
e-Informatica Software Engineering Journal, Volume 3, Issue 1, 2009

Web–Server Systems HTCPNs-Based
Development Tool Application in

Load Balance Modelling

Slawomir Samolej∗, Tomasz Szmuc∗∗
∗Department of Computer and Control Engineering, Rzeszów University of Technology

∗∗Institute of Automatics, AGH University of Science and Technology
ssamolej@prz.edu.pl, tsz@agh.edu.pl

Abstract
A new software tool for web–server systems development is presented. The tool consist of a set
of predefined Hierarchical Timed Coloured Petri Net (HTCPN) structures – patterns. The pat-
terns make it possible to naturally construct typical and experimental server–systems structures.
The preliminary patterns are executable queueing systems. A simulation based methodology of
web–server model analysis and validation has been proposed. The paper focuses on presenting the
construction of the software tool and its application for selected cluster–based web–servers load
balancing strategies evaluation.

1. Introduction

Gradually, the Internet becomes the most im-
portant medium for conducting business, sell-
ing services and remote control of industrial
processes. Typical modern software applications
have a client–server logical structure where pre-
dominant role plays an Internet server offer-
ing data access or computation abilities for re-
mote clients. The hardware of an Internet or
web–server is now usually designed as a set of
(locally) deployed computers. The computers
are divided into some layers or clusters where
each layer executes separate web–system task
[4], [12], [24], [34], [39], [37], [5], [2], [22], [9], [29],
[23]. This design approach makes it possible to
distribute services among the nodes of a cluster
and to improve the scalability of the system. Re-
dundancy which intrinsically exists in such hard-
ware structure provides higher system depend-
ability. Fig. 1 shows an example cluster–based
Internet system structure. The Internet requests
are generated by the clients. Then they are dis-
tributed by the load balancer among set of com-

puters that constitute the front-end or WWW
cluster. The front–end cluster offers a system
interface and some procedures that optimize
the load of the next system layer–the database
server.

To improve the quality of service of
web–server clusters two main research paths
are followed. First, the software of individual
web–server nodes is modified to offer average
response time to dedicated classes of consumers
[11], [18], [19]. Second, some distribution strate-
gies of cluster nodes are investigated [4], [29] in
conjunction with searching for load balancing
policies for the nodes [6], [32], [39], [37], [5], [2],
[22]. In several research projects reported in [12],
[30], [34] load balancing algorithms and modified
cluster node structures are analyzed together.

It is worth noticing that in some of above-
mentioned manuscripts searching for a solution
of the problem goes together with searching for
the adequate formal language to express the
system developed [3], [12], [30], [32], [34], [39].
In [3], [32], [34], [39] Queueing Nets whereas
in [30] Stochastic Petri Nets are applied for

140 Slawomir Samolej, Tomasz Szmuc

Figure 1. Example distributed cluster–based Internet system

system model construction and examination.
However, the most mature and expressive lan-
guage proposed for the web–cluster modelling
seems to be Queueing Petri Nets (QPNs) [12].
The nets combine coloured and stochastic Petri
nets with queueing systems [1] and consequently
make it possible to model relatively complex
web–server systems in a concise way. Moreover,
there exists a software tool for the nets sim-
ulation [13]. The research results reported in
[12] include a systematic approach to apply-
ing QPNs in distributed applications modelling
and evaluation. The modelling process has been
divided into following stages: system compo-
nents and resources modelling, workload mod-
elling, intercomponent interactions and process-
ing steps modelling, and finally – model param-
eterization. The final QPNs based model can be
executed and used for modelled system perfor-
mance prediction.

The successful application of QPNs in
web–cluster modelling become motivation to re-
search reported in this paper. The aim of the
research is to provide an alternative methodol-
ogy and software tool for cluster–based hard-
ware/software systems development. The main
features of the methodology are as follows:
– The modelling language will be Hierarchical

Timed Coloured Petri Nets (HTCPNs) [7],
– A set of so called HTCPNs design patterns

(predefined net structures) will be prepared
and validated to model typical web cluster
components,

– The basic patterns will be executable models
of queueing systems,

– A set of design rules will be provided to cope
with the patterns during the system model
creation,

– The final model will be an executable and an-
alyzable Hierarchical Timed Coloured Petri
Net,

– A well established Design/CPN and CPN
Tools software toolkits will be used for the
design patterns construction and validation,

– The toolkits will also be used as a platform
for the web–server modelling and develop-
ment,

– Performance analysis modules of the toolkits
will be used for capturing and monitoring the
state of the net during execution.
The choice of HTCPNs formalism as a mod-

elling language comes from the following pre-
requisites. First, HTCPNs have an expression
power comparable to QPNs. Second, the avail-
able software toolkits for HTCPNs composi-
tion and validation seem to be more popu-
lar than“SimQPN” [13]. Third, there exists a
reach knowledge base of successful HTCPNs
applications to modelling and validation of
wide range software/hardware systems [7] in-
cluding web–servers [24], [27], [36]. The rest
named features of design methodology intro-
duced in this paper results from both gen-
erally known capabilities of software toolkits
for HTCPNs modelling and some previous ex-
perience gained by the authors in applica-

Web–Server Systems HTCPNs-Based Development Tool Application in Load Balance Modelling 141

tion HTCPNs to real–time systems develop-
ment [25], [26].

This paper is organized as follows. Section
2 describes some selected design patterns and
rules of applying them to web–server cluster
model construction. An example queueing sys-
tem, web–server subsystem and top–level sys-
tem models are presented. Then the simulation
based HTCPNs models validation methods are
discussed. Section 3 presents HTCPNs models of
selected experimental and applied load balanc-
ing strategies for computer clusters. The load
balancing models construction and some simu-
lation results are discussed. Conclusions and fu-
ture research program complete the paper.

