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LOCATING THE SOURCE OF ATMOSPHERIC 
CONTAMINATION BASED ON DATA 

FROM THE KORI FIELD TRACER EXPERIMENT 

Accidental releases of hazardous material into the atmosphere pose high risks to human health 
and the environment. Thus it would be valuable to develop an emergency reaction system which can 
recognize the probable location of the source based only on concentrations of the released substance 
as reported by a network of sensors. We apply a methodology combining Bayesian inference with Sequen-
tial Monte Carlo (SMC) methods to the problem of locating the source of an atmospheric contaminant. The 
input data for this algorithm are the concentrations of a given substance gathered continuously in time. We 
employ this algorithm to locating a contamination source using data from a field tracer experiment cover-
ing the Kori nuclear site and conducted in May 2001. We use the second-order Closure Integrated 
PUFF Model (SCIPUFF) of atmospheric dispersion as the forward model to predict concentrations at 
the sensors’ locations. We demonstrate that the source of continuous contamination may be success-
fully located even in the very complicated, hilly terrain surrounding the Kori nuclear site. 

Keywords: sequential Monte Carlo methods, accidental releases into the atmosphere, emergency reac-
tion system 

1. Introduction 

Accidental releases of harmful material into the atmosphere pose a significant risk 
to human health and the environment. In the case of such sudden releases of chemical, 

 _________________________  

1National Centre for Nuclear Research, ul. Andrzeja Sołtana 7, 05-400 Otwock, Świerk, Poland,  
e-mail addresses: piotr.kopka@ncbj.gov.pl, anna.wawrzynczak-szaban@ncbj.gov.pl, manhaz@cyf.gov.pl 

2Institute of Computer Science, Polish Academy of Sciences, ul. Jana Kazimierza 5, Warsaw, Poland. 
3Institute of Computer Sciences, Siedlce University, ul. Konarskiego 2, Siedlce, Poland. 



P. KOPKA et al. 36

radioactive or biological material, emergency responders need to determine the loca-
tion of the source as soon as possible.. Such information is necessary to make rapid 
and effective decisions regarding people’s safety, evacuation plans and the manage-
ment of emergency services. In this context, it is important to develop an emergency 
system that is based on measurements of the concentration of a dangerous substance 
by a network of sensors aimed at estimating the most probable location of the source 
of atmospheric contamination. 

Knowing the source of an emission and wind field, an appropriate atmospheric 
dispersion model can be employed to calculate the expected concentration of a pollu-
tant at any downwind location. On the other hand, given the concentration of a pollu-
tant and knowledge of the wind field and other atmospheric parameters, locating the 
source of pollution and its parameters is a difficult problem. This problem has no 
unique solution and can only be considered in probabilistic frameworks. 

The goal is to create a model of atmospheric dispersion which accurately repro-
duces the real situation based only on sparse point-concentrated data. This requires 
specifying the parameters of the model. In the framework of Bayesian statistics, all the 
quantities included in a mathematical model are modeled as random variables with 
a joint probability distribution. This probability distribution describes our uncertainty 
regarding the real values of the parameters. Bayesian methods reformulate the prob-
lem into searching a solution based on the efficient sampling of an ensemble of 
simulations, guided by comparisons with the data. 

The problem of locating a source of pollution has been studied in the literature us-
ing both deterministic and probabilistic approaches. In [14], an algorithm was imple-
mented based on integrating the adjoint of a linear dispersion model backward in time, 
to solve an inverse problem. In [9, 10], dynamic Bayesian modeling and Markov chain 
Monte Carlo (MCMC) sampling approaches were introduced to locate the source of 
a contaminant based on synthetic data. 

Locating a source in an urban environment was discussed in [11] and [3]. In [11], 
an adjoint representation of the source-receptor relationship was used. The authors 
used Bayesian inference in conjunction with MCMC sampling procedures. This ap-
proach was validated using data from simulations of a water channel and a field exper-
iment (Joint Urban 2003) in Oklahoma City. 

In [3], the method presented in [16] was applied to the reconstruction of the flow 
around an isolated building and the flow during IOP3 and IOP9 of the Joint Urban 
2003 Oklahoma City experiment. In these experiments, the source was inferred to be 
located 70 m from the actual location of IOP3 (within a 400 m × 400 m domain). In 
the case of the IOP9 model, errors and other uncertainties limited the ability of the 
algorithm to pinpoint the location of the source. In this reconstruction, the FEM3MP 
model was applied to simulate atmospheric dispersion. 

