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Dielectric layer photonic crystal filter structures in waveguide are optimized by the quadratic
response surface methodology. The optimization model of the filter is established on the basis of
the analysis which is conducted with the aid of the response surface methodology. The model is
solved using sequential quadratic programming and the optimal parameters are obtained. Examples
demonstrate it is effective. 
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1. Introduction

Photonic crystals are periodic arrays of dielectric composites that exhibit photonic
band gaps. The electromagnetic waves in a certain frequency range cannot propagate
in photonic crystals [1]. Due to the stop-band property of photonic crystals, they have
attracted considerable scientific interests in the design of this filter during the past dec-
ades [2]. The dielectric layer photonic crystal structures in waveguide were originally
developed in optical frequencies, and they are scalable to microwave and millimetre
-wave frequencies [3, 4]. In this paper, the optimal design of a dielectric layer photonic
crystal filter using the response surface methodology (RSM) is described.

In the design of a one-dimensional photonic crystal filter, the common optimization
methods are the following: simulated annealing (SA) [5], genetic algorithm (GA) [6],
particle swarm optimization (PSO) and so on. SA can solve the problem of a local min-
imum value in the computation process, but the time consumption increases exponen-
tially with an increase in the number of variables and this method is always used for
a simple system analysis [7]. Both GA and PSO are similar in a sense that these two
techniques are population-based search methods and they search for the optimal solu-
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tion by updating generations [8]. However, GA has complex evolution operators such
as crossover and mutation, and the convergence is slow when approaching the opti-
mum. Compared to GA, the advantages of PSO are that PSO is easy to implement and
has few parameters to adjust, but it has no system of analysis methods and mathemat-
ical basis, and an application range is small [9]. 

The RSM stemmed from experimental design and was later introduced into numer-
ical simulations in reliability assessment of complex multivariable systems [10, 11].
The basic idea of RSM is to approximate the actual state function, which may be im-
plicit and/or very time-consuming to evaluate, with the so-called response surface
function that is easier to apply to the complex problem, and the response surfaces gen-
erally take a quadratic form. For further reading about the RSM, see [12]. In contrast
with other optimization methods, RSM is mainly used for statistical model building
and location of maxima. To construct an approximate model with RSM, no sensitivity
analysis was required, thus it is applicable for problems with sensitivity difficulty. Re-
sponse surface construction involved no information inside the structural analysis pro-
cedure, hence it can be applied to a variety of problems and their mixture. 

In this paper, the optimization model of the filter is established first. Then it is dealt
with RSM. At last, the model is solved by using sequence quadratic programming and
the optimal parameters are obtained. Examples show its precision and efficiency. 

2. Bring forward the control model

Dielectric layer photonic crystal filter structure in waveguide is shown in Fig. 1. It is
a periodic dielectric structure designed to have photonic band gaps. The periodic length
is a, the dielectric thickness is d and the relative permittivity of the dielectric is εr. They
are the three major factors in determining the stop-band characteristics of the wave-
guide dielectric layer photonic crystal structures [13]. In this study we aim at optimiz-
ing a, d and εr to control the stop-band characteristics of the dielectric layer photonic
crystal filter. 

d a

Dielectric Air

Fig. 1. A model of dielectric layer photonic crystal filter structure in a waveguide.
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Because the waveguide dielectric layer photonic crystal structure has a stop-band
characteristics, it can be used as a stop-band filter. The smaller is the transmission co-
efficient in a stop-band is and the larger transmission coefficient beyond a stop-band
is, the better are the properties of the filter. When the width of the stop-band is fixed,
we hope the area surrounded by the transmission coefficient curve and horizontal axis
(frequency axis) should be maximum. Thus the control model is established as:

(1)

where the periodic length a, dielectric thickness d, relative permittivity εr of the die-
lectric are the design variables; f2 and f3 are the lower and upper bound of the stop-band,
f1 is the lower bound of the concerned band on the left of the stop-band, f4 is the upper
bound of the concerned band on the right of the stop-band. Define Asb as a negative of
transmission quantity at the region between f2 and f3. The larger is Asb, the smaller
transmission quantity is. Similarly, AL and AR are negatives of transmission quantities
at corresponding regions. Parameters TL and TR are permitted maximum of transmis-
sion quantity negative at corresponding regions. Parameters       are
the lower and upper bound of the design variables (a, d, εr), respectively. Parameter k
is a positive number less than 1 because d is less than a. 

Due to a strong nonlinear characteristics of the problem, it is very difficult to
deduce an explicit expression of the objective function Asb with design variables a, d
and εr. Fortunately, we can modify the original function Eq. (1) to an approximate one
and make the optimization based on the approximate expression. In this study, such
approximation was carried out by the RSM.

