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In this paper, the possibility of using a silicon waveguide based microring resonator as a nonlinear
all-optical switch is described under low power operation through a two-photon absorption effect.
All-optical multiplexer/demultiplexer scheme based on two cascaded microring resonators has been
proposed and described. The proposed circuits require smaller number of ring resonators and a single
circuit consisting of two microring resonators capable to perform both multiplexer/demultiplexer
operations by simply interchanging the inputs and outputs. Two optical pump signals represented
the two operands of the logical operations to modulate the two microring resonators. The demulti-
plexer circuit can also perform as a half-adder/subtractor and a single bit data comparator. Numer-
ical simulation results confirming described methods are given in this paper. The performances of
the schemes are analyzed by calculating the extinction ratio, contrast ratio and amplitude modu-
lation of the resulting data streams.
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1. Introduction
The growing demands in contemporary communication system paradigms are motivat-
ing an unprecedented development in ultra-high-speed optical networks to satiate the
rapidly emergent needs of the industry. The bandwidth of the electronic circuits ulti-
mately limits the speed of operation of the system [1]. Recently, silicon photonics has
achieved a great development in optical computing and information processing due to
high bandwidth, high-speed and parallelism properties of light [2–4]. At present in packet
routing, the optical signal entering the router is converted to an electronic signal and
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demultiplexed into lower-rate streams that are electronically routed in the switch core
and then remultiplexed to a high-speed electronic signal that is the output from the rout-
er on the specified optical wavelength. This optical-electronic-optical conversion leads
to router congestion and reduced capacity in today’s networks [5]. So to accommodate
the modern broadband network, very high-speed signal processing technologies must
be developed not only for transmission lines, but also for transmission nodes. Multiplex-
ing and demultiplexing [6–9] are two essential features in almost all the information
processing, signal communication and networking systems, where a lot of information
is being handled without any mutual disturbances.

In response to this, a number of schemes have been proposed for realization of
multiplexers (MUXs) and demultiplexers (DEMUXs) both theoretically [5, 10, 11]
and experimentally [12–14] with several bit rates, channel spacings, modulation for-
mats, and other system considerations such as polarization diversity [15], twisting of
the nonlinear fiber [16, 17], and depolarization of the clock pulses [18]. All-optical
MUXs/DEMUXs were also studied using a cross-phase modulation (XPM) effect [19],
multilayer interference filters [20] and fiber Bragg grating filters [21, 22]. A microring
resonator (MRR) is also used to design all-optical MUXs where circuit design is more
complex [23].

The increasingly high-speed digital optical system and optical processor requires
an all-optical adder/subtractor unit to perform optical microoperations. All-optical ad-
der/subtractor units have many potential applications in optical computing and infor-
mation processing. Various architectures and algorithms for logical and arithmetic
operations have been proposed in the field of optical/optoelectronic computing and
parallel signal processing in last few decades [24–28]. Among different topologies, the
proposed adder/subtractor units using MRR represent the most promising solution due
to their ultra-compact size, less complex circuitry.

In the present paper, we propose and describe all-optical MUX/DEMUX, which uti-
lize two silicon waveguide based MRRs. Optical resonators on planar platforms have
been used to reduce the footprint of all-optical devices through recycling light within
them, which increases the effective nonlinearity of these structures.

The paper is organized as follows: operational principle of all-optical 2×2 switch
using MRR is discussed in Section 2. In Section 3, the theory, design, simulation re-
sults and discussion of the proposed schemes for multiplexing and demultiplexing are
explained. Designating of half-adder/subtractor and comparator circuit using DEMUX
circuit is also discussed in Section 4, and Section 5 concludes the paper.

2. Microring resonator based optical switch

The basic configuration of the silicon MRR [29–32] consisting of two straight bus
waveguides coupled to a microring in between is shown in Fig. 1.

A ring resonator acts as an optical reservoir to accumulate the power. When the
optical path length of a round trip is the integer multiple of effective wavelength, con-



All-optical ultrafast switching in a silicon microring resonator... 519

structive interference occurs and the MRR will have “ON” resonance. Initially, in the
absence of pump pulse, the probe signal gets transmitted to a drop port. The resonance
condition can be varied by applying pump power to the ring. The pump pulse induces
the free carrier in the MRR due to two-photon absorption (TPA), which reduces the re-
fractive index of the material through the plasma-dispersion effect and produces π-phase
shift in one circle of the ring so that a probe light signal switches to through the port
of MRR. After the passage of pump pulse, the resonance condition and probe signal
relax back due to fast carrier recombination. The relaxation time is determined by the
carrier lifetime of  ~0.5 ns in the ring resonator [33]. Thus optical switching for a signal
beam between two output ports (through port and drop port) can be realized. 