In [14], the authors applied the inversion algorithm presented in [16] to a conti-
nental-scale, accidental release of radioactive material from near Algeciras, Spain in 
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May 1998. The simulation of forward dispersion conducted in this study used the La-
grangian operational dispersion integrator (LODI) model [6]. The posterior distribu-
tion of the location of the source was a roughly bimodal distribution, with the modes 
located a few dozen kilometres north of Algeciras and less than 100 km downwind of 
the real location of the source. 

In [1, 2] we tested a methodology combining Bayesian inference with MCMC 
methods adapted to the problem of real-time, data-driven search for a source of pollu-
tion based on synthetic experimental data. We demonstrated the advantage of algo-
rithms that in various ways use prior probability distributions of the parameters de-
scribing the location of a source, based on available measurements, to update the 
marginal probability distributions of the parameters considered. The application of 
Sequential Monte Carlo (SMC) methods combined with Bayesian inference to the 
problem of locating the source of atmospheric contamination based on synthetic 
experimental data was presented in [20]. 

In this paper, we describe in detail the opportunity to combine MCMC and SMC 
with a Bayesian approach, in order to improve the accuracy of event reconstruction. 
To test the accuracy of the proposed algorithm, we use the SF6 concentrations from the 
field tracer experiment conducted in May 2001 around the Kori nuclear site [17] as 
input data. 

2. Specification of the domain and the dispersion model applied 

From 2000 to 2002 six field tracer experiments were conducted at the Kori site in 
the east of Korea [8]. These experiments were carried out for the purpose of analyzing 
the site-specific characteristics of atmospheric dispersion and testing the FADAS real-
time system of radiological dose assessment (Following Dose Assessment System) 
[7]. In this paper, we use data from the 3rd experiment carried out on 31st May 2001. 
The tracer gas SF6 released from a meteorological tower (58 m high) with average rate 
75.79 kg/h. The release started at 12:30 and lasted for 3.5 h. Sampling of the tracer 
took place every 10 min from 15:00 to 16:00. A total of 140 tracer gas samplers were 
placed on two lines along roads along radii of about 3 km and 12 km from the release 
point, respectively. During the experiment, meteorological data were also measured at 
several locations. The topography of the area, meteorological towers, sampling points 
and point of release are presented in Fig. 1. 

During event reconstruction, in the forward model of atmospheric dispersion it is 
important to use information about the parameters characterizing the state of the at-
mosphere that can influence the transport of the dispersed substance. In the case of the 
Kori tracer experiment, one of the most important factors is the wind field. This 
experiment took place close to the south-east coast. During the daytime, the predomi-
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nant wind blows from the south-east according to the effects of a land sea breeze. For 
this reason, the wind patterns are very complicated and coupled to a complex, hilly 
topography. 

 

Fig. 1. Location of the point of release (M), sampling points (smaller dots)  
and meteorological towers (remaining dots) during the field tracer experiment  

conducted on 31st May 2001 around the Kori nuclear site 

Another important factor is the choice of a model of atmospheric dispersion. This 
model is required to calculate the predicted concentrations that will be compared to 
the measured ones. The applied dispersion model cannot be very complicated, since 
computation time is crucial. Moreover, advanced dispersion models require the speci-
fication of numerous parameters, which leads to the parameter space becoming very 
complex. In many papers, e.g. [15, 16], the Gaussian plume dispersion model (e.g. 
[19]) is applied as a forward model. However, this model cannot take into account the 
changes in the wind field that must be taken into consideration. 

For these reasons, we decided that the second-order Closure Integrated PUFF 
Model (SCIPUFF) is an appropriate dispersion model for the reconstruction presented 
in this paper. SCIPUFF is a model of atmospheric dispersion with a broad range of 
application. It uses a collection of Gaussian puffs to represent an arbitrary three- 
-dimensional, time-dependent concentration field and incorporates an efficient scheme 
for splitting and merging puffs. The details of this model are described in [18]. 

We would like to underline that the only information used in the reconstruction 
procedure is the wind speed, wind direction and stability class recorded every 15 min 
by 5 meteorological towers at the height of 10 m from 12:30 to 16:00 (Fig. 2) and the 
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concentrations of the SF6 gas registered every 10 min from 15:00 to 16:00 (i.e. 2.5 h 
after the start of the release). Based on these data, we try to infer the location of the 
contamination source (x, y) within a 15 km × 15 km domain and the release rate q. In 
consequence, the parameter space is M {x, y, z}, while the input data D are the con-
centrations at six time points. 

