
e-Informatica Software Engineering Journal, Volume 3, Issue 1, 2009

Aspect-Oriented Change Realizations
and Their Interaction

Valentino Vranić∗, Radoslav Menkyna∗, Michal Bebjak∗, Peter Dolog∗∗
∗Institute of Informatics and Software Engineering, Faculty of Informatics and Information Technologies,

Slovak University of Technology in Bratislava, Slovakia
∗∗Department of Computer Science, Aalborg University, Denmark

vranic@fiit.stuba.sk, radu@ynet.sk, mbebjak@gmail.com, dolog@cs.aau.dk

Abstract
With aspect-oriented programming, changes can be treated explicitly and directly at the pro-
gramming language level. An approach to aspect-oriented change realization based on a two-level
change type model is presented in this paper. In this approach, aspect-oriented change realizations
are mainly based on aspect-oriented design patterns or themselves constitute pattern-like forms
in connection to which domain independent change types can be identified. However, it is more
convenient to plan changes in a domain specific manner. Domain specific change types can be
seen as subtypes of generally applicable change types. These relationships can be maintained in a
form of a catalog. Some changes can actually affect existing aspect-oriented change realizations,
which can be solved by adapting the existing change implementation or by implementing an
aspect-oriented change realization of the existing change without having to modify its source
code. As demonstrated partially by the approach evaluation, the problem of change interaction
may be avoided to a large extent by using appropriate aspect-oriented development tools, but for
a large number of changes, dependencies between them have to be tracked. Constructing partial
feature models in which changes are represented by variable features is sufficient to discover
indirect change dependencies that may lead to change interaction.

1. Introduction

Change realization consumes enormous effort
and time during software evolution. Once imple-
mented, changes get lost in the code. While in-
dividual code modifications are usually tracked
by a version control tool, the logic of a change
as a whole vanishes without a proper support in
the programming language itself.

By its capability to separate crosscutting
concerns, aspect-oriented programming enables
to deal with change explicitly and directly at
programming language level. Changes imple-
mented this way are pluggable and — to the
great extent — reapplicable to similar applica-
tions, such as applications from the same prod-
uct line.

Customization of web applications repre-
sents a prominent example of that kind. In
customization, a general application is being
adapted to the client’s needs by a series of
changes. With each new version of the base ap-
plication, all the changes have to be applied to
it. In many occasions, the difference between
the new and old application does not affect the
structure of changes, so if changes have been im-
plemented using aspect-oriented programming,
they can be simply included into the new appli-
cation build without any additional effort.

Even conventionally realized changes may in-
teract, i.e. they may be mutually dependent or
some change realizations may depend on the
parts of the underlying system affected by other
change realizations. This is even more remark-

44 Valentino Vranić, Radoslav Menkyna, Michal Bebjak, Peter Dolog

able in aspect-oriented change realization due to
pervasiveness of aspect-oriented programming
as such.

We have already reported briefly our initial
work in change realization using aspect-oriented
programming [1]. In this paper1, we present
our improved view of the approach to change
realization based on a two-level change type
model. Section 2 presents our approach to
aspect-oriented change realization. Section 3 de-
scribes briefly the change types we have discov-
ered so far in the web application domain. Sec-
tion 4 discusses how to deal with a change of a
change. Section 5 proposes a feature modeling
based approach of dealing with change interac-
tion. Section 6 describes the approach evalua-
tion and outlooks for tool support. Section 7
discusses related work. Section 8 presents con-
clusions and directions of further work.

2. Changes as Crosscutting
Requirements

A change is initiated by a change request made
by a user or some other stakeholder. Change
requests are specified in domain notions simi-
larly as initial requirements are. A change re-
quest tends to be focused, but it often consists of
several different — though usually interrelated
— requirements that specify actual changes to
be realized. By decomposing a change request
into individual changes and by abstracting the
essence out of each such change while generaliz-
ing it at the same time, a change type applicable
to a range of the applications that belong to the
same domain can be defined.

We will present our approach by a series of
examples on a common scenario2. Suppose a
merchant who runs his online music shop pur-
chases a general affiliate marketing software [11]
to advertise at third party web sites denoted
as affiliates. In a simplified schema of affiliate
marketing, a customer visits an affiliate’s site
which refers him to the merchant’s site. When
he buys something from the merchant, the pro-

vision is given to the affiliate who referred the
sale. A general affiliate marketing software en-
ables to manage affiliates, track sales referred
by these affiliates, and compute provisions for
referred sales. It is also able to send notifications
about new sales, signed up affiliates, etc.

The general affiliate marketing software has
to be adapted (customized), which involves a
series of changes. We will assume the affiliate
marketing software is written in Java, so we can
use AspectJ, the most popular aspect-oriented
language, which is based on Java, to implement
some of these changes.

In the AspectJ style of aspect-oriented pro-
gramming, the crosscutting concerns are cap-
tured in units called aspects. Aspects may con-
tain fields and methods much the same way the
usual Java classes do, but what makes possi-
ble for them to affect other code are genuine
aspect-oriented constructs, namely: pointcuts,
which specify the places in the code to be af-
fected, advices, which implement the additional
behavior before, after, or instead of the captured
join point (a well-defined place in the program
execution) — most often method calls or execu-
tions — and inter-type declarations, which en-
able introduction of new members into types, as
well as introduction of compilation warnings and
errors.

2.1. Domain Specific Changes

One of the changes of the affiliate marketing
software would be adding a backup SMTP server
to ensure delivery of the notifications to users.
Each time the affiliate marketing software needs
to send a notification, it creates an instance of
the SMTPServer class which handles the con-
nection to the SMTP server.

An SMTP server is a kind of a resource that
needs to be backed up, so in general, the type
of the change we are talking about could be
denoted as Introducing Resource Backup. This
change type is still expressed in a domain spe-
cific way. We can clearly identify a crosscutting
concern of maintaining a backup resource that

1 This paper represents an extended version of our paper presented at CEE-SET 2008 [28].
2 This is an adapted scenario published in our earlier work [1].

