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The weighting factors method and the response surface methodology are used to achieve multi-ob-
jective optimization of a dielectric layer photonic crystal filter. The size of period and the trans-
mission quantity are considered simultaneously and a multi-objective optimization model of filter
is established, which takes the size of period and transmission quantity to be minimized in stop-band
as objectives. Global approximate expressions of the objective and the constraint functions are
found by response surface methodology. Then the weighting factors method is employed to convert
the model into a quadratic programming model and the optimal parameters can be obtained using
sequence quadratic programming. Examples provide the optimized results in three different weight
coefficients. The effect of the weighting factors on the value of the objective function is also dis-
cussed. Results show that the present method is precise and efficient for multi-objective optimi-
zation of a dielectric layer photonic crystal filter. 
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1. Introduction

In recent years, a growing demand can be observed for dimension and characteristic
of filter with the rapid development of microwave techniques. Photonic crystals are
periodically layered structures that are filled with different dielectric materials and it
is well-known that they have a special spectral structure, the so-called photonic band
gap (PBG). This feature can be employed to design optical filters.

The design of a photonic crystal filter has already been undertaken by a number of
research works. In [1], the particle swarm optimization method and the finite-differ-
ence time-domain method were used to improve the performance of a two-dimensional
photonic crystal filter. A fabrication process of a tunable PBG filter that can be tuned
in a very wide range of the central pass-band wavelength shifting is designed and
simulated in [2]. In addition, the optimal design of the dielectric layer photonic crystal
filter using the response surface methodology is described in [3]. For the works men-
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tioned above, there are a single objective researches because only the property of the
filters is considered. However, most real-world optimization problems that exist in
practical engineering and scientific applications will be requested to optimize more
than one objective. For the filter, the dimension and the characteristics should be con-
sidered to be equally important. In this paper, a multi-objective optimization model of
the photonic crystal filter is proposed, and the weighting factors method and the re-
sponse surface methodology (RSM) to solve this model are introduced.

In contrast to a single objective problem, a multi-objective problem is more diffi-
cult to solve because it has a set of solutions, called the Pareto-optimal set, but there
is no limit to an optimal solution. Many methods for multi-objective optimization have
been put forward and have shown great progress and success. The weighting factors
method is the most commonly used technique and its basic idea is to transform the
multi-objective problem into the single objective problem [4]. With the weighting fac-
tors method, we can issue a comprehensive quantitative analysis of aims and seek the
best value to meet the system requirements.

RSM stemmed from experimental design and was later introduced into numerical
simulation in reliability assessment of complex multivariable systems [5, 6]. The basic
idea of RSM is to approximate the actual state function, which may be implicit or very
time-consuming to evaluate, with the so-called response surface function that is easier
to deal with complex problems. To construct approximate model with RSM, no sen-
sitivity analysis is required, and thus it is more applicable to problems with sensitivity
difficulty. Besides, response surface construction involves no information inside struc-
tural analysis procedure. For further reading about RSM, see [7].

In this paper, we use the weighting factors method and the quadratic RSM to achieve
multi-objective optimization of the photonic crystal filter. A multi-objective optimi-
zation model of the filter is established first, which takes the size of period and trans-
mission quantity to be minimized in stop-band as objectives. The weighting factors
method is employed to merge two goals into a single target. Then global approximate
expressions of the objective and the constraint functions are found by quadratic RSM.
Finally, the model is converted into a quadratic programming model and the optimal
parameters can be obtained using sequence quadratic programming. Examples show
its precision and efficiency.

2. Bring forward the control model

Dielectric layer photonic crystal filter structures in waveguide are shown in Fig. 1.
The periodic length a, the dielectric thickness d, the relative permittivity εr of the di-
electric are the three major factors in determining the stop-band characteristic of the
waveguide dielectric layer photonic crystal structures [8]. As is known to all, the less
the transmission quantity in stop-band is and the more transmission coefficient beyond
stop-band is, the better the property of the filter is. When the width of stop-band is
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fixed, we hope the area surrounded by the transmission coefficient curve and horizontal
axis (frequency axis) should be maximum. Here we define (in the stop-band) 

