these methods do not take possible
relationships among features into account. Based on the calculated measure of
association, the features are ranked from the most to the least associated with
the target. Using the ranking list we can then select the set of most informative
features by training a classi�er based on the top k features (k = 1, 2, ..., d) and
selecting the value of k which minimizes the expected prediction error of the
classi�er for the new data. This procedure is referred to as the �lter approach, as
opposed to the wrapper approaches to feature selection (Kohavi and John, 1997),
discussed later.

Association of the i-th feature Xi• and the target Y can be expressed using dif-
ferent heuristic or statistical measures. Here we present some measures commonly
used in bioinformatics or machine learning literature, (Sobczak and Malina, 1985;
Lai et al., 2006; Dudoit et al., 2002a; Cho and Won, 2003). Golub et al. (1999)
proposed the signal-to-noise measure which became popular in gene expression
studies, and is de�ned as (see notation introduced on page 15):

SNR =

∣∣∣V̄ (1)
i − V̄

(2)
i

∣∣∣
std(V

(1)
i ) + std(V

(2)
i )

(2.2)

Other measures include the t-statistic and theWilcoxon statistic (Dudoit et al.,

2002a), where the former is based on the assumption that V
(1)
i and V

(2)
i are

normally distributed, and the latter is nonparametric. For more that two classes
compared, the F-statistic or the Kruskall�Wallis statistics can be used, where the
former is based on the normality assumption and the latter is nonparametric. For
quantitative targets, Pearson or Spearman correlation coe�cients are typically
employed (Cho and Won, 2003). Sobczak and Malina (1985) propose to use the
Sebestyen criterion for evaluation of individual features or feature sets in terms
of separability between classes.

Other measures can be also envisaged which are based on some separability
criteria between the densities estimated from V

(1)
i and V

(2)
i , such as divergence
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(Theodoridis and Koutroumbas, 2006), or mutual information between each
feature and the target (e.g., Cho and Won (2003); Guyon and Elissee� (2003)).

Remark I. One of appealing properties of the univariate methods is that,
in addition to being used for feature selection in the �lter procedures described
previously, they can be employed for class comparison, i.e. for identi�cation of
di�erentially expressed genes (i.e. the features signi�cantly associated with the
target). To do this, one need to estimate signi�cance of the calculated measure
of association. Signi�cance for a gene (feature) i is typically calculated as the
p-value of the statistical test which assumes the null hypothesis that Xi• and
Y were drawn from independent random variables (which for binary target is

equivalent to testing the hypothesis that V
(1)
i and V

(2)
i were drawn from the

same distribution). For heuristic measures of association (such as the SNR), for
which the distribution of the test statistic under the null hypothesis is unknown,
signi�cance is typically estimated using the sample permutation test. This consists
in estimating the distribution of the test statistic under the null hypothesis by
repeatedly calculating the test statistic under (many) permutations of the class
labels (or values in the vector Y ). The p-value can be then calculated as the
fraction of permutations for which the test statistic exceeds the original observed
test statistic (such as the SNR):

p =
1

B

B∑
i=1

I(ti > t) (2.3)

where t is the observed value of the test statistic, ti is the value of the test statistic
calculated for the i-th permutation, B is the number of permutations, and I is
the indicator function (i.e. returns 1 if the condition is true, and 0 � otherwise).

It should be noted that this is doable only for targets which are exchangeable
(e.g., for Y representing time-series data, no permutation test exist). Permutation
tests are employed in some studies also for t- or F-statistics, if the data are not
normally distributed.

Remark II. It should be noted that due to the very nature of statistical
testing, the standard procedures which declare features as signi�cantly associated
with the target based on the p-value < 0.05 threshold, result in a considerable
number of false positive �ndings. For instance, given high throughput data with d
genes the expected number of false positive genes is 0.05× d, which exceeds 1000
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for the values of d > 20, 000, commonly encountered in gene expression studies.
For this reason, we need to apply multiple testing correction to control:

• the family-wise error rate, i.e. the probability that false positives appear in
the list of rejected hypotheses (i.e. genes claimed di�erentially expressed),
Hochberg (1988); Holm (1979), or

• the false discovery rate, i.e. the fraction of false positives in the list of re-
jected hypotheses, (Benjamini and Yekutieli, 2001; Benjamini and Hochberg,
1995).

The comprehensive overview of multiple testing correction in the context of
high throughput data is available e.g. in Dudoit et al. (2003).

2.3. Multivariate methods of feature selection

As opposed to univariate methods which evaluate informativeness of individual
features, multivariate methods evaluate association with the target of subsets of
features.Wrapper approaches, proposed by Kohavi and John (1997), assess predic-
tive performance of subsets of features using a given classi�cation algorithm and
attempt to �nd the subset maximizing predictive performance. Since the exhaus-
tive search through all possible subsets is NP-hard, therefore wrapper methods
perform a heuristic search through this space. Di�erent search strategies have been
proposed (e.g., greedy forward/backward selection, �oating searches, genetic algo-
rithms, simulated annealing) which, coupled with di�erent classi�ers, account for
a diversity of wrapper multivariate methods. A comprehensive overview is given
in Lai et al. (2006); Guyon and Elissee� (2003); Kohavi and John (1997).

It should be noted that, in addition to �lter and wrapper approaches, some
authors also distinguish embedded methods, which perform feature selection at
the stage of model �tting. Examples include algorithms for building decision trees
or shrinkage/regularization-based regression.

Here we present the most popular of these methods. We later compare selected
multivariate methods with the domain knowledge-based methods proposed in this
work.

2.3.1. Recursive Feature Elimination � RFE

Recursive Feature Elimination was proposed by Guyon et al. (2002) and has
since then gained much popularity in bioinformatics. It is an iterative multivariate
method which ranks features from the weakest to the most informative. The
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method starts with a linear classi�er built using all the d features (the authors
suggest to use either a linear discriminant classi�er, or, preferably, a Support
Vector Machine with a linear kernel). The general form of the �tted discriminant
hyperplane is

D(x) = wx+ b

where x = [x1, ..., xd] is the vector of features and w = [w1, ..., wd] is the vector
of weights. The features are then ranked using w2

i as the ranking criterion, and
the feature with the smallest value of w2

i (regarded as the weakest feature) is
removed from the model. In the next step the model is �tted again using the
remaining d−1 features and the next weakest feature is removed from the model.
The procedure is repeated until no features remain in the model. The features
eliminated in consecutive steps form the list of features ranked from the weakest
to the most informative. Alternatively, the sets of features used for model building
in subsequent steps form a nested hierarchy of feature subsets FS1 ⊃ FS2 ⊃ ... ⊃
FSd, where the informativeness of each of the subsets is determined based on the
predictive performance of the classi�er (e.g. SVM).

2.3.2. Pair-wise methods

Best pair selection

Best pair selection (Bo and Jonassen, 2002) is a �lter approach which attempts
to rank pairs of features (genes) based on their joint discriminatory power. For
a given pair of genes, the method �ts a linear class-decision boundary using the
diagonal linear discriminant (DLD) method, and then projects all the samples
on the DLD axis (which is perpendicular to the boundary). The gene-pair score
is evaluated by taking the t-statistic calculated from the projected points. The
method uses either a complete search where all pairs of genes are evaluated and
the genes are ranked based on the gene-pair scores (without repetition), or, alter-
natively, a greedy approach where �rst individual genes are ranked, and next the
best pair is formed using the top-ranking gene, then the next top-ranking gene
etc.

Bo and Jonassen (2002) present results of empirical studies which suggest that
pair-wise feature �ltering methods may improve performance of classi�ers built
from massive throughput (microarray) data, as compared with the univariate
�ltering methods.
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Top scoring pair

Top scoring pair (TSP) is another pair-wise method, proposed by Geman
et al. (2004); Xu et al. (2005). The key motivation in developing this method was
to ease the search for the marker genes for classi�cation of samples, based on
the integrated inter-study data from di�erent microarray experiments. Typically,
a microarray assay involves relatively small number of samples (n ∼ 102, n ≪ d
problem), hence it seems desirable to combine data from several independent
massive throughput studies of the same phenomenon (e.g. cancer) to improve
identi�cation of marker genes, and consequently produce more stable markers.
However, direct integration of data from di�erent studies is di�cult due to di�er-
ent microarray technologies and di�erent transformation/normalization protocols
typically employed by the separate studies. The TSP method attempts to over-
come this by ranking all pairs of genes using a measure of discriminatory power
which is invariant to monotonic transformations of expression data. Based on this
ranking, a pair with the largest score (i.e. the largest measure of discrimination)
is selected as the top scoring pair. Speci�cally, the TSP score for a pair of genes
i, j, 1 ≤ i, j ≤ d, i ̸= j is de�ned as:

∆ij = |p(1)ij − p
(2)
ij |

where (see notation introduced in section 2.1)

p
(1)
ij =

1

n1

n1∑
k=1

I(v
(1)
ik < v

(1)
jk )

p
(2)
ij =

1

n2

n2∑
k=1

I(v
(2)
ik < v

(2)
jk )

Note that∆ij is high if, in terms of expression, gene i is consistently below gene
j in class 1, and consistently above in class 2, or vice-versa. Since this simple score
is based on relative rankings of expression of genes i and j, it is indeed invariant to
monotonic transformations of data. Hence with this score we can realize feature
selection based on larger datasets combining data from di�erent experiments,
although data from these experiments might not be mutually comparable.

2.3.3. Feature subset selection � greedy methods

Since the exhaustive search for the optimal subset of features (i.e. the one
that realizes the best prediction performance given some classi�er) is not feasible,
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greedy methods have been proposed. Examples include forward, backward or step-
wise selection of coe�cients in regression models. Forward selection begins with
the intercept term (β0) and selects into the model a variable which best improves
the model. The process continues until no variable is found which signi�cantly
improves the model. The current model (with k variables, and the corresponding
vector of parameters estimates denoted β(k)) and the next model (with k + 1
variables and parameter estimates β(k+1)) are compared in terms of the residual
sums of squares

RSS(β) =

n∑
i=1

(yi − fβ(xi))
2

where fβ is the model �tted to data (x1, y1), ..., (xn, yn). The k+1-th parameter
selected to extend the current model with k parameters is the one which maxi-
mizes RSS(β(k)) − RSS(β(k+1)). However, if the k + 1-th parameter does not
signi�cantly improve the model, then the procedure stops and returns the �nal
model with k variables. Signi�cance is assessed based on the F-statistic (Hastie
et al., 2001):

F =
RSS(β(k))−RSS(β(k+1))

RSS(β(k+1))/(n− k − 2)
(2.4)

where the new model signi�cantly improves the current model if the statistic
exceeds the 0.95th quantile of the F distribution with (1, n − k − 2) degrees of
freedom (which is equivalent to the p-value < 0.05 result of the statistical test
assuming the null hypothesis that the new model does not improve the current
model).

Backward feature selection (feature elimination) begins with the model con-
taining all the variables and calculates the F statistic for each individual vari-
able removed from the model. Then the variable with the smallest F is removed,
providing the statistic is not signi�cant. The procedure continues removing the
weakest variable from the model until all variables remaining in the model produce
signi�cant F statistics.

Another modi�cation of these procedures is the stepwise feature selection,
which adds subsequent variables into the model, similarly to the forward selection.
However, the variables already in the model are screened and the weakest variable
with the insigni�cant contribution to the model (i.e. the one with the smallest and
insigni�cant F ) is removed from the model (as in the backward elimination).
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2.3.4. Variable selection using regularization techniques � the lasso

and the elastic net

The lasso (Tibshirani, 1996) and the elastic net (Zou and Hastie, 2005) are
examples of variable selection methods based on regularization/penalization tech-
niques. Regularization techniques were proposed to improve regression models
�tted to high dimensional data and were also found useful in n ≪ d cases.

These methods were inspired by the ridge regression (Hastie et al., 2001) which
�ts a linear model minimizing the residual sum of squares while imposing a bound
on the size of the coe�cients, i.e. (see notation introduced in section 2.1):

βridge = argmin
β

 n∑
j=1

(yj − (β0 + β1x1j + ...+ βdxdj)) + λ
d∑

i=1

β2
i

 (2.5)

where β = (β0, β1, ..., βd) is the vector of model coe�cients and λ is a �xed
parameter which controls the e�ect of penalization. Equivalent formulation of
this is to solve the optimization problem:

βridge = argmin
β

 n∑
j=1

(yj − (β0 + β1x1j + ...+ βdxdj))


subject to: |β|2 ≤ s

(2.6)

for some s (the parameter controlling the e�ect of penalization), where |β|2 =∑d
i=1 β

2
i is the L2 norm of the vector of parameters (note that β0 is omitted in

the penalization term).
Ridge regression is primarily used to improve prediction performance of the

model as compared with the ordinary least squares regression (Hastie et al., 2001),
especially for high dimensionality data. However, ridge regression does not per-
form well as the feature selector, since it continuously shrinks all the coe�cients,
hence all the parameters are kept in the model. The lasso and the elastic net also
impose a penalty of the model coe�cients, however they produce a sparse model
which makes them useful as feature selection methods.

The lasso

The lasso is �tted by solving a similar optimization task as given in Equation
(2.6), however with the L1 norm used instead of the L2 norm in the penalization
term:
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βlasso = argmin
β

 n∑
j=1

(yj − (β0 + β1x1j + ...+ βdxdj))


subject to: |β|1 ≤ s

(2.7)

where |β|1 =
∑d

i=1 |βi| is the L1 norm of the vector of parameters.
As the lasso penalty is no longer strictly convex, while shrinking the coe�-

cients, the lasso actually realizes variable selection (Tibshirani, 1996). However,
feature selection done by the lasso has the following characteristics, which can be
considered limitations of this method (Tibshirani, 1996; Zou and Hastie, 2005):
(i) for d > n, the lasso selects at most n features; (ii) the lasso does not have
a �group selection� property, i.e. from a group of highly correlated variables, the
lasso selects only one variable and omits the other ones, however, it is not possible
to determine which one will be selected.

These characteristics of the lasso may be undesirable in some applications, e.g.
while analyzing microarray gene expression data, where we want to select a group
of mutually highly correlated genes which form a signalling pathway, possibly with
more then n elements.

The elastic net

The elastic net proposed by Zou and Hastie (2005) combines the penalties of
the ridge regression and the lasso:

βelastic net = argmin
β

 n∑
j=1

(yj − (β0 + β1x1j + ...+ βdxdj))


subject to: a|β|1 + (1− a)|β|2 ≤ s

(2.8)

which, for a ∈ (0, 1), is both strictly convex (as the ridge regression) and singular
at the vertexes (as the lasso). As shown by Zou and Hastie (2005), due to this
form of penalty, the elastic net has the property of the lasso as the automatic
feature selector. However, unlike the lasso, the elastic net has the �group selection�
property, i.e. groups of strongly correlated features are either in or out of the model
together. This property is related to the strictly convex penalty of the elastic net,
as shown by Zou and Hastie (2005).

In Figure 2.1, contour plots of the penalties of the ridge regression, the lasso
and the elastic net are illustrated for the two dimensional case (β1, β2), for s = 1
and di�erent values of a in Equation (2.8). It can be clearly seen that the penalty of
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Fig. 2.1. Contour plots representing penalties in two dimensions (β1, β2) for the ridge
regression, the lasso and the elastic net with di�erent values of a (Equation (2.8))

the elastic net combines the characteristics of the ridge regression (strictly convex),
and the lasso (singularities at the vertices), where changing the parameter a we
bring the elastic net closer to the lasso (for a → 1) or closer to the ridge regression
(for a → 0).

2.4. Discussion

Although numerous comparative studies have been reported regarding per-
formance of di�erent univariate and multivariate feature selection methods, con-
clusions are still not clear as to which of the methods should be preferred with
high throughput data. For instance, Lai et al. (2006) compared several popular
univariate (such as the t-test and SNR) and multivariate methods (such as greedy
feature subset selection, RFE, TSP or best pair selection). The comparison in-
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volved performance of di�erent classi�ers which used the features selected, and
was based on a collection of data sets from real gene expression studies. Results
reported by Lai et al. (2006) indicate that application of multivariate methods
does not result in more informative features as compared with simpler univariate
techniques. Also, none of the multivariate techniques clearly outperformed the
other multivariate methods, although for some speci�c datasets performance of
these methods di�ered signi�cantly.

In the study by Bo and Jonassen (2002), performance of the best pair selection
is compared with the standard univariate gene ranking (e.g. using the t-test) as
well as with the multivariate forward search. Based on the empirical analysis
involving two real life datasets from cancer-related studies, the authors conclude
that the best pair method leads to improved performance over the standard meth-
ods.

Geman et al. (2004) empirically compared the top scoring pair method with
the standard methods of feature selection used for the analysis of well known
microarray studies (prostate cancer (Singh et al., 2002), breast cancer (West et al.,
2001) and leukemia (Golub et al., 1999)). This study indicates that the simple
TSP method produces at least as good results as the standard methods of feature
selection, however, the lists of marker genes, identi�ed by the TSP are generally
much shorter (and presumably more interpretable) as compared with the lists
returned by the standard methods.

Other studies (Guyon and Elissee�, 2003; Guyon et al., 2002; Cho and Won,
2003; Dudoit et al., 2002a,b) do not seem to bring convincing conclusions as to
the preferable methods of selection of marker genes for classi�cation of samples
in high throughput studies.

Numerous high throughput assays have shown that application of standard
univariate or multivariate methods of feature selection inevitably raises serious
concerns related to stability and reproducibility of markers for sample classi�ca-
tion (Xu et al., 2005; Nelson, 2004; Ein-Dor et al., 2005, 2006). It is commonly
observed that the lists of most important features identi�ed by di�erent meth-
ods from the same data tend to show little overlapping, and, additionally, the
lists returned by one particular method under small modi�cations of training
data are generally not stable. Moreover, di�erent studies of the same biological
phenomenon (e.g. cancer) usually produce di�erent, study-speci�c lists of marker
genes.

In the next chapter, we show that these issues result from the n ≪ d data
layout, i.e. from the small sample size as compared with the number of dimensions.
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We analyze this problem from the theoretical standpoint and show that it is the
n ≪ d data which inevitably harms any data driven method of feature selection in
terms of stability/reproducibility of results. This leads to the conclusion that the
solution to these weaknesses of feature selection cannot be achieved by �nding the
right method as long as we consider purely data driven approaches. The solution is
rather to include additional domain-speci�c information on possible relationships
among features in the process of feature selection for classi�cation of samples.
We elaborate on these domain knowledge-based methods in Chapter 4, and in
Chapter 5 we employ them as tools for feature selection. Then in Chapter 6, we
empirically compare the domain knowledge-based approach with the data driven
methods presented in this chapter.

Finally, it is also noteworthy that purely data driven methods of feature se-
lection, when applied e.g. to gene expression high throughput data, face another
domain-speci�c limitation. It is commonly acknowledged that in many biological
problems (e.g. diseases) studied with microarray techniques, the actual cause of
the disease is related to relatively weak, but coordinated regulation in a group of
functionally related genes, rather than to a strong change in some few unrelated
genes (Subramanian et al., 2005). If this is the case, then standard univariate
or multivariate methods are very unlikely to be successful in discovering the real
markers for sample classi�cation, as virtually all of these methods will unavoidably
start their search with the strongest features, some of which are likely to remain
in the model. Data driven identi�cation of subsets of weak features, regulated
coordinately, would require that an exhaustive search through feature subsets is
realized, which is in practice infeasible.



Chapter 3

E�ect of small sample size

� theoretical analysis

In this chapter we develop a theoretical model which allows to quantify in-
stability of features selected from high dimensional data. The purpose of this is
not only to explain the very nature of instability of features derived from high
throughput data, but also to estimate the required sample sizes which guarantee
generation of stable and relevant features.

In this chapter we use the following notation. Let X = (xij), i = 1, ..., d,
j = 1, .., n denote the matrix with results of a massive throughput study (e.g.,
gene expression data). Rows of this matrix, denoted Xi, i = 1, ..., d represent
features, e.g. expression of d genes, measured for n samples tested. We also de�ne
Y = (yi), i = 1, ..., n as the (1 × n) target vector for the samples. Although Y
can contain either qualitative or quantitative measurements, we assume here that
Y is quantitative, i.e. yi ∈ R, i = 1, ..., n.

We assume that the vectors X1, ..., Xd and Y are samples of size n from the
underlying random variables denoted X1, ..., Xd , and Y. Based on the data X we
want to select features to be used as predictors. We consider a simple univariate
feature selection procedure where features are selected based on their observed
association with the target, i.e. the variables are ranked by the (absolute value of)
association with the target, and the top k variables in the ranking list are then
taken as predictors in regression or classi�cation models. To explain instability of
this feature selection procedure, we �rst assess probability that due to the limited
sample size an irrelevant feature (i.e. not associated with the target) is selected
instead of a relevant feature, and then we generalize this results to the case of
selection of the top N �winning� features from large feature spaces.

3.1. Risk of selecting an irrelevant feature due to

small sample size

We �rst focus on two variables Xi and Xj . We assume that Xi and Y are
independent and that Xj is associated with Y. We denote by ρ = cor(Xj ,Y), the
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actual correlation between the variables Xj and Y, and without loss of generality
we assume that ρ > 0. Obviously cor(Xi,Y) = 0. Given these two variables, we
expect that the feature selection algorithm selects the variable Xj and omits the
variable Xi. Now we estimate the probability that this indeed happens, based on
data Xi, Xj and Y .

Association of Xi and Y can be estimated from data based on the sample of
size n (xi1, y1), ..., (xin, yn) as the sample correlation coe�cient calculated as

ri =

∑n
k=1(xik − X̄i)(yk − Ȳ )√∑n

k=1(xik − X̄i)2
√∑n

k=1(yk − Ȳ )2
(3.1)

where X̄i, Ȳ are means of Xi and Y . Similarly we calculate rj as the sample
correlation coe�cient based on Xj and Y .

The probability that the feature selection algorithm selects the relevant feature
j equals

p = Pr(|rj | > |ri|) (3.2)

To simplify analytical calculation of p we assume that the samples Xi, Xj and
Y were drawn from normal distributions. Then using the Fisher transformation
(Fisher, 1915, 1921) the transformed sample correlation

Z = atanh(r) =
1

2
ln

1 + r

1− r
(3.3)

is approximately normally distributed, Z ∼ N(µ, σ), with the parameters

µ =
1

2
ln

1 + ρ

1− ρ

σ =
1√
n− 3

(3.4)

where n is the sample size and ρ is the true correlation between the random
variables which generated the sample.

Since the Fisher transformation (Equation (3.3)) is an increasing function, the
probability p (Equation (3.2)) equals

p = Pr(|Zj | > |Zi|) (3.5)

where Zi ∼ N(µi, σi), Zj ∼ N(µj , σj), with µi = 0, µj =
1
2 ln

1+ρ
1−ρ , and σi = σj =

1√
n−3

.
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Then for independent (uncorrelated) features i, j the two dimensional random
variable (Zi, Zj) has multivariate normal distribution (Zi, Zj) ∼ N(µ, Σ) with
the mean and covariance matrix

µ =
[
0 µj

]
=
[
0 1

2 ln
1+ρ
1−ρ

]
(3.6)

Σ =

[
σ2
i 0
0 σj

2

]
=

[ 1
n−3 0

0 1
n−3

]
(3.7)

The probability p (Equation (3.5)) can be now calculated by integrating the
density of (Zi, Zj), denoted here f(zi, zj), over {(zi, zj) ∈ R2 : |zj | > |zi|}, i.e.

p =

∫∫
|zj |>|zi|

f(zi, zj)dzidzj (3.8)

Numerical calculation of the integral in Equation (3.8) is simpler after the
change of variables: [

ui
uj

]
=

[
1√
2

− 1√
2

1√
2

1√
2

]
×
[
zi
zj

]
(3.9)

which represents rotation counter-clockwise by 45◦, as illustrated in Figure 3.1.

[0,mj]

zi

zj

f(zi,zj)

|zi|>|zj|

|zi|>|zj|

[-2-1/2mj, 2
-1/2mj]

ui

uj

g(ui,uj)

Fig. 3.1. Contour plot representing probability density f(zi, zj) of the random variable (Zi, Zj)
(left panel). After rotation (Equation (3.9)) f(zi, zj) is transformed into g(ui, uj) (right panel)
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It can be observed that∫∫
|zi|>|zj |

f(zi, zj)dzidzj = 2

∫∫
ui>0, uj>0

g(ui, uj)duiduj

where the right-hand side integral can be readily calculated numerically.
This (considering Equation (3.8)) proves the following Theorem.

Theorem 1. If Xi, Xj are samples of size n from normally distributed uncor-

related random variables Xi and Xj, and Y is a sample of size n from normally

distributed target variable Y, where cor(Xj , Y) = ρ and Xi, Y are independent,

then the probability p that the feature selection algorithm based on ranking features

by absolute value of correlation with target will select feature Xj out of the pair

Xi, Xj equals

p = 1− 2

∫∫
ui>0, uj>0

g(ui, uj)duiduj (3.10)

where g(ui, uj) is the density of multivariate normal distribution with the mean

µ and covariance matrix Σ:

µ =
[
− 1

2
√
2
ln 1+ρ

1−ρ
1

2
√
2
ln 1+ρ

1−ρ

]
(3.11)

Σ =

[ 1
n−3 0

0 1
n−3

]
(3.12)

The probability p as a function of the sample size n and the correlation between
the feature and the target (or the e�ect strength) is shown in Figures 3.2 and
3.3. These results clearly show that for the range of sample sizes often analyzed
in microarray studies (e.g. n up to 50) there is a substantial risk that feature
selection picks a variable that is completely unrelated with the target and omits
the relevant feature. For instance, from Figure 3.2 we estimate that for the actual
correlation ρ = 0.3 (moderate e�ect), this risk is about 30% (for the sample size
n = 20), 15% (for n = 50), and 5% (for n = 100). Interestingly, this e�ect does not
depend on the variance of the features (Xi, Xj), but only on the sample size and
the correlation of features with the target (e�ect strength). This phenomenon can
be accounted for by the fact that limited (small) sample sizes inevitably lead to low
accuaracy (due to high variance) in estimation of the actual relationship strength
between features and the target, hence the features selected in replications of the
experiment tend to be unstable.
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Fig. 3.2. Probability p = Pr(|Zi| < |Zj |) of selecting the associated feature Xj and omitting
the unassociated feature Xi as a function of the sample size and correlation between Xj and Y

Fig. 3.3. Probability p = Pr(|Zi| < |Zj |) of selecting the associated feature Xj and omitting
the unassociated feature Xi as a function of the sample size and correlation between Xj and Y
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This e�ect becomes even more challenging if the number of features searched
by the feature selection algorithm increases. Note that in massive throughput
studies the number of features searched commonly reaches d = 103−104 or more.
We consider this case in the following section.

