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The “second” order aberrations in Seidel’s space are described for a system composed of slightly decentred 
spherical or plane surfaces, assuming the system without any symmetry. Six vector coefficients of the aberrations 
appear here. These vectors are formed by a linear superposition of the decentration vectors with certain scalar 
aberration coefficients.

The scalar aborration coefficients of several surfaces can be easily computed, if the 3-rd order aberrations 
of the centered system arc known.

Introduction

Many authors investigated the properties of the slightly decentred systems. M a r e c h a l  [5] 
examined the wave aberrations of systems without either symmetry axis or symmetry plane, 
composed of two parts with skew optical axis. In his paper the aberrations of decentration are 
related to wave aberrations in an indirect space. He describes coma, astigmatism and the inclination 
of the image and the distortion. The third and higher order aberrations of decentration have been 
described by Cox [3]. He has asserted that two inclined planes are the astigmatic image of a plane 
perpendicular to axis. In his book the parameters of decentration of a surface are the coordinates 
of its center with respect to the axis of reference. In H o f f m a n ’ s papers [4] the main subject was 
a rational definition of decentrations.

But all these works do not specify clearly, how the influences of decentration of several 
surfaces can be summed in the case of a system without either axis or plane of symme
try. The assertion that the astigmatic image of a plane forms two planes does not seem 
right to us.

The purpose of this work consists in the examination of the images of points, lines and planes. 
Especially important for us was the examination of the laws, after which the influences of decentra
tion of several surfaces sum u.p for the final aberrations. Our own experience shows that the 
2-nd order aberrations give satisfactory results for the systems with large apertures too. Therefore 
the power series expansion method with omission of higher order terms has been applied. It is 
assumed that the axis of reference of the decentred system passes through the center of diaphragm 
and is perpendicular to the object and diaphragm plane. The centers of the curvature of the several 
spherical refracting surfaces lie at small distances from the axis of reference, and the normals 
to refracting planes make small angles with the axis. The optical system to be examined does not 
possess either symmetry axis or symmetry plane. The distances of the centres of curvature 
from the axis of reference are small vectors perpendicular to this axis, and some of them can be 
skew ones with respect to others. In general the centres of curvature of several surfaces of the 
system will not be in the same plane.
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Decentred surface

The ordinary equation of the centered sphere, with respect to an origin at the vertex is [3]

(x2+ y 2 +  z2)g — 2x =  0 , (1 )

n =  1—  where B is the radius of the sphere.
It

Now, let us consider a light ray from the object point A (s , Lu, Lz) incident on the plane of 
entrance pupil at the point B(j>, My, Mz). If the directional cosines of the incident ray are a, 
β and y the equations of the ray may be written as

β
y =  By+  - ( * - * )a 

or
_  L„V M„s x{M y- L y)

 ̂ p — s p —s

(2 )

(3)

x, y, z denote the coordinates of any point lying on the ray. Analogous equations may be 
written for the ^-coordinates. In what follows the relationships for the ^-coordinates will be omitted 
since they can be easily reproduced replacing y by z and β by y. We also assume the vectors 
M (0, My, Mz) and L(0, Ly, Lz) small enough to neglect the terms of order higher than third. 

The directional cosines of the incident ray are to the first approximation:

_ , ( M - L f  
“  2 (p — s)2

β =  Mv - Lv a 
p — s ( 4 )

Substituting formulas (2) for y and z in Eq. (1 ) we obtain the coordinates of the point of incidence 
on the spherical surface. We take into account a point O (x ,y ,z )  near to the coordinate origin (3)

x
(.M s -L p )z 
2 (p — s)2

ρ + . . .

V =
LyP—MyS

p — s + M y - Ly 
2 ( p - s f (M s -L p )2Q-\- ■ ■ · (5)

Differentiating now the equation (1 ) we find the components of the unit vector normal to the 
surface at the incidence point

*Γχ =  1 ~XQ,
x u =  —ye, (6)
Nz =  -ZQ.

