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Diffraction methods of drop size measurement 
in poiydispersive media
TADEUSZ A. OPARA

Institute of Aviation Technoiogy, Mititary University of Technology, ul. Kaliskiego 2,00 — 908 Warszawa, 
Poland.

The principles of the diffractive method of drop size determination in the aerosol stream of fuel of 
significant diversification of drop dimensions are presented. Three variants of data processing 
obtained from the light intensity distribution /(r) in the image plane are described. A comparison of 
both properties and applicability of the two variants is made.

1. Introduction
Conventional diffractometry is reduced to dimensional analysis of either monodis- 
persive or quasi-monodispersive media while the position of the diffraction rings in 
the image plane is the source of information about the sizes of the light diffracting 
objects.

However, all these diffraction rings vanish for the drop pulverization spectrum 
p(D) the relative standard deviation of which (d = c/D ) exceeds the value d̂  =  0.153 
and thus it is no longer possible to estimate the average drop diameters Dp.

The aerosol for which d ^  d̂  has the properties of polidyspersive medium and the 
information about sizes of its drops should be sought in other fragments of the 
diffraction image.

The value d̂  denotes the relative standard deviation of the drop pulverization 
spectrum p(D) for which the light intensity I(r) is a monotonically decreasing 
function, in other words, dZ(r)/dr <  0, in its whole domain. This function is only 
slightly dependent on the function describing the statistical distribution of the drop 
sizes in the stream of pulverized liquid.

In practice, the possibility of position determination for extrema of light intensity 
I(r) disappears for the limiting value of the relative standard deviation d̂  ss 0.12 (for 
the case of direct recording of the I(r) distribution) due to a significant decrease of 
contrast between them. The identification of the Airy fringes in diffractograms of 7(r) 
obtained by the indirect methods (photographic ones, for instance) is possible within 
the range d =  0 —0.1.

The aerosol produced by turbine engine pulverizers, conventional carburettors, 
and low-pressure injectors of the fuel in piston OZI engines (of spark ignition) is 
a typical poiydispersive medium. For this reason a conventional variant of the
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method can be exploited only sporadically when the spread of drop sizes in 
a puiverized stream is small.

2. Comparison of the diffraction images of the monodispersive and 
poiydispersive media

The iight intensity f̂ (/*, r), after the iight wave passed through the aerosoi stream 
being next Fourier transformed by the objective of focai length ̂  is a sum of images 
Jp(DJjr) produced by each of the illuminated drops

4 ^ ') = J p ( D ) 4 M 7 - ) d D . (1)o
The above expression constitutes the basis of integral methods for measuring 

drop diameters [1] — [7].
The parameter describing in a quantitative way the difference between the 

monodispersive and polydisperive media is the relative standard deviation d =  <r/Dp.
The statistical distributions of the same type but of diversified average drop 

diameters Dp, while their value d is the same, produce similar diffraction images 
differing only by the magnitude of characterstic parameters (half-width, 

diffraction interval and the like). After introducing the dimensionless optical Airy 
unit z =  (nDg r/2) and normalizing the light intensity to the value fp(z)l-_Q =  1 they 
become identical.
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Fig. 1. Three Gaussian distributions p„(D,d) of different average diameters (10, 17.5 and 25 pm) and 
the refative standard deviation if =  0.25 giving the same dimensionless diffraction image fg(z).

In Figure 1, three Gaussian distributions p<,(D,d) of different average values 
Dp (10, 17.5 and 25 pm) and identical relative standard deviation d =  0.25 are 
presented, all giving the same diffraction image fg(z) (for the latter, see Fig. 2).
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Fig. 2. Light intensity /„(z) for aerosol drop sizes whose are described by Gaussian distribution p^(D, d) of 
relative standard deviation d =  0.25 and the light intensity f„(z) for the monodispersive medium (a). 
Difference R„(z) between the light intensities fg(z) and f„(z) (b).

Diffraction image 7g(z) is presented together with dimensionless intensity 7^(z) of the 
iight diffracted by the drops of the monodispersive medium of diameter =  Dg.

Within the interval z =  0 — 1.5, the distributions 7g(z) and l,„(z) are almost 
identical while 7g(z) is slightly less than 7̂ ,(z). For the coordinate range z — 1.5 —4.5, 
the intensities 7g(z) and 7̂ ,(z) start to differ while 7g(z) > 7 (̂z).

Figures 2b and 3 show the difference Rg(z) between the intensity of the light 
passing through a polydispersive and monodispersive media for several values of the
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Fig. 3. Difference between the light intensities 7g(z) and i„(z) as dependent on the reiative standard 
deviation d =  <r/Dg.

reiative standard deviation d =  c/Dg

= (2)
This difference takes its extreme vaiues for z ^  1 and z a; 3 while Rg(zo) 0 for 

z SR 1.5 independently of the value d.
In paper [8], it has been stated that the kind of the function p(D) describing the 

statisticai distribution of the drop sizes in the aerosol stream has no essential 
influence on the iight intensity /^(z) in the diffraction image. The resuits of the 
analysis carried out confirm this statement For symmetric characteristics of 
pulverization p(D) the functions of light intensity distribution 7p(z) are practically 
indiscriminable within the range of z =  0 — 2.5. For nonsymmetric spectrum of the 
drop diameters p(D) the character of changes of R(z) functions is very similar except 
for its zero position which differs slightly from z„.

In Figure 4, the functions R(z) are shown for three distributions: normal pg(D), 
uniform p,(D) and logarithmic p,(D), all of the same value of the relative standard 
deviation d =  0.25:

Pu(D) =

P,(D) =

1 (D -D g ) 'l . <r
-  2 , J ' '  *  D„-

1 r (!nD — .yexp(2ni+iP) (exp o  ̂— l)
2c

= * p (" .+ y )

(3)

(4)
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Pr(D) =  ^  for (D ,-h )< D < (D ,+ h ), = (5)

The influence of the type of statistical distribution function p(D) on the difference 
value Rp(z) =  7̂ ,(z)—7̂ ,(z) starts to be visible Srst for the dimensionless coordinate 
z > 2.5.

