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∗The main objective of this article was to describe issues related to theory of measurement 
and discuss significant role of selected reliability methods in a view of Classical True-Score 
Theory – CTM. In consequence the emphasis was put on description and comparison between 
different methods of reliability assessment such as: test-rest, parallel-test, split-half or internal 
consistency. The author investigated them primarily in context of psychometrics and its 
general applications in the area of marketing and customers research studies. In the second 
part of article, a new perspective on the measurement (Item Response Theory – IRT) was 
discussed. Later on, both concepts of measurement CTM and IRT were compared. Although 
researchers in the field of psychometrics have paid a considerable attention to measurement 
theory, in another field (e.g. marketing) these topics somehow have been neglected. And the 
recent advances in statistical analysis have drawn increasing attention to these nagging 
problems of measurement. Therefore in the article the author decided to review and stress the 
great importance of various concepts in reliability measurement. The author hopes that for 
researchers in the above field who wish to familiarize themselves with current debates over 
the right choice of an appropriate measurement design and strategies, it will be a good starting 
point for their own research and reliability estimation, especially when making a decision on 
how to develop an appropriate scale for measurement and choose for that scale respective 
estimate reliability. As a result, the description will be useful for managers, marketers, who 
want to study reliability and problems associated with scales construction to study customers 
behavior or market trends and those who want to attempt integrate measurement theory into 
their aggregate models of the business.  
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INTRODUCTION 

The notion that measurement is crucial to science seems to be a 
commonplace and unexceptional observation. The most popular definition 
of measurement (as far as the social sciences measurement area is 
concerned) – is provided by Stevens (1951) explaining that “measurement is 
the assignment of numbers to objects or events according to specific rules”. 
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This concept of measurement unfortunately lacked appropriate accuracy 
level. Duncan commented measurement (as opposed to Steven’s description) 
more precisely adding “measurement is also the assignment of numerals in 
such a way as to correspond to different degrees of a quality or property of 
some object or events” (Duncan, 1984). More broadly stated – it assigns a 
numerical scale according to the size, value, or other characteristic of a 
tangible or intangible object. In effect and in practice of research one has 
obtained the scale which could be ranging as far as from: 0 to 1 (bad or 
good), 0 to 10 (as in athletic competitions), 1 to 5 (as in Likert scale being a 
part of psychometrics area measurement).  

Moreover in Duncan’s point of view, “all measurement is the social 
measurement”. This could be a reference to the earliest formal social 
measurement processes such as voting or census-taking. He further notes 
that “their origins seem to represent early attempts to meet every day human 
needs, not merely experiments undertaken to satisfy scientific curiosity”. He 
continues, saying that similar processes can be drawn in the history of 
physics where measurement of length or distance, area, volume, weight and 
time was conducted by ancient people in the course of solving practical and 
social problems. Physical science was built on the foundations of those 
achievements (Duncan, 1984).  

In social sciences measurement and scales development (associated for 
example with marketing – in particular customer traits), problems with the 
measurement (according to Steven’s expression) is that many of the 
customers phenomenon to be measured (e.g. analysis of their attitudes or 
preferences to products or services) are intangible and quite often are too 
abstract in order to be adequately characterized as either simple objects. In 
short they cannot be seen or touched. However, having based on Blalock 
(1968), and Zeller et al. (1979) and other authors findings, one could have at 
least attempted to create a general approach for their measurement and then 
scale development.  

1. CONSTRUCTS AND DIFFERENT APPROACHES TO 
MEASUREMENT 

The theory of construct plays a significant role on how we conceptualize 
our measure problems in science. In this context, it is worth mentioning that 
scientists tend to rely on numerous theoretical models that concern rather 
narrowly circumscribed scientific phenomenon. Very often measuring 
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elusive, intangible phenomenon (such as customer values, needs or personal 
traits) is derived from multiple, quickly evolving theories. As a result 
everything depends on: 1) the researcher’s knowledge of optional theoretical 
construct, 2) choice of different (available) assessment strategies and 3) type 
of recognized trait whether directly observable (e.g. length of the board, 
height or weight) or indirectly observable (e.g. human beliefs, motivational 
states, value systems, expectancies, needs, emotions, or perceptions). Most 
indirect measures are sometimes called indicators.  

Observable traits which are reflected by latent variables (whose presence 
is for example inferred from the pattern of covariation among the indicators) 
are called reflective indicators. They measure latent variable along with 
some measurement error. Usually measurement is undertaken on the basis of 
summated scale, where items represent reflective observable variables. Some 
part of these items may be eliminated from the scale without greater damage 
for the considered latent variable (e.g. a designed scale).  

Bollen (1989) noted that, in some instances, indicators of a latent variable 
are uncorrelated and, rather than reflecting the variable, they cause it. 
Therefore if observable variables affect latent variables, then they are termed 
as formative indicators. Formative indicators are measured already without 
errors, and they are formed objectively, because their numbers do not depend 
completely on evaluation given by person. This type of measurement 
instruments is sometimes interchangeably called index. In practice, 
formative indicators are somewhat rare, perhaps because many constructs are 
not typically conceptualized with reference to their causes. In traditional 
customers research or psychometric criteria, a common practice is 
dominated by reflective indicators.  

2. CONSTRUCTS DIMENSIONALITY AND SCALES 
DEVELOPMENT 

For some reasons one can differentiate constructs according to their 
dimensionality. They can be varied either in unidimensional or 
multidimensional form. In customer research, many constructs such as 
human beliefs, motivational states, value systems, expectancies, needs, 
emotions, or perceptions are far and wide more complex and most of them 
belong to multidimensional description. If this is the case, part of the 
researcher’s task is to decide on how finely these constructs can be extracted 
and described (Spector, 1992). 
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Constructs that are fairly homogenous are typically unidimensional, and 
constructs which have broad aspects or dimensions will be 
multidimensional. The development of multidimensional scales are not 
much different from their unidimensional counterparts. Procedures of the 
multidimensional scales development are the same as for unidimensional 
ones. On the conceptual end, the various components are specified. These 
components do not have to be unrelated, and often subscales of 
multidimensional instruments inter-correlate. However, conceptually they 
should be distinct.  

The term "scale" reflects primarily a multi-item scales. In the process 
(sometimes referred to as “test”) of multi-item scale construction we usually 
have N persons taking a test that consists of k items where a score jix  is 
given to the person on the item. The process of scale development 
containing multi-items typically involves the following stages (Malhotra, 
2009) where:  

-thj -thi

1) scale cannot be developed until it is clear exactly what that scale is 
intended to measure;  

2) scale is designed according to selection of response choices and 
writing instructions;  

3) initial version of scale is pilot-tested with a small number of 
respondents who are asked to critique the scale. They usually indicate which 
items are ambiguous or confusing, and which items cannot be evaluated 
along the dimension chosen;  

4) a full administration and item analysis is conducted. A sample of 100 
to 200 respondents complete the scale;  

5) the scale is validated and normed. The norm describes the 
distributional characteristics of a given population on the scale. Individual 
scores on the scale are then interpreted in relation to the distribution of the 
scores in the population.  

