
e-Informatica Software Engineering Journal, Volume 11, Issue 1, 2017, pages: 61–78, DOI 10.5277/e-Inf170103

Systematic Literature Review on Search Based
Mutation Testing

Nishtha Jatanaa, Bharti Surib, Shweta Ranib
aResearch Scholar, USICT and Assistant Professor, Department of Computer Science and Engineering,

MSIT, New Delhi, India
bUSICT, GGS Indraprastha University, New Delhi, India

nishtha.jatana@gmail.com, bhartisuri@gmail.com, shweta2610@gmail.com

Abstract
Search based techniques have been widely applied in the domain of software testing. This Systematic
Literature Review aims to present the research carried out in the field of search based approaches
applied particularly to mutation testing. During the course of literature review, renowned databases
were searched for the relevant publications in the field to include relevant studies up to the year
2014. Few studies for the year 2015–16, gathered by performing snowball search, have also been
included. For reviewing the literature in the field, 43 studies were evaluated, out of which 18 studies
were thoroughly studied and analysed. The result of this SLR shows that search based techniques
were applied to mutation testing primarily for two purposes, either for mutant optimisation or
for test case optimisation. The future directions of this SLR suggests the application of search
based techniques for other issues related to mutation testing, like, solution to equivalents mutants,
generation of non-trivial mutants, multi-objective test data generation and non-functional testing.

Keywords: software testing, analysis and verification, systematic reviews and mapping
studies

1. Introduction

Software testing [1] is a rigorous activity which
must be done to find the errors, quality assess-
ment and to gain insight into the state of the sys-
tem. The key challenge in the process of software
testing is to reduce costs and maximize benefits.
Since it is extremely time-consuming and requires
a lot of effort; the overall testing process needs to
be optimized for testing practices. Software test-
ing involves test planning, design, execution and
evaluation, reporting and closure activities. Test
design is an activity that entails the major chunk
of software test activities. It includes reviewing
the test basis, identifying test conditions, design-
ing tests, evaluating them and thereby designing
the test environment setup. One of the critical
tasks in testing is the generation of test data.
Research on test case generation has become
quite prevalent in the last two decades [2–5].

Search based approaches have been applied to
several optimisation problems [6]. Software test
design portrayed as a well formed optimisation
problem has been solved using meta-heuristic
techniques [7]. The generation of test data can
be automated using meta-heuristics or search
based techniques using a specific fitness function
to guide the search towards a potentially good
solution within a search space [8].

Search based mutation testing (SBMT) works
by formulating the test data generation/opti-
mization and mutant optimization problems as
search problems and applying meta-heuristics
techniques to solve them. Bottaci [9] introduced
the fitness function to apply optimization algo-
rithms to kill the mutants or faulty programs.
This fitness function was based on three con-
ditions: reachability, sufficiency and necessity.
These three conditions served as a base for the
foundation of SBMT and are are still used for

http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_11/eInformatica2017Art3.pdf

62 Nishtha Jatana, Bharti Suri, Shweta Rani

this purpose [10]. Optimization techniques, such
as Genetic Algorithm (GA), Hill Climbing (HC),
Ant Colony Optimization (ACO), Bacteriological
Algorithm (BA) and Immune Inspired Algorithm
(IIA) were used together with mutation testing
by researchers as an art of SBMT [11].

The aim of this systematic review is to ad-
dress the search based approaches applied to
mutation testing either for test case generation
or for mutant optimization. The systematic lit-
erature review (SLR) is the foremost essential
step in the research process conducted to rig-
orously collect, analyse and report the current
literature in the field. An extensive survey by
Jia and Harman [12] comprehensively addressed
developments of mutation testing. [13] lists the
various advancements in the areas of SBMT since
the year 2009. A recent systematic mapping by
Souza et al. [11] mentioned related work in the
context of test data generation for mutation test-
ing, whereas whereas this SLR focuses partic-
ularly on the search based techniques smeared
with mutation testing for test data generation/-
optimization and mutant optimization. A similar
study on SBMT has been recently published
by Silva et al. [14]. The authors explored the
use of meta-heuristic in the context of mutation
testing. The study is very rigorous as well as
detailed and reviews the publications up to the
year 2014. The studies included in this SLR were
also been in the systematic review by Silva et
al. This SLR primarily aims to review the stud-
ies in the field of SBMT up to the year 2014,
however, a few relevant studies of the year 2015
and 2016 were also cited. These recent papers
were collected using the snowballing approach
[15] to find the papers published in the last two
years which cited the studies included in present
SLR. The study and analysis of various papers
collected from a number of sources involves a
great deal of research effort and time as it also
encompasses the review and modification of the
paper entailing s time after it is communicated
to a journal. Review and modification of the
paper also entails time after it is communicated
to a journal. Therefore, in this paper the relevant
studies up to the year 2014 were thoroughly anal-
ysed and included only few studies published in

the year 2015–16. The primary studies selected
for review are the ones which proposed a new
technique for SBMT up to the year 2014. This
SLR contains many figures and ttables to offer
easy access to comprehensive knowledge on the
topic. The studies selected for review were used
immensely by the researchers working in the field
of SBMT.

The rest of the paper is systematized as fol-
lows: Section 2 differentiates between Literature
Review (LR), Systematic Mapping (SM) and
Systematic Literature Review (SLR). Section 3
shows the research method followed for this SLR
highlighting the research question and the used
search strategy. Section 4 analyses the studies in
SBMT. Section 5 presents the results and then
Section 6 presents conclusion.

2. Differentiating LR, SM and SLR

Reviewing the literature in the field is a funda-
mental process prior to any worthwhile research.
This section compares and contrasts the implica-
tions of LR, SM and SLR.
Literature review [16] – “A literature review
is an objective study done to thoroughly summa-
rize and critically analyse the available relevant
research, and to enable the researcher to gather
up to date information, to gain insight into the
current literature that forms a basis of a goal to
be achieved and also justifies the future research
in that area.”
Systematic mapping [17] – “A systematic
mapping study provides a structure of the type of
research reports and results that have been pub-
lished by categorizing them. It often gives a vi-
sual summary, the map, of its results. It requires
less effort while providing a more coarse-grained
overview.”
Systematic Literature Review [18] – “A sys-
tematic literature review is a means of identi-
fying, evaluating and interpreting all available
research relevant to a particular research ques-
tion, or topic area, or phenomenon of interest.
Individual studies contributing to a systematic
review are called primary studies; a systematic
review is a form a secondary study.”

Systematic Literature Review on Search Based Mutation Testing 63

Figure 1. Undertaken course of action for SLR

SLR entails an exhaustive and comprehensive
search process which adheres to the guidelines on
the conduct of a review and inclusion/exclusion
criteria, it is determined by the quality assess-
ment process. However, in the case of LR the
process may not be comprehensive and may or
may not include the quality assessment. SM, on
the other hand, has a complete search process
and identifies primary and secondary research
but may not include formal quality assessment
process [19].

3. Research Method

The aim of this study is to offer insight into
various types of research carried out in the area
of search based mutation testing (SBMT). The
authors followed the guidelines given by Kitchen-
ham [18]. The undertaken course of action is
demonstrated using a sequence diagram (Fig. 1).

Initially, primary knowledge about the sub-
ject of the study was collected. As a result of
an inquisitive study of the research conducted
in the field, a set of research questions (RQs)
were formulated. Search strategy was then de-
signed that forms the base for collecting the
relevant research material from the data repos-
itories. The most vital step was to refine the
data gathered by defining an inclusion/exclusion
criterion. After this stage, 43 relevant studies
were categorized into 18 primary and 25 sec-

ondary studies (discussed in this section). The
method used to extract the primary and sec-
ondary studies is explained in [20]. In order to
answer the RQs, collected and segregated mate-
rial was critically examined; thus, reaching the
conclusion.

