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Abstract. The paper emphasizes that complex numbers are objects with their equivalents 
commonly occurring in nature. Just like real numbers measure lengths in a physical world, 
complex numbers measure vortices observed in nature. The spiral orbits in this paper are 
exponential spirals (also called logarithmic spirals). A vortex is identified by determining 
a complex number that generates it. To determine this number, we need two snap-reading 
observations that provide the argument of a complex number, while the ratio of radiuses – 
the modulus of a complex number. Therefore, we also deal with the area of a complex 
number. Complex numbers involve a meaningful description of the laws of nature, i.e. of 
vortices and of equilibrium. 
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1. Introduction

All number systems originate from an additive semigroup of natural 
numbers  . The simplest extension of this semigroup is   – a ring of
integer numbers. Its further extension without the ring that has no zero 
divisors is   – a field of rational numbers. A continuous extension of 
a field is the set of real numbers  , typically thought of as points on 
a straight line. Natural numbers serve as counters of discrete objects, integer 
numbers assist in comparing discrete sets: more or less, and how much more 
or less, while rational numbers help to divide a whole into parts, and real 
numbers – to measure distances. Hence, each number system is destined for 
some practical application. Most people are satisfied with those practical 
number systems because complex numbers, once called imaginary numbers, 
are regarded as a strange idea of a mathematician who created it merely to 
have a new object of interest. However, nobody has any doubts that in 
nature there exist disks such as round cakes and the circular sectors of such 
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disks – slices of cakes. These portions of cake shapes that we call here 
circular triangles represent precisely complex numbers. Complex numbers 
are not pure inventions of unworldly mathematicians, but more practical and 
ordinary than real numbers. The most frequent definition of a complex 
number is equivalent to a pair of real numbers. Hence, a set of complex 
numbers   is frequently, and for a very good reason, identified with a plane 

2 , i.e. a Cartesian product of two straight lines. Writing a complex number 
c∈  in the form z = a + bi actually means that ( ) ( ), 1,0 (0,1).z a b a b= = +
The vector (1,0)  is treated as a unit in the field of complex numbers, while 
the vector (0,1)i =  is called a complex unit. A linear algebra   of dimen-
sion 2 over a field   becomes a field of complex numbers once we assume 
one relation defining that ( )2 1,0i = − .  

The idea of a circle commonly occurring in nature can be derived from 
a field of real numbers. Namely, a circle   is a quotient group of a field of 
real numbers   by a subgroup 2π  of integer multiples of a number 2π .
Thus, it holds 

/ 2π=   .

2. Archimedes and complex numbers

A circle implies angles, therefore angles are equivalence classes of real 
numbers translated by 2 nπ , where n∈ . Archimedes’ constant π  used to
define a circle has merely a normalizing character that comes from the claim 
that the circumference of a circle with the radius 1 equals 2π . Since Ar-
chimedes introduced the notion of an arc whose essence is an angle (Figure 
1), hence he can be regarded as the pioneer and even as the father of com-
plex numbers. He did not invent them, but discovered them – as they exist 
in nature as circular objects such as trees, stones, shapes of planets and their 
orbits. Complex numbers can be interpreted as linear transformations of 

two-dimensional space 2 . Linear map 
a b
b a

− 
 
 

 is an analogue of com-

plex number z a bi= + . The equality of isomorphic objects does not imply 
their sameness, but their correspondence, equivalence. This isomorphism 
identifies complex numbers with orthogonal transformations of a given 
shape; orthogonality here means that rows are orthogonal vectors. If the 
radius of a complex number 2 2r a b= +  is strictly greater than 1, then the 
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above-given linear operation is the composition of rotation by an angle 
represented by z and of dilation represented by the radius r. On the other 
hand, if r is strictly less than 1, then the linear operation is reduced to a 
contraction, i.e. a shrinkage. The equality of a unitary radius denotes a pure 
rotation. A dilation implies that successive compositions of linear operations 
represented by r diverge from the point of equilibrium, whereas the radius 
that is less than unity secures the convergence to the point of equilibrium. 
All vortices observed in the plane, such as flowing water or windswept 
leaves, have this nature. Thus, complex numbers can be observed in nature 
because they model what we typically see, i.e. the states of equilibrium or 
its perturbation – shifting away from equilibrium. 

