
The Fifth-Order Fieldaberration Coefficients 
for the Spherical Surfaces

M i r o n  G a j *

In a paper published in Applied Optics [3] the wave aberration for sagittal focus for arbitrary surface of 
rotational symmetry has been carried out and then rearranged into three terms which, in the Seidel region, 
go over into astigmatism (the first) and into the Petzval curvature (the second) while the third disappears. After 
simplification for the spherical surfaces they can be used as basic equations. In the present paper the formulas 
for the parameters of a given principal ray and the paraxial sagittal quantities Hs, h„, with accuracy to the fifth 
order were derived. Substituting them to the basic equations and recalculating simple relations for the fifth order 
fieldaberration coefficients were obtained. The limits of these relations when h -> 0 have been discussed.

Let us take an astigmatic beam from an object point Q,(0, η and denote the intersection 
point between the first surface and the principal ray by l\(yl , Zj). It should be emphasized that 
the principal ray is here defined as a ray passing through the center of the aperture stop from 
which the meridional calculations are carried out in both (image and object space) directions.

By analogy to the paraxial aperture angle u usually defined as an angle between a marginal 
ray and the optical axis we introduce the paraxial sagittal aperture angle us (Fig. 1) defined as 
that between marginal ray in the astigmatic beam sagittal section and the principal ray. Using 
he same analogy, h„ denotes the paraxial sagittal height of incidence understood as the distance

of the astigmatic marginal ray intersection point (sagittal section), in the surface from the principal 
ray. When the principal ray approaches the optical axis, both us and Jis go over into the corres
ponding paraxial quantities [I]. We shall need the direction cosines, they are also shown on 
the figure (Fig.l).

In the paraxial region none of the quantities (h or u) are strictly determined. Only the ratios 
of heights and aperture angles, as well as height to angles, are determined. The same may be said 
about hL. and To avoid that either one of the angles or one of the heights is usually normalized. 
For our purpose it will be convenient to assume the paraxial incidence height and the paraxial 
sagittal incidence height equal to each other in the stop space [1]:

U's)d — h<i ·
The invariant l )s

A  =
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was used [2] to calculate the exact formula for the wave aberration in the sagittal focus of an arbi
trary surface of rotational symmetry, ds denotes the distance of the projection of the sagittal 
focus on the optical axis from the curvature center Cs corresponding to the given incidence height 
of the principal ray y

&.[N(_HIHS)WS\ =  ~  A  ΓζΔ (μ.,) +  Λ.,Δ(^) +  ^  hA(nus){\- 2C -r sceos£)l, (3)

where
= /ê ')-/(*),

H =  nut7, A  =  ni,
η =  distance of the intersection point between the image plane and the principal ray from 

the optical axis,
i =  incident angle of the paraxial aperture ray,
(0 , Μ , N) =  direction cosines of the principal ray,
x =  distance from the projection on the optical axis of the point of intersection of the principal 

ray with the optical surface to the surface vertex,
G =  angle between the optical axis and the normal to the surface at its intersection point 

with the principal ray,
Ws =  wave aberration of the sagittal focus understood as the distance between two spheres 

passing through the intersection point of the principal ray and the optical axis and measured 
along the ray of the astigmatic beam, the spheres centers being located in the point of the inter
section of the principal ray with the focusing plane and sagittal focus, respectively.

The expression Hs =  nusys (where ys is the distance of the sagittal focus from the optical axis) 
is an invariant discovered by Η . H . H o pk in s  and is a simple generalisation of that attributed 
to L a g r a n g e -H e l m h o l t z . Equation (3) is written for one surface; the general equation for the 
whole system may be obtained on the basic of the relation

Nk{»k*kVklB,)(W'.)k =  ^ *+i(»*+i**n ij*n /^ «)(Mr.)*n· (1 * * 4 * * * 8)

