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Abstract

The mathematical formulation of any problem in applied sciences leads usually to an
operator equation. In linear models the operator is a matrix or a difference, differential or an
integral operator. If we try to solve such an operator equation we often meet different
difficulties. The solution need not exist or it is not unique or it is unstable. All these bad
properties of a mathematical model reflect the complexity of the real problem we are to solve.
Such difficult problems are called ill-posed problems. It is not surprising that we also meet
these problems in time series analysis. In this area the ill-posedness is demonstrated by the
non-stationarity of a stochastic process. In economics it is well-known that the time series of
logaritms of GDP or the price of overall market portfolio are almost certainly non-stationary.
The typical example of the non stationary process is the random walk.
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1. Introduction

In 1902 Jacques Hadamard formulated what is the well-posed problem when he studied the
partial differential equations. He also gave today classical example of the problem which is
not well-posed: the Cauchy problem for Laplace`s equation. Hadamard`s concept reflected the
idea that any mathematical model of a physical phenomena should have the following
properties

1. There exists a solution to the problem (existence).
2. There is only one solution to the problem (uniqueness).
3. The solution depends continuously on the data (stability).

If one of these conditions is violated the problem is called ill-posed. We can give a simple
example: the system of linear algebraic equations bAx  with the square matrix A. This
problem is well-posed if A is a nonsingular. In other case the conditions 1 or 2 above are
violated. As to the condition 3 a square matrix represents always a continuous mapping
because in the finite dimensional spaces any linear operator is continuous. In spite of this we
can watch a certain kind of instability: it is caused by the fact that the matrix A is ill-
conditioned. The notion of ill-condition matrix is well-known from the numerical
mathematics.

However the ill-posed problems began to be studied intensively as late as in 1950`s. Here it
is necessary to commemorate above all the outstanding Russian mathematicians A. N.
Tikhonov, M. M. Lavrentiev, V. K. Ivanov and their disciples, e.g. V. A. Morozov, who laid
the foundations of approximate methods for solving ill-posed problems and contributed much
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to the development of the theory and techniques which became new, interesting and fruitful
area in numerical analysis.

The ill-posed problem has to be regularized to get some reasonable results. There exist
different methods how to do that. We can recall for instance the truncated singular value
decomposition or well-known and favorite the Tikhonov regularization method which was
introduced in early 1960´ by A. N. Tikhonov.

The non-stationary stochastic processes generate non-stationary time series. These series
represent a serious problem for their instability. Unfortunately they occur very often in
economic and financial practice. Let tY be the GDP of some economy at time t. Then

tt Yy log is almost certainly non-stationary series. Similarly if tS is the price of overall
market portfolio then tt Ss log is again almost certainly non-stationary. The non-stationary
process is unstable which leads to poor results in forecasting. The typical example of the non-
stationary process is the random walk. Other non-stationary processes denoted in Box Jenkins
methodology as ARIMA processes involve the random walk. The random walk can be
defined as a solution of the stochastic difference equation of the first order. This equation is in
fact an ill-posed operator equation. We employ the access and methods of the functional
analysis to treat it

2. Ill-posed Problems

The classical definition of the ill-posed problem was given above in introduction. Due to
the powerful computers the theory of ill-posed problems has become widely used in solving
problems in various branches of science including economics (Horowitz, 2014, Hoderlein,
Holzmann, 2011, Lu, Mathe, 2014). In mathematics we see many examples of the ill-posed
problems in arithmetic (division by a small number), linear algebra (solving the system of
linear algebraic equation with a singular matrix), calculus (differentiation), integral equations
(Fredholm equation of the first kind) or functional analysis (the invertibility of a compact
operator). We can find these problems in time series analysis (Sanchez, 2002). The ill-
posedness is in a close relation to the problem of overdifferencing of a time series (Bell, 1987).