The direction of the normal is chosen to form an acute angle with the incident ray. The cosine 
of the angle of incidence is determined by the scalar product of the vectors of the normal and 
of the incident ray

cosi =  a— ρίχα +  νβ +  ζγ)· (7)

Applying the law of refraction we obtain for the cosine of the refraction angle i'

cos i' (8 )
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The replacing of x, y , z, a, β and γ in (7) by their approximate values from (4) and (5) allows 
us to write in this approximation

1
cost =  1~ J {p_ s)2 lM (X— Q 8 ) - L ( l - ρρ)]2. (9)

Substituting this expression to (8), expanding the corresponding square root into a power series

"  ' 1 2I’ ' -  W
and omitting the terms of order higher than two we have

cosi' = 1 — -  , " — 2 [M (l — qs)—L { l — ρρ)]2.
2n ~(.p — s)

Let the considered spherical surface be displaced by a small vector c perpendicular to the axis 
of reference. Its equation is the following (3)

[x2+ ( y —cv)2+ ( z —cs)2] e — 2 x = 0 .  (1 1 )

This displacement is small enough to neglect the terms quadratic in c. The incident ray meets 
the decentred surface at the point U* with the coordinates

x* =  # +  δχ, (12)
y* =  y +

From Eq. (2) it follows that
L>

dy =  — δχ. (13)

From the relationships (LI), (12) and (13), omitting terms of higher order, we obtain

δχ =  -(Ms —Lp) ,
p — 8

S y = ^ 8 V - ( M 8 - Lp){Mu- L u).

In the formulas (14) the scalar products

(14)

c M =  eaMy+ c tM „  
v.-L  =  cvLv-\-c.Lz

(15)

appear.
Differentiating Eq. (11 ) we find the components of the vector normal to the decentred surface 

at the point of incidence
X* =  Nx-  οδχ,

N*u =  Nv+Qci, - Q dy,
(16)

where Nx and Nu are given by the formidas (6). Now, using (1 ) and the approximate expressions 
(4), (5), (15) and (16) we obtain for the angles of incidence and refraction

* nC
cos * =  cosfH—  [Μ (1 - ρ * ) - Ζ , ( 1 - ρ ρ ) ] ,

p — s
* , . n1 nccos i =  cos 7 +  - —---------  [ M ( l - es ) - L ( l - o p ) ] .

»  * (p — s)

(17)
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The directional cosines of the refracted ray on any surface are given by the formulas (3)

n'a =  ηα-\-Νt(n’eo&i' — ncosi) , 
η'β' =  ηβ-[ Nu(n'cosi'^ ncosi).

With the help of (4), (5), (6), (9) and (18) and the law of refraction

ν '  v
= -------r ( '» '— »)(? ,

8 8

(s' — Gaussian image distance) we obtain the following approximate expressions

, 1 i ’ "  -  | .
2{p—s)t \ s' p' I

(18)

(19)

1 / M„s L„p \

2 (p — i 
An g ( , Γ sn

β' =  -  -  -  j — ------- - | +  { M„Μ - 1 (1 -  os)* -  L,s2
p — 8 \ s' p' / 2v'(p — s)3 [ Yv'

■ 2 1/ ( l - o. s ' ) ( l - op) +o. s7j j  f  PJ, ( l -g e )*  +  g*·]

MUL- Γ';;; ( 1 -  op)'1 — op*] +2M L L II[ PJ  ( 1 -  o*)(L -  o p ) -  gspj+ +

The equation of the refracted ray is
-]}(1 °P)2Jr QP" |[ +  2\p— s)3n ' ^  ^  ^ v

β '
V ^ y + ' - l A - x ) .a

(20 )

( 2 1 )

The coordinates of the intersection point of the refraction ray with the Gaussian image plane 
are determined by the equation

L'u =  / / + A  («’ - .r ) .
a

Since a appears in the denominator we use the following expansion

1 1

(21a)

1 - /
=  1 +  < + ί 2+ . . . (22)

It is convenient to introduce angular coordinates for both the paraxial aperture rays and 
the paraxial principal rays

It
a — —; to = y

8 p
i =  a—ho·, j  =  w — yq.

(23)

where h and y denote the “paraxial” height of rays, σ and «> angles with respect to the coordinate 
axis, i and j  angles of incidence.

Using the symbols (23) and approximations (o), (19) the formula (21a) becomes

Lvna
1J,. =  -------------- -  -----Γ Μ M2 —1 --8)Άσ'η'Υ y a3

Si [M2L u+ 2 M yML)
η' σ' 2 (p

M..L2 , 2 MLL
+  — V ( S m + « r s IV) + — 1σ(υ£ <J(o*

σ2(ο Sn +

4 (24)
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We denote

S. — hii2i2 A - , *S'.. — lm2ijA — , 
η " n

^iii *  hn2j 2 A , SlY — — oA , (25)

$v =  liu2 n2 Δ -JyiijS}Y, ./ =  n{ya—luo).