It has been assumed that the reader is fa-
miliar with the basic principles of Hierarchical
Timed Coloured Petri Nets theory [7], [8], [14].
All the Coloured Petri Nets in the paper have
been edited and analysed using Design/CPN
tool [21], [36]. Equivalent HTCPNs models may
be developed using CPN Tools [8], [35] software
toolkit.

2. Cluster Server Modelling
Methodology

The main concept of the methodology lies in the
definition of reusable timed coloured Petri nets
structures (patterns) making it possible to com-
pose web–server models in a systematic manner.
The basic set of the patterns includes typical
queueing systems TCPNs implementations, eg.
–/M/PS/∞ , –/M/FIFO/∞ [24], [27]. Packet
distribution TCPNs patterns constitute the next
group of reusable blocks. They preliminary role
is to provide some predefined web–server clus-
ter substructures composed from the queueing
systems. At this stage of subsystem modelling
the queueing systems are represented as sub-
stitution transitions (compare [24], [27]). The
separate models of system arrival processes are
also the members of the group mentioned. The
packet distribution patterns represented as sub-
stitution transitions are in turn used for the gen-
eral top–level system model composition. As a
result, the 3–level web–server model composi-

tion has been proposed. The top–level TCPN
represents the general view of system compo-
nents. The middle–level TCPNs structures rep-
resent the queueing systems interconnections.
And the lowest level includes executable queue-
ing systems implementations.

The modelling methodology assumes, that
the actual state of the Internet requests servic-
ing in the system can be monitored. Moreover,
from the logical point of view the model of the
server cluster is an open queueing network, so
the requests are generated, serviced and finally
removed from the system. As a result an impor-
tant component of the software tool for server
cluster development is the logical representation
of the requests.

In the next subsections the following features
of the modelling methodology will be explained
in detail. First, the logical representation of In-
ternet requests will be shown. Second, queueing
system modelling rules will be explained. Third,
an example cluster subsystem with an individ-
ual load–balancing strategy will be proposed.
Fourth, Internet request generator structure will
be examined. Fifth, top–level HTCPNs struc-
ture of an example cluster–server model will be
shown. Finally, model analysis capabilities will
be discussed.

2.1. Logical Request Representation

In the server–cluster modelling methodology
that is introducing in the paper the structure
of the HTCPN represents a hardvare/software
architecture of web–server. Yet, the dynamics of
the modelled system behavior is determined by
state and allocation of tokens in the net struc-
ture. Two groups of tokens has been proposed for
model construction. The first group consists of
the so–called local tokens, that “live” in individ-
ual design patters. They provide local functions
and data structures for the patterns. The sec-
ond group of tokens represents Internet requests
that are serviced in the system. They are trans-
ported throughout several cluster components.
Their internal state carries data that may be
used for timing and performance evaluation of
the system modelled. As the tokens represent-

142 Slawomir Samolej, Tomasz Szmuc

ing the requests have the predominant role in
the modelling methodology, they structure will
be explained in detail.

Each token representing an Internet request
is a tuple

PACKAGE = (ID,PRT ,START_TIME ,
PROB,AUTIL,RUTIL),

where ID is a request identifier, PRT is a request
priority, START_TIME is a value of simula-
tion time when the request is generated, PROB
is a random value, AUTIL is an absolute request
utilization value, and RUTIL is a relative re-
quest utilization value. Request identifier makes
it possible to give the request an unique number.
Request priority is an integer value that may
be taken into consideration when the requests
are scheduled according priority driven strategy
[11]. START_TIME parameter can store a sim-
ulation time value and can be used for the tim-
ing validation of the requests. Absolute request
utilization value, and relative request utilization
value are exploited in some queueing systems
execution models (e.g. with processor sharing
service).

2.2. Queueing System Models

The basic components of the software tool for
web–server clusters development introduced in
this paper are the executable queueing systems
models. At the current state of the software tool
construction the queueing systems models can
have FIFO, LIFO, processor sharing or prior-
ity based service discipline. For each queue an
arbitrary number of service units may be de-
fined. Additionally, the basic queueing systems
has been equipped with auxiliary components
that are responsible for monitoring of internal
states of the queue during its execution.

An example HTCPNs based –/1/FIFO/∞
queueing system model is shown in Fig. 2.
The model is a HTCPNs subpage that
can communicate with the parent page via
INPUT_PACKS , OUTPUT_PACKS and QL
port places. Request packets (that arrive
through INPUT_PACK place) are placed
into a queue structure within PACK_QUEUE

place after ADD_FIFO transition execution.
TIMERS place and REMOVE_FIFO transi-
tion constitute a clock–like structure and are
used for modelling of duration of packet exe-
cution. When REMOVE_FIFO transition fires,
then the first packet from the queue is with-
drawn and directed to the service procedure.

The packets under service acquire the ade-
quate time stamps generated according to the
assumed service time random distribution func-
tion. The time stamps associated with the
tokens prevent from using the packet tuples
(the tokens) for any transition firing until the
stated simulation time elapses (according to fir-
ing rules defined for HTCPNs [7]). The pack-
ets are treated as serviced when they can leave
OUTPUT_PACKS place as their time stamps
expired. The number of tokens in TIMERS place
defines the quantity of queue servicing units in
the system.

Main parameters that define the queueing
system model dynamics are queue mean service
time, service time probability distribution func-
tion and number of servicing units. Capacity of
the queue is not now taken into consideration
and theoretically may be unlimited.

For future applications the primary queue-
ing system design pattern explained above has
been equipped with an auxiliary “plug–in”.
COUNT_QL transition and TIMER_QL, QL
and COUNTER places make it possible to mea-
sure the queue length and export the mea-
sured value to the parent CPNs page during
the net execution. TIMER_QL place includes
a timer token that can periodically enable the
COUNT_QL transition. QL port place includes
a token storing the last measured queue length
and an individual number of a queueing system
in the system. The COUNTER place includes a
counter token used for the synchronization pur-
pose.