3. Response surface methodology

3.1. Function fitting

For the objective function, the response surface generally takes a quadratic polynomi-
als form. Higher order polynomials generally are not used for a conceptual reason as
well as for a computational one. In this paper, we use a quadratic form containing
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the crossing terms. Considering the full quadratic polynomial form, the response esti-
mated equation for three variable designing is given by: 

(2)

where β0, β1, ..., β9 are 10 coefficients to be determined, and x1, x2, x3 represent a, d
and εr , respectively in this paper.

In order to determine all betas, we should select m (m ≥ 10) experimental points.
Putting the coordinates of m experimental points into Eq. (2), we can get m estimated
response values

(3)

where xi1, xi2 and xi3 represent a, d and εr of the i-th experimental point, respectively.
In fact, we can also get actual values of m experimental points, represented by yi

(i = 1, ..., m).
Define error ε = (ε1, ε2, ..., εm)T between the actual and the estimated responses, 

i = 1, ..., m (4)

Using the least square technique, and minimizing the residual error measured by the sum
of square deviations between the actual and the estimated responses, we have

(5)

Let

j = 1, ..., 9 (6)

Equation (6) is a system of 10 linear equations with 10 unknowns. Solving Eq. (6), we
can find all betas and obtain the quadratic response function:

(7)

Equation (7) is the actual quadratic response function and β0, β1, ..., β9 are determined.

3.2. Move limits and normalized variables

The sequential quadratic programming is used to obtain the optimum. In the optimi-
zation process, suppose  (l = 1, 2, 3) is the present designed point of l-th variable
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in v-th iteration, and specify artificially a step size  for l-th variable. The expression
of move limits is 

l = 1, 2, 3 (8)

where  and  represent the upper and lower bound, respectively. The interval
of l-th designed variable xl is [ , ] in v-th iteration.

Furthermore, to improve numerical stability, it is a good practice to scale all var-
iables so that each variable changes in the range [–1, 1] [14]. Let ζl, l = 1, 2, 3, represent
the normalized variables. The transformation formula is as follows [15]: 

l = 1, 2, 3 (9)

After the optimization, we can return to initial design variables and get their value
by the following transformation:

l = 1, 2, 3 (10)

3.3. The selection of experimental points 

How to select the experimental points? The selection of points in the designing space
where the response should be evaluated is commonly called the design of experiments.
The choice of the experimental design can have a large influence on the accuracy of
the approximation and the cost of constructing the response surface. For quadratic re-
sponse models, the central composite design (CCD) is an attractive alternative [16].
There are 15 experimental points in CCD method for three designing variables, where
8 points are at vertices of a quadrilateral, 6 are along the three symmetry axis, and one
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Fig. 2. Design of experiments for objective (a) and constraint (b) response surface.
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is at the centre. Figure 2a shows an example of CCD for the objective response surface.
In the paper, this method is used to choose the experimental design. This means that
15 experiment points (m = 15) are chosen to determine the value of betas. After three
designed variables are normalized, in terms of the coordinates the corners of the cube
are (–1, –1, –1), (1, –1, –1), (1, 1, –1), (–1, 1, –1), (–1, –1, 1), (1, –1, 1), (1, 1, 1),
(–1, 1, 1); the centre point is (0, 0, 0). According to [10], the distance between the axial
point and the centre point is 1.215, so the axial points are at (–1.215, 0, 0), (1.215, 0, 0),
(0, –1.215, 0), (0, 1.215, 0), (0, 0, –1.215), (0, 0, 1.215).

For constraint functions, the response surfaces are constructed at the same value
of the selected designing parameters. In this paper, the number of the selection of points
for the constraint response is 7 for three variables. Of which, 6 are symmetrical distri-
bution on the axis and one is at the centre. Figure 2b shows an example of design of
experiments for the constraint response surface. 

4. The control model used for solving

First, change the maximum problem into an objective minimization problem. Let the new
objective function

G = –Asb (11)

Then, based on the above discussion, the control model is converted into a sequential
quadratic programming problem. It is stated as:

(12)

where x = (a, d, εr)
T, H, g, AL, BL, AR, BR are obtained by RSM to deal with the objective

function and the constraint functions, Eq. (12) is a standard quadratic programming
problem. The sequential quadratic programming is used to solve the model.
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5. Numerical results

Numerical example 1: design a dielectric layer photonic crystal filter as shown in
Fig. 1. The centre frequency stop-band of the filter is 6 GHz and the bandwidth of
the filter is 2 GHz. The width and height of the waveguide are 57 and 23 mm, respec-
tively. Let the number of waveguide period be 9 and f1 = 3 GHz, f2 = 5 GHz,
f3 = 7 GHz, f4 = 9 GHz, TL = TR = 2.5, = 0.002 mm, = 100 mm, = 0.001 mm,

= 100 mm, = 1.1, = 10, and k = 0.9. The initial design variables are a = 20 mm,
d = 15 mm and εr = 2.25.

