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Abstract. The aim of this article is to present original application wavelets to the prediction 
of short-term of time series. The model proposed to predict short-term time series (in 
particular for predicting macroeconomic indicators) is a model of copyright. The model is 
based on wavelet analysis, the Haar wavelet, the Daubechies wavelet and adaptive models. 
The Daubechies wavelets are a family of orthogonal wavelets and are characterized by a 
maximal number of vanishing moments for some given support. Adaptive models have 
been appropriately modified by the introduction of a wavelet function and combined into 
one predictive model. The results obtained from the study results indicate that the authorial 
model is an effective tool for short-term predictions. The model was applied to predict 
macroeconomic indicators. 
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1. Introduction

The prediction of time series is the subject of research of many scientists 
and scientific teams (see also: [Albulescu 2010; Andreica 2006; Dyduch 2011; 
Hadaś-Dyduch 2013b; Joo, Kim 2015]). However, by reviewing the litera-
ture it was noted that adaptive methods are a tool used in forecasting many 
macroeconomic indicators. An important advantage is simplicity, relatively 
simple algorithm of use and ease of understanding and interpreting the 
results. It can be argued that adaptive methods are useful prognostic tools. 
Therefore, the studies described below, in order to obtain the smaller predic-
tion error, are combined with a method adaptive wavelet analysis. 

The described algorithm to predict short-time series is the copyright   
algorithm. Combining the aim of smoothing the time series with the wavelet 
analysis method creeping trend, creates authorial trend of creepy-wavelet. In 
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addition, the trend obtained from a series of creepy-wavelet method was 
applied to compensate for exponential, creating an original method of expo-
nentially-wavelet. 

Research shows [Bruzda 2004; Dyduch 2010a, 2010b, 2010c, 2013; 
Hadaś-Dyduch 2013a, 2013b, 2013d, 2014a, 2014b, 2015a, 2015b, 2015c; 
Horodko 2001; Joo, Kim 2015] that wavelet analysis can be used on a varie-
ty of academic levels, among other things: to study the properties of eco-
nomic processes, smoothing ranks, removing noise, study the relationship 
between the processes of different time scales and so on. 

In this article we used wavelets to forecast time series. Based on the 
properties of wavelets, the constructed algorithm combines the adaptive 
method of wavelet analysis. This created original trend creepy-wavelet and 
model alignment exponentially-wavelet. By combining trend creepy-
wavelet with model alignment exponentially-wavelet, the algorithm for 
prediction of short-term time series was created. The study included only 
Daubechies wavelet. 

2. Wavelet analysis

“From an historical point of view, wavelet analysis is a new method, 
though its mathematical underpinnings date back to the work of Joseph 
Fourier in the nineteenth century. Fourier laid the foundations with his 
theories of frequency analysis, which proved to be enormously important 
and influential. The attention of researchers gradually turned from frequen-
cy-based analysis to scale-based analysis when it started to become clear 
that an approach measuring average fluctuations at different scales might 
prove less sensitive to noise. The first recorded mention of what we now 
call a ‘wavelet’ seems to be in 1909, in a thesis by Alfred Haar. The concept 
of wavelets in its present theoretical form was first proposed by Jean Morlet 
and the team at the Marseille Theoretical Physics Center working under 
Alex Grossmann in France. The methods of wavelet analysis have been 
developed mainly by Y. Meyer and his colleagues, who have ensured the 
methods’ dissemination. The main algorithm dates back to the work of 
Stephane Mallat in 1988. Since then, research on wavelets has become 
international. Such research is particularly active in the United States, where 
it is spearheaded by the work of scientists such as Ingrid Daubechies, 
Ronald Coifman, and Victor Wickerhauser” (Wavelet Toolbox, Matlab). 
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Definition 1. Wavelets we call function 2Ψ( ) ( )x L∈  , such that the 
system functions: 
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is an orthonormal basis in the space 2 ( ).L R  Family ΨB  will be called wavelet 
base. 

The simplest wavelet is the Haar wavelet. “(…) In mathematics, the 
Haar wavelet is a sequence of rescaled ‘square-shaped’ functions which 
together form a wavelet family or basis. Wavelet analysis is similar to Fou-
rier analysis in that it allows a target function over an interval to be repre-
sented in terms of an orthonormal function basis. The Haar sequence is now 
recognised as the first known wavelet basis and extensively used as a teach-
ing example (…)” [Hadaś-Dyduch 2015c]. 

The Haar sequence was proposed in 1909 by Alfréd Haar. Haar used 
these functions to give an example of an orthonormal system for the space 
of square-integrable functions on the unit interval [0, 1]. The study of wave-
lets, and even the term “wavelet”, did not come until much later. As a spe-
cial case of the Daubechies wavelet, the Haar wavelet is also known as D2 
[Haar 1910]. 

Definition 2. Haar wavelets we call a function on the real line   defined 
by the formula: 

( )

)
)

1
2

1
2

1 for 0,

1 for ,1 .

