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Abstract
Managing software development productivity and effort are key issues in software organizations.
Identifying the most relevant factors influencing project performance is essential for implementing
business strategies by selecting and adjusting proper improvement activities. There is, however, a
large number of potential influencing factors. This paper proposes a novel approach for identifying
the most relevant factors influencing software development productivity. The method elicits relevant
factors by integrating data analysis and expert judgment approaches by means of a multi-criteria
decision support technique. Empirical evaluation of the method in an industrial context has
indicated that it delivers a different set of factors compared to individual data- and expert-based
factor selection methods. Moreover, application of the integrated method significantly improves
the performance of effort estimation in terms of accuracy and precision. Finally, the study did not
replicate the observation of similar investigations regarding improved estimation performance on
the factor sets reduced by a data-based selection method.

1. Introduction

Many software organizations are still propos-
ing unrealistic software costs, work within tight
schedules, and finish their projects behind sched-
ule and budget, or do not complete them at all
[32]. This illustrates that reliable methods for
managing software development effort and pro-
ductivity are a key issue in software organiza-
tions.

At the same time, software cost estimation
is considered to be more difficult than cost esti-
mation in other industries. This is mainly due
to the fact that software organizations typically
develop new products as opposed to fabricating
the same product over and over again. Moreover,

software development is a human-based activ-
ity with extreme uncertainties from the outset.
This leads to many difficulties in cost estimation,
especially during early project phases. To ad-
dress these difficulties, considerable research has
been directed at gaining a better understanding
of the software development processes, and at
building and evaluating software cost estimation
techniques, methods, and tools [8, 34].

One essential aspect when managing develop-
ment effort and productivity is the large number
of associated and unknown influencing factors
(so-called productivity factors) [33]. Identifying
the right productivity factors increases the ef-
fectiveness of productivity improvement strate-
gies by concentrating management activities di-
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rectly on those development processes that have
the greatest impact on productivity. On the
other hand, focusing measurement activities on
a limited number of the most relevant factors
(goal-oriented measurement) reduces the cost of
quantitative project management (collecting, an-
alyzing, and maintaining the data). The com-
putational complexity of numerous quantitative
methods grows exponentially with the number
of input factors [7], which significantly restricts
their acceptance in industry.

In practice, two strategies for identifying
relevant productivity factors, promoted in the
related literature, are widely applied. In
expert-based approaches, one or more software
experts decide about a factor’s relevancy [33].
In data-based approaches, existing measurement
data covering a certain initial set of factors are
analyzed in order to identify a subset of factors
relevant with respect to a certain criterion [9, 14].
These factor selection strategies have, however,
significant practical limitations when applied in-
dividually. Experts usually base their decisions
on subjective preferences and experiences. In con-
sequence, they tend to disagree by a wide margin
and omit relevant factors while selecting irrele-
vant ones [33]. The effectiveness of data-based
methods, on the other hand, largely depends on
the quantity and quality of available data. They
cannot, for instance, identify a relevant factor
if it is not present in the initial set of factors
contained by the underlying data set. Moreover,
data analysis techniques are usually sensitive to
messy (incomplete and inconsistent) data. Yet,
assuring that all relevant factors are covered by a
sufficient quantity of high-quality measurement
data is simply not feasible in practice.

In this paper, we propose an integrated ap-
proach to selecting relevant productivity factors
for the purpose of software effort estimation. We
combine expert- with data-based factor selection
methods, using a novel multi-criteria decision
aid method called AvalOn. The presented ap-
proach is then evaluated in the context of a large
software organization.

The remainder of the paper is organized as
follows. Section 2 provides an overview of fac-
tor selection methods. Next, in Section 3, we

present the integrated factor selection method,
followed by the design of its empirical evaluation
(Section 4) and an analysis of the results (Sec-
tion 5). The paper ends with conclusions (Sec-
tion 6) and further work perspectives (Section 7).

2. Related Work

2.1. Introduction to Factor Selection

Factor selection can be defined as a process that
chooses a subset of M factors from the original
space of N factors (M ≤ N), so that the factor
space is optimally reduced according to a certain
criterion. In principle, selection process may be
based on data analysis, expert’ assessments, or
both experts and data.

In expert-based factor selection, the factor
space is practically infinite and not know a pri-
ori. There are, in principle, three major types
of expert-based factor selection. In the most
basic case, experts simply identify a set of most
relevant factors without distinguishing the rel-
evance level (factor selection). In addition to
selecting the most relevant factors, experts may
rank factors (provide order) with respect to their
relevancy (factor ranking). Such a ranking does
not, however, provide information about the rela-
tive distance between certain factors with respect
to their relevancy. The most informative way of
selecting factors is to quantify their relevancy on
the ratio or interval scale. The most common
approach is to define factor relevancy on the Lik-
ert scale [30] and ask experts to quantify these
factors accordingly. In general, quantification
could also be done on more than one criterion. In
order to select the most relevant factors, quantifi-
cations on various criteria have to be aggregated.