2.3. Packet Distribution Models

Having a set of queueing systems design pat-
terns some packet distribution HTCPNs struc-
tures may be proposed. In [24] a typical ho-
mogeneous multi–tier web–server structure pat-

Web–Server Systems HTCPNs-Based Development Tool Application in Load Balance Modelling 143

ADD_FIFO

PACK_QUEUE

PACK_QUEUE

nil REMOVE_FIFO

[fifo_queue<>nil]

C

output (tim_val);
action
discExp(1.0/fifo1_ser_mean_time)
;

TIMERS TIMER
1‘1

OUTPUT_PACKS

PACKAGE

P Ge
n

INPUT_PACKS

PACKAGE

P Ge
n

QL
QL_A_ID

P Ge
n

TIMER_QL

TIMER
1‘1

COUNT_QL

COUNTER
INT

1‘0

FG

Fifo queue

pack

add_FIFO(pack,fifo_queue)

fifo_queue

fifo_queue release_FIFO
(fifo_queue)@+tim_val

update_FIFO
(fifo_queue)

fifo_queue

1‘(length fifo_queue,
#2 qlen_a_id)

qlen_a_id

tim1

1‘tim1@+
ql_timer_val

1‘tim1@+tim_val1‘tim1

n

n+1

Figure 2. HTCPNs based –/1/FIFO/∞ queueing system model

T3

T4

T5

PACKS3

PACKAGE

PACKS4

PACKAGE

PACKS5

PACKAGE

FIFO1

HS

FIFO2

HS

FIFO3

HS

PACKS8

PACKAGE

PACKS9

PACKAGE

PACKS10

PACKAGE

T8

T9

T10

PACKS13

PACKAGE

P Out

PACKS1

PACKAGE

P In

Load Balacer Server Cluster

pack

pack

pack

pack

pack

pack

pack

pack

pack pack

pack

pack

pack

pack

pack

pack

pack

pack

Figure 3. WWW cluster with stochastic load balancer

tern was examined, in [23] a detailed distributed
database cluster model was proposed, whereas
in [27] a preliminary version of server structure
with feedback like admission control of Inter-
net requests was introduced. The packet dis-
tribution patterns presented in this paper are
also related to the load balancing in web–server
cluster problem. The detailed discussion of some
selected load balancing strategies models is in-
cluded in section 3. In this section a simple
WWW cluster model with stochastic packed dis-
tribution policy is concerned.

Figure 3 includes an example of clus-
ter load–balancing HTCPNs model. The clus-

ter consists of 3 computers (compare Fig. 1)
represented as FIFO1 . . .FIFO3 substitution
transitions, where each transition is attached
to the corresponding FIFO queueing pat-
tern. The Internet requests serviced by the
cluster arrive through PACKS1 port place.
A load balancer decides where the cur-
rently acquired request should be send. When
a token arrives in PACKS1 place, transi-
tions T3 . . .T5 are in conflict. According to
CPN properties, a transition is randomly
chosen for firing. Consequently, the stochas-
tic packet distribution policy is naturally
modelled.

144 Slawomir Samolej, Tomasz Szmuc

2.4. Request Generator Model

According to one of main assumptions of the
web–server cluster modelling methodology pre-
sented in this paper, the system model can be
treated as an open queueing network. Conse-
quently, the crucial model component must be a
network arrival process simulating the Internet
service requests that are sent to the server.

Figure 4 shows an example HTCPNs sub-
page that models a typical Internet request gen-
erator. The core of the packet generator is a
clock composed from TIMER0 place and T0
transition. The code segment attached to the
T0 transition produces values of time–stamps
for tokens stored in TIMER0 place. The values
are defined by the defined probability function.
As a result the Internet requests appear into
PACKS1 place at random moments in simula-
tion time. The frequency at which tokens ap-
pear in PACKS1 place is determined by the
mentioned above distribution function. PACKS1
place has a port place status and thereafter to-
kens appearing in it can be consumed by other
model components (e.g. server cluster model).

T0
C

output (tim_val);
action
discExp(1.0/
pack_gen_mean_time);

COUNT0

INT 1‘1

TIMER0

TIMER 1‘1

PACKS1

PACKAGE

P Ge
n

tim1

tim1
@+tim_val

(n,1,intTime(),
ran’random_val(),0,0)n

n+1

Figure 4. Web–server arrival process model

The Internet request frequency can have any
standard probability distribution function or
can be individually constructed as it was pro-
posed in [36].

2.5. Example Top–Level Multi–Tier
Server Model

Having the adequate set of design patterns, a
wide area of server cluster architectures can be

modelled and tested at the early stage of de-
velopment process. At the top–level modelling
process each of the main components of the sys-
tem can be represented as a HTCPNs substitu-
tion transition. The modelling methodology pre-
sented in the paper suggest that at the top–level
model construction the arrival process and main
server cluster layers should be highlighted. Af-
ter that each of the main components (main
substitution transition) should be decomposed
into an adequate packed distribution subpage,
were under some of transitions queueing system
models will be attached. It is easily to notice
that a typical top–down modelling approach of
software/hardware system modelling has been
adapted in the web server modelling methodol-
ogy proposed in the paper.

Figure 5 includes an example top–level
HTCPN model of cluster–based server (com-
pare Fig. 1) that follows the abovementioned
modelling development rules. The HTCPN
in Fig. 5 consists of 3 substitution transi-
tions. Input_Procs transition represents the
arrival process for the server cluster, whereas
WWW_Server_Cluster transition represents
the first–layer of multi–tier web–server, and fi-
nally DataBaseServer transition represents the
data base server.