0 for other  

x

H x

x

 ∈ 
 = − 




 

Daubechies’ wavelets first row (db1) is the Haar wavelets (Daubechies 
wavelets are wavelets created by Ingrid Daubechies6 in 1988).  

Each wavelet has a number of zero moments or vanishing moments 
equal to half the number of coefficients. For example, D2 (the Haar wave-
let) has one vanishing moment, D4 has two, etc. A vanishing moment limits 
the wavelets ability to represent polynomial behaviour or information in 
a signal. For example, D2, with one moment, easily encodes polynomials of 
one coefficient, or constant signal components. D4 encodes polynomials 
with two coefficients, i.e. constant and linear signal components; and D6 
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encodes 3-polynomials, i.e. constant, linear and quadratic signal compo-
nents. This ability to encode signals is nonetheless subject to the phenome-
non of scale leakage, and the lack of shift-invariance, which arises from the 
discrete shifting operation (below) during the application of the transform 
Sub-sequences which represent linear, quadratic (for example) signal com-
ponents are treated differently by the transform depending on whether the 
points align with even or odd-numbered locations in the sequence. The lack 
of the important property of shift-invariance has led to the development of 
several different versions of a shift-invariant (discrete) wavelet transform 
(see: [Daubechies 1990]). 

Fig. 1. Daubechies wavelets 

Source: own elaboration. 

“In contrast to Haar’s simple-step wavelets, which exhibit jump discon-
tinuities, Daubechies wavelets are continuous. As a consequence of their 
continuity, Daubechies wavelets approximate continuous signal more accu-
rately with fewer wavelets than do Harr’s wavelets, but at the cost of intri-
cate algorithms based upon a sophisticated theory. The Daubechies wave-
lets, are a family of orthogonal wavelets and characterized by a maximal 
number of vanishing moments for some given support. With each wavelet 
type of this class, there is a scaling function which generates an orthogonal 
multi-resolution analysis. Furthermore, each Daubechies wavelet is com-
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pactly supported. The Daubechies wavelets are neither symmetric nor 
antisymmetric around any axis, except for db1, which is in fact the Haar 
wavelet. Satisfying symmetry conditions cannot go together with all other 
properties of the Daubechies wavelets” [Daubechies 1990]. 

3. Models – methodology

The model described in this article is a model copyright for time series 
prediction. The model is intended for prediction under one time series. It is 
designed to predict short-term. The proposed model is based on wavelet 
analysis (with Daubechies wavelets) and adaptive models, i.e. an alignment 
exponential model and creeping trend model. The model consists of several 
key steps. 

Step 1. To model the input we introduce time series nyyy ,,, 21  , one-
-dimensional, n-element.

Step 2. We determine an arbitrarily value of smoothing constant l, then 
we determine the sub-series of length l, i.e.:  

lyyy ,,, 21  ; 132 ,,, +lyyy  , 243 ,,, +lyyy  ,  . 

Sub-series formed from the series nyyy ,,, 21  . The number of sub-series 
(i.e. models segment) that can be created from the time series Y for 
a selected length of l  is 1−− ln , where: k  – the number of models seg-
ment, l – s constant smoothing. 

Step 3. In each model segment, we are expanding the polynomial 
method or another alternative method. For this purpose, input series Y we 
have written as:   

1222210 ,,,,,
−− nn sssss  .    (1) 

The main extension number of data, using polynomial method, can be 
written as follows: 

122 1,,
−+nn ss  ,  (2) 

a short extension, we save as a copy of the first two series of input elements, 
i.e.: 

10 , ss . 
Thus we obtain a new series, extended relative towards the input series: 

1222210 ,,,,,
−− nn sssss 

122 1,,
−+nn ss  10 , ss . (3)
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To move to the next stage we should determine the missing elements of 
series (3). 

Assuming that: 
01120 1 ssss n −=−

−+ , 
obtain the equation from which one can designate the last element of the 
main extension of the series: 

1012
21 sss n −=

−+ . 
From the polynomial [Nievergelt 1999]: 
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Thus: 
)(: kpsk = ,  [ ]22,12 1 −+∈ +nnk . 

The extracted from series sub-series length l can be extended by using other 
alternative provisions and methods. For example: 
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Step 4. In the classical method of creeping trend, they are determined 
for each sub-series linear function of the trend. In the proposed approach, 
they are determined for each segment of the extended model approximating 
wavelet functions. Approximating function is: 
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For 4=l  function (17) we have written as follows: 

 for one level of resolution: 
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 for three levels of resolution:
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According to the algorithm method, creeping trend determines the theo-
retical values of variable Y in the individual segments. However, at this 
stage, this is a modification in relation to the classical method creeping 
trend. 

The theoretical values of approximating function, described by equation 
(17),are determined in each segment for 0,1,2,3, , 1r m= + , where m is 
the  number of elements in the segment. 

From the set of  theoretical values for a specific year, we calculate the 
arithmetic mean. As a result, we obtain theoretical values variable Y. The 
received theoretical values of Y , we denoted as Ŷ . 

