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Different approaches to phase restoration 
of distant complex optical fields
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The paper presents principal approaches to diagnosing the structure forming skeleton of the complex
optical field. An analysis of optical field singularity algorithms depending on intensity discretiza-
tion and image resolution has been carried out. An optimal approach is chosen, which allows to
bring much closer the solution of the phase problem of localization of speckle-field special points.
A possible approach to diagnosing the signs of zero amplitudes has been offered.
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1. Introduction
Great attention has been paid to solving the phase problem in optics, particularly to
tackling the problems of diagnosing the structure of objects in microscopy, astrophys-
ics and biomedicine [1–4]. The phase problem involves restoring spatial (coordinate)
phase distribution in complex fields of the speckle-field type [5, 6]. The state of these
problems, the achievements and prospects in this field are set out in a number of re-
views [7–9] and original publications [10–12]. A separate new and promising line of
solving the phase task, i.e., finding spatial (coordinate) phase distribution in complex
fields of the speckle type, is offered by singular optics. The approaches [13] in the frame-
work of singular optics are based on the concepts of:

– the so-called field “skeleton” with “reference” structure-forming points of the field
amplitude zeros;

– the visualization of the sign principal in the coordinate (spatial) distribution of
the wave dislocation, i.e. of the field amplitude zeros;

– the interconnection of intensity spatial distribution and field phase distribution.
This paper deals with the elaboration of these concepts and presents different meth-

ods for tackling the problem of diagnosing spatial (coordinate) phase distribution using
registered intensity distribution in complex optical fields. The results of the computer
simulation of the experiment, fulfilled within the framework of scalar approximation,
form the basis of the investigation. The algorithm of solving the phase problem in
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the approximation of scalar coherent optical fields can be divided into several stages.
The first one is to obtain complex amplitude-phase transformations in fields, which are
generally called developed speckle fields with statistically distributed zeros of the field
amplitude (phase dislocations). The second one is a search for optimal algorithms for
diagnosing the zeros of speckle fields (of complex spatial intensity distribution), reg-
istered with the help of a CCD camera. The third one is searching for approaches and
methods of restoring the phase coordinate distribution of the field by defining the prin-
ciples and algorithm, which can make it possible to restore the phase grid (the coor-
dinate phase distribution grid) in a complex speckle field in a justified optimal way. 

As a rule, phase problems of the above described type are solved rather successfully
in the concrete case of using a reference field (i.e., holography methods) [14–16].
Holographic techniques are among the most popular methods that have been proposed
to measure the phase of the optical wave. While holographic techniques have been
successfully applied in certain areas of optical imaging, they are generally difficult to
implement in practice [17]. In our case of remote diagnosing the possibility of using
a concrete reference field is excluded. 

The existing methods of phase retrieval rely on all kinds of a priori information
about the signal, such as positivity, atomicity, support constraints, real-valuedness, and
so on [18–20]. Direct methods are limited in their applicability to small-scale problems
due to their large computational complexity. There is a number of mathematical and
experimental approaches which bring us closer to tackling the problem of restoring
the optical field distribution phase, including fully coherent or practically coherent
sources. But neither of the existing approaches allows to reproduce the phase distri-
bution of the distant complex speckle-field.

Hence, the development of algorithms for signal restorations using magnitude
measurements is still a very active field of research. The given work offers a new ap-
proach to restoring the phase of an optical field with complex intensity distribution,
including zero amplitudes. 

2. Algorithms of phase distribution 
and singularity line reconstruction

Let the CCD camera enable us to change the spatial intensity picture, which can be
presented by a set of pixels. The figure presents a set of pixels. In the general case,
each of the pixels under consideration is surrounded by eight other neighbouring pixels
(Fig. 1).

The arrows in Fig. 1 point the direction of the gradient vectors of intensity. They
are defined at each point by the equation

(1)

where i, j – the unit vectors along the x- and the y-axis, respectively, I – the intensity.

grad I( ) ∂I
∂x

----------- i ∂I
∂y

----------- j+=



Different approaches to phase restoration... 141

If a standard camera is used, the intensity of each pixel varies from 0 to 255, i.e.
it can take 256 different values. Three possible algorithms of defining the localization
places of the field amplitude zeros were investigated. 

3. Possible approximations of optical field skeleton restoration

The first approach to finding the optical field phase singularities is based on the as-
sumption: the point under review is marked as a potential point of field phase singu-
larity if there are two intensity gradient vectors in the vicinity of the point and the angle
between them is 180°, i.e., two gradient vectors are oppositely directed. The effect of
changing the image resolution (of the pixel size) upon the potentialities of diagnosing
the points of amplitude zeros (singularities) is considered. Pictures of the size of
200×200, 600×600 pixels were studied. The influence of intensity discretizations
(the number of possible intensity values for each pixel) is also investigated. The num-
ber of values is 256 (a standard camera), 500 and 1000. Corresponding pictures are shown
in Fig. 2. The white and black lines on them are the zero lines of the real and imaginary
part of the field complex amplitude, which have been obtained by calculation. The in-
tersection points of these lines correspond to the field singularity (a well-known classic
diagnostic indicator). The areas marked in bold type and points marked by triangles
have been obtained using the offered algorithm.

