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SOME ASYMPTOTICS FOR THE DELAY TIME  
OF MOSUM CHANGE DETECTION PROCEDURES 

Josef G. Steinebach  (University of Cologne) 

1. The model 

In [Horváth et al. 2008] we discuss some “open-end” and “closed- 
-end” monitoring procedures for detecting a “change in the mean” in 
the following location model: 

 ,    1 2  i i iX i = , ,…,  

where   2,1ii  are unknown means and   2,1ii  are the unobserva-
ble, centered errors. It is assumed that there is no change in the mean 
of a “training sample” of size m, i.e., that ,i   1, ..., .i m  We are 
interested in constructing appropriate stopping rules for testing the 
null hypothesis: 

 0 0 : ,    2  H i = m, m + ,…,   

against the (two-sided) alternative 

1H  : there is a  1* nk   such that  *, kmimi     , 

 but  .0,, *    some  with   kmii   

2. Stopping rules 

Our rules for testing H0 versus H1 are based on “moving sum detec-
tors” (MOSUM’s), more precisely, on comparing: 
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where h = h(m) (≤m ) is a window size to be determined. For example, 
we study the (closed-end) stopping rule μi 
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 (1) 

where min  = +, 2̂  is a certain variance estimator, and g is a 
weight function. 

In Section 3 it is shown that the constant c in (1) can be chosen 
such that, under H0, we have ,}{lim ,   Tmm P  i.e. that the 
false alarm rate (asymptotically) equals α, where 0 < α < 1 is a pre-
scribed level. In addition, some limiting distributions under H1 are 
discussed in Section 4. Interestingly, it turns out that, under H0, the 
asymptotics crucially depend on the relation between h and m, and, 
under H1, also on the limits of k*/h and k*/m, respectively. 

3. Null asymptotics 

To obtain the null asymptotics, we assume that the errors   2,1ii  
satisfy a functional central limit theorem (with asymptotic variance 
2). Then, for example, if ],1,0(/lim   bmhm  we have 

 ,
0 /

1 1 1 1lim { } sup 1
( )m m T

t T b
P P W t W t bW c

g t b b b


 

      
              

      
,(2) 

where {W(t), t ≥ 0} denotes a standard Wiener process, i.e. the critical 
value in (1) can be determined via the weighted Gaussian process 
from (2). Similar results apply in case of ,0/lim  mhm  but re-
quire a more careful discussion (see [Horvath et al. 2008]). 

4. Asymptotics under the alternative  

For the limiting results under the alternative, it is assumed that the 
errors   2,1ii  satisfy a Hungarian (KMT) type of strong approxima-
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tion. Various cases and stopping rules can be discussed then, depend-
ing on the orders of the ratios h/m, k*/h and k*/m, respectively. For 
example, if ],1,0(/   bmh  k*/h  a ≥ 0 and T > ab, then, for y > 0,  

* *
, , 1 1

0 0
lim sup ( ) sup ( ) ,

( )m m T m T
t y t y

h tP k y k P Z a c Z t c
g a

 



   

      
         

      

 

where {Z1(t), t ≥ 0} is the weighted Gaussian process from (2) and c is 
the critical value therein. For other relations between h, k* and m a 
number of similar asymptotics are available (cf. [Aue et al. 2009, 
p. 31]). 

5. Some simulation results 

In [Aue et al. 2009] we also present some simulation results concern-
ing the behaviour of the suggested stopping rules under various alter-
natives and distributions (see Section 4 of [Aue et al. 2009, p. 31] for 
further details). In the table below we provide just one example show-
ing empirical power values from simulation runs with: 
 normal (0,1) errors , 
 2,500  repetitions, 
 a training period of size  m = 100, 
 an observation period of size  Tm = 10m, 
 and a window of size  h = 0.1m  for the MOSUM procedures. 
We compare two MOSUM procedures: 
 MS

1   based on the boundary function  vttg /1
1 )(    (with v = 10), 

 MS
2   based on the boundary function  

2
( ) log (1 )g t t


  , 

and a CUSUM stopping rule CS , which is known to perform quite 
well in case of “early changes” (cf., e.g., [Horváth et al. 2004]). 
Across various change scenarios, e.g. 
 k* = 0.1m  (“early”),   4m  (“intermediate”),   8m  (“late”), 
the table contains percentages: 
 “fd”   of changes   “falsely detected”   and 
 “cd”   of changes   “correctly detected”. 
The critical values were chosen such that the 
 nominal level equals  α = 10%. 
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Table 1. The results of simulations 

  τ1
MS  τ2

MS  τCS 
Δ fd cd fd cd fd cd 

The “early change” scenario:   k* = 0.1m 

m = 100       
0.8 0.0000 1.0000 0.0004 0.9996 0.0116 0.9884 
0.6 0.0004 0.9944 0.0004 0.9896 0.0168 0.9824 
0.4 0.0000 0.8672 0.0004 0.8200 0.0140 0.9084 
0.2 0.0000 0.3780 0.0008 0.3164 0.0160 0.3952 

The “intermediate change” scenario:   k* = 4m 

m = 100       
0.8 0.0740 0.9260 0.0896 0.9044 0.0800 0.9068 
0.6 0.0720 0.9072 0.0944 0.7488 0.0728 0.7600 
0.4 0.0724 0.6416 0.0880 0.3064 0.0776 0.3768 
0.2 0.0596 0.1568 0.0912 0.0248 0.0632 0.0736 

The “late change” scenario:   k* = 8m 

m = 100       
0.8 0.0828 0.9108 0.0924 0.8148 0.0824 0.1236 
0.6 0.0816 0.7664 0.0888 0.4332 0.0964 0.0636 
0.4 0.0876 0.3128 0.1020 0.0884 0.0764 0.0260 
0.2 0.0892 0.0416 0.0920 0.0020 0.0844 0.0044 

Source: own calculations. 

References 
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USING STATISTICAL MODELS FOR SOCIAL STRESS 
ANALYSIS 

Luisa Canal (Trient University) 
Walenty Ostasiewicz (Wrocław University of Economics) 

The paper addresses the critical review of statistical models that could 
be used in the social stress analysis. Such an analysis consists in the 
identification of the social stressors, and in the measurement of their 
potency to destroy social harmony. Four main groups of methods are 
discussed: item response models, factorial models, latent classifica-
tion, and paired comparison. 

Social stressor is defined here as any phenomenon, event, or con-
dition which has a destructive impact on social life. For example lega-
lized political corruption, cynicism of politicians, brutality in TV 
movies, immoral behaviour of higher officials, etc. 

To discuss the problem, we assume the existence of some common 
sense or common feature characterizing a whole group of people. This 
characteristics which is not observed directly, will be denoted by 
symbol Z. It is assumed that it “drives”, commands,  or controls 
people’s reaction to stressful phenomena. For the lack of established 
terminology, a latent variable Z will be called susceptibility, endur-
ance, resistance or patience. To keep the discussion general enough, 
we admit a number of aspects of the susceptibility. Therefore,  trait Z 
is considered as a d-dimensional variable 

1 2
( , , ..., )

d
Z Z Z Z . 

