
e-Informatia Software Engineering Journal, Volume 1, Issue 1, 2007Program Veri�ations, Objet Interdependenies,and Objet TypesCong-Cong Xing∗
∗Department of Mathematis and Computer Siene, Niholls State Universitymps-x�niholls.eduAbstratObjet types are abstrat spei�ations of objet behaviors; objet behaviors are ab-stratly indiated by objet omponent interdependenies; and program veri�ationsare based on objet behaviors. In onventional objet type systems, objet omponentinterdependenies are not taken into aount. As a result, distint behaviors of ob-jets are onfused in onventional objet type systems, whih an lead to fundamentaltyping/subtyping loopholes and program veri�ation troubles. In this paper, we �rstidentify a program veri�ation problem whih is aused by the loose onventional ob-jet typing/subtyping whih is in turn aused by the overlooking of objet omponentinterdependenies. Then, as a new objet typing sheme, we introdue objet type graphs(OTG) in whih objet omponent interdependenies are integrated into objet types.Finally, we show how the problem existing in onventional objet type systems an beeasily resolved under OTG.1 Introdution and Related WorkAlthough muh of the reent year's work on objet-oriented programming (OOP) has fo-used on large entities suh as omponents, environments, and tools, investigations onissues related to objet-oriented languages themselves are still an on-going researh andmany new improvements an be expeted. In partiular, typing and program veri�ationare still a ritial issue and a problem-prone area in the formal study of objet-orientedlanguages, espeially when type-related subjets, suh as subtyping and inheritane, areonsidered. In the ontexts of OOP theory researh, there are three major lines: Abadi-Cardelli's ς-alulus [2℄, Fisher-Mithell's lambda alulus of objets [14, 19, 18, 4℄, andBrue's PolyTOIL [7, 6℄. The type systems of all these aluli are onventional in thefollowing sense: the major behavior indiator of objets � objet omponent interdepen-denies � is not re�eted in objet types.The result of not having suh omponent interdependeny information represented inobjet types is that two behaviorally distint objets whih deserve to be typed di�erently,may have the same type. For example, let objets a and b be de�ned, using the ς-alulus [2℄notation, as follows: a

def
= [l1 = 1, l2 = 1], b

def
= [l1 = 1, l2 = ς(s : Self)s.l1] where s is the selfvariable and Self is the type of s. The behavioral di�erene between a and b an berevealed by the following omputations: Suppose we would like to update l1 in a to 2.

78 Cong-Cong XingIt is easy to see that before and after this updating operation, the �status� of l2 in aremains the same, namely, a.l2 = 1 and (a.l1⇐ 2).l2 = [l1 = 2, l2 = 1].l2 = 11. However,when the same operation (updating l1 to 2) is applied to b, the �status� of l2 in b wouldbe hanged after the operation, namely, b.l2 = 1 but (b.l1⇐ 2).l2 = [l1 = 2, l2 = ς(s :
Self)s.l1].l2 = 2 due to the fat that l2 �depends on� l1 (l2 alls l1) in b. In onventionaltype systems, this behavioral di�erene between a and b is not aptured in their types;
a and b are of the same type: [l1 : int, l2 : int]. As a result, elusive programming errorsand program veri�ation problems will inevitably our when subtyping is onsidered (asshown in the next setion).In this paper, we introdue, as a new way to represent objet types, objet type graphs(OTG) in whih objet omponent interdependeny information is abstratly revealed, andshow that OTG provides an e�etive support for program veri�ations. Setion 2 presentsa program veri�ation problem aused by objet typing. Setion 3 de�nes a formal objet-oriented language TOOL in whih objet omponent interdependenies are to be studied.Setions 4 and 5 de�ne OTG and typing/subtyping under OTG respetively. Setion 6demonstrates how the program veri�ation problem shown in Setion 2 an be resolvedunder OTG. Setion 7 onludes this paper.There are some researh work in the literature that are (somehow) related to our work.Behavioral subtyping is introdued in [20℄. Although objet behavior and subtyping arethe ommon interests in both [20℄ and our paper, our typing approah is fundamentallydi�erent from that in [20℄ where objet interdependenies are not onsidered. Labeled typesand width subtyping are proposed in [3, 4, 19℄, where the type of a method is labeled bya set of methods that it uses. While the idea of labeled types is somewhat related to ouridea of objet interdependeny, they di�er substantially in quality and in quantity. Forexample, the notion of objet interdependeny is preisely de�ned in our work whereas theissue of method usages is not formally addressed in labeled types. Furthermore, in ourwork, objet interdependenies fully partiipate and deisively reshape objet subtypingwhereas in labeled types the method usages information is barely used in objet subtyping.The notion of objet state typing an be found in, for example, [9, 21℄. Just like [20℄ (asopposed to our work), this approah deals with the issue of objet behavior and subtypingin a fundamentally di�erent way from ours, whih makes it orthogonal and omplementalto our approah.2 The Problem and MotivationPoints with additional attributes (e.g., olor points [5, 8, 15℄, movable points [2, 4, 15℄) havebeen an interesting study-ase in the fundamental researh of objet-oriented languages.Here, we observe a new problem that is assoiated with movable points. We �rst presentthis problem on a theoretial basis and then demonstrate it using Java.1a.l1⇐2 means that �eld/method l1 in a is updated to 2.

Program Veri�ations, Objet Interdependenies, and Objet Types 792.1 ς-alulus Desription of the ProblemWe stipulate that a point is olored (or non-olored, respetively), if this point (objet) hasa (or has no, respetively) olor attribute. Let us onsider non-negative movable points2.For 1-d movable points, we assume that all points greater than 1 are olored points andall other points are non-olored points (Figure 1). For 2-d movable points, similarly, weassume that all points with a distane from the origin greater than 1 are olored points andall other points are non-olored points (Figure 2). This assumption an be easily extendedfor higher-dimensional points.
10

pts w/o color pts w/ color

xFigure 1: 1-d Colored and non-olored points
1

1

0

y

x

pts w/ color

pts w/o
colorFigure 2: 2-d Colored and non-olored pointsFor instane, using the ς-alulus (seond-order) notation [2℄, we an de�ne a 1-d non-olored movable point and a 1-d olored movable point as follows:

p1n
def
=

x = 0.5
mvx = ς(s :Self)λ(i :real)(s.x⇐s.x + i)
dist = ς(s :Self)s.x

 ,

p1c
def
=

x = 2.0
mvx = ς(s :Self)λ(i :real)(s.x⇐s.x + i)
dist = ς(s :Self)s.x
clr = blue

,where mvx moves the point to a new position on the x-axis and dist returns the dis-tane from the origin to the urrent position of the point. The⇐ is the method updat-ing/overriding operation in ς-alulus. The intentions of �elds x and clr are obvious.2For the sake of simpliity, we only onsider non-negative points here. The ase for negative points anbe easily dupliated with slight hanges.

