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On the Application of the Theory 
of Normal Congruences to the Examination 

of both Transforming Properties o f the Light Beams, 
and Imaging Quality in Noncentric Optical Systems

In this paper the transforming formulae for coefficients of quadratic form for the ray-bundles of arbitrary 
divergence, which are treated as normal congruences, have been derived for the case of noncentric optical systems.

Two measures of image quality have been proposed basing on study of spreading degree of middle surfaces 
for beam-congruence: some examples of numerical calculation of the proposed measures are given.

1. Introduction

From the geometrical viewpoint any light 
beam of arbitrary divergence, emerging from 
an arbitrary object point may be treated as 
a normal rectilinear congruence.

A beam-congruence passing through the 
optical system, when refracted or reflected at 
the surfaces of the system, as well as in the 
intersurface spaces, is subjected to consecutive 
transformations.

In the present paper an attempt has been 
made to examine the transforming properties 
of the quantities characterizing the congruence 
in the course of imaging a single object point 
by a noncentric optical system. The consider
ations are restricted to the systems composed 
of spherical and plane surfaces interfacing 
uniform optical media. New measures of imag
ing quality in noncentric optical systems based 
on examination of the so-called central con
gruence surface [1 ] in the image surface have 
been moreover, suggested.

The application of the theory of normal 
congruences, and spealing widely, of differential 
geometry, to various problems of geometrical 
optics is by no means new.

General properties of a beam of rays result
ing from the FerwMtf BWweiple and the Laws

* Institute of Physics, Wrocław Technical Uni
versity, Wroclaw, Poland.

o/ JHalMs may be found in the fundamental 
works in the field of geometrical optics by 
CZAPSKI and EPPENSTEIN [2], TUDOROWSKI 
[3], LUNEBURG [4], BORN and WOLF [5], 
HERZBERGER [6], STAVROUDIS [7] and 
others. The congruence through an optical 
system of rotational symmetry has been traced 
by HERZBERGER [8] and [9] with the approx
imation up to fifth order of expansion of the 
magnitudes characterizing the congruence with 
respect to the parameters determining the 
congruence. KNEiSLY [10], STAVROUDis [7] and 
PARKER [11] discuss the properties of the 
wavefronts (in the sense of geometrical optics) 
and calculate the caustic surfaces. HOFMANN 
and KLEBE in [12] and [13] derive the for
mulae from which the position of the principal 
curvature centres of an arbitrary beam passing 
through the single refracting surface can be 
calculated. The method given by the authors 
quoted requires that the angles between the 
main direction of the wave front and the main 
directions of the imaging surface be estimated 
for each ray of beam, separately. Thus, none 
of the so far published papers deals with trans
formation of the quantities characterizing the 
congruence as a beam rays passing through 
a noncentric optical system.

The problem of the imaging quality in non
centric optical systems appears when the 
tolerances on the noncentricity of elements in 
the centric optical systems are to be determined, 
as well as when optical systems of great in-
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tuntional noncentricity are designed. In such 
systems the geometric aberrations defined in 
classical way, as well as physical measures and 
cryteria may be used to approximate evaluation 
of the imaging quality only because the defini
tions of those measures include the assumption 
of rotational symmetry of the optical system. 
In concentric systems it is difficult, moreover, 
to establish a plane, which would correspond 
to the Gaussian plane for ideally centred 
systems. In the first order of approximation 
the problem was discussed by BARTKOWSKA 
[14], [15] and SANDS [16], [17]. The geometrical 
aberrations defined for ideally centric systems 
(after a slight modification of the respective 
formulae) were applied to an imaging quality 
evaluation of noncentric systems e.g. in [18] 
and [19]. It should be noticed, however, that 
the greater the noncentricity the more inaccu
rate is such an evaluation. In the region of 
third order optics the formulae for aberrations 
caused by décentrations were given by SLEVOGT 
[20], BARTKOWSKA [21] and GERLoviN [22], 
while the influence of décentration on the 
changes in wave aberration was considered by 
HoPKiNS and TiziANi [23] and BiMMER [24].

The calculation of the position of the astig
matic foci in the systems without the plane of 
symmetry is a separate problem considered 
among other in papers [12], [13] and [25].