The modelling process can be easily ex-
tended by attaching the request generator model
as in section 2.4 under the Input_Procs transi-
tion and by attaching the WWW cluster model
with load balancing module as in section 2.3
underWWW_Server_Cluster transition. The
final executable model can be acquired by at-
taching FIFO design patterns under FIFO1,
FIFO2 and FIFO3 transitions in the load bal-
ancing module (compare sections 2.2 and 2.3).
A separate model should be proposed for the
packet distribution and queueing models layers
of the data base server.

2.6. Model Validation Capabilities

Typical elements of HTCPNs modelling soft-
ware tools are performance evaluation routines,
e.g.: [16], [35] . The routines make it possible to
capture the state of dedicated tokens or places

Web–Server Systems HTCPNs-Based Development Tool Application in Load Balance Modelling 145

PACKS1

PACKAGE

PACKS18

PACKAGE

T13

Input_Procs WWW_Server_Cluster DataBaseServer

PACKS13

PACKAGE

Figure 5. Example top–level multi–tier server model

during the HTCPN execution. A special kind
of log files showing the changes in the state of
HTCPN can be received and analyzed offline.

At the currently reported version of
web–server cluster modelling and analysis soft-
ware tool, queue lengths and service time
lengths can be stored during the model ex-
ecution. Detecting the queue lengths seems
to be the most natural load measure avail-
able in typical software systems. The service
time lengths are measurable in the proposed
modelling method because of a special kind
PACKAGE type tokens construction (compare
section 2.1). The tokens “remember” the simu-
lation time at which their appear in the cluster
and thereafter the time at each state of their
service may be captured. In real systems the
service time is a predominant quality of service
parameter for performance evaluation.

The performance analysis of models of web
servers constructed according the proposed in
the paper methodology can be applied in the
following domains.

First, the system instability may be easily
detected. The stable or balanced queueing sys-
tem in a steady state has an approximately con-
stans average queue length and correspondingly
average service time. On the contrary, when the
arrival process is to intensive for the queueing
systems to serve, both queue lengths and service
times increase. This kind of analysis is possible
when there are no limitations for queue lengths
in the proposed modelling method. Fig. 6 shows
the queue lengths (Fig. 6 (left)) and service time
lengths (Fig. 6 (right)) when the considered web
server cluster model is permanently overloaded.

Second, the average values of queueing sys-
tem systems parameters such as average queue
lengths and average servicing times for the bal-

anced model can be estimated. Provided that
the arrival process model and the server nodes
models parameters are acquired from the real
devices as in [18], [30], [34], [36], the software
model can be used for derivation the system
properties under different load conditions. In the
Fig. 7 queue lengths (Fig. 7 (left)) and service
times (Fig. 7 (right)) under stable system execu-
tion are shown. The cluster had a heterogeneous
structure, where server 2 (FIFO2 model) had
4 times lower performance. FIFO1 and FIFO3
average queue length was 1.7, whereas FIFO3
queue length was 4.4. The average service time
for FIFO1 and FIFO3 cluster nodes was 811
time units whereas for FIFO2 was 7471 time
units.

Third, some individual properties of cluster
node structures or load balancing strategies may
be observed. Some selected load balancing algo-
rithms properties derived from simulation exper-
iments will be discussed in section 3.

3. Example of Load Balancing
Strategies Evaluation

Load balancing is an important issue in parallel
and distributed systems. In traditional computa-
tion systems load balancing procedures were used
to distribute the computation task among system
nodes. It improved the general system utilisation
and usually led to faster processing. In recent
years, the load balancing algorithms elaborated
for general parallel and distributed systems [31]
were naturally re-applied in the emerging locally
distributed Internet or web systems. The first
load balancing strategies successively applied in
Internet systems were static random distribution
policy [28] and static modulus-based round-robin

146 Slawomir Samolej, Tomasz Szmuc

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06

Q
ue

ue
 L

en
gt

h

Time [sim. time units]

Queue 1,2,3 Lengths

Fifo1_length
Fifo2_length
Fifo3_length

 0
 100000
 200000
 300000
 400000
 500000
 600000
 700000
 800000
 900000

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06

S
er

vi
ce

 T
im

e
Le

ng
th

Time [sim. time units]

Service Time Lengths

Server 1 serv. len.
Server 2 serv. len.
Server 3 serv. len.

Figure 6. Queue lengths (left) and service times (right) under overload condition

 0

 2

 4

 6

 8

 10

 12

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06

Q
ue

ue
 L

en
gt

h

Time [sim. time units]

Queue 1,2,3 Lengths

Fifo1_length
Fifo2_length
Fifo3_length

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06

S
er

vi
ce

 T
im

e
Le

ng
th

Time [sim. time units]

Service Time Lengths

Server 1 serv. len.
Server 2 serv. len.
Server 3 serv. len.

Figure 7. Queue lengths (left) and service times (right) under stable system execution

policy [15]. There were described in the paper
[38] successful implementations of round-robin,
weighted round-robin, least-connection and
weight least-connection load balancing strate-
gies in Linux Virtual Server [17] . The abovemen-
tioned strategies are now standard algorithms
in commercial load balancing solutions as men-
tioned in [20], [33].

The rapid development of web–server ori-
ented load balancing policies was tentatively
systematised in [5], [2]. Paper [5] classi-
fies distributed web-server architectures re-
garding the entity which distributes requests
among servers. It defines 4 approaches of re-
quest distribution: client–based, DNS–based,
dispatcher–based, and server–based. In [2] an at-
tempt of simulation based on comparison of se-
lected load balancing algorithms such as “round
robin”, “least connection first”, “round-trip”
and “Xmitbyte” was carried out.

