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1. Introduction 

In this paper we will focus on the presentation of free distributions of 
a Meixner type. By ‘type’ we understand measures defined up to offset and 
dilation. Below we describe the probabilistic measures for normalized 
measures, i.e. with zero mean and variance equal to one, which depend on two 
parameters. In general, free Meixner distributions depend on four parameters. 

Classical Meixner distributions were introduced in terms of orthogonal 
polynomials in [Meixner 1934]. Meixner’s system of orthogonal polynomials 
in free probability was established by Anshelevich [Anshelevich 2003], 
Saitoh and Yoshida [Saitoh, Yoshida 2001], and Bożejko and Wysoczański 
[Bożejko, Wysoczanski 2001]. Meixner free distributions can be classified as 
the following six types: Wigner’s distribution, free Poisson distribution, free 
Pascal distribution (free negative binomial distribution), free gamma distri-
bution, free binomial distribution, and pure free Meixner distribution. This 
classification was presented by Bożejko and Bryc [Bożejko, Bryc 2006], and 
was inspired by the fact that classical Meixner distributions, with similar pa-
rameters, satisfy the so-called Laha–Lukacs properties. The current paper is 
a review and does not present free probability theory to readers. The readers 
of this paper are assumed to be familiar with the basic ideas of free harmonic 
analysis. 
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2. Meixner distributions 

In this section we present the most important facts related to free Meixner 
distributions. A distribution which can be given by the Cauchy–Stieltjes 
transform of the form 

𝐺𝐺𝜇𝜇𝑎𝑎,𝑏𝑏
(𝑧𝑧) = �

1
𝑧𝑧 − 𝑦𝑦𝑹𝑹

𝑑𝑑𝜇𝜇𝑎𝑎,𝑏𝑏(𝑑𝑑𝑦𝑦) = 

 (1) 
(1+2𝑏𝑏)𝑧𝑧+𝑎𝑎−�(𝑧𝑧−𝑎𝑎)2−4(1+𝑏𝑏)

2(𝑏𝑏𝑧𝑧2+𝑎𝑎𝑧𝑧+1)
= 1

𝑧𝑧− 1

𝑧𝑧−𝑎𝑎− 𝑏𝑏+1
𝑧𝑧−𝑎𝑎−𝑏𝑏+1⋱

,  

where the branch of the square root should satisfy ℑ(𝐺𝐺𝜇𝜇(𝑧𝑧)) ≤ 0 for 
ℑ(𝑧𝑧) > 0 (see [Saitoh, Yoshida 2001]), is called a normalized free Meixner 
distribution { 𝜇𝜇𝑎𝑎,𝑏𝑏:𝑎𝑎 ∈ ℝ, 𝑏𝑏 ≥− 1}. 

Equation (1) describes the distribution with zero mean and variance equal 
to one. Absolutely continuous part of  𝜇𝜇𝑎𝑎,𝑏𝑏 equals  

 �4(1+𝑏𝑏)−(𝑥𝑥−𝑎𝑎)2

2𝜋𝜋(𝑏𝑏𝑥𝑥2+𝑎𝑎𝑥𝑥+1)
𝑑𝑑𝑑𝑑, (2) 

where 𝑎𝑎 − 2�(1 + 𝑏𝑏) ≤ 𝑑𝑑 ≤ 𝑎𝑎 + 2�(1 + 𝑏𝑏). This measure has one atom if 
0 ≤ 4𝑏𝑏 < 𝑎𝑎2, and two atoms if −1 ≤ 𝑏𝑏 < 0. For a given parameterization, 
monic polynomials that are orthogonal with respect to the measure  𝜇𝜇𝑎𝑎,𝑏𝑏,  
satisfy the relations 

 (𝑑𝑑 − 𝑎𝑎)𝑝𝑝𝑛𝑛(𝑑𝑑) = 𝑝𝑝𝑛𝑛+1(𝑑𝑑) + (𝑏𝑏 + 1)𝑝𝑝𝑛𝑛−1(𝑑𝑑),𝑛𝑛 = 2,3, …,  (3) 
where 

 𝑝𝑝0(𝑑𝑑) = 1,𝑝𝑝1(𝑑𝑑) = 𝑑𝑑,  (4) 
or equivalently, Jacobi parameters are of the form  

 𝐽𝐽(𝜇𝜇𝑎𝑎,𝑏𝑏) = �0, 𝑎𝑎, 𝑎𝑎, 𝑎𝑎, …
1, 𝑏𝑏 + 1, 𝑏𝑏 + 1, 𝑏𝑏 + 1, …�.  (5) 

Assuming that 𝑚𝑚𝑖𝑖(𝜇𝜇) is the ith moment of the measure µ, then the generating 
function of the moments corresponding to equation (1) is of the form  