80 Cong-Cong XingTo haraterize the behaviors of 1-d movable points, we de�ne the following types:
P

def
= ς(Self)

x : real

mvx : real → Self

dist : real

 ,

CP
def
= ς(Self)

x : real

mvx : real → Self

dist : real

clr : color

,

NCP
def
= P,where P is the type of all 1-d movable points, CP is the type of 1-d olored points, and

NCP is the type of 1-d non-olored points. Given the objets and types de�ned as theabove, it is easy to hek that in onventional objet type systems, we have p1n : NCP ,
p1c : CP , CP <: P , and NCP <: P .Now, suppose we would like to write a program, ms (�move and see�), whih takes a 1-dpoint and moves it along the x-axis. Due to the o-existene of olored and non-oloredpoints on the x-axis, the movement annot be arbitrary. We speify the behavior of ms asfollows: (a) ms moves the argument point to its right a ertain amount of distane if theargument point is olored (so that it will not mix with non-olored points). (b) ms movesthe argument point to its left half of the distane from the origin to the urrent position ofthe argument point if the argument point is non-olored (so that it will not mix with oloredpoints). () Let p′ be the newly resulted point in ases (a) and (b). In ase (a), ms uses theproperty p′.dist > 1 of p′ to arry out the omputation arcsin(1/p′.dist); in ase (b), msuses the property p′.dist ≤ 1 of p′ to arry out the omputation arcsin(p′.dist). Beauseof subtyping and subsumption, inevitably, ms will take higher dimensional points as itsarguments. To ensure that ms works �ne with higher dimensional points, we require that,in suh ases, the higher dimensional point be moved (right or left) along the x-axis, andthe amount of distane to be moved follows the same guideline stated above. For example,given a 2-d point p with oordinates (x, y), if p is olored (whih means √

x2 + y2 > 1), wemove it to the right along the x-axis over a distane δ > 0. The distane from the origin tothe new position of the point then would be √

(x + δ)2 + y2 >
√

x2 + y2 > 1, indiatingthat the point is still in the olored point area on the x-y plane. If p is non-olored (whihmeans √

x2 + y2 ≤ 1), we move it to the left along the x-axis half of x. The distane fromthe origin to the new position of the point then would be √

(1
2x)2 + y2 <

√

x2 + y2 ≤ 1,indiating that the point is still in the non-olored point area. Thus the spei�ation ofthe program ms is sound and feasible.

Program Veri�ations, Objet Interdependenies, and Objet Types 81With little e�ort, we an write ms as follows:
ms

def
= λ(p : P)if (p.dist > 1) // p is olored

sin-1(1/(p.mvx (δ)).dist) // δ > 0else // p is non-olored
sin-1((p.mvx (−1

2p.x)).dist)endif Figure 3: The funtion msNow, the question we have is: does ms perform to its spei�ation with all permissiblearguments? Or simply, is ms reliable? Can we verify its orretness?It is easy to hek that ms works as expeted with p1n and p1c. We now de�ne oneolored 2-d point and two non-olored 2-d points as follows:
p2c

def
=

x = 2.0
y = 2.0
mvx = ς(s :Self)λ(i :real)(s.x⇐s.x + i)
mvy = ς(s :Self)λ(i :real)(s.y⇐s.y + i)

dist = ς(s :Self)
√

(s.x)2 + (s.y)2

clr = blue

,

p2n
def
=

x = 0.5
y = 0.3
mvx = ς(s :Self)λ(i :real)(s.x⇐s.x + i)
mvy = ς(s :Self)λ(i :real)(s.y⇐s.y + i)

dist = ς(s :Self)
√

(s.x)2 + (s.y)2

,

p′2n
def
=

x = 0.5
y = ς(s :Self) 1

4(s.x)

mvx = ς(s :Self)λ(i :real)(s.x⇐s.x + i)
mvy = ς(s :Self)λ(i :real)(s.y⇐s.y + i)

dist = ς(s :Self)
√

(s.x)2 + (s.y)2

.

Note that p2c and p2n an be regarded as �free� 2-d points sine their x and y �elds areindependent eah other, whereas p′2n an be regarded as a �onstrained� 2-d point sine its
y oordinate depends on its x oordinate. Also note that p′2n is a legitimate non-oloredpoint sine its oordinate is (0.5, 0.5) whih shows that the distane from the origin tothis point is less than 1. Moreover, note that although p2c, p2n, and p′2n are de�ned fromsrath, they ould have been de�ned through inheritane from (the lasses of) p1c or p1nin lass-based objet-oriented languages (as shown in the next subsetion).

82 Cong-Cong XingUnder onventional objet type systems, p2c and p2n have types
CP2

def
= ς(Self)

x : real

y : real

mvx : real → Self

mvy : real → Self

dist : real

clr : color

and
NCP2

def
= ς(Self)

x : real

y : real

mvx : real → Self

mvy : real → Self

dist : real

respetively, and p′2n has the same type as p2n. That is, p′2n : NCP2. Furthermore,
CP2 <: P and NCP2 <: P , so ms(p2c), ms(p2n) and ms(p′2n) all type-hek.It is easy to hek that ms(p2c) and ms(p2n) work just �ne. What about ms(p′2n)?It is supposed to return the degree of an angle. Unfortunately, the exeution of ms(p′2n)produes a run-time error, as outlined below: The urrent position of p′2n is (0.5, 0.5) with
p′2n.dist =

√
0.52 + 0.52 < 1. So it is moved to the left 0.5

2 = 0.25 units of distane resultingin another point, say, p′′2n. The position of p′′2n is (0.25, 1
4×0.25) = (0.25, 1) and the distanefrom the origin to p′′2n is p′′2n

.dist =
√

0.252 + 12 > 1. The exeution sin-1(p′′

2n
.dist) thusrashes beause sin-1 is unde�ned for argument greater than 1.What goes wrong is lear: when the x-oordinate of p′2n is moved (dereased), its

y-oordinate is impliitly moved too (inreased) due to the interdependeny between xand y (y = 1
4(s.x)). The ombination of these two movements makes p′2n (a non-oloredpoint) go into the olored point area of the x-y plane, resulting in a point with distanegreater than 1 and reating semantis onfusions. The importane of objet omponentinterdependenies to objet behaviors an be seen learly here. Coneptually, for ms tosafely ful�ll its spei�ations, it should not take an arbitrary point as its argument. Anypoints in whih some methods depend on x and a�et dist at the same time, for example

p′2n, will potentially make the behavior of ms unpreditable and endanger the exeution of
ms when they are submitted to ms . Thus, allowing points like p′2n to be submitted to msis a �wrong idea�, in the sense that ms(p′2n) does not work as spei�ed and therefore ms isunreliable.How an we �x this problem? Is the funtion ms omposed inorretly? Is there away to rewrite ms so that we an prove that ms works as spei�ed for all permissiblearguments? It seems unlikely. Note that ms is written with P as the type of its argument.
ms annot foresee what kind of extra methods there are in its atual arguments. When p′2nis submitted to ms , p′2n's y-oordinate is invisible to ms . ms does not know the existeneof the y-oordinate, and of ourse, has no way of knowing the interdependenies between