3.2. Feature selection from high dimensional data

� e�ect of small sample size

We now consider the case where the target variable Y is associated only with
a subset of variables Xi, i = 1, ..., d, and we denote the set of indices of these
variables S. We assume that these variables realize cor(Xi, Y) = ρ for i ∈ S, and
without loss of generality we also assume that ρ > 0. The remaining variables are
not associated with the target, i.e. cor(Xi, Y) = 0 for i /∈ S.

To simplify notation, we represent the rows of the data matrix X with indices
in S by the matrix V = (Xi), i ∈ S, whose rows V1, V2, ..., VnV represent samples
from the nV = |S| variables associated with the target. Similarly, we represent
samples from the variables not associated with the target by the matrix W =
(Xi), i /∈ S, whose rows are denoted as W1, W2, ..., WnW , (nW = d − nV ). In
many applications (e.g. microarray gene expression studies) we often observe that
nV ≪ nW .

Now we analyze performance of a simple feature selection algorithm based
on feature ranking. Given the data Vi, i = 1, ..., nV , Wi, i = 1, ..., nW and Y
the algorithm ranks the features by correlation with the target and selects NTOP

highest-ranked features. Here we consider the case where NTOP is selected a priori

and can be considered a parameter of the method. Obviously, we expect that the
list of NTOP selected features will be dominated by relevant features, i.e. fea-
tures from the list Vi, i = 1, ..., nV , with minimal share of the irrelevant features
Wi, i = 1, ..., nW . To quantify this we de�ne the following measure of quality of
feature selection based on high dimensional data:

pL = Pr(in the list of NTOP features at least L are relevant) (3.13)

We now calculate pL analytically, which allows us to analyze how pL changes
as a function of the sample size n for a �xed L and NTOP .

Let us denote the Z-transformed sample correlations with the target: vi =
Z(cor(Vi, Y )) and wi = Z(cor(Wi, Y )), as de�ned by formula (3.3). In section 3.1,
we derived the probability p = Pr(|vi| > |wj |), for a �xed i and j (Equation
(3.10)). With high dimensional data the probability that the feature vi will be
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selected when compared with w1, ..., wnW equals pnW , (as we assume that the
features W1, ..., WnW are independent), which quickly drops to 0 for the values
of nW encountered in massive throughput studies (nW ∼ 103 − 104).

We can obtain similar result by analyzing the order statistics w(1) < w(2) <
... < w(nW ). To simplify further analysis we focus of features positively associated
with the target. The probability of selecting the relevant feature Vi when compared
with W1, ..., WnW equals then Pr(vi > w(nW )). As discussed in section 3.1, vi is
normally distributed with the parameters given by Equation (3.4). Distribution of
the order statistic w(nW ) = max(w1, ..., wnW ) is also known and has the density

fw(nW )
(x) = nWFnW−1(x)f(x) (3.14)

where F is the CDF and f is the density of wj , which is also normally distributed
with the mean = 0 and standard deviation given by Equation (3.4). In Figures 3.4
and 3.5 we graphically compare the density of vi and w(nW ), for di�erent values
of nW , which correspond to di�erent dimensionality of feature space searched by
the algorithm.

Note that the density of wj is centered at 0 (not shown in Figures 3.4 and
3.5), however the density of w(nW ) shifts to the right as nW increases. In Figure 3.4,
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Fig. 3.4. Distribution of the observed correlation (v) of a relevant feature with the target
compared with the maximum correlation of unrelated features (w1, ..., wnW ), for varying
nW = 10, 100, 10000. Plot created for the sample size n = 20 and correlation ρ = 0.3
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Fig. 3.5. Distribution of the observed correlation (v) of a relevant feature with the target
compared with the maximum correlation of unrelated features (w1, ..., wnW ), for varying
nW = 10, 100, 10000. Plot created for the sample size n = 100 and correlation ρ = 0.3

we clearly see that for nW = 10 the mean of w(nW ) exceeds the mean of v, hence
the probability of selecting one of irrelevant features (w1, ..., wnW ) exceeds the
probability of selecting the relevant feature v. For nW = 10000 irrelevant features
absolutely dominate. This e�ect diminishes with the growing sample size n, e.g.
in Figure 3.5 we �nd that for nW = 10000 the probability of selecting one of
irrelevant features only slightly exceeds the probability of selecting the relevant
feature.

Given the densities of v and w(nW ), we can quantify the probability

p1 = Pr(v > w(nW )) (3.15)

that the relevant feature will be selected when ranked against the list of nW

irrelevant features. Since Pr(v > w(nW )) = Pr(w(nW ) + (−v) < 0) then the p1 =
Fu(0) where Fu is the CDF of the random variable u = w(nW ) + (−v). Hence
density of u can be obtained as the convolution of densities of w(nW ) and (−v)
(we denote these densities g and h, respectively):

fu(t) =

∫ ∞

−∞
g(t− x)h(x)dx (3.16)

So the probability that a relevant feature demonstrates higher correlation with
the target then nW unrelated (`noisy') features is given by
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p1 =

∫ 0

−∞
fu(x)dx (3.17)

Both fu and p1 can be calculated numerically. Feasibility of this approach is
illustrated in Table 3.1 where we calculated p1 for the distributions v and w(nW )

depicted in Figures 3.4 and 3.5. Based on Table 3.1, we can quantify the e�ect
of increasing the sample size n: e.g., increasing the number of samples from 20 to
100 raises the probability of selecting the relevant feature v when comparing it
with nW = 10000 irrelevant features from 6.587E−3 to 0.22.

Table 3.1. Probability Pr(v > w(nW )) that the relevant feature will be selected when ranked
against the list of irrelevant features as a function of the sample size n and the number of

irrelevant features nW

n
nW

10 100 10000
20 0.41 0.13 6.587E−3
100 0.90 0.69 0.22

Now we will use similar reasoning to calculate the probability pL as de�ned
by formula (3.13). We consider selection of NTOP features, given nV actually
relevant features (i.e. associated with the target) and nW irrelevant features (not
associated with the target). The value pL describes the probability that in the
list of NTOP highest-ranked features at least L (for L ≤ nV ) will come from the
group of actually relevant features v1, ..., vnV . We �rst note that if this is true
then at least the following relevant features will be selected:

v(nV −(L−1)), v(nV −(L−2)), ..., v(nV −1), v(nV ) (3.18)

which is the last L order statistics from v1, ..., vnV . The following (at most

NTOP − L) irrelevant features will also be selected:

w(nW−(NTOP−L−1)), w(nW−(NTOP−L−2)), ..., w(nW−1), w(nW ) (3.19)

which is the last NTOP − L order statistics from w1, ..., wnW . Now we observe
that these conditions are true if and only if

v(nV −(L−1)) > w(nW−(NTOP−L)) (3.20)

To prove this, observe that if inequality 3.20 is true, then before the (NTOP −
L + 1) − th irrelevant feature is included in the list of `winning' features, it is
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guaranteed by (3.20) that at least L relevant features have already been selected.
Truth of the reverse statement is obvious.

Hence we obtain the formula to calculate pL:

pL = Pr(v(nV −(L−1)) > w(nW−(NTOP−L))) (3.21)

This can be calculated numerically in a similar way as we used to calculate p1
(de�ned by formula (3.15), and calculated by numerically integrating (3.17)). If
we denote

kV = nV − (L− 1)
kW = nW − (NTOP − L)

(3.22)

then the probability densities of the random variables v(nV −(L−1)) and
w(nW−(NTOP−L)) (which are the kV -th and kW -th order statistics, respectively)
can be calculated as:

fw(kW )
(x) = nW

(
nW − 1

kW − 1

)
F kW−1
w (x)(1− Fw(x))

nW−kW fw(x) (3.23)

fv(kV )
(x) = nV

(
nV − 1

kV − 1

)
F kV −1
v (x)(1− Fv(x))

nV −kV fv(x) (3.24)

where Fw, Fv are the CDFs and fw, fv are the probability densities of wi, i =
1, ..., nW and vi, i = 1, ..., nV , respectively (wi ∼ N(0, σ), vi ∼ N(µ, σ), where
µ, σ are given by Equation 3.4). Then we obtain the density of the r.v. u =
w(kW )+(−v(kV )) as the convolution of the densities of w(kW ) and (−v(kV )) (where
the density of (−v(kV )) is f

′
v(kV )

(x) = fv(kV )
(−x)):

fu(t) =

∫ ∞

−∞
fw(kW )

(t− x)f ′
v(kV )

(x)dx (3.25)

Considering that pL = Pr(v(kV ) > w(kW )) = Pr(u < 0), this proves the follow-
ing Theorem.

Theorem 2. If V1, V2, ..., VnV are samples of size n from nV normally distributed

relevant features (i.e. variables correlated with normally distributed target Y , with

correlation equal ρ), and W1, W2, ..., WnW are samples of size n from nW nor-

mally distributed features independent of target, then the probability that in the list

of NTOP features selected by the univariate algorithm based on ranking features,

at least L features are relevant equals
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pL =

∫ 0

−∞
fu(x)dx (3.26)

where fu is calculated according to formula (3.25).

Note the the integral (3.26) and the convolution (3.25) can be calculated nu-
merically.

This important result allows us to analyze e�ect of the sample size (n) on
the number of noisy features returned by the feature selection procedure based
on feature ranking. In Figures 3.6 through 3.8 we illustrate this relationship
for some speci�c values of nV and nW . For instance, in Figure 3.6 we analyze
selection of top 90 features from ca. 5000 features (e.g. transcripts) out of which
only 100 are actually important (associated with the target). We observe that
for relatively low correlation with the target (ρ = 0.2, bottom-left panel) at
least 100 samples are required to guarantee that in the list of winning features
about one third are relevant (pL ≈ 1 for L = 30). Obviously, with stronger e�ect

Sample size (n)

p
L

0.0

0.2

0.4

0.6

0.8

1.0

20 40 60 80 100

 : ρ { 0.2 }  : ρ { 0.3 }

 : ρ { 0.4 }

20 40 60 80 100

0.0

0.2

0.4

0.6

0.8

1.0

 : ρ { 0.5 }

L
30
50
70
90

Fig. 3.6. Probability that at least L relevant features are selected in the list of top 90 features
as a function of the sample size n and correlation ρ. Plot created for nV = 100 and nW = 5000
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Fig. 3.7. Probability that at least L relevant features are selected in the list of top 90 features
as a function of the sample size n and correlation ρ. Plot created for nV = 100 and nW = 10000
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Fig. 3.8. Probability that at least L relevant features are selected in the list of top 90 features
as a function of the sample size n and correlation ρ. Plot created for nV = 100 and nW = 10000

(i.e relationship between relevant features and the target), the number of required
samples decreases (e.g. for ρ = 0.3 only about 40 samples guarantee one third of
relevant features). For the strong e�ect (ρ = 0.5, top-right panel), the experiment
design with ∼ 40− 50 samples guarantees that 70 out of 90 features selected are
relevant.
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In Figure 3.7 we analyze the e�ect of higher-dimensional data, with ca. 10
thousand features. We observe that now about 10-20 more samples are required
to realize similar concentration of relevant features in the list of top winning
features as in the previous example. For instance, comparing the bottom-right
panels of Figure 3.6 and 3.7, we see that in order to guarantee 50 (out of 90)
relevant features we need 80 samples for data of dimensionality of 5000 and about
100 samples if dimensionality is twice as much.

In Figure 3.8 we focus on the lower e�ect strength (ρ up to 0.3), as this range
of correlation is commonly observed in microarray data. In this case hundreds of
samples are needed to guarantee that majority of features selected are relevant,
e.g., for ρ = 0.3 about 150 samples yield 70 relevant feature (in the list of 90),
while for ρ = 0.2 the same requires 350 samples. To obtain all relevant features
for ρ = 0.3 we need about 400 (the same would require about 1000 samples if
ρ = 0.2, result not shown).

3.3. Discussion and conclusions

In this chapter, we analyzed simple feature ranking algorithms in terms of
the probability of selection of the relevant features. We analytically estimated
this probability as a function of the sample size and dimensionality of the feature
space. This analysis shows that for the small sample size and high dimensional
data (n ≪ d problems), irrelevant features can dominate the lists of features
selected with univariate methods.

These results explain inherent problems with feature selection from n ≪ d
data, irrespective of what method (uni- or multivariate) is used. The problems
result from the small sample size, which leads to the high variance of the observed
correlation of features with the target, and e�ectively hides the actual correlation
of features with the target.

In order to simplify the analytical formulae derived in this chapter, we assumed
that the features and normally distributed and independent, and we considered
quantitative, normally distributed target. Although these results directly apply to
regression (and logistic regression) problems, they are intended as the illustration
of the general limitation of data-driven feature selection in high dimensional data.

These results can also be used at the stage of high-throughput experiment
planning, to estimate the required sample size which guarantees the minimum
expected concentration of relevant features in the results of class comparison.
We showed that the minimum sample size which guarantees this grows with the
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dimensionality of data. However, if the required sample size is not a�ordable in
a high-throughput assay, then the solution is to use prior domain knowledge-based
feature selection. In the next chapter we discuss gene set analysis methods which
can be employed for prior biological knowledge-based feature selection.



Chapter 4

Prior domain knowledge-based methods of

feature selection

In Chapter 3 and in section 2.1, we analyzed limitations of standard univariate
and multivariate methods of feature selection. We concluded that for data from
high throughput studies (i.e. for n ≪ d problems), purely data-driven methods
are not able to guarantee stability and reproducibility of the selected feature sets.
Moreover, data-driven methods are unlikely to identify sets of weakly activated
features which, working as a group of related features often account for the real
di�erences between samples analyzed in class comparison/class prediction studies
(Subramanian et al., 2005).

In order to overcome these limitations of data-driven methods, we need to
incorporate in the process of feature selection additional information, which is not
derived from the experiment data but is used in the analysis as a priori domain
knowledge about possible functional relationships in the set of features. In the
context of bioinformatics, on which we primarily focus in this work, such domain
knowledge about relationships among features (genes) is available in signalling
pathway or gene ontology databases, such as the KEGG (Kyoto Encyclopedia of
Genes and Genomes), Biocarta or Gene Ontology, and is currently being actively
developed. Based on these databases, we derive gene sets which include genes
� members of signalling pathways, or genes which share common gene ontology
terms (i.e. are involved in the same molecular function or biological process, or are
related to the same cellular component), or share common chromosome location.

Numerous methods of gene set analysis which allow us to estimate activation
of pathways, or otherwise related gene sets, have been proposed in bioinformatic
literature. The methods are primarily employed to obtain insight into the nature
of the underlying biological process or disease. In these applications, the main
incentive is to improve interpretability of di�erential expression studies based on
data from high throughput assays. In this work, we adopt a di�erent perspective
� we focus on gene set analysis methods as the means of including prior domain
knowledge in the process of feature selection for sample classi�cation. We
expect that by including a priori knowledge, we will be able to identify subsets
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of features undergoing small, coordinated changes, which underlie the real
di�erences between samples, and which are likely to be missed by the standard
univariate or multivariate approaches. Moreover, we expect to improve stability
and reproducibility of feature selection.

In this chapter, we primarily focus of methodological aspects of feature (gene)
set analysis. It is known that di�erent methods of gene set analysis tend to produce
very disparate results, however, di�erences between the methods were studies
mainly empirically. This motivated us to study this problem on the theoretical
basis.

In the next section, we brie�y review the current research pertaining to the
competing approaches to gene set analysis. In section 4.2, we identify four groups
of gene set analysis methods, which are based on fundamentally di�erent method-
ological assumptions. In section 4.3, we discuss models of the statistical exper-
iment that the di�erent groups of methods actually imply, and we show which
of the models comply with the actual biological experiment which provided the
data. In section 4.4, we empirically compare the groups of methods in terms of
the power and type I error (false positive rate). This comparison is based on data
with known characteristics regarding signal to noise level and correlation among
features. Finally, we analyze the relationship between power of the methods and
correlation among features, in order to explain discrepancies between di�erent
empirical studies (section 4.6).

Finally, we want to note that application of the methods discussed in this
chapter is by no means restricted to bioinformatics or genomics. The algorithms
can be used generically to study relationships between a priori de�ned subsets of
numeric feature and the target. For instance, in text categorization tasks feature
set analysis methods presented here could be used to improve feature selection and
classi�cation of documents (e.g. from the MEDLINE database), where the docu-
ments are represented by ca. 72.000 features (Yang and Pedersen, 1997). In this
context, a priori de�ned feature sets could represent sets of terms characteristic
of some subject areas.

Results reported in this chapter were partly published in the journal Brie�ngs
in Bioinformatics (Maciejewski, 2013).

4.1. Introduction to gene set analysis methods

The main purpose of gene set analysis is to overcome the major limitations of
purely data-driven class comparison based on high-throughput data. The limita-
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tions are related primarily to poor interpretability and reproducibility of results,
and they underlie the speci�c problems commonly observed with class comparison
based on n ≪ d data (Subramanian et al., 2005):

• Class comparison studies may produce long lists of statistically signi�cant
features (e.g. di�erentially expressed genes). Interpretation of such lists,
which is expected to reveal the actual cause of the di�erence between the
classes compared, is often infeasible or largely subjective.

• On the other hand, class comparison studies may produce empty lists of
features which remain statistically signi�cant after the multiple testing cor-
rection. This is especially likely if the signal in the relevant features is low
as compared with the noise, and if d is large.

• It is commonly observed that di�erent high-throughput studies of the same
problem (e.g. disease) reveal lists of signi�cant features which show very low
overlapping. This problem in n ≪ d data can be mainly attributed to the
small sample size, as shown in Chapter 3.

• It is often postulated that the actual e�ect underlying the di�erence be-
tween the classes compared in high-throughput assays in genomics is due to
relatively low but coordinated change in a group of related features rather
than a big change is some unrelated features. For instance, referring to
high-throughput assays in genomics, Subramanian et al. (2005) argue that
�An increase of 20% in all genes encoding members of a metabolic pathway
may dramatically alter the �ux through the pathway and may be more
important than a 20-fold increase in a single gene�. Standard, data driven
methods of class comparison are virtually unable to reveal such important
feature sets, focusing of highly variable but irrelevant features.

Gene set analysis attempts to ease these interpretability and reproducibil-
ity related di�culties by employing a priori domain knowledge about groups of
features which are presumably related functionally. In this way, the underlying
di�erences between the classes can be expressed in terms of activation of feature
sets (such as signalling pathways in case of genomic studies).

Numerous approaches have been proposed which di�er in how activation of
a gene set is de�ned and estimated from data. Roughly, some methods analyze
association of genes in a gene set with the target while ignoring the remaining
genes in the data; other methods compare genes in the gene set with the remaining
genes in terms of association with the target. The former methods are known as
self-contained, and the latter � as competitive methods (Nam and Kim, 2008).
Goeman and Bühlmann (2007) made an important distinction between the null
hypotheses tested by di�erent methods:
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• Self-contained null hypothesis assumes that no genes in the gene set con-
cerned are di�erentially expressed.

• Competitive null hypothesis assumes that the genes in the gene set are
not more associated with the target (i.e. di�erentially expressed) than the
remaining genes.

Rejection of the null hypothesis is interpreted as activation of the gene set. The
numerous methods of gene set analysis propose di�erent test statistics to verify
the self-contained and competitive hypotheses, as well as di�erent procedures to
estimate statistical signi�cance (i.e. the p-value) of the test statistic. More specif-
ically, the methods of gene set analysis di�er in terms of the model of statistical
experiment realized by the methods, i.e. in terms of the following assumptions
which underlie the test procedure:

• The methods di�er in terms of the de�nition of the random variables which
are actually compared in the test. The data which are used to calculate the
test statistic are then regarded as independent samples from these random
variables.

• The methods also di�er in the actual meaning and interpretation of the null
hypothesis tested.

• The methods di�er in the the way the statistical signi�cance is evaluated,
or more speci�cally, how the distribution of the test statistic under the null
hypothesis (null distribution) is obtained. The methods use one of the fol-
lowing approaches: (i) the null distribution is assumed to follow some known
parametric distribution, (ii) the null distribution is obtained by permutation
of samples, or (iii) the null distribution is obtained by permutation of genes.

• Since statistical signi�cance (or the p-value) of the test is related to repli-
cations of the experiment (as the p-value denotes the probability, assuming
H0, of obtaining a more extreme value of the test statistic under many repli-
cations of the experiment), the methods de facto di�er in how replication
of the experiment can be realized. We show that some methods imply that
replication of the experiment is realized by taking more samples, while some
other methods imply that replication of the experiment means taking more
genes from a gene set.

Interestingly, authors of many methods do not explicitly state these assump-
tions; often the underlying assumptions implicitly arise from the statistical hy-
pothesis testing procedure. In this chapter we clarify these important assumptions
underlying the numerous methods of gene set analysis.
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We �rst (section 4.2) systematize the methods into the following categories:
• self-contained,
• competitive which use sample permutations to derive the null distribution,
• competitive which use gene permutations to derive the null distribution,
• methods which assume parametric null distribution.
Then in section 4.3, we provide the methodological analysis of the methods in

these groups in terms of the model of the statistical experiment. We also analyze
compliance of the models with the organization of the actual high-throughput
experiment which produced the data. This analysis is intended to indicate which
of the methods produce (biologically) interpretable results, i.e. we want to identify
the methods whose signi�cant p-value actually denotes signi�cant association of
the feature set with the target. These methods will be then used in Chapter 5 in
order to incorporate prior domain knowledge in the process of feature selection.

4.2. Mathematical formulation of gene set analysis methods

The mathematical formulation of gene set analysis methods will be done
using the following notation. We denote the matrix containing results of
a high-throughput study as Wd×n, where the columns, denoted W•i, i = 1, ..., n,
represent the d-dimensional vectors of features measured for the n samples tested
in the assay. The target values associated with the samples are represented by
the vector Y = (Yj), i = 1, ..., n. For instance, in the context of a gene expression
study, W can be the matrix with expression of d genes observed for n samples
(patients), where the disease status of the samples (e.g. type of leukemia, or cancer
vs healthy) is represented by Y .

It is convenient to represent an a priori de�ned gene set (e.g. a signalling
pathway) as the set of indices, G, of rows of the matrix W which correspond to
the genes in the gene set concerned (see also Remark 5 on page 103 for some
technical issues related to this mapping). We denote the number of elements in G
as m. We also denote GC = {i : 1 ≤ i ≤ d ∧ i /∈ G} as the complement of G. We
represents the subset of rows in W which correspond to G as the (m× n) matrix
X = (Wi•), i ∈ G, and similarly XC = (Wi•), i ∈ GC , where Wi• denotes the i-th
row of W .

Many genes set analysis methods de�ne the gene set score (i.e. the measure of
association of the gene set with the target) as the aggregate of the individual gene
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scores (i.e. measures of association of genes in the gene set with the target). If we
de�ne the gene score function as τ , then the gene scores are denoted as t = (ti),
where ti = τ(Xi•, Y ), i = 1, . . . ,m, and as tC = (tCi ), where tCi = τ(XC

i•, Y ),
i = 1, . . . , (d−m). Unless otherwise stated, for the binary target, τ will be de�ned
as the t-statistic. We denote the p-values associated with the scores t and tC as
p = (pi), i = 1, . . . ,m and pC = (pCi ), i = 1, . . . , (d−m).

In sections 4.2.1 through 4.2.4, we present the following groups of methods
of gene set analysis: self-contained, competitive with randomization of samples,
competitive with randomization of genes, and parametric. We discuss the key
methodological di�erences between these groups of methods, focusing on de�ni-
tion of the gene set score and the procedure to assess statistical signi�cance of
results.

4.2.1. Self-contained methods

The null hypothesis of the self-contained methods assumes that no genes in
the gene set are associated with the target. The hypothesis is tested based on the
data (X,Y ), with the matrix XC ignored. Rejection of the null hypothesis (i.e.
p-value < 0.05) is interpreted as activation of the gene set.

Here we present the most prominent examples of self contained methods.
1. Globaltest, GT, (Goeman et al., 2004).

The test is based on the generalized linear model of relationship between X
and Y : g(E(Yi|β)) = β0+β1x1,i+ ...+βmxm,i, where g is the link function
and β denotes the vector of coe�cients in the model. The null hypothesis
assumes that the genes are not associated with Y , i.e. H0 : β1 = β2 = ... =
βm = 0. The test statistic is derived as:

GT =
1

m

m∑
i=1

1

µ2

[
Xi•(Y − µ)′

]2
(4.1)

where µ is the �rst and µ2 is and second central moment of Y . Signi�cance
of the test statistic is assessed using permutation of samples, or using the
parametric distribution (asymptotic normal distribution or, for small sam-
ples, scaled χ2 distribution).

2. SAM-GS, (Dinu et al., 2007).
The SAM-GS is the gene set analysis method based on the popular
class-comparison SAM algorithm proposed by Tusher et al. (2001). The
gene set score is de�ned as:
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SAMGS =

m∑
i=1

(
X̄

(0)
i• − X̄

(1)
i•

std(Xi•) + s0

)2

(4.2)

where Xi• = (xij), j = 1, ..., n, is the i-th row of X, X̄(0)
i• = mean(xi,j :

Yj = 0) and X̄
(1)
i• = mean(xi,j : Yj = 1) denote the mean signal for gene i

in class 0 and 1, respectively, and s0 is a small constant added to stabilize
the gene set score for the rows with small variability signal. Signi�cance of
the test statistic is assessed using permutation of samples.

3. Q2, (Tian et al., 2005).
The gene set score is de�ned as the aggregate of the individual gene scores
in G, i.e.

Q2 =
1

m

m∑
i=1

ti (4.3)

with signi�cance estimated using randomization of samples.
4. SC.GSEA, self-contained version of the GSEA method proposed by Subra-

manian et al. (2005).
The self-contained version of the popular GSEA method (see point 1 on
page 50) was suggested by Goeman and Bühlmann (2007). The idea is to
compare the p-values calculated for the members of G, (pi), i = 1, ...,m,
versus the uniform distribution, since under the null hypothesis (members
of G not associated with the target), the p-values should follow the uni-
form distribution. Therefore, the SC.GSEA gene set score is de�ned as the
Kolmogorov�Smirnov statistic comparing (pi), i = 1, ...,m, versus the uni-
form distribution, with the signi�cance assessment based on (i) permutation
of samples or (ii) the analytical Kolmogorov�Smirnov distribution.