Fig. 4. Three statistical distributions of the drop sizes p(D) in the media of the same average diameter Dp 
and the same relative standard deviation d =  0.25 as well as the corresponding functions 
Rp(z) =  fp(z) —f„(z) (p,(D) — logarithmic distribution, Pg(D) — Gaussian distribution, p,(D) — uniform 
distribution).



120 T.A. OPARA

The basic conclusion from this analysis is the statement that the dimensionless 
function describing the light intensity distribution in the diffraction image 7(z) in the 
range of z =  0 — 1.6 (7(z) — 1 — 0.5) contains information about the average value of 
Dp of the statistical distribution p(D) of the drop sizes in the aerosol stream. Even for 
very great values of the relative standard deviation d the maximal difference ]R(z)] is 
less than 0.01 within this range (Fig. 3).

3. Calculation of the average drop diameter 
based on linear approximation of /(z) function

For dimensionless coordinate z =  1.1 —1.6 (hatched area in Fig. 2) the function 7„,(z) 
has a quasi-linear character and can be approximated as follows:

7Jz) -  7„,(z) = ^z  + B = ^  ̂  + 7?, (̂ 1 = -  0.45, 7? = 1.23). (6)

The linear coefficient of this approximation amounts to r„, =  —0.99993. Using 
the r.m.s. method to minimize the difference 5 between the light intensity 7(r) 
determined experimentally and the straight line 7p,,(z) for /c experimental points of 
7(r;) we get

and the drop diameter D^ is calculated from the relation

D =
y -  X j,7(r;)-B  X r,

^4n *
v , ? , "

(3)

The value of D^ determined in this way is a magnitude of the drops in the 
dimensionally uniform medium the diffraction image of which is closer to the real 
course of the function describing the light intensity distribution 7(r) in the 
polydispersive medium of pulverization spectrum p(D). Thus, it can be assumed that

D, ^  D„. (9)
The simulation calculations carried out for different statistical distributions p(D) 

showed that the entire systematic error caused by applying the approximations 
(6) and (9) is less than 1%.

In the method described only 1/4 of the information contained in the recorded 
light intensity distribution 7(r) is exploited since the range within which the 
linearization of 7̂ ,(z) was performed (:.e., z =  1.1 —1.6) corresponds to the range 
(0.5-0.75)7^.

Using relation (8) in order to calculate the average diameter Dp D^ of the drops 
allows us to obtain results of relatively small random error since in this part of
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the distribution 7(r) the changes in the tight intensity are most pronounced for 
advantageous signai-to-noise ratio. This follows from the fact that the derivative of 
the iight intensity d7(r)/dr reaches its maxima! value within this range. For 
a monodispersive medium the extrema! value of d7^(z)/dz =  —0.46 (for z =1.49, 
7(z) =  0.56) while the tangent at this point described by equation

7^,(z)=-0.46z+1.24 (10)

differs slightly from the line 7 ,̂(z) =  — 0.45z+1.23 approximating the relation 7 (̂z). 
For the polydispersive media the maximal value of the derivative modulus ]d7̂ ,(z)/dz] 
diminishes which causes that the lines 7 (̂z) and 7 ,̂(z) practically cover each other. 
This observation can be exploited lor graphical method of diffractogram elaboration 
allowing us to obtain quickly some preliminary results of measurements.

Drawing a tangent to the curve 7(r) from the point (0, 1 .237^ the value r, is 
determined at the point of intersection with the horizontal axis. Substituting this 
value to the relation for the zero position z, =  2.73 of the line 7,„,(z), (Fig. 2) we 
obtain

^ = ^ „  =  0 .8 7 ^  (11)

It is possible to use formulae (8) and (11) only when the absolute values of the 
light intensity distribution 7(r) in the diffraction image are known.

The direct recording of the diffraction images (scanning of the chosen area with 
a single photodetector or using the mosaic systems composed of a large number of 
detectors) is difficult in technical implementation because of disadvantageous 
relation between the useful signal 7p(/j r) and the useless one 7„(?j. The knowledge of 
the distribution 7(r) =  7y(^r)+7o(^r) creates a possibility of determining the average 
diameter of the aerosol drops with the least random error.

4. Photographic recording of diffraction image

In the Fourier transformation of the light beam propagationg through the stream 
examined the diffraction part of the light intensity Ip(/^r) constitutes only a "back
ground" for the image of the plane wave focus since 7o(r)l,-.o2>If(r)lr-.o. The 
photographic recording of the diffraction image allows us to reduce the difficulties 
which appear in the course of direct measurement of the distribution 7(r). If the 
exposure conditions are properly chosen its maximal value 7 ^ ^ =  7p(r)l,—o should 
be located in the upper part of the linear range of the Hurter-Driffield curve [9], 
[10], Fig. 5, defining the relation between the light intensity and the optical density 
(blackening) of the photographic emulsion.

A microdensitogram of the diffraction image #(r) allows us to determine the 
distribution 7'(r) which after taking account of the value 7  ̂+  4 is proportional to the 
real distribution of the light intensity 7(r)

7(r) = (7̂  +  4) + 7'(r). (12)
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Fig. 5. Exposure curve for the photographic materials (AB — linear range, CE' — solarization range).