The steps trailed in the SLR for test data gen-
eration/optimization and mutant optimization
using search based approaches were conducted in
the way elaborated in the following subsections.

3.1. Research Questions (RQs)

As the RQs form the foundation of the SLR, the
PICOC criteria [20] (given in Table 1) were used
to define the research questions. The PICOC
criteria were defined as follows:
– Population – people, or an application area,

or a group of companies or any such commu-
nity affected by the research

– Intervention – software methodologies/-
tools/technologies/procedures which are re-
quired to solve a particular issue.

– Comparison – software methodologies/-
tools/technologies/procedures with which in-
tervention can be compared.

– Outcomes – factors of significance which are
relevant in the study.

– Context – environment in which the com-
parison takes place.
The aim of this work is to summarize the

current state of art of research in SBMT by

64 Nishtha Jatana, Bharti Suri, Shweta Rani

Table 1. PICOC criteria applied to SLR

Population Search based Mutation Testing
Intervention Search based/meta-heuristic techniques
Comparison Approaches which are not meta-heuristic
Outcomes Test data generation/optimization and mutant optimization techniques involved SBMT
Context Within the domain of SBMT with a focus on empirical studies

Figure 2. Inclusion/exclusion criteria

proposing answers to the set of the following
research questions(RQs).
RQ1: Which search based approaches were used
in collaboration with mutation testing?
RQ2: What are the areas of application in which
search based approaches were applied for muta-
tion testing?
RQ3: What are the findings from the comparison
studies of the techniques used in SBMT?
RQ4: What are the major challenges faced by
the researchers in the field of SBMT?

3.2. Search Process

This section describes the strategy used to mine
the databases containing the research material
and to extract the relevant information related
to the conducted research.

3.2.1. Data Sources

According to the guidelines provided by Kitchen-
ham [20], several data sources were searched to
encompass the maximum possible information.
The following data repositories were explored to

retrieve the relevant publications from confer-
ence proceedings, workshop proceedings, journal
articles, books and theses.
– ACM digital library (www.dl.acm.org)
– IEEE Xplore Digital Library (www.

ieeexplore.ieee.org)
– Science Direct (www.sciencedirect.com)
– Springer (www.springerlink.com)
– Citeseer (scholar.google.com)
– Wiley Online Library (onlinelibrary.wiley.

com)
A few papers were available in more than

one searched repositories and in such cases the
duplicate copies were removed manually.

3.3. Inclusion and Exclusion Criteria

The overall process depicted in Figure 2 was
followed to obtain and segregate the relevant
primary and secondary studies.

3.3.1. Search Strategy

Various research publication repositories pro-
vide different search options for data search. An

www.dl.acm.org
www.ieeexplore.ieee.org
www.ieeexplore.ieee.org
www.sciencedirect.com
www.springerlink.com
scholar.google.com
onlinelibrary.wiley.com
onlinelibrary.wiley.com

Systematic Literature Review on Search Based Mutation Testing 65

Table 2. Search Strings for selected Data Sources

Data Source Search String

IEEE ((((Evolutionary OR heuristic OR search based OR search-based OR nature inspired OR
nature-inspired OR optimization OR selection OR minimization OR prioritization)) AND
(“Mutation Testing” OR “Mutation Analysis” OR “mutation operator testing” OR “fault
injection” OR “fault based testing”))) in command search tab (under advanced search)

ACM (Abstract:Mutation and Abstract:testing) and (Abstract:Evolutionary or Abstract:heuristic
or Abstract:metaheuristic or Abstract:search based or Abstract:search-based or
Abstract:nature or Abstract:inspired or Abstract:nature-inspired or Abstract:optimization
or Abstract:optimisation or Abstract:selection or Abstract:minimization or Ab-
stract:minimisation or Abstract:prioritisation or Abstract:prioritization)

Wiley (Evolutionary OR heuristic OR metaheuristic OR search based OR search-based OR
nature inspired OR nature-inspired OR optimization OR optimisation OR selection OR
minimization OR minimisation OR prioritisation OR prioritization) in Abstract AND
“Mutation Testing" OR “Mutation Analysis” OR “Mutants testing” OR “mutation operator
testing” OR “fault injection” OR “fault based testing” in Abstract)

Elsevier (Evolutionary OR heuristic OR metaheuristic OR search based OR search-based OR nature
inspired OR nature-inspired OR optimization OR optimisation OR selection OR mini-
mization OR minimisation OR prioritisation OR prioritization) and TITLE-ABSTR-KEY
(“Mutation Testing” OR “Mutation Analysis” OR “mutation operator testing” OR “fault
injection” OR “fault based testing”)

Springer Mutation AND testing AND (Evolutionary OR heuristic OR metaheuristic OR search
based OR search-based OR nature OR inspired OR nature-inspired OR optimization
OR optimisation OR selection OR minimization OR minimsation OR prioritisation OR
prioritization)

citeseer ((((Evolutionary OR heuristic OR metaheuristic OR search based OR search-based OR
nature inspired OR nature-inspired OR optimization OR optimisation OR selection OR
minimization OR minimisation OR prioritisation OR prioritization)) AND (“Mutation
Testing” OR “Mutation Analysis” OR “Mutants testing” OR “mutation operator testing”
OR “fault injection” OR “fault based testing”)))

advanced search strategy was used for mining
the data sources to locate the pertinent publi-
cations. The Boolean operators “AND”, “OR”
and “NOT” are used to arrange the keywords
for forming the search string. As the various
databases provide different search capabilities,
as stated in a recent SLR [21, 22], conceptu-
ally similar search strings were used for each
of the data sources listed in Table 2. To en-
sure the maximum retrieval of significant ma-
terial, the search strategy was applied on to
a title, an abstract and keywords. The earliest
research in the field of search based on testing
was published in the year 1976, and thus the
start date for the search was established to be
January, 1976 and the end date was set to De-
cember, 2014.

Initially using the search string as specified in
section 3.2.2, a total of 4314 papers were found.
However, many of these papers pertained to mu-
tation and biology which were not relevant to
our field. Thereafter, a multi-step process was
followed to remove the irrelevant publications.
The number of papers shown by the respective
repositories using the aforesaid search string is
listed in Table 3.

In order to exclude the irrelevant papers, ti-
tle and abstract based exclusion was performed
manually and then the full text was read to
store the appropriate papers in our repository.
After analysing the papers thus found, a list
of active researchers (as listed in Table 4) in
the same field was maintained. Then, to ensure
the completeness of the data, another search

66 Nishtha Jatana, Bharti Suri, Shweta Rani

Table 3. Initial number of papers obtained by
searching the data repositories

Data source Initial Count

IEEE 201
ACM 448
Wiley 1844
Elsevier 20
Springer 1484
Citeseer 317

Table 4. List of authors actively working in the field
of SBMT

Authors Total publications in SBMT

P. May 4
K. Ayari 1
M. Harman 6
M. Papadakis 5
G. Fraser 3
B. Baudry 5
M. Rad 2

was accomplished to locate the leftover papers
of the researchers working in the field. The
reference section of the primary studies was
also checked to extract any relevant publica-
tion that was missing in our collection. A to-
tal of 10 new papers were located out of which
6 were found by reference search and 4 were
found by the author search. The total number
of relevant papers thus collected is listed in Ta-
ble 5.