3. RELIABILITY IN A VIEW OF CLASSICAL TRUE-SCORE 
THEORY OF MEASUREMENT 

Classical True-Score Theory (CTM) describes to what extent errors of 
measurement can influence observed scores (1904 a-b, 1907; Guliford, 1936; 
Gulliksen, 1950). Typically in CTM true scores represent an average score 
taken over repeated independent measures with the same score as a 
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theoretical idea. The formula of CTM is expressed as follows (Spearman 
1904 a-b, 1907; Guliford,1936; Gulliksen, 1950): 

,X T E= +                                                                                           (4.0) 
where: X  – observed score, T  – true score,  – error score or error of 

measurement. 
E

Reliability as a word has a positive connotation. For anything to be 
characterized by a person as reliable is to be described in positive terms. So 
it is with any type of test (scale development), experiment, or measuring 
procedure application. If it is reliable (e.g. scale), then it has gone a long way 
toward gaining scientific acceptance. Nunnally (1978) defined reliability as 
“the extent to which measurements / tests are repeatable and that any 
random influence which tends to make measurements different from 
occasion to occasion, is the source of error”.  

 In order to formally define reliability, we ought to establish some 
notation for the basic concepts derived from Classical True-Score Theory of 
Measurement (CTM). Conceptually, the true score is a perfect measure of 
the property being measured. However, in practice, the true score can never 
really be known and generally is assumed to be the mean score of a large 
number of administrations of the same scale to the same subject. The 
fundamental equation (4.0) of the CTM is, when true scores and error scores 
are assumed to add (rather than to have some other relationship, such as a 
multiplicative one). If then two measurements have observed scores  and 

 that satisfy the assumptions ranging from 1 to 5 (Allen and Yen, 1979): 
X

X ′
,X T E= +  

1. ( ) 0,E e = the expected value (population mean) of error scores for 
any person is 0, 

2. 0,ETρ =   

3. 
1 2

0,E Eρ =  

4. 
1 2

0.E Tρ =  

and if for every population of persons, T T ′=  and ,E Eσ σ′=  then these 
measurements are called parallel measurements. And if two measurements 

 and 1 1X T E= + 2X T E2= +  are said to be parallel, we assume that 

1 2

1 2
E Eσ σ=  and 

1 2
0.E Eρ =  It then follows that 

1 2

2 .1 2
X X Xσ σ σ==  Omitting the 
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subscripts from  and  we obtain their correlation coefficient denoted 
as (Allen and Yen, 1979): 

1X 2X

    

2

2
T

tt
X

σ                                                                            (4.1) 2 .XTρ ρ
σ

= =

where: ttρ  denotes the population correlation coefficient between parallel 
measurements (population reliability coefficient).  

The correlation between the parallel measurements gives the 
possibility to estimate the reliability, but it requires quite rigorous 
assumptions on the measurement errors that take place during process of 
measurement. Usually the correlation coefficient yields 1.0 if two 
distributions for both test are equal or parallel. Theoretically parallel 
measurements (tests) ought to have the same average variance and 
correlation between those pairs of measurements.  

If two measurements on the other hand have observed scores  and  
that satisfy the above assumptions 1 through 5, and if for every population of 
persons, where  denotes a constant, then these measurements 
are called essentially tau-equivalent measurements. This allows for 
separation of the true score variance from the measurement error variance 
and the variance of observed score  which can be written as follows 
(Allen and Yen, 1979): 

1X 2X

1 2T T c= ,+ c

X

                                                                                        (4.2) 
Having returned to parallel measurement principles, we can define 

reliability according to CTM theoretical model (4.0) that is the squared 
correlation between  and  (true score) denoted as (Allen and Yen, 
1979):  

X T

2 2

22 2

2

1

1
1 .T E

tt
EX X

T

ρ σ σ                                                              (4.3) 
σσ σ
σ

= = − =
+

The definition gives three equivalent forms of reliability, expressed 
with the components of  Eq. (4.3). The first form will tell us that reliability is 
the ratio of the true score variance 2

Tσ  to the total variance 2
Xσ . The second 

one expresses the measurement error variance 2
Eσ . The last form of the 

definition, which does not contain 2
Xσ  explicitly follows by dividing one by 
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the inverse of the first form. Observed scores at best, account for, predict, or 
explain true scores when this linear correlation ratio (Allen and Yen, 1979): 

2
2

2 .T
XT

X

σρ
σ

=
                                                                                           

(4.4) 

is 1.0 – that is when all observed score variance is true score variance. 1.0 
minus the ratio of error score variance to observed score variance gives us an 
alternative way of understanding or interpreting 2 .XTρ  

Differences that arise between different types of measurement such as: 
parallel, tau-equivalent and congeneric are due to some few facts (Graham, 
2006).  Namely in parallel measurement the amount of variation in the 
item score that is determined by the true score is the same for all items. In 
fact this implies that the expected value of each of the items will be the 
same. The easiest practical example one can imagine of something like this 
would be a situation where one employs the exactly same measure on 
something on multiple occasions where one has no reason to expect any kind 
of testing effect or change in the true score over the period in which the 
multiple measures were administered. The parallel measurement is the most 
restrictive measurement for use in defining the composite true score.  Tau-equivalent measurement is identical to the more restrictive parallel 
model, save that individual item error variances are freed to differ from one 
another. This implies that individual items measure the same latent variable 
on the same scale with the same degree of precision, but with possibly 
different amounts of error. The essentially tau-equivalent measurement is, 
as its name implies, essentially the same as the tau-equivalent model. Essential 
tau-equivalence assumes that each item measures the same latent variable, on 
the same scale, but with possibly different degrees of precision. Again, as with 
the tau-equivalent model, the essentially tau-equivalent model allows for 
possibly different error variances. The difference between item precision and 
scale is an important distinction to make. Whereas tau-equivalence assumes 
that the items true scores are equal across items, the essentially tau-equivalent 
measurement allows each item’s true score to differ by an additive constant 
unique to each pair of variables.  Finally the congeneric measurement is the least restrictive, most general  
measurement of use for reliability estimation. The congeneric assumes that 
each individual item measures the same latent variable, with possibly 
different scales, with possibly different degrees of precision, and with 
possibly different amounts of error. Whereas the essentially tau-equivalent 
model allows item true scores to differ by only an additive constant, the 
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congeneric model assumes a linear relationship between item true scores, 
allowing for both an additive and a multiplicative constant between each pair 
of item true scores.  

4. FACTORS AFFECTING RELIABILITY LEVEL AND METHODS 
OF RELIABILITY ESTIMATION IN CTM 

According to Symonds (1928) there are several factors in Classical True-
True Score Theory (CTM) which affect considerably the reliability level in 
the measurement. Six factors are also general considerations in scale 
construction and they are related to: 

• the number of items – reliability increases as the number of items 
in a scale increases. 

• the range of item difficulty – the narrower the range of item 
difficulty, the greater the reliability of the scale. Items that are answered 
correctly (or incorrectly) by all individuals do not contribute to variability 
within a test (measurement) and decrease the number of functional items. 

• evenness in scaling – the result of a developing scale with items at 
the same level of difficulty is equivalent to reducing the number of items. 
All items of equal difficulty should be answered either correctly or 
incorrectly. The extreme case is with two sets of items: 1) those answered 
correctly by all persons, and 2) those answered incorrectly. This situation 
reduces the test to two items. Optimally, the test will be evenly scaled across 
a range of item difficulties.  

