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On Some Properties of the Astigmatic Beam
for a Plane

On the basis of the Hopkins invariant H s =  nus tjs it is shown that the sagittal foci of a parallel plane system  
lie on a straight line perpendicular to the planes. Making use of this property the changes in the displacement of 
sagittal focus and astigmatism of parallel plates with the changes in the plate thickness, refractive index and 
incidence angle have been obtained. The derived relations enable one to study the plate astigmatic foci without 
the necessity to recalculate the path of the rays. Prom these considerations it follows, among others, that the 
farther removed is the entrance pupil from the plate the smaller are the aberrations of the astigm atic beam. It is 
also shown that for small field angles the changes in the astigmatism are approximately equal to double values 
of the change in sagittal focus.

The optical imaging on a plane is relatively 
the simplest and it is easily noticeable that 
there are practically no reports on this subject. 
Flat surfaces are frequently used in optical 
systems; and for this reason any regularities 
found for them are of great value for the de
signers of optical systems. The starting point 
for this work has been the observation that 
the astigmatic sagittal foci for planes per
pendicular to the optical axis lie on a straight 
line parallel to the optical axis, the distance 
between this line and the axis being equal to 
the distance between the object sagittal focus 
and the axis for the first plane. Obviously this 
conclusion can be generalized to apply to 
parallel planes at any angle to the optical axis 
(the sagittal foci will then lie on the straight 
lino perpendicular to the considered planes).

The proof will commence with showing that 
the quantity Hs introduced by Η. H. Hopkins 
[1, 2] remains invariant

Hs --- nu^s,

where
n — refractive index, 
us — paraxial sagittal aperture angle, 
η8 — distance of the sagittal focus from the 

optical axis.
L's (Fig. 1) is the angle made by a marginal 
ray of the astigmatic beam with the beam
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axis. The principal ray is regarded as the beam 
axis in what follows. The angle, in analogy 
to the normal paraxial angle, is not equivocally 
determined because the astigmatic beam is an 
elementary beam. Only the angle ratios are

determined. In analogy to the paraxial height 
of incidence h, the paraxial sagittal height hs 
is also defined as equal to the product of the 
astigmatic sagittal focus distances (measured 
along the principal ray) and the paraxial 
sagittal aperture angle us

K  =  « „ » ·  (i)

Also h8, like us, is an undetermined quantity; 
only s has a direct physical meaning. Besides, 
these relations are identical with those for the 
paraxial image. If, however, we normalize 
one of these quantities, hs or us, then owing 
to equation (1) and the equations for as
tigmatic foci for every surface, all the remaining 
paraxial sagittal quantities are already strictly 
determined. The assumption:

( ŝ)d =  D̂1 (2)
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where
(h8)jj — paraxial sagittal height in the stop 

space,
(h)D — paraxial height of the aperture ray 

in the stop space,
leads to more simple relations [2 ,3 ,4 ]  and will 
be consequently used in what follows. We 
will restrict our discussion to systems which 
have symmetry axis; the systems may be an 
optical system or a part of it. At the beginning 
we shall perform our considerations for single 
surfaces (Fig. 1). As seen in the figure

r\s =  y — ssiniZ. (3)

Hence
Ha =  nuar\a =  nuay — nhasinu. (4)

Let us calculate the change Ha caused by re
fraction on the ft-surface

(H',)k- ( H s)k =  nk{u'e)kyk- n k(ha)ksmuk 
- n k(ua)kyk +  nk(ha)k»muk

=  yk\ĵ ki ŝ)k ^ki^s)k\
-  (ΛΛ [% sin 4  -  % sin %] ·

For the sagittal focus holds the equation [5]: 

nk nk nkGO&i'k — nkGOsik
; , . > (o)

sk sk (rs)k

where
(rs)k — sagittal radius of the curvature for 

a given principal ray.

In the last equation the low of refraction has 
been used

nksmi'k =  nksinik.

Since
n k =  nk+ 1 >

( O f c  ~  i u s)k+ 1 >

( Vs)k i.Vs)k+ 1 ·

Then

{Hs)k =  (Ha)k+1.