Program Veri�ations, Objet Interdependenies, and Objet Types 83
y and other methods and the ensuing behavior of p′2n. This is espeially the ase if p′2nis onstruted via inheritane from p1c or p1n. This situation auses the behavior of ms(with various permissible arguments) unpreditable, and is inevitable in OOP supportedby onventional objet type systems.2.2 Java Version of the ProblemTo show that the problem exists not only in objet-based languages, but in lassed-basedlanguages as well, we present a Java version of the problem with two running sripts inFigure 4.Classes P, CP, CP2, and NCP2 orrespond to types P (and NCP), CP , CP2, and NCP2respetively. Similarly, objets p1n, p1, p2n, p2 and p2na orrespond to points p1n, p1c,
p2n, p2c, and p′2n respetively. MPP and MPP1 are two appliations that use these points.Due to the �lass-serves-as-type� feature of Java, the Java version of the problem is twisteda bit: The types of p2n and p2na are NCP2 and NCP2a respetively. These two types arenot the same but enjoy a subtyping relationship NCP2a <: NCP2. This is di�erent from
ς-alulus where p2n and p′2n have the same type, but does not a�et the illustration of theproblem.Note that in lass NCP2a of Figure 4, in order to faithfully implement the desired fatthat �y-oordinate depends on x-oordinate�, we need to use the ombination of the �eldy and the method y() to simulate it. This is due to the imperative feature of Java. Fieldy, as an instane variable, one aquires a value, will evaluate to the same value eah timeit is evaluated. So �eld y does not �depend on� anyone in this sense. Then how an weode �y-oordinate depends on x-oordinate�? The use of an auxiliary method y() whihdepends on x (as desired) omes into help.From the exeution sript of MPP, we an learly see that submitting the �onstrained�point p2na to the funtion ms auses a run-time bug, whih demonstrates that the typeNCP2a of p2na should not be regarded as a subtype of the type P although NCP2a is inherited(indiretly) from P. Considering that all ms(p1), ms(p2), ms(p2n) work �ne and all thelasses (types) of the three objets p1, p2, p2n are inherited (indiretly) from P too, weneed to distinguish (all) inheritanes in Java so that some inheritanes (e.g., those as CP,CP2, and NCP2) may imply subtyping and others (e.g., those as NCP2a) do not. This anbe done by using objet interdependeny as a measurement. Unfortunately, Java thinks�all inheritane is subtyping�. What is more interesting is that due to the way in whihJava handles NaN (Any arithmeti operation involving NaN and other operands produes aNaN, but any relational operation involving NaN and other operands produes either trueor false3.), this run-time bug an beome hidden and di�ult to �nd if the relevant ex-pression is (deeply) involved with other omputations. MPP1 is suh an example; by justexamining the exeution sript of MPP1, it is hard to tell that ms(p2na) has atually auseda run-time bug.3There are other means in Java to make the �illegal value� NaN legal, e.g., (int)(Math.asin(2)) evaluates to 0,whih ould also help to oneal the NaN run-time bugs.

84 Cong-Cong Xing// lass P. Note that this is also lass// NCP sine NCP is defined as P.publi lass P {proteted double x = 0.5;publi double getx(){ return x; }publi void mvx(double i){ x = x+i; }publi double dist(){ return getx();}}// lass CP, inherited from Ppubli lass CP extends P { String lr = "blue";publi CP(){ x = 2.0;}}// lass CP2, inherited from CPpubli lass CP2 extends CP {proteted double y;publi CP2(){ y = 2.0;}publi double gety(){ return y; }publi void mvy(double i){ y = y+i; }publi double dist(){ return Math.sqrt(getx()*getx() + gety()*gety());}}// lass NCP2, inherited from Ppubli lass NCP2 extends P {proteted double y;publi NCP2(){ y = 0.3;}publi double gety(){ return y; }publi void mvy(double i){ y = y+i; }publi double dist(){ return Math.sqrt(getx()*getx() + gety()*gety());}}// lass NCP2a, inherited from NCP2. Need the ombination// of y and y() to simulate "y depends on x". Note that// "y depends on x" is what we want to do, without the use// of y(), fields x and y would be independentpubli lass NCP2a extends NCP2{ publi NCP2a(){ y = y(); } // alling y() to get// value for ypubli double y() // implementation of{ return 1/(4*x);} // "y depends on x"publi double gety(){ y = y(); // alling y() to getreturn y; // value for y}}

// Appliation that uses P, CP, CP2, NCP2, and NCP2apubli lass MPP {publi stati void ms(P p){ if (p.dist() > 1){System.out.println(" This is a olored point");p.mvx(1); // move p as speifiedSystem.out.println(" The result is: "+Math.asin(1/p.dist()));}else{System.out.println(" This is a non-olored point");p.mvx(-0.5*p.getx()); // move p as speifiedSystem.out.println(" The result is: "+Math.asin(p.dist()));}}publi stati void main(String args[℄){ P p1n = new P();CP p1 = new CP();CP2 p2 = new CP2();NCP2 p2n = new NCP2();NCP2a p2na = new NCP2a();System.out.println("making all ms(p1n)..."); ms(p1n);System.out.println("making all ms(p1)..."); ms(p1);System.out.println("making all ms(p2n)..."); ms(p2n);System.out.println("making all ms(p2)..."); ms(p2);System.out.println("making all ms(p2na)..."); ms(p2na);}}// Appliation that uses P, CP, CP2, NCP2, and NCP2apubli lass MPP1 {publi stati void ms(P p){ System.out.print(" Chek to see if the result > PI/4:");if (p.dist() > 1){ p.mvx(1); // move p as speifiedif (Math.asin(1/p.dist()) > (Math.PI)/4)System.out.println (" yes");elseSystem.out.println (" no");}else{ p.mvx(-0.5*p.getx()); // move p as speifiedif (Math.asin(p.dist()) > (Math.PI)/4)System.out.println (" yes");elseSystem.out.println (" no");}}publi stati void main(String args[℄){ // omitted, same as the part in MPP }}C:\MyJavaPrograms\Point\movable pt problem>java MPP making all ms(p1n)...This is a non-olored pointThe result is: 0.25268025514207865making all ms(p1)...This is a olored pointThe result is: 0.3398369094541219making all ms(p2n)...This is a non-olored pointThe result is: 0.40118821299725976making all ms(p2)...This is a olored pointThe result is: 0.2810349015028136making all ms(p2na)...This is a non-olored pointThe result is: NaNC:\MyJavaPrograms\Point\movable pt problem>java MPP1 making all ms(p1n)...Chek to see if the result > PI/4: nomaking all ms(p1)...Chek to see if the result > PI/4: nomaking all ms(p2n)...Chek to see if the result > PI/4: nomaking all ms(p2)...Chek to see if the result > PI/4: nomaking all ms(p2na)...Chek to see if the result > PI/4: noFigure 4: Java ode of the movable point problem