A number of similar self-contained methods were also proposed by Fridley
et al. (2010).

Most of the self-contained methods use sample randomization for signi�cance
assessment. Signi�cance (and the p-value) of the test statistic S (where S is the
gene set score such as GT or Q2, etc.) is obtained by comparing the value of S
observed in the test, denoted S0, with the distribution of the statistic calculated
under the null hypothesis which states that the features in X and the target Y are
independent. Hence, the null distribution of S can be obtained by repeatedly cal-
culating S under many permutations of samples, with the corresponding p-value
obtained as:
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p =
1

B

B∑
i=1

I(Si > S0) (4.4)

where Si is the value of the gene set score S observed under the the i-th permuta-
tion of samples (e.g. permutation of values in Y ), I denotes the indicator function
and B is the number of permutations. It should be noted that the permutation
test is available only in the the sample labels are exchangeable (e.g. if they are
drawn as independent realizations from some random distribution).

4.2.2. Competitive methods with randomization of samples

The null hypothesis tested by the competitive methods assumes that the genes
in G are not more often associated with the target than the genes outside G. The
hypothesis is tested based on the complete data available from the experiment,
i.e. (X,XC , Y ). Rejection of the hypothesis (i.e. p-value < 0.05) indicates that
the gene set includes signi�cantly more di�erentially expressed genes than the
remaining collection of genes in the experiment, and therefore can be declared as
activated.

Competitive methods use either gene or sample randomization for assessment
of signi�cance of results. In this section, we focus on sample randomization meth-
ods. Here we present the most prominent of these methods.

1. GSEA � Gene Set Enrichment Analysis, (Subramanian et al., 2005).
GSEA is one of the �rst and best-known methods of gene set analysis
proposed in bioinformatics. The GSEA creates the sorted list of p-values
calculated for all the genes in the study (i.e. for all the rows of W ). We
expect that for the null hypothesis, the ranks of genes in G should be
uniformly distributed along the list of all genes. Therefore, the GSEA
gene set score (referred to as the Enrichment Score, ES) is de�ned as the
Kolmogorov�Smirnov statistic comparing ranks of the p-values of genes
in G vs the uniform distribution. (Note that using ranks of the p-values
makes the method competitive, while using raw p-values, as proposed in
the SC.GSEA, makes the method self-contained).
Signi�cance of the GSEA statistic is obtained using randomization of sam-
ples.

2. SAFE, (Barry et al., 2005).
The SAFE method directly compares the vectors t vs tC , which is motivated
by the assumption that for the null hypothesis the vectors should not di�er
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in terms of some commonly used measures of similarity. More speci�cally,
the SAFE gene set score is de�ned as the Kolmogorov�Smirnov or as the
Wilcoxon rank-sum statistic comparing the vectors t and tC .
Signi�cance of the gene set score is assessed using randomization of samples.

3. GSA � Gene Set Analysis, (Efron and Tibshirani, 2007).
The GSA procedure, proposed as the extension of the GSEA method, de-
�nes a di�erent gene set score and uses an enhanced procedure of sig-
ni�cance assessment. The authors argue that these modi�cations lead to
improved power of the method, which they conclude from empirical ex-
periments. GSA has become one of the most prominent gene set analysis
methods.
The GSA gene set score (known as the maxmean statistic) is de�ned as

Smax = max

{∣∣∣∣∑m
i=1 I (ti > 0) ti

m

∣∣∣∣ , ∣∣∣∣∑m
i=1 I (ti < 0) ti

m

∣∣∣∣} (4.5)

Note that Smax represents the mean association of up- or down-regulated
features (whichever dominate), however, the mean is taken over all m fea-
tures in G rather than the actual number of the up- or down-regulated
features. This is supposed to weaken the impact of single features with
very strong e�ect. In (Efron and Tibshirani, 2007), the authors also con-
sider simpler statistics, such as S = 1

m

∑m
i=1 ti (as in Equation (4.3)), or

S = 1
m

∑m
i=1 |ti|.

Prior to assessment of signi�cance, which is done using randomization of
samples, the test statistic is standardized, which consists in adjusting it
using all the rows in W . The p-value of the standardized S statistic is
calculated as

p =
1

B

B∑
i=1

I

(
Si −mean∗

stdev∗
>

S −meanS

stdevS

)
(4.6)

where the standardization terms meanS and stdevS denote the mean and
standard deviation of the gene scores calculated for all genes in W , Si de-
notes the gene set score calculated for the i-th permutation of samples, B
is the total number of permutations, and the standardization terms mean∗

and stdev∗ denote the mean and standard deviation of individual gene
scores calculated over all genes in W and over a large number of permuta-
tions. Similar restandardization formula is available for the Smax statistic
� see (Efron and Tibshirani, 2007).
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Note that if the raw gene set scores S or Smax were used in the signif-
icance assessment procedure (e.g. if p = 1

B

∑B
i=1 I(Si > S)), then the

GSA would clearly become a self-contained method. Standardization of
the statistics makes the method competitive, as the standardized statistics
measure association with the target of the features in G, relative to the
average association with the target of all the features in (X,XC).

4. GSA2 � modi�ed version of GSA. The modi�ed version of the GSA, pro-
posed in (Maciejewski, 2013), aims to correct the inconsistency in the signif-
icance assessment procedure employed by the original GSA method. Note
that the GSA uses sample randomization to assess signi�cance of the stan-
dardized statistic (S − meanS)/stdevS � Equation (4.6). The purpose of
the permutation procedure is to empirically obtain the null distribution
of the test statistic, or more speci�cally, as realized by Equation (4.6),
to assess the probability that a more extreme value of the test statistic
((S − meanS)/stdevS) would be observed if we repeatedly performed the
experiment, assuming that the null hypothesis holds. To do this, we need
to calculate the value of test statistic under permutation of samples. Note
however, that in formula (4.6), we do not compare the observed test statistic
(S−meanS)/stdevS with its value calculated for a permutation of samples,
but with the value (Si − mean∗)/stdev∗, which does not provide the null
distribution of the test statistic (S − meanS)/stdevS . Hence, the original
GSA method does not properly assess the p-value associated with the stan-
dardized gene set score.
To correct this we propose that the p-value is assessed as

pmod =
1

B

B∑
i=1

I

(
Si −meanSi

stdevSi
>

S −meanS

stdevS

)
(4.7)

where the meanSi and stdevSi are the mean and standard deviation of the
individual gene scores calculated for all the genes under the i-th permuta-
tion of samples. Note that the left-hand side of the inequality represents the
value of the standardized statistic under the i-th permutation of samples.
Signi�cant p-value (i.e. pmod < 0.05) indicates that the gene is enhanced
(i.e. contains higher concentration of di�erentially expressed genes than the
whole dataset W ).
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4.2.3. Competitive methods with randomization of genes

Numerous competitive methods have been proposed which compare di�erential
expression in X and XC (or which compare t vs tC) and use randomization of
genes (rows of W ) for the assessment of signi�cance, i.e. for derivation of the
distribution of the test statistic under the null hypothesis. Signi�cant p-values
(i.e. p-value < 0.05) are interpreted by these methods as the indication that the
gene set contains more di�erentially expressed genes than its complement.

In the following section, we analyze methodological problems related to this
interpretation. We show that signi�cance assessment based on gene randomization
relies on unrealistic assumptions related to the model of statistical experiment,
which makes interpretation of the p-values problematic.

Here we present some of the most prominent methods which rely on gene
randomization.

1. Q1, (Tian et al., 2005).
The method uses the same statistic as the self-contained procedure Q2 �
Equation (4.3):

Q1 =
1

m

m∑
i=1

ti (4.8)

Assessment of signi�cance of Q1 is done using randomization of genes (rows
of W ), with the p-value calculated similarly as in Equation (4.4), i.e. p =
1
B

∑B
i=1 I(Q1i > Q1), where Q1i is the value of the statistic for the i-th

permutation of genes, and B is the number of permutations.
Note that the gene randomization procedure makes the method competi-
tive, since it actually compares t vs tC .

2. Functional Class Score, (Pavlidis et al., 2004).
The idea of the Functional Class Score is to compare p vs pC , i.e. the
p-values corresponding to the rows of X with the p-values corresponding
to the rows of XC . The gene set score is de�ned as

FCS =
1

m

m∑
i=1

− log(pi) (4.9)

Signi�cance is assessed using gene randomization, which makes this
method competitive (note that sample randomization would make FCS
the self-contained procedure).
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Similar methods which aggregate individual gene scores for the members of
G and use gene permutations for signi�cance assessment were also proposed by
Volinia et al. (2004) and Breslin et al. (2004).

4.2.4. Parametric methods

Numerous methods have been proposed which attempt to use some standard
statistics with known null parametric distributions to compare X vs XC in terms
of association with the target. Some methods perform overrepresentation analysis

to verify if the genes in G are over-represented in the list of genes in W which are
declared as di�erentially expressed. Technically, the methods compare the two
binary vectors of length d, LD and LG, whose elements represent whether the
corresponding row in W is di�erentially expressed and whether it is a member
of the gene set G. The comparison is based on the contingency table, with the
p-value of the null hypothesis of no association of LD and LG obtained from the
Fisher's exact test or from the hypergeometric test. This approach is implemented
in several gene set analysis tools, e.g. Scheer et al. (2006); Al-Shahrour et al.
(2005, 2007). Note that the over-representation approach requires that each gene
is declared as either di�erentially expressed or not, which is based on (somewhat
arbitrary) threshold assumed on the p-value; it turns out that generally the gene
set analysis is very sensitive to this threshold.

Several threshold-free parametric methods have been proposed. For instance,
they attempt to directly compare t vs tC using some standard statistical tests,
or they test some statistic calculated from t, for which the null distribution is
known. In the next section, we provide methodological analysis of these methods
and show that their underlying assumptions lead to di�culties with interpretation
of the p-values returned by some of the methods.

Here we present some of the threshold-free parametric approaches.
1. T-pro�ler, Boorsma et al. (2005).

This method uses the t-test to compare the vectors of individual gene scores
in X and XC . The test statistic is de�ned as

tG =
µG − µGC

s
√

1
m + 1

d−m

(4.10)

where µG and µGC denotes the mean gene score in G and in GC , respec-
tively, and s is the standard deviation of the gene scores calculated from
the pool of {G,GC}. In the original work, the authors proposed to use
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the log-ratio of gene expressions in the classes compared as the gene score,
however, other gene scores could be used, such as t and tC (which would
give µG = t̄, µGC = t̄C).
The p-value of the test is obtained from the t-distribution withm−2 degrees
of freedom.

2. Parametric tests proposed by Irizarry et al. (2009).
Irizarry et al. (2009) proposed to compare the vectors of individual gene
scores, t and tC , using some well-known statistical tests with known
null distributions. This approach was intended to provide a more pow-
erful and computationally simpler procedure as compared with the pop-
ular GSEA algorithm, which uses the Kolmogorov�Smirnov statistic and
permutation-based signi�cance assessment.
More speci�cally, Irizarry et al. (2009) proposed to compare t vs tC using
the Wilcoxon rank sum statistic and the χ2 statistic, which test for the
di�erence in location and scale, respectively. The idea was to provide an
alternative to the less powerful Kolmogorov�Smirnov test. Signi�cance of
the tests for location and scales can be then obtained from the Wilcoxon
or the χ2 null distribution.

3. PAGE � parametric analysis of gene expression, (Kim and Volsky, 2005).
The idea is to compare the mean gene score calculated for the genes in G
with the distribution of the gene scores calculated for all the genes in the
experiment. Kim and Volsky (2005) proposed to use the fold-change as the

gene score (i.e. X̄(0)
i• /X̄

(1)
i• , see notation introduced in point 2 on page 48).

The test statistic is de�ned as the z-score:

z =
1

δ
(µ− µG)

√
m (4.11)

where µG denotes the mean fold-change calculated for the genes in G, and µ
and δ denote the mean and standard deviation of fold-changes calculated for
all the genes in W . Under the null hypothesis, z should follow the standard
normal distribution z ∼ N(0, 1), which is used to assess signi�cance of the
test.

4. Category method, Jiang and Gentleman (2007).
The method de�nes the gene set score as the average over G of the t-statis-
tics calculated as the individual gene scores:

z =
1√
m

m∑
i=1

ti (4.12)
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Assessment of signi�cance is based on the assumption that under the null
hypothesis, z should follow the normal distribution z ∼ N(0, 1). Similar
method was also proposed by Irizarry et al. (2009).

5. Fisher's method for combining p-values, Fridley et al. (2010).
The gene set score de�ned by this method aggregates the p-values for the
genes in G, i.e.

F = −2

m∑
i=1

log(pi) (4.13)

This procedure is based on the Fisher's method for combining p-values
from independent tests. Since under the null hypothesis, the p-value pi
follows the uniform distribution on [0, 1], hence −2 log(pi) follows the χ2

distribution with 2 degrees of freedom, and thus, under the self contained
null hypothesis, the test statistic F follows the χ2 distribution with 2m
degrees of freedom. This distribution can be used to assess the statistical
signi�cance of F . Note however that if signi�cance of F was assessed using
permutation of samples, then this method would become self-contained
(similar to the Q2, Equation (4.3)).

Next, we will analyze methodological di�erences between the gene set analysis
methods presented in this section. We will develop models of statistical experiment
explicitly or implicitly assumed by the methods, which provide the context for the
interpretation of p-values returned by the methods.

4.3. Methodological analysis � assumptions underlying

di�erent gene set analysis methods

We analyze the underlying statistical assumptions which are implied by the
di�erent methods of gene set analysis. Although all the methods express their re-
sults in terms of p-values, i.e. rely on statistical hypothesis testing, many methods
do not precisely state the key assumptions pertaining to the statistical hypothesis
test performed. We analyze these assumptions related to the de�nition of the
random variables tested, the size and independence of the random samples taken
from the variables, the de�nition and meaning of the null hypothesis. It should
be noted that these assumptions can be inferred from the de�nition of the test
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statistic and/or from the procedure used to obtain the null distribution of the
test statistic. For instance, if a gene set analysis method employs the t-test (see
the T-pro�ler, Equation (4.10)), or the Wilcoxon test (see the parametric test,
point 2 on page 55) to compare the individual gene scores in G vs the scores in
GC , (i.e. t vs tC), then this actually means that t and tC are considered as the
samples of size m and (d−m), respectively, composed of iid elements drawn from
their underlying random variables, whose distributions we want to compare. In
other words, the method relies on the implicit assumption that the elements in t
are independent, i.e. that the genes in G are independent (which is a questionable
assumption). Similarly, if we analyze the signi�cance assessment procedure, i.e.
the method to obtain the null distribution of the test statistic, we can infer the
actual null hypothesis assumed. For instance, the gene permutation procedure
used to derive the null distribution of the Q1 statistic (Equation (4.8)) actually
means that the genes in G come from the same distribution as the genes outside G,
as the permutation test de facto implies that the vectors representing �individual
gene score� and �assignment of a gene to the gene set� are independent. In other
words, we assume that the genes in G come the same distribution (which is again
a questionable assumption).

We also note that all the methods of gene set analysis express their results
in terms of the p-values, i.e. a gene set is declared as signi�cant if the p-value of
a speci�c test is su�ciently small (e.g. p-value < 0.05). However, the p-value is
interpretable only in the context of repetitions of the experiment. For instance,
p-value < 0.05 means that if we repeated the experiment many times, then only
the fraction of 5% repetitions of the experiment would return the data which
produce the test statistic more extreme than the actually observed. Therefore, it
is important to analyze the methods in terms of how the experiment could be
repeated. We will show that the models of statistical experiment underlying some
of the methods de�ne repetition of the experiment quite di�erently than perceived
by the researcher who performs the actual experiment (e.g. in genomics).

In sections 4.3.1 through 4.3.4, we clarity the models of statistical experiment
explicitly or implicitly assumed by the di�erent groups of gene set analysis meth-
ods presented in the previous section. In section 4.3.5, we discuss applicability
of di�erent methods for (i) testing self-contained or competitive hypotheses, as
formulated by Goeman and Bühlmann (2007) (see page 45), and for (ii) generation
of features for sample classi�cation.
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4.3.1. Model 1 of statistical experiment � self-contained methods

We �rst analyze the self-contained methods which use sample randomiza-
tion for signi�cance assessment. These methods de�ne the test statistic based
on (X,Y ), ignoring XC .

The data analyzed by these methods can be regarded as n independent samples
(X•i, Yi), i = 1, ..., n, coming from the underlying random variables: X ∈ Rm and
Y, where X represents expression of m genes in G, and Y represents the target
(e.g. disease status) of the subjects (e.g. patients) tested.

Assessment of signi�cance relies on the null distribution of the test statistic
obtained using (many) sample permutations. Note that this procedure to obtain
the null distribution is valid for, and de facto implies, the null hypothesis which
assumes that expression of genes X and the target Y are independent.

Summarizing, self-contained methods with randomization of samples realize
the following model of the statistical experiment:

• The data (X•i, Yi), i = 1, ..., n, are considered as n iid samples from the
random variables X ∈ Rm and Y.

• Interpretation of the random variables: X represents expression of genes in
G, and Y represents the target (disease status, phenotype) of the subjects
tested.

• The null hypothesis states that X and Y are independent.
• Repetition of the experiment can be done by measuring gene expressions
and the target for new subjects.

This model applies to the methods presented in section 4.2.1, such as the
Globaltest, SAM-GS, Q2, or the SC.GSEA (with the null distribution based on
permutation of samples). We note that the same model would apply if we used
sample randomization to assess signi�cance of the FCS or Category statistics (see
Equations (4.9) or (4.12)), i.e. these methods would become self-contained. We
also note that Model 1 is not valid if the SC.GSEA uses the Kolmogorov�Smirnov
distribution instead of the sample randomization procedure. In the next section,
we provide an appropriate model for this case and for similar methods.

4.3.2. Model 2 of statistical experiment � based on analytical

distribution of p or t

Several methods rely on testing whether the elements of (p1, ..., pm),
or the elements of (t1, ..., tm) follow some known analytical distribution. For
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instance, the SC.GSEA method (point 4 on page 49) tests if (p1, ..., pm) come
from the uniform distribution on [0, 1]. Similarly, the Fisher's method (Equation
(4.13)) is based on combining p-values from independent tests, where the p-values
are assumed to follow the uniform distribution on [0, 1]. Another similar procedure
is proposed by Irizarry et al. (2009), who argue that under the self-contained null
hypothesis, the elements of (t1, ..., tm) should follow the normal distribution.

All these approaches regard the elements of (p1, ..., pm), or the elements of
(t1, ..., tm), as independent samples from some distribution, where the distribu-
tion is derived analytically assuming that we perform m independent tests of
a hypothesis which is assumed to be true. For instance, the methods which test
uniformity of (p1, ..., pm), rely on the well-known fact that if we perform m inde-
pendent tests of a (true) null hypothesis, then the resulting p-values are expected
to be uniformly distributed on [0, 1].

Therefore, if a gene set analysis method attempts to verify the self-contained
null hypothesis by testing whether the elements of (p1, ..., pm) come from the uni-
form distribution, the method de facto assumes that we perform m independent
tests of association between a gene in the gene set G and the target, where each
of the subsequent m tests are based on the data (Xi•, Y ), i = 1, ...,m. The same
applies to other related methods which test for some analytical distribution of
(t1, ..., tm), or of some aggregate of p or of t.

Hence we obtain the following model of statistical experiment which applies
to these methods:

• The data (X,Y ) represent results of m independent tests, (Xi•, Y ), i =
1, ...,m. Each of the tests is based on n samples (Xi,j , Yj), j = 1, ..., n,
where Xi,j , Yj are taken from the random variables X ∈ R and Y. This
means that the genes in G are assumed to be independent and to follow the
same distribution.

• Interpretation of the random variables: X represents expression of each of
the genes in G, and Y represents the target (disease status, phenotype) of
the subjects tested.

• The null hypothesis states that X and Y are independent.
• Repetition of the experiment can be done by measuring gene expressions
and the target for new subjects.

This model underlies the following methods of gene set analysis: the SC.GSEA
method (point 4 on page 49) employing the Kolmogorov�Smirnov distribution, the
Category methods (Equation (4.12)), the Fisher's method for combining indepen-
dent p-values (Equation (4.13)).
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4.3.3. Model 3 of statistical experiment � based on comparison of

t vs tC

Several methods of gene set analysis rely on comparing the vectors of associ-
ation of genes with the target: t against tC . For instance, Irizarry et al. (2009)
propose to directly compare t vs tC using standard statistical tests for location
or scale, such as the t-test, the Wilcoxon rank-sum test or the χ2 test. The null
hypotheses tested by such procedures assume that the random variables which
generated the samples t and tC do not di�er in terms of some speci�c parameter,
such as their means (for the case of the t-test), etc. Hence these methods de

facto assume that t and tC include independent samples of size m and (d −m),
respectively, from some underlying distributions denoted T and T C . The tests
then compare T and T C assuming the null hypothesis that the distributions do
not di�er.

Similar tests are realized by competitive methods which employ gene ran-
domization, such as the Q1 (Equation (4.8)) or the FCS (Equation (4.9)). These
methods indirectly compare t vs tC , as the test statistic (such as Q1) is calculated
using only genes in G, i.e. ignoring tC or pC . However, the gene randomization pro-
cedure used to assess signi�cance makes these methods competitive, as is actually
compares the vectors t vs tC . Note that by using gene randomization to estimate
the null distribution of the test statistic (such as Q1), we de facto assume that
the measure of association t and the binary variable which denotes assignment
of a gene to the gene set are independent. This assumption further means that
we treat the elements of t, and the elements of tC as the iid samples from some
underlying random variables T and T C , and that the null hypothesis states that
T and T C have the same distribution.

Hence we obtain the following model of statistical experiment:
• The data t and tC represent iid samples of size m and (d−m), respectively,
from the underlying random variables denoted T ∈ R and T C ∈ R. This
de facto means that the genes in G (and also in GC) are assumed to be
independent and to follow the same distribution.

• Interpretation of the random variables T and T C is unclear. Informally, we
could refer to these variables as association of genes in G or in GC with the
target, however, it is di�cult to precisely formulate the meaning of these
random variables in accordance with the actual experiment performed.

• The null hypothesis states that the variables T and T C have the same
distribution.

• This model of statistical experiment leads to serious di�culties with inter-
pretation of how repetition of the experiment could be done. Typically, the
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statistical experiment is repeated by taking more samples from the underly-
ing random variables which are compared or tested. However, `taking more
samples from the variable T ' seems meaningless, since the gene set G is of
�xed size m, hence T cannot generate m + 1 samples. The same applies
to the variable T C , as the number of gene in the experiment (e.g. on the
microarray) is �xed.

This model of statistical experiment is realized by the gene set analysis meth-
ods which use genes (rather than subjects tested) as the sampling units, i.e. by
competitive methods with gene randomization (e.g. Q1 or FCS), by the methods
which compare t vs tC using statistical tests (such as the t-test, the Wilcoxon test,
or Kolmogorov�Smirnov test, see point 2 on page 55), or by the PAGE method
(Equation (4.11)).

4.3.4. Model 4 of statistical experiment � competitive methods with

sample randomization

We now analyze assumptions pertaining to the model of statistical experiment
realized by competitive methods which use sample randomization for assessment
of signi�cance (section 4.2.2). These methods use X, XC and Y to calculate
the test statistic (similarly to some parametric methods), however an important
di�erence is that these methods estimate the null distribution empirically, using
permutations of samples, instead of using the analytical distribution of the test
statistic. This considerably changes the model of statistical experiment which un-
derlies these methods as compared with parametric methods of gene set analysis.

The data (Y,X,XC) analyzed by these methods can be regarded as n inde-
pendent samples (Yi, X•i, X

C
•i), i = 1, ..., n, from the underlying random variables

denoted Y (which represents the phenotype of a subject tested), X ∈ Rm and
XC ∈ R(d−m) (which represent the subject's expression of genes in G and expres-
sion of genes in the complement of G, respectively). Since we use sample random-
ization to generate the null distribution of the test statistic, we de facto assume
the null hypothesis which states that the variables X and Y are independent and
that XC and Y are independent.

Summarizing, we obtain the following model of statistical experiment:
• The data (Yi, X•i, X

C
•i), i = 1, ..., n, represent iid samples from the underly-

ing random variables Y, X ∈ Rm, XC ∈ Rd−m.
• Interpretation of the random variables: Y represents the target (disease sta-
tus or phenotype), X represents expression of genes in G, and XC represents
expression of the remaining genes.
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• The null hypothesis assumes that the variables X and Y are independent
and the variables XC and Y are independent.

• Repetition of the experiment can be done by taking new subjects and mea-
suring their target as well as expression of m genes in G and (d−m) genes
outside G.

This model describes the actual hypothesis tested by such methods as the
GSEA, SAFE or the GSA2 (point 4 and page 52). Note however, that the original
version of the GSA procedure improperly estimates the null distribution of its
test statistic and the p-value (Equation (4.6)), therefore this model, strictly, does
not apply to the original GSA.

4.3.5. Discussion � applicability of di�erent methods for testing

self-contained or competitive hypotheses

Gene set analysis methods aim to quantify activation of gene sets which is
de�ned in terms of self-contained or competitive null hypotheses (Goeman and
Bühlmann, 2007). The former are related to whether expression of genes in the
gene set is associated with the target, and the latter are related to whether the
gene set contains signi�cantly more di�erentially expressed genes than its comple-
ment. Having clari�ed the models of statistical experiment realized by the di�erent
methods, we now want to discuss which of the methods are appropriate for test-
ing the di�erent types of null hypotheses, and which of the methods are based on
possibly unrealistic assumptions regarding independence or distribution of genes
(features). Based on this, we want to identify the methods which seem preferable
for testing activation of gene sets as well as for prior domain knowledge-based
feature selection.