In data-based factor selection, the factor
space is given a priori and limited by the avail-
able measurement data. The data are analyzed
in order to identify a limited set of the most rel-
evant factors. Most of the dedicated data-based
factor selection methods belong to one of the
major areas of the data mining domain, where
they are a subclass of the general problem of
dimensionality reduction [12] (Figure 1).
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Figure 1. Dimensionality reduction methods

The purpose of dimensionality reduction
methods is to reduce a potentially large num-
ber of cases and attributes (dimensions) in data
in order to limit data noise and the computa-
tional time of the analysis. Since the compu-
tational complexity of numerous data mining
algorithms grows exponentially with the number
of dimensions (so-called NP-complete problems),
dimensionality reduction allows applying them in
practice (they finish within a reasonable amount
of time). In this paper, we focus on reducing
the number of attributes.

Attribute-oriented dimensionality reduction
methods either extract or select factors based
on an initial set. Factor extraction is a pro-
cess that extracts a set of M new factors from
the original N factors (M < N) through some
functional mapping (e.g., sum or product). An
example factor extraction method is Principal
Component Analysis (PCA), which creates new
factors as linear transformation of the initial fac-
tors. Factor selection is a process that extracts
a set of M original factors from the original N
factors (M ≤ N).

Moreover, besides a simple subset of factors
(factor selection), dimensionality reduction meth-
ods may provide an ordered (factor ranking) or
weighted (factor weighting) set of factors. Fac-
tor ranking orders factors with respect to their
relevancy, however, no information regarding the
distance in rank between subsequent factors is
provided (ordinal instead of interval scale).

Factor weighting methods represent the most
robust dimensionality reduction approach. They
quantify the relative relevance of each i-th factor
fi by providing a ratio-scale weight w(fi), where
usually w ∈ [0, 1]. In this context, factor rank-

ing is weighting on an integer scale (a factor’s
weight represents its rank) and factor selection is
weighting on a dichotomous 0-1 scale (a factor’s
weight represent its selection or exclusion).

In general, a dimensionality reduction algo-
rithm consists of four basic steps (Figure 2):
subset generation, subset evaluation, stopping
criterion, and result validation [11].

Subset generation refers to a search (factor
selection) or construction (factor extraction) pro-
cedure. Basically, it generates subsets of features
for evaluation. In case of search procedures,
there are various directions and strategies for
searching through the factor space. The most
popular search direction, greedy search, comes
in three flavors (dependent on the starting point
in the search space). Search can start with an
empty set and add factors iteratively (forward
selection) or it can start with a full set (N fac-
tors) and be reduced iteratively (backward elimi-
nation) until the factor subset meets a certain
criterion. Hybrid, bidirectional search is also
possible. Factors can also be searched randomly
(random search).

The search strategy decides about the scope
of the search. Exhaustive (complete) search per-
forms a complete search through the factor space.
Although it guarantees finding the optimal sub-
set of factors, it is usually impractical due to
the high computational costs (the problem is
known to be NP-hard [2]). Heuristic search, as
the name suggests, employs heuristics in con-
ducting the search. It avoids being complete,
but at the same time risks losing optimal sub-
sets. Non-deterministic search, unlike the first
two types of strategies, searches for the next set
at random (i.e., a current set does not directly
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Figure 2. General dimensionality reduction process

grow or shrink from any previous set following
a deterministic rule).

The selected subset of factors is always rel-
ative to a certain evaluation criterion. Evalua-
tion criteria can be broadly categorized into two
groups based on their dependency on the method
applied on the selected factors.

In a filter approach, the goodness of a factor
subset is evaluated according to criteria indepen-
dent of the method that will later be applied
on those factors (i.e., without the involvement
of this method). The most common indepen-
dent criteria are distance measure, information
measure, dependency measure, consistency mea-
sure, and similarity measure. Distance measures
are also known as separability, divergence, or
discrimination measures. For a given objective
factor Z, a factor X is preferred to another factor
Y if X induces a greater difference between the
conditional probabilities of Z’s values than Y ; if
the difference is zero, then X and Y are indistin-
guishable. An example is the Euclidean distance
measure. Information measures typically deter-
mine the information gain related to a certain
factor. The information gain from a factor X
is defined as the difference between the prior
uncertainty and expected posterior uncertainty
using X. Factor X is preferred to factor Y if the
information gain from factor X is greater than

that from factor Y . An example is the entropy
measure [23]. Dependency measures or correla-
tion measures qualify the ability to predict the
value of one variable from the value of another.
The coefficient is a classical dependency measure
and can be used to find the correlation between
a factor and an objective factor Z. If the correla-
tion of factor X with Z is higher than the correla-
tion of factor Y with Z, then factorX is preferred
to Y . A slight variation of this is to determine
the dependence of a factor on other factors; this
value indicates the degree of redundancy of the
factor. All evaluation functions based on depen-
dency measures can be theoretically divided into
distance and information measures, but they are
usually kept as a separate category, because con-
ceptually, they represent a different viewpoint.
Finally, consistency measures are relatively new
and have been in much focus recently. They rely
heavily on the training dataset and the use of the
Min-Factors bias in selecting a subset of factors.
Min-Factors bias prefers consistent hypotheses
definable over as few factors as possible. These
measures find out the minimally sized subset
that satisfies the acceptable inconsistency rate
that is usually set by an expert.