Program Veri�ations, Objet Interdependenies, and Objet Types 85Summarizing what is desribed in this setion, we an state the problem as follows:
• In OOP supported by onventional objet type systems, there is no way to implementprograms like ms reliably and verify its orretness.Motivated by this problem, we propose, in the subsequent setions, a new typing shemefor objets.3 A Simple Typed Objet-Oriented LanguageTo illustrate our approah, we de�ne a simple typed objet-oriented language (TOOL) inthis setion.3.1 SyntaxThe terms and types of TOOL are de�ned as follows.

M ::= x | λ(x :σ).M | M1M2 | M.l | M.l⇐ ς(x :S(A))M ′

| [li = ς(x :S(A))Mi]
n
i=1

σ ::= κ | t | σ1 → σ2 | µ(t)σ | A | S(A)
A ::= ι(t)[li(Li) :σi]

n
i=1 Li ⊆ {l1, . . . , ln} for eah iTerms in TOOL are standard λ-terms and ς-terms [2℄. In partiular, [li = ς(x :

S(A))Mi]
n
i=1 represents an objet, M.l represents method invoation, and M.l⇐ ς(x :

S(A))M ′ represents method updating.Types in TOOL are standard ground type, funtion type, reursive type, and thenewly proposed objet type. In objet type ι(t)[li(Li) :σi]
n
i=1, ι is the self-type binder, eahmethod li has type σi, and Li is the set of links of li (de�ned in the next subsetion). S(A)denotes the self type indued by the objet type A. A = ι(t)[li(Li) :σi(t)]

n
i=1 if and only if

A = [li(Li) :σi(S(A))]ni=1.We provide a simple example to illustrate the syntax of types and terms. Let
A

def
= ι(t)

l1({l2, l3}) : t
l2(∅) : int

l3({l2}) : int → int

 .It spei�es that l1, l2, and l3 are of self type (assoiated with A), int , and int → intrespetively. The sets of links for l1 and l3 are {l2, l3} and {l2}. l2 has no links. An objetof type A ould be
a

def
=

l1 = ς(s :S(A))s
l2 = 1
l3 = ς(s :S(A))λ(x : int)(x + s.l2)

 .

86 Cong-Cong Xing3.2 De�nition of LinksLinks are used to signify the struture of omponent dependeny of objets. Informally,in objet type ι(t)[li(Li) : σi]
n
i=1, lj ∈ Li means that the value of method li depends(partially) on the value of method lj. The link mehanism makes the types of objets inTOOL substantially di�erent from that in onventional objet type systems.De�nition 1 (Link) Given an objet a = [li = ς(s : S(A))Mi]

n
i=1, (1) li is said to bedependent on lj(i 6= j) if there exists a M suh that a.li and (a.lj ⇐ ς(s : S (A))M).lievaluate to di�erent values; (2) li is said to be diretly dependent on lj(i 6= j) if (a) liis dependent on lj, and (b) if all suh lk(i 6= k, j 6= k) where li is dependent on lk and lkis dependent on lj , are removed from a, li is still dependent on lj; (3) The set of links of

li (or equivalently, of Mi with respet to objet a), denoted by L(li) (or equivalently, by
La(Mi)), ontains exatly all suh lj on whih li is diretly dependent.Example 1 Take the objet a and its type A de�ned at the end of setion 3.1, by thede�nition of links, we see that the links of the methods in a are:

L(l1) = La(s) = {l2, l3}
L(l2) = La(1) = ∅
L(l3) = La(λ(x : int)(x + s.l2)) = {l2}whih math the orresponding link spei�ations in type A.4 Objet Type Graphs4.1 De�nitionsTo reveal the struture of objet omponent interdependenies more learly and failitatethe study of objet subtyping and behaviors, we introdue a graphial representation ofobjet types � objet type graphs. We de�ne direted olored graphs �rst.De�nition 2 (Direted Colored Graph) A direted olored graph G is a 6-tuple

(GN , GA, C, sr, tg, c) onsisting of: (1) a set of nodes GN , and a set of ars GA; (2)a olor alphabet C; (3) a soure map sr : GA → GN , and a target map tg : GA → GN ,whih return the soure node and target node of an ar, respetively; and (4) a olor map
c : GN ∪ GA → C, whih returns the olor of a node or an ar.De�nition 3 (Ground Type Graph) A ground type graph is a single-node olored di-reted graph whih is olored by a ground type.De�nition 4 (Funtion Type Graph) A funtion type graph (s,G1, G2)(GN ,GA,C,sr,tg,c)is a direted olored graph onsisting exatly of a starting node s ∈ GN , and two typegraphs G1 and G2, suh that, (1) c(s) =→; (2) there are two ars assoiated with thestarting node s, left ar l ∈ GA and right ar r ∈ GA, suh that c(l) = in, c(r) = out;

Program Veri�ations, Objet Interdependenies, and Objet Types 87
l onnets G1 to s by sr(l) = sG1

, tg(l) = s, and r onnets s to G2 by sr(r) = s,
tg(r) = sG2

, where sG1
and sG2

are the starting nodes of G1 and G2, respetively; (3)
G1 and G2 are disjoint; (4) if there is an ar a ∈ GA with c(a) = rec, then sr(a) = sGi