Aspect-Oriented Change Realizations and Their Interaction 45

has to be activated if the original one fails and
implement this change in a single aspect without
modifying the original code:
public class SMTPServerM extends SMTPServer {
...
}
...
public aspect SMTPServerBackupA {
public pointcut SMTPServerConstructor(URL url,

String user,
String password):

call(SMTPServer.new (..)) && args(url, user,
password);

SMTPServer around(URL url, String user,
String password):

SMTPServerConstructor(url, user, password)
{
return getSMTPServerBackup(proceed(url, user,

password));
}
private SMTPServer
getSMTPServerBackup(SMTPServer obj)
{
if (obj.isConnected()) {
return obj;

} else {
return new SMTPServerM(obj.getUrl(),

obj.getUser(),
obj.getPassword());

}
}

}

The around() advice captures constructor
calls of the SMTPServer class and their ar-
guments. This kind of advice takes complete
control over the captured join point and its
return clause, which is used in this example
to control the type of the SMTP server be-
ing returned. The policy is implemented in the
getSMTPServerBackup() method: if the original
SMTP server can’t be connected to, a backup
SMTP server class SMTPServerM instance is
created and returned.

We can also have another aspect — say
SMTPServerBackupB — intended for another
application configuration that would implement
a different backup policy or simply instantiate a
different backup SMTP server.

2.2. Generally Applicable Changes

Looking at this code and leaving aside SMTP
servers and resources altogether, we notice that

it actually performs a class exchange. This
idea can be generalized and domain details ab-
stracted out of it bringing us to the Class
Exchange change type [1] which is based on
the Cuckoo’s Egg aspect-oriented design pat-
tern [20]:
public class AnotherClass extends MyClass {
...
}
...
public aspect MyClassSwapper {
public pointcut myConstructors():
call(MyClass.new ());

Object around(): myConstructors()
{
return new AnotherClass();

}
}

2.3. Applying a Change Type

It would be beneficial if the developer could get a
hint on using the Cuckoo’s Egg pattern based on
the information that a resource backup had to
be introduced. This could be achieved by main-
taining a catalog of changes in which each do-
main specific change type would be defined as a
specialization of one or more generally applica-
ble changes.

When determining a change type to be ap-
plied, a developer chooses a particular change
request, identifies individual changes in it, and
determines their type. Figure 1 shows an exam-
ple situation. Domain specific changes of the D1
and D2 type have been identified in the Change
Request 1. From the previously identified and
cataloged relationships between change types we
would know their generally applicable change
types are G1 and G2.

A generally applicable change type can be a
kind of an aspect-oriented design pattern (con-
sider G2 and AO Pattern 2). A domain specific
change realization can also be complemented
by an aspect-oriented design pattern (or several
ones), which is expressed by an association be-
tween them (consider D1 and AO Pattern 1).

Each generally applicable change has a
known domain independent code scheme (G2’s
code scheme is omitted from the figure). This
code scheme has to be adapted to the context

46 Valentino Vranić, Radoslav Menkyna, Michal Bebjak, Peter Dolog

Figure 1. Generally applicable and domain specific changes

of a particular domain specific change, which
may be seen as a kind of refinement (consider
D1 Code and D2 Code).

3. Catalog of Changes

To support the process of change selection,
the catalog of changes is needed in which the
generalization–specialization relationships be-
tween change types would be explicitly estab-
lished. The following list sums up these relation-
ships between change types we have identified in
the web application domain (the domain specific
change type is introduced first):
– One Way Integration: Performing Action Af-

ter Event,
– Two Way Integration: Performing Action Af-

ter Event,
– Adding Column to Grid: Performing Action

After Event,
– Removing Column from Grid: Method Sub-

stitution,
– Altering Column Presentation in Grid:

Method Substitution,
– Adding Fields to Form: Enumeration Modifi-

cation with Additional Return Value Check-
ing/Modification,

– Removing Fields from Form: Additional Re-
turn Value Checking/Modification,

– Introducing Additional Constraint on Fields:
Additional Parameter Checking or Perform-
ing Action After Event,

– Introducing User Rights Management: Bor-
der Control with Method Substitution,

– User Interface Restriction: Additional Re-
turn Value Checking/Modifications,

– Introducing Resource Backup: Class Ex-
change.
We have already described Introducing Re-

source Backup and the corresponding generally
applicable change, Class Exchange. Here, we will
briefly describe the rest of the domain specific
change types we identified in the web applica-
tion domain along with the corresponding gen-
erally applicable changes. The generally appli-
cable change types are described where they are
first mentioned to make sequential reading of
this section easier. In a real catalog of changes,
each change type would be described separately.

3.1. Integration Changes

Web applications often have to be integrated
with other systems. Suppose that in our ex-
ample the merchant wants to integrate the af-
filiate marketing software with the third party
newsletter which he uses. Every affiliate should
be a member of the newsletter. When an affili-
ate signs up to the affiliate marketing software,
he should be signed up to the newsletter, too.
Upon deleting his account, the affiliate should
be removed from the newsletter, too.

This is a typical example of the One Way
Integration change type [1]. Its essence is the
one way notification: the integrating application
notifies the integrated application of relevant
events. In our case, such events are the affiliate
sign-up and affiliate account deletion.

Such integration corresponds to the Per-
forming Action After Event change type [1].
Since events are actually represented by meth-
ods, the desired action can be implemented in
an after advice:

Aspect-Oriented Change Realizations and Their Interaction 47

public aspect PerformActionAfterEvent {
pointcut methodCalls(TargetClass t, int a):...;
after(/∗ captured arguments ∗/):

methodCalls(/∗ captured arguments ∗/)
{

performAction(/∗ captured arguments ∗/);
}
private void performAction(/∗ arguments ∗/)
{
/∗ action logic ∗/

}
}

The after advice executes after the captured
method calls. The actual action is implemented
as the performAction() method called by the ad-
vice.

