
Optica Applicata, Vol. XLIV, No. 4, 2014
DOI: 10.5277/oa140413

Photonic band gap in negative ternary 
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In this paper, we study propagation of electromagnetic wave in negative ternary refractive indices
of two-dimensional photonic crystals. We consider two structures with two concentric cylindrical
rod and shell in which one of them has negative refractive indices, in positive dielectric background.
It is shown that by increasing the diameter of the rod in both structures, we can obtain more and
wider band gaps in comparison with the structures in which there is no negative refractive index
materials. This increase is more considerable in the first structure, in which the rod has a negative
refractive index, in comparison with the second one, where the rod has a positive refractive index.
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1. Introduction

In the past decade, there have been much research activities relating to photonic
crystals (PCs). They have attracted great attentions of researchers for their rich physics
and potential applications. PCs are periodic dielectric structures with refractive indices
periodicity of the order of the light wavelength. They can prohibit propagation of
electromagnetic waves within a certain frequency range, so the light can be totally re-
flected. Such forbidden band is called photonic band gaps (PBGs) which is similar to
the electronic band gaps for electrons in semiconductors [1–8].

In 2000, SMITH and co-workers [9] demonstrated in their work that it is possible to
fabricate an artificial metamaterial with electrodynamics characteristics that can be de-
scribed by a negative index of refraction n. The metamaterials can be divided into two
categories. The first one is double-negative metamaterials whose permittivity ε and
permeability μ are simultaneously negative. These metamaterials cannot be easily
found in nature, but they are artificially fabricated. The other category is single-negative
metamaterials which can be also divided into two categories. In the first configuration,
the permittivity is positive but the permeability is negative. It is so-called μ-negative
materials. In the second, the permittivity is negative but the permeability is positive.
They are called ε -negative materials [10, 11]. These materials can be found easily in
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nature, such as plasma, superconductor, semiconductor and metal. This kind of PCs
can be used to design the omnidirectional reflector [12], multiple-channelled filter [13],
tunable filter [14] and so on. In double-negative metamaterials, the direction of
Poynting vector S = E × H, is opposite to the wave vector k, so the wave vector
and a refractive index should be negative then, k, E and H form a left-handed set of
vectors [6, 15]. The refractive index in these medium is  The behaviors
of these materials are the same as positive refraction index material.

There are many published works on the properties of one-dimensional (1D) [16, 17],
two-dimensional (2D) [18–20], and recently, many works have been done on three-di-
mensional (3D) [21–24] PCs structure, which is more applicable in comparison with
the 1D or 2D case. Here, we focus on 2D PCs which are periodic in x and y directions
and homogeneous along z direction.

In this paper, by applying the boundary conditions in Maxwell equations in periodic
structures, we change them to Helmholtz equation. By solving it in 2D and using
a plane wave expansion method (PWEM), we can find the band gaps and allowed trans-
fer electric (TE) and transfer magnetic (TM) modes. We consider two structures with
two concentric cylindrical rod and shell; in the first structure, the rod and shell have
negative and positive refractive index material, respectively and the background has
positive dielectric. But, in the second structure, we change the material of the rod and
shell inversely and the background is the same as the first structure. Finally, for validity
of our work, we have drawn the density of state (DOS) diagram which is another im-
portant factor for the many unusual optical properties of the PCs. The DOS is the number
of the eigen-states inside the unit frequency range. It provides much more information
in comparison with the PBG maps because it has information about the PC behavior
outside the PBGs while the PBG maps give only the knowledge about the PBGs. Low
or zero DOS corresponds to the absence of the eigen-states within the corresponding
frequency range, that is, the PBG. If a single state is introduced into the PBG, then
the DOS of the system is zero in the PBG [25]. 

2. Theoretical model

In this section, we investigate the propagation of electromagnetic waves in a 2D PC
with a negative refractive index. We consider two structures. The first one is composed
of a concentric cylindrical rod and shell in which the radius of the rod is R1 (R2 > R1)
and its dielectric permittivity is εn and the radius of the shell is R2 with dielectric per-
mittivity εd1 in a positive refractive index background εd2

, Fig. 1a. In the second one,
the rod and shell are inverse, but the background is the same as the first structure,
Fig. 1b. 

Here, we consider band gaps of 2D PC based on Helmholtz equation in which
they are calculated by using well-known software based on PWE method. We change
the cylinder radius. Then, we study the band gaps. According to this point, the simulated
results of the band structure for TM and TE modes of 2D PC are demonstrated.
The plane wave expansion method leads to the following equations [8, 26]: 

n εμ– .=
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TM:

TE:

where  and  are the Fourier coefficients of the electric and magnetic
field, respectively; k is the 2D wave vector, t denotes transverse component of a vector
confined to the plane of PC and  where 
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Fig. 1. Schematic structures of concentric rod and shell with radius R1 and R2 (R2 > R1), a – in the first
structure, the rod filled with a negative refractive index εn, and the shell with a positive refractive index εd1

,
and b – in the second structure, the rod filled with a positive refractive index εd1

, and the shell with
a negative refractive index εn, and the background dielectric permittivity of both structures is εd2

.
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So, we have

where

For the second structure we have: 

where: 
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and the radius of the rod, shell and the lattice constant are R1, R2 and a, respectively.
Also,  f1 and f2 are given by  and  J1(G – G') is the Bessel
function; εn, εd1

, εd2 and μn, μd1
, μd2

 are the dielectric permittivity and permeability of
the rod (shell), shell (rod) and background of the first (second) structure, respectively.
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In order to compute the DOS, it is not enough to compute the PC eigen-sates at
several points of the Brillouin zone, because the information obtained in such a way
is not complete. The computation of the DOS consists in counting the number of eigen-
-states having the specific frequency which can be expressed by

where the multiplication by the δ -function extracts the eigen-states with the same fre-
quency. Then, the integration is carried out. This means summation of eigen-states with
the same frequencies within one band. After integration, the summation over all the bands
is carried out. 