Table 5. Number of papers after exclusion

Data source Count after exclusion

IEEE 16
ACM 6
Wiley 1
Elsevier 4
Springer 10
Citeseer 1
Others 5

The totally pertinent publication includes all
those papers which presented a new technique(s),
compares existing techniques and empirically
evaluated the techniques. These 43 studies were
then thoroughly reviewed by each author to seg-
regate them into primary and secondary studies.
The papers with a significant contribution in the
field in terms of research ideas and development
were chosen as primary studies and the rest were
marked as secondary ones. Eventually, 18 pri-
mary studies (as shown in Table 6) were then
thoroughly, analysed separately by each author.
It can be seen that 50% of the studies demon-
strated their technique in a theoretical manner
and the remaining 50% evaluated their technique
empirically.

There are a few papers which were not been
included in this SLR that were included in the
recent SLR on SBMT [14]. The papers encompass
[39–47]. These papers are relevant to the field
of SBMT but their contribution to the field is
not novel as the techniques they proposed are
already used by researchers in the field of SBMT.

The papers published in 2015 and 2016 that
are relevant to the field of SBMT were collected
by snowballing. They are listed in the following
section.

4. Analysis of studies in SBMT

This section presents the analysis, trend patterns
and the discussion of the research done in the
field of SBMT.

4.1. Trends in SBMT

Table 7 and Table 8 list the publication types for
the selected studies and primary studies retrieved
from the repositories. Figure 3 shows the publi-
cation trends observed from 1998 to 2014. The
first publication was recorded in 1998 and after
that the research was carried out continuously
in this field. A decline in the research trends is
observed during the year 2006–09.

4.2. Discussion on Primary Studies

Table 9 summarizes the contribution of the se-
lected primary studies and search-based tech-
niques evolved/used by them. Table 10 lists the
subject programs, language and tools used by
the selected primary studies. It is observed that

Systematic Literature Review on Search Based Mutation Testing 67

Table 6. Overview of the selected primary studies

Study ID First Year Type Publisher Research References
Author (C/J/W/B) Category (E/T)

P1 L. Bottaci 2001 C Others T [9]
P2 B. Baudry 2001 W Springer E [23]
P3 B. Baudry 2002 C IEEE E [24]
P4 P. May 2003 B Springer T [25]
P5 M. C. F.P. Emer 2003 J Others E [26]
P6 K. Adamopoulos 2004 C Springer T [27]
P7 Md. M. Masud 2005 C IEEE T [28]
P8 K. Ayari 2007 C ACM E [29]
P9 Y. Jia 2008 C IEEE E [30]
P10 K. K. Mishra 2010 C IEEE T [31]
P11 B. Schwarz 2011 C IEEE T [32]
P12 M. Harman 2011 C ACM T [33]
P13 J.J. Dominguez-Jimenez 2011 J Elsevier E [34]
P14 G. Fraser 2012 J IEEE E [35]
P15 A. A. L. de Oliveira 2013 C IEEE E [36]
P16 M. B. Bashir 2013 C IEEE E [37]
P17 P. S. Yiasemis 2013 C Springer T [38]
P18 M. Papadakis 2013 J Springer T [10]

Type: C – Conference, W – Workshop, B – Book, J – Journal
Research Category: E – Experimental, T – Theoretical

Table 7. Publication type for 43 selected studies

Publication type Number

Journal 13
Workshop 3
Thesis 1
Conference 23
Book 3

Table 8. Publication type for primary studies

Publication type Number

Journal 4
Workshop 1
Book 1
Conference 12

Figure 3. Publication trends of research in SBMT

68 Nishtha Jatana, Bharti Suri, Shweta Rani

Table 9. Contribution and techniques used by primary studies

Study no. Contribution Techniques References

P1 Fitness function introduced based on GA for mutation testing GA [9]
P2 Automation of test case enhancement for object oriented

software components
GA [23]

P3 Introduced bacteriological algorithm and compared with GA GA,BA [24]
P4 Artificial Immune System applied for Mutation testing AIS [25]
P5 GP based procedure for selection and evaluation of test data GA [26]
P6 Dealt with equivalent mutant problem using GA GA [27]
P7 Test case generation for killing mutants in program units

using GA
GA [28]

P8 Test case generation using mutation testing with ACO ACO [29]
P9 Construction and evaluation of higher order mutants using

GA, HC, Greedy
GA, HC, Greedy [30]

P10 Elitist genetic algorithm applied with mutation testing GA [31]
P11 Generation of high impact mutants avoiding equivalent mu-

tants using GA
GA [32]

P12 Production of test input via strong higher order mutants Search based [33]
P13 Mutant optimization using GA for WS-BPEL GA [34]
P14 Test oracle generation using automated mutation testing,

assertions and GA
GA [35]

P15 Test case and mutant optimization using GA GA [36]
P16 Definition of a new fitness function aiming to produce test

data
GA [37]

P17 Automatically finding and correcting faults using code slices,
GA and mutation testing

GA [38]

P18 Improved fitness function for test generation using AVM HC [10]

Java programs are most popular for the research
and there are different tools that are used by the
researchers in the field of SBMT.

Figure 4 describes the yearly distribution
of the techniques used by the selected pri-
mary studies. As is evident from the scatter
chart, GA is the most prevalent and consis-
tently used technique by the researchers work-
ing in the area of SBMT. Study P12 is not
included in the chart, as it evaluates the ap-
plication of search-based techniques in general
(no specific technique) for higher-order mutation
testing.

4.3. Relevant publications of 2015–2016

In order to collect publications in the domain
of SBMT for the years 2015–16, the snowball
approach was followed. The relevant studies col-
lected asa result are cited here.

A few reviews relevant to the ones filed in
SBMT have been published in the past two years.

The literature review by Silva et al. [14] details
the work carried out in the field before 2014.
Other surveys include [13,48–51].

Considerable work was done in the context
of search based higher order mutation testing
by eminent researchers in the field. The relevant
publications include [52–56].

GA is still the most popular search algorithm
used by the researchers of the domain [52,57–59].

Hill Climbing [60] and PSO [61] have also
been recently used by researchers for test data
generation using SBMT. Other relevant publica-
tions include [62,63].

5. Results (RQs)

This section presents answers to the RQs for-
mulated above after analysing the 43 studies
in SBMT, amongst which 18 studies that were
identified as those stating a new technique, were
thoroughly analysed.

Systematic Literature Review on Search Based Mutation Testing 69

Table 10. Language used, subject programs and tools used by (Experimental) primary studies

Study no. Contribution Techniques References

P2 * Pylon library uSlayer
P3 C# C# parser *
P5 C++ cmm, fat, max, cmd GPTesT
P8 Java Triangle, Nextdate muJava
P9 C triangle, TCAS, schedule2, totinfo, printtokens, space MILU
P13 WS-BPEL WS-BPEL compositions (Travel Reservation, Service Ex-

tended Meta Search and Loan Approval Extended)
GAmera

P14 Java commons CLI, commons codec, commons collections, com-
mons logging, commons Math, commons Primitives, Google
Collections, JGraphT, Joda Time, NanoXML

muTEST

P15 * Bisect, Bub, Fourballs, Mid, trityp *
P16 Object oriented CGPA calculation *
P17 Java credit card validator, triangle classification, Base 64, Person

sorted list, shapes, order set, Graph shortest Path, 3 Eclipse
libraries

Kaveri/Indus

P18 Java Triangle, Trityp, Triangle, Remainder, Calender, Fourballs,
Cancel, Quadratic

*

* indicates the data not mentioned by the authors concerned in the study

Figure 4. Corroboration of selected primary studies

5.1. Techniques of SBMT (RQ1)

In order to answer RQ1, the techniques used
by the researchers working in the field are sum-
marised below.