To implement the one way integration, in the
after advice we will make a post to the newslet-
ter sign-up/sign-out script and pass it the e-mail
address and name of the newly signed-up or
deleted affiliate. We can seamlessly combine
multiple one way integrations to integrate with
several systems.

The Two Way Integration change type can
be seen as a double One Way Integration. A typ-
ical example of such a change is data synchro-
nization (e.g., synchronization of user accounts)
across multiple systems. When a user changes
his profile in one of the systems, these changes
should be visible in all of them. In our exam-
ple, introducing a forum for affiliates with syn-
chronized user accounts for affiliate convenience
would represent a Two Way Integration.

3.2. Introducing User Rights
Management

In our affiliate marketing application, the mar-
keting is managed by several co-workers with
different roles. Therefore, its database has to
be updated from an administrator account with
limited permissions. A restricted administrator
should not be able to decline or delete affiliates,
nor modify the advertising campaigns and ban-
ners that have been integrated with the web sites
of affiliates. This is an instance of the Introduc-
ing User Rights Management change type.

Suppose all the methods for managing cam-
paigns and banners are located in the campaigns

and banners packages. The calls to these meth-
ods can be viewed as a region prohibited to
the restricted administrator. The Border Con-
trol design pattern [20] enables to partition an
application into a series of regions implemented
as pointcuts that can later be operated on by
advices [1]:
pointcut prohibitedRegion():
(within(application.Proxy)
&& call(void ∗. ∗ (..)))
|| (within(application.campaigns. +)
&& call(void ∗. ∗ (..)))
|| within(application.banners. +)
|| call(void Affiliate . decline (..))
|| call(void Affiliate . delete (..));

What we actually need is to substitute the
calls to the methods in the region with our own
code that will let the original methods execute
only if the current user has sufficient rights. This
can be achieved by applying the Method Substi-
tution change type which is based on an around
advice that enables to change or completely dis-
able the execution of methods. The following
pointcut captures all method calls of the method
called method() belonging to the TargetClass
class:
pointcut allmethodCalls(TargetClass t, int a):
call(ReturnType TargetClass.method(..)) &&
target(t) && args(a);

Note that we capture method calls, not ex-
ecutions, which gives us the flexibility in con-
straining the method substitution logic by the
context of the method call. The call() pointcut
captures all the calls of TargetClass.method(),
the target() pointcut is used to capture the ref-
erence to the target object, and the method ar-
guments (if we need them) are captured by an
args() pointcut. In the example code, we assume
method() has one integer argument and capture
it with this pointcut.

The following example captures the
method() calls made within the control flow
of any of the CallingClass methods:
pointcut specificmethodCalls(TargetClass t, int a):

call(ReturnType TargetClass.method(a))
&& target(t) && args(a)
&& cflow(call(∗ CallingClass .∗(..)));

48 Valentino Vranić, Radoslav Menkyna, Michal Bebjak, Peter Dolog

This embraces the calls made directly in these
methods, but also any of the method() calls
made further in the methods called directly or
indirectly by the CallingClass methods.

By making an around advice on the specified
method call capturing pointcut, we can create a
new logic of the method to be substituted:
public aspect MethodSubstition {

pointcut methodCalls(TargetClass t, int a): . . .;
ReturnType around(TargetClass t, int a):

methodCalls(t, a) {
if (. . .) {

. . . } // the new method logic
else

proceed(t, a);
}

}

3.3. User Interface Restriction

It is quite annoying when a user sees, but can’t
access some options due to user rights restric-
tions. This requires a User Interface Restriction
change type to be applied. We have created a
similar situation in our example by a previous
change implementation that introduced the re-
stricted administrator (see Sect. 3.2). Since the
restricted administrator can’t access advertising
campaigns and banners, he shouldn’t see them
in menu either.

Menu items are retrieved by a method and
all we have to do to remove the banners and
campaigns items is to modify the return value of
this method. This may be achieved by applying
a Additional Return Value Checking/Modifica-
tion change which checks or modifies a method
return value using an around advice:
public aspect AdditionalReturnValueProcessing {

pointcut methodCalls(TargetClass t, int a): . . .;
private ReturnType retValue;
ReturnType around():

methodCalls(/∗ captured arguments ∗/) {
retValue = proceed(/∗ captured arguments ∗/);
processOutput(/∗ captured arguments ∗/);
return retValue;

}
private void processOutput(/∗ arguments ∗/) {

// processing logic
}

}

In the around advice, we assign the original re-
turn value to the private attribute of the as-
pect. Afterwards, this value is processed by the
processOutput() method and the result is re-
turned by the around advice.

3.4. Grid Display Changes

It is often necessary to modify the way data
are displayed or inserted. In web applications,
data are often displayed in grids, and data in-
put is usually realized via forms. Grids usually
display the content of a database table or colla-
tion of data from multiple tables directly. Typi-
cal changes required on grid are adding columns,
removing them, and modifying their presenta-
tion. A grid that is going to be modified must be
implemented either as some kind of a reusable
component or generated by row and cell pro-
cessing methods. If the grid is hard coded for a
specific view, it is difficult or even impossible to
modify it using aspect-oriented techniques.

If the grid is implemented as a data driven
component, we just have to modify the data
passed to the grid. This corresponds to the Ad-
ditional Return Value Checking/Modification
change (see Sect. 3.3). If the grid is not a data
driven component, it has to be provided at least
with the methods for processing rows and cells.

Adding Column to Grid can be performed af-
ter an event of displaying the existing columns
of the grid which brings us to the Performing
Action After Event change type (see Sect. 3.1).
Note that the database has to reflect the change,
too. Removing Column from Grid requires a
conditional execution of the method that dis-
plays cells, which may be realized as a Method
Substitution change (see Sect. 3.2).