As was mentioned the mathematical formulation of a problem in applied sciences is
usually of the form of an operator equation

bAx  , (1)
where WVA : is a given operator defined on a given space V with values in a given space
W, b is a given element in W. The spaces V and W respectively are equipped with some
convergence structures. They are usually linear normed spaces. Then the equation (1) is the
ill-posed problem if and only if A violates one the following properties:

1. A is bijective (it means it is a one-to-one correspondence between both the spaces V
and W).

2. VWA  :1 is continuous (if it exists of course).
In the following section we perform two typical examples of the ill-posed equation (1).

2.1 Examples of ill-posed problems
In the finite dimension the operator A is represented by a matrix A Thus the equation (1) is

represented by the system of linear algebraic equations bAx . If the matrix A is singular the
operator A is not bijective (in fact it is neither surjective nor injective). It means that the
properties 1 and 2 from the Hadamard´s definition of the well-posed problem (given above in
section 1) are violated. As to the third property a linear operator in finite dimensional spaces is
always bounded (continuous). However a certain kind of instability can occur even if A is a
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nonsingular matrix. This is the case of numerical instability caused by a large condition
number of this matrix 1cond  AAA . Let us give an example. The lag operator known in
time series analysis (eg. Arlt, 1999 , Dhrymes 1980 or Horský, 2013) is represented in finite
dimensional case by the matrix
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The matrix (2) is a singular (even nilpotent) matrix of the order N. On the other hand the
matrix of the difference operator in the Euclidean space of the dimension N is nonsingular
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Both  norm and 1 norm of this matrix is equal to 2. Since (2) is nilpotent we easily obtain
its inverse
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the norms of which are equal to N. Hence   NNN 2cond BI and the matrix of the difference
operator is ill-conditioned for large N.

In the infinite dimension the linear operator need not be bounded. In spite of the fact that
the compact operator ( the operator which maps any compact set to a relative compact set, see
Lukeš 2012) is bounded, its inverse (if it exists) may not be bounded because the compact
operators form two-sided ideal in the space of all bounded operators on a given space (of
infinite dimension) and the identity is not compact operator in infinite dimensional space. Let
us give an example again. The Volterra operator

      ,
0

dssxtAxty
t

 (3)

where  1,0t ,  1,0CWVx  (the space of all continuous functions with the supremum
norm is Banach space) represents the operation of indefinite integration. It is known (see
Lukeš, 2012) that this operator is compact. Its range  AR is the space of all functions in
 1,0C having the continuous derivative in  1,0 satisfying   00 y . The inverse operator is

defined on  AR and it is the derivative. The derivative is not bounded operator, it is only so
called closed operator and  AR is an open subspace of  1,0C . It follows the differentiation is
ill-posed problem which may be surprising if we compare the symbolic differentiation and
symbolic integration.

Another case of ill-posed problem in infinite dimensional spaces is regarded below.
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2.2 The General Concept of Regularization
Suppose again the general problem (1), where WVA : , V and W are normed linear

spaces, and A is a bounded linear and injective operator with inverse which is not bounded, i.e.
(1) is ill-posed problem. This is a situation which is usual in applications and we met it in the
example with the operator (3). The problem (1) is unstable and the idea is to approximate this
problem by a well posed one. The procedure for this replacement is called regularization
method.

First we deal with approximations of the inverse operator A-1 (which is not bounded). A
regularization family for A is a collection of bounded linear operators 0>  ,:  VWR  , for
which 0lim

0



xAxR


for all Vx . A regularization family may not be uniformly bounded.

In fact, there is a sequence of positive numbers 0n such that 
n

R . If there were a

constant c such that for all 0>  , we would have cR  , then for any  ARy  the
following inequalities would hold:

ycxRxyRAxRxyRyRyAyA  


11 (4)
The first term on the right hand side in (4) tends to zero as 0 . However, it means that

ycyA 1 which is a contradiction with A-1 is not bounded. In other words, the product

AR converges to identity I pointwise, not uniformly.
Second the right hand side of the equation (1) contains a noise. We could watch the effect

of this noise in the third example in the previous section. Suppose that bδ is a perturbation of b
in (1),  


bb . We then define

.,  bRx  (5)
The vector (5) is called the regularized solution to (1).