• interdependence of measured items – lower estimates of the 
reliability will be achieved if the answer to one item is suggested by another 
item, or if the meaning of one item is dependent upon a previous item. 

• guessing – scale reliability decreases as the likelihood of guessing 
the correct answer increases. 

• homogeneity – if items of the measurement have different concepts, 
then the scale reliability will decrease.   

Reliability estimation for unidimensional reflective indicators 

There are different methods of reliability estimation when unidimensional 
reflective indicators are considered in particular. However, we focus here 
only on the most common and widely practiced solutions. They are 
presented in Table 1.   



MEASUREMENT, RELIABILITY AND SCALES CONSTRUCTION […]                  73 
 

In determining reliability estimates, test-retest or parallel forms 
estimates should be used, because most of the internal consistency measures 
would be inaccurate. The use of coefficient Alpha or Kuder-Richardson 
would produce a lower bound for a test’s reliability. The lower bound equals 
the test reliability if the components in the test are essentially tau-equivalent. 
Coefficient Alpha and the Kuder-Richardson formulas should be used only 
for homogeneous tests, since they basically reflect item homogeneity.   

If the test measures a variety of traits, coefficient Alpha and the Kuder-
Richardson reliability will be inappropriately low. That is why the Kuder-
Richardson formula 20 (KR20) gives good level of reliability of a test where 
components are dichotomous items. And Kuder-Richardson 21 (KR1) equals 
the test reliability if the dichotomous items in the test have equal item 
difficulties.  

The Spearman-Brown formula can overstimate or underestimate a test’s 
reliability if the components of the test are not parallel. When the 
components of a test are parallel, the Spearman-Brown formula is very 
useful for judging the effects that changes in test length on reliability. In 
short it is useful for estimating the reliability of a test with altered length and 
it offers reasonable estimates if the test length is changed by adding or 
omitting parallel versions of the original test items. Since reliability tends to 
be lower for shorter tests (Allen and Yen, 1979).   

As far as the split-halves approach is concerned, the major problem is that 
the correlation between halves will differ somewhat depending on how the 
total number of items is divided into these halves. In contrast coefficient 
Alpha (that is typically used in multi-item scale, e.g. summated scale) is 
particularly easy to use because it requires only a single test / measurement 
administration. Moreover, it is a very general reliability coefficient, 
encompassing both the Spearman-Brown prophecy formula as well as the 
Kuder-Richardson 20. Alpha is also easy to compute, especially if one is 
working with a correlation matrix. Minimal effort that is required to compute 
Alpha is more than repaid by the substantial information that it conveys 
about the reliability of a scale (Carmines and Zeller, 1979). 
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Table 1 

Selected measurement reliability methods 

Internal consistency Function 

Kuder -Richardson 
20/21 

Used for true score theory approach (raw scores) 

Used for dichotomous responses 

Cronbach’s Alpha 
Used for true score theory approach (raw scores) 

Used for polytomous responses 

Spearman-Brown 
formula 

Allows calculation for hypothetical reliabilities  

Test-Retest 
Used when same respondents are measured again 

Test-Retest correlation 

Parallel-Test 
Used when two measurements are parallel, e.g. take time at the 
same moment Alternate form 

correlation 

Source: own construction based on Wilson, 2005 

Test-Retest method 

The reliability obtained by repeated administration is referred to as test- 
retest reliability. The test-retest method remains the most popular one to 
estimate the stability of a test (measurement) over time. But this method is 
vulnerable to artifact from random variability in responses, changes in the 
individuals taking the measurement, and differences in the method by which 
measurements (tests) are administered.  

The aim of this method is to investigate the variation in the items 
locations due to the instrument, not due to real change in respondents’ 
locations. Both measurements (first test and second) should be close enough 
together to assume that there has been little real change. The equation for the 
two tests may be found in Carmines and Zeller (1979) and also Magnusson 
(1981). 
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This method will work better where a stable latent variable (constructed 
scale) is measured with forgettable items, as compared with a less stable 
latent variable measured with memorable items. Moreover between first 
survey (test) and second survey (retest) there is no strictly defined interval 
time, but usually, a second survey is conducted straight away after the first 
one is finished. If there would be a short time interval, it might in 
consequence cause a carry-over effects due to respondents’ memory, 
practice, or mood more likely. On the other hand, a long interval would 
make effects due to changes in information or moods likely too. In 
consequence when choosing test-retest method, researchers are often only 
able to obtain a measure of a phenomenon at a single point in time. Not only 
can it be unduly expensive to obtain measurements at multiple points in time 
but it can be impractical.  

In the test-retest approach, the computed correlations and their 
interpretation are not straightforward. Naive interpretation of test-retest 
correlations can drastically underestimate the degree of reliability in 
measurements over time by interpreting true change as measurement 
instability. A low test-retest correlation may not indicate that the reliability 
of the test is low, but may instead signify that the underlying theoretical 
construct itself has changed.  

Parallel-Test method 

In this type of method if researcher cannot provide the same or at least 
comparable score level within test and retest, then one can choose parallel-
test. The two alternate copies of the instrument are then administered and 
calibrated, and then two sets of locations are correlated to produce alternate 
forms reliability coefficient. This method can be performed provided the 
following criteria of measurement will be met (Brzezinski, 2007):  

• equal scores on averages between first and second test,  
• equal variances,  
• equal intercorrelations for each measured item on two tests.  
• no frame of time between two tests. Second test comes right away, 

after the first one is performed and finished.  
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Split-halves method 

In this type of method, reliability estimation is calculated first when one 
prepares a set of items for a given scale. In the next stage, the same set of 
items is divided into two subsets. Thirdly, subsets are correlated with each 
other in order to yield suitable reliability level. The whole test is divided into 
two parts, with alternate forms of each other. If the halves of the test are 
parallel, the reliability of the whole test is estimated using the Spearman-
Brown formula. But if the halves are essentially tau-equivalent, then 
coefficient α  is computed. Allen and Yen (1979). 

There are several ways of splitting a set of items. One is called first-half  
last-half, where items interact with each other and thus affect each subset. This 
is the case when items are scattered throughout a lengthy questionnaire and 
where respondents might be more fatigued when completing the second half 
of the scale (DeVellis, 2003). In another odd-even reliability, we have a subset 
of odd-numbered items that is compared to the even-numbered items. In order 
to split the halves properly, one needs to sort and rank items according to their 
level of difficulty. This process of items extraction is as follows:  

A) = 1, 3, 5, 7 – as part of odd-numbered items, 
B) = 2, 4, 6, 8 – part of even-numbered items. 
Later on we calculate the correlation coefficient between total scores of 

two “halves” tests, and estimate reliability of test, applying for it Spearman-
Brown formula. While splitting particular tested items into two halves, an 
equal level of variance on both halves must be assumed (DeVellis, 2003). 

The other alternative types of reliability measurement for split-half scale 
development are: balanced halves and random halves. In the former, one 
must identify some potentially important item characteristics (such as item 
length, or type of response indicating presence or absence of the variable in 
question). The two halves are then formed, so the characteristics of both of 
them are equally represented either in the first or second half, each according 
to the same level of items word-formations and so on. In contrast, through 
random halves one obtains halves based on random allocation of each item 
within one of the two subsets that should be eventually correlated with each 
other. The quality of this approach depends on the number of items chosen 
for analysis, the number of characteristics of subject analysis and degree of 
independence among items as well.  

