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Gaussian beams with optical vortex 
of charge 2- and 3-diffraction by a half-plane 
and slit
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Poland.

In the paper, the half-plane diffraction of the Gaussian light beam containing double and triple 
optical vortex is examined. The analysis is based on scalar theory of diffraction in Fres- 
nel-Kirchhoff approximation. Special attention is paid to the dynamics of the optical vortex within 
the diffracted beam. Some results for the case of diffraction by single slit are also presented.

1. Introduction
Optical vortex (OV) is a point singularity in phase distribution of the electromag
netic wave [1], [2]. Optical wave fronts with phase singularities reveal some 
charateristic and useful features. They have a helical geometry and non-zero angular 
momentum [3], which is different from polarization (photon spin) part of the total 
angular momentum of the electromagnetic field (it is called orbital momentum) 
[4] — [6], The orbital angular momentum is quantified in respect of both quantum 
and geometry. From the point of view of quantum its z-projection (for single photon) 
takes values Lt = mh, where m is a positive integer characterizing the OV. The 
non-zero angular momentum makes the OV a stable structure within the wave front. 
From geometrical (topological) point of view the integral calculated along the closed 
curve including OV could have a value 2nm [7]. Because of the above properties the 
value of m is often called the topological charge of the OV. The distribution of the 
OV belonging to the same wave front is limited by some topological rules [7], [8]. 
Because of the special features of the OV, they have been widely studied in the last 
decade. A number of papers were devoted to the possible application of the OV 
[9 ]-[13].

In this paper, the diffraction pattern of the Gaussian beam containing OV (with 
topological charge m =  2 and m = 3) diffracted by half-plane and single slit is 
examined. The analysis is performed on the basis of the scalar diffraction theory 
(Fresnel-Kirchhoff diffraction integral [14]). The half-plane diffraction of pure 
Gaussian beam has been examined in [15].
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2. Optical beam with OV
For the purpose of present analysis, a Gaussian beam with multicharge OV is 
considered. Such a beam can be described by the equation [16] (in parabolic 
approximation [17])

E(x, y, zD) =  Ez(x + i sgny)m exp { - r 2 A) (1 a)

where:

Ez =  E0 exP{ -  ikz) exp j - ( m +1) i atan j ,

1 ik 
= c ^ + 2R k j

co(zD) =

2na>ot - —

r2 =  x2+y2,

(lb)

(lc)

(ld)

(le)

(if)

(lg)

k =  2n/X is the wave vector, X — the wavelength, b — the beam confocal parameter, 
zD — the distance from the beam waist to plane of interest, oj(zd) — the radius of the 
beam, R(zD) — the radius of curvature of the wave front.

The topological charge value m > 1 means that the wave front singularity can be 
decomposed into m single OV [7], [18]. The sign of the parameter sgn determined 
the sign of the topological charge.
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Fig. 1. Phase map of Gaussian beam with double OV (a) and triple OV (b). The solid line corresponds to 
line Re(E) = 0 , the dotted line corresponds to the line Im (E) =  0.
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Formula (la) can be rewritten as

E(x,y,zD) = Ez exp{—r2A} £  ^ j s g n , i, xm~,y t. (2)

Figure 1 shows an example of the phase map (i.e., the plot of the line Re(£) =  0 
and Im(£) =  0) of converging Gaussian beam carrying double and triple OV. The 
lines intersect at a singular point

3. Diffraction integral

To calculate the diffraction pattern we follow the method described in [19], where 
the same problem was solved for the case of Gaussian beam with single OV. The 
diffraction by single slit can be described by the formula (Fresnel-Kirchhoff 
diffraction integral)

* 00 m /m\
E(Xi,yi,Zt) =  T $  J [exp{—r2/l} £  I )sgn'i'x“ , y t

x exp { — iK {x2 + y2)—2xfx — 2 yty) ] dx dy (3)

where:

T = E  exp{-ifezj 
1 iAz, exp { — iK(xf + yf)},

h are the coordinates of slit edges. In the case of half-plane h~* oo. 
To calculate the integral (3) the following relation was used:
h k h

jV ,+2exp{ —Gy}dy =  ^ | y " +1 e x p { - G y } d y + ^ i |y "