The corresponding equation for a system of p surfaces will be

1 v
N ^ B l i W X - N ^ W ^  =  2 Π° Σ  A M t i \ M  +  (h ) i\ (N )V f

1=1

1 PΊ+  — AjAj intOtl— ZjCj—(ra),c,cosGJ. (5)
“ i=1

Usually the calculation is easier when computing first for one surface and then for the system
of p surfaces. Equation 3 will be the basic equation for futher considerations. The quantity Δ (μ„)
may be expressed by invariant Ha and the paraxial sagittal height hs. Using the geometrical 
properties of the astigmatic beam and invariancy of Hs after a few recalculations we get [3] three
terms: the first of which, in the Seidel region, goes over into astigmatism, the second into the 
Petzval curvature and the third disappears

8 =  (2zlyh)BBshhscosOA.(lln) +  2(Ahsly)(ycosG-\-zsin(r) A (cos/),

K  =(2zlyh)HHsA [ - { l l n ) ] ,  (6)

F =  —(2zlh)AsBhA(lln)-\-2(Ahsly)Bs&(lln)(ysinG — zcosB),

A(WS) = ± ( K + S + F ) ,  (7)

where
W, =  NHWJHs; Bs =  » s in /.
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The above expressions (Eq. 6 and 7) were used to calculate the fifth order fieldaberration 
coefficients for the spherical surfaces and it was assumed that the diaphragm is not in the tangent 
plane of the surface. For the spherical surfaces it is easily seen from the figure (Fig. 2) that

sin# =  cy, cosG =  1 — zc; c =  —.
r

ysin#—zcos# =  cy2—z(l — cz) =  c (y2+ z 2) — z =  z. (8)

The last relation follows from the equation of the spherical surfaces with the vertex in the 
origin of the coordinates axes. Analogically we have

ycos(7+ zsin# =  y. (9)

In the Equation (7) we have still an unknow quantity A s

A s — nis =  n(hsccos1 — us) , (10)

which can be obtained from the invariant Hs,

Hs =  nu,yK =  nus(y +  Ms) =  nuay-\- nhsM =  ny(hsccosI— is)-\-nhsM , 

where u„ we calculate from the (Eq. 10).

H„ =  nhsyccosI — yAs-\- nhsM  =  nhssmGcosi— yAs— nhssin U
=  nhss\nGcos I  — yAs— wAs(sin #cos/— sin/cos#) =  nhasm.lcosG— yAs =  BshscosG—yAs, 

where
B„ =  nsinl .

Therefore

As =  - { B shsc o s G -H s). (11)
y

Substituting the relations (8), (9) and (11) to (6) we get

K  =  (2 zl f i)HHs\ [ - ^ ,

8 =  (2zlyh)BBshhscosG A(lln)-\-2(Ahs) A(cosZ), (12)

F  =  (2zlyh)Bshs(Ah-hBcosG)- lrhBHs^.(lln),
where

A =  ni] B =  ni.

The next question that comes to mind is that the exact formulas for the parameters of the 
given principal ray should be replaced by the quantities with the fifth order accuracy. From here
on, l will represent a length, that is the distance from the object plane to the surface (Fig. 3),
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I that from the paraxial diaphragm plane to the surface and L a distance from the diaphragm plane 
to the surface for the ray which makes the angle U with the optical axis. The distance from the 
point P  (P) to the object plane is denoted as — R0 ( — P0). If is easily seen from the Fig. 3 that

M ψϊ η η -  if I 1
Ύ =  tan ( — t/) =  - =

[R0 /<V

V =  »?max-T+  <fy>
0 ζ  τ 1 .

The second term we will calculate for the principal ray from the spherical wave aberration [4].

τ - - ϊ ? ( ϊ - ί ) · - ϊ Μ ϊ - ϊ Η ·
where 0(τη) denotes the quantities of order τ" and higher.

For the third order aberration

W =  ' s y .  
8 1

Therefore

where
\B0 H0j ηη„

dW
dr

- 2— 3rx· =  -  
2πηιηΛΧ 2 Hs

ηήηρ8 =  ιι„η8.