The value 7  ̂ determined from the photochemical characteristics =  <P(log7) of 
the light sensitive material used should be corrected due to the fact that the final 
effect of the photographic recording (in the form of blackening) depends to a high 
degree on the photochemical processing parameters of the negative. For this reason 
the correction d should be taken into account in relation (12) which can be 
determined from the sensitometric measurements or be treated as a second unknown. 
Then relation (7) takes the form

* r ( ^  +  J)+J'(r,) 
< = 1 L (7 +  d) +  7max

r .- B (13)

Applying the formalism of the r.m.s. method with unknown and d leads to 
a system of nonlinear equations. Using the approximation

(7  ̂+  d)+7'(r,) (7  ̂+  7 ^ J  + d [7 ^ -7 '( r ,) ] (14)
(-f̂  + d) +  7max (f^ +  fmax)

a set of linear equations is obtained from which the values D„, and d were determined

B ( 7 ^ + 7 J ( F ^ . - F . F , ) + F ^ 3 - ^ i ^D, ^  D-. = -,2 (15)

2/
F ^ - F .F ,

d = (7 m ^ + 7 ^ )E B (7 ^ + 7 J(F 2 F 6 -F .F ,)+ F 2 F ,-F 2 F J  
F ^ - F ,F ,

(16)2- r

The coefficients F, occurring in the above equations are calculated from the relations:

F .=  X [7^ - 7'(r,.)], F, = X E7̂ - 7'(rJ]', 
i=l r=i

F2-  x  [7̂ - 7'(rJ]r„ F3 = X [7̂ - 7'(n)][7'M  + 7̂ ],
i=l i=l

F4 = X F, = X rf, Fg = X r,.
i = l  i =  l  i = l

(17)
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Approximation (14) is well fulfilled if the correction parameter d ^  0.27^. The 
determination accuracy of the average drop diameter improves while serial 
measurements are performed (recorded on the same film) since for all the microden- 
sitograms the same averaged value d is assumed.

Fig. 6. Microdensitogram <P(r) of the diffraction image appearing after the iight wave has passed through 
the puiverization cone of the injector of 16.83.0310 type of the GTD-350 engine under the fuei forcing 
pressure p =  1.0 MPa.

In Figure 6, a microdensitogram of the diffraction image recorded after a light 
wave of wavelength 2 =  0.63 pm has passed through the pulverization cone of the 
fuel injector of 16.83.0310 type of GTD-350 engine is presented. The photographic 
recording (exposure time 1/125 s) was realized using the Gold 200 negative which 
was developed in the C-41 process. In order to measure the optica! density <P(r) an 
automatic microdensitometer of MD 100 type was used. The average drop diameter 
calculated from relation (15) appeared to be equal to 13̂  =  30+2 pm.

The photographic recording of the diffractive image is relatively simple to realize. 
The advantages offered by this method are short time of measurement and easiness 
of storing the experimental data. The basic disadvantage of the method is the 
necessity of labour-consuming microdensitometric processing as well as an increase 
of the random error of measurements characteristic of each indirect method of 
information processing.

During the preliminary measurements the photographic recording of the 
diffraction images was done by changing the exposure time as well as both sensitivity
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and type of the negative materials. No distinct influence of either the type of light 
sensitive materials used or the photochemical processing parameters on the average 
value of the drop diameter Dp determined from the analysis of the microdensitogram 
<P(r) has been observed. However, the accuracy and repeatability of the measure
ments is, in an indirect way, dependent on the photographic recording quality, :.e., 
on the contrast, level of smoke and the sizes of grains.

The best results have been obtained when exploiting the light sensitive materials 
applied in holography. The majority of measurements (some hundreds of them) were 
carried out using the Gold 200 negatives developed according to C-41 process. The 
correction parameter d calculated from Eq. (16) or determined from sensitometric 
measurements was contained in the (0.05 — 0.10)7^ range. For preliminary measure
ments it may be assumed that 7(r) ^  7'(r) +  7  ̂and in order to determine the diameter 
Dp the much simpler calculation formula (8) can be used.

From the three variants of quasi-linear fragment of light intensity distribution 
7^(r) the most important and most general is the last one (relations (15) and (16)) 
connected with the photographic recording of the diffraction image. This renders it 
possible to determine the average drop diameter Dp, independent of the type of 
function describing the pulverization spectrum p(D) of the aerosol and the value of 
the relative standard deviation <7.

5. Linear transformation method for the iight intensity distribution /(r)

When using the photographic recording the light intensity distribution 7(r) in the 
focal plane of the objective is reconstructed from a microdensitogram <P(r). The linear 
approximation of the quasi-linear fragment of the function 7(r) allows us to calculate 
the average diameter Dp of the aerosol drops in the stream. In this way the range 
(0.50—0.75)7pn,ax is exploited which constitutes only as much as 1/4 of the 
information contained in the diffractogram.

Expanding this range makes it possible to determine the diameter Dp with better 
accuracy and obtain additional information about the pulverization spectrum p(D) 
of the aerosol drops [11].

The dimensionless function X^(z) describing the intensity distribution of the light 
diffracted in the monodispersive medium can be used as a standard with which the real 
light intensity distrbution 7^(r) =  7(r)/7y^,„ is compared. The essence of the linear 
transformation is to find the correlation between the dimensionless coordinate z of the 
distribution z l^ z ,)  and the radius vector r, in the diffraction image

= f j ' i )  = jjy Dr,. (18)

For the monodispersive aerosol the correlation function z =  i„,(r) is of linear 
character (Fig. 7 a), therefore for k points (r^z,) we have

D. 2 /
— X -* = - ta n y .kn , Jt (19)
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Fig. 7. Scheme illustrating the transformation principle for the reiation f„p(r) =  describing
the light intensity distribution in the diffraction image (a — monodispersive medium, b — polydispersive 
medium as described by Gaussian distribution p^(D) of reiative standard deviation <? =  o/D^ =  0.25).

The puiverized stream of Hquid having features of a polydispersive medium 
produces the diifraction image J^(r) of which the transform z =  t(r) is no more 
a linear function. This is iliustrated in Fig. 7b, where the reiation z =  tg(r) is 
presented ior the stream whose drop sizes are described by the Gauss distribution of 
reiative standard deviation d — <r/Dg =  0.25.
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T a b l e  1. Dimensionless function 7(z) describing the intensity distribution of the light diffracted in the 
monodispersive medium.