,
tg(a) = s, c(sGi

) =→, i = 1, 2.De�nition 5 (Objet Type Graph) An objet type graph (s,A,R,L, S)(GN ,GA,C,sr,tg,c)is a direted olored graph onsisting exatly of a starting node s ∈ GN , a set of methodars A ⊆ GA, a set of re-olored ars R ⊆ GA, a set of link ars L ⊆ GA, and a set oftype graphs S, suh that (1) c(s) = self. (2) ∀a ∈ A, sr(a) = s, tg(a) = sF for some typegraph F ∈ S, and c(a) = m for some method label m; c(a) 6= c(b) for a, b ∈ A, a 6= b. (3)
∀r ∈ R, c(r) = rec, tg(r) = s, sr(r) = sF for some F ∈ S, and c(sF) = self. (4) ∀l ∈ L,
sr(l) = sF , tg(l) = sG for some F,G ∈ S, and c(l) = bym for some method label m.Remarks: Direted olored graph is the foundation of graph grammar theory [10, 11,12, 13, 22℄. Objet type graphs are adapted from direted olored graphs. Ground typegraphs are trivial. Funtion type graphs are straightforward. They need to be de�nedbeause an objet type graph may inlude them as subgraphs. An objet type graph isformed by a starting node s and a set S of type graphs with eah F ∈ S being onnetedto s by a method ar that goes from s to F . The starting node s is olored by self and isused to denote the self type. The method interdependenies are spei�ed by ars in L. If
L(m) is the set of links of method m, then for eah l ∈ L(m) there is an ar (olored bybyl) that goes from l to m. Reursive objet types are speially indiated by re-oloredars in R.For the sake of brevity, we drop the subsripts in (s,G1, G2)(GN ,GA,C,sr,tg,c) and
(s,A,R,L, S)(GN ,GA,C,sr,tg,c) whenever possible throughout the paper.4.2 Examples of Objet Type GraphsWe now provide some examples to illustrate the de�nition of objet type graphs.Example 2 In Figure 5, A, B, and C are the type graphs for ground types int, real, and
bool respetively. D is the type graph for funtion type int → int and E is the type graphfor (int → real) → (real → int).

int int

in
out

in
out

in out in out

int real intrealint real bool

A B C D EFigure 5: Examples of ground type graphs and funtion type graphs

88 Cong-Cong XingExample 3 In Figure 6, graph A denotes the objet type [x : int, y : int], where methods xand y are independent of eah other. Graph B denotes the type [x : int, y({x}) : int] where
y depends on x. Note that the diretion of the link ar in B is from x to y, (not from y to
x), signifying the fat that hanges made to method x will a�et method y.

x y

self
s

intint

x y

self
s

intint
byx

A BFigure 6: Examples of objet type graphsExample 4 In Figure 7, graph C represents the objet type µ(t)ι(s)[a : int, b : t, c : s].Method a is of type int; method b is of reursive objet type C. Method c is of the selftype indued by the objet type C. Note the strutural di�erene between the type of band the type of c revealed in the type graph4. Graph D represents the type of a simpli�ed1-d movable point [x = 1,mvx = ς(s :S(D))λ(i : int)(s.x⇐ s.x + i)]. The fats that mvxdepends on x and returns a modi�ed self are indiated by the byx-olored ar and theout-olored ar in D.
a

b

self

selfint

x mvx

self
s

int
byx

A B

c

rec

int
in

out

Figure 7: Examples of objet type graphsExample 5 Two more objet type graphs are shown in Figure 8. They are the types ofsome variations of point objets. Graph A is the type of the objet

x = 1,
m1 = ς(s :S(A))λ(i : int)p
m2 = ς(s :S(A))λ(i : int)s

4This strutural setting, potentially, will allow the type of c to remain as self type and the type of b tobe hanged after some operations on graph C are performed.

Program Veri�ations, Objet Interdependenies, and Objet Types 89where p is some point objet of type A. Graph B is the type of the objet

x = 1
y = 2
d = ς(s :S(B))(s.x + s.y)/2
e1 = ς(s :S(B))λ(p :B)(p.x = s.x ∧ p.y = s.y)
e2 = ς(s :S(B))λ(p :S(B))(p.x = s.x ∧ p.y = s.y)

.

m1 m2

self

A

x

rec

selfint int

int

in
out in

out

byx

self

B

rec

real

intint

inout

in

out
bool boolself

x y

d

e1 e2

byx

byx

byx byy

byy

byy

bym1

Figure 8: Examples of objet type graphs5 Objet Typing/Subtyping Under OTGWe now investigate the issue of typing/subtyping under OTG. We �rst de�ne objet sub-typing through a series of de�nitions and then present the typing/subtyping rules with abrief disussion. Note that OTG is just another way (a graphial way, spei�ally) to rep-resent objet types. There is a natural 1-1 orrespondene between OTG and the normaltextual representations of objet types in TOOL. So the typing rules presented in thissetion naturally apply to objet type graphs. What makes OTG signi�ant is its failita-tion of the formulation of objet subtyping with the presene of links in objet types (asaddressed below).De�nition 6 (Type Graph Premorphism) Let Φ be the set of ground types. Given twotype graphs G = (GN , GA, C, sr, tg, c) and G′ = (G′

N , G′

A, C ′, sr′, tg′, c′), a type graphpremorphism f : G → G′ is a pair of maps (fN : GN → G′

N , fA : GA → G′

A), suh that(1) ∀a ∈ GA, fN (sr(a)) = sr′(fA(a)), fN(tg(a)) = tg′(fA(a)), and c(a) = c′(fA(a)); (2)
∀v ∈ GN , if c(v) ∈ Φ, then c′(fN (v)) ∈ Φ; otherwise c(v) = c′(fN (v)).De�nition 7 (Base, Subbase) Given an objet type graph G = (s,A,R,L, S). The baseof G, denoted by Ba(G), is the graph (s,A, t(A), L), where t(A) = {tg(a) | a ∈ A}.A subbase of G is a subgraph (s,A′, t(A′), L′) of Ba(G), where A′ ⊆ A, L′ ⊆ L, t(A′) =
{tg(a) | a ∈ A′}, and for eah l ∈ L′ there exist a1, a2 ∈ A′ suh that sr(l) = tg(a1) and
tg(l) = tg(a2).