The gene set analysis methods which realize Model 1 (section 4.3.1) test the
self-contained null hypothesis, i.e. signi�cant p-values of these methods indicate
that the gene set concerned contains genes associated with the target. We also
note that the sample considered by the methods directly corresponds to the actual
sample tested in the high-throughput study, composed of n subjects for which we
measure expression of m genes and the value of target. Repeating the experiment
could be done by simply taking measurements from new subjects. Therefore, we
conclude that Model 1 of statistical experiment directly follows the organization of
the actual (biological) study and produces (biologically) interpretable results. We
also note that this model does not assume nor implies any unrealistic requirements
such as independence or the same distribution of genes in the gene set.
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The methods based on Model 2 (section 4.3.2) also test the self-contained
null hypothesis, i.e. signi�cant p-values indicate that genes in the gene set are
associated with the target. The sample considered by this model directly cor-
responds to the actual (biological) sample, hence repetition of the experiment
could be done be taking measurements from new subjects, therefore the p-value
is (biologically) interpretable. We note however, that Model 2 relies on the as-
sumption that the genes in the gene set concerned are independent and that
they all follow the same distribution. This requirement is unrealistic in practice,
e.g. in high-throughput assays in genomics we expect that gene sets (signalling
pathways) include (co)related genes.

The methods based on Model 3 (section 4.3.3) claim to test the competitive
null hypothesis. We note however that this model of statistical experiment does
not follow the organization of the actual high-throughput study. In this model,
we test samples of size m and (d − m) from the underlying random variables,
T and T C , which we informally de�ne as association of genes in G, and in GC

with the target. However, it is unclear how this de�nition could be related to
the organization of the actual (biological) experiment. For instance, it is unclear
how taking new (biological) samples, i.e. testing new subjects, could possibly
produce more samples from these variables, as the size of the gene set is �xed.
It seems that the major di�culty with this model lies in the fact that it uses
genes as the sampling units rather than (biological) subjects which are sampled
and tested in the (biological) study. This leads to di�culties with interpretation
of the p-values produced by these methods, as what Model 3 de�nes as repetition
of the statistical experiment (i.e. taking new samples from T and T C) is not
related to what the researcher perceives as repetition of the actual experiment (i.e.
taking measurements from new (biological) subjects). Additionally, we observe
that Model 3 relies on the assumption that the genes in G are independent and
identically distributed. Hence, we conclude that methods based on Model 3 do not
produce meaningful results (p-values) which could be interpreted in the context
of competitive or self-contained null hypothesis.

Model 4 (section 4.3.4) is similar to Model 1, as it directly corresponds to the
organization of the actual (biological) study. The only di�erence between these
models lies in the fact that in Model 1 we measure expression of m genes in the
gene set and the target for the n subjects tested, while in Model 4 we additionally
measure expression of the (d−m) genes in the complement of the gene set. This
leads to the slightly di�erent null hypothesis which, under Model 4, assumes that
the genes in G are not associated with the target (which is the self-contained null
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tested by Model 1), but additionally that genes in GC are not associated with
the target. We also note that, unlike Models 2 or 3, this model does not assume
independence and the same distribution of genes in G. Therefore, we conclude
that signi�cant p-values produced by the methods based on Model 4 indicate
that either G or GC contains genes associated with the target. This is equivalent
to testing the self-contained null hypothesis providing that the genes in GC are
not associated with the target (which is often a reasonable assumption).

We conclude that gene set analysis methods based on Model 1 (such as the
Globaltest, SAM-GS or Tian's Q2) clearly test the self-contained null hypothesis.
Methods based on Model 2 (such as the Category or various techniques which
rely on combining the p-values in G), or methods based on Model 4 (such as the
GSEA, GSA2) also test the self-contained null hypothesis, however they rely on
some additional assumptions. Model 2 assumes that genes in the gene set are
iid (which is a highly unrealistic assumption in practical applications). Model 4
tests the self-contained null under the assumption that the genes in GC are not
associated with the target (which is often a reasonable assumption).

We also conclude that since Model 3 of statistical experiment is not in line
with the organization of the actual (biological) study, the methods based on this
model (such as the PAGE or Tian's Q1) fail to produce the p-values which could be
interpreted in the context of either competitive or self-contained null hypothesis.
Additionally, these methods rely on the strong assumption that the genes in G
are independent and identically distributed.

For these reasons, the preferable methods of gene set analysis to be employed
in the task of prior domain knowledge-based feature selection are the ones based
on Model 1 or Model 4 of statistical experiment. In section 4.4, we will additionally
compare these methods empirically in terms of the power and type I error, focusing
on correlated and low signal-to-noise data.

4.3.6. Heuristic interpretation of competitive methods based on

Model 3

We showed that the methods of gene set analysis based on Model 3 consider
genes as sampling units in the procedure of statistical hypothesis testing. Since in
the actual study we consider the subjects (e.g. patients) as the sampling units, this
discrepancy leads to serious di�culties with interpretation of the random variables
tested and of the p-values obtained. Despite of these methodological problems,
methods based on Model 3 are commonly implemented in numerous gene set
analysis tools (as shown in the review by Nam and Kim (2008)). Another disap-
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pointing conclusion drawn in section 4.3.5 is that none of the methods concerned
address the competitive null hypothesis in statistically sound way. Therefore in
this section we want to propose a new interpretation of the popular gene sampling
methods, which allows us to compare gene in G with the genes in GC in terms
of association with the target, as formulated by the competitive hypothesis. This
interpretation is heuristic, i.e. does not rely on the statistical hypothesis testing
(and hence does not produce a p-value).

In this model we compare genes in G with the genes in GC in terms of as-
sociation with the target. Given a sample of n subjects, we measure association
of the genes in G and in GC with the target, denoted t and tC , respectively.
We de�ne f(t) as some aggregate of elements of t (e.g. f(t) = (

∑m
i=1 ti)/m or

f(t) = (
∑m

i=1 |ti|)/m).
We address the research question similar to the one formulated as the compet-

itive null hypothesis: we want to verify whether G contains more genes associated
with the target than other subsets of genes of size m drawn from GC . To quantify
this, we randomly draw many subsets of sizem fromGC and calculate the heuristic
measure which compares genes in G with the genes in these subsets:

s =
1

B

B∑
i=1

I (f(τi) > f(t)) (4.14)

where the vector τi contains the measures of association of the m genes in the
i-th subset with the target, and B is the total number of subsets selected.

Small values of s indicate that gene sets randomly selected from GC are un-
likely to be stronger associated with the target than the genes in G, which we
can interpret as activation (enhancement) of the gene set G. More speci�cally, s
can be interpreted as the fraction of gene sets drawn from GC which are more
activated than G. Clearly this is not a p-value, as our new interpretation has
nothing to do with the statistical hypothesis testing.

4.4. Empirical evaluation of power and type I error

In this section, we compare performance of di�erent gene set analysis methods
as a function of signal-to-noise and correlation of genes in the gene set. We will
compare the methods in terms of (i) type I error (i.e. the probability that a gene
set which is not activated will be erroneously identi�ed as activated) and (ii)
power (i.e. the probability that a gene set that is actually activated is identi�ed
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as such). It should be noted that some of the methods (i.e. the methods based on
Models 2 and 3) rely on the assumption that gene expressions are independent.
Since this is unrealistic in practice, in this empirical study we want to analyze
performance of the methods if data do not meet this assumption.

The second purpose of this study is to quantify power of di�erent methods
given data with very low signal to noise level. We want to observe which of the
methods are sensitive enough to detect activation of gene sets whose individual
features (genes) are weakly regulated and thus are hardly detectable using stan-
dard feature selection methods described in sections 2.2 and 2.3. Finally, we want
to compare power of di�erent methods if gene sets analyzed contain only a small
fraction of genes strongly regulated, with the remaining genes not associated with
the target. If excessive power is demonstrated by some methods given such data,
then this has to be regarded as a drawback of the methods, when the purpose is to
discover weak but coordinated change of expression of the members of a gene set.

This empirical study is based on simulated data only, as we want to evaluate
performance of the methods given data with controlled characteristics regarding
signal-to-noise ratio, mutual correlation of members of a gene set, etc. It should
be noted that in addition to this empirical evaluation based on simulated data, we
also provided empirical comparison of selected methods based on real data from
high throughput assays. Results are reported e.g. in the papers (Maciejewski,
2011a, 2012).

4.4.1. Analysis of the false positive rate

We �rst quantify the false positive rate (type I error) under varying correlation
of genes in the gene set. In this study no genes are associated with the target (i.e.
di�erentially expressed), but some of the genes are correlated. The purpose of
this is to compare performance of di�erent methods, in particular of the methods
which assume mutual independence of features (see Models 2 and 3 � sections
4.3.2 and 4.3.3), given data with dependent features.

Since all the methods are based on statistical hypothesis testing, then for the
true null hypothesis (as assumed in this study) the methods are expected to falsely
reject the fraction of 5% null hypotheses in the series of repeated experiments,
provided that rejection is based on the p-value p < 0.05 threshold. We want to
observe which of the methods realize excessive (i.e. higher than 5%) false positive
rate and how this depends on the mutual correlation of genes in the gene set of
interest. As we will see in this study, some of the methods tend to declare gene sets
as activated based solely on correlation of members, and not on their association
with the target.
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We use a simulated data set with n = 30 samples and d = 1000 genes. We
de�ne one gene set G which contains the �rst m = 40 genes. In this study no
genes in G or in GC are associated with the target, however the genes in G are
correlated. Expression of the genes in G is generated from the multivariate normal
distribution with the mean equal 0 (for each of the m genes). The covariance
matrix has diagonal elements equal 1 and non-diagonal elements equal r (this
parameter in varied the study). Note that since variances of genes are 1, r is also
the correlation of genes in G. The d − m genes in GC are generated from the
standard normal distribution N(0,1).

We generate this dataset 500 times and record the p-values returned by di�er-
ent gene set analysis methods. The false positive rate of each method is estimated
as the fraction of experiments (out of 500) in which we observed signi�cant p-value
(i.e. p < 0.05).

The false positive rates as a function of correlation r are reported in Table 4.1.

Table 4.1. False positive rates for di�erent methods of gene set analysis
as a function of mutual correlation of the members of G

Method Model
Correlation in G

0 0.2 0.4 0.6 0.8
GT 1 0.050 0.036 0.038 0.062 0.066
Q2 1 0.054 0.034 0.046 0.044 0.050
SC.GSEA.Perm 1 0.048 0.052 0.054 0.052 0.054
SC.GSEA.KS 2 0.044 0.130 0.318 0.556 0.822
Category 2 0.066 0.482 0.632 0.682 0.772
Q1 3 0.050 0.096 0.180 0.220 0.280
PAGE 3 0.030 0.148 0.320 0.606 0.702
t vs tC , Wilcoxon 3 0.056 0.516 0.644 0.716 0.802
GSEA 4 0.034 0.070 0.066 0.062 0.060
GSA unclear 0.056 0.072 0.070 0.086 0.096
GSA2 4 0.050 0.057 0.047 0.060 0.050
SAFE.W 4 0.053 0.043 0.060 0.040 0.057
SAFE.KS 4 0.057 0.050 0.063 0.057 0.040

The methods are denoted as in sections 4.2.1�4.2.4, and are grouped by the model of statistical
experiment actually performed, as de�ned in sections 4.3.1�4.3.4. Speci�c settings: GT (Equation
(4.1)) employs the asymptotic null distribution; SC.GSEA.Perm (point 4 on page 49) estimates
signi�cance based on permutation of samples; SC.GSEA.KS (point 4 on page 49) estimates
signi�cance based on the Kolmogorov�Smirnov distribution; t vs tC , Wilcoxon (point 2 on page
55) uses the Wilcoxon test to compare t vs tC ; SAFE.W and SAFE.KS (point 2 on page 50) use
the Wilcoxon or Kolmogorov�Smirnov distribution, respectively.
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We observe that for uncorrelated genes, all the methods realize the false
positive rate equal approx. 0.05, which is expected considering the fact that in
this study the null hypothesis is true, and that we reject the hypothesis at the
p-value< 0.05 threshold. The only methods that seem slightly too conservative are
the GSEA and PAGE, since their false positive rate is approx. 0.03. For correlated
genes, the methods based on Models 2 or 3 realize excessive false positive rates,
and we observe that the false positive rates increase for growing correlation of
gene set members. We conclude that the methods which rely on the assumption
that members of the gene set are independent, tend to declare as activated the
gene sets with only correlated members, but not related with the target. Note that
this conclusion holds for both self-contained and competitive null hypothesis, as
in our study both are true: self-contained (G does not include genes associated
with the target), and competitive (G does not include more genes associated with
the target than GC).

This e�ect is not observed for the methods based on Models 1 or 4, which do
not rely on the assumption that gene set members are independent: correlation
of gene set members does not boost the false positive rate. In this study we also
compare the original GSA method (point 3 on page 51) with the modi�ed version
GSA2 (point 4 on page 52). Note that, strictly, the GSA is not based on Model 4,
since the permutation procedure does not estimate the null distribution of its gene
set score. Hence, what the method returns as the p-value, is not truly a p-value;
this �aw in signi�cance assessment may account for excessive false positive rates
of the GSA. We clearly see that GSA2, i.e. the version modi�ed according to
Equation (4.7) brings the false positive rate to the expected 5%, irrespective of
the correlation level.

Our numerical experiment con�rms that signi�cance of the GSA statistic
should be evaluated according to Equation (4.7), as proposed in this work, rather
than according to Equation (4.6), as proposed by Efron and Tibshirani (2007).

4.4.2. Power under the self-contained hypothesis

In this experiment we compare power of di�erent methods given data with
varying number of di�erentially expressed genes in the gene set and varying
psignal-to-noise ratio (i.e. e�ect strength). We will also control the level of mutual
correlation of gene set members. We want to observe which of the methods are
most sensitive to discover as activated gene sets with low signal-to-noise level. On
the other hand, we want to see which of the methods are over-sensitive in that
they tend to identify as activated gene sets with only very few strongly activated
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genes and the remaining majority unactivated. This analysis is motivated by the
concern expressed by some authors, e.g., Nam and Kim (2008), that self-contained
methods may be over-sensitive if the gene sets include only a few genes associated
with the target.

Since we analyze the methods in the context of prior domain knowledge-based
feature selection, we focus in this study on the power related to the self-contained
hypothesis. We want to quantify sensitivity of di�erent methods for detection
of gene sets associated with the target rather than for detection of gene sets
which contain more di�erentially expressed members than their complements. The
former, i.e. sensitivity under the self-contained hypothesis is more informative in
the context of feature selection. The latter, i.e. sensitivity under the competitive
hypothesis is analyzed in (Maciejewski, 2013).
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Fig. 4.1. Power of selected methods as a function of correlation and the number of
di�erentially expressed genes (n.DE) in the gene set. Small e�ect, ∆ = 0.5. Power is quanti�ed

as the fraction of experiments in which the gene set is declared as activated
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Fig. 4.2. Power of selected methods as a function of correlation and the number of
di�erentially expressed genes (n.DE) in the gene set. Medium e�ect, ∆ = 1. Power is
quanti�ed as the fraction of experiments in which the gene set is declared as activated

This analysis is done using a dataset with n = 30 samples and d = 1000 genes,
out of which m = 40 genes constitute a gene set G. We assume that n.DE genes
in this gene set are di�erentially expressed and correlated. Expression values of
the remaining m− n.DE genes in G, and of the d−m genes in the complement
of G are independent and not associated with the target, and are generated from
the standard normal distribution N(0, 1). Expression of the n.DE genes in G is
generated from the multivariate normal distribution, with the covariance matrix
as in the previous study (i.e. diagonal elements equal 1, non-diagonal elements
equal r). However, the mean for each of the genes in the �rst group of n

2 = 15
samples equals 0, while in the second group the mean equals ∆.

In this study, we vary the number of di�erentially expressed genes in G,
n.DE = 2, 5, 10, 40, the correlation coe�cient, r = 0, 0.2, 0.4, 0.6, 0.8, and
the parameter ∆ which represents signal-to-noise ratio, or the e�ect strength,
∆ = 0.5, 1, 1.5.
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Fig. 4.3. Power of selected methods as a function of correlation and the number of
di�erentially expressed genes (n.DE) in the gene set. Strong e�ect, ∆ = 1.5. Power is
quanti�ed as the fraction of experiments in which the gene set is declared as activated

We quantify the power of di�erent methods as a function of these parameters.
We estimate power of a method as the fraction of repetitions of the experiment,
in which the method yields signi�cant p-value, p < 0.05, which means that the
gene set is declared as activated.

In this analysis we omit the methods based on Model 2 or 3, due to their
excessive false-positive rates under correlation of genes. We focus on selected,
most prominent methods which implement Model 1 or 4 (and we also include
the important and popular GSA method). Results for subsequent levels of e�ect
strength, ∆ = 0.5, 1, 1.5, are presented in Figures 4.1�4.3. In each of the �gures,
the four panels correspond to the subsequent values of n.DE = 2, 5, 10, 40. In
the �gures, we denote the methods as in Table 4.1.

We �rst observe that the methods demonstrate signi�cantly di�erent power
if the gene sets contain a small number of members associated with the target
(see bottom panels in Figures 4.1�4.3, which correspond to n.DE = 2 or 5; com-
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pare also panels for n.DE = 10). For small e�ect (Figure 4.1), the GSA (GSA2)
method generally realizes slightly better power than other methods, while for
stronger e�ects � the Globaltest (GT) demonstrates highest power, with the most
remarkable di�erence between the methods observed for n.DE = 2. For instance,
for n.DE = 2 and ∆ = 1.5, the Globaltest realizes power ∼ 0.9, while the GSA2
and SAFE realize power ∼ 0.4 and ∼ 0.1, respectively. These results indicate
that if a gene set happens to contain only a few genes strongly associated with
the target, then the GT algorithm is likely to declare the gene set as signi�cant,
which we can interpret as over-sensitivity of this method, if the task is to identify
gene sets with moderate e�ect detected over many genes.

We also observe that all the methods seem to loose power with growing cor-
relation within the gene set; this e�ect is most remarkable for the small e�ect
(Figure 4.1, top panels). In section 4.6, we analyze this e�ect in detail.

4.5. Discussion

In this chapter, we identi�ed the models of statistical experiment which are
actually realized by di�erent methods of gene set analysis. These models explic-
itly state the null hypothesis tested by each of the methods and provide proper
interpretation of the p-values produced by the methods. Based on this we draw
the following conclusions:

• The methods which use gene randomization or parametric models for esti-
mation of signi�cance of gene set scores (i.e. methods based on Models 2 and
3, which includes such popular methods as Tian's Q1 statistic, Functional
Class Score, PAGE, etc.), do not produce p-values which are interpretable in
the context of either self-contained or competitive hypotheses. These meth-
ods are based on the model of statistical experiment which does not re�ect
organization of the actual high-throughput study which generated the data,
and/or rely on unrealistic assumptions regarding independence and distribu-
tion of genes in gene sets. As a consequence, these methods tend to declare
as signi�cant the gene sets which include only correlated genes, but not
associated with the target.

• Only the methods based on Model 1 or 4 produce statistically interpretable
results. This group includes self-contained methods or competitive methods
which use sample randomization for estimation of signi�cance (most promi-
nent examples are the Globaltest, GSEA, GSA (GSA2), or SAFE). We note
however that the important GSA algorithm does not properly estimate sta-
tistical signi�cance of gene set scores, which results in slightly excessive type
I error. A corrected version, GSA2, should be used instead. The type I error
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of these methods is not a�ected by correlation of genes in gene sets, how-
ever the methods in this group may signi�cantly di�er in terms of power. In
the algorithms which implement domain knowledge-based feature selection,
developed in Chapter 5, we will employ gene set analysis methods which
belong to this group.

4.6. Comment about the power of self-contained methods

as a function of correlation of features

Our numerical studies show that the power of self-contained methods generally
decreases with increasing correlation of genes in the gene set analyzed. This is
consistently observed for small (Figure 4.1, top panels), medium (Figure 4.2, top
panels) and strong e�ect (Figure 4.3, top left panel), providing the power curve
does not saturate at the value of 1 (as in Figure 4.3, top right panel) or around 0
(as in Figure 4.1, bottom left panel, where the e�ect of correlation is weak due to
very few correlated genes involved). Similar observation can be made for the case
of testing the competitive null hypothesis, see e.g. (Maciejewski, 2013), where we
showed that power of such methods as GSA, GSA2 or SAFE gets remarkably
lower for correlated genes.

This e�ect of loosing power with increasing correlation of gene set members is
commonly observed in several comparative studies which attempt to empirically
evaluate gene set analysis methods (see e.g., Ackermann and Strimmer (2009);
Liu et al. (2007)). Despite slightly di�erent organizations of the simulation ex-
periments, these authors consistently report that correlation in gene sets leads to
decreased power of gene set analysis methods.

However, it is interesting to observe that a di�erent organization of the simula-
tion experiment may bring opposite conclusions, as shown in the study by Fridley
et al. (2010). Fridley et al. (2010) used the quantitative target Y generated from
the normal distribution with the mean proportional to the subject's gene expres-
sion. In this case the power increases with growing correlation of genes in the gene
set, as shown in (Fridley et al., 2010), and in Table 4.2.

More speci�cally, in Table 4.2 we summarize a simple numerical experiment
where we compare the two simulation settings which lead to contradicting con-
clusions regarding the e�ect of correlation of features:

• The study by Fridley et al. (2010) with the following speci�c settings: expres-
sion for n = 30 samples X•i, i = 1, ..., n (see notation introduced in section
4.2) is generated from the multivariate normal distribution MVN(0,Σ) of
dimensionality m = 40 (i.e. we have 40 genes in the gene set). The covari-
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Table 4.2. Mean p-value returned by the Globaltest for the continuous or binary target,
under increasing correlation and strength of e�ect

Experiment
E�ect
strength

Correlation in G
0 0.1 0.3 0.5

Fridley et al.
β = 1 0.031 4.97E−08 2.63E−23 9.07E−31
β = 2 0.028 8.10E−12 2.00E−25 5.26E−36
β = 3 0.029 1.33E−07 1.19E−24 7.54E−30

Classi�cation
∆ = 0.5 0.00031 0.018 0.094 0.171
∆ = 1.0 6.12E−14 2.92E−06 0.00064 0.0085
∆ = 1.5 5.10E−19 2.48E−10 5.40E−06 9.18E−05

ance matrix Σm×m has the diagonal elements equal 1 and the remaining
elements equal r (in the study we make r = 0, 0.1, 0.3, 0.5). Note that since
the variance of genes is 1, the correlation of genes in the gene set also equals
r. The value of quantitative target Yi for each sample X•i is generated from
the normal distribution

Yi ∼ N(µi, σ)
with: µi = βX•i, σ = 1

(4.15)

where β is the e�ect strength (β = [1, ..., 1]1×m or β = [2, ..., 2]1×m, or
β = [3, ..., 3]1×m), which, for simplicity, is denoted in Table 4.2 as β = 1, etc.

• The classi�cation study similar to the one used in section 4.4.2. We generate
expression of n = 30 samples divided into two groups of 15 samples with
Y = 0 in one group and Y = 1 in the other group. Expression of m =
40 genes in the gene set is generated for a sample using the multivariate
normal distribution MVN(0,Σ) (for the samples in the �rst group), and
using MVN(∆,Σ) (for the samples in the other group). ∆ is the e�ect
strength; in the study we set ∆ = 0.5, 1, 1.5. The covariance matrix Σm×m

is as in the previous study by Fridley et al. (2010).
In the numerical experiment we demonstrate power of the Globaltest method

under these simulation scenarios. Although we focus on the Globaltest only, the
observations we make and conclusions we draw hold for other self-contained meth-
ods.

We generate the data sets 500 times and observe the fraction of experiments
out of 500 where the p-value calculated by the Globaltest is signi�cant, p < 0.05,
(i.e. we identify the gene set as activated). This we interpret as power of the
Globaltest. We also record the mean p-value calculated over 500 replications of
the experiment. The mean p-value as a function of correlation of genes r and the
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Fig. 4.4. Power (measured as the fraction of signi�cant gene sets with p-value < 0.05)
demonstrated by the Globaltest as a function of correlation of genes in the gene set.

In the Fridley et al. experiment (left panel) the target Y is continuous; in the classi�cation
experiment (right panel) Y is binary

e�ect strength (β or ∆) is reported in Table 4.2 while the power is reported in
Figure 4.4.

In the case of the study by Fridley et al. (2010), we observe that the mean
p-value decreases with the growing correlation of genes. This e�ect is very strong,
e.g., the mean p-value about 0.03 for uncorrelated genes drops to about 10−7 for
the correlation of 0.1 (Table 4.2, top section), which leads to the growth of power
to 1 (Figure 4.4, left panel).

On the contrary, for the classi�cation study the power of the Globaltest de-
creases with the growing correlation of features (Figure 4.4, right panel). This
can be accounted for by observing that growing correlation boosts the p-values
(Table 4.2, bottom section). For instance, for the small e�ect (∆ = 0.5), corre-
lation of 0.3�0.5 makes the method virtually loose power (power = 0.45 for the
correlation of 0.5).

The e�ect demonstrated by the study reported by Fridley et al. (2010) is quite
easy to explain. Recalling that the Globaltest tests the linear relationship between
Yi and X•i, i = 1, ..., n (see point 1 on page 48), we observe that by increasing
the correlation in the gene set, i.e. including correlated values in the vector X•i
in Equation (4.15), we ensure stronger linear relationship between the target Yi
and expression of genes in the samples X•i, i = 1, ..., n, as compared with the
case where the elements of the vectors X•i are independent. Now we want to
account for the e�ect of loosing power with correlation of genes, observed in the
classi�cation study (Figure 4.4, right panel, Table 4.2, also Figures 4.1�4.3) and in
virtually all similar comparative studies published in literature, e.g. (Ackermann
and Strimmer, 2009; Liu et al., 2007).
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This e�ect can be accounted for analytically by looking at the overlapping of
the two multivariate distributions used to generate expression data in the classes
of samples, under increasing correlation. To explain this, we introduce the follow-
ing notation: let us denote the density of the two multivariate random variables
X0, X1 ∈ Rm we used to generate expression data for samples in the two classes
as f0(x1, ..., xm) and f1(x1, ..., xm), where f0 was used to generate the vectors
(samples) X•i for which Yi = 0, and f1 � to generate the remaining samples. In
the studies related to the power of self-contained methods under correlation of
features, it is often assumed that f0 and f1 are multivariate normal distributions
(MVN):

X0 ∼ MVN(µ0,Σ)
X1 ∼ MVN(µ1,Σ)

(4.16)

where the distributions have the same covariance matrices but are shifted in loca-
tion. As before, we assume that the diagonal elements of Σm×m are equal 1, and
non-diagonal elements are equal r. Note that r can be interpreted as correlation
of gene expressions, as variances of gene expressions are 1.