Alterations of a grid are often necessary due
to software localization. For example, in Japan
and Hungary, in contrast to most other coun-
tries, the surname is placed before the given
names. The Altering Column Presentation in
Grid change type requires preprocessing of all
the data to be displayed in a grid before actually
displaying them. This may be easily achieved by
modifying the way the grid cells are rendered,

Aspect-Oriented Change Realizations and Their Interaction 49

which may be implemented again as a Method
Substitution (see Sect. 3.2):
public aspect ChangeUserNameDisplay {

pointcut displayCellCalls(String name, String value):
call(void UserTable.displayCell (..)) ||

args(name, value);
around(String name, String value):

displayCellCalls (name, value) {
if (name ==

"<the name of the column to be modified>") {
. . . // display the modified column

} else {
proceed(name, value);

}
}

}

3.5. Input Form Changes

Similarly to tables, forms are often subject to
modifications. Users often want to add or re-
move fields from forms or pose additional con-
straints on their input fields. Note that to be
possible to modify forms using aspect-oriented
programming they may not be hard coded in
HTML, but generated by a method. Typically
they are generated from a list of fields imple-
mented by an enumeration.

Going back to our example, assume that the
merchant wants to know the genre of the music
which is promoted by his affiliates. We need to
add the genre field to the generic affiliate sign-up
form and his profile form to acquire the informa-
tion about the genre to be promoted at different
affiliate web sites. This is a change of the Adding
Fields to Form type. To display the required in-
formation, we need to modify the affiliate table
of the merchant panel to display genre in a new
column. This can be realized by applying the
Enumeration Modification change type to add
the genre field along with already mentioned Ad-
ditional Return Value Checking/Modification in
order to modify the list of fields being returned
(see Sect. 3.3).

The realization of the Enumeration Modifi-
cation change type depends on the enumeration
type implementation. Enumeration types are of-
ten represented as classes with a static field for
each enumeration value. A single enumeration
value type is represented as a class with a field

that holds the actual (usually integer) value and
its name. We add a new enumeration value by
introducing the corresponding static field:
public aspect NewEnumType {

public static EnumValueType
EnumType.NEWVALUE =

new EnumValueType(10, "<new value name>");
}

The fields in a form are generated according
to the enumeration values. The list of enumera-
tion values is typically accessible via a method
provided by it. This method has to be addressed
by an Additional Return Value Checking/Mod-
ification change.

For Removing Fields from Form, an Ad-
ditional Return Value Checking/Modification
change is sufficient. Actually, the enumeration
value would still be included in the enumeration,
but this would not affect the form generation.

If we want to introduce additional vali-
dations on form input fields in an applica-
tion without a built-in validation, which consti-
tutes an Introducing Additional Constraint on
Fields change, an Additional Parameter Check-
ing change can be applied to methods that pro-
cess values submitted by the form. This change
enables to introduce an additional validation or
constraint on method arguments. For this, we
have to specify a pointcut that will capture all
the calls of the affected methods along with their
context similarly as in Sect. 3.2. Their argu-
ments will be checked by the check() method
called from within an around advice which will
throw WrongParamsException if they are not
correct:
public aspect AdditionalParameterChecking {

pointcut methodCalls(TargetClass t, int a): . . .;
ReturnType around(/∗ arguments ∗/) throws

WrongParamsException:
methodCalls(/∗ arguments ∗/) {
check(/∗ arguments ∗/);
return proceed(/∗ arguments ∗/);

}
void check(/∗ arguments ∗/) throws

WrongParamsException {
if (arg1 != <desired value>)

throw new WrongParamsException();
}

}
Adding a new validator to an application

that already has a built-in validation is realized

50 Valentino Vranić, Radoslav Menkyna, Michal Bebjak, Peter Dolog

by simply including it in the list of validators.
This can be done by implementing the Perform-
ing Action After Event change (see Sect. 3.1),
which would add the validator to the list of val-
idators after the list initialization.

4. Changing a Change

Sooner or later there will be a need for a change
whose realization will affect some of the already
applied changes. There are two possibilities to
deal with this situation: a new change can be im-
plemented separately using aspect-oriented pro-
gramming or the affected change source code
could be modified directly. Either way, the
changes remain separate from the rest of the ap-
plication.

The possibility to implement a change of
a change using aspect-oriented programming
and without modifying the original change is
given by the aspect-oriented programming lan-
guage capabilities. Consider, for example, ad-
vices in AspectJ. They are unnamed, so can’t
be referred to directly. The primitive pointcut
adviceexecution(), which captures execution
of all advices, can be restricted by the within()
pointcut to a given aspect, but if an aspect con-
tains several advices, advices have to be an-
notated and accessed by the @annotation()
pointcut, which was impossible in AspectJ ver-
sions that existed before Java was extended with
annotations.

An interesting consequence of aspect-oriented
change realization is the separation of cross-
cutting concerns in the application which im-
proves its modularity (and thus makes easier
further changes) and may be seen as a kind of
aspect-oriented refactoring. For example, in our
affiliate marketing application, the integration
with a newsletter — identified as a kind of One
Way Integration — actually was a separation
of integration connection, which may be seen
as a concern of its own. Even if these once
separated concerns are further maintained by
direct source code modification, the important
thing is that they remain separate from the
rest of the application. Implementing a change

of a change using aspect-oriented programming
and without modifying the original change is
interesting mainly if it leads to separation of
another crosscutting concern.

5. Capturing Change Interaction by
Feature Models

Some change realizations can interact: they may
be mutually dependent or some change realiza-
tions may depend on the parts of the underly-
ing system affected by other change realizations.
With increasing number of changes, change in-
teraction can easily escalate into a serious prob-
lem: serious as feature interaction.

Change realizations in the sense of the ap-
proach presented so far actually resemble fea-
tures as coherent pieces of functionality. More-
over, they are virtually pluggable and as such
represent variable features. This brings us to
feature modeling as an appropriate technique
for managing variability in software develop-
ment including variability among changes. This
section will show how to model aspect-oriented
changes using feature modeling.

5.1. Representing Change Realizations

There are several feature modeling nota-
tions [26] of which we will stick to a widely
accepted and simple Czarnecki–Eisenecker basic
notation [5]. Further in this section, we will show
how feature modeling can be used to manage
change interaction with elements of the notation
explained as needed.