90 Cong-Cong Xing
self

x

y

zu

int

intselfint

int

real

real

in

out

m

n

byx

byz

byy

self

u x

int

self

u
x

int
byx

y

byxbyy

(a) G

byx
self

x

y

zu

int

intself

byx

byz

byybyx

self

(b) Ba(G) (c) D (d) Cl(D)Figure 9: (a) An objet type graph G; (b) The base Ba(G) of G;() A subbase D of G; (d) The losure Cl(D)De�nition 8 (Closure, Closed) The losure of a subbase D = (s,A′, t(A′), L′) of anobjet type graph G = (s,A,R,L, S), denoted by Cl(D), is the union D∪E1∪E2, where (1)
E1 = {l ∈ L | ∃a1, a2 ∈ A′ with tg(a1) = sr(l), tg(a2) = tg(l)}, and (2) E2 = {l, h, a, t(l) |
l, h ∈ L, a ∈ A, a 6∈ A′, tg(l) = sr(h) = tg(a), and ∃a1, a2 ∈ A′ suh that tg(a1) =
sr(l), tg(a2) = tg(h)}. A subbase D is said to be losed if D = Cl(D).De�nition 9 (Covariant, Invariant) Given an objet type graph (s,A,R,L, S). Let t(A) =
{tg(a) | a ∈ A}. For eah v ∈ t(A), if v is not inident with any links, or if v is the targetnode of some links but not the soure node of any links, then v is said to be ovariant;otherwise, v is said to be invariant.De�nition 10 (Objet Subtyping) Given two objet type graphs G = (sG, AG, ∅, LG, SG)and F = (sF , AF , ∅, LF , SF). F <: G if and only if the following onditions are satis�ed: (1)There exists a premorphism f from Ba(G) to Ba(F) suh that f(Ba(G)) = Cl(f(Ba(G))).That is, f(Ba(G)) is losed. (2) For eah node v in f(Ba(G)), let u be its preimage in
Ba(G) under f , Fv ∈ SF be the type graph with v as its starting node, and Gu ∈ SG bethe type graph with u as its starting node. (i) If v is invariant, then Fv

∼= Gu. (ii) If v isovariant, then Fv <: Gu.Remarks: Type graph premorphism is adapted from graph morphism whih is afundamental onept in algebrai graph grammars [13, 10, 22, 11, 12℄. It preserves thediretions and olors of ars and the olors of nodes up to ground types. The base of anobjet type graph singles the method interdependeny information out of the entire objettype graph so that the struture of the method interdependenies an be better studied.The losure of a subbase aptures the omplete behavior of the subbase by inluding, inaddition to all methods and links in the subbase, a set E2 of methods (and assoiatedlinks) outside of the subbase in the following way: for any method l in E2, (1) l dependson some methods inside the subbase, and (2) there exist some methods inside the subbasethat depend on l. An example of base, subbase, and losure is shown in Figure 9. Objetsubtyping is de�ned using the ideas of type graph premorphism, base, subbase, losure, andvariane property. It �rst ensures that the behavior of a subobjet (indiated by methodinterdependenies) is the same as that of a superobjet through the losure requirement.

Program Veri�ations, Objet Interdependenies, and Objet Types 91Then, it uses the variane information of eah method to hek the subtyping feasibility ofeah method type (graph) in a subobjet with its ounterpart in a superobjet5. Note thatin the de�nition of objet subtyping, we only onsider the ase R = ∅ (i.e., no reursiveobjet types). The ase R 6= ∅ requires ompliated graph grammar operations and isbeyond the sope of this paper.The typing/subtyping rules of TOOL are shown in Table 1. The rules that are a�etedby links are (TObj) and (TUpd). Note that in these rules, the set of links omputed fromterms are heked against the set of links spei�ed in types.
∅ � ⋄

(TC∅) Γ � σ x 6∈ dom(Γ)

Γ, x :σ � ⋄
(TCVar) Γ � M : σ x 6∈ dom(Γ)

Γ, x :τ � M : σ
(Tx)

Γ � ⋄

Γ � κ
(TyCons) Γ � σ Γ � τ

Γ � σ → τ
(TyFun)

Γ � σi ∀i ∈ {1, . . . , n}

Γ � ι(t)[li(Li) :σi(t)]ni=1

(TyObj, Li ⊆ {l1, . . . , ln} for eah i)

Γ � ⋄ x :σ ∈ Γ

Γ � x :σ
(TVar) Γ, x :σ � M :τ

Γ � λ(x :σ).M : σ → τ
(TAbs) Γ � M :σ → τ Γ � N :σ

Γ � MN : τ
(TApp)

Γ, s :S(A) � Mi :σi Li = La(Mi) ∀i ∈ {1, . . . , n}

Γ � a : A
(TObj, a = [li = ς(s :S(A))Mi]

n
i=1

A = ι(t)[li(Li) :σi(t)]
n
i=1

)

Γ � M : A j ∈ {1, . . . , n}

Γ � M.lj : σj(A)
(TInv1, A = ι(t)[li(Li) :σi(t)]

n
i=1 = [li(Li) :σi(S(A))]ni=1)

Γ � s : S(A) j ∈ {1, . . . , n}

Γ � s.lj : σj(A)
(TInv2, A = ι(t)[li(Li) :σi(t)]

n
i=1 = [li(Li) :σi(S(A))]ni=1)

Γ � N :A Γ, s :S(A) � M :σi Li = LN (M) i ∈ {1, . . . , n}

Γ � N.li⇐ ς(s :S(A))M : A
(TUpd, A = ι(t)[li(Li) :σi(t)]

n
i=1)

Γ � σ

Γ � σ <: σ
(SRe�) Γ � σ <: τ Γ � τ <: δ

Γ � σ <: δ
(STran) Γ � a :A Γ � A <: B

Γ � a :B
(SSump)

Γ � σ′ <: σ Γ � τ <: τ ′

Γ � σ → τ <: σ′ → τ ′
(SFun)

Γ � GA <: GB

Γ � A <: B
(SObj, GA and GB are the OTGs of A and B respetively

A = ι(t)[li(Li) :σi(t)]
n
i=1, B = ι(t)[l′i(L

′

i) :σ′

i(t)]
n′

i=1

)Table 1: Typing and subtyping rules for TOOLWe would like to emphasize that the purpose of objet type graphs is to failitatethe formulation and reasoning of objet subtyping when method interdependenies areonsidered in objet types. This an be seen in the objet subtyping rule (SObj) wherethe determination of A <: B for objet types A and B depends on whether their objettype graphs GA and GB have a subtyping relationship whih, in turn, an be deided by5Ground subtyping and funtion subtyping whih are involved in objet subtyping are standard as inthe literature.

