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Abstract: Item Response Theory (IRT) is an extension of the Classical Test Theory (CCT) and focuses 
on how specific test items function in assessing a construct. They are widely known in psychology, 
medicine, and marketing, as well as in social sciences. An item response model specifies a relationship 
between the observable examinee test performance and the unobservable traits or abilities assumed to 
underlie performance on the test. Within the broad framework of item response theory, many models 
can be operationalized because of the large number of choices available for the mathematical form of 
the item characteristic curves. In this paper we introduce several types of IRT models such as: the 
Rasch, and the Birnbaum model. We present the main assumptions for IRT analysis, estimation method, 
properties, and model selection methods. In this paper we present the application of IRT analysis for 
binary data with the use of the ltm package in R.
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1. Introduction

Item Response Theory shows the relationships between the ability or trait (θ) 
measured by the instrument and an item response. The item may be dichotomous 
when we deal with two categories, or it may be polytomous for more than two 
categories. Since traits are not directly measurable, they are referred to as latent traits 
or abilities. An item response model specifies a relationship between the observable 
examinee test performance and the unobservable traits or abilities assumed to 
underlie performance on the test. Within the broad framework of item response 
theory, many models can be operationalized because of the large number of choices 
available for the mathematical form of the item characteristic curves. But, whereas 
item response theory cannot be shown to be correct or incorrect, the appropriateness 
of particular models with any set of test data can be established by conducting  
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a suitable goodness -of-fit investigation. The relationship between the observable 
and the unobservable quantities is described by a mathematical function. For this 
reason, item response models are mathematical models which are based on specific 
assumptions about the test data. Different models, or item response models as they 
are called, are formed through specifying the assumptions one is willing to make 
about the test data set under investigation.

There are three primary advantages of item response models:
1. Assuming the existence of a large pool of items all measuring the same trait, 

the estimate of an examinee’s ability is independent of the particular sample of test 
items that are administered to the examinee.

2. Assuming the existence of a large population of examinees, the descriptors of 
a test item (for example, item difficulty and discrimination indices) are independent 
of the particular sample of examinees drawn for the purpose of calibrating the item. 

3. A statistic indicating the precision with which each examinee’s ability is 
estimated is provided. This statistic is free to vary from one examinee to another. 
Needless to say, the extent to which the three advantages are gained in an application 
of an item response model depends on the closeness of the “fit” between a set of test 
data and the model. If the fit is poor, these three desirable features either will not be 
obtained or will be obtained in a low degree. An additional desirable feature is that 
the concept of parallel forms reliability is replaced by the concept of statistical 
estimation and associated standard errors.

The goal of item response theory is to provide both invariant item statistics and 
ability estimates. These features will be obtained when there is a reasonable fit 
between the chosen model and the data set. Through the estimation process, items 
and persons are placed on the ability scale in such a way that there is as close a 
relationship as possible between the expected examinee probability parameters and 
the actual probabilities of performance for examinees positioned at each ability level. 
Item parameter estimates and examinee ability estimates are revised continually 
until the maximum agreement possible is obtained between predictions based on the 
ability and item parameter estimates and the actual test data. Research in the field of 
item response theory models include works by Andrich [1978], Rasch [1960], 
Birnbaum [1968], Lord and Novick [1968], Samejima [1969] and Bock [1972]. The 
latest and modern approach present Reckase [2009], DeBoeck [2004], Bates [2008], 
DeMars [2010] and Chalmers [2012].

2. Item Response Theory

2.1. Background to Item Response Theory models

The common models and procedures for constructing tests and interpreting test 
scores have served measurement specialists and other test users well for a long time. 
These models, such as the classical test model, are based on weak assumptions, that 
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is, the assumptions can be met easily by most test data sets, and, therefore, the models 
can and have been applied to a wide variety of test development and test score 
analysis problems. Today, there are countless numbers of achievement, aptitude, and 
personality tests that have been constructed with these models and procedures. Well-
known classical test model statistics, such as the standard error of measurement, the 
Spearman-Brown formula, and the Kuder-Richardson formula-20, are just a few of 
the many important statistics that are a part of the classical test model and related 
techniques [Gulliksen 1950; Lord, Novick 1968].