(1)

as the negative of transmission quantity in the stop-band, where S21 represents the
transmission coefficient of filter during optimization process. Let Nsb = –Asb, and thus
the maximum value problem can be converted to a minimum value searching problem.
So the less Nsb is, the less transmission quantity is. In this study, we take the size of
the period and the transmission quantity to be minimized in the stop-band as objectives.
Establishing the control model is as follows:

(2)

d a

Dielectric Air

Fig. 1. Dielectric layer photonic crystal filter structures in waveguide. 
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where periodic length a, dielectric thickness d, relative permittivity εr of the dielectric
are the design variables; f2 and f3 are the lower and upper bounds of the stop-band, and
it is obvious that the bandwidth of the stop-band is between f2 and f3; f1 is the lower
bound of the concerned band on the left of the stop-band, f4 is the upper bound of the
concerned band on the right of the stop-band; AL and AR are the negative of transmis-
sion quantities at corresponding regions; TL and TR and are permitted maximum of trans-
mission quantity’s negative at corresponding regions.      and  are the
lower and upper bound on the design variables a, d, and εr, respectively; k is a positive
number less 1 because d is less than a.

Since Nsb is negative, we define Bsb = –1/Nsb = 1/Asb to transform the initial prob-
lem to the problem for searching a positive minimum. Nevertheless, as dimension and
order of magnitude of the objective functions Bsb and a are incomparable to each other,
we normalized them by [Bsb] and [a] which are the estimated average of Bsb and a,
respectively. Namely we take two dimensionless values Bsb/[Bsb] and a/[a] as objec-
tives simultaneously. After merging two goals into a single target by the weighting fac-
tors method, a new control model has been set up as:

(3)

where α1 and α2 are the weight coefficients of periodic length and transmission quantity
in stop-band, respectively; α1 and α2 are positive numbers less 1, besides, α1 + α2 = 1.

It is very difficult to deduce an explicit expression of the objective function G with
design variable a, d, and εr because of the strong nonlinear characteristics of the prob-
lem. Fortunately we can modify the original function (3) to an approximate one and make
the optimization based on the approximate expression. In this study, such approxima-
tions can be carried out by RSM.

3. Response surface methodology

For objective function, the response surface generally takes a quadratic polynomial
form. Higher order polynomials generally are not used for a conceptual reason (a com-
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putational one). In this paper, we use a quadratic form containing the crossing terms.
Considering the full quadratic polynomial form, the response estimated equation for
three designing variables is given by 

(4)

where β0, β1, ..., β9 are 10 coefficients to be determined, and x1, x2, x3 represent a, d,
and εr, respectively.

In order to determine all betas, we should select m (m ≥ 10) experimental points.
Putting the coordinates of m experimental points into Eq. (4), we can get m estimated
response values 

(5)

where i = 1, ..., m, and xi1, xi2, xi3 represent a, d, and εr of the i-th experimental point,
respectively.

In fact, we can also get actual values of m experimental points, represented by yi
(i = 1, ..., m).

Define error ε = (ε1, ε2, ..., εm)T between the actual and the estimated responses, 

i = 1, ..., m (6)

Using the least square technique, and minimizing the residual error measured by
the sum of square deviations between the actual and the estimated responses, we have

(7)

Let

j = 0, ..., 9 (8)

Equation (8) is a system of 10 linear equations with 10 unknowns. Solving Eq. (8),
we can find all betas and obtain the quadratic response function

(9)

Equation (9) is the actual quadratic response function and β0, β1, ..., β9 are determined.
The sequential quadratic programming is used to obtain the optimum. In the opti-

mization process, suppose  (l = 1, 2, 3) is the present designed point of l-th variable
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 ỹi yi–( )2

i 1=

m

= = min→

∂S
∂βj

------------ 0,=

y β0 β1x1 β2x2 β3x3 β4x1
2

β5x2
2

β6x3
2

β7x1x2 β8x1x3 β9x2x3+ + + + + + + + +=

xl
v( )



34 HONGWEI YANG et al.

in v-th iteration, and specify artificially a step size  for l-th variable. The expres-
sions of move limits are:

and (l = 1, 2, 3) (10)

where  and  represent the lower and upper bound respectively. The interval of

l-th designed variable xl is  in v-th iteration.