4.6.1. Simple model of activation of a gene set

The simple model of the e�ect of activation of a gene set (or activation of as
signalling pathway) can expressed as:

µ0 = [0, ..., 0]m
µ1 = [∆, ..., ∆]m

(4.17)

which means that the (correlated) expressions of genes in the activated pathway
are (slightly) shifted by possibly small e�ect ∆, as compared with the baseline
expressions of the inactivated pathway. This model is used by some authors, e.g.
Subramanian et al. (2005) actually mean this model when they argue that �An
increase of 20% in all genes encoding members of a metabolic pathway may dra-
matically alter the �ux through the pathway and may be more important than
a 20-fold increase in a single gene�.

Now, we show that this simple and quite obvious model of activation of a gene
set (or signalling pathway) leads to the aforementioned e�ect of loosing power by
the gene set analysis methods under correlation of genes. To show this, we note
that self-contained methods test association between the target and gene expres-
sions in the gene set based on the data (X•i, Yi), i = 1, ..., n, where the samples
(X•i), i = 1, ..., n were generated partly from X0, and partly from X1. Clearly,
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the higher the overlapping of the densities of the variables X0 and X1, the more
similar the vectors of expression X•i tend to be between the classes. Hence the
methods such as the Globaltest are less likely to discover the relationship between
Y and the gene expressions, which results in reduced power of the method. The
amount of overlapping of the densities of X0 and X1 can be calculated as:

b =

∫
· · ·
∫

f1<f2

f1(x1, ..., xm)dx1...dxm +

∫
· · ·
∫

f1>f2

f2(x1, ..., xm)dx1...dxm

=

∫
· · ·
∫

min(f1(x1, ..., xm), f2(x1, ..., xm))dx1...dxm (4.18)

Note that b measures the Bayes error of the classi�er built from the data
(X•i, Yi), i = 1, ..., n, assuming equiprobable classes (Hastie et al., 2001).

Therefore it is informative to observe the overlapping b as a function of cor-
relation r and dimensionality of data m. We calculated b numerically for the
dimensionality m = 2, ..., 8 and report the results in Table 4.3, for the e�ect
strength ∆ = 1.

We clearly see that for a �xed dimensionality of the gene set, increasing cor-
relation of features leads to higher overlapping of the densities f0 and f1. Hence
the samples generated from the random variables X0 and X1 (i.e. the data vectors
{X•i : Yi = 0} and {X•i : Yi = 1}) are more di�cult to distinguish. Thus in many
realizations of the simulation study reported in this section (or in section 4.4.2),
the relationship between X•i and Yi, i = 1, ..., n, turns out to be weak (with the
p-value of the Globaltest exceeding 0.05), which leads to reduced power of the
gene set analysis methods concerned.

Table 4.3. The overlapping b (Equation (4.18)) of the densities of X0 and X1 (Equation (4.16))
for µ0 = [0, ..., 0]m and µ1 = [1, ..., 1]m, as a function of the number of genes in the gene set

(m) and their correlation (r)

Dimensionality m
Correlation r

0 0.2 0.4 0.6 0.8
2 0.479 0.519 0.55 0.576 0.598
3 0.386 0.465 0.518 0.559 0.591
4 0.317 0.429 0.5 0.55 0.587
5 0.264 0.406 0.489 0.544 0.585
6 0.221 0.387 0.482 0.543 0.584
7 0.184 0.336 0.492 0.555 0.572
8 0.166 0.348 0.486 0.542 0.581
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Fig. 4.5. Contour plots of the densities of the random variables X0, X1 (Equation (4.16))
as a function of correlation of features r. The density of X0 is centered at µ0 = [0, 0],

and the density of X1 is centered at µ1 = [1, 1]

To understand the nature of the e�ect reported in Table 4.3, we present visu-
alization of the overlapping densities under increasing correlation of the features
� Figure 4.5. The plot is done for two-dimensional data (i.e. the axes are labeled
by x1, x2 � expressions of two genes in the gene set). The �gures illustrate the
e�ect shown in Table 4.3, of increasing overlapping of densities of the two classes
of samples.

It also interesting to observe that although for uncorrelated features the over-
lapping of densities decreases with growing dimensionality m (see Table 4.3, col-
umn for r = 0), increasing correlation again leads to more overlapping (hence
poor separability) of the classes.



Prior domain knowledge-based methods of feature selection 79

4.6.2. Activation of a gene set requires suppression of inhibitors

In the previous section, we assumed a simple model of activation of a gene
set (or signalling pathway), as given by Equation (4.17). This model essentially
means that a slight, coordinated up-regulation of the members of the pathway
is equivalent to activation of the entire pathway, which seems reasonable and
biologically justi�ed (Subramanian et al., 2005).

However, we can envisage another model where in order to activate a pathway,
we need to ensure simultaneous e�ects of:

• up-regulation of some members of the pathway, which yield the product of
the pathway,

• down-regulation (suppression) of the members of the pathway which play
the role of inhibitors, i.e. block expression of other genes in the pathway.

This scenario is also biologically relevant (personal communication with
dr M. Jank, SGGW).

This motivates the following model (refer to Equation (4.17)):

µ0 = [0, ..., 0]m
µ1 = [∆, −∆, ∆, ...]m

(4.19)

where the negative elements in the vector µ1 are related to the inhibitor genes
and positive elements � to the up-regulated genes (here we assume for sim-
plicity that the number of inhibitor genes is m

2 , so that the scalar product⟨
µ
Equation(4.17)
1 , µ

Equation(4.19)
1

⟩
= 0, i.e. the vectors are perpendicular).

If we assume that f0 and f1 have the same covariance matrices Σ (the same
as in section 4.6.1), we actually postulate that the densities f0 and f1 are shifted
relative to each other along the direction perpendicular to the direction of high
variability in data. Note that in the previous case (Equation (4.17)) the densities
were shifted along the direction of high variability in correlated data (as illustrated
in Figure 4.5).

It is now interesting to observe how the measure of overlapping b changes
under the correlation r. We provide the results in Table 4.4, based on numeri-
cal integration of Equation (4.18) for m up to 8. We clearly see that increasing
correlation reduces the overlapping b and thus improves separability of classes
represented by the variables X0 and X1. We illustrate this e�ect graphically by
the contour plots of the densities f0 and f1 plotted for the dimensionality m = 2,
see Figure 4.6. We illustrate the overlapping densities for correlation r = 0.8
under the previous model (Figure 4.7), and under the current model (Figure 4.8).
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Table 4.4. The overlapping b (Equation (4.18)) of the densities of X0

and X1 (Equation (4.16)) for µ0 = [0, .., 0]m and µ1 = [1, −1, 1, ..]m,
as a function of the number of genes in the gene set (m)

and their correlation (r)

Dimensionality m
Correlation r

0 0.2 0.4 0.6 0.8
2 0.479 0.429 0.361 0.264 0.114
3 0.479 0.429 0.361 0.264 0.114
4 0.317 0.264 0.197 0.114 0.025
5 0.318 0.264 0.197 0.114 0.025
6 0.221 0.171 0.114 0.053 0.006
7 0.224 0.165 0.113 0.053 0.006
8 0.166 0.108 0.065 0.024 0.001

Table 4.5. Comparison of the mean p-values returned by the Globaltest for the data
generated from the multivariate normal distribution as in Figure 4.5 or Figure 4.6.

The simulated data are generated as in section 4.4.2, with n = 30 and m = n.DE = 2;
the mean p-value is calculated from 500 replications of the simulation

E�ect ∆
Correlation r

0
Model in Figure 4.5 Model in Figure 4.6

0.4 0.8 0.4 0.8
0.5 0.2005 0.2317 0.2469 0.1514 0.1258
1.0 0.01487 0.02944 0.04617 0.008013 0.004926
1.5 0.0001711 0.001768 0.003039 4.627e−05 2.785e−05

It is clearly noticeable that in the previous model the classes become virtually
indistinguishable due to their densities merging together, while in the current
model the densities are perfectly separable.

In order to demonstrate performance of the Globaltest under these two models,
we generated gene expression data as in the power related study (section 4.4.2),
with n = 30 and m = n.DE = 2, and recorded the mean p-value of the Globaltest
over 500 replications of the experiment. Results are given in Table 4.5. This study
con�rms that correlation in data can lead to higher p-values of the Globaltest
(and other self-contained methods, as shown in section 4.4.2), i.e. to lower power
of these methods. However, correlation in data can also lead to higher power
(slightly smaller p-values), as shown in the two last columns in Table 4.5. This
should be attributed to better separability of the classes which are compared by
self-contained methods of gene set analysis.
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Fig. 4.6. Contour plots of the densities of the random variables X0, X1 (Equation (4.16))
as a function of correlation of features r. The density of X0 is centered at µ0 = [0, 0],

and the density of X1 is centered at µ1 = [1, −1]

However, it should be noted that the latter e�ect is harder to demonstrate for
higher dimensional data (i.e. for larger numbers of correlated genes in the gene
sets n.DE). For instance, for 20-dimensional, correlated data (i.e. for simulated
data with m = n.DE = 20), we observe the mean p-values as shown in Table 4.6.
We again observe that comparing to uncorrelated data, correlation between genes
always leads to increased p-values of the Globaltest, i.e. to reduced power, al-
though the strength of this e�ect strongly depends on whether the densities of the
classes compared were shifted along the direction of high variability in correlated
data (i.e. along the direction of the �rst principal component calculated from the
data), or along some other line presumably perpendicular to the this direction.
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Table 4.6. Comparison of the mean p-values returned by the Globaltest for the data generated
from the 20-dimensional multivariate normal distributions with means given by Equations
(4.17) and (4.19). The simulated data are generated as in section 4.4.2, with n = 30 and
m = n.DE = 20; the mean p-value is calculated from 500 replications of the simulation

E�ect ∆
Correlation r

0
Model: Equation (4.17) Model: Equation (4.19)

0.4 0.8 0.4 0.8
0.5 0.004826 0.1476 0.2507 0.03691 0.08884
1.0 1.205e−09 0.004744 0.03854 4.371e−05 0.001944
1.5 9.23e−15 4.55e−05 0.002059 2.902e−10 5.219e−06
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Fig. 4.7. 3D representation of the densities shown in Figure 4.5, for r = 0.8

The former scenario is represented by the two middle columns in Table 4.6 (we
observe strong increase in the p-values), and the latter � by the two last columns
(where we observe moderate increase in the p-values).

This e�ect de�es simple explanations and intuitions proposed for low dimen-
sional data and illustrated in Figures 4.5 through 4.8. One of the obstacles in
applying these models for higher-dimensional data, and consequently in demon-
strating the e�ect shown in Table 4.5 for higher-dimensional data, seems to result
from the fact that the number of samples available in typical high throughput
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Fig. 4.8. 3D representation of the densities shown in Figure 4.6, for r = 0.8

studies (e.g., n ∼ 102 in gene expression data) becomes prohibitively small to
observe density related e�ects in high-dimensional data. This was analyzed by
Scott and Thompson (1983) and named by these authors as the empty space

phenomenon; this e�ect can be regarded as one of the symptoms of the curse

of dimensionality, well known in machine learning literature (Theodoridis and
Koutroumbas, 2006; Hastie et al., 2001).





Chapter 5

Predictive modelling based on activation of

feature sets

In the previous chapter, we discussed di�erent methods of gene set enrichment
analysis. The methods allow us to assess which of the sets of genes (features)
given by a priori domain knowledge are activated, i.e. are most strongly associ-
ated with the target variable. As such, the methods focus on the activation of
the entire gene sets. However, in order to use the the knowledge about pathway
activation for classi�cation of samples, we need to assess gene set activation scores
per individual samples. We propose di�erent approaches to estimation of these
per-sample enrichment signatures, and discuss how these signatures can be related
to the target in order to build domain knowledge-based predictive models.

In the second part of this chapter, we propose the algorithm for classi�cation
of samples based on the per-sample signatures of gene set activation, i.e. based
on features generated using prior domain knowledge. The algorithm allows us to
estimate the generalization error of the classi�er as well as stability of feature
selection. We propose several measures to quantify stability of feature selection.

We provide an overview of the recent developments in the learning theory
which relate stability measures to predictivity conditions of classi�ers. This theory
was an inspiration of the stability measures proposed in this chapter.

In Chapter 6 we will empirically compare the proposed classi�cation
procedure will the standard approach based on data-driven feature selection. For
the purpose of this analysis, we describe the algorithm for classi�cation in n ≪ d
data which is based on standard methods of feature selection.

Numerous papers have been devoted to the problem of estimation of gene
expression signatures, or markers, for prediction of such targets as subtypes of
cancers, expected response to therapies or risk of recurrence of a cancer. For
instance, West et al. (2001) proposed to construct gene expression signatures by
preselecting 100 top most di�erentially expressed genes and calculating the �rst
singular value decomposition (SVD) factor from expression of these genes. This
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factor was then used as a �supergene� to predict the phenotype (e.g. clinical status
of breast cancer), with the prediction based on a logistic regression model. Bild
et al. (2005) demonstrated methodology to construct signalling pathway related
signatures. They deregulated a pathway using adenoviruses and identi�ed sets of
genes whose expression realized highest correlation with pathway-related e�ects.
Then they represented these genes by a �metagene� calculated as the �rst principal
component and showed empirically that this metagene can be used as a pathway
related signature to predict the status or phenotype in various lung, ovarian or
breast cancers.

Edelman et al. (2006) proposed a method to calculate enrichment score for
each sample based on genes from an a priori speci�ed gene set. They estimated
association of all genes in the sample with the (binary) target using the class
membership likelihood ratio and ranked all the genes in the sample by the this
measure of association. Then they de�ned the enrichment score of a gene set in

a sample as the Kolmogorov�Smirnov statistic comparing ranks of the genes in
the gene set with the uniform distribution. This idea was clearly inspired by the
enrichment score ES proposed the the GSEA gene set analysis method (Subra-
manian et al., 2005), compare the GSEA statistic, point 1 on page 50. However,
it should be noted that the original enrichment score of the GSEA is de�ned to
measure enrichment (activation) of the entire gene set, while the enrichment score
proposed by Edelman et al. (2006) refers to the activation status of the gene set
in individual samples.

In the papers (Maciejewski, 2011a,b), we evaluated quality of the features
selected as the sets of genes in top most activated pathways. We compared these
features with the features selected with purely data driven (or �standard�) meth-
ods. The comparison was done using data from real gene expression studies and
involved both predictive performance and stability of the feature selection. In
the analysis we focused on selected self-contained and competitive methods of
gene set analysis. In the paper (Maciejewski, 2012), we proposed to aggregate the
genes in the top winning pathways into �supergenes�, where an activated pathway
contributes two supergenes per the sample j:

v+j =
1

m

m∑
i=1

I(ti ≥ 0)xij

v−j =
1

m

m∑
i=1

I(ti < 0)xij

(5.1)
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where xij , i = 1, ..., m, is expression of gene i in the gene set concerned, m is
the size of the gene set, and I(ti ≥ 0) or I(ti < 0) means that the gene is up-
or down-regulated, respectively (see notation introduced in section 4.2, and the
de�nition of the GSA statistic, point 3 on page 51). This idea was inspired by the
suggestion made in the original report which de�ned the GSA method (Efron and
Tibshirani, 2006). This approach was evaluated in terms of predictive performance
and stability of feature selection based on real data from gene expression studies.

In this section we want to extend these ideas and propose several approaches
to deriving signalling pathway-based signatures which re�ect activation of the
pathways in individual samples. We will calculate the signatures for the path-
ways which, given results of high throughput study, prove signi�cantly associated
with the target, as indicated by the gene set analysis methods based on models
1 or 4 (as only these methods provide meaningful measures of association, see
section 4.3). In this way, we will employ prior domain knowledge in the procedure
of feature selection. Next, we will discuss how these pathway-based signatures
can be employed for classi�cation of samples and we will provide the algorithm to
evaluate classi�ers obtained in terms of the expected predictive performance for
new data and in terms of stability.

In the next chapter we will empirically compare the proposed methods with
data-driven methods (discussed in Chapter 2). The comparisons will be done using
simulated data in order to ensure controlled characteristics of data in terms of
correlation of features and strength of the inter-class di�erences.

Numerous ideas discussed in this chapter were published in (Maciejewski,
2008a,b; Maciejewski and Twaróg, 2009; Maciejewski, 2011a,b, 2012).

5.1. Classi�cation based on signatures of gene set activation

in individual samples

Let us assume that a given, a priori de�ned gene set is declared as activated
(enriched) by a gene set analysis method based on results of a high throughput
study. We want to assess activation scores of this gene set per individual samples.
The idea is that the scores, or �signatures�, should indicate to what extend the
gene set is activated in a particular sample, which, in turn, could be used to
predict the target for this sample.

We will develop these signatures and the procedure to classify samples based on
the signatures, using the following notation. We denote results of a high through-
put study as Wd×n, where the columns represent samples and rows represent
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features (e.g. expression of genes). We denote the class labels of the samples as
Y1×n; we consider here the binary classi�cation problem: Yi ∈ {0, 1}, i = 1, ..., n.
We represent an a priori de�ned gene set as the set of row indices of W , and
denote this set as S. Let X = (xij), i = 1, ..., m, j = 1, ..., n represent the subset
of rows of W corresponding to S, i.e. X = (Wi•) for i ∈ S, where m is the number
of elements in S.

Let x(0)i• = (x
(0)
i, 1, ..., x

(0)
i, n0

) = (xij : Yj = 0) and x
(1)
i• = (x

(1)
i, 1, ..., x

(1)
i, n1

) = (xij :
Yj = 1) denote expressions of gene i in class 0 and in class 1, respectively. We

regard x
(0)
i• and x

(1)
i• as n0 and n1-element samples from some underlying random

variables, denote here as X (0)
i and X (1)

i , respectively. We denote probability den-

sity functions of these distributions as f (0)
i and f

(1)
i , and cumulative distribution

functions as F (0)
i and F

(1)
i , respectively.

Assuming that the gene set S is signi�cantly associated with the target Y ,
we want to use the data (X, Y ) to classify a sample u = (u1, ..., um) whose
coordinates represent expressions of the members of the gene set S.

5.1.1. Method 1

We assume that the probability densities f
(0)
i and f

(1)
i , for i = 1, ..., m can

be estimated with the densities of the normal distribution:

f
(0)
i (x) =

1

σ
(0)
i

√
2π

exp

(
−
(x− µ

(0)
i )2

2(σ
(0)
i )2

)

f
(1)
i (x) =

1

σ
(1)
i

√
2π

exp

(
−
(x− µ

(1)
i )2

2(σ
(1)
i )2

) (5.2)

where the parameters (µ(0)
i , σ

(0)
i ) and (µ

(1)
i , σ

(1)
i ) are calculated as the mean and

standard deviation of x(0)i• and x
(1)
i• , respectively.

Given a new sample u = (u1, ..., um) we can calculate two signatures which in-
dicate association of the sample with the pro�le of gene expressions characteristic
of the class 0 and class 1:

s(0) =

m∑
i=1

log
(
f
(0)
i (ui)

)
s(1) =

m∑
i=1

log
(
f
(1)
i (ui)

) (5.3)
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Note that higher value of f (0)
i (ui) as compared with f

(1)
i (ui) indicates that

expression of the gene i in sample u is more similar to the pro�le of expression
characteristic of class 0, and vice-versa. Hence s(0) and s(1) can be regarded as the
overall measures of similarity of u with regard to expression pro�le of the gene
set in class 0 and class 1, respectively. We use the log transformation in formula
(5.3) to improve numerical stability of the calculations.

Given the signatures s(0) and s(1), we can readily classify the sample u as:

g(u) = argmax
k=0, 1

(
s(k)
)

(5.4)

where g is the classi�cation rule motivated by the naive Bayes classi�er. The
classi�er assigns the sample u to the class which realizes bigger value s(k), i.e. to
which u is more similar according to the similarity measures s(0) and s(1).

5.1.2. Method 2

In Method 1, we use the similarity measure between a sample u = (u1, ..., um)

and the pro�le of gene expressions in class k based on the vectors (f (k)
1 , ..., f

(k)
m ),

for k = 0, 1, where the components of these vectors are the density functions
of subsequent features in S, calculated at (u1, ..., um). As such, the vectors

(f
(0)
1 , ..., f

(0)
m ) and (f

(1)
1 , ..., f

(1)
m ) can be compared (as done in Equation (5.4)),

however, direct interpretation of the elements of the vectors in not straightforward.
Here we propose an alternative measure (signature) of similarity between u =

(u1, ..., um) and the pro�les of gene expression speci�c to class 0 and 1. The
purpose is to ease interpretability of the components of the measure.

As in model 1, we assume that the distributions which generated samples x(0)i•
and x

(1)
i• , i = 1, ..., m, can be approximated by the normal probability distribu-

tion with the parameters (µ
(0)
i , σ

(0)
i ) and (µ

(1)
i , σ

(1)
i ), where the parameters are

calculated as the mean and standard deviation of x(0)i• and x
(1)
i• , respectively. The

cumulative distribution functions of these distribution are:

F
(0)
i (x) = Φ

µ
(0)
i ,σ

(0)
i

(x)

F
(1)
i (x) = Φ

µ
(1)
i ,σ

(1)
i

(x)
(5.5)

where Φµ, σ denotes the cumulative distribution function of the normal distribu-
tion. We de�ne the measure of similarity between µi, i.e. expression of gene i in
the sample concerned and the pro�les of expression of this gene in classes 0 and
1 as:
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p
(0)
i = min

(
F

(0)
i (ui), 1− F

(0)
i (ui)

)
p
(1)
i = min

(
F

(1)
i (ui), 1− F

(1)
i (ui)

) (5.6)

Note that the values p
(0)
i and p

(1)
i express the probabilities of drawing the

observed value of expression ui, or a more extreme value, from the distribution
characteristic of the given class 0 or 1. Obviously, p(0)i , p

(1)
i ∈ (0, 0.5], where small

values of p(k)i indicate that it is unlikely that ui comes from the distribution f
(k)
i .

The meaning of p(0)i , p
(1)
i is illustrated in Figure 5.1, where

p
(1)
i =

∫ ui

−∞
f
(1)
i (x)dx = F

(1)
i (ui) = Pr{X (1)

i < ui}

p
(0)
i =

∫ ∞

ui

f
(0)
i (x)dx = 1− F

(0)
i (ui) = Pr{X (0)

i ≥ ui}

 

Fig. 5.1. Illustration of the measures of association proposed in Equation (5.6), where ui

is the value of expression of gene i and the probabilities p(0)i and p
(1)
i indicate how extreme ui

is with regard to pro�les of expression of this gene in class 0 (f (0)
i ) and in class 1 (f (1)

i )
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Now given a sample u = (u1, ..., um), we can use the vectors (p
(0)
1 , ..., p

(0)
m )

and (p
(1)
1 , ..., p

(1)
m ) as signatures which indicate association of u with the pro�le

of gene set expressions characteristic of class 0 or 1, respectively. By aggregating
these vectors as in Method 1:

s2(0) =
m∑
i=1

p
(0)
i (ui)

s2(1) =

m∑
i=1

p
(1)
i (ui)

(5.7)

we obtain measures that can be used to classify the sample u as:

g2(u) = argmax
k=0,1

(
s2(k)

)
(5.8)

The classi�cation rule g2 assigns the sample to the class which realizes bigger
similarity measure s2(0), s2(1).

5.1.3. Method 3

Method 3 is similar to Method 2, with di�erent method of modelling the
densities f (0)

i and f
(1)
i : instead of using normal probability distribution (Equation

(5.2)) we will use nonparametric kernel density estimates. Technically, we use the
estimates with the Gaussian kernels, i.e.

f
(0)
i (x) =

1

n0h

n0∑
j=1

φ

(
x− x

(0)
ij

h

)

f
(1)
i (x) =

1

n1h

n1∑
j=1

φ

(
x− x

(1)
ij

h

) (5.9)

where φ denotes the probability density function of the standard normal distribu-
tion, and the smoothing parameter (bandwidth) h is calculated using the heuristic
rule proposed by Silverman (1986), i.e., h ∼ minimum of the standard deviation
and the interquartile range, and inversely proportionate to the sample size raised
to −1

5 power, Equation 3.31 in (Silverman, 1986).
Since nonparametric density estimation has been extensively studied in litera-

ture, clearly many other choices of the kernel φ and the bandwidth h are available
� see e.g. (Devroye et al., 1996) for a comprehensive overview of this vast topic.
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Given the densities f (0)
i and f

(1)
i , we assess how extreme expression ui of gene

i is with regard to the pro�le of expression of this gene in class 0 and 1, i.e.

p
(0)
i = min

(
c
(0)
i , 1− c

(0)
i

)
p
(1)
i = min

(
c
(1)
i , 1− c

(1)
i

) (5.10)

where c
(k)
i =

ui∫
−∞

f
(k)
i (x)dx = Pr{X (k)

i < ui}, k = 0, 1.

The sample can be now classi�ed based on the signature vectors (p(0)1 , ..., p
(0)
m )

and (p
(1)
1 , ..., p

(1)
m ) , with the classi�cation procedure as in Method 2:

g3(u) = argmax
k=0,1

(
s3(k)

)
(5.11)

where the aggregated signatures s3(0) and s3(1) are calculated as:

s3(0) =

m∑
i=1

p
(0)
i (ui)

s3(1) =

m∑
i=1

p
(1)
i (ui)

(5.12)

The classi�cation rule g3 assigns the sample to the class to which the sample
is closer in terms of the similarity measure s3(0), s3(1).