During last few years research has focused
on the so-called dynamic load balancing strate-

gies for web–oriented systems. Generally, the
dynamic load balancing polices use some kind
of feedback information from the cluster nodes
to redirect the incoming request among the
nodes. In [30] the so called “fewest server pro-
cesses first” and “extended fewest server pro-
cesses first” dynamic load balancing policies
were compared. The fewest server processes first
policy concept is (in our opinion) comparable to
least–connection policy. In both algorithms the
least loaded server gets the next incoming re-
quest. The “extension” of the preliminary algo-
rithm lies in the fact that the request can have
priorities. The paper presents high-level Petri
net approach to efficiency analysis of the poli-
cies in different priority levels scenarios. A dy-
namic web system load balancing policy pre-
sented in [37] (AdaptLoad policy) adopts the
load of the servers according to size of docu-
ments requested. The policy builds a discrete
data histogram encoding empirical size distri-
bution of batches of K requests as they ar-

Web–Server Systems HTCPNs-Based Development Tool Application in Load Balance Modelling 147

rive in the system. Each server “offers” files
within a certain range of size. The range de-
pends of “popularity” of the files derived from
the histogram. The paper presents simulation
results of the policy behaviour under histori-
cal load conditions. Paper [6] at first discusses
such so called nonprediction–based load balanc-
ing techiques as “first fit”, “stream–based map-
ping” and “adaptive load sharing” correspond-
ingly. The techniques are examined with respect
to possible application in multimedia applica-
tions. The prediction–based load balancing tech-
niques as “least load first”, “prediction–based
least load first”, “adaptive partition” and
“prediction–based adaptive partition” are intro-
duced and experimentally evaluated. In [22] a
sum of weighted factors such as CPU usage,
memory usage, number of processors, number
of I/O operations, amount of free local storage
and network I/O usage are taken into consider-
ation to compute the load of a cluster node. The
load of the node may then be applied to a load
balancing policy.

At the current state of the development of
the HTCPNs–based tool, some selected load
balancing HTCPNs templates were modelled.
Three of the most widely applied polices such
as “random”, “round-robin” and “fewest server
processes first” were implemented. Addition-
ally one experimental–“adaptive load sharing”
policy was chosen for the implementation, be-
cause as it was claimed in [6], this policy of-
fers reasonable balance between the through-
put and out–of–order departures of the exter-
nal requests. In the following subsections the
HTCPNs–based models of the mentioned load
balancing policies will be presented. The fi-
nal subsection will include some simulation re-
sults of the HTCPNs–based load balancing al-
gorithms. The model of the simplest– “random”
load balancing policy was presented in subsec-
tion 2.3.

3.1. Round-robin Load Balancing
Policy Model

Figure 8 presents HTCPNs–based model of the
computer cluster similar to the cluster model

in Fig. 3. The cluster consists of 3 computers
servicing requests incoming via PACKS1 port
place. The incoming Internet requests are redis-
tributed among the cluster nodes according to
round-robin load balancing policy. The model
of the policy works as follows. Each incoming
packet “passes” T2 transition and after the tran-
sition firing the forth element of the tuple mod-
elling the requests (see subsection 2.1) is modi-
fied. The element includes a number of the server
where the packet will be serviced. Guard func-
tions attached to T3, T4, T5 transitions “check”
the fourth element of each packed model and
“pass” the related requests. The presented load
balancing policy model can be easily extended
to “weighted round-robin” policy by extending
the numbers generated for the forth element of
the packet tuple and by the corresponding mod-
ifications of the guards.

3.2. Fewest Server Processes First Load
Balancing Policy Model

Figure 9 includes HTCPNs–based model of the
computer cluster similar to the cluster model
in Fig. 3 and Fig. 8. The incoming Internet
requests are redistributed among the cluster
nodes according fewest serwer processes first
load balancing policy. The the model of the pol-
icy works as follows. During the model execu-
tion, the lengths of the queues in the queue-
ing systems modelling servers are periodically
monitored. The monitoring is possible due to
appropriate construction of queueing systems
models (compare subsection 2.2). QL1, QL2,
and QL3 places include the current values of
queue’s lengths. The queue’s lengths are com-
pared during BALANCE transition execution
and FEWEST place acquires a number of the
serwer which serves the fewest number of re-
quests (the server with the shortest request
queue). Guard functions associated to T3, T4,
and T5 transitions “open” (for the incoming re-
quests) only this branch of the cluster which
includes the least loaded server. The frequency
of the queue’s lengths measurement can be ad-
justed to derive the balance between additional
system load caused by the measurement and the

148 Slawomir Samolej, Tomasz Szmuc

T2 PACKS2

PACKAGE

T3

[#4 pack =1]

T4

[#4 pack =2]

T5

[#4 pack =3]

PACKS3

PACKAGE

PACKS4

PACKAGE

PACKS5

PACKAGE

FIFO1

HS

FIFO2

HS

FIFO3

HS

PACKS8

PACKAGE

PACKS9

PACKAGE

PACKS10

PACKAGE

T8

T9

T10

PACKS13

PACKAGE

P Out

PACKS1

PACKAGE

P In

Load Balacer Server Cluster

CUR

INT1‘1

pack

(#1 pack,
 #2 pack,
 #3 pack,
 n,
#5 pack,
#6 pack)

pack

pack

pack

pack

pack

pack

pack

pack

pack

pack

pack pack

pack

pack

pack

pack

pack

pack

n
if n<3 then n+1
else 1

Figure 8. WWW cluster with round-robin load balancing policy

PACKS3

PACKAGE

PACKS4

PACKAGE

PACKS5

PACKAGE

PACKS8

PACKAGE

PACKS9

PACKAGE

PACKS10

PACKAGE

T8

T9

T10 PACKS13

PACKAGE

P Gen

PACKS2

PACKAGE

P Gen

QL1_

MEAN_TABLE
1‘(0,0,0,0,0,0,0,0,0,0,1,0,1)