4 4 4

xexp{ — Gy}dy—-^=,(hn+1 Nh — qn+1Nq)2 F

(3a)

(3b)

(4)

where:
Sy =  2 Kyt, (4a)

Gy = —yzF + iSy -y, (4b)

Nh — exp{ —h2 F + iSyh} ,  (4c)

Nq = exp{ — q2F+iSy-q}.  (4d)

Let: Sx = 2K x t, (4e)

Gx = —x 2F + iSx-x.  (4f)
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3.1. Diffraction by a slit
In the case of Gaussian beam with double charge OV the integral (3) can be written 
as:

E(xt, y„ Zj) =  T(E2xEy+2isgnElxEly — E2yEx),
oo

f  2 ( r  t j  >/* w  (Sx2 — 2F)E2X =  x2exp{-Gx}dx = — - M x — — ,
— 00 h

Ey = J  exp{-Gy}dy =  ^ My  (erf(tf)-erf(Q)),
4

ao

£,‘ -  i iexp{- Cxldx=^ Mx'Sx F' i,!'— 00
h

E ly = j*yexp{-Gy}dy =  ^ ^ F _3/2S y M y (e r f ( i i ) - e r f (Q ) )+ ^ ^ ^ ,

4
h

Ex = j*exp{-Gx}dx =
4

£ 2 , - j /e x p { -G ,}  = - £ £ ( * + $ ) + § ( « + $ )

+  ̂ M r F - 3'2( (erf(tf)-erf(Q)),

Q =

H =

1 2 qF—iSy
2 ^Jf ~ '

12 h F - i S y

2 ’ 

Mjc =  exp{ : ^ L }>

My “ exp{ i r L}'

(5)

(5a)

(5b)

(5c)

(5d)

(5e)

(50

(5g)

(5h)

(5i)

(5j)

In the case of Gaussian beams with triple OV, expression (3) can be written as 

E(xt,yl,z^) = T(E3xEy + 3isgnE2xE ly- 3 E l xE2y- isgnExE3y) (6)
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where:

£ 3 , =  | x 3exp{-Gx}dx =  i^ ^ F - 5/3( 3 - g ) , (6a)

E\  =  Jy 3exp{-Gy}dy =  N h { ^ r - ^ + ^ - ^

, ' - q 2 qSy . Sy2___i_
IF  4£2 8£3 IF2

+ iy /n M y  ̂ S y  · F~ 5/2 -  ̂  S y  F~1I2J  (erf(//) -  erf(Q)). (6b)

3.2. Diffraction by a half-plane

If the condition: arg(H) < is satisfied [20] one can evaluate the limit h -* oo.

Formulas (5b), (5d), (5f), (6b) take the form:
OO

Ey = j*exp{-Gy}dy =  erfc(Q),

4

00 · r
£ l y =  J y  exp{ —Gy}dy =  ^ - ^ £ _3/2 Sy-Myedc(Q)+~FNq,

(7a)

(7b)

«
QO

£ 2 y=  J y 2exp {-G y } =  erfc(2)(£  3/2- ^ S y 2£  +

(7c)
00

£3y =  J y 3 exp{ — Gy}dy =  erfc(Q)^3£_5/2S y - ^ £ “ 7/2Sy3̂

N q (.i2 i iSy q Sy2 i 1
2 F \ q + IF 4£2_r2 £ /

(7d)

4. Examples
As an example some diffraction patterns of Gaussian beam (1) diffracted by 
half-plane and single slit are calculated. The beam parameters are: £ z =  1, b =  15,
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Fig. 2. Phase map of Gaussian beam with double OV diffracted by a half-plane, a — q = 02  mm, 
b — q = 0.01 mm, c — q =  0 mm, d — q =  0.01 mm, e — q =  —0.07 mm, f — q =  —0.18 mm.

Fig. 3. Phase map of Gaussian beam with double OV diffracted by a single slit: a — slit located 
symmetrically — slit width 0-24 mm; b — the same slit shifted, q =  —0.1 mm, h =  0.14 mm; c — slit 
located symmetrically — slit width 0.18 mm.

zD = 15. These parameters correspond to strongly converging beam [15]. In all cases 
the image plane is at zt — 500 mm from the object plane.