The formula (24) represents the generalization of the known expressions for the transverse 
aberrations of the third order. Writing now analogous formula for the ^-coordinate, expanding 
scalar products and substituting L 0, we obtain known formulas for the third order aber
rations.

Similar calculations may be repeated for the ray refracted at the decentred surface. From the 
formula (17) and (12) to (16), it follows

Ah or I Lp Ms)
s'

η =  α +  I» ( p - s )  \p
•is \

r (26)

„  , oc„An pc,,n An'
fi =-- β I ~ ,2 [Af(l -  f* )-L (\  »p))> +n 2 n 2(p — 8)2

Ano2c [ v
+  ,, ,, ■ - L  )-f ' (L p — 3I s)[M (lgs) — L(\—i>p)J·

n {p — s)2 ( ii

The formula (21) determines now the coordinates of the intersection point with the Gaussian 
image plane. We can rewrite it as follows

- β'*Ly =  y + d y +  -7*  (s' — δχ). (27)

Now, substituting x, δχ, y, 6y, α'*, β'* and γ'* in (27) by their approximations from (4), (5) 
(9), (14), (20), (26) and using (19), (23) and the expansion (22), we obtain

l ’:  =  K +
QCyA(ns') ss'iro 

it' n'(p — s) A
( e * - i ) ·

(is'pir I CyL* r
n ' ( p - s ) 2 l 2

«<*]
I 1 \ oAh "I

(QP 1) Δ I | +  — ^ ( s - p )  +\ np / u ns  J

. 1 \ (s— p) Ait r
+  { \ - op )A\^\ (CyML ' rL , lCM + M uc L ) + K . .1/

s‘ nn

+

+

-\-LucL  ĵ (op —1 )δ | j1 )Δ - . f (o p -Y )A n (s -p )
I I nn'ps (28)

The coordinates of the point of intersection of the ray refracted at the decentred surface with 
the Gaussian ima>ge plane of diaphragm can be calculated in the same manner

, oc,,Anp'κ  - * ;+ ■' n

, noK = n <o

(29)

V)

Aberrations of a system of decentred surfaces

Repeating above considerations step by step for each surface of the decentred system we obtain 
the aberrations in the space of the final image. The image produced by the first surface is treated 
as the object for the second and so on. We omit the products of vectors c. The formulas (26) and
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(28) are valid, if the diaphragm is situated before the decentred surfaces of the system. If the 
diaphragm is inside then its image is formed by the antecedent decentred part of the system. 
As it is evident from (29) its displacement may be written as follows:

i

.1/ * =  M -------- y  cu oy An +  ... (30)

The summation extends over all the decentred surfaces between the object and the diaphragm. 
Substituting M* for M  in the formula (21) for the surfaces lying between object and the diaphragm 
we obtain additional aberration term due to the decentring of the entrance pupil.

The final formula for the coordinates of the point of intersection of the refracted ray with the 
plane of the Gaussian image may be written in the following way

L" =  L'u+ σ '» ' f tV jT {[(xH Σίν,» e*Cn.*+

+  Μ.Mv Σ ck , ok C,, A.J ο»2 -  aw [(3 Mu Lu+ Mz Lz) Σ ck „ ok Cnl<k +

+  (MzLv-\-MvLx) 'Leb zqkClllk-\-J~ M ekckt/CiVk-{-L^ QkckzC1Y)] -j-

-\-Llj Ack l/okCv,fc +  -̂ |/-̂ ,j ^ CA-,iPfĉ 'V,fr+ „  Σ Qkck.ifivi,k (31)

Interchanging the indices y and z we obtain the formula for the coordinate Lz. The summation 
is extending over all the decentred surfaces. The formula (31) contains 6 independent aberration 
coefficients. They differ in the case of the surfaces lying before or after the diaphragm. To make 
them uniform, what is convenient for the calculations on computers, we introduce an auxiliary 
symbol

Θ =  0 for the surfaces lying after the diaphragm,
Θ =  — 1 for the surfaces lying before the diaphragm.
The coefficients C can be computed easily, if the third order aberrations are known (25) 

and angular coordinates of both the auxiliary rays (23) for the corresponding centred system.