5.1.1. Hill Climbing (HC)

It is one of the meta-heuristic search based tech-
niques that strives to improve the current so-
lution by exploring all its neighbours in the
search space. It includes an initialization stage,
where the initial candidate solution is chosen ran-

domly. Thereafter, all its neighbours are searched
and evaluated until no improved solution can
be found. The major drawback of this tech-
nique is local convergence as search includes
the neighbourhood space only [64]. Jia and Har-
man [30] applied hill climbing with GA to deal
with the explosion of a large number of higher
order mutants created from lower order mu-
tants. Papadakis and Malveris [10] used Alter-
nating Variable Method, which is a variant of
Hill Climbing, for test data generation using
mutation testing by using an improved fitness
function.

70 Nishtha Jatana, Bharti Suri, Shweta Rani

5.1.2. Ant Colony Optimisation (ACO)

ACO is a metaheuristic technique proposed by
Dorigo in the late 1990s [65,66] for approximately
solving the combinatorial problems which are
otherwise hard to solve in a reasonable amount
of time. It was inspired by Ant System [67] in
1991. ACO starts by mapping the problem un-
der study such that it simulates the stigmergic
behaviour of ants. The ants start at random first
to locate a food source and then they lay a chem-
ical compound known as pheromone on the most
pertinent paths. The ants thereafter follow the
pheromone trails to reach the desired destination.
ACO was applied to obtain approximate solu-
tions to many optimisation problems [68]. ACO
finds its application in the domain of software
testing [69]. Ayari et al. [29] proposed and ap-
plied ACO for automatic test data generation
in the context of mutation testing and empiri-
cally proved that ACO gives better results as
compared to Hill Climbing and the random ap-
proach.

5.1.3. Genetic Algorithm (GA)

The idea of GA was initially proposed by
Fraser [70] and Bremermann [71] although it
was popularised by Holland and his students
because of applying its concepts in the field of
computer science [72]. GA starts with randomly
generated populations which are then evolved
using genetic operators (mutation and crossover).
The evolved population is evaluated for fitness
and the best performing individuals are chosen.
The process continues until stopping criteria are
met. GA finds its application in the software
testing domain for test data generation, mutant
optimisation and minimisation of test data [73].

GA was used by various researchers working
in the area of SBMT, but the conducted research
is varied in nature. The paragraph below presents
how GA was used for the optimisation of the pro-
cess of search based mutation testing in various
aspects.

Bottaci [9] gave a new fitness function for
GA that works in collaboration with mutation
testing. The fitness function was composed of

three conditions: (i) Reachability: the path fol-
lowed by the execution of test case must reach
the mutated statement, (ii) Necessity: the condi-
tion stated by the mutated expression must be
satisfied for it to be killed and (iii) Sufficiency:
the difference between the subject program and
the mutated program must be propagated to
the final output. This fitness function was fur-
ther used by Masud et al. [28], Ayari et al. [29].
Baudry et al. [23] used mutation analysis for
integration testing by enhancing the test cases
using GA. Baudry also applied GA for test case
optimization for C# parser [24]. Emer et al. [26]
developed a tool named GPTest for C++ pro-
grams for the selection and assessment of test
data using fault based testing. GA was also used
to address the problem of equivalent mutants
in mutation testing by Adampolous et al. [27].
Masud et al. [28] proposed a model to apply
GA for exposing faults by splitting the subject
program into small units, hence reducing the
cost and execution time of test cases. Jia and
Harman [30] introduced the paradigm of higher
order mutation testing and applied GA for opti-
mization and selection amongst the huge number
of higher order mutants (HOMs) from the lower
order ones. Later, HOMs were extensively ex-
plored in [74]. Omar et al. [39, 40] introduced
search algorithms to find subtle HOMs and con-
cluded that local search performed better than
GA and the random search in finding HOMs for
Java and AspectJ subject programs. Elitist GA
was used by Mishra [31] for the generation of
efficient test data by selecting those test cases
which have already killed a large set of mutants.
Dominguez-Jimenez [34] used GA for a reduction
in mutants which eventually derive test cases for
improving the quality of initial test cases for
WS-BPEL compositions. Fraser et al. [35] also
optimised test cases using mutation analysis and
GA and evaluated them on 10 open source li-
braries. GA has also been used by [36–38] for the
optimisation of the process of mutation testing.

5.1.4. Bacteriological Algorithm (BA)

BA was proposed by Baudry et al. [24, 75, 76]
and is inspired by the bacteriological adapta-

Systematic Literature Review on Search Based Mutation Testing 71

tion. This technique was particularly recom-
mended for improving the test cases using mu-
tation testing. It takes a set of test cases as
input and makes small changes in them call-
ing them bacteria. These bacteria are evaluated
for fitness using a memorization function. The
technique evolved from GA and it differs from
it by two key points: introduces the memoriza-
tion function for the evaluation of fitness and
suppresses the crossover operator which was the
cause of slow convergence in population evolution
in GA.

5.1.5. Immune Inspired Algorithm (IIA)

Immune inspired algorithms are a class of in-
telligent algorithms which uses the primciples
associated with the immune system of verte-
brates. The characteristics exploited here are
related to learning and memory and they are
used to solve a problem. May et al. [25] applied
these characteristics for optimization of test cases
and mutants. May et al. further worked on this
approach [77, 78] and successfully mapped the
evolutionary approach to the process of the opti-
mised generation of test cases and mutants. The
process starts by choosing initial test cases called
antibodies which are evolved through multiple
iterations by seeking those which are capable of
killing more mutants that are referred to as anti-
gens. The mutation score is denoted by Affinity.
The following chart shows the search-based tech-
niques used by researchers in SBMT. It clearly
shows that the Genetic Algorithm is the one
which is the most frequently used by the au-
thors.

5.2. Applications of SBMT (RQ2)

After the analysis of the 18 primary studies
selected for the research, it was observed that
SBMT found its application as shown below in
Figure 6. Amongst the 18 primary studies, 9 were
identified for their work in test case generation,
3 worked on test case optimization, 5 worked
on mutant optimisation and the 2 remaining
ones contributed to both test case and mutant
optimisation.

5.2.1. Test Data Generation (TDG)

The process of TDG [2,5] using mutation testing
begins with the generation of a set of mutants
and the execution of the test suite on them. Then
the required test suite then iteratively collects
those test cases which can kill the mutants. Since
this process is computationally expensive and
time consuming, search based approaches [7, 8]
were applied to automate this process. As is ev-
ident from Figure 6, nine studies representing
TDG were conducted. Out of these nine studies,
six [9, 23, 28, 31, 35, 37] are based on GA. Ayari
et al. [29] applied ACO and Papadakis et al. [10]
used a variant of HC for generating test data
using the process of mutation testing. The sym-
bolic execution and concolic testing were also
suggested for test data generation by making use
of weak mutation testing [79]. Harman et al. [33]
evaluates the application of the search-based tech-
nique in general (not any specific technique) for
higher-order mutation testing.