By using (8) and (10) one obtains:

( 9 )

(10)

{Bs)i =  d O i =  (Hsh =  ... =
=  (Hs)p =  (B's)p (11)

where p  denotes the number of the last surface 
in a system. Thus the invariant Hg is an in
variant of a whole optical system with rotational

On multiplying both sides of Eq. 5 by (hs)k 
and allowing for Eq. 1 we obtain:

%(««)*-%(“.)*
=  (A « )* ( c e) f c [ » f c C o e » i - » fcc o e * fc] ,  ( 6 )

where

(o.)*
1

('Ok ’

symmetry. For flat surfaces it follows from 
Eq. 5 that:

nk{w'a)k- n k(ua)k = '0. (12)

This condition together with Eq. 11 leads 
to the relation:

Vi =  Vi =  Vi =  ··· =  v'p- (13)
As seen in Fig. 1

yk =  (Ok sin£*> (7)
9k  =  Uk +  ik =  u k^~^k·

By using equations (6) and (7) it is easily seen 
that:

(Ha)k- ( H s)k =  (ha)ksmgk(nkcodk
— nkcosik) —
-  (K)k K (sin  gkcod‘k -  cos j7*sim*)
- n k{8ingkGodk-GO&gk&inik)] = 0 . (8)

From Eq. 13 it is seen that all distances of the 
sagittal foci from the symmetry axis are iden
tical for flat surfaces. So, if a system or its 
part consist exclusively of planes parallel 
to each other, then all sagittal foci lie on one 
straight line. This can also be verified starting 
from Eqs. 5 and 9. Let the straight line SS' 
be parallel to the optical axis (Fig. 2). As 
seen in the figure

s s' s' sim n
— = T  =  or — =  — 7̂ —  .sim sun s sim n
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The last equality follows from the refraction 
law. Thus we have

s n
(14)

matic sagittal image focus S' is thus determined 
by the intersection point of a normal to the 
plate, passing through the point S, and the 
image principal ray. In Fig. 3 the interfocus

which corresponds to Eq. 5 for planes. The 
meridional astigmatic focus satisfies this rela
tion in two trivial cases only (t =  0 or n' =  n). 
In other cases the meridional astigmatic focus 
does not lie on a straight line.

The derived relations will be applied for an 
investigation of the astigmatic beam behaviour 
after it has passed through a parallel plate.

Pig. 3

This problem is of a fairly great practical 
importance due to the fact that the prisms 
used in optical systems are equivalent when 
expanded to parallel plates. Let a plate and its 
surrounding medium have their refractive in
dices n' and n respectively. Let us assume n' ■ n.

optical a in

At the beginning a formula will be derived 
for the distance of the astigmatic sagittal focus 
from the ideal point image (Fig. 3). According 
to the previous derivation, S’ must lie on a stra
ight line perpendicular to the plate and passing 
through the point S. From the properties 
of the astigmatic beam it is known that the 
point S’ lies on the principal ray. The astig-

Fig. 5

distance is denoted by x. From the triangle 
ABC one obtains

x d
· 7̂  tTT *Ts in ( i - i )  cost sini

Hence on rearranging

x =  d 1 —( ncost \
i -  - — Λ

n cost /
(15)

The displacement for a nonaberration image 
would have the value

The equation 15 for very small incidence angles 
goes into the familiar form (16) which ex
presses the paraxial displacement for parallel 
plate. The displacement of the sagittal image 
focus, later on referred to as displacement, 
relative to an ideal image equals to

As seen from Eq. 17 it is proportional to the 
plate thickness. The change of the displacement 
with thickness will be given by:

, , ,  n cost
Ad{ x - x p) = Δά — \ 1 -------—n \ cost (18)

Before examining the displacement dependence 
on the refractive index and incidence angle, 
the change of astigmatism will be calculated. 
This will allow us to study the changes in both 
the sagittal and meridional foci. As follows 
from (14)

, n'
*i =  «1- ,n

S 2
, d

— *1 w
COStj

n'
=  —n

d
cost! ’

n d 
n' cost, ’