In the wrapper approach, the goodness of
the proposed factor subset is assessed by apply-
ing on it and evaluating the performance of the
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same method that will by applied on the subset
selected eventually. In case of estimation, the
well-known Mean Magnitude of Relative Error
(MMRE) or the Prediction Level (Pred.25) [10]
can be applied.

In an embedded approach, factor selection is
a part of the learning (model building) process.
One classical example is selecting factors along
the paths of the Classification and Regression
Tree (CART) model [6].

2.2. Factor Selection for Effort
Estimation

The purpose of factor selection methods in
software effort estimation is to reduce a large
number of potential productivity factors (cost
drivers) in order to improve estimation perfor-
mance while maintaining (or reducing) estima-
tion costs. Moreover, information on the most
relevant influence factors may be used to guide
measurement and improvement initiatives. In
practice (authors’ observation), relevant cost
drivers are usually selected by experts and the
selection process is often limited to uncritically
adopting factors published in the related liter-
ature. Software practitioners adopt the com-
plete effort model along with the integrated
factors set (e.g., COCOMO [4]) or build their
own model on factors adapted from an existing
model. In both situations, they risk collecting
a significant amount of potentially irrelevant
data and getting limited performance of the
resulting model.

Factors uncritically adopted from other con-
texts most often do not work well leading to
much disappointment. They usually contain
many irrelevant factors that do not contribute
to explaining development productivity variance
and increase the cost of data collection, analy-
sis, and maintenance. On the other hand, even
though context-specific factors are selected by
experts, they tend to disagree largely with re-
spect to the selected factors and their impact
on productivity (relevancy).

During the last two decades, several
data-based approaches have been proposed to
support software organizations that are already

collecting data on arbitrarily selected factors in
selecting relevant factors. Various data analysis
techniques were proposed to simply reduce the
factor space by excluding potentially irrelevant
factors (factor selection). The original version
of the ANGEL tool [27] addressed the problem
of optimal factor selection by exhaustive search.
However, for larger factor spaces (>15–20), anal-
ysis becomes computationally intractable due to
its exponential complexity. Alternative, less com-
putationally expensive factor selection methods
proposed in the literature include Principal Com-
ponent Analysis (PCA) [31], Monte Carlo simu-
lation (MC) [16], general linear models (GLM)
[18], and wrapper factor selection [14, 9]. The
latter approach was investigated using various
evaluation models (e.g., regression [9], case-based
reasoning [14]), and different search strategies
(forward selection [9, 14], as well as random se-
lection and sequential hill climbing [14]). In all
studies, a significant reduction (by 50%–75%)
of an initial factor set and improved estimation
accuracy (by 15%–379%) were reported. Chen
et al. [9] conclude, however, that despite sub-
stantial improvements in estimation accuracy,
removing more than half of the factors might
not be wise in practice, because it is not the
only decision criterion.

An alternative strategy for removing irrele-
vant factors would be assigning weights according
to a factor’s relevancy (factor weighting). The
advantage of such an approach is that factors are
not automatically discarded and software practi-
tioners obtain information on the relative impor-
tance of each factor, which they may use to decide
about the selection/exclusion of certain factors.
Auer et al. [3] propose an optimal weighting
method in the context of the k-Nearest Neighbor
(k-NN) effort estimator; however, exponential
computational complexity limits its practical ap-
plicability for large factor spaces. Weighting in
higher-dimensionality environments can be, for
instance, performed using one of the heuristics
based on rough set analysis, proposed recently
in [15]. Yet, their application requires additional
overhead to discretize continuous variables.

A first attempt towards an integrated fac-
tor selection approach was presented in [5],
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where Bayesian analysis was used to combine
the weights of COCOMO II factors based on
human judgment and regression analysis. Yet,
both methods were applied on sets of factors
previously limited (arbitrarily) by an expert.
Moreover, experts weighted factor relevancy on a
continuous scale, which proved to be difficult in
practice and may lead to unreliable results [35].
Most recently, Trendowicz et al. proposed an in-
formal, integrated approach to selecting relevant
productivity factors [35]. They used an analysis
of existing project data in an interactive manner
to support experts in identifying relevant factors
for the purpose of effort estimation. Besides
increased estimation performance, the factor se-
lection contributed to increased understanding
and improvement of software processes related
to development productivity and cost.

3. An Integrated Factor Selection
Method

In this paper, we propose an integrated method
for selecting relevant productivity factors. The
method employs a novel multi-criteria decision
aid (MCDA) technique called AvalOn to com-
bine the results of data- and expert-based factor
selection.

3.1. Expert-based Factor Selection

Expert-based selection of relevant productivity
factors is a two-stage process [36]. First, a set
of candidate factors is proposed during a group
meeting (brainstorming session). Next, factor
relevancy criteria are identified and quantified
on a Likert scale. Example criteria may include
a factor’s impact, difficulty, or controllability.
Impact reflects the strength of a given factor’s
influence on productivity. Difficulty represents
the cost of collecting factor-related project data.
Finally, controllability represents the extent to
which a software organization has an impact
on the factor’s value (e.g., a customer’s charac-
teristics are hardly controllable). Experts are
then asked to individually evaluate the identified
factors according to specified criteria and corre-

sponding measurement scales. In a simple case
(when expert involvement has to be limited due
to related manpower costs), a simple factor’s
ranking with respect to its impact on cost (sig-
nificance) might be performed.