5.2.2. Test case
optimization/minimization/prioritization
(TCO)

The search based techniques were used for the
optimized reduction or prioritization of test cases
using mutation testing wherein the test cases
that are capable of killing maximum mutants are
considered at first hand, so that the maximum
number of faults is covered with the minimum
number of test cases. The search based tech-
niques guide this search process in promising
directions yielding optimum results in less com-
putational time. As shown in Figure 6, three
studies [23, 24, 26] contributing towards TCO
were identified. GA were used in [23, 26] for test
case optimisation and [76] for the comparison
and evaluation of GA with BA for purpose of
the optimisation of test cases.

5.2.3. Mutant Optimization (MTO)

The execution of a large number of mutants
requires enormous computational efforts. Ow-
ing to this, a large number of program mutants

72 Nishtha Jatana, Bharti Suri, Shweta Rani

Figure 5. Usage of Search based techniques

needs to be optimised to obtain a reduced set
of mutants to that they are capable of detect-
ing the majority of significant plausible faults
in the program under test. Figure 6 depicts five
studies [27, 30, 32, 34, 38] found to implement
the techniques for MTO. GA was predominantly
adopted to obtain the optimised set of mutants
[27,32,34, 38]. Jia et al. [30] evaluated GA with
HC and the Greedy Approach for creation of
higher order mutants.

5.2.4. Mutant and Test Case Optimisation
(TCO_MTO)

Some researchers proposed approaches to opti-
mise mutants as well as test cases using search
based techniques with mutation testing. May et
al. [25] proposed the AIS technique and Oliveira
et al. [36] used GA for the purpose of mutant
and test case optimisation. The figure below de-
picts the categorization of primary studies in the
domain of SBMT.

Figure 6 shows that despite the fact that
test case generation is a domain containing more
studies, most approaches in this domain were con-
centrated on applying the Genetic Algorithm (6
studies). Mutant optimization is another promi-
nent area in which researchers were specially
interested in, and here also GA was actively ap-
plied (6 studies). Basically, SBMT relies on the
fitness function which searches for candidate so-
lutions and on mutation testing which is mainly

a quality assessment technique. Both the fitness
function and the quality assessment criteria de-
termine the level to which the approach satisfies
the analysed problem at hand. Thus test case
generation is the most worked upon area as it is
test case generation is the prior requirement in
the field of software testing.

5.3. Findings from Comparison studies
(RQ3)

Ayari et. al [29] proposed ACO and compared
it with GA,HC and Random Search algorithms.
Their preliminary results on two small programs
(Triangle and NextDate) show that ACO outper-
formed the other algorithms in terms of muta-
tion score and the convergence factor. Baudry
et. al [23,24,76] introduced BA which works on
a similar principle as GA, but differs from it by
memorizing the efficient test cases across genera-
tions. The authors compared their work [75] with
GA on 32 classes of C#. They state that BA is
more stable than GA and converges faster. Jia
and Harman [80] generated subsuming higher or-
der mutants using search based techniques (GA,
HC) and the greedy approach. The subsuming
higher order mutants are those which are difficult
to kill (detect). The authors applied the tech-
niques (GA, HC and Greedy Approach) on 10
programs and stated that GA is the most efficient
among them for the generation of subsuming
higher order mutants. May et. al [77] proposed

Systematic Literature Review on Search Based Mutation Testing 73

Figure 6. Categorization of primary studies according to SBMT application

a new approach (Immune Inspired Algorithm)
for evolution of test data using mutation testing
adequacy criteria and evaluated the efficiency of
their approach on 4 programs compared with
the Genetic Algorithm. They state that their
approach gives better results in comparison with
the others. Researchers working in the area of
SBMT proposed various approaches and most of
them evaluated their approach against GA.

5.4. Major challenges faced by
researchers (RQ4)

The challenges faced by researchers in the field
of SBMT are significantly related to those faced
by mutation testing and those in SBST in gen-
eral. The challenges (i)–(iv) as listed in [81,82]
are those dealing with mutation testing in gen-
eral. The challenges (v)–(vii) are in context with
search based software testing [83] which is appli-
cable to SBMT as well. The challenges (viii)–(xi)
are the findings of this SLR. The following points
address RQ4.
(i) Computational cost of executing a large num-
ber of mutants is very high.
(ii) Mutants generated from the traditional mu-
tant operators may be trivial (easily killable).
(iii) Detection of equivalent mutants is a cumber-
some task.
(iv) Checking the output of each test case for
every mutant with that of the original program
takes a significant amount of time.
(v) Work on SBMT has mainly focussed on single
objective optimisation, multi-objective test data
generation is yet to be achieved.
(vi) SBMT focuses on unit structural test data
generation. Other areas (non-functional, etc.) of
software testing remains unexplored in this field.

(vii) Tools that qualify FiFiVerify (Find Fix and
Verify) challenge [83] are missing in the domain
of SBMT.
(viii) Most researchers of SBMT worked on ar-
tifacts (benchmark programs) of small size and
several of those are artificial examples.
(ix) Most researchers worked independently, try-
ing to find new SBMT techniques rather than
extending or enhancing the proposed approaches
of other researchers.
(x) Search techniques used in SBMT were ap-
plied mostly to single order mutants, however,
less work has been carried out for higher order
mutants.
(xi) Updates a few tools (like MuClipse) which
are still being used by researchers of SBMT are
not being updated with the optimisation stan-
dards which are used nowadays in mutation test-
ing as per latest research.

6. Conclusion

In this paper, the results from a systematic re-
view of search-based mutation testing are pre-
sented. The following are the findings in regard
to the research questions:
RQ1: In the 18 primary studies identified in
this work, search-based techniques namely HC,
ACO, GA, BA and IIA were empirically evalu-
ated in the area of mutation testing. The other
search-based techniques have not yet been ap-
plied in this field.
RQ2: Search-based techniques were applied to
mutation testing for test data generation, selec-
tion, minimization and optimisation and also for
mutant optimization.
RQ3: Most researchers who proposed a new

74 Nishtha Jatana, Bharti Suri, Shweta Rani

SBMT technique empirically evaluated their tech-
nique with GA. However, there is a lot of variance
in the uniqueness of the identified search-based
techniques. Some techniques may be treated as
novel at the time of their publications, while
others may be considered as slight variations of
already existing techniques. No technique can be
said to be distinctly better than another as the
programs used for empirical evaluation may not
be considered as strong evidence to prove the
superiority.
RQ4: The challenges prevailing in the area of
mutation testing are pertinent to the area of
SBMT along with a few more challenges. The
major ones include the effort and cost entailed in
mutation testing, and thus limit its application
to testing real world programs. Most techniques
given by researchers are either presented in a gen-
eral manner or are not sufficiently empirically
evaluated to serve as a base for enabling a prac-
titioner to choose a specific SBMT technique for
given software.

The analysis of the studies collected for the
2015–16 shows that the Genetic Algorithm is still
being used most frequently by the researchers in
the field of SBMT. The inclination of the interest
of researchers towards Higher Order Mutation
testing can also be observed. Alongwith other
metaheuristics, PSO is also used for test data
generation using SBMT.

The findings in the area of search based mu-
tation testing, wrapping its application domain
and the used techniques are covered here. This
work identified research in the field since its evo-
lution in the year 1976. The results of this SLR
show that there is a significant research gap in
the area of SBMT. Despite the fact that the re-
search has been conducted in this area for more
than 40 years, only 18 studies were segregated
as primary studies out of 43 relevant studies. In
addition to this, the problems in the area are still
prevalent and not much work has been carried
out to resolve them. Few techniques applied in
the area of SBMT have been applied and tested
on small programs and thus may not be scal-
able to the industrial needs and real software.
Researchers worked independently rather than
working collaboratively towards the elimination

of open problems in the area. As a result, a lot of
research can be carried out in the area including
the work on the feasibility analysis of SBMT, ap-
plying SBMT to other programming languages,
effective approaches for test data generation us-
ing SBMT, complexity analysis of approaches
used in SBMT and reduction in the overall cost
of SBMT.

