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Analytical formulation of bound solitons 
in a lossy birefringent optical fiber
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A variational approach is followed to study soliton propagation in a lossy birefringent fiber for an 
illustrative model. In particular, the criterion for the coupling of two polarized soliton pulses to 
form a bound state has been obtained. The implications of this model havealso been discussed.

1. Introduction
Soliton propagation in birefringent optical fibers has attracted much attention in 
recent years towards the development of Fiber-optic communication lines, genera
tion of short pulses and soliton lasers [1] — [9], It is well known that single-mode 
fibers in reality are bimodal because of the presence of linear birefringence [10], 
This can lead to the splitting of fundamental mode into two orthogonal 
polarization modes with weak intermodal dispersion, and either of the two modes 
captures the other one through the Kerr effect such that the two pulses can 
propagate together in spite of the group-velocity mismatch [11]. The coupling 
between the two polarization modes in a birefringent single-mode optical fiber is an 
important effect since the coupling between the two modes is possible over long 
propagation distances. As is well established, propagation of solitons in birefrin
gent optical fibers is governed by a set of coupled nonlinear Schroedinger (CNLS) 
equations. This set of CNLS equations is nonintegrable in the sense that methods 
such as inverse scattering transform (1ST) cannot be applied to it. Furthermore, 
particle like nature of solitons has been exploited in order to derive, from 
conservation laws, ordinary differential equations (ODEs) for the adiabatic 
variation of soliton parameters during the propagation. The propagation of 
solitons in a highly birefringent fiber has been studied theoretically [12] as well 
as experimentally [13] in the past within the framework of CNLS equations 
without taking into account fiber losses in their formulations.

In this paper, an analytical model of the dynamics of soliton coupling in a lossy 
highly birefringent optical fiber, based on variational formalism, is developed for 
the first time in the framework of CNLS equations to study the threshold effect of
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soliton trapping of two polarized pulses having the same amplitude. This study 
should be of considerable interest to the experimental efforf on soliton ring net
works.

2. Analytical formulation

The copropagation of two optical pulses in a highly birefringent lossy über is 
described by the following basic system of coupled NLS equations [1]:

i(uz+öut)+^utt+(\u\2+e\v\2)u =  - iyu ,  (la)

i(i;z —<5üt) —^tt +  (M 2 +  e|u|2)u =  - iy v ,  (lb)

where e =
2
3’

u and v are the slowly varying amplitudes of the wave envelopes in the

two polarizations, S corresponds to the group velocity detuning due to the 
birefringence, and y is the dissipative coefficient characterizing losses in the fiber.

Using the transformation: u -» pe~yz and v -* qe~yz, as is well known that losses 
in the fiber can lead to exponential decreasing of the soliton amplitude, the above 
equations can be rewritten into the following form

KPz + öPt) + \p,t+(\P\2+E\ii\2)Pe 2yz = 0, (2a)

» '(9 z -^ t)+ ^ 9 tt+ (k l2+e|Pl2) ie_2yi =  °- (2b)

The variational approach [2], [12], [14] is based on the possibility to present 
Eqs. (2) as Lagrange equations corresponding to the Lagrangian

OO

l  =  I* (p zp* -  pIp)+ -  ql <i) + y  (a  p*~ p>p)—y  (9. 9* -  \  \p, i
■\\qt\Z +  \ \ p \* e -2yz +  \ \q \* e -2yz+E\p\2 \q\2e - 2yz dr (3)

u dp dpwhere: p_ = —, p, = — , and so on. 
oz at

The appropriate trial function [2], [12] describing the temporal form of the 
solitons was chosen as

P -  r ^ - -  sech^i/^r Ci)] exp[ 2 1 ^  CJ +  iD J , 
y / l  +  E

(4a)

q -  /-^ -se c h [2 t]2{t C2)]expC2iK2(t i 2) + iD2\ 
V l + £

(4b)
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where the evolution parameters rir, (r, Dr (r = 1, 2 correspond to p and q solitons, 
respectively) represent amplitude, central position, velocity of soliton’s central 
position as it propagates along the fiber, and phase, respectively. Substitution of 
Eqs. (4) into Eq. (3) and using Euler-Lagrange equations, yields the following system 
of coulped ODEs for the evolution of p and q soliton parameters:

(5)

i t
dz - 5 - 2 V r = 0, (6)

M r  _  ->t/ 2  -I 2  I r - 2 y z . (7)

where Lpq = 1̂ 1̂ 2e 2yz J sech2[2^1( t - i 1)sech2[2ii2(r-C 2)]dr.

The resulting system (5) —(7) of ODEs for the evolution of soliton parameters 
models Eqs. (2).

Considering rit = t]2 = tj = const, V1 = — V2 = V, and £12 =  ±^~, where p is the

relative distance between the p and q polarization maxima. Equation (6) can now be 
expressed in trems of the symmetric parameters

, =  4t]0 + 8riV dz (8)

Differentiating the above equation with respect to z and on substituting the value 
of dVfdz from Eq. (5), one can obtain

d 2p
dz2 4rl dp Lpq' (9)

Equation (9) can also be written as

d2p 8 
dz2 ^  dp U M  = o (10)

where Uiat = 4q [Lpi(0)—Lpq(p)~] is defined as the effective interaction energy of the 
soliton with p and q polarization components.

Evaluating Lpq(0) and Lpq(p) for the case rjl = rj2 — and on substituting their 
values into the expression for effective interaction energy, one can get

int (1 +  e) |_3 sinh2

_ „ coshp , , vFor small p, . --, ~ (p — tanhp) 
sinh p

( U )
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u m  =
256f.ij4 2a ~2 V*

\p e15(1 -H e)

Also, as p -» oo, the interaction energy given by (11) tends to a finite value

(12)

U =
3(1 + e)

(13)

Equation (10) when multiplied throughout by dp/dz and integrated with respect 
to z yields the energy conservation law

1 /dp
2\ dz + u int(p) =  const» (14)

the constant (total energy) is determined from the initial conditions at p =  0, 

tfin.(P) = 0, and =  41/5.

It follows from Equation (14) that the two partial pulses trap each other to form 
a bound state provided EKin < U and obtained an analytical expression for threshold 
amplitude A ^  of the input pulse in a lossy birefringent fiber

-̂ thr
_1___ 1

Vo+5+2
(15)

It is important to note at this point that for amplitude A < A thl, the two 
polarizations interact weakly whereas for ^  ^  ^thr the solitons form a bound state 
due to intermode coupling described by the effective potential energy. Also when 
y = 0, Eq. (15) reduces to

1 1

Va+«)+2
(16)

which was obtained earlier [12] by Kivshar without taking into account fiber losses 
in his formulations.

3. Conclusions

The proposed model describing propagation dynamics of soliton coupling in a lossy 
birefringent fiber is simplified making it possible to obtain analytical results at the 
expense of some quantitative accuracy. Although approximate, the analogy with 
classical mechanics is satisfying. If more precision is desired, then one has to look for 
a new trial function for soliton’s wave form through numerical simulations and 
follow the technique given here. This may be necessary for solitary wave propagation 
in a lossy birefringent fiber over long propagation distances with different initial 
conditions. This analytical model though describes optical pulse propagation in the
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anomalous dispersion regime of a birefringent fiber, but its results can also be 
applied to a wide array of different physical problems modelled by Eqs. (1) and (2), 
opens the door for further examination through numerical simulations.
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