 𝑀𝑀𝜇𝜇𝑎𝑎,𝑏𝑏(𝑧𝑧) = ∑ 𝑚𝑚𝑖𝑖
∞
𝑖𝑖=0 (𝜇𝜇𝑎𝑎,𝑏𝑏) = 1

𝑧𝑧
𝐺𝐺𝜇𝜇𝑎𝑎,𝑏𝑏 �

1
𝑧𝑧
� = 1+2𝑏𝑏+𝑎𝑎𝑧𝑧−�(1−𝑧𝑧𝑎𝑎)2−4𝑧𝑧2(1+𝑏𝑏)

2(𝑧𝑧2+𝑎𝑎𝑧𝑧+𝑏𝑏)
,  (6) 
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for sufficiently small |𝑧𝑧|. The  R-transform corresponding to 𝑀𝑀(𝑧𝑧) is given 
by 

 ℛ𝜇𝜇𝑎𝑎,𝑏𝑏(𝑧𝑧) = ∑ 𝑅𝑅𝑖𝑖+1∞
𝑖𝑖=0 (X)𝑧𝑧𝑖𝑖 = 𝐺𝐺𝜇𝜇𝑎𝑎,𝑏𝑏

−1 (𝑧𝑧) − 1/𝑧𝑧 = 2𝑧𝑧
1−𝑧𝑧𝑎𝑎+�(1−𝑧𝑧𝑎𝑎)2−4𝑧𝑧2𝑏𝑏

,  (7) 

where the square root should be chosen as lim
𝑧𝑧→0

ℛ𝜇𝜇 (𝑧𝑧) = 0 (see [Saitoh,  
Yoshida 2001]). The numbers 𝑅𝑅𝑖𝑖 are called free cumulants of the probability 
measure  𝜇𝜇𝑎𝑎,𝑏𝑏.  

Depending on the values of a and b, the distribution  𝜇𝜇𝑎𝑎,𝑏𝑏 can become 
one of the following six types:  

• Wigner’s distribution, if 𝑎𝑎 = 𝑏𝑏 = 0;  
• free Poisson distribution, if 𝑏𝑏 = 0 and 𝑎𝑎 ≠ 0; 
• free Pascal distribution (free negative binomial distribution), if 𝑏𝑏 > 0 

and 𝑎𝑎2 > 4𝑏𝑏;  
• free gamma distribution, if 𝑏𝑏 > 0 and 𝑎𝑎2 = 4𝑏𝑏; 
• pure free Meixner distribution, if 𝑏𝑏 > 0 and 𝑎𝑎2 < 4𝑏𝑏; 
• free binomial distribution, if  −1 ≤ 𝑏𝑏 < 0.  
There are so-called Kesten’s measures in this classification (see [Kesten 

1959]) obtained with 𝑏𝑏 ≠ 0 and 𝑎𝑎 = 0, i.e. their density is given by  

 
�4(1+𝑏𝑏)−𝑥𝑥2

2𝜋𝜋(𝑏𝑏𝑥𝑥2+1)
.  (8)  

Saitoh and Yoshida in [Saitoh, Yoshida 2001] proved that Meixner dis-
tributions are free infinitely divisible if and only if 𝑏𝑏 ≥ 0 (for a given param-
eterization). The Lévy–Khinchin representation in this case takes the beauti-
ful form  

 ℛ𝜇𝜇𝑎𝑎,𝑏𝑏(𝑧𝑧) = ∫ 𝑧𝑧
1−𝑥𝑥𝑧𝑧ℝ 𝑤𝑤𝑎𝑎,𝑏𝑏(𝑑𝑑𝑑𝑑),  (9) 

where 𝑤𝑤𝑎𝑎,𝑏𝑏 is Wigner’s measure with mean a and variance b. In particular, 
we obtain from (9) and (7)  

 𝑅𝑅𝑛𝑛+2(𝜇𝜇𝑎𝑎,𝑏𝑏) = ∫ 𝑑𝑑𝑛𝑛ℝ 𝑤𝑤𝑎𝑎,𝑏𝑏(𝑑𝑑𝑑𝑑).  (10) 

Another interesting formula for the cumulants of the free Meixner distribu-
tions is the following equation (from [Bożejko, Bryc 2006]):  

 𝑅𝑅𝑛𝑛+2(𝜇𝜇𝑎𝑎,𝑏𝑏) = ∑ 𝑎𝑎𝑠𝑠(𝜈𝜈)
𝜈𝜈∈𝑁𝑁𝐶𝐶1,2(𝑛𝑛) 𝑏𝑏|𝜈𝜈|−𝑠𝑠(𝜈𝜈), (11) 
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where 𝑠𝑠(𝜈𝜈) are blocks of size 1 with partitions, whereas 𝑁𝑁𝐶𝐶1,2(𝑛𝑛) is a set of 
all non-crossing partitions of the set {1, … ,𝑛𝑛}, such that each block of parti-
tions is of size either 1 or 2, i.e. |𝐵𝐵𝑖𝑖| = 1 or |𝐵𝐵𝑖𝑖| = 2.  