f(z) z f(z) z f(z) z f(z) Z

0.99 0.2004 0.74 1.0836 0.49 1.6383 0.24 2.2432
0.98 0.2840 0.73 1.1072 0.48 1.6603 0.23 2.2719
0.97 0.3486 0.72 1.1305 0.47 1.6823 0.22 2.3011
0.96 0.4034 0.71 1.1536 0.46 1.7045 0.21 2.3311
0.95 0.4520 0.70 1.1766 0.45 1.7268 0.20 2.3618
0.94 0.4962 0.69 1.1993 0.44 1.7491 0.19 2.3933
0.93 0.5371 0.68 1.2219 0.43 1.7716 0.18 2.4257
0.92 0.5755 0.67 1.2444 0.42 1.7943 0.17 2.4591
0.91 0.6118 0.66 1.2667 0.41 1.8171 0.16 2.4935
0.90 0.6463 0.65 1.2889 0.40 1.8400 0.15 2.5291
0.89 0.6794 0.64 1.3110 0.39 1.8631 0.14 2.5661
0.88 0.7113 0.63 1.3330 0.38 1.8865 0.13 2.6046
0.87 0.7420 0.62 1.3550 0.37 1.9100 0.12 2.6448
0.86 0.7718 0.61 1.3769 0.36 1.9337 0.11 2.6869
0.85 0.8008 0.60 1.3987 0.35 1.9577 0.10 2.7314
0.84 0.8290 0.59 1.4205 0.34 1.9819 0.09 2.7785
0.83 0.8566 0.58 1.4422 0.33 2.0064 0.08 2.8288
0.82 0.8336 0.57 1.4640 0.32 2.0312 0.07 2.8831
0.81 0.9100 0.56 1.4857 0.31 2.0563 0.06 2.9421
0.80 0.9359 0.55 1.5074 0.30 2.0818 0.05 3.0075
0.79 0.6914 0.54 1.5291 0.29 2.1076 0.04 3.0814
0.78 0.9865 0.53 1.5509 0.28 2.1338 0.03 3.1576
0.77 1.0113 0.52 1.5727 0.27 2.1604 0.02 3.2736
0.76 1.0357 0.51 1.5945 0.26 2.1875 0.01 3.4197
0.75 1.0598 0.50 1.6163 0.25 2.2151 0.00 3.8317

A comparison of the function A^(z) and f^(r) can be carried out in the range 
within which these functions are mo no tonic. To this end, the data from Tab. 1 are 
used, where the dimensionless coordinates z, for consecutive values A ,̂„(z;) changing 
with a steady step from unity to zero are presented.

Fig. 8. Transform t(r) of the diffraction image of the medium in which there appears the equal number 
of drops of sizes D' =  D and D" =  2D.
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For coordinate z ^  2 the transform z =  t(r) is of quasi-iinear character, indepen
dent of the type of statistical distribution p(D) and the value of the relative standard 
deviation J. If the dark and bright rings are visible in the diffraction image 
(quasi-monodispersive medium) the function z =  t^(r) ends at the point rp  ̂ (Fig. 9).

0 10 20 30 AOrlmm]

Fig. 9. Transform i,„ of the diffraction image of the pulverization cone of the starting injector 
of K 108-767 type at the pressure of fuei forcing equal to p, — 1.0 MPa.

For a poiydispersive medium the relation z =  fp(r) tends asymptotically to the 
line z =  3.832 corresponding to the first extremum of the standard function .A^(z), 
Fig. 10.

A comparison of the transforms f„(r) and tp(r), i.e., the ones for uniform aerosols 
and those dimensionally diversified but fulfilling the condition Ďp = D„„ leads to the 
same conclusions which have been formulated for the relation R(z) =  Jp(z) — f„,(z). 
At the point z„ being the zero position of the function R(z) the transforms tp(r) 
and tp,(r) intersect each other (Figs. 8 — 10).

Calculating the average drop diameter Ďp from relation (19) for a quasi 
-monodispersive medium the transform ^ ( r )  can be used in the whole range since 
the systematic error caused by its nonlinearity will be less than 1%.

For the poiydispersive media the deviations horn linearity of the function fp(r) are 
significant (Fig. 7). For that reason, when calculating the diameter Ďp from
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Fig. 10. Transform i,(r) of the diffraction image created by the pulverisation cone of the main injector of 
K 108-767 type at the fuel forcing pressure p, =  10 MPA.

relation (19) the points from the linear fragment of transform f,(r), :.e., those from the 
range z — 0 —2 (Z (̂r) =  0.33 — 1.0), should be taken into account. Thus, the straight 
line

z =  j^D pr =  ijy D^r = r tan y (20)

is the transform of the light intensity distribution 7„,(r) for a monodispersive aerosol 
whose drop sizes correspond to average value Dp of the pulverization spectrum.

The point of intersection of the line z =  D ,̂r =  Dp? with the straight line 
z =  z<) $ =  3.832 determines the position of the first dark ring r„,Q $ of the distribu
tion 7p,(r) which is statistically equivalent to the real distribution IJ r)  = 7(r)/7f,^^. This 
means that for k points constituting the basis for calculating the value Dp the sum

S = Z  [U r,)-7 J r ,)]2 . (21)
1 =  1

takes its minimum.
The shape of transform t(r) is characteristic of the type of the drop size 

distribution p(D). In Figure 6, the function t(r) is shown for the medium in which
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one half of the drops have D' =  D diameter while the other haif satisfies D" =  2D. 
The average value calculated from relation (19) lor the points from the range 
z = 0 —2 is D =  1.486D and remains (within the limits of the assumed error) 
consistent with the average D = 1.5D ((D —D)/D = 0.9%). The transform t(r) 
distinctly "breaks" into two rectilinear fragments (ranges: z = 0 —2 and z == 2 —ZQ.s) 
of different slope while the derivative dt(r)/dr has a characteristic "stepped" shape.

For monodispersive media the slope of the t^(r) line is invariably of the form

dr
= idem = tan y = Zp.5

0̂.5
3.832 _  n 
'..s  " A T '

(22)

The derivatve df^(r)/dr is almost constant for the quasi-monodispersive aerosols. 
For the radius vector r to ?Q $ close its value is slightly smaller (Fig. 9).

In the stream of liquid of diversified drop sizes the derivative di^(r)/di is 
approximately constant only in this fragment of the transform in which t^(r) ^  2 
(Fig. 10). In the further part its value diminishes gradually.