To understand better the results obtained by restoring phase singularities, proposed
by the algorithm, the statistics of exactness of optical field skeleton restoration is
shown in Fig. 3.

The given algorithm can be useful in searching for amplitude zero points in the field,
but only if intensity discretization is absent. In this case many “excessive” points are
diagnosed.

At discretization the possibility to find singularity grows worse, particularly with
the increase of the size of pictures. The accuracy of restoring singularity points essen-
tially depends on the size of pictures and the discretization value (Fig. 4). In general,
being not high, the given algorithm cannot be used as an estimating one for constructing

Fig. 1. Schematic sketch of a set of pixels.
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the optical field skeleton. The opportunity to find singularity worsens, particularly with
the increase both of the size of pictures and the discretization value (Fig. 3).

The second step in solving the phase field restoring problem is searching for points
with a zero intensity, i.e., searching for pixels informing that the intensity in the given
point is equal to zero. The effect caused by the change in the image resolution (the values
are in pixels) was considered. The pictures with the size of 200×200, 600×600 with
different intensity discretization – 256 (a standard camera), 500, 1000 were considered.
This algorithm makes it possible to search for fields containing singularity. The algo-
rithm is practically insensitive to the size of the image, but dependent on the discreti-
zation. The increase in the discretization makes it possible to predict a greater number
of singular points. But in this case, regions without singularity are found as well. It is
quite possible to use it in combination with other algorithms.

The possibility of obtaining more sensitive and tolerant methods for tacking
the problem of diagnosing structure-forming points in a complex speckle-field was
considered at the next stage. The productivity and efficiency of using the procedure
of smoothing was investigated.

The third step considered here is a logical continuation of the first approach, and
is the most promising one of all approaches discussed earlier. Two alternative proce-
dures of smoothing – “cross” smoothing by two points and “circle” smoothing by two
points were proposed (Fig. 4). 

The point under consideration was marked off if there were two gradient vectors
in the vicinity with an angle of 180° between them and the point intensity was zero.
The procedure of “smoothing” was performed in addition. The effect of changing
the image resolution was studied (the sizes are given in pixels). The pictures with
the size of 200×200 and 600×600 were chosen. The effect of the intensity discretion
(the number of possible intensity values for each pixel) was studied as well. The num-
ber of values was 256 (standard camera) and 1000. The obtained results for the pictures
with the size of 600×600 are shown in Fig. 5.
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Fig. 3. The accuracy of singularity points restoration. 
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The white and black lines on them are the zero lines of the real and imaginary parts
of the complex amplitude. Their intersection points are the points of singularity.
The areas marked in bold type and points marked by triangles are defined by the pro-
posed algorithm. Smoothing provides greater scope for finding “zero points” for dis-
crete image, especially in the case of “circle” smoothing by 10 points.

Optimum smoothing parameters depend upon the half-width of the image correla-
tion function (in pixels) and the intensity discretization of the image pixels. In the given

2 px 2 px

a b

Fig. 4. “Cross” (a) and “circle” (b) smoothing by two points. The black point is the point for which
the smoothing is carried out. The grey points are the points which take part in the process of smoothing.
The result is the arithmetical mean of the sum of intensities of all marked off points.

Without smoothing “Cross” smoothing by 10 points “Circle” smoothing by 10 points

Fig. 5. Identification of singularities for different smoothing processes: the size of images 600×600 and
intensity discretization 256 (a) and the size of images 600×600 and intensity discretization 1000 (b).
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situation, the probability of faultless diagnostics of the image pixel intensities can be
82% (Fig. 6). 

However the question of defining the sign of the field amplitude zero remains open
and, correspondingly, the question of determining the trajectory of phase lines. In con-
nection with this, the following algorithm was proposed.