In the present paper a new method of 
optical imaging evaluation is proposed for 
noncentric systems. This method is indepen
dent of the plane of reference (i.e. of the plane 
corresponding to the Gaussian plane for the 
centric systems) and does not require any 
approximations.

2. Fundamental
quantities characterizing the congruence

In order to examine the properties of a beam 
passing through an optical system by employing 
the formalism of the theory of congruence the 
beam should be described by its direction 
vector f as a function of two parameters 
and by an arbitrary surface R  (as a function 
of the same parameters, called the reference 
surface, through which the beam passes. The 
choice of the type of parametrization in the 
concrete cases depends on the type of problem 
(see for instance, [4], [7-13]).

The purpose of the present paper is to 
examine the transforming properties of the 
beam of rays (and not of the wavefront). Hence, 
directional cosines p and <? between the ray 
and the a?- and y-axes of the Cartesian coordinate 
system have been chosen as parameters. In the 
assumed coordinate system the %-axis re
presents a fixed direction, used to determine 
the position of the curvature centres of the 
successive surfaces of the optical imaging 
system. Due to this parametrization all the 
quantities characterizing the beam in the course 
of its transformation on the successive imaging 
surfaces can be expressed with respect to one 
coordinate system. From the mathematical 
viewpoint the parallel beam presents a partic
ular case, as then the directional vector of 
the congruence is independent of the parameters 
(singular congruence). However, a strictly pa
rallel beam is a theoretical idealization and 
may appear only in the object space. Thus it 
is sufficient for the beam to pass the first 
imaging surface, and the singularity disap
pears.

In the theory of congruence the so-called 
focal surfaces and the middle surface are con
sidered as characteristic reference surfaces of 
the congruence. The focal surfaces represent 
from the viewpoint of the geometric optics the 
locus of the astigmatic foci of the infinitely 
thin beams of rays composing the beams of 
finite divergence, and are known as caustic 
surfaces, while the middle surface is a surface 
intermediate between the focal surfaces, at 
which the beam becomes the narrowest. There
fore the determination of the middle surface 
position is important for the evaluation of the 
imaging quality from the viewpoint of geo
metrical optics. In order to find the middle 
and focusing surfaces of congruence (beam) 
the coefficients G# and B%, as well as the 
respective discriminants G and B of the first 
and second quadratic forms of this congruence 
must be known [1]. The coefficients G  ̂ and 
B% are defined as follows:

G% =  (1 )
B# =  %,Rj) (2)

where — according to denotation assumed in 
differential geometry — the indices i and j, 
ascribed to ! and R, denote the derivatives of 
these vectors with respect to parameters used 
to determine the above vectors. Moreover, the 
derivatives with respect to the given parameters
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p or g (in chapter 5.5. y or %) will be denoted 
by the index p or y, respectively (in chapter 
5.5. y or %). Other literal or numerical indices 
will not denote the derivatives.

Hereafter, the coefficients y# and discrimi
nant y of the first quadratic form of the con
gruence reference surfaces will also appear. 
(By the reference surfaces we mean here the 
imaging surfaces of the optical system.) The 
coefficients y„ are defined as follows:

F# — RiRp (3)
If the vector functions 1 =  Z(p, y) are known 

and R — R(p, y) then the middle surface R„ of 
the congruence is defined as

R, = R -T Z ,  (4)

while the focal surfaces as 

R%, — R
(5)

R(2 — R
The quantity T is a length of a segment 

measured from the reference surface along the 
rectilinear congruence (along the ray), where

„T  ^11^ 22+ ^ 22 1̂1 " 2(?i2-Bl2ST  -------- — pg----------------- (.)

The quantities ^ and being also the 
segment measured along the ray are the roots 
of a quadratic equation

i'+ 2T 3+  =  0;

thus

*1 =  - T + ] / T 3 —

From the optical viewpoint %i and (g the 
positions of the astigmatic foci of a infinitely 
thin beam of rays around the ray of direction 1.

3. Scheme o f ray tracing 
in noncentric optical systems

Before numerical calculation of the congruen
ces of the light beams are performed, the way 
of determining the décentration must be ac
cepted and scheme of ray tracing in noncentric 
optical systems developed.