As different people are endowed with different amounts of suscep-
tibility, we will interpret trait Z as a random variable. The cumulative 
distribution of it is denoted by 1 2

( ) ( , , ..., )
d

H z H z z z . All stressful 

phenomena will be denoted by symbols 
1 2
, , ..., .

p
Y Y Y   

The measurement of the strength of a stressor can be done by “ob-
serving” people’s  reaction. By a reaction we mean an answer to a 
question concerning undesired phenomena.  Two kinds of questions 
and two broad approaches to the analysis of collected responses are 
being discussed: categorical responses and comparative responses.  
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In the first case we have the observation of the following kind: 
1,  if item  is endorsed by ith respondent,

0,  if item  is rejected by ith respondent.ij

Y
y

Y


 


 

In the second case we have the observations jkn , the number of res-
pondents who asserted  that jY  is at least as dangerous as kY .  For the 

convenience, we put ,   1, 2, ..., .
jj
n n j p   The fundamental repre-

sentation of the probability distribution of the observed data is follow-
ing: 

 ( ) ( ) ( )f y f y z dH z  . 

The assumed three basic hypothesis: 

(M) )1( zZYP  is a coordinatewise nondecreasing function in Z. 

(LI)     1 1 1 1
1

( ,..., ,..., ) ( )
p

p p d d j j
j

P Y y Y y Z z Z z P Y y Z z


        

(U) d = 1. 

They are called correspondingly monotonicity, local independence 
and unidimensionality. 
The most important consequences of these assumptions are following: 

1. From condition (LI) and the lack of fit follows the evidence 
that .1d   

2. Condition 1d and the lack of fit might be considered as the 
evidence of non-local independence.  

3. The (LI) and (M) conditions imply that 
0))((),(( 21 YgYgCov , 1g  and 2g  nondecreasing. 

4. If  (LI) and (U)  hold, then  0)/,(  zZYYCov ji  for all z, 
and all pairs i and j. 
Much more consequences could be drawn assuming some parametric 
form of the model. 

In the simplest case it is so called logistic model which has the fol-
lowing form: 
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z






   

 
. 

This model is called also as Rasch model.  It depends on n+p parame-
ters: 

 1 2 1 2, , ..., , , , ...,   p nz z z . 

Parameters determining susceptibility of the respondents 

1 2
, , ...,

n
z z z are treated as nuisance parameters. For the estimation 
there are used three approaches: joint maximum likelihood (JML), 
conditional maximum likelihood (CML) method, and the marginal 
maximum likelihood (MML) method. 

Assuming that people’s susceptibility to stressful phenomena is in-
terpreted as a real valued random variable Z with a density distribution 

)(zh , we need additionally to estimate this function. Usually one as-
sumes that ).,(~ 2NZ  The problem is in the estimation of  and 

2 . Parameters  and 2 are estimated by the means of the so-called 
population likelihood function. In the simplest case, the society under 
the investigation (respondents) could be divided into two classes. 
These classes could be called, for example,  “content” and “malcon-
tent”, or “sensible” and “insensible”. In such a dichotomized situation 
one can assume that the latent trait Z is a binary random variable with 
distribution pZP  )1(  (respondent is content), 1    

( 0)P Z p   (respondent is malcontent). 
The second big family of models which can be used for stressful 

phenomena analysis is known as the Factor analysis models: 

 .   j j j jY Z  

This means that the individual’s response is treated as a linear combi-
nation of susceptibility and random disturbances. 

The third class of models discussed in the article is based on the 
principle of the paired comparisons. It is formulated in the form of the 
equation: 

 ( ) ( 0),    ij i j i jP Y Y P Y Y  
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where ij  denotes the probability of the predominance of iY over jY . 
After having analysed these three families of models we can con-

clude that the statistical methods developed in different fields of psy-
chology, education and bioassay can be easily adopted for modelling 
of social phenomena. Particularly, the methods of item response 
theory can be directly used for social stressors analysis. Merely the 
little changes in the interpretation  of parameters are needed. 
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DISCRETE PROCESS OF DEPENDENT RISKS 

Stanisław Heilpern (Wrocław University of Economics) 

1. General model 

We will investigate the following discrete risk model:  

 
1

( ) ,
t

i
i

U t u t Y


    

where t = 1, 2, ... , u  N is an initial capital, U(0) = u and Yi = IiXi. 
We assume, that the discrete claims Xi = 1, 2, ... are identically distri-
buted and independent with the probability mass function f(k), decu-
mulative distribution function F(n) and m = E(Xi). The indicators 

 
1 with probability 
0 with probability i

q
I

p


 


 

are identically distributed and they may be dependent, but independent 
with the claims Xi. We will analyze the probability of ruin: (u) = 
P(U(t) < 0  for some  t | U(0) = u). 

In the classical model, the independence between indicators Ij is 
assumed. We can compute the probability of ruin using the recurrence 
formulas [Shiu 1989]. We also have: I() = 0. We can compute the 
exact value of probability of ruin when the claims have the two-point 
or the exponential distribution. 

In the next sections we will study the impact of the degree of de-
pendence on the probability of ruin for different dependent structure 
of indicators Ij. 

2. Strict dependence of Ij  

For the strict dependent indicators the probability of ruin is equal 

 
for 1

( ) .
0 for 1c

q m
u

m



 


 

We obtain the following relations between the probability of ruin for 
the independent I(u) and strict dependent cases: I(∞) < c(∞), I(0) 



120  Extended summaries of the paper 

 

ŚLĄSKI 

PRZEGLĄD 

STATYSTYCZNY 

Nr 8(14) 

> c(0), when m + q > 2, I(0) = c(0) for m + q = 2 and I(0) < c(0) 
else. We see, that there is not regularity when m + q > 2. For the 
smaller initial capital the probability of ruin when the indicators are 
independent is greater then in the strict dependence case. For the big-
ger initial capital we obtain reverse relation. 

3. Archimedean copulas 

Now, let us assume that the dependence structure of indicators is de-
scribed by Archimedean copula C with the generator g. Then there 
exists the random variable Θ ~ FΘ [Frees 1998] with the Laplace 
transform L(s) = g-1(s). The indicators are conditional independent 
for fixed θΘ in this case. We obtain the conditional risk process 
Uθ(u) and conditional indicators Ij|θ with the probability of claim  
q(θ) = exp(–θg(q)). The unconditional probability of ruin is equal 

 
0

0
0

( ) ( | ) ( ) ( | ) ( ) ( ),


       
 

     u u dF u dF F  

where (u|θ) is the conditional probability of ruin and 
0

ln

( )

m

g q
  . For 

the initial capital equals zero and infinity we obtain 

 
0

0 0
( )(0) ( 1) ( ) ( ),      ( ) ( ).

1 ( )



    





      

q m dF F F

q
 

When the claims Xi have the geometric distribution with β we have the 
exact formula for the probability of ruin 

 
0

1

01

( )(0) ( ) ( ),
1 (1 ( ))

u

u

q dF F
q


  

 



 
 

   

when 
0

ln(1 )
.