3. Isomorphic models of complex numbers

A multiplicative group *  of nonzero complex numbers is isomorphic 
to a product group *

+×  , where *
+  denotes a multiplicative group of real 

positive numbers. Thus, each complex number is a pair: an angle and 
a radius (Figure 1). So it holds z ru= , where r +∈  is a radius, while u
belonging to a group   is identical to an angle φ  since it holds 

cos sinu iφ φ= + , 0 2φ π≤ < . In this paper, isomorphic structures are re-
garded as identical by default – they are not distinguished.  

A complex number therefore is a circular triangle with the area 
1
2 rσ α= , where α is an arc of the length rφ . Hence the area of a circular

triangle equals 21
2 rσ φ= . Only those complex numbers that are also real, 

strictly positive numbers have the zero area. Numbers with a zero imaginary 
part, i.e. those with 0φ = , have the zero area, as they are line segments. 
Complex numbers are also bivectors; the number z a bi= +  is represented 
by a pair of orthogonal vectors ( , ), ( , )a b b a−  (Figure 2). These vectors 
determine a square whose area is radius squared, i.e. 2 2 2S r a b= = + . In the 
latter case each non-zero complex number has a strictly positive area. Only 
the number zero has a zero area. A twofold emphasis on the area of a com-
plex number indicates that these numbers are flat entities – they represent 
angles and arcs. The modulus of a complex number therefore is a root of its 
area S . 
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Fig. 1. A complex number – a piece of cake              Fig. 2. Bivector – a complex number 

Source: own elaboration.  

Complex numbers are entities represented by arcs and circles or by lin-
ear transformations being actually bivectors – squares. So, a complex num-
ber can be interpreted as a circular triangle – a piece of cake, or as a square 
– a linear transformation. These are tangible entities, at least to a degree like
real numbers are tangible. Real numbers measure just lengths, while com-
plex numbers measure both lengths and arcs, hence they are said to have an
area.

4. Vortices and spirals

A subgroup n  of nth roots of unity of a group   can be identified with 
a gear. A set of such subgroups represents a mechanical clock. These sub-
groups contain cyclicality of time. Following a number of rotations the cogs 
of a gear mesh together like they did at the beginning. Periodic functions 
occur in nature in the same way as complex numbers; complex numbers and 
periodic functions model phenomena called vortices. What is a periodic 
function? Each function whose domain is the circle group   is said to be 
periodic. The most important periodic function is the cosine and other trigo-
nometric functions naturally related with the cosine. The idea of periodicity 
is fundamental in natural sciences. Life can be defined as the continuous 
renovation of an organism. Linear maps  

( )A z Az= ,        where 
a b

A
b a

− 
=  
 

 

are a matrix representation of a complex number a ib+ , in a complex do-
main are reduced to composition of rotations and real linear functions. 
Rotation is the essence of periodicity. 
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If matrix 0A ≠ , then a group of linear transformations 
( ) ( )t

tA z a bi u= + , with a composition satisfying a natural condition 

1 2 1 2
, ,t t t tA A A t u+° = ∈ ∈   , is connected with the above linear operation. As 

a consequence, a group of operators generated by matrix A is obtained. An 
orbit of the point u∈  is the set ( ) ( ){ : }tO u A u t= ∈  that is a spiral 

function of the parameter t  with equation ( ) ( )t it
Ar t e ψ φρ += , where 

, i iA e u eφ ψρ= =  and t  denotes time. Exactly one orbit passes through every 
point of the group * . An orbit is a subset of a field  . A function f speci-
fying the orbit ( )O u  is a subset of ×  , because ( ){ , : }t

uf t A u t= ∈ , 

thus ( ) t
uf t A u= . A function uf  is the trajectory of the point u moving 

along the orbit ( )O u . In order to obtain all possible orbits, it suffices to 
consider only the numbers belonging to the circle group  . A vortex of the 
number A denoted by ( )Vor A  is a family of orbits ( ) ( ){ }:Vor A O u u T= ∈ .
Obviously, orbits of different points in the circle   are disjointed. The 
orbits of points in the circle with the radius *ρ +∈  are formed by the orbits 
of points in the circle  : it suffices to multiply the latter by ρ . The scale is 
changed; the radius ρ  becomes a unity.  