First we can calculate the transfer function of the MRR shown in Fig. 1. We con-
sider that the field coupling coefficient between the ring and the input bus is κ1 and
the field coupling coefficient between the output bus and the ring is κ2. The wave prop-
agation constant is κn, where κn = 2πneff /λ, and λ is the resonant wavelength of the
ring, neff  is the effective refractive index of the waveguide of the ring. The output elec-
tric fields at through and drop ports can be respectively written as [34, 35],

(1)

(2)

where x = exp(–α L/2), ϕ = κn L/2, Ei1
 and Ei2

 are the input and add port field, respec-
tively. The effective refractive index of Si-waveguide ring can be expressed as neff
= n0 + n2 I = n0 +  n2P/S, where n0 and n2 are the linear and nonlinear refractive
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indexes, respectively, I and P are the intensity and power of the optical pump signal,
S is the effective cross-sectional area of the ring resonator. For simplification of the
calculation of fields, the coupling losses are not taken into account.

We can calculate the transfer function at through port Tp  and drop port Td  putting
Ei2

= 0 as Tp = |Et |
2/ |Ei1

|2 and Td = |Ed |2/ |Ei1
|2, respectively (see Fig. 2).

Now we calculate a phase shift and refractive index change due to the application
of pump pulse. We consider the case under pumping of a ring by a pulsed laser, which
induces TPA in the silicon material. This makes changes in the free carrier concentra-
tion including a change of electron concentration ΔNe and a change of hole concen-
tration ΔNh.

The nonlinear refractive index change at the wavelength of 1.55 μm is given
by [36, 37] 

(3)

where ΔN = ΔNe = ΔNh.
The negative sign in Eq. (3) shows that effectively it is a net decrease in the refrac-

tive index of the microring waveguide which causes a temporarily blue shift of the
microring resonance wavelength.

The free-carrier concentration N in the silicon waveguide is generated by TPA, so
its rate of generation is given by [38]

(4)

where I is the light intensity, β  is the TPA coefficient, and hν  is the photon energy.
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Fig. 2. Transfer function at through port (dashed line) and drop port (solid line) outputs. 
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Let us consider a Gaussian pump pulse of intensity I = Pexp(–t 2/τ 2) /S fall on the
ring, where P is the peak power and τ  is the pulse width at half-peak power. This pump
power induces two-photon absorption in the materials of the silicon waveguide ring.

For Gaussian pulses, the relationship between the peak power P and the average
power Pavg with pulse separation tp and pulse width τ  is [38]

(5)

Then the free-carrier-concentration change created by a single pulse is given by

(6)

Using Eqs. (3) and (6), the relationship between the refractive index and the aver-
age power of the pump light is obtained

(7)
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The refractive index change results in a phase shift change of the signal light at
1.55 μm in one circle of the ring and is given by

(8)

where L is the length of the ring.
The curve of a phase shift can be obtained from Eq. (8) using the following data:

β = 7.9 × 10–10 cm/W, pump beam wavelength, λ p = 400 nm, τ = 100 fs, tp = 12.5 ns,
hν = 49.725 × 10–20 J, L = 2πr = 44.5 μm, S = 450 × 250 nm2, n2 = 4 × 10–18 m2/W.
The graph for a phase shift with average pump power is shown in Fig. 3. It can be shown
from Fig. 3 that when the phase shift approaches π , the average pump power required
for switching is only 1.89 mW. We found from Fig. 2 the on-off ratio 14.95 dB and
free spectral range of 16 nm. 