Let bAx 1  is the exact solution to the problem (1). Now we derive the fundamental
estimate for the error of the regularized solution

.,  RAxRxbRbRbRxxx   (6)
As α tends to zero the first term in the right hand side in (6) converges to zero (regularization
effect) while the second term grows to infinity (ill-posedness effect). Thus two competing
effects enter (6). These effects forces us to make a trade off between accuracy and stability.
The basic question is how to choose the value of the parameter α which is dependent on the
given 0 (and also on Wb  ).

2.3 The Generalized Solution (GSLS)
The exact solution to the operator equation is usually called the classical solution. However

it need not exist. If  ARb  one can try to look for a solution in a generalized sense. It is
natural to require that such a solution minimizes the residual norm bAx . The following
notions and considerations are performed when both spaces V and W are Hilbert spaces: The
vector Vx 0 (if it exists) for which

bAxbAx
Vx




inf0 (7)

is called the least square solution or the generalized solution to the equation (1) in the sense
of the least squares (GSLS). However it need not exist. The sufficient condition for the
existence of the GSLS is that the range R(A) is a closed subspace of W. It will be the case if
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for example the space R(A) is of a finite dimension. On the other hand if R(A) is a dense
subspace of W different from W there is always an element  ARb  such that the equation (1)
has no GSLS.

It is the known fact that Vx 0 is a GSLS of (1) if and only if it is the solution to the
normal form of the equation (1)

bAAxA   , (8)
where A is the adjoint operator to the operator A. The optimization problem (7) is thus
equivalently reformulated as the linear equation (8). If GSLS exists it need not be unique. All
the solution of (8) form a linear set    ANxbAAxAVxLb  

0: , where  AN is the
kernel of the operator A. To assure the uniqueness of the solution to (8) we impose some
additional condition. It is usually the requirement to the least norm of an element within the
set bL : if bL Ø there exists a unique element bLx~ for which xx

bLx
 inf~ . We can

notice that the new problem (8) is an operator equation with a self-adjoint positive operator.
That is why we talk about the symmetrization of the original problem (1).

3. The Stochastic Sequences

The non-stationary time series are generated by non-stationary stochastic processes. These
processes can be understood as a solutions of operator equations which are classified as ill-
posed problems. We will introduce an application of the Tikhonov regularization method to
the essential problem the solution of which is well-known random walk. The other non-
stationary models in Box Jenkins methodology involve this case. In time series analysis the
classical access to stabilization is the differencing of the time series. It can be also taken as a
certain type of regularization.

The stochastic process is defined as a mapping 2: LT X , where the set T (time domain)
is here set of all integers and  ,22  LL is the space of all functions (random variables)
defined almost everywhere on the measurable space Ω, that are square integrable over the
space Ω with respect to a probability measure π. It means that this mapping is in fact a (both
sided) sequence. However we adopt slightly different modification of this current definition
which consists in the assumption that the sequence is actually one sided of the type

    TtkXXX kttt   , ,,, 01 NX . (9)
If we extend the stochastic sequences (9) by zeros to time points t+1, t+2,... we get the both
sided stochastic sequence from the original definition given above.
Basic characteristics of the stochastic sequences are as follows:
 the function of means tt EX ;

 the function of variances 222
tttt EXDX   ;

 the autocovariance function       ssttst XXEXXstC   ,cov, .