We proceed now to the main result of Bożejko and Bryc in [Bożejko, 
Bryc 2006] that supports the premise from the abstract. They proved that ran-
dom variables with linear conditional first moment and quadratic conditional 
variance have free Meixner distributions. 

Theorem 1. Let us assume that X, Y are freely independent, self-adjoint, 
non-degenerate elements of a non-commutative probabilistic space, and that 
there are constants 𝛼𝛼,𝛼𝛼0,𝑎𝑎, 𝑏𝑏,𝐶𝐶 ∈ ℝ such that  

𝐸𝐸(X|X + Y) = 𝛼𝛼(X + Y) + 𝛼𝛼0 (12) 
and 

𝑉𝑉𝑎𝑎𝑎𝑎(X|X + Y) = 𝐶𝐶[1 + 𝑎𝑎(X + Y) + 𝑏𝑏(X + Y)2]. (13) 
Then random variables X and Y have free Meixner distributions. In par-

ticular, when  𝐸𝐸(X) = 𝐸𝐸(Y) = 0 and 𝐸𝐸(X2 + Y2) = 1, then the distribution 
of X is one of the six types presented above. 
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1. Introduction 

In the lectures of calculus the direct proof of the theorem that the series 

∑
∞

=1

1
n nα  is convergent for α<1  is rarely introduced. The knowledge about 

the convergence of this series is used in exercises but the proof of the con-
vergence of this series is presented on the whole by the integral criterion. In 
standard textbooks of calculus it is difficult to find a direct proof of conver-
gence of the series. This paper presents a direct proof of convergence of the 
series. This text is a supplement for numerous books of calculus.  

Theorem. The series  

∑
∞

=1

1
n nα  

is divergence where 10 ≤< α  and convergence where α<1 .  
For the proof of the theorem it is necessary to show a lot of lemmata.  

Lemma 1. The harmonic series ∑
∞

=1

1
n n

 is divergent. 
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Proof. The harmonic series is equal such that: 
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It is possible to group the terms of harmonic series: 
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The harmonic series is equal 

∑∑
∞

=

∞

=

=
01

1
n

n
n

a
n

. 

It is obvious that 
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1
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1

4
1

4
1
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1
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1
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2
1

8
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8
1

8
1...

5
1

=++>++ , and 
2
1

2
12

22
1...

12
1

1 =⋅>
+

++
+ +n

n
nnn . From 

here the result below is true:  

∑
∞

=

++>
1

...
2
1

2
11

n n
, 

i.e. the harmonic series ∑
∞

=1

1
n n

 is divergent.  

Proof of the theorem: the series ∑
∞

=1

1
n nα  is divergence for 10 ≤< α . 

If α is a number such that 10 << α  then for natural numbers the ine-

quality nn <α  holds, hence the unequal αnn
11

<  holds too, i.e. the harmo-

nic series ∑
∞

=1

1
n n

 is a minorant of series ∑
∞

=1

1
n nα  for 10 << α . Hence the 

minorant is a divergence series the series (1) is divergence for 10 << α . 
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Lemma 2. For each natural number n the expression is true:  

( ) 11
1...

32
1

21
1

+
=

+⋅
++

⋅
+

⋅ n
n

nn
. 

Proof by induction. 

For 1=n  the left side is equal 
2
1  and the right side is equal 

2
1  too. 

Suppose that for some n the expression above holds. It is necessary to prove 
that  

( ) ( )( ) 2
1

21
1

1
1...

32
1

21
1

+
+

=
++

+
+⋅

++
⋅

+
⋅ n

n
nnnn

. 

The left side of the equality above by the induction assumption is equal 

( )( )21
1

1 ++
+

+ nnn
n ( )

( )( )21
12

++
++⋅

=
nn

nn
( )( )21

122

++
++

=
nn
nn ( )

( )( )21
1 2

++
+

=
nn

n , 

it is obvious that 
( )

( )( )21
1 2

++
+

nn
n

2
1

+
+

=
n
n , 

so the proof of the lemma is complete. 

Corollary. The series ( )∑
∞

= +⋅1 1
1

n nn
 is convergent, the sum is equal to 1.  