5.1.4. Comment on assumptions of methods 1−3
and on alternative parametric approach

The methods presented in sections 5.1.1�5.1.3 were developed for the binary
classi�cation problem Yi ∈ {0, 1}, i = 1, ..., n. We note however that the methods
can be extended to encompass multi-class problems with Yi ∈ C = {c1, c2, ..., ck}.
To do this, we need to estimate expression pro�les of a gene i characteristic of
the k classes f c1

i , f c2
i , ..., f ck

i , as done in Equations (5.2), (5.5) or (5.9) for the
binary case. Based on the pro�les, we calculate the aggregated signatures which
represent association of a tested sample u with the k classes s(c1), s(c2), ..., s(ck),
as done in Equations (5.3), (5.7) or (5.12). Then extension to the multi-class case
is straightforward:

g(u) = argmax
c∈{c1, c2, ..., ck}

(
s(c)
)
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Although analysis of multi-class experiment is technically feasible, the binary
classi�cation problem is de�nitely more important when considering class predic-
tion from real high throughput data such as gene expression results. The number of
samples commonly tested in such studies, n up to several tens, is usually deemed
too small to provide enough training data for multi-class problems, so typical
experiment organization assumes only two groups.

It should be noted that the classi�cation procedures proposed here resemble
the memory based learning (MBL) classi�ers in that we do not search through
a space of parametric models H in order to �t the model f ∈ H which is expected
to minimize the expected prediction error. Instead, we use the training data to
build the pro�les of subsequent features in the (two) groups of samples compared,
and then we classify a new sample by directly comparing the sample with these
pro�les.

Later we will compare this approach with an alternative method where we �rst
perform feature selection based on pathway activation and then we �t a parametric
model from a given hypothesis space H in the low-dimensional data spanned by
the members of the winning pathways. This latter approach was analyzed in (Ma-
ciejewski, 2011a,b), where we compared di�erent families of models (e.g. Support
Vector Machines, logistic regression, random forests, as well as nonparametric
models) built with the genes from the most activated pathway directly taken as
features. We showed then that this approach may outperform classi�ers based
on features selected using data-driven methods. This analysis will be extended in
Chapter 6.

In the next section, we discuss the problem of generalization of classi�ers
built from high throughput data, and in section 5.3 we present a generic frame-
work where either MBL-like methods (such as the ones proposed in sections 5.1.1
through 5.1.3), or parametric classi�ers (e.g. SVMs) can be employed for class
prediction from high throughput data.

5.2. Assessment of predictivity in classi�cation based on

high dimensional data

We showed previously (section 2.1) that the major challenge in building predic-
tive models from high dimensional data (such as data from high-throughput stud-
ies with d ≫ n) is related to over�tting, which refers to the fact that models which
accurately �t to the training data are likely to demonstrate poor performance
given new independent data. In this section, we want to elaborate on this e�ect in
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order to (i) understand conditions under which over�tting can be controlled and
(ii) �nd methods to provide reliable assessment of classi�er performance assuming
that the training data is sparse in terms of the number of samples available. We
discuss both classical results from the learning theory which are focused on the
properties of the hypotheses space, as well as recent results which are focused on
the properties of the learning algorithms rather than the hypothesis space. These
new results are interesting as they develop stability measures of the learning algo-
rithm and show relationship between these measures and generalization property
of classi�ers.

Finally, we consider data-reuse methods employed for model selection and
estimation of generalization measures.

In predictive modelling we want to �nd the functional relationship between
the feature vectors (x, inputs) and targets (y, outputs) given the training data
S = {(x1, y1), ..., (xn, yn)}. We assume that inputs and outputs are independent
samples from the underlying random variables X ∈ Rd and Y , respectively, and
that (X, Y ) are governed by an unknown joint probability distribution denoted
µ(X, Y ).

A learning algorithm is a map which assigns to the training data S a function
f ∈ H, where H is the hypotheses space comprising the space of functional re-
lationships f between X and Y that we assume. To measure the (in)accuracy of
prediction of Y using f(X), we de�ne the loss function L(Y, f(X)), which takes
0 for Y = f(X) and some positive values otherwise which represent punishment
for misprediction.

The most important quality measure of the �tted model f is the expected

prediction error for new data, known also as the generalization error, de�ned as
the mean error (loss) in classi�cation calculated with regard to the distribution
of (X,Y ) (Hastie et al., 2001):

EPE(f) = E(L(Y, f(X))) =

∫
L(y, f(x))dµ(x, y) (5.13)

Obviously, since µ is unknown, in practice EPE cannot be calculated. How-
ever, we can calculate the empirical error as the average error observed for the
training samples:

Eemp(f) =
1

n

n∑
i=1

L(yi, f(xi)) (5.14)
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5.2.1. Empirical assessment of predictivity

Reliable estimation of the EPE is one of the major challenges in predictive
modelling unless we deal with a �data rich� scenarios where the number of samples
n is su�ciently large. Then the EPE can be estimated empirically based on the
partition of the training data not used for selection of the model. More speci�cally,
it is typically recommended to randomly split the training data into 3 partitions
(Bishop, 1995; Hastie et al., 2001): train, validation and test, where the train and
validation partitions are used to �t a model and estimate its generalization error,
respectively, for a series of models searched by the learning algorithm. The last
step is to use the test partition to obtain the unbiased estimate of the EPE for
the �nal model selected in the previous step (i.e. for the model which realizes the
smallest prediction error observed for the validation partition).

In should be noted that if we simplify this procedure and use only two par-
titions: train and test for model �tting and selection, and fail to obtain the �nal
unbiased estimate of the EPE using an independent (third) partition, then we
risk an over-optimistic estimate of the EPE.

5.2.2. Predictivity conditions based on the learning theory

For the cases when n is not large enough to use the above procedure, we can
refer to results from the statistical learning theory which provide conditions for
generalization of the predictive models. The idea is to impose some constraints
on the hypothesis space H (i.e. excluding some �weird� functions from H) so that
it can be guaranteed that small empirical error implies small generalization error
(Vapnik and Chervonenkis, 1991; Vapnik, 1999; Poggio et al., 2004). Technically,
the learning theory develops such constrains for the class of empirical risk mini-

mization (ERM) algorithms, i.e. the algorithms which �t a function f̂ such that:

Eemp(f̂) = min
f∈H

Eemp(f) (5.15)

assuming that the minimum exists (although results also hold if Eemp(f̂) =
inf
f∈H

Eemp(f)).

The key result states that the ERM algorithm (i) generalizes, and (ii) is con-

sistent if and only if the hypothesis space H is the uniformly Glivenko�Cantelli
(uGC) class of functions.

Generalization means that the function f̂ returned by the algorithm realizes
the empirical error which converges to the generalization error:
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Eemp(f̂)
P→ EPE(f̂) (5.16)

where the convergence is in probability as the sample size n increases, i.e.
∀ϵ > 0 lim

n→∞
Pr{|Eemp(f̂)− EPE(f̂)| > ϵ} = 0.

Consistency means that the generalization error for the function f̂ returned
by the algorithm is asymptotically close to the smallest generalization error that
can be achieved in H, i.e.

∀ϵ > 0 lim
n→∞

Pr

{
EPE(f̂) > inf

f∈H
EPE(f) + ϵ

}
= 0 (5.17)

The constraint imposed on the family of functions f ∈ H which guarantees
generalization and consistency of the ERM algorithms (i.e.H being the uGC class)
means that, loosely, for any distribution µ, X ∼ µ, the expected value E(f(X))
can be approximated by the average value of f calculated over a su�ciently large
sample from X, i.e. (Poggio et al., 2004):

∀ϵ > 0 lim
n→∞

Pr

{
sup
f∈H

∣∣∣∣∣ 1n
n∑

i=1

f(xi)−
∫
X
f(x)dµ(x)

∣∣∣∣∣ > ϵ

}
= 0 (5.18)

Note that for binary f this condition is equivalent to the requirement that
the family has the �nite Vapnik�Chervonenkis (VC) dimension, the well-known
condition for predictivity in classi�cation.

It should be noted that this classical theory applies only to ERM learning,
i.e. to the algorithms which minimize the empirical error over a �xed hypothesis
space. Therefore it cannot be used for non-ERM algorithms such as support vector
machines, regularization based learning or k-nearest neighbours classi�ers, etc.
(Poggio et al., 2004).

For this reason, the generalized theory of learning was recently developed
which applies to ERM and non-ERM algorithms (Mukherjee et al., 2002; Poggio
and Smale, 2003; Poggio et al., 2004; Mukherjee et al., 2006; Wibisono et al.,
2009). The key di�erence is that the classical theory assumes ERM learning and
imposes constraints on the hypotheses space to ensure generalization, while the
generalized theory characterizes properties of a learning algorithm (not necessarily
ERM) in terms of stability which are necessary and su�cient for generalization.
Technically, the theory de�nes the following stability measures of the learning
algorithm (i.e. the map from the learning sets to H) (Mukherjee et al., 2002;
Poggio et al., 2004):
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• Cross-validation leave-one-out stability (CVloo): the learning map is distri-
bution independent, CVloo-stable if

lim
n→∞

sup
1≤i≤n

|L(yi, fS(xi))− L(yi, fSi(xi))| = 0 (5.19)

in probability, for all distributions µ, where fS denotes the function �tted
by the algorithm using the complete training set S, and fSi denotes the
function �tted using S with the sample (xi, yi) removed.

• Cross-validation leave-one-out stability of the empirical and expected error
(CVEEEloo): the learning map is CVEEEloo-stable if
� is CVloo-stable,
� realizes stability of the expected error:

lim
n→∞

sup
1≤i≤n

|EPE(fS)−EPE(fSi)| = 0 in probability, (5.20)

� realizes stability of the empirical error:

lim
n→∞

sup
1≤i≤n

|Eemp(fS)−Eemp(fSi)| = 0 in probability. (5.21)

The key results of the generalized theory are that (i) for the ERM learning
algorithms, the CVloo stability is the necessary and su�cient condition for gener-
alization and consistency, and (ii) for any learning algorithm, CVEEEloo stability
is the su�cient condition for generalization (but not for consistency).

It should be noted that the theoretic results guarantee asymptotic, as the sam-
ples size n → ∞, conformity of the empirical error (which we can measure) with
the expected error (which we want to estimate). Additionally, the theory also pro-
vides the estimates of the over-optimism of the training error, i.e. of EPE−Eemp

for �nite sample sizes n (Mukherjee et al., 2002; Poggio et al., 2004). However,
practical application of these estimates for the purpose of assessment of the EPE
is di�cult due to (i) not very fast rate of convergence of Eemp to EPE typically
observed (Poggio et al., 2004; Mukherjee et al., 2006), which is a limitation con-
sidering small values of n commonly available in high-throughput studies, and (ii)
the di�culty in calculating the theoretical bounds on generalization of the models
(Hastie et al., 2001).

However, results of the general theory of learning are important as they intro-
duce stability as an important criterion for generalization of predictive models.
The speci�c stability criteria, based on the cross-validation leave-one-out pro-
cedure (Equations (5.19)�(5.21)) motivated the measures of stability of feature
selection that we later introduce and investigate in sections 5.3 and 6.
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Finally, we want to mention the classic results from the learning theory per-
taining to the nonparametric classi�cation (and regression) procedures, such as
the nearest neighbours or the procedures based on kernel estimates of the class
densities. These results provide conditions for Bayes risk consistency of these
nonparametric procedures, i.e. for the convergence (as the sample size n → ∞) of
the error rate of these procedures to the Bayes error (Greblicki, 1978; Greblicki
and Pawlak, 1987). Interestingly, Bayes risk consistency can also be ensured even
if some of the training observations have mislabelled class designations, as shown
e.g. by Greblicki (1980).

5.2.3. Data reuse methods for assessment of predictivity

An alternative approach to the assessment of predictivity when dealing
with small sample sizes is to employ data-reuse methods such as bootstrap or
cross-validation (Hastie et al., 2001). The idea is to directly estimate the general-
ization error EPE by repeatedly, randomly generating a training subsets from the
available n samples and evaluating predictive performance of the models �tted to
the training subsets. Then the EPE is estimated as the average of the prediction
errors observed over the �tted models.

More speci�cally, in the bootstrap procedure, B datasets each of size n are
randomly selected with replacement from the original dataset of n samples. Then
B models are �tted based on the generated datasets and are evaluated on the
original dataset. The �nal estimate of the EPE is obtained by combining the B
estimates of the prediction error.

In cross-validation, the available n samples are split into K partitions of
roughly similar size. Then in K steps of the cross-validation procedure, each of
the partitions is once used as the test partitions with the remaining partitions
used for �tting the model. In this way, we get K estimates of the prediction error
for subsequent models, which we can average to obtain the �nal estimate of the
EPE. In the leave-one-out cross-validation, i.e. for K = n, we obtain approx-
imately unbiased estimate of the EPE, however variance of the estimate tends
to be higher. By contrast, in the K-fold cross-validation (with K typically taken
between 5 and 10), the estimate of the EPE will show higher bias but smaller
variance (Hastie et al., 2001).

Obviously, the leave-one-out cross-validation is computationally more expen-
sive, however it allows to calculate di�erent measures of stability of the learning
process, as shown in section 5.2.2. For this reason, the algorithm for class predic-
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tion that we present in the next section employs the leave-one-out cross-validation
which is the basis of several measures of feature selection stability that we propose.

When dealing with high dimensional data (with d ≫ n), where dimensionality
reduction/feature selection plays the key role, it is essential that internal rather
than external cross-validation is used (Allison et al., 2006; Markowetz and Spang,
2005). The di�erence lies in where the feature selection step is performed: in the
external procedure, feature selection is done once prior to the cross-validation
loop, while in the internal procedure each step of cross-validation includes fea-
ture selection as the part of model �tting. This distinction is ignored by some
authors who tend to choose computationally simpler, external cross-validation for
assessment of generalization in class prediction based on high dimensional data.
However, this can lead to surprisingly high over-optimism in estimation of the
generalization error, as shown e.g. in (Simon et al., 2003; Simon, 2003).

For this reason, we employ internal cross-validation in the algorithms presented
in sections 5.3 and 5.5. This, additionally, allows us to estimate several measures
of leave-one-out stability of the feature selection, similar to the stability measures
discussed in section 5.2.2.

5.3. Algorithm of sample classi�cation based on

prior domain knowledge

We provide a generic procedure which allows us to incorporate prior domain
knowledge about possible associations between features into the process of build-
ing a predictive model based on results of a high throughput study. The procedure
returns (i) the predictive model, (ii) estimates of the expected prediction error
when using the model for new, independent data, (iii) the set of features which
are actually used in prediction, (iv) measures of stability of the selected feature
set under small changes of data.

We assume that results of a massive throughput study, such as gene expres-
sion microarray assay, are given as (W,Y ) where Wd×n represents the matrix of
expressions of d genes (features) measured from n samples, and Y1×n represents
the class labels of the samples, Yi ∈ C = {c1, ..., ck}, i = 1, ..., n. Although
we restrict this algorithm to the classi�cation problem (rather than regression
problem, with quantitative Y ), we do not require that Y is binary, except when
explicitly assumed. Note however, that in vast majority of practical problems in
bioinformatics for which the method discussed here can be employed (such as class
prediction studies based on gene expression data), it is commonly assumed that
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targets are binary (Yi ∈ {0, 1}, which represents e.g. disease vs. control, response
no response to therapy, recurrence vs. no recurrence of a disease, etc.).

We also assume that the prior domain knowledge about association between
features is given in the form of a database of gene sets S = {S1, S2, . . . , SM}.
The sets may include groups of related genes, such as the members of signaling
pathways, or groups of genes with common gene ontology terms. For clarity of
presentation of the algorithm, we assume that the gene sets S1, . . . , SM are
speci�ed as sets of indices of rows in W corresponding to the genes in subsequent
gene sets. See Remark 5 (page 103) for explanation of some technical issues
related to this assumption.

The class prediction algorithm takes as input:
1. (W, Y ),
2. S,

and produces on output:
1. The classi�er g : Rr → C, which assigns the class label to a (new) sample

based on expression of r selected genes,
2. The subset of r features used by the classi�er g (which we represent by the

set of their indices S ⊂ {1, ..., d}),
3. EPE � prediction error expected when new, independent data is classi�ed

with g,
4. Measures of stability of the feature selection, as de�ned in section 5.4.

The class prediction algorithm is realized in the following steps.
1. Calculate the gene set enrichment score si and the associated (multiple

testing corrected) p-value pi for each of the gene sets S1, ..., SM , using the
gene set analysis method G: (si, pi) = G(Si, W, Y ), i = 1, ..., M .

2. Rank the gene sets S(1), ..., S(M) descending by the gene set enrichment
score, so that p(1) ≤ ... ≤ p(M), i.e. the gene sets most associated with the
target are at the top of the list. If none of the gene sets is signi�cantly
associated with the target, i.e. if p(1) > 0.05 then STOP with the infor-
mation that the algorithm fails to build the classi�er based on pathway
activation. Otherwise �nd the number of sets associated with the target
pa = max{i : p(i) ≤ 0.05} and select the features in the top most activated
gene sets as S0 = S(1)∪ ...∪S(min(k,pa)), where k is a �xed parameter of the
method [see Remark 3]. Move to step 3.
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3. Repeat steps 4 through 8 for i = 1, ..., n.
4. Leave out sample i for model testing, i.e. remove column W•i from W and

element Yi from Y . We denote the remaining matrix and vector as W i and
Y i.

5. Using the training data (W i, Y i) calculate the enrichment score and the
associated p-value for each of the gene sets S1, ..., SM as (sj , pj) =
G(Sj , W

i, Y i), j = 1, ..., M . Order the gene sets by increasing p-values:
S(1), . . . , S(M).

6. Select rows from W i related to the set of features S = S(1)∪ ...∪S(min(k,pa)),
and remove the remaining rows. Denote the resulting matrix asXi = (W i

j• :
j ∈ S).

7. Using the training data (Xi, Y i), build the predictive model g and classify
the sample Yi as Ŷi = g(Yi).

8. In the list of counters c1, ..., cM , corresponding to the M gene sets in S,
increment the counters which correspond to the gene sets selected in step 6.

9. Calculate the expected misclassi�cation rate as

EPE =
1

n

n∑
i=1

I(Ŷi ̸= Yi) (5.22)

10. Select the rows fromW related to the genes in S0 and remove the remaining
rows to obtain the matrix X = (Wi• : i ∈ S0). Based on the training data
(X,Y ) build the predictive model g.

11. Based on the list of counters c1, ..., cM , calculate the stability measures
de�ned in section 5.4, i.e. N.SEL (de�ned by formula (5.23)), Qα for
α = 0.9, 0.75, 0.5 (formula (5.24)), FREQ1, ..., FREQk (formula (5.25)).
Calculate the mean p-values associated with the winning gene sets PV AL1,
..., PV ALk as de�ned by formula (5.26).

12. Return g, the subset of features S0, EPE and the stability measures as
calculated in steps 9�11.

Note that in the proposed procedure we do not provide speci�c methods
to be used for gene set ranking (G), or for sample classi�cation (model g); the
procedure also relies on the parameter k. In the following remarks we want to
clarify how these generic setting should be �xed in speci�c realizations of the
algorithm.
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Remarks:

1. As the gene set ranking method G (steps 1 and 5 of the algorithm) we
propose to use the gene set analysis procedures based on models 1 or 4 (see
sections 4.3.1 and 4.3.4), as these methods produce meaningful p-values
and stay in line with the organization of the biological experiment which
produced the dataset W , as explained in sections 4.3.5 and 4.5. Examples
of such methods are the Globaltest, GSA, GSA2 (point 4 on page 52).

2. Regarding the classi�cation model g (steps 7 and 10), the obvious choice is
to use parametric models such as the SVM, logistic regression etc. Alterna-
tively, we can use nonparametric methods such as the procedures proposed
in section 5.1 (Equations (5.4), (5.8), (5.11)). Strictly, the classi�er g re-
turned by the latter methods does not contain a discriminant function of the
inputs used to predict the target, but it rather contains the complete train-
ing data (or its representation in the form of distributions of the features,
e.g. Equations (5.2) or (5.9)), like in-memory-based reasoning methods. In
Chapter 6 we empirically compare selected parametric and nonparametric
approaches.

3. The parameter k (steps 2 and 6) represents the number of top most ac-
tivated pathways whose genes are taken as features in classi�cation. This
parameter should be tuned empirically, i.e. the value of k should be se-
lected which minimizes the EPE. Therefore, the algorithm should be run
for k = 1, 2, ... up to some reasonable value not exceeding the number of
activated pathways (denoted as pa � step 2 of the algorithm). This way
of tuning the parameter k is similar to tuning the size of the feature set
selected with the classical univariate �lter methods (see section 2.2).

4. Note that the algorithm proposed realizes (internal) cross-validation to es-
timate the EPE and the proposed feature stability measures. As indicated
in Remark 3, we can use the estimate of generalization error for �ne-tuning
the parameters of the model, such as k, and, similarly, other parameters
speci�c to the model g. Note however, that this is equivalent to splitting
the available data into two (train and test) rather than three (train, val-
idation and test) partitions (see Section 5.2.1). The consequence of this
simpli�cation may be some bias in estimation of the generalization error.
To reduce the bias, we may in principle follow the train-validate-test scheme
in cross-validation, as shown in (Maciejewski and Twaróg, 2009; Lai et al.,
2006). The idea is to use nested cross-validation loops, where the purpose
of the outer loop is to leave-out samples for model testing, and in the inner
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loop we leave-out samples for model �ne-tuning (these samples play the
role of the validation partition). Although this reduces the bias in EPE,
we chose not to use this approach as (i) it enormously increases computa-
tional burden, and (ii) we can still use the proposed procedure to relatively

evaluate di�erent approaches to classi�cation based on high dimensional
data (i.e. the approach based on purely data driven feature selection vs.
the approach based on the prior domain knowledge).

5. The �nal remark is technical and deals with the possible discrepancy be-
tween the de�nition of gene sets given is KEGG of Biocarta databases
and the set of genes (transcripts) that label rows of the dataset W . Note
that the latter is speci�c to the microarray or RT-PCR technology used
to generate the data, where not necessarily all the genes referred to in e.g.
KEGG or GO gene sets are measured with a particular microarray device.
Additionally, prior to analysis, raw microarray data commonly undergoes
non-speci�c �ltering, which consists in deleting rows (i.e. genes/transcripts)
due to data quality problems. As quality assurance of high-throughput data
(i.e. normalization, non-speci�c �ltering) is outside of scope of this work,
throughout this document we assume that the dataset concerned (denoted
here as W ) has already undergone necessary quality-related transforma-
tions.
Yet another issue is related to the fact that microarray technologies typi-
cally represent some selected genes by the collection of di�erent transcripts
scattered on the array, i.e. one gene may be represented by several rows
in the resulting dataset. For all these reasons, creating the representation
of the KEGG gene sets in the form of the sets of indices of rows of the
matrix W , as required by the algorithm and denoted S = {S1, S2, . . . , Sp}
on page 100, is not a direct one-to-one mapping. Therefore, the data set
Si ∈ S, representing a given pathway, is constructed by taking the indices
of rows of W which correspond to a gene in that pathway; if no such indices
are found, then the pathway is not represented in S.

5.4. Measures of stability of feature selection

In the algorithm presented in section 5.3, we repeatedly perform feature se-
lection in subsequent steps of the leave-one-out cross-validation procedure. This
allows us to de�ne CVloo stability measures of features selection which character-
ize variability/(in)stability of features under small changes in the training data.
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Taken together with the EPE, these measures are supposed to provide stronger
evidence pertaining to the quality of the �nal model g built from high dimensional
data and returned in step 12 of the algorithm.

Note that in each step of cross-validation, we select k most activated gene
sets (step 2 and 6). If, in a given study, features are insensitive to small changes
in data, then we would expect to observe roughly the same subset of features
selected throughout the cross-validation loop. To quantify this, we de�ne the �rst
measure which determines how many distinct features were selected at least once
throughout the procedure:

N.SEL =
1

k

M∑
i=1

I(ci ̸= 0) (5.23)

where c1, ..., cM are the counters maintained in step 8 of the algorithm and I
is the indicator function. Note that the number of distinct features ever selected
actually equals

∑M
i=1 I(ci ̸= 0), which, for stable features, should be close to k. The

purpose of the standardization term 1
k used in formula (5.23) is to make N.SEL

directly comparable across analyses with di�erent value of the parameter k. The
values of N.SEL close to 1 indicate that despite small changes in the training
data, we tend to consistently select the subset of k core gene sets. Bigger values
of N.SEL mean that the set of top k gene sets includes instable features which
are likely to change as a result of slight modi�cations in data. Whether (i) there
are any stable feature sets in the group of top k winning gene sets, and if so, (ii)
which of them are stable, can be determined using the measures de�ned next.

The following measure of stability refers to the question (i) whether there is
a core of stable features in the group of top k winning gene sets:

Qα =

M∑
i=1

I(ci ≥ αn) (5.24)

Note that for some α ≤ 1 the measure Qα indicates how many gene sets (out
of k × N.SEL selected at least once) tend to be repeatedly selected at least αn
times in n iterations of the cross-validation loop. This measure is interesting for
N.SEL exceeding 1, as for e.g. α = 0.9 it shows how many (out of top k) winning
gene sets actually form stable feature sets, roughly insensitive to changes in data.

When empirically comparing di�erent methods, (Chapter 6), it will be inter-
esting to observe speci�c measures such as Q0.9, Q0.75 or Q0.5. Clearly, stable
feature selection is characterized by e.g. Q0.9 close to k.
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Additionally, we want to introduce a related measure which indicates how
many times (out of n) the top k winning gene sets were actually selected in
subsequent steps of cross-validation. This addresses the above formulated question
(ii) related to which of the top k winning gene sets tend to be stable. More
speci�cally, if c[1], c[2], ..., c[M ] denote the counters (calculated in step 6 of the
algorithm) sorted descending, then the frequency of selection of the top winning
gene sets is simply:

FREQ1 =
c[1]

n
. . .

FREQk =
c[k]

n

(5.25)

Obviously, stable feature selection is indicated by (most of) the values FREQ1

through FREQk close to 1. On the other hand, if for some l < k we observe con-
sistently higher values of FREQ1, ..., FREQl as compared with FREQl+1, ...,
FREQk, this may be an additional criterion for selection of the parameter k in
the algorithm (i.e., based on this observation, l should be used as the preferable
value of the parameter k in the algorithm). See also Remark 3 on selection of the
parameter k (page 102).

Finally, it is informative to report the p-values associated with the top winning
gene sets selected in the cross-validation loop. More speci�cally, referring to step 5
of the algorithm (page 101), in every iteration of the cross-validation loop, we rank
the gene sets based on increasing p-values. Let us denote these p-values calculated
for subsequent gene sets as pi1, p

i
2, ..., p

i
M , where the upper index represents the

iteration number in the cross-validation loop, i = 1, ..., n. Based on the p-values
sorted ascending, denoted pi(1), p

i
(2), ..., p

i
(M), we calculate the average p-value

associated with the winning gene sets:

PV AL1 = mean(p1(1), p
2
(1), ..., p

n
(1))

. . .