(19)
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In analogy for the meridional image focus, 
from the condition

n ' cos2*' wcos2* **'cos*' — wcos* 
V t r

(20 )

one obtains
, nco&2il 

ti a — .
n cos t,

(21)

For simplicity index 1 will be ommited in what 
follows, this implying the following assumption:

The first term equals to zero if an object is 
placed just before the plate. This term equals 
to the change in the system’s astigmatism 
with the change in the field angle if there is 
an optical system or its part, before the plate. 
The purpose of our considerations is to 
estimate the changes in the plate astigmatism 
which is expressed by the second term in Eq. 
25. Since

sin * cos * 
COS »

>  0 ,

ll =  l lj =  t .

From Eq. 19 and 21 one obtains: 
dn

U - s ,  =  t - s -
I cos2 i 
I---- - 1n cos* \cos"t

the following expression decides the sign of the 
change in astigmatism :

(22 )

or

t2 — $2 — i i  '
dsin2* η Γ

3:iCOS'* i - m
» L \» ' / J

(22a)

The astigmatism changes also linearly with 
the plate thickness. The change can thus he 
expressed by

2 — $2) (23)

Now we shall examine how the displacement 
depends on the incidence angle *

d ( x - x p)
di

n d /cos*\ 
-d— - ~  1

n' di \cosi'l

, nsin* ΓI n \2 ~\
- - d

(24)

n’(cost')3 l_\w

As easily noticeable, it is also positive. Thus 
we have shown that with increasing incidence 
angle the displacement and astigmatism both 
increase, and consequently both foci depart 
from the ideal image given by the plate. If 
the rest of the optical system allows it, the 
diaphragram should be placed in a way which 
gives the maximal possible distance from the 
entrance pupil to the parallel plate. Let us 
displace the diaphragm by a small distance 
da and calculate how much the incidence angle 
will change. As seen in Fig. 4

V - - -‘ - di =  dasin(& +  di) =  dasini. sim

In the last equation we have neglected a quan
tity of the second order of smallness. Hence 
the calculated value di is

The expression in the bracket is not positive, 
and hence the displacement increases with 
the incidence angle regardless of the plate 
thickness and its refractive index. The varia
tion of the astigmatism with the incidence 
angle is the following:

_ sin2i 
di — - da .

y
(26)

The variation of the displacement and asti
gmatism with the diaphragm position will be 
obtained from relations (24, 25, 26)

d(t’2 — 8,) d(t — s) nd
di di n'

d(x — xv) _  d{x — xv) di 
da di da

x

x

X

d(t — s)
di

nd
n'

(25)

=  d
n sin3*

X

n y cos

d(t'2- s ' 2)
da

^ - £ ) ] (27)

nd sin3*cos*
da */cos3*'

n . , - 1f n '2 + —  sin2! 3 - 2  —n ' n’
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Now we shall calculate the change of the 
displacement and astigmatism with a change 
in the refractive index. In order to simplify 
the resulting formulae we introduce the fol
lowing notation:

n
6 sin2*.

For displacement

d{x - x p)
dz

cos* \~|
-  6z2/J

cos*
cos*'

sm2*cos*l
cos3

l= 11
\

cos* \ ,
----prl «·
COS' * I

(28)

For z =  1 this expression is negative regardless 
of the incidence angle * (excluding * =  0). 
For other z values it is negative if cos3* <  cos*. 
Since in the considered interval cosines are 
always positive, this inequality is equivalent 
to cos6* <  cos2* which, using the new notation, 
can be rewritten as:

(1 - b z 2)3 <  1 — 6.