The definitions of the stationary process, the white noise process and the general linear
process, are given for instance in Arlt (1999). Let us recall that the stationary process is such a
process for which the functions of means and variances are constant and the values of its
autocovariance function depend only on the time lag of its terms. The sequences (9) are
elements of certain spaces. Instead of the Banach space of all bounded stochastic sequences
�� �� (see Horský, 2016) we will consider now the space  22 L , which is the space of all
square summable stochastic sequences. The framework of the Hilbert space  22 L will be
more suitable for our purposes.
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3.1 Stochastic Sequence as an Element of the Hilbert Coordinate Space

All the terms of the stochastic sequence (10) are elements of the Hilbert space
 .,22  LL Their norms in 2L are 2222

2 ktktktkt EXX    . If (10) is the centered
(with zero mean) and stationary sequence then its terms lie on the sphere with radius 2 in 2L .
The space of all bounded stochastic sequences  2L with the norm

2
0sup ktk EX 

X was used in Horský (2016). It was natural since this space contains all
stationary sequences and it is the Banach space. However in what follows we will employ

another space. The space  22 L of all stochastic sequences (9) which satisfy 

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k
ktEX is
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k
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Unfortunately the space  22 L contains no stationary stochastic sequences as well as the
constant sequences (except the zero sequence). In spite of this apparent drawback this space
has more comfortable structure for our intentions than the space  2L . We may overcome
this deficiency if we slightly modify the concepts of stationarity of the process and white
noise respectively. As to the mean we will consider only centered sequences. We allow the
sequence to be stationary as far as to the past as one wishes then the norm (variance) of its
terms has to fall to zero (otherwise the series of variances may not be convergent).

3.2 Lag Operator and Its Spectral Properties

The lag operator is defined for example in Dhrymes (1985). We will take this operator in
the Hilbert space  22 L and thus

       ktkt XXBLLB   12222   ,: (10)
It is a bounded operator with the norm equal to one, i.e. the same value when this operator is
defined on the space  2L (see Horský, 2013).

The spectral properties of the lag operator in the space  2L are summarized in Horský
(2016). We can recall that the spectrum of the lag operator is the closed unit circle in the
complex plane and all elements of this circle are the eigenvalues of this operator. In the case
of (11) it is almost the same thing. There is only one difference: if λ is a complex unit, i.e.

1 then the operator   1BI exists but it is not bounded. It follows that the operator

  1BI may not be defined on the whole Hilbert space  22 L but only on some proper
subspace of this space. In fact  BIR  is a proper subspace of  22 L which is dense
in  22 L . If we take for example 1 the corresponded eigenvector in  2L is

 ,1,1,1E but obviously  22 LE .
There is an important class of stochastic sequences which are the solutions to the stochastic

difference equation of the type
   WX BB  , (11)

where  B and  B are polynomials in B of the degree p and q respectively, and W is a
white noise. As was shown in Horský (2016) the operator equation (11) is the well-posed
problem if and only if all the roots of the polynomial  z are outside the closed unit circle
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in the complex plane. In this case the solution to (12) is well-known ARMA(p,q) process. On
the other hand if   01  then  B is either not invertible or it has inverse which is not
bounded. In any case (11) is then an ill-posed problem. In terminology of Box Jenkins
methodology the solution to (11), if it exists, is of the class ARIMA(p,d,q), where d is the
multiplicity of the unit as a root of the  z . Such a sequence is the non-stationary stochastic
process.

4. The RandomWalk as the Solution to an Ill-posed Problem
If we set in (11)   BIB  : , i.e.  B is the difference operator, and   IB  :

respectively, then we get the essential form of the ill-posed equation (11), i.e.

  WX  BI . (12)
The equation (12) is the stochastic difference equation of the first order. We will deal with

the problem of the regularization of its solution in the Hilbert space )( 22 L by the Tikhonov
regularization method. The solution to the operator equation (12), if it exists, is called the
random walk process.