3. Design of microring resonator based 
optical multiplexer/demultiplexer circuits

3.1. Architecture and principle of all-optical multiplexer

Multiplexer (MUX) transmits large number of information channels to a single common
channel. A digital MUX is a combinational circuit that selects binary information from
one of the many input channels by proper combination of a selection line and transmits
to the output line. Because of that the digital MUXs are also called data selectors. Our
proposed model is the optical implementation of the digital MUX. Different kind of
complex logical expression can be easily implemented using MUX/DEMUX rather
than discrete components. This kind of MUXs can also be used in communications like
telephone network. In this regards, the block diagram for 4:1 MUX is shown in Fig. 4.
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Fig. 4. Block diagram of a 4:1 MUX; D0, D1, D2, D3 – input data signal, A, B – control/selection line,
Y – output. 
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The Boolean expression for the output of 4:1 MUX is given by 

Y = ABD0 + ABD1 + ABD2 + ABD3 (9)

The proposed architecture and the experimental setup of 4:1 MUX consisting of two
MRRs only are shown in Figs. 5 and 6, respectively. Two MRRs are modulated by two
independent optical pulse sequences A and B, respectively. The low and high level of
optical pulse sequences applied to the MRRs defines logical 0 and 1, respectively. In or-
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der to establish the operational principle of the proposed MUX, firstly we introduce the
principles of its two fundamental elements: MRR1 and MRR2. MRR2 behaves as
2×2 optical switch [39, 40]. When a low-level optical pump signal is applied to MRR2,
it is on-resonance at λ and the optical signal coupled into its input port is directed to its
drop port. When a high-level optical pump signal is applied to MRR2, it is off-resonance
at λ and the optical signal coupled into its input port is directed to its through the port. 

The same definition is also effective to the MRR1. It has six ports and three coupling
regions. In principle, any port can be considered as the input port of the optical signal.
In the proposed device, ports 1, 2, 3 and 5 behave as the input ports of the optical signal,
and one of these four ports also behaves as the output port when the other port acts as
the input port. When a low-level optical pump signal is applied to MRR1, it is on-reso-
nance at λ. The half of the light signal coupled into port 1 is directed to port 4 and the
remaining light signal directed to port 5. Similarly, light signals coupled to ports 2, 3
and 5 are directed to ports 6 and 3, ports 5 and 2, ports 3 and 1, respectively, when
a low-level optical pump signal is applied. When a high-level optical pump signal is
applied to MRR1, it is off-resonance at λ. The optical signals coupled into ports 1, 2,
3 and 5 are directed to ports 2, 1, 4 and 6, respectively. 

According to the above definitions, the principle of the proposed device can be
summarized as follows. 

When the optical control pulses applied to MRR1 and MRR2 are at a low level
(A = 0, B = 0), both MRR1 and MRR2 are on-resonance. The input signal D0 at port 1
and D1 at port 2 of MRR1 are firstly directed to ports 4 and 6, respectively. Ports 4
and 6 of MRR1 act as an add port and input port of MRR2, respectively. As the control
pulse at MRR2 is also at a low level, port 4 signal is directed to the output port Y which
is equivalent to D0 input.

When the optical control pulses applied to MRR1 and MRR2 are respectively at
a low and high level (A = 0, B = 1), MRR1 is on-resonance and MRR2 is off-reso-
nance. The input signal D0 at port 1 and D1 at port 2 of MRR1 are firstly directed to
ports 4 and 6, respectively. As a control pulse at MRR2 is at a high-level, port 6 signal
is directed to the output port Y which is equivalent to D1 input.

When the optical control pulses applied to MRR1 and MRR2 are respectively at
a high and low level (A = 1, B = 0), MRR1 is off-resonance and MRR2 is on-reso-
nance. The input signals D2 at port 3 and D3 at port 5 of MRR1 are firstly directed to
ports 4 and 6, respectively. As the control pulse at MRR2 is at a low-level, port 4 signal
is directed to the output port Y which is equivalent to D2 input.

When the optical control pulses applied to MRR1 and MRR2 are at a high-level
(A = 1, B = 1), both MRR1 and MRR2 are off-resonance. The input signal D2 at port 3
and D3 at port 5 of MRR1 are firstly directed to ports 4 and 6, respectively. As the con-
trol pulse at MRR2 is also at a high-level, port 6 signal is directed to the output port Y
which is equivalent to D3 input. So the proposed model can perform the 4:1 multiplex-
ing using 2 control pulses.
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The order of MUXs can easily be increased by placing MRRs in front of MRR1
of Fig. 5. For designing 8:1 MUX, two (4 input, 2 output) MRRs should be placed in
front of MRR1 of Fig. 5 and the outputs should be connected to the inputs of MRR1.
The configuration of 8:1 MUX is shown in Fig. 7. 