Kelly (1958) advocated improving split-half reliability by making the 
split tests as similar as possible through matching of item content and 
difficulty. Cronbach (1951) believed that random splits would yield 
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coefficients lower to parallel form (or planned split). Finally the split-half 
method is probably one of the best methods for estimating reliability where 
test (measurement) answers will be corrected for guessing, or where item 
weighting will be used.  

Internal consistency reliability methods 

Internal consistency reliability methods are based on statistical 
exploration of items either in covariance or correlation with total test score 
in one time approach. Internal consistency refers to the interrelatedness of a 
set of items. Sometimes it is confused with homogeneity as though they were 
synonymous. Homogeneity refers to the unidimensionality of the set of 
items. Although internal consistency is certainly necessary for homogeneity, 
it is not sufficient (Hattie, 1985; Cortina, 1993).  

Cronbach (1951) viewed reliability (including internal consistency 
measures) as the proportion of test variance that was attributable to group 
and general factors. Specific item variance, or uniqueness, was considered an 
error. Also in Cronbach’s point of view, Alpha will be an underestimate of 
reliability (as he defined it) unless the inter-item correlation matrix will be of 
unit rank (i.e. unidimensional). Moreover Cronbach's early statements (1947) 
about reliability suggest that the reliability of a multidimensional measure 
can only be estimated by correlating scores on parallel forms of a test that 
each represent the same structure.  

• Cronbach Alpha  
Alpha coefficient is the general version of the Kuder-Richardson 20 

coefficient of equivalence. It is a general version, because the K-R 
coefficient applies only to dichotomous items, whereas Alpha applies to any 
set of items regardless of the response scale. Cronbach's coefficient Alpha is 
based on the assumption of compound symmetry (equal item variances and 
covariances) as far as items reliability estimation is concerned. Specifically 
Alpha coefficient is (Cronbach, 1951): 

2

1
21

1

i

k

X
i

X

k
k

σ
α

σ
=

⎛ ⎞
⎜⎛ ⎞= −⎜⎜ ⎟−⎝ ⎠ ⎜ ⎟⎜ ⎟
⎝ ⎠

∑
.

⎟
⎟

                                                                   (5.0) 

where:  – number of items in the scale, where k 2,k ≥ 2
iXσ – variance of 

item, -thi 2
Xσ – total variance of the scale. 
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If there is no true score but only error in the items (which is esoteric and 
unique), then the variance of the sum will be the same as the sum of 
variances for individual items. In consequence, coefficient Alpha will equal 
to zero. If all items are perfectly reliable and measure the same thing (true 
score), then coefficient Alpha will equal to 1 (Peter, 1979; Netemeyer et al., 
2003).  

And as far as the Alpha's standard error is concerned it is inversely 
related to sample size. Thus, researchers seeking to improve the predictive 
ability of their scales can do so indirectly through increasing sample size. In 
case of scale length, it has both direct (via its influence on Alpha) and 
indirect (via its influence on the standard error) measurement benefits to the 
researcher. Finally, the effects of item inter-correlations on both the 
standard error and Alpha are dramatic, e.g. stronger correlations among the 
items drastically reduce the standard error and increase Alpha.  

Research findings also confirm that larger heterogeneity within the 
covariance matrix negatively impacts reliability. Specifically, it decreases 
the precision of the Alpha estimate. Some analysis provides also insights for 
considering additional new items to a scale. It is not always that Alpha will 
be enhanced when more items will be added. It depends rather on the length 
of the original scale and their items correlations. The items added must be of 
increasingly high quality (in terms of their correlations with the original 
items) to improve Alpha at all (Iacobucci et al., 2005). 

• Kuder and Richardson (K-R 20 and K-R 21),  
Kuder and Richardson (1937) introduced another approach to reliability 

measurement, which required only one test administration. They proposed a 
method for estimating test reliability and its hypothetical equivalent. They 
believed their estimate would be applicable to any unidimensional test / scale 
measurement where items were unit weighted. Inter item coefficients were 
allowed to vary between their possible limits, as were varying proportions of 
correct answers. Items did not need to be equally difficult or equally 
correlated with other items. In K-R 20 approach instead of using two tests 
forms, the actual test was compared with its hypothetical equivalent. 
Because reliability had been defined as the solution between two forms of a 
test, the coefficient reliability could be estimated by computing the 
correlation between the actual test and its hypothetical counterpart. 

For items that are scored dichotomously, a proposed formula enabled to 
split the test, consisting of  items into k  parts. That means, one part of it 
equals to the other one, particular item. The analysis should be based on 
parallel test items. For example, for answers 0 or 1 with equal level of 

k
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difficulty, a fraction of good answers  equals the fraction of bad answers 

 If one doesn’t know the level of difficulty on particular tested items (as 
happens in K-R 20 formula), then we can accept K-R 21 where this level is 
estimated approximately, or is comparable among test items. Both formulas 
are widely discussed in Kuder and Richardson (1937) and also in Ferguson 
and Takane (2009). 

p
.q

Kuder and Richardson in their investigations emphasized that K-R 20 
required item variances, whereas K-R 21 required item difficulties.  If items 
were equally difficult, then two values would be the same. Otherwise, the 
reliability estimate from K-R 20 would exceed that from K-R 21.  

Reliability estimation for multidimensional reflective indicators 

If there are more different types of scales under investigation, then their 
sets of items must be assigned separately to each measured subscale. Next 
(for each of subscale), a reliability estimation is calculated. The problem of 
many items and sub scales reliability estimation was solved by Armor 
(1974), when he proposed Theta and Omega reliability formulas. 

Theta coefficient can be easily understood once we consider properties of 
Principal Components, i.e. the Factor Analysis Model on which this 
reliability coefficient is based. As a result it depends on whether we measure 
a single phenomenon or more than just one. In a case when a set of items is 
measuring a single phenomenon we could assume that in principal 
components analysis: 1) the first extracted component should explain a large 
proportion of the variance in the items (e.g., > 40%), 2) subsequent 
components should explain fairly equal proportions of the remaining 
variance except for a gradual decrease, 3) all of most the items should have 
substantial loadings on the first component (e.g., > 0.3), and 4) all or most of 
the items should have higher loadings on the first component than on 
subsequent components. 

In contrast, if we measure many phenomena, principal components 
analysis of items should meet the following conditions: 1) the number of 
statistically meaningful components should equal the number of 
hypothesized phenomena, 2) after rotation, specific items should have higher 
factor loadings on the hypothesized relevant component than on the other 
components, and 3) components extracted subsequently to the number of 
hypothesized components should be statistically unimportant and 
substantively uninterpretable (Carmines and Zeller, 1979).  
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Once the items and their corresponding weights are chosen, the reliability 
of the resulting scale can be estimated using the following formula for Theta 
(Armor, 1974; Carmines and Zeller, 1979): 

1

11
1

k
k

θ .
λ

⎛
= −⎜− ⎝ ⎠

⎞
⎟

       
                                                                     (5.1) 

where  is the highest eigenvalue of correlation matrix among all the 
items of the scale. 