The way of determining the décentration 
appearing during production of the optical 
elements, as well as during assembling of 
those elements was discussed by HOFMANN in 
[26-30] and by HOPKINS and TiziANi in [23]. 
After having analyzed these works we have 
decided to take the vector Ac{0, Ay, Aa}. As 
practical measure of décentration to be used 
in the course of ray-tracing. The length of the 
vector is equal to the distance between the 
curvature centre of the decentred surface in 
the optical system and the reference axis i.e. 
the æ-axis. For the tilted plane surfaces, for 
which the vector Ac does not exhibit any 
physical sense, its components may be calculated 
from the following formulae:

As =  <M„
where d is an axial distance of the considered 
plane surface from the preceding surface of 
the optical system, and and A, are com
ponents of a unity vector normal to the tilted 
plane surface. The vector Ac originates from 
the point of intersection of æ-axis with the given 
surface.

ALLEN and SNYDEB [31] and STAVBOTJDIS 
[7] give schemes of ray tracing in noncentric 
optical systems. A  common feature of those 
schemes is that the coordinates of the inter
section points of the ray with the succesive 
surfaces of the optical system, as well as di
rectional cosines of the rays are described in 
a coordinate system, in which one axis changes 
its direction with respect to the consecutive 
surfaces, according to the direction of the so- 
called ray-base. Since the directional cosines 
are the parameters of the congruences with 
respect to the reference system of steady 
direction of the axis, a new ray-tracing scheme 
being a modification of the Feder's scheme for 
ideally centric systems has been elaborated [32].

To calculate the ray passage from one 
surface to the next one and to estimate the 
directional vector Z after refraction or reflection 
the following procedure is necessary

K == R  +  Ac*, (9a)

e =  KZ, (9b)

(9c)

_3f^=(eZ-,K)A* (9d)

cos i* = t/(Z A * ) '-C * (C * M 3 -2 ^ ), (9e)
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cos%' = 1 ^ 1 —y^(l—cos^), (9f)

a =  cosi' —ycos ,̂ (9g)

,  - 2Af^
(!A*) +cosi*

(9h)

A =  <2 +e?, (9i)
A  =  A-j-Ai— (9j)

wt* =  -C *(R *-A c*)+ A *, (9k)
!' =  y! +a*M, (91)

where is a projection of the vector Af onto 
the direction of the vector A; C is the reciprocal 
of the curvature radius of the surface; and y 
is a ratio of refractive indices in front of and 
behind the surface considered. The other values, 
occurring in the formulae (9a)-(91) have been 
marked in Figure. The quantities denoted by

stars refer to the next surface during the pas
sage from one surface to the next one, while 
those primed denote the quantities after reflec
tion or reflection of the ray. These notation 
will be used hereafter. The vector A , has 
always components {1, 0, 0}; vector A for the 
spherical surface has also components {1 , 0, 0}, 
while those for the plane surface are calculated 
from the given value and the tilting azimuth 
[19].

4. Fundamental 
transforming properties

Hereafter we will use the following formulae 
from the theory of surfaces and congruences:

!= - jL -( !p X i ,) ,  (io)

* "= -^ -(R p X -R ,) , (11)

where m  is a unity vector normal to the surface

R (which in particular may be an imaging 
surface of the optical system).

A scalar multiplication of the both sides of 
equation (10) by the respective sides of eq. 
(1 1 ) yields the cosine of the incidence angle of 
the ray in the surface on the left-hand side 
and the product (!p x !.) (RpXR.) equal to the 
discriminant of the second quadratic form of 
the congruence. Hence,

B
cos  ̂ =  ,—  - (12 )

t^y
From the Malus law [1], [4], [7] it is well 

known that the normal congruence (beam of 
rays) preserves its normality in the course of 
reflection or refraction. This means that the 
scalar product of the directional cosine and the 
vector tangent to the imaging surface Rp or 
R . multiplied by the refractive index w of the 
respective medium is an invariant of the con
gruence at refraction or reflection. Thus two 
invariants can be written

%R„! =  w'R-!',
, , (13)wR.! =  w'R.!',

where % and %' denote the respective refractive 
indices of the media in front of an behind the 
imaging surface R, and !, !' are the congruence 
directional vectors in front of and behind the 
refraction and reflection.