Ci,k — hk Akn ,

Cii,fr ■ - — 4 Ak?  <s\ + o £ *s’,) —hΑ. V λ’„],
\  tv  / Ar+l fc+1

Cm  * =
’ n / ,J k+l ] AM I

Civ,a- =  -
(32)

Cv.fr =  — jk^k^k (—) —»kjkJ Afr (7- )  -4----J -  [ * ( ^ 1,1+® 'Sill) — Σ  ^v] ’
\n I \n l J k+i 1 fr+1

CVI =  — V  AJ -  +nkJ \nf J k+l

The summation is extended over all centred or decentred surfaces lying after the considered 
surface, or over all surfaces of the system. Only Cj and CIV do not depend on the position of 
the diaphragm.

We define the decentration aberrations as the differences between the aberrations of the decen
tred system and of the corresponding centred system. In other words the decentration aberra
tions characterise the influence of the decentration on the image quality. It may be easily seen 
that the formulas (28) and (31) represent the aberrations of the second order. Only the first term
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does not depend either on the aperture or on the field angle. The second term is proportional 
to the square of the aperture. The two subsequent aberrations are proportional to the product 
of the aperture and field magnitude. The last terms are proportional to the square of the field 
magnitude.

Now, we take into consideration each aberration term separately. Both aberration coor
dinates may be regarded as the components of a certain vector, whose magnitude and direction 
depend on the vectors of the surface decentration and on the aberration coefficients.

Beating of the image. Coma

As the first step we examine the first term independent either of the aperture or of the 
field angle. One may define a resultant vector to be the resultant of the vectors c, determining 
the decentrations of the several surfaces by their curvatures and coefficients 6'r

V

Kl =  ^  QkCk Î,k- 
k‘= 1

The vector Κ τ perpendicular to the axis of reference determines the magnitude and direction 
of the image beating.

η a
This effect causes many unprofitable phenomena, such as the errors of the axis in geodetic 

instruments and so on. This effect was considered in our previous papers [1], [2].

Fig. 1. Rays at entrance pupil

In the same manner we define a resultant vector to be the superposition of the vectors of 
decentration of several surfaces of the system multiplied by their curvatures and coefficients (7n . 
For convenience a constant multiplier is introduced

KII
n* o>* 

Jin' σ'
VZ - ck@n,, (33)

The angle between vector K n and the axis y is #2. The angle of the vector M  with the axis y 
is ψ and its components are determined by the formulas

Mu =  Jfcosq?,

Mz =  M  sin φ, (34)

where M  denotes the magnitude of the vector M.
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Combining (33) and. (34) with (31), we obtain

cos2m\ sin2«<
/ ; + * , ,  a ’HA... -  Μ-Γ/ί π,y |l

, „Γ / 2q \ sin2ff1— M~ I An 21̂1 — cos — J+iTir,,-  ̂ J
(35)

A beam of rays, which meets the plane of diaphragm, forming a circle of the radius M, in 
the plane of the Gaussian image produces a circle described by the equation

( Y ^ K lhl/M r + { Z - K u>z3iy· =  - hr1/l (36)

The Equation (36) is obtained from the formulas (35) by elimination of the angle 2φ. As it is 
seen from the Eq. (36) the center of the circle is determined by the end of the vector .l/2/ i IT, and 
its radius is equal to the half of magnitude of this vector. Let the incident rays form in the plane

of the diaphragm a family of the concentric rays, as it is shown in the Fig. 1. The squares of the 
radii of these circles form an arithmetic progression. The aberration images shown in the Fig. 2, 
form a family of circles, whose centers lie on a straight line, under the angle &2 to the y-axis, 
according to the direction of the vector Ku . The tangents to these circles cut the y -axis under 
the angle t)2 _130°. It is clearly a coma. Since this aberration does not depend upon the field of 
view, the aberration images are identical over the whole field of view [3], [5].

10 Optica  A pplic ata  I, 1



Inclination and astigmatism of the imge

Now, let us consider the aberrations proportional to the product of the magnitude of the field 
and of the aperture. Two resultant vectors are defined, one as the resultant of the vectors of decen- 
tration of the several surfaces multiplied by the coefficients FIn, and the second as the resultant 
of these vectors multiplied by the coefficients ('LV and of the doubled vector /iIn, according to 
the formulas

„ η2 σω λ
« ιγ[ =  >ίί σ

Κ ιν
η2 σω

“, , ^kih-Civ,* + -!* [„ ·  η σ

(37)

The angles of both vectors with respect to the y-axis are denoted and by and i94, while the 
angle of vector L with the same axis by ψ. Therefrom it follows that

L]( =  jLcos ip,

L. =  is in y .

Combining (3J) with (34), (37) and (38), we obtain

^ιιι,ιν,ν  =  —M L [K inco*{v —ψ— i93)+JLlvcos^cos(y— #4)], 

^πι,ιν ,ζ =  - ML  [f f jn  sin — ψ)4-Κ-!ν ίι.ίΏ.φαοΆ[ψ— i94)].