3.2. Mathematical model for 4:1 multiplexer

When D0 input is only present at MRR1 as shown in Fig. 5, the electric field at point e
can be written as 

(10)

where Ea is the electric field at point a and given by

(11)

The electric field at point c can be written as
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The electric field at port 4 is given by

(14)

where k1, k2 and k3 are the coupling coefficients of MRR1 and x = –(α /2)(L/4) – jknL/4
as shown in Fig. 5, kn = 2πneff1

/λ, the effective refractive index of Si-waveguide ring
MRR1 can be expressed as neff1

= n0 + n2 I1 = n0 + n2 P1/S, where n0 and n2 are the
linear and nonlinear refractive indexes, respectively, I1 and P1 are the intensity and
power of the optical pump signal used for MRR1. 

Similarly when D1 input is present only, the electric field at port 6 is given by

(15)

where the electric field at point f  can be written as

(16)

When D2 input is present only, the electric field at port 4 is given by

(17)

where the electric field at point e can be written as

(18)

Similarly when D3 input is present only, the electric field at port 6 is given by
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When all the four inputs are present, the electric field at port 6 is given by

(22)

The field at the through port of MRR2 can be written as

(23)

where k11 and k22 are the coupling coefficient of MRR2, Ed and Et are the ports 4
and 6 outputs of MRR1, respectively, and x1 = –(α /2)(L/4) – jkn1

L/4, kn1
= 2πneff2

/λ,
the effective refractive index of Si-waveguide ring MRR2 can be expressed as
neff2

= n0 + n2 I2 = n0 + n2 P2 /S, where n0 and n2 are the linear and nonlinear refractive
indexes, respectively, I2 and P2 are the intensity and power of the optical pump signal
used for MRR2.

The above equations are used to design an all-optical data multiplexing scheme
using MRRs.

3.3. Architecture and principle of all-optical demultiplexer

Proposed architecture and experimental setup of 1:4 DEMUX consisting of two MRRs
only are shown in Figs. 8 and 9, respectively. Two MRRs are modulated by two inde-
pendent optical pulse sequences A and B, respectively. A monochromatic wave with
working wavelength λ is modulated by two optical pump pulse trains A and B applied
to the two MRRs, respectively. The optical pulse trains appearing at different output
ports depend on different combinations of the optical pump pulses applied to MRR1
and MRR2.
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According to the definition of MRR as discussed in Section 2, when both pump
pulses are at a low level (A = 0 and B = 0), both rings are off resonance and the logical
high level (1) is achieved at the output port Y0 and the logical low level (0) is achieved
at three other output ports Y1, Y2, Y3. Logical 1 is achieved at the output port Y1 and
logical 0s are achieved at three other output ports Y0, Y2, and Y3 when A = 0, B = 1.
Logical 1 is achieved at the output port Y2 and logical 0s are achieved at three other
output ports Y0, Y1, and Y3 when A = 1, B = 0. When A = 1 and B = 1, logical 1 is
achieved at the output port Y3 and logical 0s are achieved at three other output ports Y0,
Y1, and Y2. So, the proposed device can choose the demultiplexed channel based on
different combinations of pump pulses. 

The order of DEMUX can easily be increased by placing MRRs in a reverse order
to that of MUX. 

3.4. Mathematical model for demultiplexer

The field at the through port and drop port of MRR1 can be written as [28]
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The field at ports 3, 4, 5, and 6 of MRR2 can be calculated in a similar way as dis-
cussed in Section 3.2. 

The field at port 3 (output channel Y1) can be written as

(26)

The field at port 4 (output channel Y2) can be written as

(27)

The field at port 5 (output channel Y0) can be written as

(28)

The field at port 6 (output channel Y3) can be written as

(29)

The above equations are used to design an all-optical data demultiplexing scheme
using MRRs.