Figure 2 shows the results in the case of Gaussian beam with double OV 
diffracted by a half-plane. For q = 0.2 (q determines the half-plane edge position) 
there are no intersection points in the phase maps in the area considered (calculated 
at image plane, Fig. 2a). If q =  0.01 one intersection point arises (Fig. 2b), and
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changes its position when the plane edge is shifted down (Figs, b—d). For q = —0.07 
the second intersection point appears (Fig. 2e). Both singular points change their 
relative position while the edge shifts (Fig. 2e,f). Figure 3 shows the diffraction image 
in the case of single slit illuminated by the same beam as in the previous example. In 
Fig. 3a, the beam is incident to a slit of width 0.24 mm located symmetrically against 
optical axes. If the slit center moves, the diffraction pattern symmetry is broken (Fig. 
3b). In Figure 3c, the slit is at central position and its width is 0.18 mm. As one can 
see the intersection points are more distant from each other (compared to Fig. 3a).

Figure 4 shows the diffracted image of the half-plane illuminated by Gaussian 
beam with triple OV (Fig. lb). As in the case of beam with double OV the number of 
singular points at the image and their position change with the half-plane edge 
position.

- 1.0 - 0.5 0.0 0.5 1.0 - 1.0 - 0.5 0.0 0.5 1.0 - 1.0 - 0.5 0.0 0.5 1.0
X [mm] X [mm] X [mm]

Fig. 4. Phase map of Gaussian beam with triple OV diffracted by a half-plane: a — q =  0.25 mm, 
b — q = 0.03 mm, c — q = 0 mm, d — q =  —0.05 mm, e — q =  —0.12 mm, f — q =  — 1 mm.

Figure 5 shows the diffraction image of single slit illuminated by the same beam 
as in the previous example. Changing the slit position one can change the number of 
singular points at the phase map (at the plotted area), Fig. 7a, b.

It should be noted that the number of observed singular points depends on the 
observation area. Figure 6 shows part of the phase map corresponding to that shown 
in Fig. 4c, but plotted in larger area. One can see one more singular point Figure 
7 shows the intensity distribution for the same case. Comparing Figs. 4c, 6 and 7 it is 
easy to notice that one of the singular points lies deep in the dark area of the 
diffraction pattern. For that reason it can be hardly detected. The author admits that
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Fig. 5. Phase map of Gaussian beam with triple OV diffracted by a single slit: a — slit located 
symmetrically, slit width 0.24 mm, b — slit located symmetrically, slit width 0.1 mm, c — the same slit 
shifted, q =  —0.04 mm, h =  0.06 mm.

Fig. 6. Different part of the phase map shown in Fig. 4c (q — 0 mm). The intersection point shows 
the location of second OV.

similar results presented in paper [19] were misinterpreted. The conclusion was 
that for q >  0 no singular point survives the diffraction process, which is not exactly 
true. As regards the present case, for an observation area being large enough one can 
find singular point for q > 0, however, deep in the dark part of the diffraction 
patterns.

5. Conclusions

The results obtained using Fresnel-Kirchhoff diffraction integral were in very good 
agreement with numerical calculations based on known diffraction algorithm [21],
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Fig. 7. Light intensity distribution of the beam with triple OV diffracted by a half-plane (<j =  0 mm).

not presented in the paper. Unfortunately, the author is not ready to perform 
experimental verification. The method used in [19] is too poor to produce the 
multicharge OV beam of sufficient quality. For this purpose, more sophisticated 
methods have to be applied, which are not available to the author yet

The author hopes that the present results are convenient even in the absence of 
experiments. The stability of the OV and their characteristic dynamical behaviour in 
diffraction process make them useful as beam markers that enable precise optical 
measurements. The dynamics of the compound OV is more characteristic and 
complicated than that of a single one [19]. This enables more complex measure
ments. Successful application of the OV to optical measurement demands a well 
constructed theoretical model describing them (model of diffraction and scattering 
process). This work is a contribution to developing such a model.
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