( )g q





    

In the case when the dependence structure is described by Clayton 
family 

 1/
1 1( ,..., ) ( ... ) ,     0,n nC u u u u  
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with generator g(u) = (u-α – 1)/α, the induced random variable Θ has 

Gamma distribution 1
Ga ,



 
 
 

, 




 /)1()(
 qeq  and the limit 

value of θ is equal ln

1

q m

q



 


 


. The parameter α reflects the degree 

of dependence. The Kendall coefficient of correlation takes the form  
= α/(α + 2) in this case. 

Example. Let q = 0.3, claims Xi have the geometric distribution with  
β = 0.5 and dependence structure is described by Clayton copula with 
parameter α. There are graphs of the probability of ruin for the values 
of parameter α = 0, 0.1, 1, 2, 4, ∞ on the figure 1. 

 

Fig. 1. Probability of ruin for different values of α 

Source: own calculation. 

We see that there is not regularity in the relation between the de-
gree of dependence and the probability of ruin. For different values of 
initial capital u we obtain different order of the values of probability 
of ruin. 
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4. Markov binomial distribution 

Let now assume that dependent structure of the indicators Ij is de-
scribed by Markov stationary chain with state space {0, 1} and the 
following matrix of transition probabilities: 

 00 01

10 11

p p p q p q
p p p q q p

 

 

    
    

   
P , 

where  is Pearson coefficient of correlation (0 ≤  ≤ 1). 
The probability of ruin takes the form 

 (u) = (1 – q)(u|0) + q(u|1), 

where (u|i) is conditional probability of ruin when I0 = i, i {0, 1} in 
this case. These conditional probabilities we can compute using the 
following recurrence equations (see [Cossete et al. 2004]. 

The greater value of the degree of dependence implies the greater 
probability of ruin [Cossete et al. 2003]: 

 1 < 2 < 1      )()(
21

uu    . 

The limit value of probability of ruin is equal 

 
1

( ) lim ( )g u u qm


 


  , 

for any values of initial capital u. But, for  = 1 we have the strict de-
pendence with the probability of ruin c(u) = q for m > 1. We obtain 
the similar relation between c(u) and (u) similar as in section 2.  

 
1 for 1

( | 0) 0          ( |1) ,
0 for 1

 


  


c c

m
u u

m
 

 
for 1

  ( ) .
0 for 1c

q m
u

m
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RANDOMIZED RESPONSE VERSUS IMPUTATION  
– A COMPARISON REGARDING THE QUALITY  
OF DISTRIBUTION RECONSTRUCTION 

Heiko Grönitz  (University of Marburg) 

1. Introduction 

Surveys often contain sensitive questions like “How much do you 
earn?” or “Are you unemployed?” or “Have you ever evade taxes?”. If 
such questions are asked, some interviewees will refuse responding, 
since they are afraid of resentments, small valuation or prosecution. In 
the missing data literature several imputation methods are suggested 
to repair the nonresponse. Each of them leads to a data set without 
missing values. This completed data set can be used to estimate the 
distribution of the considered variables.  

A different approach is given by randomized response techniques. 
Thereby a sensitive question is not asked directly, but any respondent 
is requested to give a randomized response (RR), which does not pro-
vide his or her value of the sensitive variable. However, by the fre-
quencies of the randomized replies the distribution of the underlying 
sensitive characteristic can be estimated.  

We are going to compare the alternatives with respect to the quali-
ty of distribution reconstruction. We operate the comparison with the 
help of a simulation study. For that purpose we choose one special RR 
model and one special distribution in today's lecture. The RR model is 
the diagonal model and the distribution of interest is Germany's in-
come-age distribution. 
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Before presenting the results of simulation we outline briefly some 
developments in the field of randomized responses. 

2. Randomized response models 

The randomized response theory started with the paper of Warner 
[1965]. Warner considered a dichotomous variable K  {0, 1}. K = 1 
indicates that the respondent has a sensitive characteristic. One could 
imagine that an interviewee has value K = 1 if he or she has ever 
evaded taxes and K = 0 otherwise. Every respondent has to operate a 
randomization device (RD). A RD is a random experiment. According 
to the result of the experiment and the value of the interesting variable 
the respondent gives a randomized response. For instance the respon-
dent may be introduced to choose randomly one of the following two 
questions: 

 Q = 1: “Is your value of K equal to 1?” 
 Q = 2: “Is your value of K equal to 0?” 

The question is selected for example by spinning a spinner, draw-
ing cards or tossing a dice. The selection occurs hidden and the se-
lected question is not revealed to the interviewer. The respondent rep-
lies either “yes” or “no”, but the interviewer cannot identify the res-
pondent's value of K. Hence one can assume truthful randomized res-
ponses.  

Put p := P(Q = 1) and  := P(K = 1). Then the probability of an an-
swer “yes” is 

 P(“yes”) = p + (1 – p)(1 – ). 

Assume n respondents are asked and let h := hn be relative frequency 
of “yes” answers. Estimate  by ̂  = (p – 1 + h)=(2p – 1), where  
p ≠ 1/2. The estimator is unbiased, but can attain values  outside [0,1] 
for small n. 

A large variety of extensions and versions of the Warner model 
has been discussed in the literature. For a review [Hedayat, Sinha 
1991, chapter 11; Tan et al. 2009, section 2.2], can be recommended. 

However, it must be mentioned that randomization devices have 
some disadvantages: the preparation and operation is extensive. An 
interviewer must always be present and it has to be ensured, that the 
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result of the RD is not revealed to the interviewer. Since the necessary 
presence of an interviewer, the methods are not useful for email sur-
veys. These drawbacks motivated a newer development in the litera-
ture. Tian et al. [2007], Yu et al. [2008] and Tan et al. [2009] dis-
cussed some models without RD. Let us have a look at the crosswise 
model by Yu et al. [2008]. The authors considered a variable X   
{1, 2} and chose an auxiliary variable W  {1, 2} with known distri-
bution whereas X and W can be assumed as independent. As concrete 
W the period of birthday is suggested, e.g. W = 1 may indicate if a 
person is born between August and September. In this case the as-
sumption P(W = 1) = 5/12 is reasonable. The interviewee gives a reply 
A   {1, 2} according to 

 { 1} { 1,   1} { 2,   2}  and { 2} { 1} .A X W X W A A           

Suppose P(X = 2) =   and  P(W = 2) = p. Then it is P(A = 1) = p + 
+(1 – )(1 – p). Replacing P(A = 1) by the relative frequency h := 
h(A = 1) and solving the equation leads to an estimator for : 
 ( 1 ) / (2 1).h p p      

To obtain an estimator with range [0, 1] modify ~  to 

 ˆ min(1,   max(0,  )).   

The respondent's X-value is not identifiable by A. Hence no nonres-
ponse and truthful answers are assumed. 

3. Diagonal model 

The crosswise model can only treat two-valued variables. So we 
thought about an extension for variables X  {1, …, k}, k ≥ 2. As 
above choose an auxiliary variable W, but now with values 1, …, k. 
The knowledge of the distribution of W and the independence of X and 
W are supposed. 

The respondent is requested to give the answer 

 A = [(W – X) mod k] + 1: 

A describes the diagonal the respondent belongs to, e.g. for k = 4 we 
obtain responses according to the table 
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Table 1. The answers of respondents.  