3.5. Simulation results for multiplexer and demultiplexer

A silicon waveguide based MRR is a powerful device to realize the ultrafast all-optical
switch. The advantage of silicon waveguide based MRR is that the overall losses can be
relatively low [41]. Pure silicon has an absorption loss much smaller than 0.1 dB/cm at
the wavelength of 1.55 μm. Scattering loss is also very low. Curvature loss is in negli-
gible levels. Insertion loss is also very low at the wavelength of 1.55 μm. A choice of
coupling coefficients of MRR1 k1 = k2 = k3 = 0.33 and coupling coefficients of MRR2
k11 = k22 = 0.22 is considered in the present study and the other optimized parameters
as discussed in Section 2. The practical realization is very difficult because the cou-
pling coefficient cannot be determined with the high accuracy. One possible solution
would be to use tunable couplers. We choose probe input beam power 0.1 mW such
that there is no variation of refractive index of the material of MRR for the input probe
beam. The simulated result of all-optical 4:1 MUXs (using MATLAB) is reported in
Fig. 10. Result is also given in tabular form as shown in Table 1. The threshold value
at the output for the multiplexing scheme is considered as 0.01 mW. Simulation result
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T a b l e 1. Logical truth table of the proposed MUX and theoretical optical power levels at the input
and output (X = do not care). 

Select (control) inputs Data inputs

Output YA B D0 D1 D2 D3 

0 (0 mW) 0 (0 mW) 0 (0 mW) X X X 0 (0.01 mW)

0 (0 mW) 0 (0 mW) 1 (0.1 mW) X X X 0 (0.052 mW)

0 (0 mW) 1 (1.89 mW) X 0 (0 mW) X X 0 (0.011 mW)

0 (0 mW) 1 (1.89 mW) X 1 (0.1 mW) X X 1 (0.052 mW)

1 (1.89 mW) 0 (0 mW) X X 0 (0 mW) X 0 (0.004 mW)

1 (1.89 mW) 0 (0 mW) X X 1 (0.1 mW) X 1 (0.092 mW)

1 (1.89 mW) 1 (1.89 mW) X X X 0 (0 mW) 0 (0.01 mW)

1 (1.89 mW) 1 (1.89 mW) X X X 1 (0.1 mW) 1 (0.092 mW)

0 200 400 600

0 200 400 600

0 200 400 600

0 200 400 600

0 200 400 600
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of the optical DEMUX scheme is shown in Fig. 11. Result is also given in tabular form
as shown in Table 2. The threshold value at the output for the demultiplexing scheme
is considered as 0.02 mW. Data rate of the circuit for simulation is considered as
100 Gbps and maximum speed can be extended up to 250 Gbps [42, 43]. The carrier
lifetime in microcavities drastically decreases due to surface recombination and thus
limits the speed of the carrier-based switching [44].
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Fig. 11. Simulation output of 1:4 DEMUX.

T a b l e 2. Logical truth table of the proposed DEMUX and theoretical optical power levels at the input
and output.

Select (control) inputs Data
inputs

Output Y0 Output Y1 Output Y2 Output Y3A B

0 (0 mW) 0 (0 mW) 1 (0.1 mW) 1 (0.07 mW) 0 (0.02 mW) 0 (0 mW) 0 (0 mW)

0 (0 mW) 1 (1.89 mW) 1 (0.1 mW) 0 (0.02 mW) 1 (0.091 mW) 0 (0 mW) 0 (0 mW)

1 (1.89 mW) 0 (0 mW) 1 (0.1 mW) 0 (0 mW) 0 (0 mW) 1 (0.069 mW) 0 (0.02 mW)

1 (1.89 mW) 1 (1.89 mW) 1 (0.1 mW) 0 (0 mW) 0 (0 mW) 0 (0.02 mW) 1 (0.91 mW)
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4. Design of microring resonator based 
optical half-adder/subtractor and comparator circuits

Figures 8 and 9 for DEMUX circuit can also be used for designing all-optical half
-adder/subtractor and comparator [45–48]. In the half-adder, two outputs are repre-
sented by Sum = X Y + X Y  and Carry = XY . The half-subtractor has also two outputs

A = BBeam
CW input 1:4 DEMUX

A B

Y0

A < B

BS
Sum/

Borrow/A > B

Carry

combiner

Beam
combiner

BS

Y1

Y2

Y3

difference

Fig. 12. Block diagram of the half-adder/subtractor and comparator circuit using 1:4 DEMUX; BS – beam
splitter. 