Furthermore, to improve numerical stability, it is a good practice to scale all var-
iables so that each variable changes in the range [–1, 1] [9]. Let ζl (l = 1, 2, 3), represent
the normalized variables. The transformation formula is as follows [10]: 

(l = 1, 2, 3) (11)

After the optimization, we can return to initial design variables and get their value
by following transformation:

(l = 1, 2, 3) (12)

The choice of the experimental design can have a large influence on the accuracy
of the approximation and the cost of constructing the response surface. For quadratic
response models, the central composite design (CCD) is an attractive alternative [11].
There are 15 experimental points in CCD method for three designing variables, where
8 points are at vertices of a quadrilateral, 6 are along the three symmetry axis, and one
is at the center. Figure 2a shows an example of CCD for objective response surface.
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Fig. 2. Design of experiments for objective (a) and constraint (b) response surface. 
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In the paper, this method is used to choose the experimental design. This means that
15 experiment points (m = 15) are chosen to determine the value of betas. After three
designed variables are normalized, in terms of the coordinates the corners of the cube
are (–1, –1, –1), (1, –1, –1), (1, 1, –1), (–1, 1, –1), (–1, –1, 1), (1, –1, 1), (1, 1, 1),
(–1, 1, 1); the center point is (0, 0, 0). According to [5], the distance between axial
point and center point is 1.215, so the axial points are at (–1.215, 0, 0), (1.215, 0, 0),
(0, –1.215, 0), (0, 1.215, 0), (0, 0, –1.215), (0, 0, 1.215).

For constraint functions, the response surfaces are constructed at the same value
of the selected designing parameters. In this paper, the number of the selection of points
for the constraint response is 7 for three variables. Of which, 6 are symmetrical distri-
bution on the axis and one is at the center. Figure 2b shows an example of design of
experiments for constraint response surface.

4. The control model used for solving

Based on the above discussion, the control model used for solving can be obtained as
follows: 

(13)

where x = (a, d, εr)
T, a series of coefficient matrices H, f, AL, BL, AR, BR are obtained

by RSM when objective and constraint functions are approximately explicated. This
quadratic programming model is solved using quadratic programming and the optimal
parameters can be obtained.

5. Numerical results

For dielectric layer photonic crystal filter structures in waveguide as shown in Fig. 1,
the center frequency stop-band of this filter is designed at 6 GHz and the bandwidth
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is 2 GHz. The width and height of the waveguide are 57 and 23 mm, respectively. Let
the number of the waveguide period be 9 in this paper. Choosing f1 = 3 GHz,
f2 = 5 GHz, f3 = 7 GHz, f4 = 9 GHz, TL = TR = 2.5, = 0.002 mm, = 100 mm,

= 0.001 mm, = 100 mm, = 1.1, = 10, k = 0,9, [Bsb] = 1/40, [a] = 20. Three
selections of weight coefficients are discussed as follows: α1 = 0 and α2 = 1; α1 = 0.5
and α2 = 0.5; α1 = 0.7 and α2 = 0.3. 

We set up the initial design variables according to the estimated equation [8]

(14)

where εe is the effective permittivity, λ and λg are the wavelength corresponding to the
center frequency of the stop-band in the vacuum and waveguide, respectively, λc is the
cutoff wavelength of TE10 mode in the rectangular waveguide. Here, according to
Eq. (14), we choose the initial design variables as a = 20 mm, d = 15 mm and εr = 2.25.