Fig. 3. Vortices generated by the number 2i and the number – 2i demonstrated respectively 
by three orbits of points being the cube roots of 1 

Source: own elaboration. 

A family of spirals *{ : }Ar A∈  is the image of the vortex of the num-
ber A  (Figure 3). A spiral ( )O u  is the orbit of the point *u∈ , the image 
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of a half-line z tu= , *t +∈ , using the isomorphism of the additive group 
  and the multiplicative group *

+  The image of a circle centered at zero is 
also a circle with a center at zero, with a suitably modified radius when 
| | 1A ≠ . If a modulus of A is greater than 1, then spirals diverge; if it is equal 
to 1, then the motion is purely circular; when a modulus of A is less than 1, 
spirals converge in the point 0. Spiral orbits are actually exponential spirals 
with an equation in polar coordinates btr ae=  where t∈ .

The angle φ  of the number A  determines the intensity of convolutions 
and the direction of the spiral’s rotations. Conjugation of the number A  
establishes a spiral with the same intensity of convolutions, but with the 
opposite rotation. If the motion of the point in the orbit is clockwise in the 
first case, then it is counter clockwise in the other (Figure 3). If the number 
is real, or the real part is zero, then the orbit is a meridian – the point does 
not rotate. The orbit of the point zero is a single point – zero. A vortex is actual-
ly a product of exponential growth tt ρ∈ → ∈   and of rotation of the 
circle itt e∈ → ∈  . A vortex is motion ( ) ( ), [0,2 ] t itt e φ ψψ π ρ +∈ × → , 
where iA e φρ=  and 2 2 2a bρ = + .  

5. Spirals on a sphere

The field of complex numbers   compactified by one point becomes 
the two-dimensional sphere, the added point  is called the North Pole ∞ , the 
point zero is called the South Pole 0 , and the group   becomes the Equator 
of this sphere. For the sake of the subsequent inquiry, it is convenient to 
assume that 0 0,z z⋅ = ∞ ⋅ = ∞ , where z  is any point of the sphere. As a 
consequence, the product of zero and infinity is not commutative, because it 
holds 0 0⋅∞ = , but 0∞ ⋅ = ∞  The southern hemisphere can be represented 
parametrically in the form cos , sin , Sx r y r zφ φ θ= = = , where [0,1]r∈ , 

[0,2 )φ π∈ ; and parameter θ  satisfies ( )2 21 1rρ − + = , so 21 1 rθ = − − . 
The equation of the northern hemisphere is given by analogous formulas: 

cos , sin , 2N Sx r y r z zφ φ= = = − , where [0,1]r∈ , [0,2 )φ π∈ . Therefore, 
the North Pole has the coordinates (0,0,2) , and the South Pole (0,0,0)  
Complex numbers are made equivalent to a sphere with the radius 1 and the 
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center (0,0,1) , naturally exclusive of the north pole. After compactification, 
a field   develops into a sphere represented by the equation 

( )22 2 1 1x y z+ + − = . A parametric representation of a spiral on this sphere 
has the form: 

( )
( )
( ) 2

cos

sin

1 sing 1 ,

t

t

t

x t

y t

z t

ρ φ ψ

ρ φ ψ

ρ

−

−

−

 = +
 = +


= + −

where ρ  is the modulus of the complex number iA e a biφρ= = + , φ  – the 
angle generated by this number, ψ  – the angle related to the number u∈
and t∈ . If 1ρ > , then a vortex is the outflow from the South Pole and
moves northbound, whereas if 1ρ =  then a vortex is a stable rotation whose 
orbits are parallels (circles of latitude). If 1ρ < , then a vortex moves south-
bound from the north –the point zero, i.e. the South Pole is the equilibrium 
point. For 1ρ ≠  poles are skew-symmetric points: when a point on the orbit 
moves about one pole to the left, then its motion around the other pole 
is in the opposite direction. The poles  are the limit points of these orbits 
(Figure 4).  