The difference between the respective transforms f^(r) and t̂ (r) of the monodis
persive and polydispersive media can be determined qualitatively in a most 
convenient way for the coordinate , (Figs. 7 — 10) as

dz =  Zo.s-t(r„o,,) = 3 .832-t(r„o.,). (23)
The value of dz permits to estimate the relative standard deviation d =  o/Dp of the 
scattering characteristics p(D).

In Figures 9 and 10, the transforms ^„(r) and t^(r) of the diffraction images 
created due to passage of the light wave through the pulverization cones of the 
injectors applied in the Lis-5 engines are presented.

At the pressure of fuel forcing p, =  4.5 MPa the main injector of the K. 108-012 
type produces a drop stream of significantly differentiated diameters. The diffrac
tive image 7(r) is of monotonic character while its transform for tp >  2 tends 
asymptotically to the value z =  3.832. The average diameter of the drops is 
calculated for thirteen points (Fig. 10) of 7(r) equal to: 0.05, 0.10, . . . ,  0.65 takes 
the value Dp =  21.7 pm (dz =  0.7).

The method of linear transformation allows us to calculate the average 
diameter Dp of the aerosol drops to the relatively high accuracy. This follows from 
the fact that the data contained in the light intensity distribution 7(r) are exploited 
in a wider range. For the polydispersive media (0.33 — 1.0)7yp, ,̂ while for those of 
dimensional uniformity (0.0 —1 .0 )7 ^^  Also, it is estimated that, when calculating 
the value of tany, the greatest statistical weight is attributed to the points from the 
central fragment of the 7^(r) function which are characterized by an advantageous 
signa!-to-noise ratio any by position in the region in which the influence of the 
diffractive background 7g(r) is minimal.

6. Conversion of the diffraction image
The function Rp(z) =  7p(z) —7̂ ,(z) illustrating the difference between the light 
intensity in the diffraction images of the beam of drops of pulverization spectrum
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Fig. 11. Functions R,(z) =  /,(z) -  l„(z) for statistical distributions p(D); (p,(D) -  iogarithmic normal 
distribution, p„(D) — triangular distribution (y >  0), p,(D) — uniform distribution, p,p(D) — triangular 
distribution (y <  0)).
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p(D) and that of monodispersive medium of drops dimensionally uniform takes 
a zero value, R̂ ,(z) = 0. The position of the z. point at which 7 (̂z) =  7̂ ,(z) 
depends on the kind of drop pulverization spectrum p(D) as well as on the relative 
standard deviation d (Fig. 11).

In Figure 11, the relation z„(d) is shown for the Gaussian distribution pg(D), 
uniform distribution p,(D), logarithmic p,(D) and two triangular distributions p„(D) 
and p,p(D) of opposite asymmetry coefficients y [ 12].

The position of the point Zo changes to the least degree when the pulverization 
spectrum is symmetric.

The lines z„(d) for the nonuniform and Gaussian distributions have the common 
origin Zo(0) =  1.49 and the maximal difference between them does not exceed 0.5%. 
The point Zo(0) =  1.49 is characteristic of all symmetric distributions and the 
corresponding relations Zo(d) have almost identical quasi-linear shape as that for 
functions p,(D) and Pc(D).

For the pulverization spectrum p(D) of positive coefficient of asymmetry y >  0 
(p,(D) and p„(D)) the relations z„(d) diminish in a monotonic way. On the other hand, 
if y < 0 (p,p(D)) the function z„(d) is of increasing character (Fig. 12).

Zo(d)

1.6

1.5

1.4

1.3

1.2
0 0.1 0.2 0.3 d

Fig. 12. Dependence of the zero order piace Zo of the function Rp(z) on the relative standard deviation d 
for five statisticai distributions (p,(D) — logarithmic normal distribution, p,,(D) — trianguiar distribution 
(y >  0), PcfD) — Gaussian distribution, p,(D) — uniform distribution, p,, — trianguiar distribution 
(y < 0)).

For the triangular distributions p„(D) and p,^(D) of opposite coefficients y the 
corresponding lines Zp(d) show almost mirror reflection symmetry with respect to the 
zero places of the symmetric functions p,(D) and Pg(D).

The position of the zero places Zo(d) is least diversified for the relative standard 
deviation d =  0.1. Significant divergences among the values of Zo(d) within the 
interval d — 0 — 0.1 have no significance since in this range the difference R^(z) — 
I,(z)-J^(z) is very small (Fig. 11).
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For each type of pulverization spectrum p(D) the zero piace Zomm can be 
determined which corresponds to the minimum of the error paraboia Sp(z), Fig. 13,

1 **'
S, =  - i lR ,ld z .  (24)

"A 0
The function Sp(z) is a total intégrai average of the modulus of the difference Rp(z) 
between the light intensity distribution 7p(z) for a poiydispersive medium and that for 
the monodispersive medium 7̂ ,(z).

The essentia! probiem is determination of the upper integration iimit d ,̂ in other 
words, the maxima! va!ue of the reiative standard deviation. In the case of the 
foHowing distributions: p^(D), p,,(D), p/D) and p„(D) there exist a natura! !imit for 
the value of d which foüows from the obvious fact that the diameter D of the

Fig. 13. Average value of the difference Sp(z) for live statistical distributions p(D), (Pc(D) "" Gaussian 
distribution, p,(D) — uniform distribution, p„(D) — triangular distribution (y >  0), p,^(D) — triangular 
distribution (y <  0), p,(D) — logarithmic normal distribution).

drops must be a positive number. Hence, the physical meaning of the above 
functions wil! be preserved when dg ^  0.30, d,p ^  0.35, d, ^  0.58 and d„ ^  0.71.

The limitations of this kind do not occur for the equations applied most 
frequently to perform approximations of the real pulverization spectrum, :.e., /^(D ), 
(Rosin-Rammler), p^-(D), (Nukiyama-Tanasawa), and p,(D).