After substituting it into the relation for MfN  we have

M
=  + — ) - - ^ · 3 , Γ · + β ( 0 ,

H Pq \ Vp! ^“ i*

where ηρ =  r ^ mKX.
The above quantities should be calculated with accuracy to the τ4 because for the fifth order 

aberration we do not take into consideration the term equal or higher than τ3. In this approximation

sin 08 
H s

u
H +  0 (t»),

Finally we have

δη

%

1
211

Svts+ 0 (t4).

M
=  +  τ’ + 0(τ5)’ 

Μ 1=  - ϋ τ -  — («i8v + «-§!) + 0 (τ5).
N 2 Η

(13)

When the number of the surfaces is t then the symbols Sv and St denote

Sy =  =  Σ ^ ~  Σ  (14)
k l̂ k = 1 k=l

The second relation results from the definition of the principal ray. On the first surface =  0 
only if the center of the acting diaphragm lies in the vertex of the surface. The second term must 
be substracted for every surface and it is more convenient to calculate it separately and subtract 
afterwards.
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because

From the expression (13) it is easy to calculate M  and N with accuracy to the τ4. At first we 
calculate Μ [1]

M  =  ( M I N ) ( l - M 2)112 =  {MIN) |l * Jtf2- *  Mx 

=  i i 7 / i v [ \ -  1> ( M I N ) 2{ 1 - M 2) - ~ { M I N ) * ( 1 - M 2)2̂

= {M/N)| "l- A(ΜΙΝ)2 +  ^ (Μ ΙΝ )2Μ2- 1- (Μ ΙΝ ) χ+ 0 ( Μ ' ,)\
2 8

=  ( M l N ) [ l - A  (ΜΙΝ)2 +  ~(ΜΙΝΫ+0(Μ<·)] ,

-^ (M IN fM 2 =  A (MIN)x( i - M 2) =  A  (M /A )4+  0 { M 6) . 
2 2 2

Using the relation (13) and recalculating we have

M =  —ut-\- 2 n  {uSY-\- m$ j)J(m$ v  +  io § j)J  t 3+  0 ( t 5) .

Dividing the expression (15) by (13) and recalculating we obtain a relation for N.

N =  1 - i[
Ίί — 3 I

u 2τ 2+  —— {uSv -\- u S i------ H m3) t4 -f- 0 (t6).
H  4 1

(15)

(16)

All the quantities in this and following relation are the paraxial ones. The terms with τ2 are 
connected with the third order aberration, those with τ4 with the fifth order respectively. Now 
we want to find formulas for sin 7 and cos 7. It is easily seen from the Fig. 3 that

. f L - r  l—r . _  R „ - R n .sm i = --------sm(7 = ------- sin(7-t--------------sm(7
r r r

and
L =  l — R0 =  l—R0-\-R0—R0 =  l-\-R0—R0. 

Substituting ( -sint/) by JI7 from Eq. (15) we get the formula for sin7

- l — r 1 _ _ _ I 1 / 1  1 \ _ _
sin7 = -------ut-\----------(uSv -\- uSt—Hu3)t3 M—  I ^----------- j fi0120sin U

r L 2 H J r \R0 R J

=  (Se—δ )Γ τ+  ^ - { S y - H u 2)T^
l—r _ 1 _ sin U (Sj

- n u n τ·ι +  -  '<*V3-  R0R0- _-2— . ,
2rH r 2 nV2max

where

h =  ul; sin U = ---- _ =  — Vnmx' T
R ο T20

he =  <7; u +  i =  g.
Therefore

- - Ϊ _  Srsini =  ix-\------- {Sy—Hu2)t3-)----------
2H v v ’ 2rH [(l—r)u-\-R0u]x3-{- 0 (t5

=  ir  + 2 H ( S y - H u 2)T3-{- (nS,I/27f)(/ic— w) +  0 (t5)