(38)

(39)

The formula (39) proves that the rays coming from a circular locus in the plane of the dia
phragm intersect the image plane in an ellipse. Squaring both sides of the formulas (39) and adding 
we obtain the ellipse equation in polar coordinates ρ and <p

q- =  M*L2 |[ifIII+A"Ivcos(^— <?4)]2— 4ijfm i f Ivcos(^— $4)sin2 — 7 j j ·  (40)

Its parameters are: the semi-axes
£h,2 =  [A Ivcos(y> i94) i K lll\ML. (41)

Their angles with the y-axis

The eccentricity

_  <93+ v h + W  . nno
v 1 —  ̂ ; ψζ — ,,------1- 90 .

e _  2l^£niA.Ivcos(v —»94)
«I

(42)

(43)

The last relationship (43) shows that the ellipses transform into circles in three cases: if K1V =  0, 
Kni =  0 and, if L is perpendicular to K1Y.

The Figure 3 corresponds to the case K1V =  0. After the formula (41) the circles are observed 
over the whole field of view. Their radii are proportional to the magnitude of the field, and, what 
is not visible in the figure, to the magnitude of the diaphragm. The Figure 4 corresponds to the 
case ifm =  0, for #4 =  45°. After the same formula the aberrated images of the points are circles, 
whose radii depend on the angle between the vectors L and / i IV. The aberrations dissapear if L 
is perpendicular to /ί ιν· In this case the images of points lying on a straight line passing through 
the origin and perpendicular to KIV are points. The greatest aberrations arise for the points lying 
on a line in the direction of the vector Klv.
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The aberrations in the Fig. 5 form circles, ellipses and lines. Both vectors KIU and KIY differ 
from zero and make among themselves the angle 45°, &3 =  0 and =  45°. The aberrations curves 
for the points lying on straight lines directed as the vector KIV form straight lines and, according 
to (41) and (42), if the line is perpendicular to K1V they are circles. The directions of the sym
metry axes of the ellipses are determined by the formulas (42).

Fig. 5. Astigmatism and imago inclination, in general case

In the Fig. 6 both vectors K1U and /f IV are directed conformably, &3 =  #4 =  0. At the same 
time this common direction plays the role of the axis of symmetry of the figure.

The shape of the aberrations (ellipses and lines) proves the image bundle to be astigmatic. 
It may be demonstrated, that only those rays intersect with the principal ray, which cut the plane 
of diaphragm along the lines under the angles φ1 or q2 (42) to the y-axis. All the other rays, which 
derive from the same object point are skew with respect to the principal ray.
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κ,ν
•'ill

Fig. 6. Astigmatism and image inclination if Kiri and K\y have the same direction towards themselves and i/-axis

According to (2) and (23), (24) the equations of the refracted ray are

L..Y  _  L yna + d L ' +  t M ua' _  L <<»' ) X
η' σ' '  \ ο· ω / p — s

(44)

The equation of the principal ray my be obtained assuming in (44) M  =  0. The ray determined 
by the Eq. (44) cuts the principal ray if

X  =  -
0L'u{ p - s ) a δΚ(.Ρ — 8)σ

Mya' M.a'
(45)

It is easy to verify with the help of (39) and (42) that for ψ —

L'v =  - M L [ K m + K lv cos(v>-d4) ] c o s - 3- ± ^
jj

L ’z =  — ML\Klu -\-K1Ycos(f — #4)]sin '>3̂ ·
(46)

The distance of the point of convergence of the plane bundle of rays from the Gaussian image 
is the measure of the longitudinal aberration. Applying the same reasoning for φ — ψ2 from (40), 
(45) and (46) we obtain

X = L ' x =  Z [A Ivcos(v>-0t) ± A ni] ίΡ~,8)σ (47)σ

for both points of convergence of the astigmatic bundle.
The coordinate Y of the convergence point of the bundle is calculated from (44) assuming 

M  =  0 and omitting the terms with the L2. In the same manner we obtain the Z coordinate. 
Approximately

no
Y =  L cos ψ ———, 

η σ

Z =  Σύηψ
ησ 

η' σ'

(48)
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The formula (47) proves, that the longitudinal aberrations are proportional to the magnitude 
of the vector L and do not depend upon the magnitude of M. Therefrom it may be inferred that 
the astigmatic images of the line passing through the coordinate origin have the shape of two lines 
of equations

X  Y
e[-^ivcos(V) ^4) i -^ m ] cosy

Z
siny

(49)

where

ε =  ( p - s ) n'
n

The Equation (49) results after the elimination of L from (47) and (48). The angle between 
these lines is a.