Item response theory (IRT) models show the relationship between the ability or 
trait (symbolized as y) measured by the instrument and an item response. The item 
response may be dichotomous (two categories), such as right or wrong, yes or no, 
agree or disagree. Or, it may be polytomous (more than two categories), such as  
a rating from a judge or scorer or a Likert-type response scale on a survey. The 
construct measured by the items may be an academic proficiency or aptitude, or it 
may be an attitude or belief. 

The IRT score is often called an ability, trait or proficiency. The IRT scoring 
takes into account the item difficulty and discrimination. Items that are more 
discriminating, or more reliable, are weighted more heavily, so IRT scores can be 
more reliable than number-correct scores. If different examinees take different tests, 
the IRT scores adjust for the difference in difficulty. Item response theory also 
provides an index of the precision of the test score − the standard error of measurement 
− for each examinee. 

Any theory of item responses supposes that, in testing situations, examinee 
performance on a test can be predicted (or explained) by defining examinee 
characteristics, referred to as traits, or abilities; estimating scores for examinees on 
these traits (called “ability scores”); and using the scores to predict or explain item 
and test performance [Lord, Novick 1968]. Since traits are not directly measurable, 
they are referred to as latent traits or abilities. An item response model specifies  
a relationship between the observable examinee test performance and the 
unobservable traits or abilities assumed to underlie performance on the test. Within 
the broad framework of item response theory, many models can be operationalized 
because of the large number of choices available for the mathematical form of the 
item characteristic curves. But, whereas item response theory cannot be shown to be 
correct or incorrect, the appropriateness of particular models with any set of test data 
can be established by conducting a suitable goodness-of-fit investigation.

The characteristics of an item response model are as follows [Hambleton, 
Swaminathan 1985]:
 • it is a model which supposes that examinee performance on a test can be predicted 

(or explained) in terms of one or more characteristics referred to as traits,
 • an item response model specifies a relationship between the observable examinee 

item performance and the traits or abilities assumed to underlie performance on 
the test,
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 • a successful item response model provides a means of estimating scores for 
examinees on the traits, 

 • the traits must be estimated (or inferred) from observable examinee performance 
on a set of test items (it is for this reason that there is the reference to latent traits 
or abilities).
The main applications of IRT can be found in educational testing in which 

analysis are interested in measuring examinees’ ability using a test that consists of 
several items (i.e. questions). Several models and estimation procedures have been 
proposed that deal with various aspects of educational testing.

2.2. Item Response Theory models assumptions

There are three assumptions of Item Response Theory (IRT): unidimensionality, 
local independence, and correct model specification. A test that is unidimensional 
consists of items that tap into only one dimension. Whenever only a single score is 
reported for a test, there is an implicit assumption that the items share a common 
primary construct. Multidimensional IRT models exist, but they are not addressed 
here. Unidimensionality means that the model has a single y for each examinee, and 
any other factors affecting the item response are treated as random error or nuisance 
dimensions unique to that item and not shared by other items. Violating this 
assumption may lead to misestimation of parameters or standard errors. 

Many methods have been proposed for testing unidimensionality. Hattie [1984] 
compared 87 methods. More recently, Tate [2003] compared nine of the most 
commonly used methods. Three common methods are the most popular and known 
nowadays: analysis of the eigenvalues of the inter-item correlation matrix, Stout’s 
test of essential unidimensionality, and indices based on the residuals from a 
unidimensional solution. Another assumption of IRT is local independence. If the 
item responses are not locally independent under a unidimensional model, another 
dimension must be causing the dependence. With tests of local independence, 
however, the focus is on dependencies among pairs of items. These dependencies 
might not emerge as separate dimensions, unless they influenced a larger group of 
items, and thus might not be detectable by tests of unidimensionality. Consequently, 
separate procedures have been developed to detect local dependencies. If items are 
locally independent, they will be uncorrelated after conditioning on θ. Again, note 
that the items can (and should) be correlated in the sample as a whole. It is only after 
controlling for θ that we assume they are uncorrelated. Yen [1984] proposed a simple 
test, 3Q , to check pairs of items for local dependence. Additional indices have been 
proposed for testing local independence [Chen, Thissen 1997], however 3Q  is one 
of the more commonly used. 