3.2. Data-based Factor Selection

Data-based selection of relevant productivity fac-
tors employs one of the available factor weight-
ing techniques. As compared to simple factor
selection or ranking techniques, weighting pro-
vides experts with the relative distance between
subsequent factors regarding their relevance. Se-
lected weighting should be applicable to regres-
sion problems, i.e., to the continuous dependent
variable (here: development productivity). We
recommend excluding factor extraction as well
as embedded and wrapper approaches. Factor
extraction methods create new set of abstract
factors that are not understandable by experts
and require additional analysis to gain insight
into the relationship between the original factors.
There are several arguments for preferring the
filter strategy over the wrapper and embedded
approaches. Filters (e.g., those based on mutual
information criteria) provide a generic selection
of variables, not tuned (biased) for/by a given
learning machine. Moreover, filtering operates
independently of the prediction method, reduc-
ing the number of features prior to estimation.
Therefore, they can be used as a preprocessing
step for reducing space dimensionality and over-
coming over-fitting. Finally, filters tend to be
far less computationally intensive than wrappers,
which run the estimation method in each fac-
tor selection cycle.

As far as the search strategy is concerned,
although forward selection (FSS) is computa-
tionally more efficient than backward selection
(BSS), weaker subsets are found by FSS because
the importance of variables is not assessed in
the context of other variables not included yet
[12]. A BSS method may outsmart FSS by
eliminating, in the first step, the factor that by
itself provides the best performance (explana-
tion of productivity variance, effort estimation
accuracy, etc.) in order to retain these two
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factors that together perform best. Still, if a
very small set of optimal factors (e.g., single
best factor) is preferred, or a huge set of initial
factors has to be analyzed, BSS would proba-
bly be a better alternative [1]. Since software
engineering data do not usually cover a large
number of factors [35] and usually contains nu-
merous interactions, the BSS strategy should
be preferred. One may consider applying the
optimal weighting approach as presented in [3].
Due to its significant computational complexity
and optimal factor weighting, it might, however,
not always be feasible (large factor spaces).

Given the size of the factor space, opti-
mal weighting [3] (small size) or weighting
heuristics [15] (large size) should be consid-
ered. In this paper, we employ the Regres-
sion ReliefF (RRF) technique [24]. RRF is
well suited for software engineering data due
to its robustness against sparse and noisy data.
The output of RRF (weighting) reflects the
ratio of change to productivity explained by
the input factors.

3.3. An Integrated Factor Selection
Method

Integrated factor selection combines the results
of data- and expert-based selections by means of
the AvalOn MCDA method. It is the hierarchi-
cally (tree) structured model that was originally
used in COTS (Commercial-of-the-shelf) soft-
ware selection [20, 22, 21]. AvalOn incorporates
the benefits of a tree-structured MCDA model
such as the Analytic Hierarchy Process (AHP)
[25] and leverages the drawbacks of pair-wise
(subjective) comparisons. It comprises, at the
same time, subjective and objective measurement
as well as the incorporation of uncertainty under
statistical and simulation aspects. In contrast to
the AHP model, which only knows one node type,
it distinguishes several node types representing
different types of information and offering a vari-
ety of possibilities to process data. Furthermore,
AvalOn offers a weight rebalancing algorithm mit-
igating typical hierarchy-based difficulties origi-
nating from the respective tree structure. Finally,
it allows for any modification (add, delete) of the

set of alternatives while maintaining consistency
in the preference ranking of the alternatives.

3.3.1. Mathematical background of the AvalOn
method

As in many MCDA settings [36], a preference
among the alternatives is processed by summing
up weight · preference of an alternative. In
AvalOn (3), this is accomplished for the node
types root, directory, and criterion by deploying
the following abstract model in line with the
meta-model structure presented in Equation 1.∑

j∈subnodes(i)
wj · prefj(a) (1)

where i is a node in the hierarchy, a the al-
ternative under analysis, subnodes(i) the set of
child/subnodes of node i, prefj(a) ∈ [0..1] the
preference of a in subnode j, and wj ∈ [0..1] the
weight of subnode j. Hence prefi(a) ∈ [0..1].

In each model, a value function (val) is de-
fined, building the relation between data from
{metrics x alternatives} and the assigned prefer-
ence values. val may be defined almost in an arbi-
trary way, i.e., it allows for preference mappings
of metric scaled data as well as categorical data.

In this way, val can model the whole range
of scales from semantic differential via Likert to
agreement scales. Please note that when calcu-
lating prefi(a) on the lowest criterion level, the
direct outputs of the function val in the subn-
odes, which are models in this case, are weighted
and aggregated. The full details of the general
model definition for val is described in [26]. In
this context, two examples for val, one metric
scaled (figure on the left) and one categorical (fig-
ure on the right), are given in Figure 4. On the
x-axis, there are the input values of the respec-
tive metric, while the y-axis shows the individual
preference output val. A full description of the
AvalOn method can be found in [26, 22].