PV ALk = mean(p1(k), p
2
(k), ..., p

n
(k))

(5.26)

Note that the value of PV ALi is most interesting for the stable feature set i,
i.e. in the case when FREQi is close to 1. Then PV ALi indicates the strength
of association of the selected gene sets with the target. For this interpretation to
hold, it is essential that in the algorithm (step 1 and 5) we rank the gene sets
using the method G whose p-value indicate the strength of association (i.e. for this



106 Chapter 5

reason, methods of gene set analysis based on Models 2 and 3 should be avoided
� see sections 4.3.2, 4.3.3, 4.3.5).

5.5. Classi�cation using standard methods of feature selection

The approach proposed in section 5.5 employs prior domain knowledge on
possible, known relationships among features. Classi�cation is then based on
most activated gene sets (pathways) where gene set activation is detected by
the self-contained of competitive methods as described in Chapter 4. In Chapter
6, we will compare this approach with commonly used methods where feature
selection is done in the data-driven way. In the comparison, we will used uni-
and multivariate methods, including shrinkage-based techniques, as described in
section 2.3. We will refer to these data-driven methods as the standard methods
of feature selection.

In this section, we �rst present the algorithm for sample classi�cation based
on standard methods of feature selection. We introduce measures of stability of
data-driven feature selection, analogous to the measures presented in section 5.4.
Results obtained with the standard methods will form the baseline results for
evaluation of the proposed, domain knowledge-based algorithm.

We use here the same notation as introduced in the previous chapter, where
(Wd×n, Y1×n) represent the training data and the vector of class labels of the
samples, respectively (see section 5.3 for details).

The following procedure takes (W, Y ) as input and produces on output the
predictive model, the subset of features used by the model, generalization error of
the model and measures of stability of the selected features under small changes
in data � as de�ned in section 5.6.

The algorithm is realized in the following steps.
1. Repeat steps 2 through 6 for i = 1, 2, ..., n.
2. Remove sample i, i = 1, 2, ..., n from the data set (W, Y ), i.e. remove

column i from W and element i from Y . The remaining matrix and vector
are denoted W i and Y i.

3. Using the feature selection method F and the data (W i, Y i), select k fea-
tures (rows of W i) most strongly associated with the target. Denote indices
of these features as Si ⊂ {1, 2, ..., d}. Note that if the feature selection
procedure identi�es l < k features as associated with the target and the
remaining features as unassociated with the target, then the actual number
of features selected in this step is l.
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4. Select rows from W i related to the features in Si. Denote the resulting
matrix as Xi = (W i

j• : j ∈ Si).
5. Using the training data (Xi, Y i), �t the predictive model f .
6. Classify the sample i as Ŷi = f(Yi).
7. Calculate expected prediction error as EPE = 1

n

∑n
i=1 I(Ŷi ̸= Yi).

8. Using the feature selection method F select top k features from W ; denote
indices of the features as S0, and rows from the training data related to the
selected features as X = (Wi• : i ∈ S0). Based on the training data (X,Y )
build the predictive model f .

9. Based on S1, ..., Sn calculate the stability measures n.sel (formula (5.27))
and qα (formula (5.29)), as de�ned in section 5.6.

10. Return the model f built in step 8, the subset of features S0, EPE and the
stability measures calculated in step 9.

Note that this procedure realizes internal cross-validation, which allows us to
reduce over-optimism in the estimation of the generalization error, as explained
in section 5.2.3. The EPE derived from this procedure is attributed to the �nal
predictive model built from the complete training data (step 8).

Similarly to the algorithm in section 5.3, this algorithm is a generic framework
in which we do not provide speci�c methods to realize feature selection F or
classi�cation f . We also employ the parameter k to control the dimensionality of
the feature vectors used in classi�cation.

Regarding feature selection, F can be realized as any univariate or multivariate
method, such as the methods described in sections 2.2 and 2.3, which performs
ranking of features and allows us to select top k highest-ranked features. If F
does not explicitly rank individual features but rather �nds feature sets (such as
the RFE � section 2.3.1 or greedy methods in � section 2.3.3), we can still select
k `best' features by observing association of individual features in the set with
the target. By rerunning the algorithm with di�erent values of k, we tune the
parameter k, in as similar way as described in Remark 3 (page 102).

It should be noted that some methods F which use shrinkage techniques may
return fewer features (denoted l in step 3 of the algorithm, l < k) then the
requested number of k features. For instance, this e�ect is commonly observed
in the lasso method (page 24). It is due to the way the lasso optimization task
(Equation (2.7)) is solved, which tends to set a number of coe�cients β0, β1, ..., βd
to zero, which e�ectively eliminates the corresponding variables. Similar e�ect may
be observed with the elastic net algorithm (page 25).
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5.6. Stability of features selected with standard methods

In subsequent iterations of the internal leave-one-out cross-validation proce-
dure described in the previous section, we generate subsets of features S1, ..., Sn

(step 3 of the algorithm). Based on this, we can observe whether features selected
from slightly di�erent datasets (i.e. (W 1, Y 1), ..., (Wn, Y n) where any two of
them di�er by only one sample) tend to be stable. To quantify this, we de�ne
several measures of CVloo stability of feature selection, similar to the measures
introduced in section 5.4.

First we want to observe how many distinct features were selected in n steps
of cross-validation, which can be calculated as |

∪n
i=1 Si|. Based on this quantity,

we de�ne the �rst measure of stability of feature selection:

n.sel =
1

k∗

∣∣∣∣∣
n∪

i=1

Si

∣∣∣∣∣ (5.27)

where

k∗ =
1

n

n∑
i=1

|Si| (5.28)

is the average number of features actually selected in every iteration of
cross-validation. Obviously, k∗ ≡ k for standard methods based on simple rank-
ing of features, however, it is likely that k∗ < k for the lasso or similar shrinkage
methods, which may generate fewer that the requested number of k features (see
step 3 of the algorithm).

Note that if roughly the same set of features is repeatedly selected in subse-
quent steps of cross-validation, then |

∪n
i=1 Si| will be close to k∗. We use the term

1
k∗ in order to make n.sel directly comparable across studies with di�erent values
of k.

Values of n.sel exceeding 1 indicate that slight changes in data can lead to
selection of sets of features with little overlapping, which means that the process
of feature selection in unstable. Note that n.sel is the equivalent of the N.SEL
measure used with gene set-based feature selection (formula (5.23)).

It is also interesting to observe whether in the set
∪n

i=1 Si there is some core
subset of features repeatedly selected despite changes in the training data. To
analyze this, we de�ne the measure:

qα =
∑
j∈S

I

((
n∑

i=1

Iij

)
≥ αn

)
(5.29)
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where S =
∪n

i=1 Si, and Iij indicates whether a feature j ∈ S was selected in the
iteration i of the cross-validation procedure, i.e. Iij = 1 for j ∈ Si, and Iij = 0
otherwise. This measure has similar interpretation as Qα (formula (5.24)), e.g. for
α = 0.9, qα equals the number of features which were selected at least 90% times
in n iterations of the cross-validation procedure (i.e. q0.9 may be regarded as the
number of stable features). To get a better insight into stability of the competing
feature selection procedures, we may observe q0.9, q0.75 or q0.5. Clearly, stable
feature selection is indicated by q0.9 close to k∗, i.e. close to the actual number of
features selected in an iteration of the cross-validation procedure.

Summarizing, in this chapter we de�ned the algorithm for classi�cation of
samples in high dimensional data (section 5.3). The key characteristic of this
algorithm is the prior domain knowledge-based feature selection. We also provided
the alternative algorithm where features selection relies entirely on the data-driven
methods (section 5.5). In the following chapter, these two approaches are evaluated
numerically in terms of generalization and stability.
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Numerical evaluation of the proposed methods

In this chapter, we empirically compare the proposed approach to classi�-
cation employing prior domain knowledge-based feature selection with purely
data-driven (standard) methods. These two approaches will be compared in terms
of (i) the expected prediction error of the commonly used classi�ers, and (ii) sta-
bility of feature selection from data undergoing small changes. Essentially, we will
compare results obtained with the algorithms presented in sections 5.3 and 5.5,
and stability measures de�ned in sections 5.4 and 5.6.

In this study, we will use simulated data, as we want to analyze predictive
performance and stability as a function of known properties of data, such as
correlation of features or signal-to-noise ratio.

In the next section, we describe organization of the numerical study and char-
acteristics of the simulated data. Since in simulation we exactly know which fea-
tures and gene sets are associated with the target (which we refer to as relevant),
we de�ne additional measures which allow us to track selection of relevant vs.
irrelevant features. This is meant as illustration of the theoretical analysis pre-
sented in Chapter 3, where we evaluated the risk of selection of irrelevant features
from n ≪ d data.

In section 6.2, we present results of sensitivity studies which illustrate proper-
ties of the standard and prior domain knowledge-based methods as a function of
the varying signal-to-noise ratio, correlation among features and the sample size.

6.1. Organization of the numerical study

This study is based on the simulated dataset with n samples and d genes
out of which the �rst n.DE genes are associated with the target (i.e. di�eren-
tially expressed) and possibly correlated. The target is de�ned as the binary
variable with the value of 0 and 1 in the two groups of n/2 samples (we re-
fer to these groups of samples as �group 0� and �group 1�). We assume that



112 Chapter 6

expression of the n.DE genes associated with the target comes from the multi-
variate normal distribution MVN(01×n.DE , Σn.DE×n.DE) in the �rst group and
MVN(∆1×n.DE , Σn.DE×n.DE) in the second group, where 01×n.DE and ∆1×n.DE

represent vectors of means with the elements equal 0 and ∆, respectively. ∆ rep-
resents the strength of the di�erential expression e�ect between the groups. The
covariance matrix Σ (the same in both groups) has the diagonal elements equal
1 and the remaining elements equal ρ. Note that since variances of the n.DE
variables equal 1, then ρ also represents mutual correlation of the variables.

We assume that the remaining d−n.DE genes in the dataset are not correlated
and not associated with the target, and we generate expression of these genes from
the standard normal distribution for both groups of samples.

We also assume that the database of gene sets is given which represents prior
domain knowledge on feature relationships, and that it includes M gene sets of
size m each. The �rst gene set contains the �rst m genes, i.e. it also contains all
the n.DE genes associated with the target (as we assume that n.DE ≤ m), while
the remaining gene sets are generated randomly.

In the study, we will report results for n = 30 or 50 samples, with d = 5000
genes in the dataset, out of which n.DE = 20 are di�erentially expressed. We
assume M = 100 genes sets each with m = 40 genes. We will vary the e�ect
strength (∆ = 0.5, 1, 1.5) and the correlation (ρ = 0, 0.2, 0.4). Note that since
we keep the variance of the signal �xed, then by varying ∆ we e�ectively change
the signal-to-noise ratio in the data.

This data organization was inspired by the empirical simulation studies re-
ported in literature, e.g., Ackermann and Strimmer (2009); Dinu et al. (2008).

We will analyze this simulated dataset using standard methods of feature
selection (algorithm in section 5.5) and using feature selection based on prior
domain knowledge (algorithm in section 5.3). We will generate the data 100 times
and report the measures of stability and the generalization error of the classi�ers
as the average values calculated over replications of the experiment.

Note that in our experiment we know exactly which features and which gene
sets are nominally associated with the target; we name these features and gene sets
as relevant, and the remaining features and gene sets as irrelevant. Hence features 1
through n.DE are relevant and the gene set 1 is also relevant. It will be interesting
to observe which features (relevant or irrelevant) are actually selected by the
di�erent methods under varying characteristics of data (such as the signal-to-noise
or correlation between features). This problem, related to high risk of selection or
irrelevant features from n ≪ d data, is discussed from theoretical standpoint in
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Chapter 3; while here we analyze this empirically. To observe this, we introduce
the following additional measures.

For the case of standard methods of feature selection, we will analyze the
sets Si, i = 1, ..., n (see step 3 of the algorithm in section 5.5) in terms of the
proportion of relevant features included in these sets.

For this purpose we calculate the following measures. First we want to analyze
the share of relevant features in the group of qα (formula 5.29) features deemed
stable (which means selected with frequency at least α in the cross-validation
procedure). We report this using the following measure, similar to qα but referring
to the relevant features:

qrα =
∑
j∈SR

I

((
n∑

i=1

IRij

)
≥ αn

)
(6.1)

where the set SR and the indicators IRij are related to the relevant features
selected in the cross-validation procedure. More speci�cally, if we denote the set of
the relevant features (their indices) as RF (in our study RF = {1, 2, ..., n.DE}),
then the sets of relevant features selected in subsequent iterations are simply
SRi = RF ∩ Si, i = 1, ..., n. The set of all relevant features ever selected in
the cross-validation procedure is SR =

∪n
i=1 SRi. The indicators IRij show if the

relevant feature j ∈ SR was selected in iteration i (then IRij = 1), or not (then
IRij = 0).

The second measure indicates the average number of relevant features (out of
k∗) selected in subsequent iterations of cross-validation, i.e.

kr∗ =
1

n

n∑
i=1

|SRi| (6.2)

If mostly relevant features are being selected then kr∗ should be close to k∗.
For the case of feature selection based on prior domain knowledge (algorithm

in section 5.3, page 100), considering our simulation scenario, selection of the
relevant gene set in subsequent iterations is recorded in the counter c1 (see step 8
of the algorithm). We will observe the frequency of selection of this relevant gene
set which we de�ne as:

FREQ.R =
c1
n

(6.3)

It will be interesting to compare FREQ.R with the frequency of selection of
the top winning gene sets FREQ1 =

c[1]
n , etc. (formula 5.25). Note that in section
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5.4 we introduced the latter frequencies as indications of whether the gene sets
selected are sensitive to changes in data. Now using FREQ.R we will be able to
tell whether the gene sets selected include the relevant gene set.

6.2. Results of the numerical study

In this section, we report results of the algorithm presented in section 5.3 and
in section 5.5.

Regarding the algorithm in section 5.5, we use the following standard methods
of feature selection, both univariate and multivariate:

• Feature ranking based on the Wilcoxon nonparametric test or on the t-test
(section 2.2),

• Recursive Feature Elimination (section 2.3.1),
• Lasso (section 2.3.4),
• Elastic Net (section 2.3.4).

In the algorithm, we used the following predictive models (f):
• Support Vector Machine with the linear kernel (SVM),
• Penalized logistic regression (PLR), as proposed by Zhu and Hastie (2004),
• Nonparametric nearest neighbours (KNN).

We performed the analysis with the parameter k of the algorithm (see steps 3
and 8 of the algorithm, page 106) equal 5, 10, 15, 20.

Regarding the algorithm in section 5.3, we used the following methods of gene
set analysis (G):

• GT � Globaltest algorithm (Equation (4.1)),
• GSA algorithm (point 3 on page 51),
• GSA2 � the modi�ed version of the GSA method with the p-value calculated
according to Equation 4.7.

In this numerical study we used the following classi�ers (g, step 7 and 10 of
the algorithm in section 5.3):

• Support Vector Machine with the linear kernel (SVM),
• Nonparametric classi�ers based on signatures of gene set activation in indi-
vidual samples, proposed in sections 5.1.1, 5.1.2 and 5.1.3.

We performed the analysis with parameter k of the algorithm (see step 2 of
the algorithm, page 100) equal 1, i.e. we deliberately want to select one gene set
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since in the simulated dataset only the �rst gene set, out of M = 100, is assumed
to be associated with the target. As the multiple testing adjustment (see step 1
of the algorithm) we use in this study the Holm procedure which controls the
family-wise error rate (Holm, 1979; Dudoit et al., 2003), see also Remark II on
page 19.

6.2.1. Generalization error with standard feature selection

We �rst analyze expected prediction error of selected classi�ers using standard
methods of feature selection. Results for small, medium and strong e�ect (∆) are
given in Tables 6.1 through 6.3. In the tables, we show the relationship between
the EPE (calculated in step 7 of the algorithm in section 5.5) and the sample
size and correlation among the genes associated with the target. We make the
following observations:

1. For the small e�ect (∆ = 0.5, Table 6.1), none of the standard methods
of feature selection is able to provide informative features, as the lowest
classi�cation error reported in Table 6.1 exceeds 45%. Note however that
this data realizes very low signal to noise ratio, with the di�erence in signal

Table 6.1. Expected prediction error for standard methods of feature selection as a function of
correlation among genes ρ, and the sample size n. Results for the small e�ect, ∆ = 0.5

Samples n Cor ρ Classi�er
Feature selection

t-test Wilcox RFE Lasso Enet

30

0.0
SVM 0.52 0.526 0.511 0.5 0.485
PLR 0.525 0.513 0.521 0.489 0.484
KNN 0.512 0.501 0.523 0.485 0.475

0.2
SVM 0.527 0.543 0.518 0.496 0.486
PLR 0.52 0.519 0.513 0.487 0.482
KNN 0.529 0.519 0.523 0.503 0.498

0.4
SVM 0.525 0.537 0.527 0.5 0.491
PLR 0.522 0.515 0.522 0.489 0.491
KNN 0.497 0.52 0.526 0.515 0.495

50

0.0
SVM 0.468 0.473 0.455 0.46 0.465
PLR 0.468 0.477 0.456 0.464 0.464
KNN 0.46 0.469 0.469 0.476 0.494

0.2
SVM 0.488 0.492 0.493 0.477 0.488
PLR 0.494 0.505 0.488 0.487 0.484
KNN 0.495 0.491 0.507 0.49 0.508

0.4
SVM 0.487 0.486 0.498 0.484 0.486
PLR 0.496 0.488 0.496 0.496 0.477
KNN 0.493 0.484 0.511 0.502 0.503
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Table 6.2. Expected prediction error for standard methods of feature selection as a function of
correlation among genes ρ, and the sample size n. Results for the medium e�ect, ∆ = 1

Samples n Cor ρ Classi�er
Feature selection

t-test Wilcox RFE Lasso Enet

30

0.0
SVM 0.299 0.305 0.235 0.288 0.284
PLR 0.342 0.346 0.289 0.286 0.285
KNN 0.284 0.286 0.277 0.293 0.29

0.2
SVM 0.372 0.367 0.326 0.35 0.333
PLR 0.417 0.419 0.384 0.35 0.332
KNN 0.35 0.357 0.366 0.37 0.363

0.4
SVM 0.412 0.417 0.368 0.388 0.388
PLR 0.438 0.462 0.415 0.381 0.39
KNN 0.386 0.39 0.393 0.411 0.378

50

0.0
SVM 0.128 0.146 0.115 0.138 0.151
PLR 0.147 0.173 0.131 0.139 0.152
KNN 0.144 0.159 0.144 0.164 0.179

0.2
SVM 0.298 0.31 0.279 0.318 0.294
PLR 0.34 0.357 0.318 0.332 0.304
KNN 0.289 0.31 0.306 0.334 0.311

0.4
SVM 0.358 0.355 0.347 0.371 0.321
PLR 0.399 0.404 0.381 0.384 0.332
KNN 0.341 0.344 0.337 0.364 0.337

between the groups equal half of standard deviation of the signal. This
example empirically con�rms results derived in Chapter 3 related to high
risk of selecting irrelevant features in d ≫ n cases. Note that the following
observations (points 2 through 5) do not apply to this lowest signal-to-noise
case.

2. For the medium (Table 6.2) or strong e�ect (Table 6.3), EPE clearly de-
pends on both the sample size and the correlation of genes. Interestingly,
reduction of the EPE with growing sample size is most signi�cant for
uncorrelated features (e.g. in Table 6.2 we observe reduction of the EPE
for ρ = 0 by roughly 50% if sample size is increased from 30 to 50). This
e�ect tends to weaken if features are correlated. Generally, growing corre-
lation between features leads to increasing EPE, which is in line with the
conclusions drawn in section 4.6.

3. Regarding the worth of competing feature selection methods, we observe
that Recursive Feature Elimination (RFE) generally outperforms other
methods, especially for uncorrelated data � see e.g. Table 6.2 and 6.3, re-
sults for ρ = 0. We also observe that RFE coupled with the SVM classi�er



Numerical evaluation of the proposed methods 117

Table 6.3. Expected prediction error for standard methods of feature selection as a function of
correlation among genes ρ, and the sample size n. Results for the strong e�ect, ∆ = 1.5

Samples n Cor ρ Classi�er
Feature selection

t-test Wilcox RFE Lasso Enet

30

0.0
SVM 0.031 0.034 0.014 0.081 0.102
PLR 0.09 0.093 0.062 0.081 0.101
KNN 0.03 0.026 0.014 0.099 0.098

0.2
SVM 0.167 0.155 0.132 0.171 0.176
PLR 0.297 0.286 0.248 0.173 0.171
KNN 0.162 0.165 0.138 0.212 0.174

0.4
SVM 0.239 0.251 0.215 0.258 0.251
PLR 0.365 0.374 0.315 0.258 0.264
KNN 0.215 0.23 0.212 0.245 0.248

50

0.0
SVM 0.004 0.004 0.002 0.031 0.051
PLR 0.012 0.012 0.009 0.035 0.052
KNN 0.005 0.006 0.004 0.041 0.066

0.2
SVM 0.101 0.098 0.097 0.12 0.129
PLR 0.167 0.163 0.159 0.127 0.131
KNN 0.115 0.109 0.115 0.131 0.139

0.4
SVM 0.178 0.176 0.168 0.208 0.172
PLR 0.256 0.256 0.242 0.22 0.179
KNN 0.192 0.204 0.191 0.217 0.201

consistently realizes the smallest prediction error observed over all other
combinations of feature selectors and classi�ers (see Tables 6.2 and 6.3).
However, this result is not surprising considering the fact that the RFE
procedure employs the SVM algorithm in the process of ranking features
(see section 2.3.1). Clearly, features selected by the RFE perform best with
the SVM (as compared with PLR or KNN), as similarly, the SVM clas-
si�er performs best using the RFE features (as compared with the t-test,
Wilcoxon, Lasso or Elastic net features).

4. We also observe that for the strong signal simple univariate feature ranking
procedures (like the t-test or the Wilcoxon test) perform remarkably well
(see e.g. Table 6.3, sections for ρ = 0), and seem to outperform more sophis-
ticated shrinkage-based methods. This e�ect is most clear if the methods
are coupled with the KNN or SVM classi�ers. However, for weaker signal
(e.g. Table 6.2) and/or for correlated features, multivariate methods show
similar, or better performance.

5. We observe that all the classi�cation models minimize generalization error
if they are coupled with a preferable, model-speci�c method of feature se-
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lection. For uncorrelated data, all the models seem to prefer the RFE, while
for correlated data, the PLR classi�er prefers the regularization methods
(the Lasso or the Elastic net), SVM prefers the RFE method, and the KNN
prefers the RFE or the univariate methods.

6.2.2. Stability of standard feature selection

We now analyze stability of features used by the classi�ers whose prediction
error is summarized in Tables 6.1�6.3. In Figures 6.1 and 6.2 we report the n.sel
measure (formula 5.27) as a function of the signal-to-noise ratio and correlation
among features, for n = 30 or n = 50 samples, respectively. Values of n.sel
close to 1 indicate that throughout the cross-validation procedure we repeatedly
selected roughly the same set of k (or k∗) features, i.e. the feature selection was
stable and insensitive to small changes in data. Clearly, the RFE method gen-
erally realizes the smallest n.sel (Figure 6.1), although for bigger samples sizes,
where stability of feature selection generally improves, Wilcoxon method performs
equally well (Figure 6.2). This observation coincides with the conclusions drawn
from Tables 6.2 and 6.3 that RFE generally outperforms other methods of feature
selection (see also note 3 (page 116) and note 4 (page 117)).

Interestingly, for the RFE and the univariate methods, n.sel is independent of
the correlation among features, while for the shrinkage methods (the Lasso and
the Elastic net), n.sel increases with the growing correlation.

The analyses summarized in Figures 6.1 and 6.2 were done for k = 20. Hence,
for RFE and the univariate methods, where k∗ ≡ k, all the classi�ers reported
in Tables 6.1�6.3 used 20 features. For the case of strong signal and 50 samples
(Figure 6.2, top panel) we observe that these 20 features were actually selected
from the set of ca. 1.3× k features (more speci�cally, for RFE the set of features
included ca. 24 features, while for the Wilcoxon method � about 26 features).

However, for the Lasso and the Elastic net, we generally observed k∗ < 20.
For instance, for n = 50 samples and the strong signal, k∗ changed between 8 and
10. This means that e.g. for ∆ = 1.5 and n = 50 (Figure 6.2, top panel) Lasso
selected on average 8 features per iteration out of the set of 12 (for correlation 0),
and about 10 out of ca. 27 for correlation 0.4.

In Figure 6.3, we show the values k∗ compared with the number of relevant fea-
tures kr∗ among the k∗ features actually selected per iteration of cross-validation.
Note that in Figure 6.3, the three plots in a row are labelled by the signal strength
(∆ = 0.5, 1, 1.5), and the three plots in a column are labelled by the correlation
in data (ρ = 0, 0.2, 0.4). In the �gure, k∗ is shown as the sum of kr∗ relevant
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Fig. 6.1. Stability of standard feature selection: the n.sel measure (formula 5.27).
Results for 30 samples

features (represented by the bright parts of the bars), and the remaining irrelevant
features (represented by the dark parts of the bars).

We observe that for the small signal (∆ = 0.5), standard methods of feature
selection are virtually unable to select the informative, relevant features from
the high-dimensional feature space. This explains the poor generalization error of
classi�ers reported in Tables 6.1�6.3. Note that the shrinkage methods (the Lasso
and the Elastic net) do not perform better that simple univariate methods (t-test
or Wilcoxon ranking) or the RFE. Clearly, with growing signal to noise ratio, the
probability of selecting relevant features increases, which empirically illustrates
the theoretical results in Chapter 3.

It is interesting to observe that performance of the univariate methods and the
RFE algorithm is not a�ected by the correlation among features. However, the
shrinkage methods are quite di�erent in this respect: for the medium or strong
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Fig. 6.2. Stability of standard feature selection: the n.sel measure (formula 5.27).
Results for 50 samples

signal and uncorrelated data, they clearly outperform other methods in terms of
the proportion of relevant features among the features selected, while for growing
correlation in data, this proportion becomes remarkably poor as compared with
the univariate methods.