The application of the known formula of the analytical geometry for the sine of the angle 
between two lines gives

sina =  2εΚιη . (50)

By elimination of the parameter y from Eq. (49) we obtain the equation of a quadric surface, 
which is the astigmatic image of the plane perpendicular to the axis of reference

(X — Y — elfIvsin$45i)2 =  (Υ2 +  Ζ2)Κ\η ε2. (51)

If KUI Φ 0 it is a circular cone.
The plane

X — eJLIvcos#4 X — εΚ^ύη&^Ζ =  0 (52)

is the symmetry plane of the conic surface (51). The normal to the plane (52), passing through 
the origin, of equation

Fig. 7. The surface of the astigmatic image in the shape of a cone symmetrical with respect to coordinate axis,
if -Κχγ =  0
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X  =  —
Γ

(53)εΚτνΟΟ» Ot εΚινϋΐη{>Λ

is the axis of the cone. The axis of cone makes an angle β, with the axis of reference or the «-axis, 
approximately

sin/5 =  εΚιν . (54)

The lines (49) are, at the same time, the generatrices of the cone and make an angle γ with 
the axis of the cone and

cosy =  i  ε^ϊΐι (5o)
is a half angle of the cone.

The formulas (49) to (55) prove, that the astigmatic images of lines passing through the 
coordinate origin form two lines, with a small angle a, depending on the vector / i rir between them. 
The astigmatic images of a plane arise on a conic surface and the measure of the inclination of the 
cone axis is the vector 7iIV, while the measure of the half angle is the vector /t [n . The vector JiIV 
determines the inclination of the image and vector / i rn its astigmatism. If #tIM =  0, then the 
image of any line is one straight line, and the image of the plane is one inclined plane represented 
by the Eq. (52). It can be shown that if KUI ψ 0, the image of a line not passing through the 
origin is a hyperbole, both the branches of which corresponding to both the astigmatic images.

The Figure 7, which similarly as Fig. 3 illustrates the case KIV =  0, represents a cone symmetrical 
to the coordinate system with the .r-axis as the cone axis. Figure 8 corresponding to Fig. 4 (Jim =  0) 
demonstrates an inclined plane. Figure 9 exhibits a cone with the axis inclined towards the rc-axis, 
because / fm  and Iiiv differ from zero. It corresponds with the transverse aberrations shown in 
the Fig. 5 and 6.

The formula (55) proves, that the cos γ is a small quantity, hence the angle y differs a little 
from a right angle.

Ζ
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Fig. 9. The surface of the image as an inclined cone

Distortion

The distortion of decentration depends upon the square of the field magnitude. For each 
decentration the two independent aberration coefficients GY and (7VI appear. Two resultant vectors 
are defined as the linear superposition of the products of the decentration vectors of several surfaces 
by their aberration coefficients according to the formulas

K y
n *a * v  n
/ / j-2 "5h Qk Vv, k I n a J

K y i - * v  +
η *σ 2

r v  Scfc£fc(7viifc. 
η σ

(56)

(57)

The angles of the vectors Ky and Kv, with the i/-axis are denoted by !?3 and Let the vector L 
determine the position of any point on the object plane. The image coordinates Y and Z of this 
point, with regard to (21), (31), (56) and (57), are

1 }
Y =  0LV-1--- — K yltV-\-LvLzK y  z-{- L~Ky y,

7j= GLz-\------ Kyi z-\-L\Ky z-\-LvLsK y y.
Δ

(58)

G =
ησ 

η' σ'

denotes the transversal magnification.
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Let a straight line be located in the object plane at a distance A  from the coordinate origin 
making an angle u with respect to the y-axis (Fig. 10).

The parameter T denotes the distance of the considered point on the line from the point nearest 
to the coordinate origin (Fig. 10).

Lu =  —.dsinM+Tcosit, 
Ls =  AcosM +  Tsinw.