3. Results and discussion
In this section, we investigate the band gaps, the DOS and gap map diagrams of both
structures for TM and TE modes. First, we draw the band structures and the DOS di-
agrams for the first structure. Let us εn = –1.94, εd1

= 12, εd2
= 8.9, μn = –1 and

μd1
= μd2

= 1, R2 = 0.5a and we change R1 from 0.1a to 0.4a by step 0.1. By increasing
the radius of the rod which is made of negative refractive index material, we obtain
more and wider gaps, as it has been shown in Figs. 2–5. In Figure 2, we take R1 = 0.2a
and R2 = 0.5a. Drawing the band structure and DOS diagram for TM mode shows that
we have a wide gap in comparison with the structure with a positive refractive index.
In Figure 3, on the other hand, we take R2 = 0.5a and increase the radius of rod to
R1 = 0.4a. We see that the number of band gaps increase with respect to the previous
state. 

Now, we investigate the band structures and DOS diagrams for TE mode. Again,
we consider R2 = 0.5a and change R1 from 0.1a to 0.4a by step 0.1. In Figure 4, we
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Fig. 2. The band structure (a) and DOS diagram (b) of the first structure for TM mode, εn = –1.94, εd1
= 12,

εd2
= 8.9, R1 = 0.2a and R2 = 0.5a.
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Fig. 4. The same as Fig. 2, but for TE mode.
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Fig. 5. The same as Fig. 4, but R1 = 0.4a.
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Fig. 3. The same as Fig. 2 but R1 = 0.4a.
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increase the radius of rod to R1 = 0.2a and we obtain a lot of wider gaps. In Figure 5
we increase R1 from 0.2a to 0.4a. We obtain more and wider gaps with respect to
Fig. 4.

Then, we draw the gap map diagram of the first structure for both TM and TE modes.
We see that the area of TM mode is more than the TE one in this diagram. A common
area has been seen in both modes, Fig. 6. In this figure, the green and red areas show
TM and TE modes and the blue one shows the common area (omnidirectional reflec-
tors) of these modes.

On the other hand, we plot the band structure and DOS diagram of TM mode for
the second structure. We see that by increasing the radius of the rod which is made of
positive refractive index material up to R1 = 0.2a (Fig. 7), R1 = 0.4a (Fig. 8), we obtain
more and wider gaps in comparison with the structure with a positive refractive index,
but it is not as considerable as the first structure. In this figure, d/a is the ratio of di-

Fig. 6. Gap map diagram of the first structure. The green and red areas show TM and TE modes and
the blue one shows the common area (omnidirectional reflectors).
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Fig. 7. The same as Fig. 2, but for the second structure.
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Fig. 9. The same as Fig. 7, but for TE mode.
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Fig. 10. The same as Fig. 9, but R1 = 0.4a.
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Fig. 8. The same as Fig. 7, but R1 = 0.4a.
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ameter to constant lattice and d is the diameter of a clad on cylinder with radius of R1
(i.e., d =  R2 –  R1).

Finally, we investigate the band structures of TE mode for the second structure.
Again, we consider R2 = 0.5a and we change R1 from 0.1a to 0.4a by step 0.1. By in-
creasing the radius of the rod up to R1 = 0.2a (Fig. 9), we have several wide gaps. When
we increase the radius rod to R1 = 0.4a (Fig. 10), we see that the number and width of
gaps are more considerable than the previous state. 

Then, we draw the gap map diagram of the second structure for both TM and
TE modes. A common area can be seen in both modes, Fig. 11.

We have observed that when R1 = 0 and R2 = 0.5a (R1 = 0.5a and R2 = 0.5a) in
the first structure, the band structures are completely the same as the second one in
the case R1 = 0.5a and R2 = 0.5a (R1 = 0 and R2 = 0.5a). In these cases, they have
unique structures. The colourful areas in this figure are the same as in Fig. 6.

4. Conclusions

In this paper, we have drawn the band structures, the DOS and gap map diagrams of
negative ternary refractive indices in 2D PCs including rod, shell and background for
two structures. It has been observed that by increasing the radius of the rod in both
structures, we have obtained more and wider band gaps for both TM and TE modes in
comparison with the structures with all positive refractive index material. It is just be-
cause of the existence of negative refractive index material in these structures. The in-
crease in number and width of gaps, is more considerable in the first structure. Drawing
the gap map diagrams of both structures shows that we have wider gaps in the first

Fig. 11. Gap map diagram of the second structure. The green and red areas show TM and TE modes and
the blue one shows the common area (omnidirectional reflectors).
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structure in comparison with the second one. If we replace positive refractive index
materials instead of the negative one, we will not have any band gaps in any radius of
both structures.
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