X/W W = 1 W = 2 W = 3 W = 4 W = 1 W = 2 W = 3 
X = 1 1 2 3 4    
X = 2  1 2 3 4   
X = 3   1 2 3 4  
X = 4    1 2 3 4 

diagonal    d1 d2 d3 d4 

Source: own calculations. 

The interviewer hears an answer A  {1, … , k}, but it is not possible 
to identify the X-value with the help of the answer. Hence it is allowed 
to assume no nonresponse and truthful answers again. In the following 
define i := P(X = i),  := (1, …; k)T and ci := P(W = i). It holds 

 (P(A = 1), …, P(A = k))T = C0, 

thereby C0 is a k  k – Matrix where every row is a left-cyclic shift of 
the row above. The aim is to estimate the vector . Therefore estimate 
the probabilities P(A = j) by the corresponding relative frequencies hj 
:= h(A = j). Define h := (h1; :::; hk)T and 

 
1 1

1
0 k

ii 1

max(0, )
1ˆ:   and  : .

max(0,x ) max(0, )k k

x x
C h

x x




   
   

    
   
   


 

Obviously ̂  is in the k-dimensional unit cube and the sum of its 
components is equal to one. Further ̂  is a strongly consistent estima-
tor for  and finally ̂  is usually the unique maximum likelihood es-
timator (MLE) for . More precisely the last property means: let 1, …, 
k > 0, then ̂  is with probability 1 for all sufficiently large sample 
sizes n ≥ N  ℕ the unique MLE. 

4. Simulation study 

There are two possibilities to detect Germany's income-age distribu-
tion: on one hand request the interviewees for an answer according to 
the diagonal model whereas we suppose that no nonresponse occurs, 
since the respondents' privacy is protected, on the other  ask directly 



20. Scientific Statistical Seminar “Marburg/Köln – Wrocław” 127 

 

ŚLĄSKI 

PRZEGLĄD 

STATYSTYCZNY 

Nr 8(14) 

whereas missing values are removed by several imputation methods. 
We will check the suitability of both alternatives by simulations with 
MATLAB. 

4.1. Data 

Germany's income-age distribution is offered by the Federal Statistical 
Office in Germany1. In detail it divides income into 20 classes and age 
into 7 classes and provides the frequency of every combination. The 
population consists of the set of ca. 35 million taxpayers in 2004. We 
make some technical idealizations concerning the data, e.g. we assume 
age has range [16, 85], income has upper bound 10 million, no nega-
tive income and a uniform distribution within each income age com-
bination. 

4.2. Results of simulation 

We processed following simulations: 
1. Specify n1 and n2 income and age classes respectively (k = 

n1n2 combinations). Further fix the vector c = (c1, … , ck), which de-
scribes the distribution of the auxiliary variable W. 

2. Draw 50 samples of size n from the income-age distribution. 
For each sample let 

hij : common relative frequency of i-th income class and j-th age class. 

Then at first estimate the frequencies hij by DM estimator ijĥ  and cal-
culate the reconstruction measure 

 
2 1

1 1

ˆ [0, 2].
n n

DM ij ij
j i

A h h
 

    

Afterwards direct questioning is simulated whereas we consider 4 
nonresponse mechanisms N1, … , N4 and 4 imputation methods I1, … , 
I4. For every pair (Nl, Im) calculate mi IN

ijh ,ˆ , i.e. the common relative 

                                                   
1 Data are available on www.destatis.de (only in German): Fachserie 14, Reihe 7.1, 

Steuerfälle nach Alter und nach Grösenklasse der Summe der individuellen Einkünfte. 
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frequency of i-th income class and j-th age class after completing the 
data. Then determine 

 
2 1

,
,

1 1

ˆ      ( , 1,..., 4)i m

l m

n n
N I

N I ij ij
j i

A h h l m
 

    

as the measure of reconstruction. 
3. Average the 50 values for each of ADM and 

ml INA ,  (l,m = 1, … , 4). 
We have studied four nonresponse mechanisms, two of the type miss-
ing completely at random (MCAR) and two of the type missing not at 
random (MNAR) – cf. Little, Rubin [2002]. The first MCAR mechan-
ism causes a drop-out probability of each 30% for income and age 
while the second MCAR mechanism leads to about 50% nonresponse 
in each variable. Using the first and second MNAR mechanism each 
variable possesses a nonresponse rate of 30% and 50%, respectively, 
whereas the drop-out probabilities depend on the value of underlying 
variable. The considered imputation methods are mean replacement, 
regression imputation (with stochastic term of noise), hotdeck method 
and a model-based imputation. In detail for the last one we supposed a 
bivariate log-normal distribution, estimated parameters with the help 
of the observed data and removed missing data by drawing random 
numbers from the conditional distribution or the bivariate distribution. 

For example for each two income and age classes we obtained 
Figure 1. Thereby “DM large std” and “DM small std” means the es-
timation by diagonal model with c = c(1) and c = c(2) respectively. The-
reby we have empirical standard deviations std(c(1)) = 0:33 and 
std(c(2)) = 0:24, i.e. using the second one the distribution of the aux-
iliary variable is closer to a uniform distribution. Moreover, “Lmodel” 
is the abbreviation for the model-based imputation. 

Figure 1 consists of four plots – one for each nonresponse me-
chanism. In each plot the reconstruction measure A (sum of absolute 
distances) is presented as a function of the sample size n (we have 
operated simulations for n  {50, 100, 250, 500, 1000}). 
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Fig. 1. Results of simulation 

Source: own calculations. 

In reality usually non-response of type MNAR with a high drop-
out rate will occur if one asks for sensitive variables. Then we find a 
situation as in the lower right plot. Here the imputation methods pro-
duce quite bad results. However, a survey designed according to the 
diagonal model can be a helpful alternative. 
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AN APPROACH TO THE STUDY  
OF PROSPECTIVE RESERVES  
FOR MULTISTATE INSURANCE CONTRACTS 

Joanna Dębicka (Wrocław University of Economics)  

Irrespective of type, each insurance contract gives rise to two payment 
streams. The first one is a stream of premium payments which flows 
from the insured to the insurer. The second (in the opposite direction) 
is a stream of actuarial payment functions where fixed amounts under 
the annuity product and fixed insurance benefits are considered as a 
series of deterministic future cash flows. From the insurer’s point of 
view, at the beginning net premiums are calculated in the way that the 
actuarial value of future benefits balances the actuarial value of future 
premiums since this balance is not preserved during insurance period.  
Thus with each insurance contract there is a special fund associated, 
called insurance reserve, which is the difference between actuarial 
value of future benefits and net premiums. This fund is used for the 
protection of solvency of the insurer.  

The aim of the talk was to give a formula for prospective reserves 
for multistate insurance contracts, both for deterministic and stochas-
tic rate of interest. In order to simplify the form of the derived expres-
sion matrix notation was used. 