Aspect-oriented change realizations can be
perceived as variable features that extend an
existing system. Fig. 2 shows the change re-
alizations from our affiliate marketing scenario
a feature diagram. A feature diagram is com-
monly represented as a tree whose root repre-
sents a concept being modeled. Our concept is
our affiliate marketing software. All the changes
are modeled as optional features (marked by an
empty circle ended edges) that can but do not
have to be included in a feature configuration —
known also as concept instance — for it to be

Aspect-Oriented Change Realizations and Their Interaction 51

SMTP Server
Backup A

Newsletter
Sign Up

User Name
Display Change

 Restricted
Administrator Account

Hide Options Unavailable
to Restricted Administrator

Affiliate
Marketing

SMTP Server
Backup B

Figure 2. Affiliate marketing software change realizations in a feature diagram

valid. Recall adding a backup SMTP server dis-
cussed in Sect. 2.1. We considered a possibility
of having another realization of this change, but
we don’t want both realizations simultaneously.
In the feature diagram, this is expressed by alter-
native features (marked by an arc), so no Affili-
ate Marketing instance will contain both SMTP
Server Backup A and SMTP Server Backup B.

A change realization can be meaningful only
in the context of another change realization. In
other words, such a change realization requires
the other change realization. In our scenario,
hiding options unavailable to a restricted ad-
ministrator makes sense only if we introduced
a restricted administrator account (see Sect. 3.3
and 3.2). Thus, the Hide Options Unavailable
to Restricted Administrator feature is a subfea-
ture of the Restricted Administrator Account
feature. For a subfeature to be included in a
concept instance its parent feature must be in-
cluded, too.

5.2. Identifying Direct Change
Interactions

Direct change interactions can be identified in a
feature diagram with change realizations mod-
eled as features of the affected software con-
cept. Each dependency among features repre-
sents a potential change interaction. A direct
change interaction may occur among alterna-
tive features or a feature and its subfeatures:
such changes may affect the common join points.
In our affiliate marketing scenario, alternative
SMTP backup server change realizations are an
example of such changes. Determining whether
changes really interact requires analysis of de-

pendant feature semantics with respect to the
implementation of the software being changed.
This is beyond feature modeling capabilities.

Indirect feature dependencies may also rep-
resent potential change interactions. Additional
dependencies among changes can be discovered
by exploring the software to which the changes
are introduced. For this, it is necessary to have
a feature model of the software itself, which is
seldom the case. Constructing a complete fea-
ture model can be too costly with respect to ex-
pected benefits for change interaction identifica-
tion. However, only a part of the feature model
that actually contains edges that connect the
features under consideration is needed in order
to reveal indirect dependencies among them.

5.3. Partial Feature Model Construction

The process of constructing partial feature
model is based on the feature model in which
aspect-oriented change realizations are repre-
sented by variable features that extend an ex-
isting system represented as a concept (see
Sect. 5.1).

The concept node in this case is an abstract
representation of the underlying software sys-
tem. Potential dependencies of the change real-
izations are hidden inside of it. In order to reveal
them, we must factor out concrete features from
the concept. Starting at the features that rep-
resent change realizations (leaves) we proceed
bottom up trying to identify their parent fea-
tures until related changes are not grouped in
common subtrees. Figure 3 depicts this process.

The process will be demonstrated on Yon-
Ban, a student project management system de-

52 Valentino Vranić, Radoslav Menkyna, Michal Bebjak, Peter Dolog

[Application
Concept]

[Feature A]

[Change 1]

[Feature D]

[Feature E]

[Feature B]

[Change 6][Feature C]

[Change 5][Change4]

[Change 3][Change 2]

Figure 3. Constructing a partial feature model

veloped at Slovak University of Technology. We
will consider the following changes in YonBan
and their respective realizations indicated by
generally applicable change types:
– Telephone Number Validating (realized as

Performing Action After Event): to validate
a telephone number the user has entered;

– Telephone Number Formatting (realized as
Additional Return Value Checking/Modifi-
cation): to format a telephone number by
adding country prefix;

– Project Registration Statistics (realized as
One Way Integration): to gain statistic in-
formation about the project registrations;

– Project Registration Constraint (realized as
Additional Parameter Checking/Modifica-
tion): to check whether the student who
wants to register a project has a valid e-mail
address in his profile;

– Exception Logging (realized as Performing
Action After Event): to log the exceptions
thrown during the program execution;

– Name Formatting (realized as Method Sub-
stitution): to change the way how student
names are formatted.
These change realizations are captured in the

initial feature diagram presented Fig. 4. Since
there was no relevant information about direct
dependencies among changes during their speci-
fication, there are no direct dependencies among

the features that represent them either. The con-
cept of the system as such is marked as open (in-
dicated by square brackets), which means that
new variable subfeatures are expected at it. This
is so because we show only a part of the analyzed
system knowing there are other features there.

Following this initial stage, we attempt to
identify parent features of the change realiza-
tion features as the features of the underly-
ing system that are affected by them. Fig-
ure 5 shows such changes identified in our case.
We found that Name Formatting affects the
Name Entering feature. Project Registration
Statistic and Project Registration Constraint
change User Registration. Telephone Number
Formatting and Telephone Number Validating
are changes of Telephone Number Entering. Ex-
ception Logging affects all the features in the
application, so it remains a direct feature of the
concept. All these newly identified features are
open because we are aware of the incompleteness
of their subfeature sets.

We continue this process until we are able to
identify parent features or until all the changes
are found in a common subtree of the feature
diagram, whichever comes first. In our example,
we reached this stage within the following —
and thus last — iteration which is presented in
Fig. 6: we realized that Telephone Number En-
tering is a part of User Registration.