QL2_

MEAN_TABLE

1‘(0,0,0,0,0,0,0,0,0,0,1,0,2)

QL3_

MEAN_TABLE

1‘(0,0,0,0,0,0,0,0,0,0,1,0,3)

FIFO1

H

FIFO2

H

FIFO3

H

FEWEST

INT

1‘1
T3

[n=k]

T4
[n=k]

T5

[n=k]

HS

BALANCE

Load Balancer Server Cluster

S1_ID INT
1‘1

S2_ID INT
1‘2

S3_ID INT
1‘3

pack

pack

pack

pack
pack

pack

pack

pack

pack

pack

pack

pack

mean_ql_val1

mean_ql_val2

mean_ql_val3

k

find_fewest_proc_of3
(mean_ql_val1,mean_ql_val2,mean_ql_val3)

n

n

n

k
k

k
k

kk

Figure 9. WWW cluster with fewest server processes first load balancing policy

quality of the balance process. It is possible to
define digital filters to “smooth out” the queue
length “signal”.

3.3. Adaptive Load Sharing – Load
Balancing Policy Model

Fig. 10 presents HTCPNs–based model of the
computer cluster where the incoming Internet
requests are redistributed among the cluster
nodes according to adaptive load sharing load

balancing policy inspired by [6], [10]. The model
of the policy works as follows. During the sys-
tem model execution lengths of the queues in the
queueing systems modelling servers are periodi-
cally monitored. QL1, QL2, and QL3 places in-
clude the current values of queue’s lengths. Dur-
ing execution of the BALANCE transition the
utilisation of each node of the cluster is calcu-
lated. Depending on the utilisation values some
ranges of amounts of the Internet requests that
each server may serve are calculated. The cal-

Web–Server Systems HTCPNs-Based Development Tool Application in Load Balance Modelling 149

PACKS3

PACKAGE

PACKS4

PACKAGE

PACKS5

PACKAGE

PACKS8

PACKAGE

PACKS9

PACKAGE

PACKS10

PACKAGE

T8

T9

T10 PACKS13

PACKAGE

P G

PACKS2

PACKAGE

P G

QL1_

QL_A_ID
1‘(0,1)

QL2_

QL_A_ID

1‘(0,2)

QL3_

QL_A_ID

1‘(0,3)

FIFO1

H

FIFO2

H

FIFO3

H

B_TABLE

BAND_TABLE3

1‘((1,33),(34,66),(67,100))

T3

[b_guard31(b_tab3,pack)]

T4

[b_guard32
(b_tab3,pack)]

T5

[b_guard33(b_tab3,pack)]

H

BALANCE

Load Balancer Server Cluster

pack

pack

pack

pack
pack

pack

pack

pack

pack

pack

pack

pack

qlen_a_id1

qlen_a_id2

qlen_a_id3

b_tab3

count_bands_of3(qlen_a_id1,
qlen_a_id2, qlen_a_id3)

b_tab3

b_tab3

b_tab3

Figure 10. WWW cluster with adaptive load sharing load balancing policy

culated ranges are stored in B_TABLE place.
Generally, servers having lower utilisation values
will be given more chances to acquire the Inter-
net requests in the future. Guard functions asso-
ciated to T3, T4, and T5 transitions can be un-
derstand as “valves” that adjust the amounts of
the requests to be passed through to the servers
according the range table stored in B_TABLE
place. The frequency of the queue’s lengths mea-
surement can be adjusted to derive the balance
between additional system load caused by the
measurement and the quality of the balance pro-
cess. It is possible to define digital filters to
“smooth out” the queue length “signal”.

3.4. Simulation Based on Load
Balancing Policies Evaluation

For the above mentioned models of load balanc-
ing policies a set of simulation analysies was
carried out. In Figure 11 results of 2 differ-
ent simulations are shown. Figure 11 (left) in-
cludes queue lengths of 3 balanced servers where
load balancing policy followed round-robin algo-
rithm. In the (right) simulation a performance
degradation of server 2 in 200000 time units was

modelled. It can be easily seen, that the load bal-
ancer does not “notice” the performance degra-
dation. The requests directed to second server
are serviced later than the others.

The queue lengths for clusters where fewest
server processes first and adaptive load sharing
load balancing policies are coping with server 2
performance degradation are shown in Fig. 12.
Both polices (fewest server processes first –
Fig. 12 (left), adaptive load sharing – Fig. 12
(right)) “reconfigured” the loads for the cluster
nodes and managed to keep the average queue
lengths for all cluster nodes at the same level.
The simulation experiment proved that dynamic
load balancing polices better cope with dynamic
changes during system execution. However, it
must be noticed that the dynamic load balanc-
ing policies need some feedback information col-
lected from the nodes of the cluster. To fulfill
such requirement both modern load balancers
and cluster nodes (e.g. WWW servers) soft-
ware must be modified. Additionally the feed-
back data collection can increase the load of the
system.

Figure 13 shows more possibilities for design
of dynamic load–balancing policies. The simula-

150 Slawomir Samolej, Tomasz Szmuc

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 50000 100000 150000 200000 250000 300000 350000 400000

Q
ue

ue
 L

en
gt

h

Time [sim. time units]

Queue 1,2,3 Lengths

Fifo1_length
Fifo2_length
Fifo3_length

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 50000 100000 150000 200000 250000 300000 350000 400000

Q
ue

ue
 L

en
gt

h

Time [sim. time units]

Queue 1,2,3 Lengths

Fifo1_length
Fifo2_length
Fifo3_length

Figure 11. Queue lengths under round-robin load balancing policy (left) balanced (right) unbalanced
after server 2 performance reduction

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 0 200000 400000 600000 800000 1e+06 1.2e+06

Q
ue

ue
 L

en
gt

h

Time [sim. time units]

Queue 1,2,3 Lengths

Fifo1_length
Fifo2_length
Fifo3_length

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 0 2e+06 4e+06 6e+06 8e+06 1e+07 1.2e+07

Q
ue

ue
 L

en
gt

h

Time [sim. time units]

Queue 1,2,3 Lengths

Fifo1_length
Fifo2_length
Fifo3_length

Figure 12. Queue lengths under fewest server processes first (left) and adaptive load sharing (right)
load balancing policy after server 2 performance reduction

tion results show that the application of some
feedback data to cluster state modification may
cause system’s behaviour similar to control–loop
systems. In Figure 13 (left) the queue lengths os-
cillations caused by an inadequate data collec-
tion frequency may be noticed. The system in
Fig. 13 (right) seems to “suffer” from the high
sensibility that may in consequence lead to the
instability.