The fit between the model and the data can be assessed to check for model 
misspecifications. For example, if a 1PL model is used and the data follow a model 
with varying slopes or a non-zero lower asymptote, then many of the items will not 
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fit the 1PL model. If the function is not monotonically increasing, none of the 
common models will fit. Typically, IRT practitioners focus on the fit of individual 
items, not the overall fit of the model across all items, which will only be addressed 
briefly at the end of this section. For item fit, the concept of a residual, or the 
difference between an observed and model-predicted (expected) proportion is key. 
This residual is conditional on θ, meaning it is calculated for groups of examinees 
with approximately the same θ. We can use an Item Characteristic Curve (ICC) which 
represents the model expectation. We can also use the Pearson χ2, log-likelihood G2, 
or AIC and BIC information criterion. 

2.3. IRT models for dichotomous items 

IRT includes a set of models that describe the interactions between a person and the 
test items. Persons may possess different traits and instruments may be assigned to 
measure more than one trait and these models are referred to as unidimensional IRT. 
In an educational testing situation in which $n$ individuals answer I questions for 
items. For nj ,...,1=  and ,,...,1 Ii = let Yij be random variables associated with the 
response of individual j to item i. These respondents may be binary (correct or 
incorrect answer) or may be discrete with a number of categories. Let Ωy denote the 
set of possible values of the Yij, assumed to be identical for each item in the test. Let 
θj denote the latent trait of ability for individual j, and let ηi denote a set of parameters 
that will be used to model item (question) characteristics. Different IRT models arise 
from different sets of possible responses Ωy and different functional forms assumed 
to describe the probabilities with the Yij assume those values, namely:

 ),(),( ijijij yfyYP ηθηθ == ; Yy Ω∈ . (1)

The item parameters ηi may include four distinct types of parameters: a discrimina- 
tion parameter ai, a difficulty parameter bi, guessing parameter ci, and carelessness 
parameter di. Depending on the number of parameters included in the model equation, 
there are several types of IRT models distinguished. 

One parameter (1PL) IRT model is the simplest IRT model called the Rasch 
model [Rasch 1960]:
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where bi )( ∞<<−∞ ib   is difficulty (location, threshold) parameter and this value 
tells us how easy or how difficult an item is. In the Rasch model formulation (2) θj  
and bi can take all real values and measure ability and difficulty respectively. The 
sign of expression θj – bi in any particular instance indicates the probable outcome of 
the person-item interaction. If 0>− ij bθ  then the most probable outcome is a correct 
response. If 0<− ij bθ  then the most likely outcome is incorrect response.
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Specific objectivity is the requirement that the measures produced by a measurement 
model be sample-free for the agents (test items) and test-free for the objects (people). 
Sample-free measurement means item difficulty estimates are as independent as is 
statistically possible of whichever persons, and whatever distribution of personal 
abilities, happen to be included in the sample. Test-free measurement means that 
person ability estimates are as independent as is statistically possible of whichever 
items, and whatever distribution of item difficulties, happen to be included in the 
test. In particular, the familiar statistical assumption of a normal (or any known) 
distribution of model parameters is not required. 

This also implies that Rasch point-estimates are invariant when the data fit the 
Rasch model. The argument for invariance may be stated rather loosely as follows. 
Irrelevancies in the data should not make a fundamental difference in the results 
obtained from the analysis of the data. For Rasch measurement, irrelevancies include 
the person and item distributions.

Another IRT model is the 2-parameter (2PL) Birnbaum model defined as follows 
[Birnbaum 1957; Birnbaum 1958; Birnbaum 1968]:
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where ai )( ∞<<−∞ ia   is discrimination (slope) parameter. This parameter is related 
to how rapidly the probability changes with the changes in ability θj. 

Birnbaum substituted the two-parameter logistic cumulative distribution function 
for the two-parameter normal ogive function as the form of the item characteristic 
curve. Logistic curves have the important advantage of being more convenient to 
work with than normal ogive curves. The 2PL model might be more appropriate for 
dichotomous attitudinal items; it may also be useful for multiple choice items with 
very effective distractors, where low-ability examinees would tend to think a par- 
ticular distractors was right rather than to guess randomly. 