Aspect-Oriented Change Realizations and Their Interaction 53

[YonBan]

Exception
Logging

Name
Formatting

Telephone
Number

Formatting

Project
Registration

Statistics

Project
Registration
Constraint

Telephone
Number

Validating

Figure 4. Initial stage of the YonBan partial feature model construction

[YonBan]

Exception
Logging

Name
Formatting

Telephone
Number

Formatting

Project
Registration

Statistics

Project
Registration
Constraint

Telephone
Number

Validating

[Telephone Number
Entering]

[User
Registration]

[Name
Entering]

Figure 5. Identifying parent features in YonBan partial feature model construction

[YonBan]

Exception
Logging

Name
Formatting

Telephone
Number

Formatting

Project
Registration

Statistics

Project
Registration
Constraint

Telephone
Number

Validating

[Telephone Number
Entering]

[User
Registration]

[Name
Entering]

Figure 6. The final YonBan partial feature model

5.4. Dependency Evaluation

Dependencies among change realization features
in a partial feature model constitute potential
change realization interactions. A careful analy-
sis of the feature model can reveal dependencies
we have overlooked during its construction.

Sibling features (direct subfeatures of the
same parent feature) are potentially interdepen-
dent. This problem can occur also among the
features that are — to say so — indirect siblings,

so we have to analyze these, too. Speaking in
terms of change implementation, the code that
implements the parent feature altered by one of
the sibling change features can be dependent on
the code altered by another sibling change fea-
ture or vice versa. The feature model points us
to the locations of potential interaction.

In our example, we have a partial feature
model (recall Fig. 6) and we understand the
way the changes should be implemented based
on their type (see Sect. 5.3). Project Registra-

54 Valentino Vranić, Radoslav Menkyna, Michal Bebjak, Peter Dolog

tion Constraint and Project Registration Statis-
tic change are both direct subfeatures of User
Registration. The two aspects that would im-
plement these changes would advise the same
project registration method, and this indeed
can lead to interaction. In such cases, prece-
dence of aspects should be set (in AspectJ,
dominates inter-type declaration enables this).
Another possible problem in this particular situ-
ation is that the Project Registration Constraint
change can disable the execution of the project
registration method. If the Project Registra-
tion Statistic change would use an execution()
pointcut, everything would be all right. On the
other hand, if the Project Registration Statistic
change would use a call() pointcut, the regis-
tration statistic advice would be still executed
even when the registration method would not
be executed. This would cause an undesirable
system behavior where also registrations can-
celed by Project Registration Constraint would
be counted in statistic. The probability of a mis-
take when a call() pointcut is used instead of
the execution() pointcut is higher if the Project
Registration Statistic change would be added
first.

Telephone Number Formatting and Tele-
phone Number Validating are another exam-
ple of direct subfeatures. In this case, the as-
pects that would implement these changes ap-
ply to different join points, so apparently, no
interaction should occur. However, a detailed
look uncovers that Telephone Number Format-
ting change alters the value which the Telephone
Number Validating change has to validate. This
introduces a kind of logical dependency and to
this point the two changes interact. For instance,
altering Telephone Number Formatting to for-
mat the number in a different way may require
adapting Telephone Number Validating.

We saw that the dependencies between
changes could be as complex as feature depen-
dencies in feature modeling and accordingly rep-
resented by feature diagrams. For dependencies
appearing among features without a common
parent, additional constraints expressed as log-
ical expressions [27] could be used. These con-
straints can be partly embedded into feature di-

agrams by allowing them to be directed acyclic
graphs instead of just trees [10].

Some dependencies between changes may ex-
hibit only recommending character, i.e. whether
they are expected to be included or not included
together, but their application remains mean-
ingful either way. An example of this are fea-
tures that belong to the same change request.
Again, feature modeling can be used to model
such dependencies with so-called default depen-
dency rules that may also be represented by log-
ical expressions [27].

6. Evaluation and Tool Support
Outlooks

We have successfully applied the aspect-oriented
approach to change realization to introduce
changes into YonBan, the student project man-
agement system discussed in previous section.
YonBan is based on J2EE, Spring, Hibernate,
and Acegi frameworks. The YonBan architecture
is based on the Inversion of Control principle
and Model-View-Controller pattern.

We implemented all the changes listed in
Sect. 5.3. No original code of the system had to
be modified. Except in the case of project reg-
istration statistics and project registration con-
straint, which where well separated from the rest
of the code, other changes would require exten-
sive code modifications if they have had been
implemented the conventional way.

As we discussed in Sect 5.4, we encountered
one change interaction: between the telephone
number formatting and validating. These two
changes are interrelated — they would probably
be part of one change request — so it comes as
no surprise they affect the same method. How-
ever, no intervention was needed in the actual
implementation.

We managed to implement the changes easily
even without a dedicated tool, but to cope with
a large number of changes, such a tool may be-
come crucial. Even general aspect-oriented pro-
gramming support tools — usually integrated
with development environments — may be of
some help in this. AJDT (AspectJ Development

Aspect-Oriented Change Realizations and Their Interaction 55

Tools) for Eclipse is a prominent example of such
a tool. AJDT shows whether a particular code
is affected by advices, the list of join points af-
fected by each advice, and the order of advice
execution, which all are important to track when
multiple changes affect the same code. Advices
that do not affect any join point are reported
in compilation warnings, which may help detect
pointcuts invalidated by direct modifications of
the application base code such as identifier name
changes or changes in method arguments.

A dedicated tool could provide a much more
sophisticated support. A change implementation
can consist of several aspects, classes, and in-
terfaces, commonly denoted as types. The tool
should keep a track of all the parts of a change.
Some types may be shared among changes, so
the tool should enable simple inclusion and ex-
clusion of changes. This is related to change in-
teraction, which can be addressed by feature
modeling as we described in the previous sec-
tion.

7. Related Work

The work presented in this paper is based
on our initial efforts related to aspect-oriented
change control [8] in which we related our ap-
proach to change-based approaches in version
control. We concluded that the problem with
change-based approaches that could be solved
by aspect-oriented programming is the lack of
programming language awareness in change re-
alizations.

In our work on the evolution of web applica-
tions based on aspect-oriented design patterns
and pattern-like forms [1], we reported the fun-
damentals of aspect-oriented change realizations
based on the two level model of domain specific
and generally applicable change types, as well as
four particular change types: Class Exchange,
Performing Action After Event, and One/Two
Way Integration.