References

[1] G.J. Myers, C. Sandler, and T. Badgett, The art
of software testing. John Wiley & Sons, 2011.

[2] J. Edvardsson, “A survey on automatic test
data generation,” in Proceedings of the 2nd Con-
ference on Computer Science and Engineering,
1999, pp. 21–28.

[3] M. Prasanna, S. Sivanandam, R. Venkatesan,
and R. Sundarrajan, “A survey on automatic
test case generation,” Academic Open Internet
Journal, Vol. 15, No. part 6, 2005.

[4] H. Tahbildar and B. Kalita, “Automated soft-
ware test data generation: Direction of research,”
International Journal of Computer Science and
Engineering Survey, Vol. 2, No. 1, 2011, pp.
99–120.

[5] S. Anand, E.K. Burke, T.Y. Chen, J. Clark,
M.B. Cohen, W. Grieskamp, M. Harman, M.J.
Harrold, P. McMinn et al., “An orchestrated
survey of methodologies for automated software
test case generation,” Journal of Systems and
Software, Vol. 86, No. 8, 2013, pp. 1978–2001.

[6] C.A.C. Coello, “A comprehensive survey of
evolutionary-based multiobjective optimization
techniques,” Knowledge and Information sys-
tems, Vol. 1, No. 3, 1999, pp. 269–308.

[7] P. McMinn, “Search-based software test data
generation: A survey,” Software Testing Verifi-
cation and Reliability, Vol. 14, No. 2, 2004, pp.
105–156.

[8] P. McMinn, “Search-based software testing: Past,
present and future,” in IEEE Fourth Interna-
tional Conference on Software Testing, Verifica-
tion and Validation Workshops (ICSTW). IEEE,
2011, pp. 153–163.

[9] L. Bottaci, “A genetic algorithm fitness func-
tion for mutation testing,” in Proceedings of the
SEMINALL-workshop at the 23rd International
Conference on Software Engineering, Toronto,
Canada, 2001.

[10] M. Papadakis and N. Malevris, “Searching and
generating test inputs for mutation testing,”
SpringerPlus, Vol. 2, No. 1, 2013, p. 1.

Systematic Literature Review on Search Based Mutation Testing 75

[11] F. Souza, M. Papadakis, V.H. Durelli, and M.E.
Delamaro, “Test data generation techniques for
mutation testing: A systematic mapping,” Pro-
ceedings of the 11th ESELAW, 2014, pp. 1–14.

[12] Y. Jia and M. Harman, “An analysis and survey
of the development of mutation testing,” IEEE
Transactions on Software Engineering, Vol. 37,
No. 5, 2011, pp. 649–678.

[13] N. Jatana, S. Rani, and B. Suri, “State of art in
the field of search-based mutation testing,” in
4th International Conference on Reliability, In-
focom Technologies and Optimization (ICRITO)
(Trends and Future Directions). IEEE, 2015, pp.
1–6.

[14] R.A. Silva, S. do Rocio Senger de Souza, and
P.S.L. de Souza, “A systematic review on search
based mutation testing,” Information and Soft-
ware Technology, 2016.

[15] C. Wohlin, “Guidelines for snowballing in sys-
tematic literature studies and a replication in
software engineering,” in Proceedings of the 18th
International Conference on Evaluation and As-
sessment in Software Engineering. ACM, 2014,
p. 38.

[16] P. Cronin, F. Ryan, and M. Coughlan, “Un-
dertaking a literature review: A step-by-step
approach,” British Journal of Nursing, Vol. 17,
No. 1, 2008, p. 38.

[17] K. Petersen, R. Feldt, S. Mujtaba, and M. Matts-
son, “Systematic mapping studies in software
engineering,” in 12th International Conference
on Evaluation and Assessment in Software En-
gineering, Vol. 17, No. 1. sn, 2008.

[18] B. Kitchenham, “Procedures for performing
systematic reviews,” Keele University, Keele
University, Keele, Staffs, UK, Joint Technical
Report TR/SE-0401, 2004. [Online]. http:
//csnotes.upm.edu.my/kelasmaya/pgkm20910.
nsf/0/715071a8011d4c2f482577a700386d3a/
$FILE/10.1.1.122.3308[1].pdf

[19] M.J. Grant and A. Booth, “A typology of re-
views: An analysis of 14 review types and associ-
ated methodologies,” Health Information and Li-
braries Journal, Vol. 26, No. 2, 2009, pp. 91–108.

[20] B. Kitchenham and S. Charters, “Guidelines for
performing systematic literature reviews in soft-
ware engineering,” Keele University & Univer-
sity of Durham, EBSE Technical Report EBSE
2007-01, 2007.

[21] W. Orzeszyna, L. Madeyski, and
R. Torkar, Protocol for a systematic
literature review of methods dealing
with equivalent mutant problem. [Online].
http://madeyski.e-informatyka.pl/download/

slr/EquivalentMutantsSLRProtocol.pdf
[22] L. Madeyski, W. Orzeszyna, R. Torkar, and

M. Jozala, “Overcoming the equivalent mutant
problem: A systematic literature review and a
comparative experiment of second order muta-
tion,” IEEE Transactions on Software Engineer-
ing, Vol. 40, No. 1, 2014, pp. 23–42.

[23] B. Baudry, V. Le Hanh, J.M. Jézéquel, and
Y. Le Traon, “Trustable components: Yet an-
other mutation-based approach,” in Mutation
testing for the new century. Springer, 2001, pp.
47–54.

[24] B. Baudry, F. Fleurey, J.M. Jézéquel, and
Y. Le Traon, “Genes and bacteria for automatic
test cases optimization in the .NET environ-
ment,” in 13th International Symposium on Soft-
ware Reliability Engineering. IEEE, 2002, pp.
195–206.

[25] P. May, K. Mander, and J. Timmis, “Soft-
ware vaccination: An artificial immune sys-
tem approach to mutation testing,” in Interna-
tional Conference on Artificial Immune Systems.
Springer, 2003, pp. 81–92.

[26] M.C.F. Emer and S.R. Vergilio, “Selection and
evaluation of test data based on genetic program-
ming,” Software Quality Journal, Vol. 11, No. 2,
2003, pp. 167–186.

[27] K. Adamopoulos, M. Harman, and R.M. Hi-
erons, “How to overcome the equivalent mutant
problem and achieve tailored selective mutation
using co-evolution,” in Genetic and evolution-
ary computation conference. Springer, 2004, pp.
1338–1349.

[28] M. Masud, A. Nayak, M. Zaman, and N. Bansal,
“Strategy for mutation testing using genetic al-
gorithms,” in Canadian Conference on Electri-
cal and Computer Engineering. IEEE, 2005, pp.
1049–1052.

[29] K. Ayari, S. Bouktif, and G. Antoniol, “Auto-
matic mutation test input data generation via
ant colony,” in Proceedings of the 9th annual
conference on Genetic and evolutionary compu-
tation. ACM, 2007, pp. 1074–1081.

[30] Y. Jia and M. Harman, “Constructing sub-
tle faults using higher order mutation testing,”
in Eighth IEEE International Working Confer-
ence on Source Code Analysis and Manipulation.
IEEE, 2008, pp. 249–258.