Another 3-parameter (3PL) Birnbaum IRT model:
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where ci )10( ≤≤ ic  is the guessing parameter. In practice values of ci above 0.35 
are not considered acceptable. This value tells us how likely the examinees are to 
obtain the correct answer by guessing. A three-parameter (3Pl) IRT model uses 
three parameters ai, bi and ci.

The parameter ci is the lower asymptote of the item characteristic curve and 
represents the probability of examinees with low ability of correctly answering an 
item. The parameter is included in the model to account for item response data from 
low-ability examinees, where, among other things, guessing is a factor in test 
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performance. It is now common to refer to the parameter ci as the pseudo-chance 
level parameter in the model. Typically, ci assumes values that are smaller than the 
value that would result if examinees of low ability were to guess randomly to the 
item. As Lord [1974] noted, this phenomenon can probably be attributed to the 
ingenuity of item writers in developing “attractive” but incorrect choices. Low 
ability examinees are attracted to these incorrect answer choices. They would score 
higher by randomly guessing the correct answers. For this reason, avoidance of the 
label “guessing parameter” to describe the parameter ci seems desirable. The 3PL 
model is the most common choice for multiple-choice items because it seems 
reasonable to assume that low-ability examinees have some non-zero probability of 
choosing the correct answer. 

High-ability examinees do not always answer test items correctly. Sometimes 
these examinees may be a little careless, other times they may have information 
beyond that assumed by the test item writer; so they may choose answers that are not 
“keyed” as correct. To handle this problem, McDonald [1967] and more recently 
Barton and Lord [1981] have thus described a four-parameter (4PL) logistic model:
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with carelessness parameter di )10( ≤≤≤ ii dc  . 

This model differs from the three-parameter model in that di assumes a value 
slightly below 1. This model may be of theoretical interest only because Barton and 
Lord [1981] were unable to find any practical gains that accrued from the model’s use. 

The main application of IRT models can be found in education testing in which 
we measure examinees` ability using a test that consists of several items. Item 
response theory has a number of potential advantages over classical test theory in 
assessing self-reported health outcomes. IRT models yield invariant item and latent 
trait estimates (within a linear transformation), standard errors conditional on trait 
level, and trait estimates anchored to item content. IRT also facilitates the evaluation 
of differential item functioning, inclusion of items with different response formats in 
the same scale, and the assessment of person fit and is ideally suited for implementing 
computer adaptive testing. Finally, IRT methods can be helpful in developing better 
health outcome measures and in assessing change over time. These issues are 
reviewed, along with a discussion of some of the methodological and practical 
challenges in applying IRT methods.

2.4. Parameters estimates

In this subsection we provide a brief explanation of how the parameters in an IRT 
model for dichotomous items are estimated. Two types of estimation need to be 
performed: estimating the item parameters, and predicting the individual latent score θ. 
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Estimation of item parameters is done by using the marginal maximum likelihood 
(MML), or joint maximum likelihood (JML) estimation procedure. In marginal 
maximum likelihood, the estimation begins with the assumption of the distribution 
for θ, usually as a standard normal distribution. After the item parameters are 
estimated, the person parameters are estimated using maximum likelihood, or 
Bayesian-like approach via the mode or the mean of the posterior distribution, Modal 
A Posteriori (MAP) or Expected A Posteriori (EAP). 

Consider an education testing situation in which n individuals answer I questions 
or items. Let Yij be a random variable associated with the binary response of individual 
j ),...,1( nj =  to item i  ),...,1( Ii = . Let Ωy denote the set of possible values of the Yij 
for person j, with Ωy are assumed to be identical for each item in the test. Let θj 
denote the latent trait of ability for individual j, and let jη  denote a set of parameters 
that will be used to model item (question) characteristics. Different IRT models arise 
from different sets of possible responses Ωy and different functional forms assumed 
to describe the probabilities with which the Yij assume those values, namely:

 ( )ijijijijij yfyYP ηθηθ ,),( ==  . (6)

Letting ( )Ijijjjj yyyy ,...,...,, 21=y   be a vector of I observed binary responses 
from the j-th subject having an ability θj, the likelihood equation for person j is 
defined as:
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where η is the vector of item parameters. 
The likelihood function for all persons is defined as: 
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The full log-likelihood for n persons is defined as:
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Marginal maximum likelihood method utilizes the marginal distribution of the 
full log-likelihood of the item parameter obtained by integrating out θ.