Applying feature modeling to maintain
change dependencies (see Sect. 4) is similar to
constraints and preferences proposed in SIO
software configuration management system [4].

However, a version model for aspect dependency
management [23] with appropriate aspect model
that enables to control aspect recursion and
stratification [2] would be needed as well.

We tend to regard changes as concerns,
which is similar to the approach of facilitating
configurability by separation of concerns in the
source code [9]. This approach actually enables a
kind of aspect-oriented programming on top of a
versioning system. Parts of the code that belong
to one concern need to be marked manually in
the code. This enables to easily plug in or out
concerns. However, the major drawback, besides
having to manually mark the parts of concerns,
is that — unlike in aspect-oriented programming
— concerns remain tangled in code.

Others have explored several issues gener-
ally related to our work, but none of these
works aims at actual capturing changes by as-
pects. These issues include database schema evo-
lution with aspects [12] or aspect-oriented ex-
tensions of business processes and web services
with crosscutting concerns of reliability, secu-
rity, and transactions [3]. Also, an increased
changeability of components implemented using
aspect-oriented programming [17], [18], [22] and
aspect-oriented programming with the frame
technology [19], as well as enhanced reusabil-
ity and evolvability of design patterns achieved
by using generic aspect-oriented languages to
implement them [24] have been reported. The
impact of changes implemented by aspects has
been studied using slicing in concern graphs [15].

While we do see potential of aspect-orien-
tation for configuration and reconfiguration of
applications, our current work does not aim at
automatic adaptation in application evolution,
such as event triggered evolutionary actions [21],
evolution based on active rules [6], adaptation
of languages instead of software systems [16],
or as an alternative to version model based
context-awareness [7], [13].

8. Conclusions and Further Work

In this paper, we have described our approach
to change realization using aspect-oriented pro-

56 Valentino Vranić, Radoslav Menkyna, Michal Bebjak, Peter Dolog

gramming and proposed a feature modeling
based approach of dealing with change interac-
tion. We deal with changes at two levels dis-
tinguishing between domain specific and gen-
erally applicable change types. We described
change types specific to web application domain
along with corresponding generally applicable
changes. We also discussed consequences of hav-
ing to implement a change of a change.

The approach does not require exclusive-
ness in its application: a part of the changes
can be realized in a traditional way. In fact,
the approach is not appropriate for realization
of all changes, and some of them can’t be re-
alized by it at all. This is due to a techni-
cal limitation given by the capabilities of the
underlying aspect-oriented language or frame-
work. Although some work towards addressing
method-level constructs such as loops has been
reported [14], this is still uncommon practice.
What is more important is that relying on the
inner details of methods could easily compro-
mise the portability of changes across the ver-
sions since the stability of method bodies be-
tween versions is questionable.

Change interaction can, of course, be an-
alyzed in code, but it would be very benefi-
cial to deal with it already during modeling.
We showed that feature modeling can success-
fully be applied whereby change realizations
would be modeled as variable features of the
application concept. Based on such a model,
change dependencies could be tracked through
feature dependencies. In the absence of a fea-
ture model of the application under change,
which is often the case, a partial feature model
can be developed at far less cost to serve the
same purpose.

For further evaluation, it would be interest-
ing to develop catalogs of domain specific change
types of other domains like service-oriented ar-
chitecture for which we have a suitable applica-
tion developed in Java available [25]. Although
the evaluation of the approach has shown the
approach can be applied even without a dedi-
cated tool support, we believe that tool support
is important in dealing with change interaction,
especially if their number is high.

By applying the multi-paradigm design with
feature modeling [27] to select the generally ap-
plicable changes (understood as paradigms) ap-
propriate to given application specific changes
we may avoid the need for catalogs of domain
specific change types or we can even use it to
develop them. This constitutes the main course
of our further research.

Acknowledgements The work was sup-
ported by the Scientific Grant Agency of Slovak
Republic (VEGA) grant No. VG 1/0508/09.

References

[1] M. Bebjak, V. Vranić, and P. Dolog. Evolu-
tion of web applications with aspect-oriented
design patterns. In M. Brambilla and
E. Mendes, editors, Proc. of ICWE 2007 Work-
shops, 2nd International Workshop on Adap-
tation and Evolution in Web Systems Engi-
neering, AEWSE 2007, in conjunction with 7th
International Conference on Web Engineering,
ICWE 2007, pages 80–86, Como, Italy, July
2007.

[2] E. Bodden, F. Forster, and F. Steimann. Avoid-
ing infinite recursion with stratified aspects. In
R. Hirschfeld et al., editors, Proc. of NODe
2006, LNI P-88, pages 49–64, Erfurt, Germany,
Sept. 2006. GI.

[3] A. Charfi, B. Schmeling, A. Heizenreder, and
M. Mezini. Reliable, secure, and transacted
web service compositions with AO4BPEL. In
4th IEEE European Conf. on Web Services
(ECOWS 2006), pages 23–34, Zürich, Switzer-
land, Dec. 2006. IEEE Computer Society.

[4] R. Conradi and B. Westfechtel. Version models
for software configuration management. ACM
Computing Surveys, 30(2):232–282, June 1998.

[5] K. Czarnecki and U. W. Eisenecker. Generative
Programing: Methods, Tools, and Applications.
Addison-Wesley, 2000.

[6] F. Daniel, M. Matera, and G. Pozzi. Combin-
ing conceptual modeling and active rules for the
design of adaptive web applications. In Work-
shop Proc. of 6th Int. Conf. on Web Engineering
(ICWE 2006), New York, NY, USA, 2006. ACM
Press.

[7] F. Dantas, T. Batista, N. Cacho, and A. Gar-
cia. Towards aspect-oriented programming for
context-aware systems: A comparative study. In
Proc. of 1st International Workshop on Soft-
ware Engineering for Pervasive Computing Ap-

Aspect-Oriented Change Realizations and Their Interaction 57

plications, Systems, and Environments, SEP-
CASE’07, Minneapolis, USA, May 2007. IEEE.