1

0

1

0

1

0

1

0

1

0

Threshold

Time [ps]

S
u

m
/

P
u

m
p

 B
P

u
m

p
 A

C
a

rr
y

B
o

rr
o

w

level

0 100 200 300

0 100 200 300

0 100 200 300

0 100 200 300

0 100 200 300

Threshold
level

Threshold
level

Fig. 13. Normalized simulation output of the half-adder/subtractor circuit. 

d
iff

e
re

n
ce



All-optical ultrafast switching in a silicon microring resonator... 533

and is represented by Difference = X Y + X Y  and Borrow = X Y . So the XOR output
simultaneously gives the result of sum and difference. The XOR operation can be per-
formed by combining Y1 and Y2 outputs. At the same time Y3 and Y2 give the carry bit
and borrow bit respectively. Comparison between two binary data is often required in
many data processing systems to control/drive the physical variable towards the ref-
erence value. Using the same cascaded MRR (Figs. 8 and 9) we can compare the two
single bit binary numbers and generate one of the following outputs: A = B, A > B
and A < B. The output A > B can be obtained from Y2 terminal, A < B can be obtained
from Y1 terminal and A = B can be obtained by combining Y0 and Y3 outputs. The block
diagram of half-adder/subtractor and comparator is shown in Fig. 12. Simulation re-
sults for half-adder/subtractor and comparator are shown in Figs. 13 and 14, respec-
tively. Logical truth tables of the proposed circuits are given in Table 3. 
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T a b l e 3. Logical truth table of the half-adder/subtractor and comparator circuits. 

Select (control) inputs Outputs

A B Sum/difference Carry Borrow A > B A < B A = B

0 0 0 0 0 0 0 1

0 1 1 0 1 0 1 0

1 0 1 0 0 1 0 0

1 1 0 1 0 0 0 1
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5. Discussion

High extinction ratio (ER) makes the ultrafast all-optical logic circuit suitable to be ex-
ploited to control all-optical switch. The high value of ER distinguishes the high (1) level
to the low (0) level very clearly. The extinction ratio is defined as [49–51],

(30)

where  and  are the minimum and maximum values of the peak intensity of
high (1) and low (0) level, respectively. We have plotted the extinction ratio vs. the
different coupling coefficient with constant radius for both MUX and DEMUX circuits
and is shown in Fig. 15a. Similarly we have also plotted ER vs. radius with constant
coupling coefficient for both circuits, which is shown in Fig. 15b. The maximum value
of ER is obtained as 7.16 dB at the optimum operating point. 

The output contrast ratio (CR) is defined as the ratio of the mean value of output
intensity for 1  to the mean output intensity for 0  and is given as (in
decibel) [49–51]

(31)

For the optimum performance, the CR must be as high as possible so that the main
fraction of input can exist at the output. We have plotted the CR vs. the different cou-
pling coefficient with constant radius for both MUX and DEMUX circuits and is shown
in Fig. 16a. Similarly we have also plotted CR vs. radius with constant coupling coef-
ficient for both circuits which is shown in Fig. 16b. The maximum value of CR is ob-
tained as 10.71 dB in this case at the optimum operating point. 
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The amplitude modulation (AM) can be defined as [49–51], 

(32)

where  and  are the maximum and minimum value of intensity at high (1) level.
In Fig. 17a we have plotted AM vs. coupling coefficient with constant radius for two
logic circuits. Similarly in Fig. 17b we have plotted AM vs. radius with constant cou-
pling coefficient for both circuits. The minimum value of AM is obtained as 1.26 dB at
the optimum operating point, though the minimum for the AM should be lower than
1 dB [52] for better performance. The AM can be improved by means of additional pas-
sive MRR detuning [53].

6. Conclusion
We have proposed ultrafast optical MUX and DEMUX networks based on two MRRs
as a feasible means of achieving a highly capable next-generation all-optical packet
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-switched network which provides simple network management and self-routing of
packets. The same DEMUX circuit is used to design the half-adder/subtractor and
single bit comparator. The proposed schemes can easily and successfully be extended
and implemented for higher order by proper incorporation of ring resonator based op-
tical switches. Numerical simulation results confirming the described methods are also
given in this paper. The theoretical model developed and the numerical results obtained
may help in designing all-optical signal processing techniques and they are expected
to play important roles in constructing future all-optical photonic networks in the 21st
century. The variation of contrast ratio (CR), extinction ratio (ER) and amplitude mod-
ulation (AM) have been investigated and the noted values of CR, ER and AM are 10.71,
7.16 and 1.26 dB, respectively, at the optimum operating point.
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