Proof. Because ( )∑
∞

= +⋅1 1
1

n nn ( ) 1
1

lim
1

1lim
1

=
+

=







+⋅

=
∞→

=
∞→ ∑ n

n
nn n

n

kn
, the 

thesis of the corollary is true. 

Lemma 3. The series ∑
∞

=1
2

1
n n

 is convergent and the sum of this is less 

than or equal to 2.  
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Proof. By this expression the conclusion below holds: 

+≤∑
∞

=
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+⋅∑
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=n nn
. 

The lemma is true. 

Lemma 4. The series ∑
∞

=1

1
n nα  is convergent for 

2
11+=α . 

Proof. It is necessary to see the expressions:  
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It is possible to write some obvious inequalities  
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and generally 

( ) ( )
.121...11
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22222

k
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kkkkkk

kkkkkkkk
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=

⋅
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⋅
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By this the inequality 

( )∑ ∑
∞

= = 













+⋅+1

2

0
22

1
k

k
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holds i.e. the evaluation  

∑
∞

= ⋅1

1
n nn ∑

∞

=

+
≤

1
3

12
k k

k   

is true. For every natural number k the expression 

233

3312
kk

k
k
k

=≤
+  

holds, so the series ∑∑
∞

=

∞

=

⋅=
1

2
1

2

134
nn nn

 is a majorant of the series ∑
∞

= ⋅1

1
n nn

 

i.e.  

∑
∞

= ⋅1

1
n nn ∑

∞

=

⋅≤
1

2

13
n n

. 

Because the series ∑
∞

=1
2

1
n n

 is convergent, by lemma 3, so the series  

∑
∞

= ⋅1

1
n nn

 is convergent too. The sum of the series is less than or equal to 6.  

Lemma 5. If the series ∑
∞

=1

1
n nα  is convergent for s2

11+=α  where s is 

some natural  number, then it is convergent for 12
11 ++= sα  too.  
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Proof. Let for Ns∈   to be ( ) ss
2
1

=β . It is necessary to show that the 

series ( )∑
∞

=
+⋅1

1

1
n

snn β  is convergent if the series ( )∑
∞

= ⋅1

1
n

snn β  is convergent. The 

series ( )∑
∞

=
+⋅1

1

1
n

snn β  is equal to 
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∞
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1
n

snn β
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+
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The equality below is certain: 
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βββ ⋅
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⋅
≤

⋅
+ 3312

22 , 

by this it is obvious that 

( ) ≤⋅∑
∞

=
+

1
1

1
n

snn β ( )∑
∞

= ⋅
⋅

1

13
n

snn β , 
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by the comparison test for convergence of infinite series the series 

( )∑
∞

=
+⋅1

1

1
n

snn β  is convergent if the series ( )∑
∞

= ⋅1

1
n

snn β  is convergent. The sum 

of the series ( )∑
∞

=
+⋅1

1

1
n

snn β  is less than or equal to 132 +⋅ s . By mathematical 

induction there is the finish of  lemma 5.  

Proof of the theorem: the series ∑
∞

=1

1
n nα is convergence where α<1 .  

If α<1  that there is a natural number s such that α<+ s2
11  i.e. 

[ ] αβ <+ s1  so for each natural n it is ( ) αβ nn s <+1  and consequently  

( )snn βα +< 1

11 ,  

by this the series ( )∑
∞

= ⋅1

1
n

snn β  is a majorant of the series ∑
∞

=1

1
n nα  and conse-

quently the series ∑
∞

=1

1
n nα  is convergent. The proof of the theorem is finished.  

Usually the proof of the theorem is shown by the integral test for  
convergence:  

On the interval [ )∞,m  where Nm∈  the function ( )xf  is positive and 

decreasing then the series ( )∑
∞

=mn
nf  and the integral ( )∫

∞

m

dxxf  are both at the 

same time convergent or divergent.  
Proof of the theorem with use the integral test for convergence. 

The integral dx
x∫

∞

1

1  is divergence because ( ) ∞=
∞→

tf
t
lim . For 1≠α  the 

indefinite integral is equal: ∫ −⋅
−

= α
α α

1

1
11 x

x
. The value of the antideriva-

tive at the point 1=x   is equal 
1

1
−α

, the limit α−

∞→

1lim x
x

 is equal to zero for 
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α<1  and it is infinity for 10 << α . So dx
x∫

∞

1

1
α  equals 

1
1
−α

 for α<1  and 

infinity for 10 << α . This conclusion finishes the proof of the theorem. 

The direct proof of the convergence of the series ∑
∞

=1

1
n nα  for α<1  in  

another way is presented in [Fihtenholz 1978, vol. 2, p. 227], the proof of 
the divergence is presented in the same way as in this paper.  
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