Multiple state modelling is a classical stochastic tool for designing 
and implementing insurance products. The multistate methodology is 
intensively used in the calculation of premiums and reserves of differ-
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ent types of insurance, such as life, disability, sickness, marriage or 
unemployment insurance. The pair (S, T) is called a multiple state 
model, and describes all possible insured risk events as far as its evo-
lution is concerned (usually up to the end of insurance). That is, at any 
time the insured risk is in one of a finite number of states belonging to 
the state space {S = {1, 2, … , N}. Each state corresponds to an event 
which determines the cash flows (premiums and benefits). By T we 
denote the set of direct transitions between states of the state space.  

We consider an insurance contract issued at time 0  (defined as the 
time of issue of the insurance contract) and, according to the plan, 
terminating at a later time n (n is the term of policy). Let X(t) denote 
the state of an individual (the policy) at time t. Hence the evolution of 
the insured risk is given by a discrete-time stochastic process {X(t): t = 
0, 1, 2, …}, with values in the finite set S. If we look at the evolution 
of the contract, then both the presence at a given state and the move-
ment from state to another state may have some financial impact. We 
distinguish between the following types of cash flows related to mul-
tistate insurance: 
 bj(k) – an annuity benefit at time k  if  ( )X k j , 
 dj(k) – a lump sum at some fixed time  k if X(k) = j,  
 cij(k) – a lump sum at time k if a transition occurs from state i to 

state j at that time, 
 j(k) – a premium amount at some fixed time k if X(k) = j, 
 pj(k) – a period premium amount at time k if  X(k) = j. 

Because we focus on discrete-time model, it means that insurance 
payments are made at the ends of time intervals. Practically it means, 
that annuity and insurance benefits are paid immediately before the 
end of the unit time (for example: year or month). Premiums are paid 
immediately after the beginning of the unit time.   

In view of financial mathematics, future cash flows, which are rea-
lized at time k, are discounted to the present (to time t) by some inter-
est rate. This produces the cash value of future payment stream 

, ( )j
t k , where  denotes one of the types of cash flows ({p, , 

b, d, c1, c2, … , cN} and ci is the benefit paid if process {X(t)} leaves 
state i).  If  {p, , b, d}, then cash value of cash flow is given by  
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      1 , 

while for {c1, c2, … , cN} we have 

  ( 1) ( ),
, for

( ) ,
0 for


   

    
  



i
ijX k i X k jc j

t

t k c k i j
k

i j

1
 

where for stochastic interest rate Y(t),  the discount function is in the 
following form v(t, k) = e-(Y(k)-Y(t)) (for 0 ≤ t ≤ k and Y(t) denotes the 
rate of interest in time interval [0,t] ).        

At moment t the sum of cash value of future payment stream is 
called prospective loss tL of the insurer at time t, so 

 
   1

1
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, , ,..., 1 ,
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Benefits are an inflow representing an income to loss fund. 
Premiums represent an outgo from a loss fund of the insurer. Let us 
observe that tL is a random variable and its distribution depends on the 
probabilistic structure of multistate model and the stochastic interest 
rate. Moreover, at moment t insurance contract may be at any state, 
then for a given moment t we need to count the prospective reserves 
for all states separately. Then prospective reserve is a conditional ex-
pectation of prospective loss under the condition that at time t the in-
surance contract is at state i 

 

 ( ) | ( )  i tV t L X t i
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N

n n
j j

t t
b d c c j S k t p j S k t

k X t i k X t i  

Note that this formula looks quite complex. Namely, we look at it 
and we do not see the structure of the analyzed insurance contract. 
Fortunately, it appears that it is possible to simplify it using matrix 
notation. To do this we have to introduce the extended multistate 
model and describe matrices related to: multistate model and its prob-
abilistic structure (P(0) – vector of initial distribution and 
{Q(k)}k=0,1,2,… – sequence of matrices transition of process {X(t)}), 
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cash flows (Cm consists only of an income to a particular fund, Cout 
consists only of an outgo from a fund and Cm + Cout = C) and discount 
function ( consists of discount and accumulated functions). Now the 
following theorem is proven. 

Theorem 

For the insurance contract described by extended multistate model (S, T) 
vector V(t) = (V1(t), V2(t), … , VN(t))T, of prospective reserves at 
moment t is in the following form 

1
1

1

11)( 





 








   t

n

tk

k

tu

T
kk

TT
outt IIICQCV (u) , 

where It+1  is a vector which consists of  zeros except for 1 at t + 1  
coordinate. 

Matrix approach enables us to give a flexible tool not only for 
numerical calculations but also for the analysis of gross reserves, 
emerging costs and profit testing and helps in analysing both a single 
policy and a portfolio of policies. 

As a numerical illustration, a health insurance contract was con-
sidered, for which prospective reserves in the whole insurance period 
were calculated, using the above introduced theorem. 

MONITORING CHANGES IN LINEAR MODELS  
WITHOUT INTERCEPT 

Alexander Schmitz (University of Cologne) 

1. Introduction  

This note contains a further discussion of a sequential change-point 
test proposed by Horváth et al. [2004] and Hušková, Koubková 
[2005]. They designed a test to detect a change in the parameter 

),( ii   of a linear model 

 ,i i i i iy x             1, 2, ...i    
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We focus on the detection of a change in the regression parameter i  
solely. Thus, we consider a simple linear model without intercept ,i  
i.e. 

 ,  1, 2, ...,i i i iy x i     (1) 

where  
iix 1  is the real-valued regressor sequence and  

ii 1  de-
notes the error process. Our common approach rests upon a monitoring 
scheme by Chu et al. [1996]. They assumed a historical period of length 
m  with a constant but unknown regression parameter 0  , i.e. 

 0 ,i         1, ..., .i m  (2) 

Since an infinite monitoring period starts subsequently to the histori-
cal period, their change-point test is designed as a sequential analysis. 
The parameter stability null hypothesis 

 0 :H 0 ,i   1, ...,i m   

is checked after each arrival of a new data against a certain change 
alternative AH  . 

2. Two regressor sequences 

Another feature of our model is the consideration of two regressor 
sequences:  

miix
10,  on the historical period and  

iix
11,  on the 

monitoring period. For the ease of notation we set 

 

,0

,1

, 1
.

, 1, 2,...
i

i
i m

x i m
x

x i m m

  
  

     
(3) 

This reflects the following situation. After the historical period there 
are no longer observations for the first regressor sequence available. 
But it is possible to use data from a second source and the historical 
regression parameter remains. The historical regression parameter is 
suitable for the new model until the detection of a parameter shift 
from 0  to a different value *  (say). Therefore, it seems appropriate 

to detect the change-point *k  (say) via a sequential analysis. Follow-
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ing Chu et al. [1996], the testing procedure stops at time ( ),m  ac-

cording to the first excess of a detector )(ˆ mQ  over a boundary func-
tion )(* mg  , i.e.  

  *ˆ( ) inf : ( ) ( ) ( ) ,m mm k Q k d c g k     

where   and d  are positive constants and )(c  is a critical con-
stant. Moreover, we set inf , if the path of the detector never 
exits the boundary. For the purpose of an asymptotically controlled 
level  , the critical constant )(c  can be determined via a limit dis-
tribution.  Moreover, the test is shown to be consistent against a large 
class of change-point alternatives. 