=  »τ-f-- —  ($v— 71m 2)t3-|- - —  <SjT3-|-0(τ5) =  ir----- (Hu2i — iSy— i^I)T3+0(r5). (17)2H 2-Π 2 H
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For cos/  we will use the identity

cos I =  (1 — sin2/ ) 1/2

After some recalculation with the accuracy to the 0 (τ5) we obtain
.  i ,  i .  _  ϊ  ,  t

u*i — - i3 — — (i'/Sv+i'Sjjl^+OCr5).
- I .  i

cos /  = 1— i2r*4-2 2 H J
(18)

The relations for y and z will be obtained in two different ways, each of them being a kind 
of check for the other. To start with the first way let us take, from the point 0, the bisector of 
an angle between the radius r of the spherical surface and the optical axis. It cuts the secant AB 
at the point D (Fig. 3)

1 +  0  1 — 0
< A C D  =  K A B =  — —̂ ,

AB  =
cos -

y
1+0

L sin U 
l — U

cos
2

Therefore
_ _  u + i
L sin U cos--------

< U - I  cos | U —
y  = U — l

=  Lsin V —  — »
cos cos U +  I

-  _  _  I —U _
=  Asin 17cos U — tan sint/,

2 ’

tan

1—0  I - U
- — sin - c o s -------
I —U 2 2 sin ( / —tf) sin Ϊ cos U — sin U cos I

l —U 1 —0  l  +  cos(/ —17) 1 -f cos/cos 0  +  sin /sin0  ’cos--------cos--------
2 2

y =  Asint/cost/ — — A sin217 (sin /— sint/) +  0 (τ5) =  hinU cosO— — l sin2// (s in /— sint7) +  (R„— R0). 
2 2

sint/ cos 0  +  0 (τ5),
since

(it0—it0)sin2 t/(sin/—sin/7) =  0 (τ5).
2

We want to find R0—R0 with the accuracy 0 (r ‘ ). Because sint/ =  0(τ) we have

j/J0.R0 =  2 ^1-̂ 0 R)t2i
_ / 1

R0 — R0 =  I _ ,
\^o Z2,/

. _  _  1 _ _  . _  /tnitnsint7cost/_
y =  (sin t7cos U ----- lsin2 U (s in /— sin U)----- — , -

2

With the help of the relations (Eq. 15-17) we will obtain

y =  ϋτ +  —l Γ — 2m3+  -  (u8v -\- m^ t3] — /ΰ2τ2(ϊ— u) +  n(l— 1)(8τΐ2Η)τ3+  0(τ5)
Η

A r - ^Awgr— ^ (^Sv +  7i$i)jr3+  03+ 0 ( τ 5). (19)

The following expressions were used above:

//max 'mRq'i H 
A =  hr, h =  lu·, 

it =  M+ Ϊ.

( 20)

44 Optica  A pplic ata  I, 1



The second way will consist in derivation of the relation (19) from the equality ay =  sin6' 
(see Fig. 3).

ay =  sin/r =  s in (/7 + /) =  sin i7cos/+cos Usinl =  — AT cos/  + A sin/.

After substituting the expressions for the Μ, N, sin/, cos/  and a few recalculations it may 
be obtained

_ _ i  Γ „ _  i  1
ey =  9* -9T~  g  [ 92u~  Xfl (££v +  ff$r)J τ3+ 0 ( τ η . ( 2 1 )

Therefore

y =  Λ τ -  ̂ ^  (Ϊ0ν+ *#ι)1 τ3+ Ο (τ5).

The expression (21) may be used to calculate sin(?. The equation for z may be obtained (see 
Fig. 3) from the following relations

U + I  -3 =  i / t a n -----  or zc =» 1 — cosCr.

In the same way we receive:

z =  -* £T2 |a, + A fif2—A<7« +  ^ (hSY-\- A.S’,)j τ2|τ* + 0 ( r s). ( 2 2 )

Expressions for K , S and F  in (Eq. 12) all contain the term (2z/y). This term may be obtained 
when dividing relation (22) by (21). After a simple recalculation

2z i n  - i  - 1 , r
9τ +  1̂ ., « )+  H (ff'S'v +  ^ '^J τ + 0 (τ ). (23)

The quantity cosCr may be received from the relations

cos G =  1 — zc
or

cost? =  (1 — sin26?)1/2,

i .  A m
2 \ [I

1
cosG =  l — --gT2\g-\-\-t h2g—h2u +  -  {gSy +  gS^ τ η  + 0 {ts). 