Fig. 10. A  straight lino in parametric form, where 
A  is its distanoo from the coordinate origin, u its angle 
with y-axis, T current parameter equal to tho distance 
of the current point on the line to the point nearest 

to the coordinate origin

Z

The image of the straight line is a conic

Γ =  — AGmxu-\-Ai
jffvjCOS#*

+ i i vsin«sin(M— #5)J +T[(rCOSw+^liLVsin(#5 — 2w)] +

K v
[
- —Lyj

- f  ™  — —  C O S# 6 +  i L v C O SW C O S(M —  & 5)

7j  =  AGcosu·+ Α 2 sin#6-f-Tfvcos wsin(#5 — tt)J +T[GsinM +^liivcos(i?5 —2«)] +
]■

[
K

+ T 21 —̂ sint?6+iLVsinMCOs(M— #5)
I

(60)

The Equations (60) have been obtained combining Lu, Lz from (59) with the Equations (58). 
The current parameter of the curve is the magnitude T. The curvature of the curve, as determined 
by (60) is easy to calculate with the help of the known formula

Fig. 11. The object as a square with the symmetrj axis Fig. 12. The image of a square is a trapezium, if JfVI =  0
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ί> =
ν ' y" ν "  r7'.1  rp/JfJ' Λ- γ  £ j  rp

(Υ '*+Ζ ’τ2)312 ■

The omission of the squares and products with respect to Kv and KVI reduces it to the following
A v sin(M — 06)

G2
(61)

The formula (61) proves that, providing KYl =  0 the image of the straight line is a straight 
line. If Zfvi ^ 0 the images of lines parallel to the vector Kvl are lines.

The equation of the tangent to the curve (60) may be written on the base of the known formula

Y - y  Z - z (62)

From Equation (60) it follows that

AKy
YT =  cos« + sin(#5 —2'»)-(- ~ - [ A VIcosi?6 +  2Zrv cosMcos(#5 —m)], 

G G
A K v T

(63)
Z'T =  sin«H------l--co s (# 5—2m) +  —  [/Lvrsin#6 +  2Zi:v sinMcos(M— #5)].

G G

K5=0

Fig. 13. The image of a square, if the vectors K y  and Fig. 14. The imago of a square, if K y  =  0. The images
K y i  have the same directions themselves as the of the sides parallel to the vector K y i  form the parallel

y-axis linos and those of the sides perpendicular to K y i ,
form tivo parallel parabolas

For the angle δ between the tangent described by the formulas (62) and (63), and the line of the 
Gaussian image we have

AK*x T K ·
sind =  -^ ^ ^ cos  ( « —#5)H-------^ - [s in (#6

G G
■M)]. (64)

The formula (64) shows, that for Ztv =  0, the tangents to the curve (60) at the point nearest 
to the coordinate origin are not inclined. Also the images of lines perpendicular to Ky are not 
inclined. The tangents to the curve (60) at the origin of coordinate system (T =  0, A =  0) are 
not inclined, too. The vector ZfVI causes a “ curvature” of the line image and Kv the “ inclination” 
of the image.
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The Figure 11  represents a square with its diagonales and symmetry axes. The Figures 12 
to 15 present the images of this figure in some different special cases. The images for the case 
JiVI =  0 are illustrated in the Figure 12. The image of a square is a trapezium. The images of 
the straight lines perpendicular to the vector KY are parallel straight lines. The Figure 13 shows 
the image in the case KVI =  —2KY.

The Figure 14 illustrates the case Ky =  0. A set of lines parallel to KVI produce a set of parallel 
lines as the image. If a set of parallel lines is not parallel to vector KV1, then their images form 
a family of parallel parabolas.

The axis of symmetry of the Figures 12, 13 and 14 is the y-axis which is the direction of the 
vectors K v and JiVI. On the Figure 15 both the vectors differ from zero and do not exhibit 
any symmetry.

Z

Fig. 15. The general case of the image of a square

Decentred plane

The foregoing formulas relate to a system of decentred spherical surfaces. Their modification 
for plane surfaces is not difficult.

The Figure 16 represents 
surface in its vertex. On the 
formula (11 ) or (16) we may 
normal

No,x

*0.υ

*o,.
The angle between this 

reference is

η pd sin

the normal A0 to decentred 
base of this figure and of the 
write for the cosines of this

= 1,
= QCV1

= QCz·

normal and the axis of

=  QC.
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As it is shown on the Fig. 16, if ρ -> 0 then c oo, but the product η =  gc remains finite and 
is the measure of the decentricity for the spherical and plane surfaces. Substituting in all the 
equations the product qc by the magnitude of the angle η we obtain the formulas valid for the 
decentred planes.