 

Fig. 2. Measurements of wind velocity during the field tracer experiment 
conducted on 31st May 2001 around the Kori nuclear site 

3. Bayesian inference for the reconstruction problem 

Bayes’ theorem, as applied to a problem involving serious contamination, can be 
stated as follows: 

      P M D P D M P M   (1) 

In our problem, Bayes’ theorem describes the conditional probability,  P M D , 

of the parameters of a particular source (model configuration M ) given the concentra-
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tions registered at sensor locations (D). This conditional probability,  P M D  is also 

known as the posterior distribution and is related to the probability of the data under 

a given model,   ,P D M and of the possible models, P(M ), before the measurements 

made by the sensors are taken into account. The conditional probability of the data 

 P D M  is called the likelihood function, while P(M ) is the prior distribution. The 

likelihood of the data is computed by running a forward dispersion model with the 
given source parameters M and comparing the concentrations of the pollutant at the 
sensors as predicted by the model with those registered, D. The closer the predicted 
values are to the measured ones, the higher is the posterior likelihood of the parame-
ters describing the source. 

To estimate the unknown parameters of the source, M, the posterior distribution 

 P M D  must be sampled.  P D M quantifies the likelihood of a set of measure- 

ments D given the parameters of the source M. The value of the conditional likelihood 
of the data is computed by running a forward dispersion model with the parameters M 
and comparing the concentrations predicted by the model with the actual data D, 
observed at the sensors using: 

       2

1

log log
NS

M E
i i

i

P D M C C


    (2) 

The M
iC  are the concentrations predicted by the model at sensors i, E

iC are the 

measurements made by sensor i, and NS is the number of sensors. Taking the loga-
rithms of both the predicted and measured values prevents large concentrations from 
dominating in the computation of the likelihood. Both predictions and observations are 
set to the minimum detectable value when they fall below it, to ensure Eq. (2) can be 
evaluated. The same function was applied in [12, 14]. 

To obtain the posterior distribution of the parameters of the source,   ,P M D  

based on a sampling procedure, we apply a hybrid SMC and MCMC approach using 
the Metropolis–Hastings algorithm. In this way, we completely replace the Bayesian 
formulation with a stochastic sampling technique to explore the parameter space of 
models and to obtain the probability distribution of the location of the source taking 
into account all the hitherto reported concentrations of the released substance. 

4. The hybrid reconstruction procedure 

Methods for simulating dynamic processes to obtain probability distributions for 
general dynamic models have been developed to overcome certain problems inherent 



Kori field tracer experiment 41

in classical MCMC methods. In many cases, classical MCMC implementations are 
unattractive. In particular, when we consider on-line data processing, standard 
samplers find it difficult to search the state space quickly enough [13]. In these 
situations, sequential Monte Carlo techniques are more efficient. 

SMC is designed to sample from dynamic posterior distributions, in terms of both 
using the dynamic nature of the model and also reusing previous calculations. In [4], 
the authors presented the state of the art insequential Monte Carlo methods and 
introduced practical examples of using SMC. The SMC algorithm needs some set of 
samples to be initialized. One of the ideas is to use independent, parallel MCMC Me-
tropolis–Hastings procedures and pass on the states of all the chains obtained as sam-
ples with associated weights to the SMC procedure (an outline of the algorithm is 
presented in Fig. 3). In the presented reconstruction, the SF6 concentrations are report-
ed by the sensors at six regularly-spaced time points. The proposed reconstruction 
algorithm starts to search for the location of the source (x, y) and release rate (q) just 
after the first set of measurements by the sensors (based on the data at time t = 1). 
Thus, a scanning algorithm is run on obtaining the first measurements. The parameter 
space scanned is M  {x, y, q). To reduce the size of the parameter space scanned and 
speed up the reconstruction (crucial in practical applications), we fix the height of the 
point of release to be 50 m (ca. 8 m below the actual height). Additionally, based on 
the wind pattern we have estimated that the release might have started at least 2 h be-
fore the first measurements. These assumptions of course influence the accuracy of the 
reconstruction, but are acceptable from a physical point of view. 

Initially, we do not have any specific knowledge about the parameters describing 
the source, so we consider a ‘flat’ prior distribution P1(M )  U(M ), where U(M ) de-
notes the continuous uniform distribution over the whole space of parameters. Thus, 
for time t = 1, the first location of the Markov chain 0

tm  is drawn from the prior distri-

bution. The proposal is taken from  . ,t
iq m  thus it depends on the current state .t

im In 

the case of the reconstruction, to sample from  . ,t
iq m  we use a random walk proce-

dure based on the Cauchy distribution, which allows larger increments in the parame-
ters than the usually applied Gaussian distribution, resulting in the whole parameter 
space being scanned rapidly. 