Estimating the item parameter

The log-likelihood of the marginal distribution of the item parameters (9) given the 
form of the distribution g(θj) for the independent and identically distributed latent 
traits, is defined as:
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The integral can be approximated using the Gauss-Hermit quadrature rule. The 
goal is to find the values of the components in η that maximize the integrated 
likelihood with respect to θj. Due to the local independence assumption it is possible 
to work with one item at a time. Within each item, the parameters are not independent 
so the maximums must be found simultaneously. We can use prior distributions for 
the item parameters and apply the Bayesian approach to estimate them. After the 
item parameters have been estimated, the distribution for θ can be updated. Then, the 
process of item estimation is repeated and updating the latent trait distribution until 
the components of η converge. The most updated distribution of θ is considered the 
posterior distribution, which can be used in the next step in the process of estimation 
the individual θj scores.

Estimating the individual latent scores θj s

Having the item parameters and the θ distribution estimated, the θ score for each 
subject is estimated using ML, Expected a Posteriori (EAP), or Modal a Posteriori 
(MAP) estimation method. Each individual (respondent) j has its own θ posteriori 
distribution, ),( jg yηθ   which can be used in estimation of θj. 

The Expected a Posteriori (EAP) estimation method uses the Gauss-Hermit 
quadrature rule to approximate the mean of the distribution,

 ( )[ ]jyη,ˆ θθ gE=  . (11)

The EAP estimation procedure estimates θj by using the mean of the distribution 
as the expected value. It is non-iterative method, where under the quadrature ap-
proximation approach, ),( jg yηθ   may be approximated by finding the area under 
the curve of the function via a discrete distribution such as histogram. 

In Modal a Posteriori (MAP), the mode is found by applying the Fisher Scoring 
Method defined as:
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  is the ratio of the first derivative of the log-likelihood function of 

θj and the Hessian matrix as a matrix of second derivatives of the log-likelihood 
function of θj. MAP is an iterative estimation method with tθ̂ being updated until 
convergence is achieved.
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3. Application in R

Over the years there has been an extensive growth in computer programs that can 
conduct item response theory, and within R there are at least several powerful 
packages: eRm [Mair, Hatzinger 2007], ltm [Rizopoulos 2006], lme4 [Doran, 
Bates, Bliese 2007], mirt [Chalmers 2012], and MiscPsycho [Doran 2010]. 
Additional packages include mokken [Van der Ark 2010] to do non-metric IRT, 
plink [Weeks 2010] to link multiple groups together and the newest package TAM 
[Robitzsch, Kiefer, Wu 2017]. 

In this paper we use Abortion data-set from the ltm package in R [McGrath, 
Waterton 1989]. The data contain responses given by 410 individuals to four out of 
seven items concerning attitudes to abortion. A small number of individuals did not 
answer some of the questions and this data set contains only the complete cases.

In the initial step, we can use descriptive statistics for the Abortion dataset using 
the descript function: descript(Abortion). The abortion data-set contains 
4 items and 379 sample units; there are 0 missing values. 

For the Abortion data we observe that item 3 seems to be the easiest one having 
the highest proportion of correct responses, while only item 1 indicates having a low 
degree of association. The frequencies of total scores are respectively: 103 for 0, 33 
for 1, 37 for 2, 65 for 3, and 141 for 4. Table 1 presents the proportions for each level 
of response for the analyzed dataset on abortion. 

Table 1. Proportions for each level of response

0 1 Logit
Item 1 0.5620 0.4380 –0.2493
Item 2 0.4063 0.5937  0.3791
Item 3 0.3641 0.6359  0.5575
Item 4 0.3826 0.6174 0.4786

Source: own calculations in R.

We initially fit the Rasch model Rasch function using fit<-rasch(Abor- 
tion) function in R. Parameter estimates for the Rasch models, standard error and 
z-values are presented in Table 2.