1λ

Other coefficient useful for reliability estimation is called Omega Ω  and 
is applied in Factor Analysis (Armor, 1974; Carmines and Zeller, 1979). It is 
expressed as follows: 
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where:  – denotes communality of observable variable  estimated 
on correlation matrix. 

2
ih iX

This reliability estimate is applied for linear latent variables – subscales. 
Omega is based on the Common Factor Analysis Model (CFAM), where 
unities are replaced by communality estimates in the main diagonal of the 
correlation matrix prior to factoring.   

Between Theta and Omega  there are two important differences. First, 
they are based on different factor-analytic models. Theta reliability coefficient 
Theta  is grounded in the Principal Components Model, whereas Omega Ω  
is based on CFAM. This means that one always uses 1.0’s in the main 
diagonal to compute the eigenvalues on which Theta is based but the value of 
Omega depends, in part, on communalities, which are estimated quantities not 
fixed ones. Because Omega is based on estimated communalities, there is an 
element of indeterminacy in its calculation that is not present in Theta.  

θ Ω

θ

Second, unlike Theta, Omega does not assess the reliability of separate 
scales in the event of multiple dimensions (Armor, 1974). Omega rather 
provides a coefficient that estimates the reliability of all the common factors 
in a given item set (Carmines and Zeller, 1979). 

 
 



MEASUREMENT, RELIABILITY AND SCALES CONSTRUCTION […]                  81 
 

5. CONFIRMATIVE UNIDIMENSIONAL AND 
MULTIDIMENSIONAL FORMATIVE INDICATORS 

Confirmative Factor Analysis (CFA) in a view of Classical Theory of 
Measurement allows on the other hand to perform an extended analysis of 
the reliability and estimation of additional coefficients. Usually it is assumed 
that each variable on observable one ( )1,..., ,iX i k=  is affected only by 
one latent variable (Kozyra, 2004): 

.i iX iλξ δ= +                                                                                       (6.0) 

where: iλ  – coefficient between observable variable depending on latent 
variable, 

ξ  – latent variable, 
iδ  – random errors in the measured latent variable, 

Reliability coefficient of single indicator iX  is therefore given by 
(Bollen, 1989): 
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 where – iiθ – measurement errors. 
This equation may be simplified in case of standardized latent variable 
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 The reliability coefficient of the unweighted sum of k indicators 

1 ... kX X= + + X  will be then described by (Bollen, 1989): 
2
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In the denominator of this equation there is a sum of all elements of the 
covariance matrix of variables, ( )1,..., ,iX i k= whereas in the numerator, 
this sum is deducted, e.g. the variances of measurement errors occurring in 
the covariance matrix. For the standardized latent variable ξ  and 
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uncorrelated with each measurement errors iiθ , this equation is simplified. 
As a result we obtain (Bollen, 1989):  
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                                                  (6.4)

 
And this equation is one of the most commonly applied in the reliability 

estimation for unidimensional indicators, which are considered in 
Confirmation Factor Analysis (CFA). If its value is obtained on the 0.7 level 
(Hair et al., 1992), then reliability measurement is strongly satisfying.  

Another quite often practiced reliability coefficient is the variance 
extracted coefficient, which for standardized latent variables is expressed as 
follows (Bollen, 1989):   
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∑ ∑ ∑
If this coefficient reaches the level of at least 0.5 (Hair et al, 1992), then 

the estimation of reliability measurement is sufficient. In the case when 
measurement errors of observable variables are correlated, then the formula 
of reliability takes the following form (Bollen, 1989): 
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On the other hand if latent variable is measured on weighted sum of 
observable variables such as: 1i ... ,k kX wX w X= + +  then reliability 
coefficient for standardized latent variable and correlated measurement 
errors will be expressed as follows (Bollen, 1989; Kozyra, 2004): 
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And if measurement errors remain uncorrelated, then the above equation 
is simplified to  (Bollen, 1989; Kozyra, 2004): 
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At given variance values for uncorrelated measurement errors, the highest 
level of reliability for the weighted sum of observable variables, will be 
obtained provided the weights are equal (Ostasiewicz, 2002, 2003), e.g., 
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As a result the following reliability coefficient is obtained (Bollen, 1989; 
Kozyra, 2004; Ostasiewicz, 2002, 2003): 
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The other well-known index such as Dillon-Goldstein’s (or Jöreskog’s) 
rho (Wertz et al., 1974) better known as composite reliability is considered 
as homogenous if it is larger than 0, 
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Dillon-Goldstein’s rho is considered to be a better indicator than 
Cronbach’s alpha. Indeed, the latter assumes the so-called tau-equivalence 
(or paralleled) of the manifest variables, i.e. each manifest variable is 
assumed to be equally important in defining the latent variable. Dillon-
Goldstein’s rho does not make this assumption as it is based on the results 
from the model (i.e. the loadings) rather than the correlations observed 
between the manifest variables in the dataset. 

All the above described reliability coefficients are applied only when 
observable variable compose single latent variable. In the case when 
observable variables are affected with more than just one latent 
variable, then reliability coefficient is estimated with squared multiple 
correlation  where 2

iXR iX  is crossed in the analysis with latent variables 

( 1, ... ), .j nξ =  The coefficient is given by the formula (Bollen, 1989): 
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where: 2
iXσ  denotes variance of iX  due to estimated model. This type of 

reliability coefficient for joint measurement model is likely to be described 
by analogy as coefficient for observable variables (Bollen, 1989):  
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This coefficient enables the researcher to indicate what part of the total 
observable variables variance is explained by latent variables in a 
confirmatory model. 

6. ITEM RESPONSE THEORY (IRT) 

Item Response Theory (IRT) is an alternative option to Classical True-
Score Theory of Measurement (CTM). It originates from the early works of 
Lazarsfeld, Green and Torgerson conducted in the 1950s (Aranowska, 
2005). However, since Lord and Novick’s (1968) classic book introduced 
model-based measurement, a quiet revolution has occurred in measurement 
theory. Item Response Theory (IRT) is known also as Latent Trait Theory, in 
which trait level estimates depend on both persons’ responses and on the 
properties of the items that are administered. This theory breaks off from the 
fundamental constriction of CTM, namely the assumption of parallel items 
and dependence of the reliability in measurement within the characteristics 
in the sample. In contrast to the parallel items position in a scale associated 
with model of CTM, in IRT theory one needs to describe systematic 
relationships between items, which form a hierarchical monotone 
relationship. An example of such a scale is a well-known monotonic 
Guttman scale, whose hierarchical and monotonic nature reflects items on 
scale measuring attitudes e.g. towards product or some type of service. This 
simplified scale consists no longer of parallel item positions as compared to 
the Likert scale (in CTM), but its items are strongly hierarchical. The 
unidimensional Guttman scale is usually not a unidimensional scale as it is 
in CTM in context of factorial approach. In the case of the Guttman scale, 
the underlying factor of the latent scale is hidden as a cause of differences 
in the responses to scale items. As a result, there occurs a strong 
correlation between adjacent items of Guttman scale, and there are 
differences in the average values of results for specific items. In the case of 



MEASUREMENT, RELIABILITY AND SCALES CONSTRUCTION […]                  85 
 
the unidimensional Guttman scale application of factor analysis will not 
lead to the disclosure of one common factor for this scale (Sagan, 2002). 