Fig. 4. A spiral on a cone and its graphical projection on the XZ plane 

Source: own elaboration.  
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One may otherwise explain that complex numbers dance around poles. The 
following kinds of orbits are distinguished: clockwise and counterclockwise 
spiral orbits, meridian (semicircular) orbits and parallels. Parallel orbits 
separate the set of clockwise spiral orbits from the set of counterclockwise 
spiral orbits, whereas meridian orbits separate the set of spiral orbits of 
complex numbers with the strictly negative imaginary part from the set of 
spiral orbits of complex numbers with the strictly positive imaginary part. 
A family of spiral orbits of the corresponding type is stable. On the other 
hand, families of parallel and meridian orbits are not stable – they can be 
regarded as catastrophic states, because any trivial shift in the number gen-
erating a vortex induces  a completely different family of orbits.  

Using the above mentioned cogs n , let us introduce a general defini-
tion of a periodic function. Periodicity is related to automorphic functions. If 
G  is any group, and H  – a normal subgroup G , then the function 

:f G Y→  is periodic with respect to a subgroup H , if ( ) ( )f x f x h= + , 
in an additive notation, for , x G h H∈ ∈ . Thus, the function f  is 
automorphic with respect to a subgroup H . Its translations remain un-
changed. A group   is a set of objects called transpositions in elementary 
teaching. The quotient group 1( ) /P D=  , where D  is a two-element 
group { 1,1}− , is a family of directions on a plane. What are the continuous 
functions from a linear space ( )1( , )C P   ? They are periodic continuous 
functions belonging to a space of continuous functions ( ),C T  , whose
diagrams are symmetric with respect to any plane passing through the axis 
of the cylinder in which these diagrams are positioned. The existence of the 
group 1( )P   is obvious in terms of algebra. However, this is a topological 
group. Is it possible to attach opposite points of the circle so as to change 
the direction of rotation? In practice it is not possible – there is no model of 
such a group in nature. It is worth noting besides that 
( ) * *

1 / /P D= =     and * */D +=   . A topology on 1( )P   is the
strongest topology in which a projection 1Ψ : ( )T P→   defined by the 
formula ( )Ψ /u u D=  is still a continuous function. 

The real time is a mixture of circular time with linear time. Such 
a combination yields a spiral on a cone. If the motion along the spiral takes 
place to the top of the cone, then we deal with a stabilizing vortex – a sys-
tem given by the spiral tends to an equilibrium. If the motion is in the oppo-
site direction, away from the top of the cone, then a cybernetic system de-
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fined by such a spiral becomes destabilized and as a consequence it is de-

stroyed. The equation of an elliptical cone is of the form: 
2 2 2

2 2 2 0x y z
a b c

+ − = ;

if a b= , then the cone is rotational – circular. A parametrical representation 
of this cone is given by the system of equations: 

cos
sin   

x at
y bt

z ct

φ
φ

=
 =
 =

, 

where ,t φ ∈ . So a spiral on this cone is a line given parametrically by the 
system of equations: 

cos(τt ψ)
sin(τt ψ)
,

x at
y bt
z ct

= +
 = +
 =

, 

where t∈ , and the quantities , , , ,a b c τ ψ ∈  are fixed. In addition, we
recall that Archimedes’ spiral in polar coordinates is defined by the equation 
r ρφ= , where φ ∈ . 

The observed stock exchange data make it possible to identify a cone 
and to determine a spiral that describes a stock market performance. The 
estimated cone is presented in a canonical form, that is given above, suitably 
changing the coordinates. The canonical form provides a timely recognition 
of market trends: whether a stock exchange tends to equilibrium or to desta-
bilization. Stock exchange data are typically observed as a curve with verti-
ces (a polygonal chain) that is equivalent to a projection of a spiral placed in 
a cone onto a plane. Certainly, a character of this spiral varies with time. 
Stock exchange time can be naturally divided into homogenous intervals in 
which a spiral remains stable. The type of the spiral can be an indication for 
investors. If the examined system tends to destabilization, then one can 
either earn a lot or lose a lot; when the system tends to stabilization, risks 
are reduced, but profits are moderate. 

6. Practical remarks

A vortex is measured by a vortex and length by length. There exist vor-
tices, perhaps not in nature, but only in theory, which cannot be measured 
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by complex numbers, in a similar way as there exist artificial lines without 
lengths. The richness of complex numbers supports the hypothesis that one 
can measure any natural vortex by an appropriate complex number. 