[31] K. Mishra, S. Tiwari, A. Kumar, and A. Misra,
“An approach for mutation testing using elitist
genetic algorithm,” in 3rd IEEE International
Conference on Computer Science and Informa-
tion Technology (ICCSIT), Vol. 5. IEEE, 2010,
pp. 426–429.

http://csnotes.upm.edu.my/kelasmaya/pgkm20910.nsf/0/715071a8011d4c2f482577a700386d3a/$FILE/10.1.1.122.3308[1].pdf
http://csnotes.upm.edu.my/kelasmaya/pgkm20910.nsf/0/715071a8011d4c2f482577a700386d3a/$FILE/10.1.1.122.3308[1].pdf
http://csnotes.upm.edu.my/kelasmaya/pgkm20910.nsf/0/715071a8011d4c2f482577a700386d3a/$FILE/10.1.1.122.3308[1].pdf
http://csnotes.upm.edu.my/kelasmaya/pgkm20910.nsf/0/715071a8011d4c2f482577a700386d3a/$FILE/10.1.1.122.3308[1].pdf
http://madeyski.e-informatyka.pl/download/slr/EquivalentMutantsSLRProtocol.pdf
http://madeyski.e-informatyka.pl/download/slr/EquivalentMutantsSLRProtocol.pdf

76 Nishtha Jatana, Bharti Suri, Shweta Rani

[32] B. Schwarz, D. Schuler, and A. Zeller, “Breed-
ing high-impact mutations,” in IEEE Fourth
International Conference on Software Testing,
Verification and Validation Workshops (ICSTW).
IEEE, 2011, pp. 382–387.

[33] M. Harman, Y. Jia, and W.B. Langdon, “Strong
higher order mutation-based test data genera-
tion,” in Proceedings of the 19th ACM SIGSOFT
Symposium and the 13th European Conference
on Foundations of Software Engineering. ACM,
2011, pp. 212–222.

[34] J.J. Domínguez-Jiménez, A. Estero-Botaro,
A. García-Domínguez, and I. Medina-Bulo, “Evo-
lutionary mutation testing,” Information and
Software Technology, Vol. 53, No. 10, 2011, pp.
1108–1123.

[35] G. Fraser and A. Zeller, “Mutation-driven gen-
eration of unit tests and oracles,” IEEE Trans-
actions on Software Engineering, Vol. 38, No. 2,
2012, pp. 278–292.

[36] A.A.L. de Oliveira, C.G. Camilo-Junior, and
A.M. Vincenzi, “A coevolutionary algorithm to
automatic test case selection and mutant in mu-
tation testing,” in IEEE Congress on Evolution-
ary Computation. IEEE, 2013, pp. 829–836.

[37] M.B. Bashir and A. Nadeem, “A fitness
function for evolutionary mutation testing of
object-oriented programs,” in 9th International
Conference on Emerging Technologies (ICET).
IEEE, 2013, pp. 1–6.

[38] P.S. Yiasemis and A.S. Andreou, “Locating and
correcting software faults in executable code
slices via evolutionary mutation testing,” in In-
ternational Conference on Enterprise Informa-
tion Systems. Springer, 2012, pp. 207–227.

[39] E. Omar, S. Ghosh, and D. Whitley, “Comparing
search techniques for finding subtle higher order
mutants,” in Proceedings of the Annual Confer-
ence on Genetic and Evolutionary Computation.
ACM, 2014, pp. 1271–1278.

[40] E. Omar, S. Ghosh, and D. Whitley, “Construct-
ing subtle higher order mutants for Java and
AspectJ programs,” in IEEE 24th International
Symposium on Software Reliability Engineering
(ISSRE). IEEE, 2013, pp. 340–349.

[41] Y.M.B. Ali and F. Benmaiza, “Generating test
case for object-oriented software using genetic
algorithm and mutation testing method,” Inter-
national Journal of Applied Metaheuristic Com-
puting (IJAMC), Vol. 3, No. 1, 2012, pp. 15–23.

[42] A.S. Banzi, T. Nobre, G.B. Pinheiro, J.C.G.
Árias, A. Pozo, and S.R. Vergilio, “Selecting mu-
tation operators with a multiobjective approach,”
Expert Systems with Applications, Vol. 39, No. 15,

2012, pp. 12 131–12 142.
[43] B. Baudry, V. Le Hanh, J.M. Jézéquel, and

Y. Le Traon, “Building trust into oo components
using a genetic analogy,” in 11th International
Symposium on Software Reliability Engineering.
IEEE, 2000, pp. 4–14.

[44] S. Subramanian and R. Natarajan, “A tool for
generation and minimization of test suite by
mutant gene algorithm,” Journal of Computer
Sciences, Vol. 7, No. 10, 2011, pp. 1581–1589.

[45] K.T. Le Thi My Hanh and N.T.B. Tung,
“Mutation-based test data generation for
simulink models using genetic algorithm and
simulated annealing,” International Journal of
Computer and Information Technology, Vol. 3,
No. 04, 2014, pp. 763–771.

[46] N.T. Binh, K.T. Tung et al., “A novel test
data generation approach based upon mutation
testing by using artificial immune system for
Simulink models,” in Knowledge and Systems
Engineering. Springer, 2015, pp. 169–181.

[47] L.T.M. Hanh, N.T. Binh, and K.T. Tung,
“Applying the meta-heuristic algorithms for
mutation-based test data generation for Simulink
models,” in Proceedings of the Fifth Symposium
on Information and Communication Technology.
ACM, 2014, pp. 102–109.

[48] B.N. Thanh and T.K. Thanh, “Survey on
mutation-based test data generation,” Interna-
tional Journal of Electrical and Computer Engi-
neering, Vol. 5, No. 5, 2015.

[49] M. Patrick, “Metaheuristic optimisation and
mutation-driven test data generation,” in Com-
putational Intelligence and Quantitative Soft-
ware Engineering. Springer, 2016, pp. 89–115.

[50] F. Popentiu-Vladicescu and G. Albeanu,
“Nature-inspired approaches in software faults
identification and debugging,” Procedia Com-
puter Science, Vol. 92, 2016, pp. 6–12.

[51] M. Dave and R. Agrawal, “Search based tech-
niques and mutation analysis in automatic test
case generation: A survey,” in IEEE Interna-
tional Advance Computing Conference (IACC).
IEEE, 2015, pp. 795–799.

[52] Y. Jia, F. Wu, M. Harman, and J. Krinke, “Ge-
netic improvement using higher order mutation,”
in Proceedings of the Companion Publication of
the Annual Conference on Genetic and Evolu-
tionary Computation. ACM, 2015, pp. 803–804.

[53] Q.V. Nguyen and L. Madeyski, “Searching for
strongly subsuming higher order mutants by ap-
plying multi-objective optimization algorithm,”
in Advanced Computational Methods for Knowl-
edge Engineering. Springer, 2015, pp. 391–402.

Systematic Literature Review on Search Based Mutation Testing 77

[54] Q.V. Nguyen and L. Madeyski, “Higher order
mutation testing to drive development of new
test cases: An empirical comparison of three
strategies,” in Asian Conference on Intelligent
Information and Database Systems. Springer,
2016, pp. 235–244.

[55] Q.V. Nguyen and L. Madeyski, “Empirical eval-
uation of multiobjective optimization algorithms
searching for higher order mutants,” Cybernetics
and Systems, 2016.

[56] F. Wu, M. Harman, Y. Jia, and J. Krinke,
“HOMI: Searching higher order mutants for soft-
ware improvement,” in International Symposium
on Search Based Software Engineering. Springer,
2016, pp. 18–33.