In literature there are many diverse IRT models. We do not discuss them 
all here. As a matter of fact the main focus was put on unidimensional 
models. The origins of IRT and early models emphasized dichotomous item 
formats (e.g. the Rasch model, 1960), which were further extended to other 
item formats, such as rating scales (Andrich, 1978, 1982) and partial credit 
scoring (Masters, 1982). Next, the undimensional IRT models have been 
generalized to multidimensional models where traits could be measured 
and scales could be constructed by comparisons within tasks (Kelderman 
and Rijkes, 1994), changes across conditions (Embretson, 1991), subtasks 
representing underlying cognitive components (Embretson, 1984), or 
conditioning on measurement-taking strategy (Rost, 1990). 

As we can infer, IRT represents a family of models rather than a theory 
specifying a single set of procedures. One important way in which the 
alternative IRT models differ is the number of item parameters with which 
they are concerned. It usually concentrates on three aspects of an item’s 
performance. They are: items difficulty,  items capacity to discriminate, 
items susceptibility to false positives.  

Item Response Theory in its underlying assumptions is grounded in 
probability area, where respondent has a potential ability Θ  and probability 
equal of 1, to give the correct answer on  item (under investigation in 
the measurement), and when the difficulty level is lower or equal to  
Otherwise the success of making right answer is 0. According to Torgerson 
(1958) there is function 

-thi
.Θ

f  of such probability, that is expressed as follows: 

( ) .i iP aΘ = Θ+ iC                                                                                (7.0) 

where:  denotes coefficient of slope line. ia
In fact, IRT assumes a probabilistic model wherein the likelihood that 

individuals will respond in a particular manner to an item or question is 
proportional to that individual's position on a latent trait or continuum.  This 
can be also illustrated on Figure 1, according to ICC (Item Characteristic 
Curve). This curve or relation in the model was deterministic as far as 
Guttman solution was concerned. The latest models have a probabilistic 
nature. In Rasch’s model, or Birnbaum’s model, it is a parametric logistic 
function. ICC typically describes how changes in trait level relate to changes 
in probability of a specified response. For dichotomous items, in which a 
specified response is considered “correct” or in “agreement” with an item, 
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the ICC regresses the probability of item success on trait level. For 
polytomous items, such as rating scale, the ICC regresses the probability of 
responses in each category on trait level. 
 

( )iP Θ  

 

 

 

 

                                                 

                                                                                            Θ  

          
Figure 1. Item characteristic curve 

Source: based on: Rosenbaum 1987, Raju 1988, Embretson and Reise 2000; Aranowska, 
2005 

Because probability cannot be greater than 1 or lower than 0, there were 
introduced other modeling solutions such as Logit Probability (Aranowska, 
2005): 
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Logit fraction expresses ratio of “success” to “failure”. Logarithm 
function transforms positive numbers into real axis. That is, when “success” 
is greater than “failure”, positive numbers appear. On the other hand, when 
“success” is lower than “failure” – into negative. When the fraction equals 
unity – into 0. 

An early and still popular member of the IRT family is Rasch Model, 
which quantifies the difficulty parameter. Rasch understood that the 
relationship between above transformation and Θ  should be expressed in 
the following way (Rasch, 1960): 

( )
( )

log .
1

i
i

i

P
b

P
Θ

= Θ−
− Θ

                                                                       (7.2) 

1

0,5

0
-4 4-2 20



MEASUREMENT, RELIABILITY AND SCALES CONSTRUCTION […]                  87 
 

where:  – parameter corresponding to the position of i-th item in the 
measurement, assuming that difficulty item is following 

ib
;Θ   

,ibΘ −  when “success” of correct answer for i-th position is equal 0.5  
where answer is random.  

For example, if the odds that a person passes an item is 4/1, then out of 
five chances, four successes and one failure are expected. Alternatively, odds 
are the probability of “success” divided by the probability of “failure”, 
which would be 0.80/0.20 in this example. If the trait level equals item 
difficulty, then the log odds of “success” will be zero. Taking the antilog of 
zero yields and odds of 1.0 (or 0.50/0.50), which means that a person is as 
likely to succeed as to fail on this particular item (Embretson and Reise, 
2000). Solving next the equation we obtain: 
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This model reflects the principle for scaling of unidimensional metrical 
trait (variable). Therefore it may be also applied for interval scale 
construction. Moreover in this equation (known as one-parameter logistic) 
dependent variable is predicted as a probability rather than as a log odds. 
This is due to its exponential form in predicting probabilities and to the 
inclusion of only one item parameter (e.g. difficulty) to represent item 
differences. 

In the course of time, the IRT basic Rasch Model was extended with 
additional parameters. As a result there appeared: 

• two-parametric logistic model of Birnbaum’s (1968): 
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where:  denotes parameter of additional item discrimination, 
corresponding to curve slope; 

ia

D  – some constant. 
when then (7.4) reflects normal distribution function. 1, 7D =
In the two parameter logistic model, item discrimination is included. The 

model has two parameters to represent item properties. Both item difficulty 
and item discrimination are included in the exponential form of logistic 
model. Item discrimination is a multiplier of the difference between trait 
level and item difficulty. Item discriminations are related to the biserial 
correlations between item responses and total scores. Hence for this equation 
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(based on two-parameter logistic solution), the impact of the difference 
between trait level and item difficulty depends on the discriminating power 
of the item. Specifically, the difference between trait level and item 
difficulty has a greater impact on the probabilities of highly  discriminating 
items (Embretson and Reise, 2000). 

• three-parameter logistic model supplemented with guessing 
parameter (Birnbaum, 1968): 
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 for  1,..., ,i k=      (7.5) 

where:  – denotes number of item position.  k
In three-parameter solution, a one more parameter is added to represent 

an item characteristics curve that does not fall to zero. For example, when an 
item will be solved by guessing, as in multiple choice cognitive items, the 
probability of “success” is substantially greater than zero, even for low trait 
levels. This model accommodates guessing by adding a lower asymptote 
parameter  .ic

Last, unlike the model of Rasch and Birnbaum, we have also in IRT 
family models, a non-parametric Mokken model (stochastic model), where 
in the constructed scale, the respondent is giving positive answers on items 
that have probability of positive response to the less difficult items 
significantly higher than zero (Mokken, 1971). 

For assessing the degree of monotonicity of scale within the meaning of 
Guttman scale, we are allowed to use many methods. The most important is 
the coefficient of scalar and reproducibility scale. There are also used chi-
square test of significance on Guttman scale. The scalar coefficient is given 
by (Sagan, 2002): 

1 .S

EC
X

= −
                                                                                         

(7.6) 

where: E – number of errors in Guttman table (constructed based on item 
responses of the respective scale),  

X – number of accidental errors of the scale, expressed by: 
( ) .nX p n T= −                                                                                  (7.7)

 where: p – probability of giving response on the respective item (0.5 for 
response such as “yes” – „no”), 

n – number of choices in items, 
nT  – number of elections in the largest category for each item. 
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The Guttman scale is a monotonic scale (reliable) if scalar ratio is greater 
than 0.6. Coefficient of reproducibility is an alternative indicator of 
monotonicity scale: 

1 .r

EC
N

= −
                                                                                      

(7.8) 

where: E – number of errors in Guttman’s table, 
N – number of all the choices on the scale. It is a product of the number 

of items and number of respondents. 
Guttman scale is a monotonic scale (reliable), if the coefficient of 

reproducibility is greater than 0.9. Also synthetic indicator of monotonicity 
(reliability) in the scale is H-Loevinger’ coefficient: 

1 .
o

EH
E

= −
                                                                                         

(7.9) 

where: E – probability of errors in in a given Guttman table, 
oE  – probability of errors for a completely independent position in the 

scale.  
For a reliable scale, a minimum value of H-Loevinger should be greater 

than 0.3, and the scale should have strong values of H greater than 0.5. In the 
case of monotonic items or various scale difficulty, H coefficient is a better 
measure of the reliability of the scale than the α-Cronbach. 