On rearranging this inequality takes the form: 

(6 - 6+)(6 - 6_) <  0

where

, 3ζψ Vi- 3 z2
U , = ------ ,----

2Z3

According to our assumption the value of 
z is always smaller than unity. Thus two 
solutions exist, b_ being always positive whereas 
b r positive only for z2 >  1/3 (for z >  0,5778). 
Let us examine whether b . can be greater 
than unity. To this end we will calculate the 
z derivative of b+. On rearranging we obtain

db+ _  - 3 ^ ~ 3 z V i - 3 z 2 +  6 
dz zV  4 - 3 z 2

For the considered values of z (0,5 <  z < 1) 
this expression is always positive and hence 
the function b , is monotonic increasing, as
suming its maximal value b+ =  1 for z — 1. 
The areas with positive and negative displa
cement are marked in Fig. 5. Physical meaning 
can only be prescribed to those values of b 
which lie within the limits 0 <  6 <  1 (the 
dashed area). Since b+ =  1 for z =  1, there

exists no area with positive derivative for this 
value. For other values of z we can read from 
the diagram and equations (29) those values 
of the incidence angles which correspond to 
positive derivative. For example for z =  0,5 
the positive derivative area corresponds to 
all values of the incidence angle. Other values 
can be taken from the table 1.

Table 1

z
The area with  

positive 
derivative

The area with 
negative 

derivative

0,5 0 <  6 <  1 0 <  b <  0
0,55 0 <  6 <  1 0 <  b <  0
0,6 0,21108 <  b <  1 0 <  b <  0,21108
0,65 0,54068 <  6 <  1 0 <  b <  0,54068
0,7 0,74256 <  b <  1 0 <  6 <  0,74256
0,75 0,86436 <  b <  1 0 <  b <  0,86437
0,8 0,93525 <  6 <  1 0 <  6 <  0,93525
0,85 0,94687 <  b <  1 0 <  6 <  0,94687
0,9 0,99245 <  b <  1 0 <  6 <  0,99245
0,95 0,99903 <  b <  1 0 <  6 <  0,99903
1,0 1 <  b <  1 0 <  6 <  1

Now we shall calculate the varation of 
astigmatism with the refractive index

, . , ,  1 + z2(2sin2i - 3 )=  rfsurt----------------------cos *

(30)

Since ----- >  0 for all incidence angles,cos3*' s ’
the sign of the derivative is decided by the
following expression:

G =  1 +  z2(26 — 3) =  2z2

The expression G is not negative if

For z =  1 it is not negative only for 6 = 1 ;  
for 0,5 ^  z ^  0,5778 it is positive for all values 
of 6. The areas of permanent sign are listed 
in table 2. Comparing the two tables we see 
that for different incidence angles (different 
field angles) the change in the astigmatic focus 
position can be in both directions. For z =  0,6, 
that is for almost all glasses when sin2* <  0,1,
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the change in foci position is the smaller the 
nearer to unity the relative refractive index. 
The condition sin2t <  0,1 corresponds to the 
angle i <  19°20', which practically covers the 
whole application range of parallel plates.

Table 2

2
The area with 

positive 
derivative

The area with 
negative 

derivative

0,5 0 <  b <  1 0 <  6 <  0
0,55 0,15289 <  b <  1 0 <  b <  0,15289
0,6 0,11111 <  b <  1 0 <  6 <  0,11111
0,65 0,31656 <  b <  1 0 <  b <  0,31656
0,7 0,47959 <  b <  1 0 <  b <  0,47959
0,75 0,61111 <  b <  1 0 <  b <  0,61111
0,8 0,71875 <  6 <  1 0 <  b <  0,71875
0,85 0,80795 <  b <  1 0 <  b <  0,80795
0,9 0,88271 <  b <  1 0 <  b <  0,88271
0,95 0,94598 <  6 <  1 0 <  b <  0,94598
1,0 1 <  b <  1 0 <  b <  1

It should be emphasized that the change in 
astigmatism is greater that the change in 
displacement, and thus the change in the plate 
thickness is accompanied by the following 
ratio of both changes (Eqs. 18 and 23):

/lw(<2 —s2) 1 / cost \—  — = ---- =— 11 H------ (31)
A(x — xp) cosi' \ cosϊ  j

As easily seen, it is always greater than unity 
and approaches two for small angles. Similarly, 
making use of (28, 30), we obtain (for an object 
without astigmatism)

d(t'2-s'2) d { x - x v)
dz dz

sin2i [ l  +  z2(2sin2t — 3)] 
cosV — costcos2i'