Measuring a vortex observed on a windy day is a straightforward activi-
ty. One takes two pictures of whirling dust so as to determine the three 
points: the center s of the vortex, the initial point p and its image q. A ratio 
of the distance 1r sp=



 to the distance 2r sq=


 is the modulus of a complex 
number, and the angle between its radiuses sp



,  sq


and its argument φ . 
Therefore iA e φρ= . 

A cobweb model for determining the equilibrium price is a well-known 
economic equivalent of a vortex. If the relationship between supply and 
price and the relationship between demand and price are known, then a 
cobweb model defines a price equate at which supply and demand are bal-
anced [Jakimowicz, Juzwiszyn 2012]. 

Galloping inflation is an example of a harmful phenomenon that results 
in motion leading to destabilization – excess money supply in the market 
causes a financial crisis marked by a general price increase [Dechert 1996]. 
Typical vortices are observed on a stock exchange. These are spiral motions 
on a cone resulting from changes in numbers of stocks and their prices over 
time [Juzwiszyn 2010]. Vortices do not exist without time, as they imply a 
change and motion. In order to describe an economic vortex by a single 
complex number, we need to measure it. Vortices concerning stock ex-
changes should be measured in short time intervals. A measurement consists 
in determining an angle and a radius of a vortex, i.e. a related complex 
number is determined. The case in outer space is similar, however the 
measurements are carried out in appropriately long time intervals. 

The rotational motion commonly observed in outer space results from 
gravitation forces among material objects. Two bodies independently sent 
into space will establish one set of objects rotating around each other after 
some time. Every day we deal with a sun clock containing the three cogs – 
the Sun, the Earth and the Moon. The music of the celestial spheres is an 
ancient concept. The music of celestial and financial spheres is encoded by 
complex numbers. The sound of these numbers is an open question.  

The frequent turbulences observed in nature and in societies result from 
interactions among different forces. The net force is a flat spiral or a spatial 
spiral on a cone. Social disturbances stimulated by agitators can turn into 
anarchy and destroy the entire society. Therefore, political, religious and 
professional groupings should be monitored. Social organizations are con-
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structive when they unite the community by stronger bonds between indi-
viduals. The most healthy and generally regarded as good, are societies in 
which a network of traditional linkages attracts most people. Differences of 
opinions in such society, if any, always lead to stabilization, and often in-
crease the stability of the whole by generating new bonds. A program unit-
ing the society in a self-defense against global threats is known in the Neth-
erlands as the polder model. The idea to mitigate social differences was born 
there in the 16th century after a major flood that destroyed about one third of 
the country. Polders, land reclaimed from the sea, are protected by slopes, 
dams and various kinds of dykes. An excess of water is pumped out by 
windmills all the time onto a higher level. Care to maintain the protection 
system is crucial for all the inhabitants of the regions always threatened by 
the sea. An individual concern must be subject to the common interest in 
every respect. It is a battle against the forces of nature and  the principles of 
war apply. One has to endure on duty till the end. A legend says that a little 
Dutch boy saw a leaking dike, put his finger into the hole, staying there all 
night, and was found dead on duty. Water did not flood the polder [Smoluk 
2002; Mc Nutt 2002]. 

Strikes of various groups of employees and political actions by socially 
radical groups produce dangerous social turbulences. A good example of a 
model resembling the Dutch polder model applied to solve a social crisis 
occurred in ancient Rome when  plebeians revolted against patricians. 
Menenius Agrippa, the consul of the Roman Republic (6th/5th century BC), 
told a clever fable about the parts of the human body rebelling against the 
stomach. The plebeians were persuaded that the whole can be destroyed and 
eventually mitigated their anger. 

No social group may live at an expense of other groups, otherwise the 
whole community grows weaker and ailing. Odi et amo – I hate and I love. 
Hatred destroys and destabilizes – love unites and builds. Yet, if you want to 
be loved, you have to love as well – si vis amari, ama. The three ancient 
social groups stem from the three sons of Noah: Shem, Ham and Japheth. Tu 
Shem ora, Ham labora, Japheth rege at protege. Medieval society was a 
pyramid with noblemen and priests on its top, knights as its core and peas-
ants at the bottom. A social ladder stood on the back of a labourer, was 
supported by a knight and crowned with a priest. 

Complex numbers play a part here in a most unusual way, as they pro-
vide both a beautiful and a unique tool for describing both social move-
ments and the Earth’s atmosphere as well as a planetary system and the 
whole universe. 
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