3. Detector and model assumptions 

With a view to gain consistency, the residual based cumulative sum 
detector (CUSUM) includes regression weights, i.e. 

 
1

ˆ ˆ( )
m k

m i i
i m

Q k x 


 

   ,      1, 2, ...k   (4) 

The empirical residuals  miii xy  ˆˆ   are computed via the least 
squares estimator:  

 

1

1 1

ˆ .
m m

m i i i i
i i

x x x y



 

 
  
 
 

 
(5) 

The least squares estimator relies only on the historical period. Next, 
assume that the error sequence  

ii 1  is a strictly stationary process 
satisfying: 

 1 0,E     2 2
1E   and    01 iE     1.i   (6) 

We allow for an M-dependence among the error variables, i.e. 

 i  and j  are independent,  if Mji  || . (7) 
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This dependence should reflect a certain correlation between the two 
regressor sequences involved. We need a further moment condition: 

  2
1 ||E , for some 0 .  (8) 

Although we observe the regressor data, we need a condition on the 
data generating process, which in turn yields a convenient large sam-
ple behaviour of the realisations. We assume that the squared regres-
sors obey a strong law of large numbers with a certain rate, i.e. there 
are positive constants d  and 2/10   , such that  

 
  01 ..

1

2
0,1 




sa
n

i
i dx

n 

 
(9) 

holds almost surely, as n  . And similar for the second regressor 
sequence:  

 
  01 ..

1

2
1,1 




sa
n

i
i dx

n 

 
(10) 

holds almost surely, as n  . As a consequence of (9) and (10), the 
variance of each regressor sequence is asymptotically equal to d . 
Horváth et al. [2004] introduced a class of boundary functions being 
analytically convenient for the CUSUM monitoring: 

 
,1)( 2/1*
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m
kmkgm        .2/10    (11) 

The parameter   is the so-called tuning constant influencing the de-
tection ability. 

4. Results 

Under the null hypothesis 0H  , suppose (1)-(11) hold, then we have: 

 *
1 0 1

ˆ ( ) ( )1lim sup sup .
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The limit distribution is a functional of a standard Wiener process 
 

ttW 0)(  . Selected quantiles are given in [Horváth et al. 2004]. An 
application of the monitoring procedure in practice requires a consis-
tent estimation of the unknown error deviation   . Estimators for the 
parameter  are available using a “non-overlapping blocking” ap-
proach, cf. [Schmitz, Steinebach 2008]. Now we discuss the consis-
tency of the test under several change alternatives. Therefore, we al-
low the change-point *k and the parameter shift 0*  m  to vary 
with m . We assume that the change-point does not occur too late, 
relatively to the size of the historical period: 

  mmOk log/*           m  . (12) 

Under the “fixed-change alternative”, i.e.  m , suppose (1)-(12) 
hold, then we have:  
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And under the “shrinking-change alternative”, i.e.  mmm
lim , 

suppose (1)-(11) hold, then we have: 
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      m . 

From these two stochastic limits we derive that a fixed change can be 
detected earlier than a shrinking change. Moreover, if there are two 
constants, such that 21 CmC m   holds, the testing procedure 
has asymptotical power one. 

5. Remarks 

In the regression weighted CUSUM monitoring by Hušková and 
Koubková [2005] an independent error sequence is assumed. The 
present note shows that the monitoring procedure permits for an M- 
-dependence among the error variables. In [Horváth et al. 2004] an 
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additional parameter constraint, i.e.  0 min 1/ 2, ,    is assumed. 
Since this constraint is due to the intercept, we do not need this con-
straint here. Assumption (9) and (10), that the squared regressor se-
quences obey a strong law of large numbers with a certain rate, hold 
for a large class of stochastic processes. Some extension of the so-
called Marcinkiewicz-Zygmund law of large numbers to dependent 
processes will be presented elsewhere. 
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RUIN PROBABILITY IN INFINITE TIME 

Aleksandra Iwanicka (Wrocław University of Economics) 

We consider a risk model for three classes of insurance business as an 
example of a multiclasses risk model, i.e. a risk model for several 
classes of insurance business. The classes of business are correlated. 
The correlation between classes can be the effect of some outside risk 
factors like natural disasters that causes various kinds of insurance 
claims. The main aim is to investigate the impact of some outside risk 
factors which causes additional claims in each class of insurance busi-
ness on ruin probability in infinite time.  

We consider a risk model involving a book of three dependent 
classes of insurance business. Let  

1ij i
X




 be a sequence of indepen-

dent claim size random variables for i -th class of business with com-
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mon probability function 
iXf  and mean i . Then the aggregate claim 

sizes process for a book of three classes of business is given by: 

 
( )3

1 1
( ) ,

iN t

ij
i j

S t X
 

  

where   0
( )i t

N t


 is the claim number process for i -th class. It is as-
sumed that all claim sizes are independent and that they are indepen-
dent of all claim counting processes. The claim number processes are 
correlated in the way: 

1 2 4( ) ( ) ( ),N t M t M t   2 2 4 5( ) ( ) ( ) ( )N t M t M t M t    and 

3 3 5( ) ( ) ( )N t M t M t   

with        1 2 3 4( ) , ( ) , ( ) , ( )M t M t M t M t  and  5( )M t  being inde-

pendent Poisson processes with intensities respectively 1 2 3 4, , ,     
and 5 . In the i -th class of business the underlying risks of this class 

cause claim numbers according the process  ( )iM t . Additionally, in 
the first class and in the second class some outside risks common for 
both of these classes cause claim numbers according to the process 
 4( )M t . Also in the second and in the third class some other outside 
risks common for both of these classes cause claim numbers according 
to the process  5( )M t . The situation of the impact of all risks factors 
on three classes of business are shown in auxiliary figure 1. Then the 
risk process for a book of these classes is given by: 

 ( ) ( ),R t u ct S t    (1) 

where u  is the amount of initial surplus and c  is the constant rate of 
premium per unit time. To satisfy the net profit for the insurance com-
pany we assume that (1 ) ( (1))c E S  , where 0   is called the 
relative safety loading. A risk model for one class of insurance busi-
ness with claim counting process being Poisson process is called a 
classical risk model. The infinite time ruin probability is: 
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 ( ) ( ( ) 0 for some 0).   u P R t t  

 

Fig. 1. Impact of risks factors on three classes of insurance business. 

Source: own elaboration 

The risk model (1) can be converted to a classical risk model 
[Ambagaspitiya 1998]: 

 
( )

'

1
'( ) ,

N t

i
i

R t u ct X


    

where   0
( )

t
N t


 is a Poisson process with intensity 

5

1
i

i
 



  and 

  1i i
X 


  is a sequence of  independent new claim sizes with the proba-

bility function given by: 

 1 2 3

1 2 3

5
* ( ) * ( ) * ( ) * (0)

'
1

1( ) ( * * )( ) 1 .i i i

i

a a a
X i X X X X

i
f x f f f x f

 

    

In a case of a classical risk model there are known a lot of me-
thods of calculation or  approximation of the infinite time ruin proba-
bility [Asmussen 2000; Rolski et al. 1998]. In further analysis we use 
De Vylder’s approximation, which is given by [Rolski et al. 1998]: 

 1( ) exp ,
1 1

uu 

 

 
   

  
 

I 

4M 5M

1M 2M 3M

II III 
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3 3 2

23 9
, ,
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       and .k
km EX  

It is worth noticing that in actuarial literature we distinguish be-
tween light- and heavy-tailed claim sizes distributions [Rolski et al. 
1998]. Light-tailed distribution with c.d.f. ( )XF x  means that there 
exist constants 0, 0a b   such that the tail 

( ) 1 ( ) exp( )X XF x F x a bx     or equivalently there exists 0z   
such that the moment generating function ( )XM z   . If any distribu-
tion is not light-tailed, it is said to be heavy-tailed. 