I
(24)

In the Eq. (12) we have the difference between cos/ after and before refraction

A(cos/') =  cos /' —cos/.

t t
Calculating cos /' we have to use the expressions for £  (SY)k and JC (SI)k, but these would be

λ·=ι k 1
not convenient for computing and programming. We could avoid this difficulty using the law of 
refraction %'sin/' =  n sin/

- «  I- t Γ - 1 - -  1 1sin/' =  — j»r — (> |u2* -  ^  (iSv +  nS’jjJ r3j -f 0(rs),

/ ' =  ( 1 - s in 2/ ')1'2 =  1 — * | ”, | |i2r 2— ι [^ 2i ^  (uSv +  iSt) — * | ”, j  i 3J t 4J + 0 ( τ6).cos 1 =  

Therefore

A(cos/) -  [ ( ” ,)*—ί ]  {*·τ*— ·[«■ *— * +  ϊ3- ^ ( ^ ν +  ^ ι ) ] τ 4[ + 0 ( τ 6). (25)
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We still need the expression for hs and Ha. The quantity Hs is an invariant and we can choose 
for calculations any space. The most convenient is the stop space (hs)d =  hd. In the plane of the 
diaphragm y =  0 and h =  0

Hs =  —  nd(hs)dMd,
Hr =  ndhdud.

Dividing these two relations we obtain
— d

Hs =  ~ H r ^ =  Hr {l * [u*d+l-  ~  £  ^ν)*]τ2} +  0(r4). (26)

Denoting

V a — ud+1 ~  ~

d

k= 1
we have

Hs =  Hr jl —  ~  Vdr j .

(27)

In the formula we have not any term with Sd because in this space <S’7 is equal to zero from the 
definition.

A more complicated task is to derive an expression for hs. We shall start with the calculating 
of the quantity ηΙη8 (Fig.4)

N- l—z+y-arη M

Vs N
l - z + y - - -  +  dSN

Now we recalculate the left side in the following manner:

V VP+  by ηρ δη-1-- -fci Vp δη

Vs Vs Vs Vs Vs Vp

N
l— z + y - _

δηVp M

Vs ' s
l ~ i + s S

+  6SN Vp

From the definition of the Hs and H we have
Hr nu7)p 
Hs nusr}g

Therefore

m.
HgWl]p
Hrys

(28)
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After substituting the relation (28)

H.u
Η τ

N
l — z 4- y -  —  

u M

l—z + y ~  +  dSN 
M

δη

Vp
(29)

It is easily seen from the Fig. 1 that

(' l—z \ n .u  it — z
.Tr+")" -ffrh r+“

\ H.u I I - z
*)'

l - z + y
N
M δη

N _ η
l — z-\- y~=- +  6SN 1

Hs(h — zu) 
~ E tW ~ 1 +

N2dSy

M \ ( l - z ) { l - z + y ^  +  68N)f|(Z

δη
Vp

(30)

We omit the small term <5$ δη. In the relation for K, S and F  the term hs is multiplied by the 
factor τ2 and it is sufficient to calculate it with accuracy τ3. The quantity δ8 is of the order 0 ( τ 2). 
How, we calculate the second term in the bracket

N2y6S N2y68

M(l — z) |l — z +  y-^-  +  68Nj
Μ (l -  z)2 +  yN(l-  z) +  M(l -  z)Νδ8

Ιδ8τ +  0 { τ5) hdS+0{r*)
— ut12-\- hzl-\- 0 ( τ3) — ul2-]-hl-\-0{T2)

The aberration δ8 may be calculated from the following relation [1, 2]:

VI' = -----nuu.dS— -s 2 s H
Therefore

68 =  -
2 HW.  
nuua Hs

The quantities H, Es, us and Wa can be estimated from the following relations [1]:

Η =  ηΐιη — ηη(η-\- δη) =  Ητ-\- 0 ( τ2),

E s =  Η τ + 0 (  τ2), 
ua =  0 ( τ 2),

=  1 ($ ι ι ι + $ ι ν ) τ2·

After a few manipulations it may be obtained

68 =  -  Sl n ±  8 ^  τ ».
2 nu*

The equation (30) may be rewritten as follows:

2 nh(hu—hu)

With the accuracy 0 (τ4) we will have

Η 8 Ιιτ+ 8 ιν)τ2 + 0 ( O  =  _  M S ^ + S iy ) τ2+0(τ<)<
2 hH

- -p j jS y J + O i  T4).
Vp 2H

(31)

(32)

(33)

(34)
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After substituting the relations (33) and (31) to the expression for A, (Eq. 30) we obtain

Hs(h — zu)
" s ΗτΝ

1 —
ft($m +  ^iv +  \

ft \

2 Hh
+  0(  τ4)

1 _
=  ^  |a— A1P +  * (hsn i+  hSIV+hSy)  | T2jhSlv -\- hSv) τ2> +  0 (τ4) (35)

or

ft, = ft -  ijftgrH —  huiJr A V(l -)- [A (^iii + 'Siv) +  ft>Sy]1 τ2+ 0 (τ4).
J

(36)

Thus, we have calculated all quantities which are present in the Eq. 12. In expression 
for K,  which is the simplest and also in the expressions for S and F we have the term Hs (direct 
or trough fts). Substituting (Eq. 27 and 23) for Hs and (2z/y) we receive

κ  -  «·<·λ ( - i W i - 1  » > . ) { ,  +  5 S ,)]**}+<>(,*>

" ri( Ϊ [a 7 7 * ‘ i  (*v+ SS‘)]| "
We shall now calculate explicitly the expression for F. It is given by

4 + 0 ( τ 6). (37)

2 z I 1 \ _
! -\H„=  —  Δyh \n I

ft, _ _B, - - ( A h  — hBcos(?) +  ftB 
H, ]·

After using the previous relations for 2z/y, B s, B, =  nsinl,  ft,, cost? it may be obtained

F —*1Γ4 (ϊ)-(1-  2 ν-'’){1+Μϊ,(ϊ- 8) + 1 Κ +ϊ 4 ]Ι X
X  ill  ( t —  i  [U2i~ / /  ( ^ v + ^ i ) ]  r 2J | f t —  y  [ f t ^ M — f t S 2 + - ^ r  ( S B m + S B I V + A B v ) ]  τ 2|ft£v)]r2J X

ft _ 1

■> - H l t +

+  0 ( t‘ ). (38)

X |hi —  fti M - * 02r2j| + h i )  +  0 (τ6) =  ^ n g A  | 'J  |grt(niftgf+ « # )  +  i(Bm +  BIV)— -1 i

In this relation we have no term with τ2, because F  is a disturbance expression which 
vanishes in the Seidel region.

The last relation may be obtained from the following formula (Eq. 12)

2z2 z -  11\ -
S =  BBshhscosGA (—) +  2Aft, A (cos /),

yh \n/

S =  ^2δ |^| ir2 |ft—ij^ftgw—ftS2+ A F d+ (hSIU +  ft^IV+  A$V)J r2| (ch |l +  ^ ^

+  - ί ( « ν +  * * ) ]  τ2| |i— * ^ 2t— -^ ( iSy+iSj)

t

u) +

(- Γ_ Ί 1
X Ϊ7 — u2i ------

1 L 4
1 n\2

+ 1v  I
i3— -^ (iB y  +  i^ jJ  T2| +  Ο (τ6) .
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After multiplication and simplification using the refraction law it may be received with the 
accuracy to 0 (r6).