[57] A. Estero-Botaro, A. García-Domínguez, J.J.
Domínguez-Jiménez, F. Palomo-Lozano, and
I. Medina-Bulo, “A framework for genetic
test-case generation for ws-bpel compositions,”
in IFIP International Conference on Testing
Software and Systems. Springer, 2014, pp. 1–16.

[58] C.P. Rao and P. Govindarajulu, “Genetic algo-
rithm for automatic generation of representative
test suite for mutation testing,” International
Journal of Computer Science and Network Secu-
rity (IJCSNS), Vol. 15, No. 2, 2015, p. 11.

[59] S. Rani and B. Suri, “An approach for test data
generation based on genetic algorithm and delete
mutation operators,” in Second International
Conference on Advances in Computing and Com-
munication Engineering (ICACCE). IEEE, 2015,
pp. 714–718.

[60] F.C.M. Souza, M. Papadakis, Y. Le Traon, and
M.E. Delamaro, “Strong mutation-based test
data generation using hill climbing,” in Pro-
ceedings of the 9th International Workshop on
Search-Based Software Testing. ACM, 2016, pp.
45–54.

[61] N. Jatana, B. Suri, S. Misra, P. Kumar, and A.R.
Choudhury, “Particle swarm based evolution and
generation of test data using mutation testing,”
in International Conference on Computational
Science and its Applications. Springer, 2016, pp.
585–594.

[62] N.T. Binh, K.T. Tung et al., “A novel fitness
function of metaheuristic algorithms for test data
generation for Simulink models based on muta-
tion analysis,” Journal of Systems and Software,
Vol. 120, 2016, pp. 17–30.

[63] N. Jatana, B. Suri, P. Kumar, and B. Wadhwa,
“Test suite reduction by mutation testing mapped
to set cover problem,” in Proceedings of the Sec-
ond International Conference on Information
and Communication Technology for Competitive

Strategies. ACM, 2016, p. 36.
[64] P. McMinn, M. Harman, K. Lakhotia, Y. Has-

soun, and J. Wegener, “Input domain reduction
through irrelevant variable removal and its effect
on local, global, and hybrid search-based struc-
tural test data generation,” IEEE Transactions
on Software Engineering, Vol. 38, No. 2, 2012,
pp. 453–477.

[65] M. Dorigo and G.D. Caro, New ideas in opti-
mization. McGraw-Hill Ltd., 1999, ch. The ant
colony optimization meta-heuristic, pp. 11–32.

[66] M. Dorigo, G. Di Caro, and L.M. Gambardella,
“Ant algorithms for discrete optimization,” Arti-
ficial life, Vol. 5, No. 2, 1999, pp. 137–172.

[67] M. Dorigo, “Optimization, learning and natu-
ral algorithms,” Ph. D. Thesis, Politecnico di
Milano, Italy, 1992.

[68] T. Stützle, M. López-Ibáñez, and M. Dorigo, “A
concise overview of applications of ant colony
optimization,” Wiley Encyclopedia of Operations
Research and Management Science, 2011.

[69] B. Suri and S. Singhal, “Literature survey of
ant colony optimization in software testing,” in
CSI Sixth International Conference on Software
Engineering (CONSEG). IEEE, 2012, pp. 1–7.

[70] A.S. Fraser, “Simulation of genetic systems by
automatic digital computers VI. Epistasis,” Aus-
tralian Journal of Biological Sciences, Vol. 13,
No. 2, 1960, pp. 150–162.

[71] H.J. Bremermann, The evolution of intelligence:
The nervous system as a model of its environ-
ment. University of Washington, Department of
Mathematics, 1958.

[72] J.H. Holland, Adaptation in natural and artificial
systems: an introductory analysis with applica-
tions to biology, control, and artificial intelli-
gence. U Michigan Press, 1975.

[73] C. Sharma, S. Sabharwal, and R. Sibal, “A
survey on software testing techniques using
genetic algorithm,” CoRR, 2014. [Online].
https://arxiv.org/abs/1411.1154

[74] E. Omar and S. Ghosh, “An exploratory study of
higher order mutation testing in aspect-oriented
programming,” in IEEE 23rd International
Symposium on Software Reliability Engineering.
IEEE, 2012, pp. 1–10.

[75] B. Baudry, F. Fleurey, J.M. Jézéquel, and
Y. Le Traon, “Automatic test case optimization
using a bacteriological adaptation model: Ap-
plication to .NET components,” in 17th IEEE
International Conference on Automated Software
Engineering. IEEE, 2002, pp. 253–256.

[76] B. Baudry, F. Fleurey, J.M. Jézéquel, and
Y. Le Traon, “From genetic to bacteriological

https://arxiv.org/abs/1411.1154

78 Nishtha Jatana, Bharti Suri, Shweta Rani

algorithms for mutation-based testing,” Soft-
ware Testing, Verification and Reliability, Vol. 15,
No. 2, 2005, pp. 73–96.

[77] P. May, J. Timmis, and K. Mander, “Immune
and evolutionary approaches to software mu-
tation testing,” in Artificial Immune Systems.
Springer, 2007, pp. 336–347.

[78] P. May, K. Mander, and J. Timmis, “Mutation
testing: An artificial immune system approach,”
in UK-Softest. UK Software Testing Workshop.
Citeseer, 2003.

[79] M. Papadakis and N. Malevris, “Automati-
cally performing weak mutation with the aid
of symbolic execution, concolic testing and
search-based testing,” Software Quality Journal,
Vol. 19, No. 4, 2011, pp. 691–723.

[80] Y. Jia and M. Harman, “Higher order mutation

testing,” Information and Software Technology,
Vol. 51, No. 10, 2009, pp. 1379–1393.

[81] Y. Jia, “Higher order mutation testing,” Ph.D.
dissertation, University College London, 2013.
[Online]. http://discovery.ucl.ac.uk/1401264/1/
YuePhDFinal2013.pdf

[82] Q.V. Nguyen and L. Madeyski, “Problems of mu-
tation testing and higher order mutation testing,”
in Advanced computational methods for knowl-
edge engineering. Springer, 2014, pp. 157–172.

[83] M. Harman, Y. Jia, and Y. Zhang, “Achieve-
ments, open problems and challenges for search
based software testing,” in IEEE 8th Interna-
tional Conference on Software Testing, Verifi-
cation and Validation (ICST). IEEE, 2015, pp.
1–12.

http://discovery.ucl.ac.uk/1401264/1/YuePhDFinal2013.pdf
http://discovery.ucl.ac.uk/1401264/1/YuePhDFinal2013.pdf

	Introduction
	Differentiating LR, SM and SLR
	Research Method
	Research Questions (RQs)
	Search Process
	Data Sources

	Inclusion and Exclusion Criteria
	Search Strategy

	Analysis of studies in SBMT
	Trends in SBMT
	Discussion on Primary Studies
	Relevant publications of 2015–2016

	Results (RQs)
	Techniques of SBMT (RQ1)
	Hill Climbing (HC)
	Ant Colony Optimisation (ACO)
	Genetic Algorithm (GA)
	Bacteriological Algorithm (BA)
	Immune Inspired Algorithm (IIA)

	Applications of SBMT (RQ2)
	Test Data Generation (TDG)
	Test case optimization/minimization/prioritization (TCO)
	Mutant Optimization (MTO)
	Mutant and Test Case Optimisation (TCO_MTO)

	Findings from Comparison studies (RQ3)
	Major challenges faced by researchers (RQ4)

	Conclusion
	References