We consider four following cases of an impact of outside risk fac-
tors in risk model (1) on the infinite time ruin probability: 

1) 1 2 330, 60, 30      and assume only in this case that 
there are no outside risk factors affecting the classes of business; 

2) 1 2 3 4 520, 40, 20, 10, 10;          
3) 1 2 3 4 510, 20, 10, 20, 20;          
4) 4 530, 30    and assume in this case that there is no affect 

of underlying risk factors in each class of business. 
We analyse an impact of outside risk factor considering four above 

cases and different types of claim sizes distributions. In figures 2 and 3 
there are diagrams of the ruin probability as a function of initial capital u . 
In figure 2 there are diagrams in the situation where in each class there are 
light-tailed distributed claim sizes, i.e. 1 ~ Gamma(0.9,1.1)jX , 

2 ~ Gamma(0.75,0.8)jX  and 3 ~ Gamma(0.5,0.75)jX . In figure 3 there 
are diagrams in the situation where all of claim sizes are heavy-tailed dis-
tributed, i.e. 1 ~ Weibull(1.1,0.8),jX 2 ~ Pareto(5.1,3.1)jX  and 

3 ~ Burr(6.5,9.2,0.9)jX . In each considered situation we observe that 
with the growing strength of outside risks factors affecting three classes of 
business in considered cases 1-4 the ruin probability is increasing. We can 
also notice that for the fixed value of initial capital u  increase of ruin prob-
ability in each case is almost proportional to the increase of strength of 
outside risk factors. A similar situation is in case of ruin probability in finite 
time, which was investigated earlier by us. 
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Fig. 2. Ruin probability in case of light-tailed claim sizes distributions ( 0.05)   

Source: own elaboration. 

 

Fig. 3. Ruin probability in case of heavy-tailed claim sizes distributions ( 0.05)   

Source: own elaboration. 
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OBTAINING MISSING NOT AT RANDOM DISTRIBUTION’S 
PARAMETERS FROM MICROECONOMIC SURVEYS 

Christian Westphal (University of Marburg) 

1. Motivation and model 

Today a remaining problem when dealing with missing data is the 
problem of missing not at random data (MNAR). A variable Y that is 
missing not as random is defined as Pr(R = 1|Y,·)  Pr(R = 1|·), where 
R is indicating response (R = 1) or nonresponse (R = 0) and the dot 
stands for everything else besides Y2. 

Dealing with MNAR data depends on modelling the missingness3, 
and therefore has not received much attention in the general statistical 
analysis of missing data problems. As many of these problems are 
from the field of microeconomics4, I will give a general model for all 
of these problems. The problem will be illustrated by the example of 
income surveys where income is the MNAR variable. This example 
has proven to be a reliable point in any discussion and there exists 

                                                   
2 See [Rubin 1976; Little, Rubin 2002, p. 12]. 
3 [Rubin 1976, p. 589; Little, Rubin 2002, chapter 15]. 
4 For a recent summary see [Simmons, Wilmot 2004]. Philipson [2001] is quite dif-

ferent from the general conclusion of the former article in that Philipson gets very clear 
results from a postpaid incentive albeit from a very specific population. 
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prior information about the distribution(s) of income5 and the beha-
viour of survey participants when asked about their income6. 

The model is as in [Westphal 2009]. In that model I required a 
postpaid incentive7. This requirement shall be abandoned for a more 
generalized approach8. Instead, incentives shall be considered as 
“shocks” to an individual’s utility. It does not matter whether the in-
centive is postpaid or prepaid. All that matter is that the incentive in-
fluences the survey participant towards response regardless of its time 
of payment9. 

2. Findings in simulation 

I will illustrate my findings by a simple simulation where there is a 
missing not at random variable Y (“income”) and an artificial variable 
uncorrelated with the income Z (“incentive to respond”). 

Exactly “income” respective “incentive” are Y, Z 
i. i.d.

~  N(0, 1). The 
response decision depends, in accordance with the random utility bi-
nary choice model10, on the value of the random utility function U = Z 
− Y + E where E once again is a standard normal random variable. 
Response is given if U > 0. 

This represents the following behaviour observed in the Philipson 
[2001] experiment: with rising income, the willingness to share infor-
mation about this income decreases, and the willingness to give up the 
income information can be increased by paying an incentive. The re-
sults are illustrated in figure 1. The first column depicts the distribu-
tion of the (simulated and therefore known) response probabilities of 

                                                   
5 Especially surveys; for summary see [Pinkovskiy, Sala-i-Martin 2009] as well as li-

terature concerned with optimal income taxation where the income distribution is of 
crucial importance for the results. 

6 [Philipson 2001]. 
7 Inspired by [Philipson 2001], incentive theory [Laffon, Martimort 2002] and ration-

al choice theory. 
8 Abandoning the requirement for postpaid incentives does not contradict incentive 

theory or rational choice theory – we simply do not know what “rational” behaviour looks 
like, reacting to a prepaid incentive may be considered rational. 

9 This accomodates the findings in many prepaid incentive experiments, e.g. [Mehl-
kop, Becker 2007, section 3; Becker et al. 2007]; also see [Singer 2002] in: [Groves et al. 
2002]. 

10 As in [Greene 2008, p. 777]. 
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the simulated agents who have been given an incentive within differ-
ent ranges. The second column shows how with increasing incentive 
the response probabilities increase among the higher incomes. 

 
Fig. 1. Simulation results: response probabilities 

Source: own elaboration. 

The relationship between these two findings results in increasing 
incomes reported with increasing incentives11. This rather clearly 
shows there can be information about the reaction of the observed 
distribution of a MNAR variable in a variable uncorrelated to the 
MNAR variable of interest. 

3. Extracting information 

In section 2 we concluded there clearly lies information about the (si-
mulated) income variable in the (simulated) incentive variable12. 

By the set up of the experiment we know there is no correlation 
between the incentive and the income. This directly leads us to the 
need of explaining the observations from section 2. This explanation 
is simple. By design there cannot be information about the income 
variable in the incentive variable. However, there is information about 
the observed incomes given the incentive variable in the incentive 

                                                   
11 As in [Philipson 2001]. 
12 The same seems to be true in the Philipson [2001] real-life experiment. 
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variable. This is due to the correlation of the response probability and 
the incentive variable and the correlation of the response probability 
and the income variable. This is illustrated by the distributional rela-
tions in figure 1. 