In Figure 6.4, we analyze standard feature selection in terms of stability. We
analyze whether there are some core subsets of stable features (among the total
number of n.sel × k∗ ever selected) which are insensitive to changes in data.
In Figure 6.4, we report the number of stable features, q0.9, compared with the
number of relevant features, qr0.9, among the q0.9 stable features. The values
of q0.9 are represented by the total height of the bars, while the numbers of
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Fig. 6.3. Stability of standard feature selection: k∗ and kr∗ measures (formulae 5.28 and 6.2),
as a function of correlation (ρ = 0, 0.2, 0.4) and signal to noise (∆ = 0.5, 1, 1.5). Results for 50
samples. The number of features selected per iteration, k∗, is represented by the total height of
a bar, while the number of relevant features, kr∗, is represented by the bright part of the bar.

Dark parts represent k∗ − kr∗ irrelevant features

relevant (qr0.9) or irrelevant features are represented by the bright or dark parts,
respectively.

First we observe that for the low signal (∆ = 0.5) all the methods tend to
�nd subsets of stable features, more speci�cally, roughly 50% of the features se-
lected come out as stable features (compare Figures 6.3 and 6.4, bottom rows),
However most of these stable features are irrelevant. This illustrates the major
di�culties in identifying the right features from high-dimensional data, discussed
from theoretical standpoint in Chapter 3.
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Fig. 6.4. Stability of standard feature selection: q0.9 and qr0.9 measures (formulae 5.29 and 6.1)
shown as a function of correlation (ρ = 0, 0.2, 0.4) and signal to noise (∆ = 0.5, 1, 1.5).

Results for 50 samples. The number of stable features repeatedly selected in cross-validation,
q0.9, is represented by the total height of a bar, while the number of stable and relevant
features is represented by the bright part. Dark parts represent the q0.9 − qr0.9 stable

but irrelevant features

We also observe that for the medium or strong signal, the proportion of rel-
evant features among the stable features is generally higher than the proportion
of relevant features among all the k∗ features selected (compare Figures 6.3 and
6.4, middle rows: e.g. for univariate methods, roughly 50% of the k∗ = 20 selected
features are relevant, Figure 6.3, while among stable features the relevant fea-
tures contribute about 2/3 (univariate) or 3/4 (RFE) features, Figure 6.4). This
shows that (CVloo) stability of features is indeed related to informativeness of the
the features. We again observe that for uncorrelated data and the strong signal,
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Fig. 6.5. Stability of standard feature selection: the qr0.9 measure (formula 6.1) shown relative
to the number of features actually selected k∗. Results for 50 samples

shrinkage methods outperform other methods in terms of the qr0.9/q0.9 ratio, we
note that all the features selected from such data by Lasso or Elastic net are
relevant. However, these methods are more a�ected by the correlation in data as
compared with the univariate methods or with the RFE.

Finally, in Figure 6.5 we aggregate results presented in Figures 6.3 and 6.4 and
show qr0.9 relative to k∗, which gives the proportion of stable, relevant features
among the features actually returned by feature selection methods. We observe
that for the strong signal (∆ = 1.5), roughly 85% of the features selected by
RFE and the univariate methods are stable and relevant, with the RFE slightly
outperforming the univariate methods. For uncorrelated data, the Lasso and the
Elastic net show similar performance (or better, for ∆ = 1), however performance
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of shrinkage methods decreases with growing correlation in data. We also observe
that the Lasso is generally more a�ected by correlation in data than the Elasitc
net (for instance, for ∆ = 1.5 and ρ = 0.4, qr0.9

k∗ = 40% of the features retured
by the Lasso are the stable and relevant features, while for the Elastic net this
proportion amounts 60%, Figure 6.5, top panel). This can be accounted for by
observing the key di�erence between these methods in terms of how the methods
treat correlated data: the Elastic net tends to keep all correlated variables in or
out of the model, while the Lasso selects one variable out of the group of related
variables and removes the remaining ones (section 2.3.4, page 24).

6.2.3. Generalization error with feature selection based on

prior domain knowledge

In this experiment, we analyze the same data as we analyzed in the previous
study using the algorithm presented in section 5.5, however now we use the algo-
rithm presented in section 5.3. In this algorithm (step 2), we use as features for
sample classi�cation only the gene sets which are signi�cantly associated with the
target, based on the p-value≤ 0.05 threshold, where the p-value is (Holm) multiple
testing adjusted. Although in the original algorithm in section 5.3, the procedure
stops is none of the gene sets is signi�cantly associated with the target, in this
study we report results irrespective of whether the �winning� gene set is signi�cant.
We report (i) the predictive performance and (ii) the p-values associated with the
�winning� gene sets (PV AL1, formula 5.26). We chose to do this, rather than
strictly follow step 2 of the algorithm which stops on the p(1) > 0.05 condition,
in order to provide a comprehensive illustration of the relationship between the
strength of association of a gene set with the target and its performance as the
set of features in classi�cation.

Expected prediction error observed using this approach is summarized in Ta-
bles 6.4�6.6, and the p-values associated with selection of the �winning� gene sets
are reported in Tables 6.7 and 6.8 (where the former reports the multiple testing
adjusted PV AL1 and the latter reports raw, unadjusted p-values). Clearly, we
do not expect good classi�cation from insigni�cant gene sets, however we want
to observe whether signi�cant gene sets guarantee good classi�cation. We discuss
this further in section 6.3.

In this study, we compared one self-contained (Globaltest) and two competitive
methods (GSA and its modi�ed version, GSA2) of gene set analysis used for fea-
ture selection, together with di�erent classi�ers: one parametric algorithm (SVM)
and three nonparametric methods proposed in sections 5.1.1 through 5.1.3. To
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ease comparison of results of this study with results in Tables 6.1�6.3), we visually
compare performance of the best standard methods (realized by the RFE+SVM
pair) with performance of the two classi�ers which use features selected by the
GSA2, i.e. SVM and the nonparametric Method 1 � see Figure 6.6.

We make the following observations:
1. Comparing results for the low signal to noise ratio (∆ = 0.5, Table 6.1 and

6.4), we observe that feature selection based on prior domain knowledge
leads to reduction of the generalization error to about 25% for uncorre-
lated data (results for SVM or Method 1, 50 samples). Note that purely
data driven methods are virtually unable to �nd informative features from
such data and as such lead to classi�ers with no generalization property.
However, under correlated data, classi�ers using most activated feature sets

Table 6.4. Expected prediction error for feature selection based on prior domain knowledge as
a function of correlation among genes ρ, and the sample size n. Results for the small e�ect,

∆ = 0.5

Samples n Cor ρ Classi�er
Feature selection

Globaltest GSA GSA2

30

0.0

Method 1 0.373 0.324 0.323
Method 2 0.399 0.351 0.359
Method 3 0.395 0.357 0.373
SVM 0.352 0.295 0.304

0.2

Method 1 0.457 0.451 0.454
Method 2 0.457 0.456 0.454
Method 3 0.454 0.464 0.456
SVM 0.467 0.463 0.458

0.4

Method 1 0.487 0.495 0.483
Method 2 0.481 0.488 0.47
Method 3 0.478 0.492 0.479
SVM 0.492 0.484 0.485

50

0.0

Method 1 0.251 0.255 0.254
Method 2 0.316 0.325 0.311
Method 3 0.313 0.322 0.306
SVM 0.259 0.248 0.242

0.2

Method 1 0.378 0.405 0.387
Method 2 0.391 0.405 0.393
Method 3 0.391 0.4 0.394
SVM 0.437 0.442 0.422

0.4

Method 1 0.444 0.465 0.442
Method 2 0.45 0.454 0.444
Method 3 0.451 0.447 0.445
SVM 0.472 0.477 0.456
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Table 6.5. Expected prediction error for feature selection based on prior domain knowledge as
a function of correlation among genes ρ, and the sample size n. Results for the medium e�ect,

∆ = 1

Samples n Cor ρ Classi�er
Feature selection

Globaltest GSA GSA2

30

0.0

Method 1 0.07 0.058 0.07
Method 2 0.128 0.125 0.126
Method 3 0.128 0.121 0.123
SVM 0.056 0.056 0.07

0.2

Method 1 0.224 0.2 0.201
Method 2 0.231 0.215 0.217
Method 3 0.232 0.217 0.217
SVM 0.266 0.249 0.265

0.4

Method 1 0.317 0.279 0.278
Method 2 0.321 0.283 0.282
Method 3 0.322 0.283 0.282
SVM 0.341 0.34 0.334

50

0.0

Method 1 0.03 0.028 0.031
Method 2 0.108 0.098 0.095
Method 3 0.102 0.092 0.096
SVM 0.04 0.04 0.045

0.2

Method 1 0.158 0.158 0.165
Method 2 0.183 0.173 0.18
Method 3 0.177 0.171 0.181
SVM 0.221 0.225 0.227

0.4

Method 1 0.245 0.224 0.236
Method 2 0.247 0.223 0.245
Method 3 0.251 0.221 0.242
SVM 0.302 0.298 0.297

also loose generalization property. Note that for such data, all the gene set
analysis methods fail to identify signi�cant feature sets (Table 6.7, results
for n = 50, ∆ = 0.5, ρ > 0). This may result from growing overlapping of
features observed under correlation � e�ect discussed in section 4.6.

2. For the medium e�ect (∆ = 1), the generalization error also improves if the
classi�cation is based on the activated feature sets. The most spectacular
improvement is observed for low-correlation data (see Figure 6.6 and Tables
6.2 and 6.5). For instance, for the correlation = 0, we reduce the EPE
from 12% to 3% (results for 50 samples), and from 24% to 7% (results
for 30 samples). For correlation = 0.4, we observe reduction from 35% to
ca 24%. Note that in the case of strong signal (∆ = 1.5, Tables 6.3 and
6.6, Figure 6.6), where standard methods perform well, we still observe
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Table 6.6. Expected prediction error for feature selection based on prior domain knowledge as
a function of correlation among genes ρ, and the sample size n. Results for the strong e�ect,

∆ = 1.5

Samples n Cor ρ Classi�er
Feature selection

Globaltest GSA GSA2

30

0.0

Method 1 0.005 0.004 0.004
Method 2 0.021 0.024 0.023
Method 3 0.019 0.022 0.02
SVM 0.005 0.006 0.004

0.2

Method 1 0.081 0.07 0.08
Method 2 0.09 0.08 0.094
Method 3 0.09 0.08 0.088
SVM 0.119 0.112 0.112

0.4

Method 1 0.145 0.15 0.144
Method 2 0.155 0.153 0.149
Method 3 0.155 0.153 0.15
SVM 0.204 0.205 0.199

50

0.0

Method 1 0.002 0.001 0.003
Method 2 0.016 0.013 0.014
Method 3 0.014 0.012 0.014
SVM 0.005 0.003 0.003

0.2

Method 1 0.066 0.067 0.07
Method 2 0.08 0.077 0.078
Method 3 0.08 0.077 0.076
SVM 0.105 0.1 0.102

0.4

Method 1 0.13 0.128 0.133
Method 2 0.134 0.134 0.135
Method 3 0.135 0.135 0.133
SVM 0.179 0.17 0.172

improved classi�cation using prior domain knowledge. For instance, for 30
samples, EPE is reduced by roughly 1/2 to 1/3 as compared with the EPE
for the standard methods, and for 50 samples, EPE is reduced by roughly
1/4).

3. Considering di�erent classi�cation methods used in this study, we observe
that under the low correlation data, Method 1 and SVM signi�cantly out-
perform the two remaining nonparametric classi�ers (see Tables 6.4�6.6,
results for ρ = 0). However, under correlation in data, Method 1 as well as
Method 2 and Method 3 signi�cantly outperform the SVM classi�er (see
Tables 6.5 and 6.6, results for ρ = 0.2, 0.4). Therefore, Method 1 can be
regarded as the preferable approach to classi�cation based on the activation
of features sets (see also section 6.3 for a more detailed comment on this).
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Table 6.7. Multiple testing corrected p-value related to selection of the �winning� gene set,
PV AL1 (formula 5.26) produced by the Globaltest (GT), GSA and GSA2 as a function of

signal strength (∆), correlation of features (ρ) and sample size (n)

∆ Method
Correlation ρ

n = 30 n = 50
0 0.2 0.4 0 0.2 0.4

0.5
GT 0.23 0.45 0.53 0.024 0.23 0.41
GSA 0.0098 0.11 0.16 1e−04 0.063 0.14
GSA2 0.06 0.39 0.48 0.014 0.22 0.37

1
GT 3.1e−06 0.044 0.16 1.2e−13 0.00065 0.026
GSA 0 0.01 0.058 0 0 0.0049
GSA2 6.7e−05 0.028 0.11 0 0.0011 0.026

1.5
GT 7.3e−12 5.1e−05 0.0053 7.2e−22 6.1e−09 1.5e−05
GSA 0 0 5e−04 0 0 0
GSA2 0 0 0.0023 0 0 0

Table 6.8. Raw p-values (prior to multiple testing correction) related to selection of the
�winning� gene set, produced by the Globaltest (GT), GSA and GSA2 as a function of signal

strength (∆), correlation of features (ρ) and sample size (n)

∆ Method
Correlation ρ

n = 30 n = 50
0 0.2 0.4 0 0.2 0.4

0.5
GT 0.0027 0.0064 0.0079 0.00026 0.0027 0.0053
GSA 9.8e−05 0.0012 0.0017 1e−06 0.00066 0.0015
GSA2 0.00067 0.0051 0.0067 0.00014 0.0026 0.0049

1
GT 3.1e−08 0.00047 0.0018 1.2e−15 6.5e−06 3e−04
GSA 0 0.00011 0.00066 0 0 4.9e−05
GSA2 6.7e−07 0.00028 0.0011 0 1.1e−05 0.00027

1.5
GT 7.3e−14 5.1e−07 5.3e−05 7.2e−24 6.1e−11 1.5e−07
GSA 0 0 5e−06 0 0 0
GSA2 0 0 2.3e−05 0 0 0

6.2.4. Stability of prior domain knowledge-based feature selection

We provide analysis of stability of selection of features sets by the algorithm
in section 5.3.

Note that in the simulation study we assumed that only one out of M gene
sets is associated with the target (section 6.1), therefore here we report results of
the algorithm executed with the parameter k = 1 (see Step 2 of the algorithm on
page 100, and Remark 3, page 102).
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Fig. 6.6. Generalization error of the SVM using standard feature selection, RFE, (RFE+SVM),
and of the two classi�ers based on features selected with the GSA2: the SVM (GSA2+SVM)
and the nonparametric classi�er Method 1 (GSA2+Method 1), as a function of signal level

(∆ = 0.5, 1, 1.5), correlation in data (ρ = 0, 0.2, 0.4) and the sample size n = 30, 50

First we analyze theN.SELmeasure (formula 5.23) which indicates how many
di�erent gene sets were selected during the cross-validation procedure. Results are
summarized in Figure 6.7. We observe that if enough samples are available (n =
50) then for the strong, medium or even weak signal (providing the features are
uncorrelated), N.SEL ≈ 1, i.e. despite changes in the training data, the algorithm
tends to repeatedly select only one, the same gene set. Growing correlation among
features leads to worse stability, especially for weaker signal and fewer samples,
e.g. for ρ = 0.4, N.SEL ≈ 2.5 for GSA2 and Globaltest, and N.SEL ≈ 5 for GSA
(Figure 6.7, top-left cell). Interestingly, the GSA is most a�ected by correlation
among features, as compared with the GSA2 or the Globaltest.

Comparing these results with stability of standard feature selection (n.sel
measure, results in Figures 6.1 and 6.2), we observe that using prior domain
knowledge generally leads to much better stability of features, e.g. for the medium
signal (∆ = 1) and 50 samples, N.SEL = 1, while n.sel ≈ 2 for the best standard
feature selection method � RFE (compare Figure 6.2, right panel, with Figure 6.7,
top-middle cell). For the strong signal, prior domain knowledge feature selection
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is always stable, even for smaller sample size (n = 30), whereas standard method
require larger sample sizes to realize nearly stable features (see top panels in
Figures 6.1 and 6.2). We notice however that all the gene set analysis methods
tested (GSA, GSA2 and Globaltest) are a�ected by the correlation among fea-
tures, especially for the case of weak signal and/or fewer samples. This e�ect is
observed only with shrinkage methods, other standard methods are immune to
correlation among features.

Next, we analyze the FREQ1 (formula 5.25) and FREQ.R (formula 6.3)
measures. Obviously, for the cases where N.SEL ≈ 1, FREQ1 is also close to 1
(if only N.SEL = 1 feature is repeatedly selected, then the frequency of selection
of the most frequently selected gene set, FREQ1, must be 1). Hence FREQ1

is most informative in the cases of less stable feature selection, as it then indi-
cates whether among the N.SEL feature sets ever selected some feature sets are
stable. Results are presented in Figure 6.8. We observe that for the low signal
GSA2 and Globaltest realize more stable selection then the GSA methods, e.g.
for correlation ρ = 0.4, the �winning� gene set is selected ca. 80% times by GSA2
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Fig. 6.7. Stability of feature selection based on prior domain knowledge: the N.SEL measure
(formula 5.23) as a function of the signal strength (∆ = 0.5, 1, 1.5), correlation among features

(ρ = 0, 0.2, 0.4) and the sample size (n = 30, 50)
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or the Globaltest, but only ca. 60% times by the GSA (Figure 6.8, top-left and
bottom-left cells).

It is interesting to investigate whether these stable gene sets include the rele-
vant gene set. This is indicated by the FREQ.Rmeasure, with results summarized
in Figure 6.9. We observe that for all the cases where feature selection brings stable
feature sets (i.e. in the studies where N.SEL ≈ 1 and FREQ1 ≈ 1, Figures 6.7
and 6.8), the stable feature set is actually the relevant gene set. However, if stabil-
ity decreases, the chance of selecting the relevant feature sets tends to drop below
the FREQ1 level, e.g. in the worst case FREQ.R ≈ 0.2 while FREQ1 ≈ 0.75 (see
Figures 6.8 and 6.9, bottom-left cells, results for 30 samples, low signal and strong
correlation). This means that under the low signal and correlated features, some
non-relevant feature sets may come out as more stable than the relevant feature
set. This e�ect is similar to the results shown in Figure 6.4, bottom panel, where
we demonstrated that under the low signal, roughly half of the features selected
come out as stable, however among these stable features very few features are
relevant.
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(ρ = 0, 0.2, 0.4) and the sample size (n = 30, 50)
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Interestingly, out of the three gene set analysis methods, the Globaltest consis-
tently realizes the lowest FREQ.R (Figure 6.9). This may be due to the fact that
the Globaltest tends to be oversensitive if only single genes in a gene set realize
high level of di�erential expression, as shown e.g. in Figures 4.2 or 4.3, bottom left
panels, and discussed in section 4.4.2 on page 72. Therefore, an irrelevant gene
set which by chance includes only 1-2 genes strongly associated with the target is
more likely to be declared as signi�cant by the Globaltest then by GSA or GSA2.
The latter methods require that di�erentially expressed signal is demonstrated
over a larger part of the gene set concerned.

6.3. Discussion and conclusions

Based on results of the numerical study, we draw the following conclu-
sions regarding classi�cation using standard feature selection and prior domain
knowledge-based feature selection.
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1. The general conclusion is that prior domain knowledge on relationships
among features employed at the stage of features selection leads to sig-
ni�cant improvement of predictive models in terms of the generalization
error and stability of features. Obviously this conclusion is true providing
that the database of pathways (which we use as representation of the prior
domain knowledge) does include, at least partly, the right feature set which
actually explains the di�erence between the groups of samples that we want
to classify.

2. Considering di�erent methods of gene set analysis employed as feature se-
lectors, we conclude that the GSA2 should be recommended as the preferred
method. This method is based on the popular GSA algorithm proposed by
Efron and Tibshirani, however, it produces correct, interpretable p-values.
This apparently leads to better stability of feature sets selected, when fea-
tures are generated from signi�cant, i.e. realizing p-value< 0.05, feature sets
(pathways). On the other hand, self-contained gene set analysis methods
such as the Globaltest seem to be too sensitive if only a few features in
a gene set are di�erentially expressed, which leads to worse stability and
generalization error.

3. Considering classi�cation methods compared in this study, we recommend
the nonparametric Method 1 as the preferable algorithm. This method is
preferred as it (i) slightly outperforms the second best SVM classi�er in
terms of the generalization error, and (ii) provides user-interpretable signa-
tures (formula 5.3) which represent similarity of the classi�ed sample with
pro�les of gene expression in the classes compared.

4. Based on the comprehensive evaluation of the standard (data-driven) meth-
ods of feature selection, we conclude that the Recursive Feature Elimination
(RFE) proposed by Guyon et al. (2002) outperforms univariate methods as
well as shrinkage methods such as the Lasso or the Elastic net. The RFE
o�ers best stability of feature selection which does not decrease with the
correlation among features, unlike stability of shrinkage methods which
remarkably worsens under correlation.

5. Analyzing signi�cance of association of gene sets with the target, we ob-
serve that the p-values associated with the `winning' gene set, returned by
GSA, GT or GSA2 are all signi�cant (i.e. p-value < 0.05). We report the
raw p-values, prior to multiple testing adjustment, in Table 6.8, and the
multiple testing corrected p-values in Table 6.7 (we used the Holm multiple
testing adjustment). We observe that multiple testing corrected p-values
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come out as insigni�cant for low signal and small sample sizes (n = 30)
or for correlated data, which nicely coincides with the cases where we ob-
serve poor stability of feature selection. Hence our study clearly shows that
signi�cant unadjusted p-values are not indicative of the informative, stable
feature sets. Therefore, it is essential that we use multiple testing adjusted
p-values in the feature selection step of the algorithm (algorithm in section
5.3). This is especially important as the size of the databases containing
a-priori given gene sets tends to grow which boost the risk that irrelevant
feature sets are by chance declared as signi�cant.
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Concluding remarks

In this monograph, we provided a comprehensive analysis of the problem of
classi�cation in high-dimensional data, where the number of samples in the train-
ing data is substantially smaller than the number of features. This problem arises
in bioinformatics and is related to the analysis of data from high-throughput ex-
periments in genomics or proteomics, such as data from gene expression studies.
Although bioinformatics provides important context for the methods presented in
this work, we envisage that the methods can be also applied in other areas where
high-dimensional data plays an important role.

The main idea presented in this work is to employ prior domain knowledge in
the process of building predictive models from high-throughput data. This idea
is proposed as a solution to the fundamental problem of selection of relevant,
informative and stable features from high-throughput data, if the analysis is done
with purely data-driven methods. In this work, we proposed the methodology
to use prior domain (e.g. biological) knowledge at the stage of feature selection,
assuming that the domain knowledge is available as a priori de�ned sets of features
which are expected to be functionally related.

Here we provide the summary of the most important results presented in this
monograph.

• We provide analytical results related to the risk of selection of irrelevant
features from high-throughput data when feature selection is realized with
data-driven algorithms based on feature ranking. These results can be used
to estimate the required sample size to guarantee that the relevant features
are returned, rather than noisy, irrelevant and unstable features. Since in
numerous applications (e.g. in gene expression studies) it is infeasible to
gather enough samples, our results demonstrate the inherent limitations of
the data-driven feature selection and thus motivate the proposed approach
to include additional, a priori knowledge when dealing with high-throughput
data.
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• We provide a comprehensive methodological analysis of gene set analy-
sis algorithms which we propose to use as the means for prior domain
knowledge-based feature selection. In particular:
� We analyzed the underlying models of the statistical experiment, (implic-
itly) assumed by the di�erent algorithms. We grouped the algorithms into
four distinct categories which di�er in terms of the null hypothesis and
interpretation of the p-values. We showed which of the algorithms pro-
duce meaningful results which indicate association of gene sets with the
target. We also showed the algorithms whose signi�cant p-values cannot
be interpreted in terms of association of the gene sets with the target.

� Since some of the algorithms, based on gene sampling, which fail to pro-
duce sound, interpretable results have been implemented in software tools
and have gained popularity in bioinformatics, we propose a new interpre-
tation of results of these algorithms. We showed that although the results
cannot be interpreted in terms of statistical signi�cance (p-value), they
can have heuristic, biologically interpretable meaning.

� We identi�ed a �aw in the way the important gene set analysis algo-
rithm GSA estimates signi�cance. We proposed an improved version of
this method with the modi�ed procedure to estimate the p-value.

� We provided a comprehensive empirical analysis of the e�ect of correlation
in data on the size and power of di�erent methods of gene set analysis.

• We proposed the algorithm for classi�cation in high-dimensional data, where
feature selection relies on prior domain knowledge about sets of related fea-
tures. We propose the method to calculate per-sample signatures of gene set
activation which are then used for classi�cation of samples. We proposed
nonparametric algorithms of classi�cation of samples based on the signa-
tures, which can be used as an (often more e�cient) alternative to well
known parametric classi�ers.

• We proposed several measures which express stability (CVloo stability) of
data-driven and prior domain knowledge-based feature selection under small
changes in data.

• We provide a comprehensive study in which we compared several data-driven
methods and prior domain knowledge-based methods of feature selection in
terms of the generalization error of classi�ers as well as stability. We con-
clude that the proposed approach indeed results in improved generalization
error and more stable features. Based on this study, we also formulate rec-
ommendations as to which of the data-driven and which of the prior domain
knowledge-based methods proved most e�ective.
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Finally, we want to discuss the limitations of this work as well as directions
for extension of the proposed approach. Throughout this work, we assumed that
the domain knowledge, which is required to stabilize feature selection, is available
as a collection of a priori de�ned feature sets which group (functionally) related
features. Examples of such collections could be signalling pathways or gene sets
(in the context of bioinformatics), or sets of terms which are characteristic of some
subject areas used for text categorization (in the context of text mining). As such,
this representation is rather simple, or ��at�, as it does not convey the information
pertaining to the structure of the feature (gene) set, or relative importance of
the members of the set. Although this assumption is justi�ed by the current
research and practice in the analysis of high-throughput studies in bioinformatics,
a more structured approach to the organization of the domain knowledge would
be interesting. For instance, the actual network of inter-gene relationships could
be used (as shown in the structure of the signalling pathways), or hierarchical
relationships between features could be considered (as done e.g. in (Meinshausen,
2008)).
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