4. Approximations by bicubic splines
The intensity distribution image was smoothed and interpolated by bicubic splines [21].
It is a standard independent method, which makes it possible to interpolate the digital
image. The given splines must satisfy several conditions:

– equality of calculated values at nodal points,
– continuity of partial derivatives of the first order,
– continuity of mixed derivatives of the second order.
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Fig. 6. Exactness of singularity reconstruction for images with the size of 200×200 (a) and 600×600 (b)
at different intensity discretization and different smoothing procedures.
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The spline coefficients are calculated. It permits to perform interpolation. Intensity
values in each pixel of the initial image are chosen as nodal points. Then lines are con-
structed: dI /dx and dI /dy, where I  is the intensity. The intersection points of these lines
are singularity points, maxima and saddle points [22]. The effect of the image resolu-
tion change (sizes in pixels) upon the potentiality and exactness of diagnosing the lo-
calization places of intensity extrema and field phase singularity has been considered.
The sizes of pictures are 200×200 and 600×600. The influence of the intensity discre-
tization (the number of possible intensity values for each pixel) upon the feasibility of
diagnosing the same field parameters has been investigated as well. The number of
intensity values is 256 (a standard camera), 1000 and 10000 (the maximum possible,
i.e. the practically continuous one). Three different intensity distributions have been
considered (Fig. 7). 

The exactness of reconstructing singularity points using the given algorithm for
different sizes of images is shown in Fig. 8.

The interpolation of bicubic splines ensures about 90% probability for zero ampli-
tude reconstruction. It allows to assert that it is advisable to use precisely this algorithm
for optical field phase retrieval.

A distinguished feature of the lines dI /dx = 0 and dI /dy = 0 is their connection with
the field “skeleton”. The physical meaning of the given lines is the following: they form
the intensity gradient if the gradient components x and y are equal to 0. A schematic
sketch of it is offered in Fig. 9.

Figure 10 shows that the given lines are not invariant with respect to the system of
coordinates. In other words, the position of the given lines will change with the rotation
of the figure about the system of coordinates. At the same time, the points formed by
the intersection of such lines, i.e., the ones which meet the following conditions: 

(2)

create a system of points invariant to the change of the system of coordinates. The given
invariance has a quite definite physical meaning. The thing is that special points in

Variant 1 Variant 2 Variant 3

Fig. 7. Starting intensities. 
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Fig. 8. Exactness of singularity reconstruction for images with the size of 200×200 (a) and 600×600 (b).

Fig. 9. Schematic representation of “zero” derivatives line.
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the intensity distribution, i.e., focal maxima, local minima (including “singular”
points) and saddle points are reference points of the structure forming skeleton of
the field under review. The position of these points does not depend upon the position
of the figure relative the coordinate system. Condition (2) is a criterion for defining
similar “special” points in mathematics. 

Correspondingly, the line system dI /dx = 0 and dI /dy = 0 is connected with the
“singular” points and the field skeleton. An example of figure rotation by 0°, 45°, 90°
is shown in Fig. 10.

The considered behavior of structure formation in the irradiating optical field, has
a quite definite real “life” analogy if a coaxial plane reference wave with a smoothly
changing phase is used for diagnosing complex speckle fields. At the same time we
have to state that the diagnostics of the zero signs of the field amplitude and the signs
of vortices still present some difficulties. Originally the sign principle was proposed
by FREUND and SHVARTSMAN [16]. It was assumed that when moving along the con-
nective line from one singularity to the other, the second singularity “changes” its sign
after meeting with the “saddle point”. It is absolutely clear that the availability of one

Fig.10. An example of figure rotation by 0° (a), 45° (b), 90° (c) and the behavior of lines of “zero”
derivatives.

a b c

Fig. 11. Examples of intensity distribution and locali-
zation of “reference” points by the bicubic splines algo-
rithm: image size 600×600, without discretization.
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saddle point between singularities assures the difference of their signs. The cases are
marked off by white ovals (Fig. 11). Correspondingly, in this case, which is confirmed
by the results of the simulation, it can be stated with confidence that: i) the sign of one
arbitrary phase singularity automatically determines the signs of all other wave field
singularities, ii) if the sign of one field singularity is changed. the signs of all other
singularities change automatically. It is obtained from the sign principle: if an even
number of saddle points is found along the line, the singularity sign will be identical
to that of the point from which we began. If the number of the saddle points is not even,
the sign will be opposite.

The figures below illustrate both lines, singularities (small white squares and cir-
culars – the form of the point corresponds to the singularity sign) and saddle points
(marked off by white triangles) (Fig. 11).

But the results of simulation show that there can be situations when the sign prin-
ciple and the conclusions following immediately from it fail. It is observed when mov-
ing along the line marked off by white arrows (the presence of an even number of saddle
points between singularities of different signs). There are situations when it is impos-
sible to diagnose the saddle point because there are cases when it does not exist at all
(as it is in the case marked off by the big white square, Fig. 11.

5. Conclusions
The analysis of different approaches to restoring phase distribution of the complex
optical field allows to single out the best method for speckle-field skeleton reconstruc-
tion. The suggested method allows not only to diagnose singularity and saddle points,
but to define the signs of singularity as well. An optimal skeleton modeling algorithm
of a random optical field with all possible intensity values has been proposed.
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