Two independent random variables Y and Z which are arguments 
of a utility function U(y, z; ·) do have a joint distribution fY,Z(y, z) 
which is simply the product of the marginal distributions fY(y) · fZ(z).13 
Via the transformation (Y, Z) → U a distribution of the random varia-
ble U, fU(u) is obtained where we add white noise (N(0, σ2)) via the 
function U(y, z; ·) to account for different response decisions given the 
same income and incentive level. Doing this transformation yields a 
joint density 

 fU,Z(u, z) (1) 

as well. 
From fZ(z) and (1) we can now find conditional densities 

 
|

( | )
U Z

u Z zf 



 z

z Z

z

z ZU

zzf

zzuf

d

d
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),(,

 
(2) 

for any [ ,  ).z z z  
Therefore the integral from 0 to ∞ of u over (2) does give the ex-

pected percentage of respondents of all individuals receiving an incen-
tive in the interval of z : 

 
|

( | )
U Z

u Z zf   
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z Z

z

z ZU

zzf
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d

d

d
  (3) 

The expected percentage of respondents cannot be obtained as the 
utility function’s parameters and the parameters of fY(y) are not 
known. However, we would expect these percentagesto roughly cor-
respond to the observed response percentage of all individuals receiv-
ing an incentive in the interval z . 

Now a system of equations using the observed response percen-
tages as left handed side and the right handed side of equation (3) as 
                                                   

13 Note that in the example given above fZ(z) and all its parameters are known. 
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right handed side can be set up. With assumptions about the utility 
function’s form and an assumed/known parametric distribution family 
for Y the estimation of the unknown parameters in fY(y) and fU(u) and 
thereby U(·) becomes feasible by employing a target function and – by 
guess – in most cases numerical methods. 

This is in line with simpler suggestions14 for the unbiased estima-
tion of the distribution’s parameters. I trade in [Pinkovskiy, Sala-i- 
-Martin’s 2009] suggested assumption of MNARness only at the top 
and the bottom of the distribution for the assumption of an underlying 
utility mechanism. 

4. Conclusion 

We see that with two rather general assumptions, namely (a) the deci-
sion to respond is based on a random utility binary choice and (b) the 
missing not at random variable can be modelled by a parametric dis-
tribution, information can be obtained about the missing not at random 
variable’s distribution parameters.  

Combined with good prior information about the distribution’s 
and the utility function’s form, good survey design and testing as pro-
posed by Yuan [2009] might help solve the problem of MNAR data in 
microeconomic surveys in which the response or participation deci-
sion is at the discretion of the survey participant. 

Furthermore, the incentive variable may be crucial for Yuan’s test-
ing method as the random incentive satisfies all requirements for the 
testing method proposed by Yuan and can be easily generated in a 
survey. 
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APPROXIMATION OF THE STOP-LOSS PREMIUM  
ANALYSIS AND COMPARISON 

Anna Nikodem (Wrocław University of Economics) 

In order to protect oneself against large individual claims or against 
the fluctuation in the number of claims, the insurer takes out reinsur-
ance cover for his insurance portfolio. The expected cost of this insur-
ance is called the stop-loss premium and is defined as the expected 
value of the excess of an agreed retention d of the aggregate claim 
amount S accumulated during a certain time period. For the discrete 
and continuous case the premium can be obtained by the formulae 
respectively 

 

[1 ( )],( ) ( ),
( )

( ) ( ) , [1 ( )] .
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where ( )Sf s  is the probability density or the probability function of 
aggregate claim amount and ( )SF s  is the distribution function of S. 
The aggregate claim amount S of the insurer portfolio is defined by 
a random sum of the random variables iX   

 1
for 1,

0 for 0,

N
ii

X N
S

N


 
 



  

where N is a random variable, iX is  independent and identically distri-
buted and N and iX  are independent. 

In order to compute the stop-loss premium we have to determine 
the distribution of the aggregate claims amount. If the number of 
claims distribution is in the (a, b, 0) class, i.e. when the number of 
claims has Poisson, Binomial, Geometric, Negative binomial distribu-
tion and the individual claims distribution is discrete, we can use the 
Panjer’s recursion (see i.e. [Klugman et al. 1998]). This method can be 
used also after discretization of the probability density function of 
individual claim size. Appling the recursive method, the stop-loss 
premium can be calculated recursively. For integer retention d we 
have (see i.e. [Klugman et al. 1998]) 

 ( ) [( ) ] ( 1) [1 ( 1)]Sd E S d d F d        , 

where (0) ( )E S  . The stop-loss premium can be calculated recur-
sively for the arithmetic individual claims distribution. For some fixed 
h and for retention jh we have  

    ( ) ( 1) [1 ( 1) ],Sjh j h h F j h       

where (0) ( )E S  . 
Unfortunately, in a lot of situations the distribution of aggregate 

claim amount is intractable. Then we need approximation. We can 
approximate the density by a function that uses the mean, variance and 
skewness of the aggregate claim amount, which are relatively easily 
obtained. In literature various approximations of the stop-loss pre-
mium are described (see [Kaas et al. 2001]). The compound distribu-
tion of S can be approximated by a normal distribution, when the 
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skewness is equal to zero. The next approximation is NP-
approximation, which can be used when the skewness of the aggregate 
claim amount is small, i.e. from zero to one. Since most aggregate 
claim distributions have roughly the same shape as the gamma distri-
bution, the cumulative distribution function ( )SF s  can be also approx-
imated by the gamma cumulative distribution function 0( ; , )G s x   . 
Comparing this approximation in examples we can observe that the 
translated gamma approximation is the best one, but this approxima-
tion cannot be used when the mean of number of claims is very small 
and the mean of the individual claim size is large. Besides some val-
ues of parameters of the compound distribution of S we cannot calcu-
late the stop-loss premium using the translated gamma approximation. 
Hence the Haldane approximation is also considered (see [Pentikainen 
1987]). For this approximation the stop-loss premium has a form of 

( )

( ) ( ( ) ) ( )
w d

d q u d u du 


     
( )

( ) ( ) 1 ( ( ))
w d

q u u du d w d
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Comparing the Haldane approximation and the translated gamma ap-
proximation we have that both approximations give the same results.  
The Haldane approximation is better for smaller skewness. This ap-
proximation can be used for those values of parameters of compound 
distribution of S for which we cannot use the translated gamma ap-
proximation, in a condition where for those parameters Y  is positive. 

Using the translated gamma approximation and the Haldane ap-
proximation to compute the stop-loss premium, when the aggregate 
claim amount has the compound Poisson distribution with parameter 
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λ, we have that for a larger parameter λ those approximations are bet-
ter. In practice the mean of the number of claims is rather small. In 
this situation we can use the Gaussian exponential approximation (see 
[Hurlimann 2003]). For this approximation the stop-loss premium has 
the following form 
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where the unknown parameter and threshold can be found by using 
the following formulas: first we have to find the parameter η from 

equation  
 0 20

0

2 1
( )

v


  


    and next we obtain the threshold from 

0
0

1( ) 1 1 4
2

s E S




 
    

 
 

, where 1 e    . In contrast to previous 

approximations this approximation is better when the Poisson parame-
ter is small. The approximation gives good results  for a small λ para-
meter, even though the skewness is large. 
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