3.3.2. Application of the AvalOn method

AvalOn allows for structuring complex in-
formation into groups (element directory in
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Figure 3. Meta-model for factor selection

Figure 4. Example val models

the meta-model) and criteria (element cri-
terion in the meta-model). Each directory
as well as each criterion may be refined
into sub-directories and sub-criteria. Each
(sub)-criterion may then be refined into indi-
vidual model(s) and sub-models. The models
transform the measurement data coming from
each alternative into initial preference values.
The models providing the preferences based
on each measurement by alternative are asso-
ciated with a set of previously defined metrics.
Bottom-up, the data coming from each alterna-
tive for potential selection (here: productivity
factors) are then processed through the mod-
els and aggregated from there into the criteria
and directory level(s). Finally, in the root node
(here: AvalOn.sub1), the overall preference of
the productivity factors based on their data
about individual metrics is aggregated using

a weighting scheme that is also spread hierar-
chically across the tree of decision (selection)
criteria. The hybrid character of the setting in
this paper can be modeled by combining expert
opinion and objective data from, e.g., prelim-
inary data analyses, into criteria and models
within different directories, and defining an ad-
equate weighting scheme.

3.3.3. Result Views of the AvalOn Meta-Model

The AvalOn meta-model offers a tool-based vari-
ety of result views of the preferences of the alter-
natives [26]. Major views are available for every
node of type root, directory, criterion, and model
in the criteria hierarchy. In detail views are: (i)
overall preference (Figure 5), (ii) node and subn-
ode preference profile (Figure 6), (iii) overall pref-
erence range/uncertainty (Figure 7), (iv) prefer-
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Figure 5. Overall preference

ence weight sensitivity (Figure 8), and (v) pair-
wise preference comparability (Figure 9).

The overall preference view plainly shows the
total preference of the alternatives in a selected
node of the hierarchy. The node and subnode
preference profile visualizes the preferences of
the alternatives in the selected node on the left
line and the individual preferences of the alter-
natives in the subnodes of the selected node on
the lines to the right hand side of it.

The overall preference range (uncertainty)
view provides graphical information about the
variability range of the preferences of the al-
ternatives in a selected node of the hierarchy
when evaluation and decision have to be made
under uncertainty. In addition, a t-test [28]
can be performed in order to verify or falsify
whether two alternatives do have a significant
difference in their individual preferences. The
weight sensitivity of the preference of the al-
ternatives in the selected node analyzes the
change of the total preferences of the alterna-
tives when changing the current weight (marked
by the vertical line in Figure 8) of one specific
subnode. Whenever lines of alternatives inter-
sect at a specific point they are of identical
preference, and by continuing in the change

direction ofthe subnode weight, the preference
between the alternatives will be changed (for
two alternatives: turned around).

The pairwise preference comparability view
shows for each pair of alternatives – in a di-
rect comparison – whether one of the alterna-
tives is to be preferred over the other (green ar-
eas), whether the two alternatives are indifferent
(white area), or whether they are incomparable
(yellow area). This method deploys ORESTE+
[26], which is a metric relaxation of the ordinal
ORESTE procedure.

4. Empirical Study

The integrated factor selection method proposed
in this paper was evaluated in an industrial
context. We applied the method for the pur-
pose of software effort estimation and com-
pared it with isolated expert- and data-based
selection methods. Data-based factor selec-
tion employed the RRF technique [24] imple-
mented in the WEKA data mining software [37].
Expert-based factor selection was performed as a
multiple-expert ranking (see Section 3.1 regard-
ing the ranking process).
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Figure 6. Node and subnode preference profile

Figure 7. Overall preference range/uncertainty



Integrating Human Judgment and Data Analysis . . . 51

Figure 8. Preference weight-sensitivity

Figure 9. Pairwise preference comparability
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4.1. Study Objectives and Hypotheses

The objective was to evaluate, in a compara-
tive study, expert- and data-based approaches
and the integrated approach for selecting the
most relevant productivity factors in the con-
text of software effort estimation. For that pur-
pose, we defined two research questions and re-
lated hypotheses:

Q1. Do different selection methods provide
different sets of productivity factors?

H1. Expert-based, data-based, and inte-
grated methods select different (probably par-
tially overlapping) sets of factors.

Q2. Which method (including not reducing
factors at all) provides the better set of factors
for the purpose of effort estimation?

H2. The integrated approach provides a set
of factors that ensure higher performance of ef-
fort estimation than factors provided by expert-
and data-based selection approaches when ap-
plied individually.

Some effort estimation methods such as step-
wise regression [10] or OSR [9] already include
embedded mechanisms for selecting relevant pro-
ductivity factors. In our study, we wanted to eval-
uate in addition how preliminary factor selection
done by an independent method influences the
performance of such estimation methods. This
leads us to a general research question:

Q3. Does application of an independent fac-
tor selection method increase the prediction per-
formance of an estimation method that already
has an embedded factor selection mechanism?
Answering such a generic question would require
evaluating all possible estimation methods. This,
however, is beyond the scope of this study. We
limit our investigation to the OSR estimation
method [9] and define a corresponding research
hypothesis:

H3. Application of an independent factor se-
lection method does not increase the prediction
performance of the OSR method.

Finally, in order to validate and replicate
the results of the most recent research regarding
the application of data-based factor selection to
analogy-based effort estimation (e.g., [9, 14]), we
define the following question:

Q4. Does application of a data-based factor
selection method increase the prediction perfor-
mance of an analogy estimation method?