In standard applications, Markov chains move in one dimension per iteration. 
However, to optimize the time required to approach the target joint distribution of all 
the parameters, in the initial 80% of iterations the Markov chains simultaneously 
move in all directions in a single iteration. Then, to more clearly identify parameters 
that do not affect the likelihood function much, the chain randomly selects one dimen-
sion. The details are presented in Algorithm 1. The value  is the probability of ac-
cepting a new state .m


 It is important to note that the condition u <  is likely to be 
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satisfied if the likelihood of the proposal is only slightly lower than the present likeli-
hood. This gives a good chance of choosing a “slightly worse” state than the present 
one, because the probability of acceptance depends directly on the quality of the pro-
posed state. Of course, if the state m


 is “better” than the previous one, the probability 

of acceptance equals 1. 

 

Fig. 3. A block diagram describing the Hybrid Reconstruction Procedure 
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Algorithm 1. MCMC Metropolis–Hastings  
 

 

 1
t tm P M   

Select initial position value from prior distribution  
for i = 1 to n do 

propose a new state  

  . t
im q m

    

evaluate probability of acceptance  

 
 
 

min 1,

t

t t
i

P m d

P m d


 
 
 
 


  

take a random number from uniform distribution  
  0,1u U   

 
if u < , then 

accept a new state  

1
t
im m  

  

else 
do not accept any new state  

1
t t
i im m   

end if 
and for 

 
 
The basic idea of the SMC method is the resampling procedure [4, 10]. 

Resampling eliminates states that have small normalized weights. The probability of 
selecting a state from the set 0 1, , ...,t t t

nm m m  depends on its quality. The main feature of 

this resampling is to focus on highly weighted states for which the likelihood function 
is the greatest and fill the output set of parameters with these states. The details are 
presented in Algorithm 2. 
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Algorithm 2. Resampling procedure 

 
Take states from all k realizations of MCMC M–H  

Read 0 1, , ...,t t t
nm m m  

Calculate the state weights   

   for 1, ...,t t
i iw P m d i n    

Normalize weights  

 

1

for 1, ...,i
i n k

j
j

w
w i n

w




 


  

Draw with replacement from the discrete set of states  
 
for i = 1 to N do 
 
Take a new state t

im


 according to the discrete distribution over the set 0 , ...,t t
nkm m  

with the probability 
 

    for 1, ...,t
l iP m w l nk    

Assign new weights  

 
1

iw
N

   

end for 
 

4.1. Posterior distribution 

Based on the resampled set of accepted samples, the empirical posterior probabil-
ity distribution is computed as: 

      
1

1 N
t t t

i
i

P M D m d m m
N

 


   
  (3) 

where  t tm d represents the empirical conditional probability of a particular model 

m given the concentrations recorded during the time interval t. The sum is taken over 
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the sample set of length N containing all the sampled values t
im


. Thus  t
im m   = 1 

when ,t
im m  and 0 otherwise. If many sampled states correspond to the same loca-

tion, the estimate of  P M D is relatively large (such parameters describing the 

source are deemed to be relatively likely). 

4.2. Prior distribution 

The method chosen to define the prior distribution Pt(M ) is crucial in the SMC 
procedure. In the first time step, we do not have any specific knowledge about the 
parameters, so we choose a “flat” prior    1 ~ ,P M U M  where U(M ) denotes the 

continuous uniform distribution over the whole parameter space [1]. However, apply-
ing this “flat” prior in each time step of the reconstruction would not be an efficient 
approach. In [1], we investigated various versions of MCMC algorithms that use (or 
do not use) probability distributions based on the information from previous meas-
urements as the prior distribution. We showed that the scanning algorithm is definitely 
more effective when it makes use of past realizations and updates the marginal proba-
bility distributions based on new measurements of concentration levels. Consequently, 
at time t, t > 1, the prior is calculated based on sampled states taken from the 
resampling procedure as follows: 

    1 1 1
1 2, , ...,t t t t

NP M U m m m     
  (4) 

where U denotes the discrete uniform distribution over all the sampled states 1
1
tm  . 