The fundamental property of the diffraction method consists in the fact that their 
sensitivity and selectivity are inversely proportional to the sizes of the drops
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occurring in the light beam. This means that even in the case of the optimally chosen 
parameters of the optica! system there exists a limiting value for the drop diameter 
Dp above which no measurable effect of changes in the light intensity distribution 
7p(r) can be recorded in the image plane. The value of Dp is determined 
experimentally taking account of the diffraction background.

Aberrations of the optica! elements, diffraction and scattering of the light beam at 
all the pollutants existing in the measurement space as well as the light diffusion on 
the active surface of the detection systems cause a spread of the image at the point 
where the plane focuses. Assuming the half-width 2r, of the distribution ^(r) as 
a measure of this spread a relation is obtained from which the values Dp can be 
estimated

The drops of diameters D >  Dp produce the diffraction distributions which 
totally disappear in the focus image.

The maximal value of the relative standard deviation ^  for the pulverization 
spectrum p(D) is defined in such a way that the quantitative contribution of the 
drops of diameters D > Dp be not greater than 1%.

When calculating the function Sp(z) the upper limit of integration ^  =  0.40 has 
been assumed. This is averaged value for typical statistical distributions (p,(D), 
PRR^)' PN-r(D)) positive asymmetry coefficient y.

In Table 2, the dimensionless coordinates Zo„,;„, for which the average value of the 
difference 5p(z) takes its minimum, are presented.

T a b l e  2. Dimensionless coordinates z , ^ ,  for which the average value of the difference Sp(z) takes 
its minimum.

P(D) Ôm!n (̂-Omin) S(z.)

P< 1.40 0.599 0.0011 0.0020 0.0073
P,< 1.44 0.581 0.0003 0.0006 0.0032
Pc 1.49 0.558 0.0001 0.0005 -0.0007
P, 1.50 0.553 0.0004 0.0011 -0.0030
P-, 1.57 0.521 0.0005 0.0020 -0.0064

z. =  1.47, 7(z.) = 0.57

The average drop diameter Dp, is calculated defining the coordinate ro.55 for 
which I(ro.ss) = 0.557y^

Dp, = ^ ^ = 0 . 4 7 ^ ,  ( ^ 0 . 1 % ) .  (26)
^ 0 . 5 5  '0 . 5 5  \ D p ,  /

The relative error JD/Dp, caused by taking the average value of ZQ,„.̂  instead of 
z„(d) is less than 0.1%.
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For the distributions of positive asymmetry coefficient y the zero piace Zô m 
is fess than 1.50 (p„(D) -+ Zo =  1.44, p,(D) Zo^. =  1.40), whiie for y < 0 the 
minimum of the function 5p(z) is shifted towards the greater values of the 
dimensionless coordinate (p,p(D) z,„nin =  1.57).

If there exist any experimental or theoretical circumstances helpful in deter
mining the type of the function p(D) or, at least, the sign of the coefficient y, then the 
dimensionless coordinate z„ (and I(zo)), being in a proper relation to the "center" of 
the interval 1.40 — 1.57, :.e., Zpmia = 1-30, for y = 0, may be taken to calculate the 
average diameter Dp of the drops.

Which value z„ should be taken in the situation when there is no available 
information concerning the dimensional structure of the pulverized stream of the 
liquid? It should be the average ZQ minimizing the error for the functions p(D) of the 
opposite signs of the asymmetry coefficient y.

In Figure 13, the point X is marked at which the lines Sp(z) for the distributions 
p,(D) and p,p(D) intersect A dimensionless coordinate z„ = 1.47 corresponds to this 
point, while Sp,(zo) =  Sp,p(zo) — 0.002. The integral average values S(zo), Tab. 2, for 
the pulverization spectrum p„(D), p^(D) and p,(D) are significantly less.

To make the estimation of the range of possible deviations from the dimension
less intensity at the characteristic point ^(zp) =  0.567 complete, the greatest 
difference R(io) =  I„,(^o) —lp(^o) calculated for relative stadard deviation =  0.40, is 
presented in the last column of Tab. 2. Obviously, the extreme values R (zp)^ occur 
for the "extreme" nonsymmetric functions of the drop size distributions 
p,(D) (0.0073) and p,,(D) (—0.0064), Figs. 11 — 13. At the characteristic point 
I^(zo) = 0.567 the derivative dz/dl^, =  2.17 and therefore the limiting estimation 
errors for the dimensionless coordinate Zp amount to JZp, = 0.016 and 
dZp,p= —0.014, respectively, hence Jzp/zQ = +1%

The final conclusion from the above analysis is that independent of the type of 
the drop pulverization spectrum p(D) and the relative standard deviation d, the 
abscissa of the point at which the dimensionless light intensity I(z)/Ip^= 0 .57  
cannot differ by more than 1% from the average value ZQ = 1.47 proper for the 
monodispersive medium. The relation for the average diameter Dp of the drops in the 
pulverized stream of the liquid of unknown quantitative composition p(D) differs 
from formula (26) only by the coefficient

Dp
^ 0 .5 7

0.468 A /

' 0 .5 7
(27)

The influence of asymmetry of pulverization spectrum y and the relative standard 
deviation d on the value of the zero place of the diffrence Rp(z) is illustrated by five 
functions p(D), Figs. 11 — 13, Tab. 2. The conclusions are formulated by analysing 
several different statistical distributions (including several histograms based on the 
results of measurements carried out with the use of other methods for different 
dispersing agents of the liquid).

The assumption of the upper limit of the relative standard deviation = 0.40 
when calculating the entire integral average Sp(z) can be of slightly arbitrary
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character (24). This vaiue is adequate under the circumstances when there appears 
a reiativeiy iarge number of drops of dimensions highly exceeding the average 
diameter D„ (i.g., y >  0). When the pulverization spectrum p(D) is "spread" in the 
direction of drops of smai! sizes (y < 0), then the influence of the limiting value 
defined by relation (25) is marked by standard deviation greater than =  0.40.