Object at infinity

In the foregoing considerations it was assumed, that the object and the entrance pupil were, 
at a finite distance. The formulas deduced above can be easily transformed to remain valid for 
the object infinitely removed, as will be shown on some examples. We have only to replace 
the object coordinates by the coordinates of its perfect image according to the formulas

, n'σ' ησ
L =  L0------; G =  —7—7 »

ησ η σ

J =noo)(p — s) =  η'σ'«>'(jp’ — s’ ) .

In the formula (37) we have to introduce only slightly different factors

, 1 0>H
« m  =  7 7 « i i i  =  ^kQk^iu.ki G J n

« iv  =  G « i v

The semi-axes of the ellipse are now (41)

£1,2 =  [ « i v cos(v— 9t) ± K in\ML,.

The formulas (50) to (55) will remain valid for the object at infinity, if we substitute Kjn and 
K IY for Km and KIV and

η ω σ

for
Instead of the vectors KY and / iVI we have to introduce the vectors KY and KY1, defined as

1
K v ~  ^  K*v,

, 1
«VI =  7 2̂" « v i  ·

(1

Instead of the straight line in the object plane (59) we examine a straight line in the plane 
of the perfect image

L'0 u =  — A 'sinw+T'cosw.

With respect to the small changes the formulas (56) to (64) remain valid for the object at 
infinity. Formula (64) becomes

sin<5 =  A' AvCos(#— &S)+T ' K Y1sm[&6 — u).

In a similar manner all the relations can be transformed so as to remain valid for the case 
of the entrance pupil lying at infinity. However, that case will not be considered in detail.
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Conclusions

The aberrations of decentred systems have been examined under the assumption, that the 
decentrations are not great and reduced to the displacement of the centers of curvature of the 
refracting surfaces in the direction perpendicular to the axis of reference. In reality, the optical 
systems are built up from lenses, which undergo pure decentration and tilts. In this second case 
the displacements of the surface will not be exactly perpendicular to the axis of reference. It is 
easy to show, that the longitudinal components of the displacement are not great and are pro
portional to the square of the magnitude of vector c, which have been omitted in our consider
ations.

The comparison of the numerical results of the ray tracing with the second order aberrations 
shows an astonishing agreement of results even for the systems with large apertures.

06 a6eppai|HHX He3HaiirreJii>H0 HeueirrpHHecKHx chctcm b οδ-iacTH 3eiiwjia

OnHCbiBaeTCH a6eppauna „BToporo”  puna, b o6nacxn 3eitaejia cjienca HeueHTpMHecKoii CHCXCMbi, λκιικηηοη  chm m ctphh , co- 
CTOBiueii H3 hcuchxphhcckhx οφερΜΗεοκκχ h iuiockhx noBepxHOCTeii. OnpcaejwcxcH mecTb BeKxopHbix a6eppauHOHHbix κο3φφκ- 
UHCHXOB. BeKTOpbl 3TH o6pa3yK)XCH JTHHeHHOH Cynepn03HUHeft BCKXOpOB HeueHTpHHHOCTH CKaJIHpHbIMH a6eppai!H0HHbIMH Κ03φφκ- 
UHeHTaMH. Jlerxo mobcho BbiHHCJiHXb CKaaapHbie aSeppauHOHHbie κοοφφκιΐΗεΗΧΜ oxaejibHbix noBepxHocxeit, ecjm H3eccxHbi a6ep- 
pauHH 3-ro p»ina aHajiorHHHOii uchxphhcckoh chcxcmm. Βεκχορ Kj onpeflejinex ,,6neHne”  H3o6pa»ceKH!i. Βεκτορ K n  onHCbieaex 
KOMy, nponopuHOHajibHyio Keanpaxy anepxypbi. A6eppauHH, nponopnHOHanbHbie npomBCflCHHio ΒεπκΗΗΗΜ anepxypw h noun, 
onpe«eJWK)T flea BCKXopa. Βεκχορ Κ χ π  mobcho Ha3eaxb βεκχοροΜ acxwxMaxH3Ma hjih ,,KOHycHocxH”  noeepxHOCXH. Βεκχορ K"jy 
orrpeaejTHOx HaKjioH njiocKOcxw H3o6paBceHHH. ^HcxopcHB xaBHcnx ox fleyx ΒεκχοροΒ. Βεκχορ Κγχ οπρεπεΛΗεχ HCKpHBJieHHe, 
a Βεκχορ Ky — HenapajuiejTbHocxb H3o6paBceiiHa npKMbix.
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