H4. Application of a data-based factor selec-
tion method increases the prediction performance
of a k-NN estimation method.

4.2. Study Context and Empirical Data

The empirical evaluation was performed in the
context of Toshiba Information Systems (Japan)
Corporation (TJSYS). The project measurement
data repository contained a total of 76 projects
from the information systems domain. Figure 10
illustrates the variance of development produc-
tivity measured as function points (unadjusted,
IFPUG) per man-month.

Expert assessments regarding the most rel-
evant factors were obtained from three experts
(see Table 1). During the group meeting (brain-
storming session), an initial set of factors was
identified. It was then grouped into project-,
process, personnel-, and product-related factors
as well as context factors. The first four groups
refer to the characteristics of the respective enti-
ties (software project, development process, prod-
ucts, and stakeholders). The latter group covers
factors commonly used to limit the context of
software effort estimation or productivity mod-
eling. The application domain, for instance, is
often regarded as a context factor, i.e., an effort
model is built for a specific application domain.
Finally, experts were asked to select the 5 most
important factors from each category and rank
them from most relevant (rank = 1) to least
relevant (rank = 5).

4.3. Study Limitation

Unfortunately, the measurement repository avail-
able did not cover all relevant factors selected by
the experts. It was also not possible to collect
the data ex post facto. This prevented us from
doing a full comparative evaluation of the three
factor selection methods considered here for the
purpose of software effort estimation. In order
to at least get an indication of the methods’ per-
formance, we decided to compare them (instead
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Figure 10. Development productivity variance; data presented in a normalized form
Table 1. Experts who participated in the study

Expert 1 Expert 2 Expert 3
Position/Role Project manager Developer Quality manager
Experience [#working years] 8 15 3
Experience [#performed projects] 30 15 40

of all identified factors) on the factors identified
by experts for which measurement data were
available. This would represent the situation
where those factors cover all factors available in
the repository and identified by experts.

4.4. Study Design and Execution

4.4.1. Data Preprocessing

Measurement data available in the study suf-
fered from incompleteness (44.3% missing data).
An initial preprocessing was thus required in
order to apply the data analysis techniques
selected in the study. We wanted to avoid
using simple approaches to handling missing
data such as list-wise deletion or mean imputa-
tion, which significantly reduce data quantity
and increase noise. Therefore, we decided to ap-
ply the k-Nearest Neighbor (k-NN) imputation
method. It is a common hot deck method, in
which k nearest projects minimizing a certain
similarity measure (calculated on non-missing
factors) are selected to impute missing data. It
also proved to provide relatively good results
when applied to sparse data in the context
of software effort prediction [19]. Moreover,
other more sophisticated (and potentially more
effective) imputation methods required remov-

ing factor collinearities beforehand. Such a
preprocessing step would, however, already be a
kind of factor selection and might thus bias the
results of the actual factor selection experiment.
We adopted the k-NN imputation approach
presented in [13].

We assumed a missing at random (MAR)
missingness mechanism, which means [17] that
the cause of the missing data is completely
unrelated to the missing values; it may be
related to the observed values of other variables.
This assumption is weaker than missing com-
pletely at random (MCAR); however, it is more
realistic and seems not to have a significant
impact on the accuracy of the k-NN imputation
method [29].

In order to assure maximal performance of
the imputation, before applying it, we removed
factors and projects with a large missing data
ratio so that the total ratio of missing data
was reduced to around one third; however,
with minimal loss of non-missing data. We
applied the following procedure: We first re-
moved factors where 90% of the data were
missing and next, projects where more than
55% of the data were still missing. As a
result, we reduced the total rate of missing
data to 28.8%, while losing a minimal quantity
of information (removed 19 out of 82 factors
and 3 out of 78 projects). The remaining 28.8%
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of missing data were imputed using the k-NN
imputation technique.

4.4.2. Empirical Evaluation

Let us first define the following abbreviations for
the factor sets used in the study:

FM: factors covered by measurement
data.
FMR: relevant FM factors selected
by the RReliefF method (factors with
weight > 0).
FMR10: the 10% most relevant FMR fac-
tors.
FE: factors selected by experts.
FI: factors selected by the integrated
method.
FT: all identified factors (FM ∪ FE).
FC: factors selected by experts for which
measurement data are available (FM ∩
FE).
FCE25: the 25% most relevant FC factors
selected by experts.
FCR25: the 25% most relevant FC factors
selected by the RRF method.
FCI25: the 25% most relevant FC factors
selected by the integrated method.
Hypothesis H1. In order to evaluate

H1, we compared factor sets selected by the
data-based, expert-based, and integrated meth-
ods (FMR, FE, and FI). For the 10 most relevant
factors shared by all three factor sets, we com-
pared the ranking agreement using Kendall’s
coefficient of concordance [28].

Hypothesis H2. In order to evaluate H2,
we evaluated the estimation performance of two
data-based estimation methods: k-Nearest Neigh-
bor (k-NN) [27] and Optimized Set Reduction
(OSR) [7]. We applied them in a leave-one-out
cross validation on the following factor sets: FM,
FC, FCE25, FCR25, and FCI25.