4.1 The Least Square Solution to the Equation   WX  BI

The adjoint operator to the difference operator  BI  is obviously  BI and the normal
form (8) of the equation (12) is

   WX   BIBBBBI . (13)
For simple writings let us set  BIA  . It follows from the relations among the kernels

and the ranges respectively of mutually inverse operators (see Lukeš 2012) that we have
                 2222  , , LARAARLARAARoANAAN   . If we add the

spectral properties of the adjoint operator B we see that the equation (13) is an ill-posed
problem as well as (12). Thus the GSLS to (12) need not exist for some right side (from the
space )( 22 L ).

4.2 Tikhonov regularization on the equation   WX  BI

The Tikhonov regularization consists in the regularization of the normal form of the given
problem. We keep the denotation from the previous section, i.e. BIA  . The basic idea of
the Tikhonov regularization is to add some positive multiple of the identity I to the operator

AA . This way we get a bounded linear bijection IAA  on the space )( 22 L . The
regularized form of the equation (13) is

   WX   BIIBBBBI  . (14)

The equation (14) is well-posed. The collection of operators     AIAAR 1
 is a

regularization family for the operator AA . As in the section 1.2 we replace in (14) the white
noise W by its perturbation Wδ , 0  ,  WW . Then we get the regularized solution

 WX R, .
Let us describe the fundamental estimate for the error of the Tikhonov method. First we
estimate the norm R . For this we use the polar decomposition of a bounded linear operator
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(see Lukeš, 2012) and the Riesz functional calculus (see Lukeš, 2012). By polar
decomposition AUA , where U is an isometry, in our case even unitary operator, and A is
the square root of the operator AAT : which is self-adjoint. Hence we have

  UAITR 1  and if we denote     AITTf 1  we obtain  TfR  . To
compute the norm of the self-adjoint operator  Tf we employ the Riesz functional calculus

 
 

 
  


 2

1supsup
4,04,0







fTf . (15)

The upper bound 4 in the interval in (15) is obtained from the fact that 2 BIA (the
spectrum of the difference operator is only translated spectrum of the lag operator, which
follows from the spectral mapping theorem, and 2AT  (see Lukeš 2012).
Second we estimate the regularization effect XX ~~ AR . Here we will suppose that

ZX  A~ for some  22 LZ , i.e. the GSLS (the exact solution to (13)) belongs to the
range of the adjoint operator A . This can be interpreted as a certain requirment on
smoothness of the GSLS. For comfortable writing set   1:  ITG  . We derive

 

.
22

~~~~~~~~

ZZZ

ZXXXXXXXX














 

R

AGGTTGTGAR
(16)

Finally we join the two estimations (15) and (16) and thus get the fundamental estimation
for the error of the Tikhonov method:

 



 22
~~ 1

, 
 XXX A . (17)

The first term on the right hand side in (17) reflects the regularization effect while the second
one the ill-posedness effect. We have to balance the parameters α and δ in such a manner so

that 0



if  0 and, at the same time,  0 . The rule for the choice of the value

of the parameter α may be so called Morozov discrepancy principle (eg. Morozov, 1984 or
Nair 2009). It consists in taking    such that   bA ,X . This choice
guarantees the balanced approximation and data noise errors. The numerical computation of α
can be carried out by Newton´s method.

The biggest drawback of Tikhonov regularization is the repeated matrix manipulation,
computation of the inverses   1:  ITG  .

5. Conclusion
The polynomial operators in the equation (11) may have a unit root. It causes either non-

stationarity or non-invertibility of this model. In essential form the unit root is contained in the
model (12). In such case the equation (11) is an ill-posed problem. Then it should be solved
by a regularization method if we wished to obtain some reasonable solution to this problem.

As the spectral analysis of the lag operator in )( 22 L shows it remains to prove the
existence of the exact solution (in some sense) to the original problem (12) since the range of
the difference is not closed and not equal to )( 22 L ; it is only dense subspace of )( 22 L .
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The Tikhonov regularization method raise again the question about the overdifferencing of
time series since the transformation of the equation (12) to its normal form contains in fact the
second difference of the process.
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