5.1. Scenario 1 

In the case of α1 = 0 and α2 = 1, the multi-objective optimization is transformed into
the single objective optimization, which is a problem of searching the minimum value
of the transmission quantity in stop-band. The optimization process is convergent and
stable, which can be clearly seen in Fig. 3a. We see that the objective function value G
decreases rapidly at the beginning, after 7 iterations the value starts to converge and
after 16 iterations the value keeps constant at about 0.65. Here we obtain the minimum
value of the transmission quantity, which is about 0.65. When the function value G
converges, the periodic length a and the relative permittivity εr of the dielectric have
a trend of slow increase and the dielectric thickness d is still at a rate of little decrease,
as shown in Fig. 3b. After 16 iterations, we obtain the optimized function values, where
a, d and εr are 22.21 mm, 6.71 mm, and 2.80, respectively. Stop-band characteristics
before optimization and after optimization are given in Fig. 3c. It is obvious that, before
optimization, the stop-band is not deep and wide, minimum value of the transmission
coefficient and minimum periodic length are –15 dB and 20 mm, respectively. After
optimization, the center frequency stop-band of this filter is 6 GHz and the bandwidth
is 2 GHz, minimum value of the transmission coefficient is nearly –39 dB and mini-
mum periodic length is 22.21 mm. The optimal design is carried out.

5.2. Scenario 2 

All the data are the same as the scenario 1 except α1 = 0.5 and α2 = 0.5. The optimi-
zation process is given in Fig. 4 when α1 = 0.5 and α2 = 0.5. Clearly, Figs. 4a and 4b

a a
d d εr εr

εe
d
a

-------εr 1
d
a

-------– 
 +=

λg

λ εe

1 λ/λc( )2
–

------------------------------------=

a λg / 2=











Multi-objective optimization of dielectric layer... 37

4 3 2 1 0
0

4
8

1
2

1
6a

Object function

It
e

ra
tio

n
 n

u
m

b
e

r

06

1
2

1
8

2
4

0
4

8
1

2
1

6

a ε rd

b

It
e

ra
tio

n
 n

u
m

b
e

r

Design variables [mm]

0

–
1

0

–
2

0

–
3

0

–
4

0

–
5

0
3

4
5

6
7

8
9

1
 –

 A
ft

e
r 

o
p

tim
iz

a
tio

n
2

 –
 B

e
fo

re
 o

p
tim

iz
a

tio
n

1

2

c

F
re

q
u

e
n

cy
 f

 [
G

H
z]

Transmission coefficient S21 [dB]

F
ig

.3
.T

he
 o

pt
im

iz
at

io
n 

pr
oc

es
s 

an
d 

re
su

lt
s 

fo
r 

sc
en

ar
io

 1
: 

ob
je

ct
 f

un
ct

io
n 

ve
rs

us
 i

te
ra

ti
on

 n
um

be
rs

 w
he

n 
α 1

=
0 

(a
),

 d
es

ig
n 

va
ri

ab
le

s 
ve

rs
us

 i
te

ra
ti

on
nu

m
be

rs
 w

he
n 
α 1

=
0 

(b
),

 a
nd

 s
to

p-
ba

nd
 c

ha
ra

ct
er

is
ti

c 
be

fo
re

 a
nd

 a
ft

er
 o

pt
im

iz
at

io
n 

w
he

n 
α 1

=
0 

(c
).

2
.4

1
.6

1
.2

0
.8

0
.0

0
4

8
1

2
1

4a

Object function

It
e

ra
tio

n
 n

u
m

b
e

r

06

1
2

1
8

2
4

a ε rd

b

It
e

ra
tio

n
 n

u
m

b
e

r

Design variables [mm]
0

–
1

0

–
2

0

–
3

0

–
4

0

–
5

0
3

4
5

6
7

8
9

1
 –

 A
ft

e
r 

o
p

tim
iz

a
tio

n
2

 –
 B

e
fo

re
 o

p
tim

iz
a

tio
n

1

2

c

F
re

q
u

e
n

cy
 f

 [
G

H
z]

Transmission coefficient S21 [dB]

F
ig

.4
.T

he
 o

pt
im

iz
at

io
n 

pr
oc

es
s 

an
d 

re
su

lt
s 

fo
r 

sc
en

ar
io

 2
: 

ob
je

ct
 f

un
ct

io
n 

ve
rs

us
 i

te
ra

ti
on

 n
um

be
rs

 w
he

n 
α 1

=
0.

5 
(a

),
 d

es
ig

n 
va

ri
ab

le
s 

ve
rs

us
 i

te
ra

ti
on

nu
m

be
rs

 w
he

n 
α 1

=
0.