8 =  η2 A |  ̂j  if-/ —hi(u— i')+ -  j  — hiu2(i -f i') — - h g 2i(g-\-2ii) — (u—i') i(hVd-\-hgu) —

~ ’ *(*'+*') +  1 *  +  - ^ [ » ( « - i ')(A'Sfv - i S i v - ^ m )  +

[ i ( u ~ i -2 i ' )  +  q/jSx Jt2̂ ) + 0 ( t6).+  h I i (u — i 
\

This relation may be simplified by using (Eq. 38) for F

I". nhggil
[ « J

' — i 

1
H

Γ 1/» \- I
r ! - ;(-  +1|»2 » /  J

i(ii — i')hSw — hi(i +  i') — hig) -

). (39)

hg2 i(g -\- 2u) — hi(u —  i') x 

i ( u - i ' ). _ h _ Π1 \ n r i ( u - i ' )
1 )-*t.g) -  ~ H—  F + 0 { t6). (40)

In the previous expressions for K, F  and S we have three terms

r

i>

h =  h(i +  i'), 
i =  ί(ιι— Ϊ) ,

which may be used for further simplification

(41)

K  =  _//ΐΔ(^)τ2< !1 + 2 («ν+«ι)]τ*}+0(τ6),

1- / 1 '
F  =  -  ngA I - )  F{gl (n'ihg +  Hu) +  i (<S'rlI +  S1V) -  iSJ + 0 ( τ 6), (42)

/ i v  / . T-1
8 = u2 Δ | — j ΐτ2 ( hi +  — ] — u2ih----hg2i(g-\-2u) hiVd — -■ Λ

2 2 W-
\« /

hhggiin 1
+  1 i3H-------------+  —

Η H
Λ — Λ 1 \ Ί/ΤΤΙ/

(I?(f +  i ')  — 0 ( r 6).

These formulas are not difficult in computing and programming. They are indeterminate 
when the plane of the diaphragm covers with the tangent plane to the surface (both J>> and 8τ tend 
to zero). This is not a serious difficulty because St tends to zero more rapidly than h (with hl) 
and

lim 8j =  0 . (43)
7i>o

We only ought to verify if h is equal to zero and in this case to put 8τ = 0 .
After programming these relations have been used to investigate the optical systems. The 

results are now in preparation and will be published soon.

nojieeafl a66epauiifl V paaa ajia εφερκΗβεκΗΧ noBepxHOCTeii

B pa6oTe, ony6jiHKOBaHHoii b JKypHajie „AnJiaitn οπτηκ” (3), Bbiee/ieHa 3aencnMOCTb bojihoboK a66epaunn carnTajrt>Horo 
φoκyca am  jtto6oh noBepxHOCTH c BpamaTejibHoii CHMMeTpHeii. 3areM 3aBHCHMOCTb 3Ta 6buia npeo6pa3oeaHa Tax, hto 6hjih no- 
jiyneHu τρκ BbipaxceHHH, nepBoe H3 κοτορωχ b o6jiacTH 3eft,ieua nepexoauT β βοτηγμβτη3μ, BTopoe — b KpHBH3Hy IIeT3Bajia,
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a TpcTbC — HcraaeT. 3 th ypaBHemra nocne ynpomemw ctehobjitcji ochobhhmh ajih c(j>epnHecKHX noBepxHocreft. BbiBefleHbi 3aBH- 
chmocth fljw napaMeTpoB rjiaBHoro nyjia h caraTajibHbix ΒβπΗΗΗΗ hs h H s c tohhoctwo flo rorroro paqa.

IlocJie noflCTaBJieHM hx b ocHOBHue ypaBHeram h cooTBeTCTeyiomHX npeo6pa30BaHHft nojiyienbi npocrue 3aBHCHMOCTH 
Hjih κο3φφΗϋΗβΗΤθΒ noJiCBbix a66epaunH πητογο paqa.

Bbrnê eH h o6cyxyieH npeflen BbipaxceHwi, Kopqa Λ -*■ 0.
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