4. Conclusions and Future Research

The first part of the paper introduces the
HTCPNs–based software tool providing support
for development and validation of web–server
clusters executable models. The main concept
of the tool lies in the definition of reusable
HTCPNs structures (patterns) involving typical
components of cluster–based server structures.
The preliminary patterns are executable mod-

els of typical queueing systems. The queueing
systems templates may be arranged into server
cluster subsystems by means of packet distribu-
tion patterns. Finally, the subsystems patterns
may be naturally used for top level system mod-
elling, where individual substitution transitions
“hide” the main components of the system. The
final model is a hierarchical timed coloured Petri
net. Simulation and performance analysis are
the predominant methods that can be applied
for the model validation. Queueing systems tem-
plates was checked whether they meet theoret-
ically derived performance functions. The anal-
ysis of HTCPNs simulation reports enables to
predict the load of the modelled system under
the certain arrival request stream; to detect the
stability of the system; to test a new algorithms
for Internet requests redirection and for their
service within cluster structures.

The second part of the paper includes the re-
view of recently published research results con-

Web–Server Systems HTCPNs-Based Development Tool Application in Load Balance Modelling 151

 0

 20

 40

 60

 80

 100

 120

 0 200000 400000 600000 800000 1e+06 1.2e+06

Q
ue

ue
 L

en
gt

h

Time [sim. time units]

Queue 1,2,3 Lengths

Fifo1_length
Fifo2_length
Fifo3_length

 0

 5

 10

 15

 20

 25

 30

 35

 0 200000 400000 600000 800000 1e+06 1.2e+06

Q
ue

ue
 L

en
gt

h

Time [sim. time units]

Queue 1,2,3 Lengths

Fifo1_length
Fifo2_length
Fifo3_length

Figure 13. Queue lengths under fewest server processes first load balancing policy:
queue lengths oscillation (left), high system sensitivity (right)

cerning application load balancing policies in
Internet systems. Subsequently, the HTCPNs
based models of some selected polices have
been proposed. The most popular load balanc-
ing policies models such as “random”, “round
robin”, and “fewest server processes first” as well
as one experimental–“adaptive load sharing”
have been applied and evaluated. The worked
out HTCPNs structures become the integrated
modules of the HTCPNs based software tool
presented in the first part of the paper.

Currently, the software tool described in the
paper can be applied for a limited web–server
cluster structures modelling and validation.
Thereafter the main stream of author’s future
research will concentrate on developing next
web–server node structures models. This may
result in following advantages. First, an open
library of already proposed web–server clus-
ter structures could be created and applied by
the future web–server developers. Second, some
new solutions for distributed web–server sys-
tems may be proposed and validated.

References

[1] F. Bause. Queueing Petri Nets – a formalism
for the combined qualititative and quantitative
analysis of systems. In PNPM’93, pages 14–23.
IEEE, IEEE Press, 1993.

[2] H. Bryhni, E. Klovning, and O. Kure. A
comparison of load balancing techniques for
scalable web servers. IEEE Network, Volume
14(4):58–64, Jul./Aug. 2000.

[3] J. Cao, M. Andersson, C. Nyberg, and M. Khil.
Web server performance modeling using an

M/G/1/K*PS queue. In CT 2003, 10th In-
ternational Conference on Telecommunications,
pages 1501–1506. IEEE, 2003.

[4] V. Cardellini, E. Casalicchio, and M. Cola-
janni. The state of the art in locally distributed
web-server systems. ACM Computing Surveys,
Volume 34(2):263–311, June 2002.

[5] V. Cardellini, M. Colajanni, and P. Yu. Dy-
namic load balancing on web-server systems.
IEEE Internet Computing, Volume 3(3):28–39,
May/June 1999.

[6] J. Guo and L. Bhuyan. Load balancing in a
cluster-based web server for multimedia appli-
cations. IEEE Transactions on Parallel and
Distributed Systems, Volume 17(11):1321–1334,
2006.

[7] K. Jensen. Coloured Petri Nets, Basic Con-
cepts, Analysis Methods and Practical Use, vol-
ume I-III. Springer, 1996.

[8] K. Jensen, L. Kristensen, and L. Wells.
Coloured Petri Nets and CPN tools for
modelling and validation of concurrent sys-
tems. International Journal on Software
Tools for Technology Transfer (STTT), Volume
9(3-4):213–254, 2007.

[9] Y. Ji and I. S. Ko. A design of the simulator
for web-based load balancing. Springer LNCS,
Volume 4496/2007:884–891, July 2007.

[10] L. Kencl and J.-Y. L. Boudec. Adaptive load
sharing for network processors. In Twenty-First
Annual Joint Conference of the IEEE Com-
puter and Communications Societies. Proceed-
ings, pages 545–554. IEEE, 2002.

[11] D. Kim, S. Lee, S. Han, and A. Abraham. Im-
proving web services performance using priority
allocation method. In Proc. Of International
Conference on Next Generation Web Services
Practices, pages 201–206. IEEE, 2005.