(32)

On rearranging and neglecting terms 
if k >  6, one obtains

sinAi

d (t’2 — s.i). d ( x - x v)
dz dz

2 [1 +  z2(2b — 3)]
1 - 3 ζ2 +  (1 /4 )6 (1 -4 ζ2ϊ-15ζ*)

For small angles this expression also tends
to two. By using formulae (24, 25) we obtain

d(t2- s 2,) _ d ( x - x p)
di di

cost -= ----- ^  [2 -+2sin2»(3 —2z)]. (33)
cos2t'

So, again for small angles the value is near 2. 
As easily noticeable, for i -» 0 formulae (31,

32,33) approach 2. In practice we usually 
have to deal with small angles, and thus it 
can be assumed that the change in astigmatism 
(when estimated) approximately is equal to 
double displacement (of the sagittal focus).

The relations derived above enable us to 
study the astigmatic foci of parallel plates 
without the necessity to recalculate the path 
of rays and facilitate the correction analyses 
of prism containing systems.

Sur quelques proprietes du pinceau astigmatique pour 
les surfaces planes

En partant do l’invariant de Hopkins Hs — nugr/e 
on a d^montre que les foyers sagittaux d’un syst^me 
de surfaces planes et paralleles sont situes sur la norinale 
aux surfaces. En utilisant cette propriety on a 0tabli 
la variation du deplacement du foyer sagittal ainsi 
que de l’astigmatisme de la lame a faces paralleles 
en fonction de l’epaisseur de la lame, du coefficient 
de refraction et de Tangle d’incidence. Les relations 
obtenues permettent d’etudier les foyers astigmatiques 
de la lame sans calculer le parcours des rayons. II en 
resulte, entre autres, que plus la pupille d’entree 
est Eloign ee de la lame, plus les aberrations du pinceau 
astigmatique diminuent. On a demontre aussi que 
pour les petits angles du champ visuel les variations 
de Tastigmatisme sont, & peu pres, deux fois plus 
grandes que les variations du foyer sagittal.

O iienoTopbix ceoucTBax acrurMaTHHecKoro nvHKa 
AJiH iijiockhx noBepxHocreii

Oim paacb Ha HHBapuaHT Γ onKHHca H x — n u si]s ycTaHOB- 
jieHO, hto carnTaJibHbie φοκγοΜ  napajuiejibHbix naocKHx n o - 
BepxHOCTeft jiexcaT H a nepneHgHKyjmpHOii npsMOH. n o jib -  
3y«Cb 3THM CBOHCTBOM, BblBe^eHbl H3MeHeHHH nepeMeiueHHH 
carHTajibHoro φoκyca  h aciHrMaTH3Ma njiocKO-napajuiejibHofi 
njiacTHHKH BMecTe c  H3MeHeHneM TOjmiHHbi njiacTHHKH, ko- 
3φφΗΗΗβΗΤ3  npenoMJieHHS CTCKJia, a TaKxce yraa naaemm. 
BbIBefleHHbie 3aBHCHMOCTH npCaOCTa BJIHKJT B0 3 MOJKHOCTb HC- 
cneaoBaTb acTHTMaTHHecKne nyuKH njiacTHHKH 6 e3 Ηβοθχο- 
Ahmocth nepepacnera xoaa  jiyneft. M3 paccyxcqeHHft bthx 
cneayeT, Mexcny προΗΗΜ, hto ηθμ najibuie pacnonoxceH ot 
njiacTHHKH BxoflHOft 3paHOK, τβ Μ  a6 eppauHH acTHrMaTHHec- 
Koro nyaxa MeHbmHe. yCTaHOBJieHo TaKxce, hto aim Majibix 
yrjIOB ΠΟΛΗ SpeHMH H3MCHeHHH aCTHrMaTH3Ma npH6 jIH3HTejIb- 
ho b λβa p a ia  6 oJibine, neM Η3ΜβΗβΗΗΗ carHTajibHoro φoκyca.
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