Hypothesis H3. In order to evaluate H3,
we compared the estimation performance of OSR
(which includes an embedded, data-based factor
selection mechanism) when applied on the FM
and FMR10 factor sets.

Hypothesis H4. In order to evaluate H4,
we compared the estimation performance of

the k-NN method when applied on the FM
and FMR10 factor sets.

To quantify the estimation performance in H2,
H3, and H4, we applied the common accuracy
and precision measures defined in [10]: magni-
tude of relative estimation error (MRE), mean
and median of MRE (MMRE and MdMRE), as
well as prediction at level 25% (Pred.25). We also
performed an analysis of variance (ANOVA) [28]
of MRE to see if the error for one approach was
statistically different from that of another one.
We interpret the results as being statistically
significant if the results could be due to chance
less than 2% of the time (p < 0.02).

5. Results of the Empirical Study

Hypothesis H1: Expert-based, data-based
and integrated methods select different (probably
partially overlapping) sets of factors.
After excluding the dependent variable (devel-
opment productivity) and project ID, the mea-
surement repository contained data on 61 fac-
tors. Experts identified a total of 34 relevant
factors, with only 18 of them being already mea-
sured (FC). The RRF method selected 40 factors
(FMR), 14 of which were also selected by experts.
The integrated approach selected 59 factors in
total, with only 14 being shared with the former
two selection methods. Among the FC factors,
as many as 8 were ranked by each method within
the top 10 factors (Table 2). Among the top
25% FC factors selected by each method, only
one factor was in common, namely customer
commitment and participation. There was no sig-
nificant agreement (Kendall = 0.65 at p = 0.185)
between data- and expert-based rankings on the
FC factors. The integrated method introduced
significant agreement on ranks produced by all
three methods (Kendall = 0.72 at p = 0.004).

Interpretation (H1): Data- and expert-
based selection methods provided different (par-
tially overlapping) sets of relevant factors. Sub-
jective evaluation of the shared factors suggests
that both methods vary regarding the assigned
factor’s importance; yet this could not be con-
firmed by statistically significant results. The



Integrating Human Judgment and Data Analysis . . . 55

Table 2. Comparison of the ranks on FC factors (top 25% marked in bold)

Productivity factor FCE FCR FCI
Customer commitment and participation 3 3 3
System configuration (e.g., client-server) 5 2 5
Application domain (e.g., telecommunication) 1 6 1
Development type (e.g., enhancement) 7 1 4
Application type (e.g., embedded) 2 7 2
Level of reuse 9 4 9
Required product quality 6 10 7
Peak team size 8 9 8

integrated method introduced a consensus be-
tween individual selections (significant agree-
ment) and as such might be considered as a way
to combine the knowledge gathered in experts’
heads and in measurement data repositories.

Hypothesis H2: The integrated approach
provides a set of factors that ensure higher perfor-
mance of effort estimation than factors provided
by expert- and data-based selection approaches
when applied individually.
A subjective analysis of the estimates in Table 3
suggests that the k-NN provided improved esti-
mates when applied on a reduced FC factors set
(FCE25, FCR25, and FCI25), whereas OSR does
not consistently benefit from independent factor
reduction (by improved estimates). The analysis
of the MRE variance, however, showed that the
only significant (p = 0.016) improvement in esti-
mation performance of the k-NN predictor was
caused by the integrated factor selection method.
The OSR predictor improved its estimates signif-
icantly (p < 0.02) only on the FCE25 factors set.

Interpretation (H2): The results obtained
indicate that a factor set reduced through an in-
tegrated selection contributes to improved effort
estimates. Yet, this does not seem to depend
on any specific way of integration. The k-NN
predictor, which uses all input factors, improved
on factors reduced by the AvalOn method. The
OSR method, however, improved slightly on the
factors reduced by experts. This interesting ob-
servation might be explained by the fact that
OSR, which includes an embedded, data-based
factor selection mechanism, combined this with
prior expert-based factor selection. Still, the ef-
fectiveness of such an approach largely depends
on the experts who determine (pre-select) in-

put factors for OSR (expert-based selection is
practically always granted higher priority).

Hypothesis H3: Application of an indepen-
dent factor selection method does not increase
the prediction performance of the OSR method.
A subjective analysis of OSR’s estimation error
(Table 3 and Table 4) suggests that it performs
generally worse when applied on the factors cho-
sen by an independent selection method. This
observation was, however, not supported by the
analysis of the MRE variance. The exception was
the FC set reduced by experts (FCE25), on which
a slight, statistically significant improvement of
the OSR’s predictions was observed.

Interpretation (H3). The results obtained
indicate that no general conclusion regarding the
impact of independent factor selection on the
prediction performance of OSR can be drawn.
Since no significant deterioration of estimation
performance was observed, application of OSR
on the reduced set of factors can be considered
useful due to the reduced cost of measurement.
Yet, improving OSR’s estimates might require a
selection method that is more effective than the
selection mechanism embedded in OSR.