152 Slawomir Samolej, Tomasz Szmuc

[12] S. Konunev. Performance modelling and eval-
uation of distributed component–based sys-
tems using Queuing Petri Nets. IEEE
Transactions on Software Engineering, Volume
32(7):486–502, 2006.

[13] S. Kounev and A. Buchmann. SimQPN–a
tool and methodology for analyzing Queueing
Petri Net models by means of simulation. Per-
formance Evaluation, Volume 36(4–5):364–394,
2006.

[14] M. Kristensen, S. Christensen, and K. Jensen.
The practitioner’s guide to coloured Petri Nets.
International Journal on Software Tools for
Technology Transfer (STTT), Volume 2:98–132,
1998.

[15] T. T. Kwan, R. E. McGrath, and D. A. Reed.
Ncsa’s world wide web server: Design and per-
formance. Computer, Volume 28(11):68–74,
Nov. 1995.

[16] B. Linstrom and L. Wells. Design/CPN Per-
formance Tool Manual. CPN Group, Univ. of
Aarhus, Denmark, 1999.

[17] Linux virtual server project. http://www.
linuxvirtualserver.org/.

[18] X. Liu, L. Sha, Y. Diao, S. Froehlich, J. L.
Hellerstein, and S. Parekh. Online response
time optimization of Apache web server. In
IWQoS 2003: 11th International Workshop,
pages 461–478. Springer, 2003. LNCS.

[19] X. Liu, R. Zheng, J. Heo, Q. Wang, and L. Sha.
Timing performance control in web server sys-
tems utilizing server internal state information.
In Proc. of the Joint Internat. Conf. on Auto-
nomic and Autonomous Systems and Interna-
tional Conference on Networking and Services,
page 75. IEEE, 2005.

[20] loadbalancers.org. http://loadbalancer.org/.
[21] Meta Software Corporation. Design/CPN Ref-

erence Manual for X-Windows, 1993.
[22] G. Park, B. Gu, J. Heo, S. Yi, J. Han, J. Park,

H. Min, X. Piao, Y. Cho, C. W. Park, H. J.
Chung, B. Lee, and S. Lee. Adaptive load bal-
ancing mechanism for server cluster. Springer
LNCS, Volume 3983/2006:549–557, May 2006.

[23] T. Rak and S. Samolej. Distributed internet
systems modeling using tcpns. In Proc. of Inter-
national Multiconference on Computer Science
and Information Technology, pages 559–566.
IEEE, 2008.

[24] S. Samolej and T. Rak. Timing properties of in-
ternet systems modelling using Coloured Petri
Nets. In Systemy czasu rzeczywistego – Kierunki
badań i rozwoju, pages 91–100. Wydawnictwa
Komunikacji i Łączności, 2005. In Polish.

[25] S. Samolej and T. Szmuc. TCPN–based tool for
timing constraints modelling and validation. In
Software Engineering: Evolution and Emerging
Technologies, Volume 130 Frontiers in Artificial
Intelligence and Applications, pages 194–205.
IOS Press, 2005.

[26] S. Samolej and T. Szmuc. Time constraints
modeling and verification using Timed Colored
Petri Nets. In Real–Time Programming 2004,
pages 127–132. Elsevier, 2005.

[27] S. Samolej and T. Szmuc. Dedicated inter-
net systems design using Timed Coloured Petri
Nets. In Systemy czasu rzeczywistego – Metody
i zastosowania, pages 87–96. Wydawnictwa Ko-
munikacji i Łączności, 2007. In Polish.

[28] M. Satyanarayanan. Scalable, secure, and
highly available distributed file access. Com-
puter, Volume 23(5):9–18, 20–21, May 1990.

[29] T. Schroeder, S. Goddard, and B. Ramamurthy.
Scalable web server clustering technologies.
IEEE Network, Volume 14(4):38–45, May/June
2000.

[30] Z. Shan, C. Lin, D. Marinecu, and Y. Yang.
Modelling and performance analysis of
QoS–aware load balancing of web–server clus-
ters. Computer Networks, Volume 40:235–256,
2002.

[31] B. A. Shirazi, A. R. Hurson, and K. M. Kavi.
Scheduling and Load Balancing in Parallel and
Distributed Systems. Wiley-IEEE Computer So-
ciety Press, April 1995.

[32] F. Spies. Modeling of optimal load balancing
strategy using queueing theory. Microprocessing
and Microprogramming, Volume 41:555–570,
1996.

[33] Thomas-kern load balancers. http://www.
thomas-krenn.com.

[34] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spre-
itzer, and A. Tantawi. Analytic modeling of
multitier Internet applications. ACM Transac-
tions on the Web, Volume 1(2), 2007.

[35] L. Wells. Performance analysis using CPN tools.
In Proc. of the 1st Inter. Conf. on Performance

Web–Server Systems HTCPNs-Based Development Tool Application in Load Balance Modelling 153

Evaluation Methodolgies and Tools, 2006. Arti-
cle No. 59.

[36] L. Wells, S. Christensen, L. Kristensen, and
K. Mortensen. Simulation based performance
analysis of web servers. In Proc. of the 9th Inter-
nat. Workshop on Petri Nets and Perf. Models,
page 59. IEEE, 2001.

[37] Q. Zhang, A. Riska, W. Sun, E. Smirni, and
G. Ciardo. Workload-aware load balancing
for clustered web servers. IEEE Transactions

on Parallel and Distributed Systems, Volume
16(3):219–233, March 2005.

[38] W. Zhang. Linux virtual server for scalable net-
work services. In Ottava Linux Symposioum.
Proceedings, 2000.

[39] Z. Zhang and W. Fan. Web server load balanc-
ing: A queueing analysis. European Journal of
Operational Research, Volume 186(2):681–693,
April 2008.

