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Effective measurements of birefringence properties 
of nondichroic media using Poincare sphere

PIOTR KURZYNOWSKI, FLORIAN RATAJCZYK

Institute of Physics, Wrocław University of Technołogy, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, 
Połand

A method for measuring the birefringence properties of nondichronic media using the Poincard 
sphere is presented. Simpie reiations between coordinates of points on the Poincard sphere 
representing input and output polarization states of tight and the point representing first eigenvector 
of the medium have been found. From these refations desired pofarization parameters of the medium 
were caicuiatd.

1. Introduction

There are many methods of determining the birefringence properties of media. Some 
of them are based on multiple mesurements of the polarization state of tight after 
passing through the birefringent medium [1], [2] and reiy on determination eiements 
of the Mueiier matrix of the medium and hence polarization parameters of the 
medium. In the present paper, we propose a simple method of finding polarization 
properties (the azimuth angle, the ellipticity angle of the first eigenvector of the 
medium and the phase shift introduced by this medium) of nondichroic medium. 
Contrary to earlier methods, instead of calculating the elements of the Mueller 
matrix of the medium we use the Stoke's vector formalism and its representation on 
the Poincare sphere. We find simple relations between coordinates of points on the 
Poincare sphere representing input and output polarization states of the light and 
the point representing first eigenvector of the medium. From these relations one can 
obtain indirectly formulas for the desired polarization parameters of the medium.

2. Measuring method

Let us consider a nondichroic medium with the ellipticity angle 3 , of its first 
eigenvector, placed in a measuring setup at the azimuth angle ot̂ . The medium 
introduces the phase shift y between eigenwaves. In the first step of mesurements 
known elliptically polarized light with the azimuth oti and the ellipticaly angle 3  ̂
enteres the medium and after passing it is analyzed, since the medium changed the 
polarization state of light giving as a result the output azimuth angle K( and the 
output ellipticity angle 3(. In the second step the procedure is the same, but the input 
light has parameters and 3^, and the medium transforms them to the output
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parameters zi and 3i. The first eigenvector of the medium tj- =  [M^, C^, 3^] and 
parameters ^  =  [M,, C„ S,] of the input and F? =  [Mj, Ci, S i],: =  1, 2 of the output 
light have their own representation on the Poincard sphere (Fig. 1), where generally

M =  cos 2z cos 23, (1)
C =  sin 2z cos 23, (2)
S =  sin23. (3)

Graphical representation of light transformation by the medium in the first and 
second steps is given in Fig. 1. From general rules of this representation it follows

of:.'?*? ,

Birefringent 
medium 

cr,= ? ? Cz.'Tz'

Fig. 1. Transformation on the Poincard sphere of the polarization state of tight by the birefringent medium 
in the first (i =  1) and second (i =  2) steps of measurements. F , — the point representing the first 
eigenvector of the medium, H and Fj =  1 ,2  — points representing input and output poiarization states of 
the tight, respectivety.

immediately that (for the first measurement) the angle between vector F , represent
ing polarization state of the first eigenvector of the medium and vector Fi 
representing polarization state of the input light is the same as the angle between 
vector Ff and vector F( representing polarization state of the output light. The same 
remark is valid for the second measurement. Then the following scalar products are 
equal to each other:

[Ml, Cl, S J -[M ,, C,, S,] =  [M i, c ; , s n - [M ,, C,, S,],
[M2, C2, S2M M ,, C,, S,] =  [M i, Ci, S i]-[M „  C„ S,],

(4)
(3)
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which can be rewritten as:

MyMi +  C ,C i +  SySi =  MyMi +  CyCi +  SySi, (6)

M ,M : +  CyC, +  SyS, =  MyMi +  CyCi +  SySi- (7)

This is the system of two equations with two unknowns ay and 3y since the input 
parameters ot̂ , 3 i, at2 , 3 i are known from the synthesis of the input light and the
output parameters ocí, 3Í, ai, 3 i, are known from the anaiysis of the output iight.
Substituting Eqs. (1)—(3) containing variables a , and 3 , into Eqs. (6), (7) one 
can get solutions of the form:

(M i-M i)(S 2 -S 0 -(M 2 -M D (S i-S j)  (g)
(C 1-C Í)(S 2-S D -(C 2-C Í)(S 1-S Í) '

cos 2ay (Mi — Mi) +  sin 2ay (C\ — Ci)
5 1 -  Si

cos2ay-(M2-M2)+sin2ay-(C2-C2)
52 -  SÍ ' "