92 Cong-Cong Xingthe De�nition 10. (De�nition 10 suggests an immediate algorithm for how to ompute
GA <: GB .)6 Veri�ation of the Program ms under OTGWe have shown, in setion 2, that under onventional objet type systems, there is no wayto ode the funtion ms satisfatorily in the sense that we are unable to prove that msperforms to its spei�ation for all permissible arguments. In this setion, we show thatthis problem an be easily resolved under OTG typing/subtyping. That is, we show that
ms an be oded reliably under OTG typing/subtyping and prove that it performs to itsspei�ation in all situations.Given the ode of ms in Figure 3 and under the OTG notation, the type of the point
p1n (whih is also the type of the parameter in the funtion ms) and the type of the point
p′2n are depited as P and Q′

2n in Figure 106. Let f be the premorphism from base Ba(P)to base Ba(Q′

2n), f(Ba(P)) and its losure Cl(f(Ba(P))) are also shown in Figure 10. Bythe OTG objet subtyping de�nition (De�nition 10), we an see that Q′

2n 6<: P beause
f(Ba(P)) 6= Cl(f(Ba(P))) (i.e., f(Ba(P)) is not losed). Hene, p′2n annot be viewedas having type P and ms(p′2n) does not type-hek. The run-time error of ms(p′2n) istherefore prevented by type heking at ompile-time. Hene, the ode of ms in Figure 3is safe under the OTG typing/subtyping.

self

real

real

x
mvx

byx

byx

in

real

out

dist

dist

x y

mvx mvy

byx byy

real

real realself

real real

byx byy

in

out

in

out

byx

P 2nQ’

dist

x

mvx

byx

real

real self

dist

x y

mvx

byx byy

real

real realself

byx

byx

f(Ba(P)) Cl(f(Ba(P)))Figure 10: Resolution of the movable point problem in OTGTo fully revisit of the movable point problem in the ontext of OTG, the type graphsof p1c, p2c, and p2n are depited in Figure 11 as Q1c, Q2c, and Q2n, respetively. We aneasily hek, using De�nition 10, that Q1c <: P , Q2c <: P , and Q2n <: P all hold. Thisshows that the desired exeutions ms(p1c), ms(p2c), and ms(p2n) are all supported byOTG typing/subtyping sheme.From Figure 10 and Figure 11, we see that the type of p′2n and the type of p2n aredi�erent under OTG (as opposed to the same in onventional type systems). The fat thatmethod y depends on method x in p′2n and method y does not depend on method x in
p2n (i.e., p2n and p′2n have di�erent behaviors) is faithfully aptured in their type graphs6For the sake of oniseness, some unimportant links that do not a�et the result of illustration, suhas the link from method dist to method mvx, are not shown in Figure 10.

Program Veri�ations, Objet Interdependenies, and Objet Types 93
self

real

real

x
mvx

byx

byx

in

real

out

dist

dist

x y

mvx mvy

byx byy

real

real realself

real real

byx byy

in
out

in out

dist

x y

mvx mvy

byx byy

real

real realself

real real

byx byy

in

out

in

out

byx

Q Q
1c 2n2c Q

clr

color

color

clr

Figure 11: Types of p1c, p2c, and p2n in OTGas the presene/absene of a link from method x to method y. Indeed, this distintionis neessary in order to prevent run-time errors suh as those aused by ms(p′2n). Thisobservation leads to the following proposition.Proposition 1 Let A be the type of an objet a in whih there is a link between method
x and method y. Let B be the type of an objet b whih is modi�ed from a by deleting thelink between method x and method y. Then A 6= B.Also note that in Figure 10 and Figure 11, we have Q′

2n 6<: Q2n (we an easily verifythis by De�nition 10). This disallowane of subtyping is also neessary in order to statiallyprevent similar run-time errors aused by ms(p′2n). Thus,Proposition 2 Let A and B be as spei�ed in Proposition 1. Then A 6<: B.We now show the orretness of ms in Figure 3 under the OTG typing sheme. Weassume that all arguments (1-d points, 2-d points, . . .) submitted to ms are �orretly�oded. In partiular, if p is an n-dimensional point with oordinates x1, . . . , xn, thenits method dist must have √

x2
1 + · · · + x2

n as the body; and its method mvx must have
λ(i :real)s.x⇐(s.x + i) as the body; how other methods in p are oded is irrelevant to theproof. This is a reasonable assumption, for if p is oded �inorretly� or arbitrarily (say,
p's dist body is √

x2
1 + 4x2

2 + · · · + n2x2
n), then there would be no way to expet what kindof behavior ms an have with p as its argument.To failitate the proof, we rewrite the funtional program ms in Figure 3 equivalentlyinto an imperative one in Figure 12, where a holds the omputation result. We would liketo prove, under the framework of Hoare logi (e.g. [16, 17℄), that the two Hoare triples

(|p.dist > 1 ∧ p :P |)ms(p)(|p.dist > 1 ∧ p :P |)
(|p.dist ≤ 1 ∧ p :P |)ms(p)(|p.dist ≤ 1 ∧ p :P |)are valid for any point p of type P in Figure 10. The �rst triple spei�es that ms keepsa olored point in the olored point area after moving it. The seond triple spei�es that

ms keeps a non-olored point in the non-olored point area after moving it. Before provingthe validity of the triples, we prove a lemma �rst. Let olored points and non-oloredpoints be de�ned as in setion 2, we an show that

94 Cong-Cong Xing
ms

def
= fun(p : P) {
real a;if (p.dist > 1){

p.mvx(δ); // δ > 0
a = sin-1(1/p.dist);}else {
p.mvx(−1

2p.x);
a = sin-1(p.dist);}}Figure 12: The imperative version of the program ms .Lemma 1 Given an n-dimensional point p, if p is a non-olored point and is of type Pin Figure 10, then after being moved, along the x-axis and towards the origin, half of theprojetion of the distane from the origin to p's urrent position over the x-axis, p is stillin the non-olored point area in the spae.Proof: Without loss of generality, we assume that the oordinates of p are x1, x2, . . . , xn(n > 1) with x1 being the x-oordinate, x2 being the y-oordinate, Sine p is a non-olored point, we have √

x2
1 + · · · + x2

n ≤ 1. After p is moved as spei�ed, its x-oordinatewould be hanged to 1
2x1. Sine p is n-dimensional and n > 1, the atual type of p mustbe a subtype of P . By the de�nition of OTG subtyping (De�nition 10), we know that the

x-oordinate hange of p will not a�et any other oordinates x2, · · · , xn of p beause all
x2, · · · , xn our in the method dist of p and dist appears in type P 7. Thus, x2, . . . , xnall retain their old values after p's move. Therefore, the distane from the origin to thenew position of p is √

(1

2
x1)2 + x2

2
+ · · · + x2

n <
√

x2

1
+ x2

2
+ · · · + x2

n ≤ 1, indiating the p is stillin the non-olored point area. 2The validity of the seond Hoare triple is given in Theorem 1 below. The proof of the�rst Hoare triple is similar and omitted.Theorem 1 Given the program ms in Figure 12, the Hoare triple
(|p.dist ≤ 1 ∧ p :P |)ms(p)(|p.dist ≤ 1 ∧ p :P |)is valid.Proof: The proof, shown in Figure 13, is an appliation of the standard imperative programveri�ation rules (see e.g. [17℄). In Figure 13, p.d and p.m stand for p.dist and p.mvx , and

A, B, C, D, E, F , G stand for the following triples respetively:7Here is a subtle point indiated by the OTG objet subtyping: if any of the oordinates x2, . . . , xn,say xi, does not our in method dist (or in any other method inluded in type P), then we allow xi bea�eted by the hanges of x1 while requiring that the type of p is a subtype of type P .