Figure 3a gives a curve of the objective function varying with the iteration number
obtained by RSM. It is clearly seen that, at the beginning, the value of the objective
function G decreases rapidly, and after 8 iterations the value obtained by RSM keeps
constant at about –62 dB·s. With the RSM, we obtain a, d and εr which are 22.2 mm,
6.7 mm and 2.8, respectively, after 16 iterations. Figure 3b gives the curves of the de-
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Fig. 3. The optimization process and results for example 1. Object function versus iteration number (a).
Design variables versus iteration numbers (b). Stop-band characteristics before optimization and after
optimization (c).
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sign variable versus iteration numbers. From Figs. 3a and 3b we can see that the opti-
mization process is convergent. Stop-band characteristics before optimization and after
optimization are given in Fig. 3c. It is obvious that, before optimization, the stop-band
is not deep and wide, and the minimization of the transmission coefficient is –14.3 dB.
After optimization, the centre frequency stop-band of this filter is 6 GHz and the width
of band is 2 GHz, the minimum of the transmission coefficient is nearly –38.9 dB,
the depth of the stop-band is over two times deeper that the non-optimized stop-band.
The optimal design is carried out.

Numerical example 2: as in the case of example 1, the stop-band centre frequency
of the filter is designed at 6 GHz and the width of the band is 2 GHz. All data in these
two examples are the same except the initial design variables. Here we choose the in-
itial design variables at a = 25 mm, d = 12 mm and εr = 1.5. 

Figures 4a and 4b give the curves of the objective function and the design variables
varying with the iteration number respectively. We can get from Figs. 4a and 4b that
the objective functional value is convergent at about –62 dB·s, and after 20 iterations
a, d and εr are about 22.2 mm, 6.7 mm and 2.8, respectively. The optimal result is con-
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Fig. 4. The optimization process and results for example 2. Object function versus iteration number (a).
Design variables versus iteration numbers (b). Stop-band characteristics before optimization and after
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sistent with the result of example 1, which demonstrates that the optimization process
is independent of the initial design variables and the method in this paper is stable.
Stop-band characteristics before optimization and after optimization are given in Fig. 4c.
We can get from Fig. 4c that the stop-band centre frequency of this filter is 6 GHz be-
fore optimization, but the stop-band is not deep and wide. Similarly, the centre fre-
quency is still 6 GHz after optimization, but the stop-band is deep and the width of
band is 2 GHz, which achieves the desired objectives.

Numerical example 3: change the bandwidth of the filter in above two examples.
The centre frequency stop-band of this filter is designed at 6 GHz and the width of
band is 1.4 GHz. The dimension of the waveguide is the same as the one in these ex-
amples. Let f1 = 3.3 GHz, f2 = 5.3 GHz, f3 = 6.7 GHz, f4 = 8.7 GHz, TL = TR = 1, =
= 0.002 mm, = 100 mm, = 0.001 mm, = 100 mm, = 1.1, = 10, and
k = 0.9. The initial design variables are a = 20 mm, d = 15 mm and εr = 2.25.

Figures 5a and 5b give the optimization process and result of 20 iterations. After
20 iterations, the objective functional value keeps constant at about –21.5 dB·s, where
a, d and εr are about 23.8 mm, 9.0 mm and 1.8, respectively. Stop-band characteristics
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Fig. 5. The optimization process and results for example 3. Object function versus iteration number (a).
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before optimization and after optimization are given in Fig. 5c. Figure 5c shows that
the centre frequency stop-band of this filter is 6 GHz and the width of band is 1.4 GHz,
indicating that the optimization process is effective. We can use RSM to design dielec-
tric layer photonic crystal filters with different bandwidth and centre frequency stop
-band. If the dielectric material is determined in practical applications, i.e, the dielectric
constant εr is known, we just need to optimize periodic length a and dielectric thick-
ness d. However, in this paper all the three design variables are optimized by RSM,
and the suitable dielectric material and dimension for assembling the filter can be se-
lected according to the optimization results. 

6. Conclusion

The RSM was first used to optimize the dielectric layer photonic crystal filter structures
in waveguide. The objective function is transmission quantity. After the optimization,
the value of the objective function is much less than that before the optimization.
The optimization results demonstrate that: 1) Due to the fact that no sensitivity analysis
is required, we can apply RSM to optimize the dielectric layer photonic crystal filter.
2) The optimization process is convergent, which is obviously shown in Figs. 3a
and 3b. 3) The numerical example 2 shows that the optimization process is independent
of the initial design variables, indicating that RSM is a stable algorithm for filter op-
timization. 4) It is clearly seen in Figs. 3c, 4c and 5c that the depth and the width of
the optimized stop-band is significantly improved, especially that it is over two times
deeper that the non-optimized stop-band in Figs. 3c and 4c, denoting the effectiveness
of this method. The optimal filter that satisfies the centre frequency and stop-band
width requirements can be designed by RSM.
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