The phase shift y introduced by the medium can be obtained applying identities 
of the spherical trigonometry. Let us consider the Hrst measurement. If we take into 
account two great circles the first of which contains points Fy and F i , the second — 
points Fy and F i, then the phase shift y is an angle between these circles with the 
center at point ly. The same remark is valid with regard to the second measurement. 
It leads to the following equations:

2 sin Ayi sin Ay2

(10)

where:

cosAn- == M iM Í +  C1 C Í+  Si Si, (11)
COS.¿4.22' "  Â 2^^2 "t* *̂2^2 ^2*̂2) (12)
cosAyi =M yM i + CyCi +  SySi, (13)
COS/iy2 = My M 2 +  CyC2 +  SyS2- (14)

As one can see from Fig. 1, points Fy, F, (F, is the second eigenvector of the 
medium) representing eigenvectors of the medium lie somewhere on two great 
circles: the first one containing these points and the point which lies in the middle of 
the arc FiF( and is perpendicular to this arc, and the second one with points Fy, F, 
and the point which lies in the middle of the arc F2 F 2  and is perpendicular to this 
arc as well. Then points Fy, F, are cross-sections of these two circles. So there are 
two solutions of this problem: the first one with parameters (a, 3, y), and the second 
with (a+90°, —3, 360° — y), which corresponds to the fact that cannot recognize 
which of the solutions represents the first or second eigenvector of the medium. The 
right set of results must be chosen using additional messurements of a or y.

tan 2ay =  — 

tan 23y =  —
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Moreover, due to speciAc determination of the phase shift y (function sin in Eq. 
(10)) we cannot recognize the order of the phase shift and it has to be measured in 
some other way.

3. Particular cases

In some cases one can reduce the number of measurements from two to one. Beiow, 
we consider two cases: the medium with known azimuth angle and the linearly 
biréfringent medium.

3.1. Setup with known azimuth angle of medium
Sometimes the azimuth angle a , of a medium is known or can be easily measured. 
From remarks made at the end of Section 2 it follows that one of two desired great 
circles is known and this is a great circle containing the meridian with the azimuth 
a,. So, only one step (measurement) of the above procedure is needed. If this azimuth 
is known we can orient the medium in the measuring setup with the azimuth a , =  0°. 
Then the ellipticity angle of the medium can be simply calculated from

tan 23y =
( M j - M i )

S i - S i
(15)

and the phase shift y should be calculated from Eqs. (10) —(14). Let us note that since 
the azimuth angle is known the ellipticity angle is determined unambiguously.

3.2. Linearly biréfringent medium
In this case the ellipticity angle 3j- is equal to zero and one can make measurement 
only once because we know the orientation of one of the two great circles mentioned 
above: this in an equator of the Poincare sphere. The more detailed analysis of this 
case leads to the conclusion that the setup with input light of the circular 
polarization state is the simplest way to obtain the polarization parameters of the 
medium. Then almost trivially one can get that

K, =  a i-4 5 ° , (16)

y =  N-360° +  9 0 °-2 3 i, (17)

for the first pair of solutions, and
a , =  ai +  45°, (18)
y =  N-360° +  270° + 23(, (19)

for the second one, where N is the order of the phase shift.
This can be excellently presented on the Poincaré sphere (Fig. 2): the linearly 

biréfringent medium whose first Stoke's eigenvector lies somewhere on the equator 
of this sphere transforms the circulary polarized input light whose Stoke's vector 
is represented by the north pole, along the meridian whose azimuth differs from 
the azimuth of the first eigenvector of the medium by the value of 90° (let us
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Fig. 2. Transformation on the Poincard sphere of the poiarization state of circuiarty poiarized tight by the 
tinearty biretringent medium.

remember that doubled azimuth and elliptically angles are spherical coordinates 
of points of the Poincare sphere). Hence we get Eq. (16). Similarly, the length of 
the arc between the points representing the initial (here circular) and Bnal 
polarization states of the light is equal to the phase shift introduced by the medium 
(from the definition) and in this case is equal to the ellipticity change of the light at 
the same time, which is included in Eq. (17).

4. Conclusions

The presented method is very simple and effective. The accuracy of the method 
depends, of course, on the choice of polarization parameters of the input light and in 
some cases could give results with errors being too significant. However, the 
advantage of this method is that one can simply repeat measurements with other 
parameters of input light to obtain results with small errors.
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