However, it has been stated that 10% magnification of the upper limit of the 
interval in which the average is calculated from the modulus of the difference [R(z)l 
causes the change in position of the minimum of the function Sp(z) only within the 
interval 0.05—0.50% (depending on the type of distribution function). This has no 
influence, however, on the dimensionless coordinate of the characteristic point z. 
since the eventual change of the value d̂  causes the shift of curves Sp,(D) and Sp,p(D) 
in the opposite directions and the abscissa of the point K at which they intersect 
(Fig. 13) will not suffer from change.

The characteristic point of the light intensity distribution 7p(r) diffracted by the 
aerosol drops the position of which is dependent, in practice, only on the average size 
D(, of the drops can be used for its direct visualization [13].

CKo

Ip I
Fig. 14. Transducer of step-like characteristics of the optical response OR(I).

If a transducer of step-like characteristics of the optical response (OR(I) in 
Fig. 14) is located in the image plane of the objective transforming the plane 
monochromatic wave passing through the medium under examination, the diffrac
tion image will be reduced to the circle of diameter <5

4 ( ')  =  4-+<3 =  2,-. (28)
Establishing the threshold intensity of the transducer at the level of

f ,  =  0 . 5 7 7 ^ - . ¿  =  2 r .,„  (29)

the visualisation of the coordinate 7*0.57 is made (Fig. 15). The value of the average 
drop diameter can be read out directly from the scale introduced on the basis of 
relation (27). The intensity f p ^ o f  the diffraction part of the entire light intensity 
distribution i(r) =  + appearing in the image plane is proportional to the
number of drops located in the space in which the monochromatic plane wave 
propagates. Condition (29) will always be fulfilled if the threshold value changes also 
proportionally to the number of drops causing the diffraction of the light wave.
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Fig. 15. Scheme of transducing the light intensity distribution fp(r) into an image of diameter 
5 = 2rn e,.

In Figure 16, a conceptual scheme of an optica! system in which the optica! 
transducer is controlled by a signal from detector measuring the diffraction image 
intensity Ipmax is shown. The limited sizes of the active area of the transducer and 
hyperbolic character of the dependence between the average diameter Dp of the 
drops and the coordinate of the characteristic point r,, ,7 cause the width of the 
measurement range (Dp—DJ to be defined by the relation D̂  œ 2Dp. Optimization

Fig. 16. Conceptual scheme of the measuring system to direct measurement of the average diameter of 
the aerosol drops.

of the geometric parameters of the measurement line is possible practically only by 
choosing the focal length /  of the objective transforming the diffraction image 7(r) of 
the aerosol stream under test. The reduced diameter of this image <5 =  2^  5-, cannot 
be greater than the linear dimension ^  of the transducer.

The maximum value of the focal length /  is defined by the condition

<5
 ̂ 2 0.4682

(30)

In Figure 17, an exemple of scale D(r„ 57) adjusted to the measurement range 
D =  12—24 pm and the image converter of size Ip —30 mm is shown. From 
condition (30) it follows that for the wavelength 2 =  0.63 pm the focal length
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Fig. 17. Dependence of the average diameter D, of the drops on the coordinate r„ (i, =  30 mm, 
/  =  500 mm, A - 0.63 pm).

/ ^  0.61 m, and therefore the typical value/ =  0.5 m has been accepted. The extreme 
lines D(?o.37) illustrate the limiting systematic error caused by averaging the 
coordinates of zero places z„(d) of the function R (̂z).

The scale presented in Fig. 17 renders it possible to read out the drop sizes with 
the accuracy which is approximately the same in the whole range (Dp—DJ. The 
criterion of the constant error is satisfied up to the level while
**mm ^  <5/6. For r < r^,„ the measurement of the diameter D  ̂ is still possible but 
with less accuracy. The dependence D(r„ , 7) is "steeper" in this region and therefore 
even the slight changes of the radius d r of the transduced diffraction image cause 
significant differences when reading out the value Dp.

The trials carried out on the prototype measuring stands confirmed the 
possibility of direct measurement of the average diameter of the drops. 
On this basis the practical estimation of the "capacity" of this method has 
been made from which it follows that it is defined by the relation D̂  SR 2Dp 
for a single objective. This means that in order to widen the measurement 
range a set of parafocal objectives of focal lengths forming a series of sizes: ^  2/j 
4 / . . .  is necessary.

The step-like characteristics of the optical response OR(I) can be obtained by 
suitable steering of the TV camera and employing optoelectronic transducers of the 
image.

The threshold effects characteristic of ordered layers of liquid crystal appeared to 
be exceptionally useful due to the ease of steering the threshold position Jp and 
high contrast at the rim of the transduced light intensity distribution ip(r), 
[14], [15].

The most important advantage of this version of diffraction method is a pos
sibility of determining the substitute diameter Dp =  D ^  in the course of measure
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ment by direct readout from the scale. This property is especially important in the 
diagnostics, :.e., when estimating the degree of pulverization of the fuel for the whole 
series of pulverizing devices of the same type.

7. Comparison of methods determining the average drop diameter 
from the light intensity distribution Z(r) in the diffraction image

The analytic methods allowing us to determine the average diameter of the 
aerosol drops on the basis of light intensity distribution J(r) differ by the way the 
information contained in the diffraction image is transduced.

The measurement of the position of dark and bright rings appearing after Fourier 
transformation the light wave propagating through the pulverized stream of the 
liquid renders it possible calculate of from the classical formulae. This is the 
simplest variant due to the way the image appearing in the focal plane is recorded. 
The position of the extrema of the light intensity distribution! J(r,) is the source of 
information about the drop sizes which allows the photographic techniques to be 
applied to its recording. The measurement range of this variant of the diffractive 
method is limited to the quasi-monodispersive media for which the relative standard 
deviation of the pulverization characteristics p(D) does not exceed =  0.153.

The analysis of the images created by aerosol of significant diversification of the 
drop sizes is more complex and possible only when the absolute values of the light 
intensity distribution 7(r) are known. The approximation of the quasi-linear fragment 
of the dependence 7(r), Fig. 2, means the exploitation of only 1/4 of the information
contained in the difffactogram (Fig. 18, fragment B).