Table 2. Coefficients for the Rasch model

Value Standard error z-value
Difficulty Item 1  0.1636 0.0605  2.7040
Difficulty Item 2 –0.2366 0.0589 –4.0143
Difficulty Item 3 –0.3581 0.0617 –5.8069
Difficulty Item 4 –0.3039 0.0607 –5.0096
Discrimination  4.4571 0.3902 11.4217

Source: own calculations in R.
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To inspect the main properties of the model, a summary can be called on. In the 
model summary the fitted log-likelihood and the information criteria AIC and BIC 
are reported: log.Lik = –708.5504, AIC = 1427.101, and BIC = 1446.789. To obtain 
details in R we can use the following command: summary(fit).

The parameter estimates can be transformed to probability estimates using the 
coef(fit, prob = TRUE, order = TRUE) with detailed results presented 
below (Table 3). The column P(x = 1|z = 0) denotes the probability of a positive 
response to the i-th item for the average individual. The order argument can be used 
to sort the items according to the difficulty estimates. 

In order to check the fit of the model to the data, the GoF.rasch and margins 
functions can be used. The GoF.rasch function performs a parametric Bootstrap 
goodness-of-fit test using Pearson’s χ2 statistic. In particular, the null hypothesis 
states that the observed data have been generated under the Rasch model with 
parameter values the maximum likelihood estimates .θ̂

To test this hypothesis B samples are generated under the Rasch model using ,θ̂  
and the Pearson’s χ2 statistic Tb ( Bb ,...,1= ) is computed for each data-set; the 
p-value is then approximated by the number of times Tb > Tobs plus one, divided by  
B +1, where Tobs denotes the value of the statistic in the original data-set. For the 
Abortion data this procedure yields the following results: Tobs = 23.64 for the sample 
200, p-value = 0.01 suggests an acceptable fit of the model.

Table 3. Probability estimates

Difficulty Discrimination P(x = 1| z = 0)
Item 1 –0.3581 4.4571 0.8315
Item 2 –0.3039 4.4571 0.7948
Item 3 –0.2366 4.4571 0.7416
Item 4   0.1636 4.4571 0.3253

Source: own calculations in R.

Secondly, we test whether incorporating a guessing parameter to the uncon-
strained Rasch model improves the fit. This extension can be fitted using tpm, which 
has syntax very similar to rasch and allows one to fit either a Rasch model with  
a guessing parameter or the three-parameter IRT model. To fit the unconstrained Rasch 
model with a guessing parameter we obtain the following coefficients (Table 4).

Table 4. Coefficients for the Rasch model with guessing parameter

Guessing Difficulty Discrimination
Item 1 0.000   0.149 4.997
Item 2 0.022 –0.204 4.997
Item 3 0.000 –0.349 4.997
Item 4 0.054 –0.233 4.997

Source: own calculations in R.
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To compare two models we can use ANOVA function giving the result presented 
in likelihood ratio table (Table 5).

Table 5. Likelihood ratio table

AIC BIC log.Lik LRT df p-value
Rasch unconstrained 1427.10 1446.79 –708.55
Rasch with guessing parameter 1434.02 1466.46 –708.01 1.08 4 0.898

Source: own calculations in R.

The definitions of AIC and BIC used by the summary and anova methods in 
ltm are such that “smaller is better”. In this example on Abortion data we choose 
the Rasch unconstrained model as fitting better. 

Adopting the unconstrained Rasch model, as well as the Rasch model including 
guessing parameter, we produce the Item Characteristic, and the Item Information 
Curves, by appropriate calls to the plot method for class rasch. Below, we present 
Item Information Curves and Item Characteristic Curves for unconstrained Rasch model 
(Figure 1) and for the unconstrained Rasch model with guessing parameter (Figure 2). 

According to the Test Information Curve presented in Figure 1 we can see that 
the items about asked in the Abortion data mainly provide information for respondents 
with lower ability. In particular, the amount of test information for ability levels in 
the interval (−4,0) is around 50%, whereas the item that seems to distinguish between 
respondents with higher ability from the interval (0,4) levels is another 50%. 