7. DIFFERENCES BETWEEN CLASSICAL TRUE-SCORE THEORY 
(CTM) AND ITEM RESPONSE THEORY (IRT) 

In CTM, true score estimates are typically obtained by summing 
responses across items which in the next phase form a respective scale. In 
IRT, estimating trait levels involves a search process for optimal estimates. 
Also in IRT one can construct a scale but its items entities have contrary (to 
CTM) structure of responses distribution, e.g., they are based on 
dichotomous answers (Mokken, 1971). In both approaches, measurement is 
based on latent variables (or extracted scales). The particular item response 
or test score is defined as indicator of a person’s standing on the latent 
variable, but it does not completely define the latent variable. Typically all 
marketing research measurement, e.g. customers (based on human internal 
traits) are usually of indirect characteristics. In CTM the independent 
variables are combined additively and directly to predict the dependent 
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variable. In IRT (known as a strong modeling method) strong assumptions 
must be met in advance.  

The comparison of the Classical True-Score Theory of Measurement 
(known as “old rules”) and Item Response Theory (“new rules”) could be 
started from Lord and Novick (1968) early derivations. New rules of 
measurement IRT, are fundamentally different from the old rules – CTM. 
Many old rules, in fact, must be revised, generalized, or even abandoned. 
Hence a description is here introduced concerning the differences between 
two measurement concepts. Some of them are summed up in Table 2. 

In first aspect – standard error of measurement, difference appears on 
whether the standard error of measurement is constant or variable among the 
scores in the same population. In CTM at standard error of measurement, a 
constancy is specified, whereas in IRT a variability is considered. Besides, 
measurement is different whether the standard error is specific or general 
across populations. In CTM it is rather population specific, whereas IRT it is 
population general. Moreover if we estimate standard error in IRT we 
assume that the relationship between trait score and raw score is nonlinear, 
and the confidence interval band becomes increasingly wide for extreme 
scores. Unlike CTM, neither the trait score estimates nor their corresponding 
standard errors depend on population distributions. In IRT, trait scores are 
estimated separately for each score or response pattern, controlling for the 
characteristics (e.g. difficulty) of the items that are administered. Standard 
errors are the smallest when items are optimally appropriate for a particular 
trait score level and when item discriminations are high.  

As far as the test (measurement) length and reliability are now 
concerned, in IRT short tests can be more reliable than it is the case for CTM. 
In CTM (based for example on the Spearman-Brown prophesy formula) a test  
is lengthened by factor of n parallel parts, and hence the true variance 
increases more rapidly than error variance. Thus, in CTM, shorter tests 
(measurements) generally imply increased measurement error. The new rule 
from IRT asserts that short tests can be more reliable than longer tests. The 
implication, of course, is that the shorter test yields less measurement error.  

Another aspect relates to interchangeable test forms when respondents 
receive different instruments – measurement forms, where some type of 
equating is needed before their scores can be compared. Traditionally, CTM 
relied on several conditions associated with the measurement of the form 
parallelism in order to equate scores. These conditions included the equality of 
means and variances across measured items, as well as equality of 
covariances with external variables. In practice, measurement form 
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parallelism cannot be met. Measurement form either means or variances often 
differ somewhat. Furthermore, often score comparisons between rather 
different measurements sometimes are desired. Thus substantial effort must be 
devoted to procedures for test (e.g. process of scale measurement) equating.  

More recent extensions of CTM have considered the test form equating issue 
more liberally, as score equivalencies between forms. Several procedures have 
been developed equating tests with different item properties, such as linear 
equating and equipercentile equating. These methods are used in conjunction 
with various empirical designs such as random groups or common anchor items. 

The IRT version of "equating" follows directly from the IRT model, which 
implicitly controls for item differences between test forms. Finally, most 
important, better estimation of trait levels for all individuals are obtained from 
administering different test forms. More accurate estimation of each individual 
means that score differences are more reliable. Thus, the new rule from IRT 
means that nonparallel test forms (that differ substantially, and deliberately, in 
difficulty level from other forms), yield better score comparisons. 

According to the next condition – unbiased estimation of item profiles, 
in CTM, statistic for item difficulty is typically p-value, which is computed 
as the proportion passing. The CTM statistic for item discrimination is item-
total correlation (e.g. biserial correlation). Both statistics can differ 
substantially across samples if computed from unrepresentative samples. In 
contrast, IRT the correspondence of item difficulty values is quite close 
between any of the two groups, that is, unbiased estimates of item properties 
may be obtained from nonrepresentative samples. 

Differences appear also when establishing meaningful scale scores. It 
can be noted that test score meaning depends on specifying an appropriate 
comparison. A comparison is defined by two features: 

• the standard with which a score is compared, 
• the numerical basis of the comparison (order, difference, ratio, etc.).  

For instance in CTM, score meaning is determined by a norm-referenced 
standard, and the numerical basis is order. That is, scores have meaning 
when they are compared with a relevant group of people for relative 
position. To facilitate this comparison, raw scores are linearly transformed 
into standard scores that have more direct meaning for a relative position. An 
objection that is often raised to norm-referenced meaning is that scores have 
no meaning for what the person actually can do. In IRT, a score is compared 
with items, e.g. persons and items are calibrated on a common scale. The 
meaning of a score can be referenced directly to the items. If these items are 
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further structured by content, substantive trait level meaning can be derived 
(Mokken, 1971). 

Differences between CTM and IRT appear also in a process of 
establishing scale properties. Routine test development procedures for many 
social research problems measurements include selecting items to yield 
normal distributions in a target population. Even if normal distributions are 
not achieved in the original raw score metric, scores may be transformed or 
normalized to yield a normal distribution. These transformations are nonlinear, 
and therefore they change the relative distances between scores. And score 
distributions have implications for the level of measurement that is achieved. 
Jones (1971) pointed out that the classical methods to develop normally 
distributed trait scale scores will achieve interval scale measurement under 
certain assumptions. Specifically, these assumptions are that true scores: 

• have interval scale properties, 
• are normally distributed in the population.  

Table 2 
Rules of the measurement in Classical Theory of Measurement and Item Response Theory 

Classical Theory of Measurement 
• The standard error of measurement applies to all scores in a particular 

population. 
• Longer tests are more reliable than shorter tests. 
• Comparing test scores across multiple forms depends on test parallelism 

or adequate equating. 
• Unbiased assessment of item properties depends on representative 

samples from the population. 
• Meaningful scale scores are obtained by comparisons of position in a 

score distribution. 
• Interval scale properties are achieved by selecting items that yield normal 

raw score distributions. 
Item Response Theory 

• The standard error of measurement differs across scores, but generalizes 
across populations. 