Fig. 18. Range of information transduced from the iight intensity distribution f„(z). A — method taking 
advantage of the position of the diffraction fringes, B — method of iiner approximation of the distribution 
7„(z), C,,, C,„ — method of iinear transformation of the iight intensity f„(z), D — method of visualisation 
of the characteristic point z„-
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Linear transformation of the distribution I(r) (Tab. 1) allows us to calculate 
the average drop diameter Dp based on the data from the broadest interval of 
the dimensionless light intensity since I J 7*) =  0.33 — 1 (for polydispersive media 
-  Fig. 18, fragment C,) and 7J r)  =  J(ro , ) - l  (for quasi-monodispersive media, 
Figs. 9 and 18, fragment C,„).

The measurement of the drop diameter Ďp can be made taking advantage of the 
point 7Jro.s-,) = 0.57 and relation (27). This point is characterized by the fact that its 
position is independent of pulverization spectrum p(D) and the relative standard 
deviation d.

The amount of data about the light intensity distribution 7(r) in the diffraction 
image used to determine the average diameter Ďp of aerosol drops has a direct 
influence on accuracy of the results obtained.

The least (systematic) error is characteristic of the method of linear transfor
mation of the dimensionless function 7J r)  =  7(r)/7„ ,̂,„ (Fig. 7). It should be 
emphasized, however, that it is possible to acquire the experimental data (in practice) 
only after having automatized the measurements and applying numerical calculation 
procedures.

Taking advantage of the quasi-linear character of the changes in light intensity 
distribution 7(r) leads to significantly simpler calculation formulae and is a basis for 
the graphic method allowing us to obtain quickly the preliminary results. The 
restricted range in which the approximation of the relation 7Jr) can be obtained 
(Fig. 18, fragment C) causes the results to be charged with an error twice as big as 
that of the linear transformation method. This error is further increased when the 
diffraction image is recorded with a photographic technique. This is due to the 
limitations characteristic of the process of reconstruction of the light intensity 
distribution 7'(r) from the microdensitogram <P(r).

The determination of the coordinate T*Q of the characteristic point 7 Jr^) =  0.57 
and calculation of the average diameter from relation (27) can be formally treated as 
the reduced form of the linear transformation method in which the slope of the 
transform z =  i(r) is determined based on two points (r,z), :.e., (0,0) and (7*0.57,1.464), 
Tab. 1. Substituting the value tany =  1.464/^.57 to formula (19) formula (27) is 
obtained.

It should also be emphasized that the dimensionless coordinate Zo is located 
in the vicinity of the extremum of the derivative J l jd z ,  which means that even small 
changes in the average drops diameter Ďp cause a significant increase (or decrease) of 
the light intensity IJz ) in the diffraction image. A good conditioning of the point 
IJzo) causes the accuracy of evaluation of tany to be only two-three times less than 
that which could be achieved by linearly transforming the dependence IJz). The 
greatest advantage following from the metrological properties of the characteristic 
radius 7*0.57 is the possibility of designing an automatic device for continuous 
visualisation of the average diameter Dp(f) of the drops appearing within the region 
of light wave propagation.

The classical method is convenient in applications due to the fact that no 
linearity of the relation between the light intensity in the stream image I(r) and the
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diffractogram is required to determine the position of diffraction rings. This makes it 
possible to take advantage of the photographic recording and omit the tedious 
process of transforming data from the microdensitgram #(r) into a proportional 
dependence f'(r). This method is very efficient when determining the average sizes of 
objects characterized by inconsiderable size variability. However, for these reasons 
this method is of marginal significance in the metrology of fuel aerosols which are 
typical polydispersive media. From many examined pulverising devices applied in 
the aircraft turbine engines only the starting injectors (of fuel discharge Q(p) <  101/h) 
appear to produce streams of properties of quasi-monodispersive systems.

In the aforesaid measurement methods used to determine the average drop 
diameter Dp the different fragments of the dimensionless light intensity I^(z) are 
exploited (Fig. 18). The magnitude of the observed image 7(r) is inversely propor
tional to the value Dp being proportional to the focal length/  of the objective Fourier 
transforming the light wave passed through the pulverized stream of liquid. The 
proper choice of the parameters of the measuring line consists in letting this part of 
the distribution i(r), which is necessary to realise the chosen variant of the diffraction 
method, to be placed in the recording plane.

The maximal radius fp of the active area of the image recording system (or the 
length of the scanning line Ip) is usually of constant value characteristic of the 
type of detecting device applied. The optimal exploitation of this area is possible 
if the focal length /  remains in a suitable relation to its sizes. Figure 19 shows the 
dependence of the dimensionless parameter D/ .̂ on the quotient y/fp for four basic 
variants of the diffraction method enabling determination of the relation between the

Fig. 19. Choice of the focal distance /  of the objective transforming the diffraction image of the aerosol 
stream of average diameter D into the recording system of the radius r,, (A — method exploiting the 
position of the diHraction rings, B — linear approximation method of the light intensities distribution 
f„(z), C — linear transformation method of light intensity f„(z), D — method of visualization of the 
characteristic point z„).
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radius of the active area r^, the focal iength ^  the wavelength A and the foreseen 
average diameter D .̂

The mode! of single scattering of the light by the aeroso! drops has been assumed. 
When the mu!tip!e-scattering occurs and there is no possibility of limiting mechani
cally the pulverization cone the results of the measurement are charged with 
a systematic error difficult to estimate. Therefore, the following question arises: is it 
possible to modify the calculation formulae (8), (12), (15), (19), (26) and (27) in such 
a situation? These relations can be readjusted to a more complex model of light 
scattering though to a degree different for particular variants of the diffraction 
method. It is most difficult to achieve this in the case of calculating the average drop 
diameters Dp from the position of extrema of light intensity J(rJ, which is caused to 
some degree by limited range of the way the data from the diffraction image are 
processed. The most universal and "open" is the linear transformation method. If the 
effects of multiple-scattering of the light waves by the drop of the aerosol examined, 
their mutual interaction, Van de Hulst scattering effect and the like are taken into 
account the "construction" of this method remains unchanged being reduced only to 
the correction of the data from the transformation Table 1.
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