Figure 1. Item Information Curves (IIC) and Item Characteristic Curves (ICC) for unconstrained  
Rasch model

Source: own calculations in R.
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Comparing plots for the unconstrained Rasch model and the model including 
guessing parameter we can see that there is no a big difference in ability. 

In the last part of the analysis we can use factor.scores function for best 
fitting model that is the unconstrained Rasch model. 

Table 6. Factor scores for observed response patterns

Item 1 Item 2 Item 3 Item 4 Observed Expected z1 SE(z1)
1 0 0 0 0 103 103.584 –0.903 0.458
2 0 0 0 1 13 11.713 –0.444 0.254
3 0 0 1 0 10 14.916 –0.444 0.254
4 0 0 1 1 21 14.079 –0.186 0.238
5 0 1 0 0 9 8.677 –0.444 0.254
6 0 1 0 1 6 8.186 –0.186 0.238
7 0 1 1 0 7 10.429 –0.186 0.238
8 0 1 1 1 44 41.569 0.096 0.274
9 1 0 0 0 1 1.458 –0.444 0.275

10 1 0 1 1 6 6.984 0.096 0.274
11 1 1 0 0 3 1.019 –0.186 0.238
12 1 1 0 1 3 4.063 0.096 0.274
13 1 1 1 0 12 5.174 0.096 0.274
14 1 1 1 1 141 144.017 0.651 0.521

Source: own calculations in R.

By default factor.scores function produces ability estimates for the 
observed response patterns. It also can be modified for non observed or specific 
response values. 

4. Conclusions

In this paper we presented item response theory models. IRT present the relationship 
between the ability measures by the instrument and an item response. The IRF gives 
the probability that a person with a given ability level will answer correctly. Persons 
with lower ability have less of a chance, while persons with high ability are very 
likely to answer correctly; for example, students with higher math ability are more 
likely to get a math item correct. The exact value of the probability depends, in 
addition to ability, on a set of item parameters for the IRF. 

We introduced models for dichotomous parameters such as the Rasch (1 PL) and 
the Birnbaum (2 and 3 PL) IRT models, as well as the theoretical four-parameters 
model. The basic key in IRT models is the model for the probability of a correct 
response in each item given the ability level. We presented estimation methods for 
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IRT models for item and individual latent score, we also described goodness of fit 
statistics and we applied IRT in R software. 

In this paper we presented the application of item response theory models for the 
analysis of survey and social data based on data-set on abortion. We presented the R 
package for item response analysis and evaluating the Rasch model. The R package 
ltm provides a flexible framework for basic IRT analyses that covers some of the 
most common models for dichotomous and polytomous data. The main functions of 
the package have already been presented for different types of Rasch models with 
item characteristic curve and item information curve providing the relationship 
between a latent ability and the performance on a test item, and information about 
the ability of the examinee respectively.
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ANALIZA TEORII ODPOWIEDZI NA POZYCJE TESTOWE  
W TEORII POMIARU Z ZASTOSOWANIEM PAKIETU LTM 
PROGRAMU R

Streszczenie: Modele teorii odpowiedzi na pozycje testowe (modele IRT) są szczególnym rozszerze-
niem klasycznej teorii testu (CCT). Modele te z powodzeniem wykorzystywane są w psychologii, 
medycynie, marketingu, a także w naukach społecznych. Modele teorii odpowiedzi na pozycje testowe 
opisują relację między obserwowalnymi cechami respondenta a nieobserwowalnymi zmiennymi lub 
zdolnościami poszczególnych osób odpowiadających na pytania. W niniejszym artykule zaprezentowa-
no podstawowe modele IRT dla zmiennych niemetrycznych, m.in. model Rascha oraz Birnbauma. 
Przedstawiono również założenia, metodę estymacji, własności oraz procedury selekcji modeli. W ni-
niejszym artykule wykorzystano program R oraz pakiet ltm, pozwalający na przeprowadzenie pełnej 
analizy opartej na modelach teorii odpowiedzi na pozycje testowe. 

Słowa kluczowe: modele teorii odpowiedzi na pozycje, teoria pomiaru, analiza klas ukrytych, program R. 