5 
(b

),
 a

nd
 s

to
p-

ba
nd

 c
ha

ra
ct

er
is

ti
c 

be
fo

re
 a

nd
 a

ft
er

 o
pt

im
iz

at
io

n 
w

he
n 
α 1

=
0.

5 
(c

).
 

2
.0

0
.4

2
6

1
0

0
4

8
1

2
1

4
2

6
1

0



38 HONGWEI YANG et al.

show the objective function value G is convergent at about 0.86, and a, d and εr are
about 21.15 mm, 8.24 mm, and 2.69, respectively, after 14 iterations. Figure 4c gives
the stop-band characteristic before optimization and after optimization, and show after
optimization that the stop-band of filter is deeper and wider than that before optimization,
justifying the efficiency of our method. We can observe more from Fig. 4c that, after
optimization, the minimum value of the transmission coefficient, which is –38.0 dB,
is close to the minimum value of the transmission coefficient when α1 = 0, which is
–39.0 dB (see Fig. 3c). Only the transmission quantity is taken as the objective when
α1 = 0. This means that if we choose the values of the weight coefficients α1 = 0.5 and
α2 = 0.5, the sub-objective, which is the transmission quantity, and the general objec-
tive G can achieve their optimal values simultaneously.

5.3. Scenario 3 

Here we let α1 = 0.7 and α2 = 0.3. Figures 5a and 5b give the optimization process
when α1 = 0.7 and α2 = 0.3. After 12 iterations, the objective function value G is con-
vergent at about 0.93, where the optimized function value a, d and εr are about 18.31 mm,
10.39 mm, and 2.68, respectively. Figure 5c shows the minimum value of the trans-
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mission coefficient is –30.0 dB after optimization. Furthermore, we can see that the
optimized function value a is smaller than that of when α1 = 0, which is 22.21 mm (see
Fig. 3b), whereas the minimum value of the transmission coefficient is larger than that
of when α1 = 0, which is –39.0 dB (see Fig. 3c). It is worth noting that sometimes we
merely desire smaller size of filter, and it is not necessary to minimize the transmission
quantity in stop-band. In the case of this scenario, choosing α1 = 0.7 and α2 = 0.3, might
just fit the bill. 

The above discussions imply the process of optimization depends strongly on the
selection of weight coefficients. Figure 6 shows the curves of the objective functions
varying with the weight coefficient α1. It is observed that the value of the sub-objective
Bsb / [Bsb] does not change much with a small α1, while the value of the sub-objective
a / [a] decreases gradually. In other words, the value of the design variable a keeps
changing slowly when the transmission quantity becomes steady, which is similar to
our previous discussion. What is more, when the weight coefficient α1 is smaller than
0.5, the optimized value of the sub-objective Bsb / [Bsb] is close to 0.65, which is the
minimum value of the transmission quantity in the first scenario. Thus, it can be con-
cluded that within this interval, the optimal value of the sub-objective Bsb / [Bsb] is al-
ways obtained, i.e., the sub-goal Bsb/[Bsb] as well as the normalized general objective G
is optimized simultaneously.

6. Conclusion

Multi-objective optimization model of the dielectric layer photonic crystal filter is
proposed, and the objective functions are the size of period and the transmission quan-
tity in stop-band. We use the weighting factors method in conjunction with the quad-
ratic RSM to obtain a quadratic programming model and the optimal parameters can
be obtained using sequence quadratic programming. The optimization results demon-
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strate that the present method is precise and efficient. According to the discussion on
the effect of the weighting factors on the value of objective functions, the conclusions
are drawn as follows: 

1) When the objective value G converges, the periodic length a has a trend of slow
increase; 

2) In practice, we can choose the corresponding weight coefficients to achieve var-
ious requirements, including the size of the period and the transmission quantity; 

3) When the weight coefficient α1 is small, the optimized value of the sub-objective
Bsb / [Bsb] does not change dramatically and is close to the solution to the model with
transmission quantity as the single objective. This implies that, within this interval,
the optimal value of the sub-objective Bsb / [Bsb] is always obtained, i.e., the sub-goal
Bsb / [Bsb] as well as the normalized general objective G is optimized simultaneously. 
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