Step 5. Determine the forecast for one period forward by the formula: 
( ) tt

P
t yyy ⋅−+⋅= ++ αα 1ˆˆ̂

11 , 

wherein 1ˆ +ty  represents the value of the smoothed by the trend creepy-
wavelet, obtained in step 4. 

Parameter [ ]1,0∈α , called the smoothing constant, selected so as to
minimize errors  forecast ex-post. 

4. Data, empirical result

Implementation of the author’s model, described in detail in Chapter 2, 
presents the number of unemployed in eurozone countries. The time series 
included in the study is the period 1997-2014 ((EA11-2000, EA12-2006, 
EA13-2007, EA15-2008, EA16-2010, EA17-2013, EA18-2014, EA19), the 
annual average, 1,000 people). Data on the number of unemployed was 
taken from the Eurostat database. 

For applications algorithms described in Chapter 2, we accept: 4=l  
and one level of resolution wavelets. Thus, the theoretical values in the 
general form are as follows: 
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Series 1321 ˆ,ˆ,,ˆ,ˆ,ˆ +nn yyyyy  , is the input series into the model alignment 
exponentially-wavelet. By following the algorithm described in Section 3 of 
the model alignment exponentially-wavelet, we get the values:

nyyyy ˆ̂,,ˆ̂,ˆ̂,ˆ̂
321  . With the solving of the task: 

Min ( )( )( )
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on the assumption: 
1,0∈α

we get the expected number of unemployed eurozone countries in 2014 – 

1
ˆ̂

+ny , which according to the calculations copyright model is: 
 18 439,0 [in 100 persons] – with the extension sub-series Method 12;
 18 494,3 [in 100 persons] – with the extension sub-series Method 23;
 18 566,7 [in 100 persons] – with the extension sub-series Method 34.

The obtained values do not coincide with one hundred percent of the
actual value, are subject to certain errors, which are listed in Table 1. From 
the proposed in the original model, the three ways of extending the sample 
during wavelet transform the most accurate prediction results, giving 
Method 1. 

2 Extension of polynomial samples (see: [Hadaś-Dyduch 2015b, 2015c]). 
3 The extension of the sample by symmetry. 
4 The extension of the sample by adding zeros. 
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Table 1. Errors prediction 

Extension of sub-series 
Error 

AE PE APE 
Method 1 9 0.00488% 0.00488% 

Method 2 46.3393 –0.2512% 0.2512% 

Method 3 118.6669 –0.6433% 0.6433% 

Source: own calculations based on the results of the research. 

Table 2. Summary of errors prediction, the number of unemployed people in eurozone 
countries for 2014, depending on the method of prediction 

The method of prediction 
Error 

AE PE APE 
Naive method 480.0000 –2.6019% 2.6019% 
Exponential alignment for alpha: 

1.0000* 1573.0000 –8.5267% 8.5267% 
0.9000 1521.7325 –8.2488% 8.2488% 
0.8000 1395.0456 –7.5620% 7.5620% 
0.1000 3545.0379 19.2164% 19.2164% 
0.0037 4339.4674 23.5227% 23.5227% 
0.0010 4330.2717 23.4729% 23.4729% 
0.0000 4326.0000 23.4497% 23.4497% 

Trend method crawling with harmonics weights: 1537.3791 –8.3336% 8.3336% 

Method trend creep in combination with the 
method alignment the exponential. for alpha: 

1.0000* 641.0000 –3.4746% 3.4746% 
0.9000 468.9078 –2.5418% 2.5418% 
0.8000 262.1223 –1.4209% 1.4209% 
0.5000 724.8076 3.9289% 3.9289% 
0.1000 4033.7839 21.8657% 21.8657% 
0.0500 4377.0371 23.7264% 23.7264% 
0.0037 4286.2678 23.2343% 23.2343% 
0.0010 4260.3434 23.0938% 23.0938% 
0.0000 4250.0000 23.0377% 23.0377% 

Source: own calculations based on the results of the research. 
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5. Conclusions 

The results of the prediction are acceptable. Prediction error, the pro-
posed copyright model is low compared with other prediction methods (see 
Table 2). It should be noted that the prediction of the copyright line, i.e. the 
method of creeping trend, the exponential alignment method and wavelet 
analysis give better results than the same combination of the two methods 
but without wavelets (the method creeping trend with exponential alignment 
method – the author’s suggestion).  

The lowest error of the proposed alternative (similar) methods of pre-
diction is fraught with the naive prediction method. However, this is just a 
coincidence. Because the errors of forecasts expired during the years 1997-
2013 as determined by the naive are very large, i.e.: ME: 282.7059; MSE: 
1,366,690.3529; RMSE: 1169.0553; nRMSE: 1017.5887; IEA: 877.8824; 
MAPE: 1536.1561%; RMSPE: 2044.2497%. Interesting results are also 
obtained from a combination of two methods of crawling the trend methods 
and methods alignment exponential (Table 2). 
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