[8] P. Dolog, V. Vranić, and M. Bieliková. Rep-
resenting change by aspect. ACM SIGPLAN
Notices, 36(12):77–83, Dec. 2001.

[9] Z. Fazekas. Facilitating configurability by sepa-
ration of concerns in the source code. Journal of
Computing and Information Technology (CIT),
13(3):195–210, Sept. 2005.

[10] R. Filkorn and P. Návrat. An approach for
integrating analysis patterns and feature dia-
grams into model driven architecture. In P. Voj-
táš, M. Bieliková, and B. Charron-Bost, edi-
tors, Proc. 31st Conference on Current Trends
in Theory and Practice of Informatics (SOF-
SEM 2005), LNCS 3381, Liptovský Jan, Slo-
vakia, Jan. 2005. Springer.

[11] S. Goldschmidt, S. Junghagen, and U. Harris.
Strategic Affiliate Marketing. Edward Elgar
Publishing, 2003.

[12] R. Green and A. Rashid. An aspect-oriented
framework for schema evolution in
object-oriented databases. In Proc. of the
Workshop on Aspects, Components and
Patterns for Infrastructure Software (in
conjunction with AOSD 2002), Enschede,
Netherlands, Apr. 2002.

[13] M. Grossniklaus and M. C. Norrie. An
object-oriented version model for context-aware
data management. In M. Weske, M.-S. Hacid,
and C. Godart, editors, Proc. of 8th Interna-
tional Conference on Web Information Systems
Engineering, WISE 2007, LNCS 4831, Nancy,
France, Dec. 2007. Springer.

[14] B. Harbulot and J. R. Gurd. A join point for
loops in AspectJ. In Proc. of 5th International
Conference on Aspect-Oriented Software Devel-
opment, AOSD 2006, pages 63–74, Bonn, Ger-
many, 2006. ACM.

[15] S. Khan and A. Rashid. Analysing require-
ments dependencies and change impact using
concern slicing. In Proc. of Aspects, Depen-
dencies, and Interactions Workshop (affiliated
to ECOOP 2008), Nantes, France, July 2006.

[16] J. Kollár, J. Porubän, P. Václavík,
J. Bandáková, and M. Forgáč. Functional
approach to the adaptation of languages
instead of software systems. Computer Science
and Information Systems Journal (ComSIS),
4(2), Dec. 2007.

[17] A. A. Kvale, J. Li, and R. Conradi. A case
study on building COTS-based system us-
ing aspect-oriented programming. In 2005
ACM Symposium on Applied Computing, pages

1491–1497, Santa Fe, New Mexico, USA, 2005.
ACM.

[18] J. Li, A. A. Kvale, and R. Conradi. A case study
on improving changeability of COTS-based sys-
tem using aspect-oriented programming. Jour-
nal of Information Science and Engineering,
22(2):375–390, Mar. 2006.

[19] N. Loughran, A. Rashid, W. Zhang, and
S. Jarzabek. Supporting product line evolu-
tion with framed aspects. In Workshop on As-
pects, Componentsand Patterns for Infrastruc-
ture Software (held with AOSD 2004, Interna-
tional Conference on Aspect-Oriented Software
Development), Lancaster, UK, Mar. 2004.

[20] R. Miles. AspectJ Cookbook. O’Reilly, 2004.
[21] F. Molina-Ortiz, N. Medina-Medina, and

L. García-Cabrera. An author tool based on
SEM-HP for the creation and evolution of adap-
tive hypermedia systems. In Workshop Proc.
of 6th Int. Conf. on Web Engineering (ICWE
2006), New York, NY, USA, 2006. ACM Press.

[22] O. Papapetrou and G. A. Papadopoulos.
Aspect-oriented programming for a component
based real life application: A case study. In 2004
ACM Symposium on Applied Computing, pages
1554–1558, Nicosia, Cyprus, 2004. ACM.

[23] E. Pulvermüller, A. Speck, and J. O. Coplien.
A version model for aspect dependency man-
agement. In Proc. of 3rd Int. Conf. on Gener-
ative and Component-Based Software Engineer-
ing (GCSE 2001), LNCS 2186, pages 70–79, Er-
furt, Germany, Sept. 2001. Springer.

[24] T. Rho and G. Kniesel. Independent evolu-
tion of design patterns and application logic with
generic aspects — a case study. Technical Re-
port IAI-TR-2006-4, University of Bonn, Bonn,
Germany, Apr. 2006.

[25] V. Rozinajová, M. Braun, P. Návrat, and
M. Bieliková. Bridging the gap between
service-oriented and object-oriented approach in
information systems development. In D. Avi-
son, G. M. Kasper, B. Pernici, I. Ramos,
and D. Roode, editors, Proc. of IFIP 20th
World Computer Congress, TC 8, Information
Systems, Milano, Italy, Sept. 2008. Springer
Boston.

[26] V. Vranić. Reconciling feature model-
ing: A feature modeling metamodel. In
M. Weske and P. Liggsmeyer, editors, Proc.
of 5th Annual International Conference on
Object-Oriented and Internet-Based Technolo-
gies, Concepts, and Applications for a Net-
worked World (Net.ObjectDays 2004), LNCS

58 Valentino Vranić, Radoslav Menkyna, Michal Bebjak, Peter Dolog

3263, pages 122–137, Erfurt, Germany, Sept.
2004. Springer.

[27] V. Vranić. Multi-paradigm design with feature
modeling. Computer Science and Information
Systems Journal (ComSIS), 2(1):79–102, June
2005.

[28] V. Vranić, M. Bebjak, R. Menkyna, and
P. Dolog. Developing applications with as-

pect-oriented change realization. In Proc. of
3rd IFIP TC2 Central and East European Con-
ference on Software Engineering Techniques
CEE-SET 2008, LNCS, Brno, Czech Republic,
2008.