One major advantage of this procedure is that there no need exists to explicitly esti-
mate the state distribution. This approach also gives us the possibility of drawing vari-
ous initial states from various chains created using MCMC procedures. 

5. Results 

The task of locating the source of atmospheric contamination based on sensor data 
from the 2001 Kori field tracer experiment is quite challenging. The main problem is 
the site of the experiment. The Kori site is located at the southern end of a peninsula 
and is surrounded by the sea on three sides. In such terrain, the wind field configura-
tion is very complicated. As presented in Fig. 2, the wind direction recorded by the 
meteorological towers changed significantly over the course of the experiment, e.g. at 
station N6 even by 180° and by more than 90° at other towers. The 140 automatic gas 
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samplers were located along roads. Also, neighbouring sensors reported highly 
varying concentrations, e.g. one of two sensors located very close to each other re-
turned a zero concentration, while simultaneously the other recorded a high concentra-
tion. Thus for the reconstruction we selected the 24 most stable sensors with non-zero 
records. In the calculations, we used 10 Markov chains with 10 000 iterations in each 
time step. This number was based on numerical experiments as being sufficient to 
reach convergence for each sample set of model parameters M. Statistical convergence 
was monitored by computing between-chain variance and within-chain variance, see 
e.g. [5, 2]. The burn-in time, the number of samples required to reach a point where 
the Markov chain is sampling from the target distribution, was fixed at 2000 iterations 
(the light, highly dispersed points in the top left of Fig. 4). Starting from the second-
time step, a state drawn from the a posteriori distributions obtained in the previous 
time step was selected as the initial position of the Markov chain.  

 

Fig. 4. The traces of 10 Markov chains in the location space (x, y) for all 6 time steps.  
The triangle marks the actual location of the source 

Figure 4 presents traces of the Markov chains in the source coordinate space (x, y) 
at successive time steps. One can see that at the beginning, the sampled states are 
dispersed over the whole domain. Then, in each subsequent time step the calculations 
are updated using the posterior distributions and newly collected sensor data. This 
results in concentrating the accepted states around one point, the actual location of the 
source as marked by the diamond. 
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Fig. 5. The posterior distribution of the x coordinate of the source’s location  
in successive time steps. The vertical line represents the target value of x 

 

Fig. 6. The posterior distribution of the y coordinate of the source’s location 
in successive time steps. The vertical line represents the target value of y 
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Fig. 7. The posterior distribution of the release rate q in successive time steps.  
The vertical line represents the target value of q 

The posterior distributions of the parameters are presented in Figs. 5–7. Figure 5 
shows that the distribution of the x coordinate starts to concentrate around the target 
value, x = 7000, early on in the procedure as indicated by the mode of the marginal 
distribution of x, P(x = 6987  124) = 0.14. In subsequent time steps, the peak of the 
distribution moves somewhat to the right of the target value and in the 6th time step 
the largest probability mass is P(x = 7748  124) = 0.22. However, at the same time, 
the estimate of the y coordinate improves. Initial estimation of the y coordinate does 
not agree with the target value. However, the final update of the posterior distribu-
tion using the concentrations recorded in the last time interval (6th time step) lead to 
the mode of the distribution of y being close to the target y = 2000), P( y = 2293 
 124) = 0.06. Comparing Figs. 5 and 6, one can observe that accurate estimation of 
the y coordinate takes place at the expense of precise estimation of the x coordinate. 
Figure 7 shows that estimation of the release rate via the reconstruction was highly 
inaccurate. The reason for this might lie in the facts that the complex terrain topog-
raphy was only indirectly included in the model via the roughness coefficient and 
the release height was fixed in the forward dispersion model to be below its actual 
height. 
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3. Summary 

We have presented a procedure to locate a source of atmospheric contamination 
based on a set of downwind concentrations. The dynamic data-driven method of event 
reconstruction developed combines Bayesian inference with Sequential Monte Carlo 
techniques and produces posterior probability distributions of the parameters describ-
ing the unidentified source. This approach successfully provides a solution to the in-
verse problem considered, i.e. the algorithm found the most probable location of the 
source based on measurements of the downwind concentration of pollutants and 
knowledge of the wind field. 

The algorithm was tested with the use of the data from a field tracer experiment 
conducted on 31st May 2001 around the Kori nuclear site. We demonstrated that the 
location of a source of continuous contamination is successfully inferred even in the 
very complicated hilly terrain surrounding the Kori nuclear power plant. The 
coordinates of the source of contamination inferred to be the most probable by the 
reconstruction algorithm were close to the actual location of the source. 
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