Hypothesis H4: Application of a data-based
factor selection method increases the prediction
performance of a k-NN estimation method.
A subjective impression of improved estimates
provided by the k-NN predictor (Table 4) when
applied on the reduced factor set (FMR10) was,
however, not significant in the sense of different
variances of MRE (p = 0.39). Yet, estimates
provided by the k-NN predictor improved signif-
icantly when used on the FC data set reduced
by the integrated selection method (p = 0.016).
The two individual selection methods did not
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Table 3. Comparison of various factor selection methods

Predictor Factors Set MMRE MdMRE Pred.25

k-NN

FM 73.7% 43.8% 21.3%
FC 52.6% 40.0% 26.7%
FCE25 46.3% 38.5% 33.3%
FCR25 48.3% 36.9% 29.3%
FCI25 47.5% 33.3% 30.7%

OSR

FM 59.7% 50.8% 17.3%
FC 65.9% 59.2% 18.7%
FCE25 30.7% 57.9% 24.0%
FCR25 66.2% 52.1% 14.7%
FCI25 65.1% 57.9% 14.7%

Table 4. Results of data-based factor selection
Predictor Factors Set MMRE MdMRE Pred.25 ANOVA

k-NN FM 73.7% 43.8% 21.3%
p = 0.39FMR10 56.8% 40.7% 22.7%

OSR FM 59.7% 50.8% 17.3%
p = 0.90FMR10 68.1% 59.1% 16.0%

significantly improve performance of the k-NN
predictor.

Interpretation (H4): Although a subjec-
tive analysis of the results (Table 3 and Table 4)
suggests improved estimates provided by the
k-NN predictor when applied on reduced factors
sets, no unambiguous conclusion can be drawn.
The performance of k-NN improved significantly
only when applied on factors identified from the
FC set by the integrated selection method (the
FCI25 set). This might indicate that k-NN’s per-
formance improvement depends on the applied
factor selection method (here, the integrated
method was the best one).

Threats to Validity. We have identified
two major threats to validity that may limit
the generalizability of the study results. First,
the estimation performance results of the factor
selection methods investigated, compared on
the FC set, might not reflect their true char-
acteristics, i.e., as compared on the complete
set of identified factors (threat to hypothesis
H2). Yet, a lack of measurement data prevented
us from checking on this. Second, the RRF
method includes the k-NN strategy to search
through the factor space and iteratively modify
factor weights. This might bias the results
of k-NN-based estimation by contributing to
better performance of k-NN (as compared to

OSR) on factors selected by RRF (threat to
hypotheses H3 and H4).

6. Summary

In this paper, we proposed an integrated ap-
proach for selecting relevant factrs influencing
software development productivity. We com-
pared the approach in an empirical study against
selected expert- and data-based factor selection
approaches.

The investigation performed showed that
expert- and data-based selection methods iden-
tified different (only partially overlapping) sets
of relevant factors. The study indicated that
the AvalOn method finds a consensus between
factors identified by individual selection meth-
ods. It combines not only the sets of relevant
factors, but also the individual relevancy levels
of selected factors. We showed that in contrast
to data- and expert-based factor selection meth-
ods, the integrated approach may significantly
improve the estimation performance of estima-
tion methods that do not include an embedded
factor selection mechanism. Estimation methods
that include such a mechanism may, however,
benefit from integrating their capabilities with
expert-based factor selection.
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The study did not replicate the observation
of similar investigations regarding improved esti-
mation performance on the factor sets reduced
by a data-based selection method. Neither of the
estimation methods employed in the study (k-NN
and OSR) improved significantly when applied
on factor sets reduced by the RReliefF method.
Although k-NN improved in terms of aggregated
error measures (e.g., MMRE) the difference in
the MRE variance was insignificant. The results
obtained for the OSR method may indicate that
the change of its prediction performance when
applied on a reduced set of factors depends on
the selection method used.

Finally, we also observed that the function
point adjustment factor (FPAF) was not consid-
ered among the most relevant factors, although
factor selection was driven by a variance on devel-
opment productivity calculated from unadjusted
function point size. Moreover, some of the factors
considered as relevant (e.g., performance require-
ments) belong to components of the FPAF. This
might indicate that less relevant sub-factors of
the FPAF and/or the adjustment procedure itself
may hide the impact of relevant factors. Con-
sidering sub-factors of FPAF individually might
therefore be more beneficial.

In conclusion, factor selection should be
considered as an important aspect of soft-
ware development management. Since individ-
ual selection strategies seem to provide incon-
sistent results, integrated approaches should
be investigated to support software practi-
tioners in limiting the cost of management
(data collection and analysis) and increasing
the benefits (understanding and improvement
of development processes).

7. Further Work

Further work shall focus on several aspects. First,
a full evaluation of the three selection strate-
gies presented on a complete data set (including
data on all factors identified by experts) shall
be performed.

Daily industrial practice requires an incre-
mental approach to identify relevant productiv-

ity factors. After identifying a single most rele-
vant factor or small group of (probably related)
most relevant factors, corresponding project data
should be collected in order to quantitatively
validate the true impact on productivity. The
identified factors may, for instance, be applied
within an estimation model (such as CoBRA [35])
in order to see how much productivity variance
they are able to explain across the considered
development projects. This shall be the next
subject of our further investigation.

Finally, methods for identifying and explic-
itly considering factor dependencies need to be
investigated. Such information might not only
improve performance in effort estimation and pro-
ductivity modeling, but they also improve un-
derstanding of the interaction between organi-
zational processes influencing development pro-
ductivity.
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