• Shorter tests can be more reliable than longer tests. 
• Comparing scores from multiple forms is optimal when test difficulty 

levels vary across persons. 
• Unbiased estimates of item properties may be obtained from 

unrepresentative samples. 
• Meaningful scale scores are obtained by comparisons of distances from 

various items. 
• Interval scale properties are achieved by justifiable measurement models, 

not score distributions. 
Source: Embretson and Reise, 2000 
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Only linear transformations preserve score intervals as well as 
distribution shapes (Davison and Sharma, 1990). Thus, if raw scores are 
normally distributed, then only a linear transformation, such as a standard 
score conversion, will preserve score intervals to appropriately estimate true 
score. However, scale properties are tied to a specific population. If the 
measurement is applied to a person from another population, can the interval 
scale properties still be justified? If not, then scale properties are population-
specific.  

For IRT models, particularly the Rasch model, interval or even ratio scale 
properties are achieved to some other extent. The Rasch model also has been 
linked to fundamental measurement because of the simple additivity of the 
parameters. A basic tenant of fundamental measurement is additive 
decomposition (Michel, 1990), in which two parameters are additively 
related to a third variable. In the Rasch model, additive decomposition is 
achieved; the log odds that a person endorses or solves an item is the simple 
difference between his or her trait level, jθ , and the item's difficulty, will 
be as follows: 

jb

LogOdd .ij j ibθ= −                                                                            (8.0) 

In additive decomposition, interval scale properties hold if the law of 
large numbers apply. Specifically, the same performance differences must be 
observed when trait scores have the same interscore distances, regardless of 
their overall positions on the trait score continuum. 

8. CONCLUSIONS AND POSSIBLE APPLICATIONS OF THE 
MEASUREMENT AND SCALES EXTRACTION IN MARKETING 

FIELD 

In both theory and practice, reliability issues are of great importance. A 
perfectly reliable measurement and thus yielded scale should reflect the 
researcher’s early measurement intentions that remain permanent or are 
fixed over time. Thus the same measure being applied to the same person or 
object should give the same value each time, provided that the measured 
object itself has not changed at this time. However numbers ascribed to units 
or observations, do not guarantee that the meaning and measurement level 
will be the same in terms of measured objects. Virtually there is no simple 
way to look at the numbers and say whether they express any real value or 
not, or whether there are off the top of the head. This is because some 
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measurements are actually close to the designated conditions of accidental 
measurement. Others are not strictly "accidental", but they contain a large 
element of randomness. The conclusions to be drawn from the same 
statistical results may vary substantially, depending on whether we know 
that the measurements are highly accurate or not. Differences and correlation 
coefficients can often prove to be irrelevant, because measurements were not 
accurate. So the issues of measurement and reliability deserves much 
attention from any researcher who cares and endeavors to solve scientific 
problems.    

In literature we can differentiate two main approaches to measurement. 
One is called The Classical True-Score Theory, the other, Item Response 
Theory. Appropriate choice of approach depends on the research 
requirements and objectives (in particular field of science). It also varies 
from perspective of: 1) type of the measurement, meaning and purpose of 
applied statistics, 2) unidimensional vs. multidimensional measurement, 
homogeneous (with a single factor measuring only one aspect e.g. human 
trait) vs.  heterogeneous data (dealing with more complex factorial structure 
e.g. human traits).  

As can be easily inferred, each area of science develops its own set of 
measurement procedures, tools and methods. For example in physics, there 
are developed methods for detecting subatomic particles. In social sciences, 
measurement methods are mostly designed and applied to study human life 
and in general their characteristics. In many social fields (such as business 
administration, economics, political science, sociology, international 
relations, communication, etc.), the core aspect of investigations (e.g. based 
on human activities, behaviour, etc.) involves psychology which indirectly 
affects all these fields. For example in marketing research, one monitors 
workers or customers beliefs, motivational states, value systems, 
expectancies, needs, emotions, or perceptions. In consequence, marketing 
heavily relies on psychometrics.  

Psychometrics (as the subspecialty concerned with measuring 
psychological and social phenomena) has emerged as a methodological 
paradigm in its own right. Its growth and development was mainly due to: 

• widespread use of psychometric definitions of reliability, 
• popularity of factor analysis in the social science research, 
• adoption of psychometric methods for developing scales measuring 

an array of various subjects. 
That is why psychometric measurement was easily adapted in customers 

research. Up to this moment it is one of the most common applied solution in 
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customers measurement and in customers scales based development. This 
assertion can be proved by Bearden and Netemeyer’s compilation work (1999) 
which classified different types of multi-item scales, developed measures, 
evaluation procedures, reliability estimation approaches which were used in 
customer behaviour studies. In many instances topics such as dimensionality, 
reliability and even validity were broadly discussed according to practical 
examples and theory that was derived from psychometrics. Bearden and 
Netemeyer mentioned for example marketing scales related to: 

• customers traits and individual differences, e.g. 1) Scales related 
to interpersonal orientation, needs/preferences, and self-concept; 2) Scales 
related to customer compulsiveness and impulsiveness; 3) Scales related to 
country image and affiliation; 4) Scales related to customer opinion 
leadership and opinion seeking; 5) Scales related to innovativeness;  
6) Scales related to customer social influence. 

• customers values, e.g. 1). Scales exploring general values; 2) Scales 
related to environmentalism and socially responsible consumption; 3) Scales 
related to values on materialism and possessions/objects. 

• customers involvement, information processing, and price 
perceptions, e.g., 1) Scales on involvement with a specific class of  product; 
2) Scales on involvement general to several products; 3) Scales related to 
purchasing involvement. 

• customers reactions to advertising stimuli, e.g. 1) Scales related to 
ad emotions and ad content; 2) Scales related to ad believability/credibility; 
3) Scales related to children’s advertising. 

• customers attitudes about satisfaction and post-purchase 
behavior, e.g. 1) Scales measuring customers attitudes toward business 
practices and marketing; 2) Scales related to post-purchase 
behaviour/discontent; 3) Scales toward product/services satisfaction.  

Also beyond the above customers based scales, the other inherited 
subjects by marketing with its applications (derived from psychometrics) can 
be found in:   

• job satisfaction measures scales,  
• role perceptions/conflict in organization scales,  
• job burnout/tension scales,  
• performance measures scales,  
• control and leadership scales,  
• organizational commitment, or sales/selling approaches in the 

company scales.  
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In consequence psychometrics provided solid basis for many research 
issues in marketing studies. This is because the principles of psychometrics 
are set in regards to the people and people make up the main area of any 
marketing researchers scientific inspiration.  

Marketing, however, reached its own concept of measurement and scale 
construction. For instance, at recent times we were supplemented with 
Rossiter’s C-OAR-SE approach (as a sort of direct response to 
psychometrics) on how to measure marketing phenomenon and construct an 
appropriate scale. In C-OAR-SE, Rossiter (2002) optionally proposed a 
brand new procedure for development of the scale to measure marketing 
latent constructs. He gave a new perspective on the measurement and 
indicated also when to use single-item vs. multiple-item scales and when to 
use an index of essential items rather than selecting unidimensional items. 
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