Program Veri�ations, Objet Interdependenies, and Objet Types 95
(|p.d ≤ 1 ∧ p : P |){p.m(−1

2p.x)}(|p.d ≤ 1 ∧ p : P |),
(|p.d ≤ 1 ∧ p : P |){a = sin-1(p.d)}(|p.d ≤ 1 ∧ p : P |),
(| ⊥ |){p.m(δ); a = sin-1(1/p.d)}(|p.d ≤ 1 ∧ p : P |),
(|p.d ≤ 1 ∧ p : P |){p.m(−1

2p.x); a = sin-1(p.d)}(|p.d ≤ 1 ∧ p : P |),
(|p.d ≤ 1 ∧ p : P ∧ p.d > 1|){p.m(δ); a = sin-1(1/p.d)}(|p.d ≤ 1 ∧ p : P |),
(|p.d ≤ 1 ∧ p : P ∧ p.d ≤ 1|){p.m(−1

2p.x); a = sin-1(p.d)}(|p.d ≤ 1 ∧ p : P |),
(|p.d ≤ 1 ∧ p : P |)ms(p)(|p.d ≤ 1 ∧ p : P |).The validity of triple A on the top of the proof tree is provided by Lemma 1. 2

C

E
(impliation) A

(Lemma 1)
B
(assignment)

D
(omposition)

F
(impliation)

G
(if-statement)Figure 13: The proof of ms's property7 Conlusion and Future WorkTyping is an e�ient means in program veri�ations. Objet omponent interdependenyinformation is ritial in determining and prediting objet behaviors and in shaping objettypes. If this information is not aptured in objet typing, as is the ase in onventionalobjet type systems, then a statially well-typed program may go wrong at run-time ausingrun-time errors and program veri�ation troubles. We proposed objet type graphs (OTG)as an initial treatment for handling objet omponent interdependenies in objet typingand program veri�ations. We have seen that due to OTG's ability of revealing moreinformation about objet behaviors,

• Programs that go wrong at run-time in onventional objet type systems an bee�etively deteted at ompile-time under OTG typing/subtyping.
• Program veri�ations that annot be done with onventional objet type systems anbe easily arried out with the support of OTG typing/subtyping.This demonstrates that OTG is a safer typing sheme than onventional ones, andprovides a valuable support for OOP program veri�ations. The following issues are ofimmediate interests for future work:
• Devise a link omputation algorithm and assess its omplexity.
• Prove/disprove that the standard properties of type systems, suh as subjet redu-tion and soundness, hold under OTG.
• As far as applying the idea of OTG to pratial objet-oriented languages is on-erned, we believe that a diret approah would be to adapt OCaml [1℄ by modifyingits type for lasses. In�uened by OOP theory researh, Oaml, unlike other objet-oriented languages (e.g. Java) where lasses are the sole type of objets, gives a type

96 Cong-Cong Xingfor eah of its lasses. In a sense, the type of a lass in OCaml is the (more abstrat)type of the objet generated by that lass. This is a typial ase where pratie ben-e�ts from theory, and it would be very interesting to keep extending OCaml alongthis line.Referenes[1℄ http://aml.inria.fr/oaml/. 2007.[2℄ M. Abadi and L. Cardelli. A Theory of Objets. Springer-Verlag, New York, 1996.[3℄ V. Bono, M. Bugliesi, M. Dezani-Cianaglini, and L. Liquori. Subtyping for Extensible,Inompete objets. Fundamenta Informatiae, 38(4):325�364, 1999.[4℄ V. Bono and L. Liquori. A subtyping for the Fisher-Honsell-Mithell lambda alulus ofobjets. In Pro. of International Conferene of Computer Siene Logi, number 933 inLNCS, pages 16�30. 1995.[5℄ K. Brue. A paradigmati objet-oriented programming language: Design, stati typing andsemantis. Journal of Funtional Programming, 4(2):127�206, 1994.[6℄ K. Brue. Foundations of Objet-Oriented Languages. MIT Press, 2002.[7℄ K. Brue, A. Shuett, R. van Gent, and A. Fieh. Polytoil: A type-safe polymorphi objet-oriented language. ACM Transations on Programming Languages and Systems, 25(2):225�290, 2003.[8℄ W. Cook, W. Hill, and P. Canning. Inheritane is not subtyping. In Proeedings of the 17theAnnual ACM Symposium on Priniples of Programming Languages, pages 125�135, 1990.[9℄ R. Deline and M. Fahndrih. Typestates for objets. In ECOOP 2004, 2004.[10℄ H. Ehrig. Introdution to the algebrai theory of graph grammars. In Graph-Grammars andTheir Appliations to Computer Siene and Biology, volume 73 of Leture Notes in ComputerSiene, pages 1�69. Springer-Verlag, 1978.[11℄ H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook of Graph Grammarsand Computing by Graph Transformation, volume 2. World Sienti�, 1999.[12℄ H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors. Handbook of GraphGrammars and Computing by Graph Transformation, volume 3. World Sienti�, 1999.[13℄ H. Ehrig, M. Pfender, and H. J. Shneider. Graph grammars: An algebrai approah. InIEEE Conferene of Automata and Swithing Theory, pages 167�180, 1973.[14℄ K. Fisher, F. Honsell, and J. Mithell. A lambda alulus of objets and method speialization.Nodi Journal of Computing, 1:3�37, 1994.[15℄ J. Hikey. Introdution to OCaml, http://aml.inria.fr/tutorials-eng.html. 2002.[16℄ C. A. R. Hoare. An axiomati basis for omputer programming. Communiations of the ACM,12:576�580, 1969.[17℄ M. Huth and M. Ryan. Logi in Computer Siene. Cambridge University Press, 2nd edition,2004.[18℄ L. Liquori. On objet extension. In ECOOP'98 Objet-oriented Programming, number 1445in Leture Notes in Computer Siene, pages 498�522. Springer�Verlag, 1998.

Program Veri�ations, Objet Interdependenies, and Objet Types 97[19℄ L. Liquori and G. Castagna. A Typed Lambda Calulus of Objets. Number 1179 in LetureNotes in Computer Siene, pages 129�141. Springer�Verlag, 1996.[20℄ B. Liskov and J. Wing. A Behavioral Notion of Subtyping. ACM Transations on Program-ming Languages and Systems, 16(6):1811�1841, 1994.[21℄ O. L. Madsen. Towards Integration of State Mahines and Objet-Oriented Languages. InTehnology of Objet-Oriented Languages and Systems (TOOLS Europe'99), 1999.[22℄ G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph Transforma-tion, volume 1. World Sienti�, 1997.