The correlation between the products R,! 
and R*! for the neighbouring imaging surfaces 
may be obtained by differentiating both sides 
of the formula (9j) with respect to each para
meter, and a scalar multiplication of both sides 
by !. Hence,

R?! =  (R,-+Ai!+A!J!
and after avoiding the brackets on the right- 
hand side

R?! =  Ri!+l<. (14)
The relations (13) and (14) will be exploited 

in the course of this work. In order to simplify 
the notation the following abbreviation will be 
introduced

Rp! =  Rp!' =  f ,  R^! =  r ,  ^
R .! =  ??, Rp!' =  ??', Rp! =  V , 

then the relations (13) and (14) take the form 
y f =  (16)
y?7 =  V;

= 4 ;
?7*—? 7 = 4 '
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where

y
%

5. T rang formation o f the coefficients 
o f the quadratic forms o f congruence
5.1. Transformation of the coefficients R% of 

the second quadratic form

The transforming formulae for the coeffi
cients of the second quadratic form of con
gruence describing the refraction or reflection 
at a given imaging surface, and the passage 
from one surface to the next one can be derived 
from the definition (2) and equations (9j) and 
(91) after having differentiated their both sides 
consecutively with respect to the parameters 
p and g. By calculating the respective products 
R% and taking account of (1 ) and (10) we get 
the transforming formulae for the coefficients 
of the second quadratic form of congruence at 
the passage from the surfaces R to R*:

(18)

On the other hand, the products of R;% 
yield in the transforming formulae for the 
coefficients of the second quadratic form of 
congruence at is transformation by the surface R

4 '  =  (19)
The transforming formulae (18) and (19) are 

identical with the respective transforming for
mulae for the coefficients of the second quad
ratic form of wavefront, given in [7] and [11]. 
According to the theory of the surface and 
congruence normal to this surface, such a simi
larity had to be expected [1 ].

5.2. Transforming of the 6 4  coefficients 
of the first quadratic form of the congruence

after imaging. By taking account of (19) and 
(1 1 ) the squares of the quantities and )?' as 
well as the product may be expressed by 
the sought coefficients (7% and by the coeffi
cients obtained from the transformation (19). 
We get the following three expressions

(?'
y [ R ^ x % ) ] '

Fit 4 l  T?12

4 ,  4 ,  ais
-̂ 12 f*22

<?22 Bl2 2̂2

^2 4 l  <4 , 
J?22 <4 <4

= -^ [R p (% ,x 4 ] [R .(4 x 4 ]

1

V

(20)

<?12 Rl2 2̂2

4 ,  <4 <4
Bl2 ( 4  2̂2

The relations (20) present a system of three 
inhomogeneous linear equations with respect to 
coefficients (?%. Finally, after some rearran
gements the following solution of the system 
of linear equations (20) is obtained

<4 — ^ [ 2 4 ,4 2 ( ^ 7' - < 7,2) -<7Cos"i

- B ^ ' '- y , l ) - 4 l ( l /3 - < 7 2 2 ) L

42 = - ^ ^ [ J 4 R 2 2 ( ^ - < 7 n )  +yCOŜ t

+  4 ,^ 2 (V  -  <7n) -  (R' +  2^2) ( -  <7n)], (21)

%2 -  — ^ [ 2 4 2 4 2 ( ^ 7 ' -<7i,)- ycos^t

- 4 s ( ^ - y i , ) - J 4 ( V '- y 3 3 ) ] .

If a beam passes through a uniform medium 
from one surface to the next surface of the 
optical system, then the values of the coeffi
cients (7% remain unchanged. The transforming 
formulae of these coefficients for reflection or 
refraction of the beam can be obtained from 
(16). If the quantities y and  ̂ and 17 are given 
in front of the surface, then from these relations 
the quantities and may be calculated

5.3. Transformation of the quantity T

If we know the way in which the coefficients 
( 4  and 1 4  are transformed during the passage 
from one surface to the other in the optical 
system, as well as at refraction or reflection of 
the beam on certain surface, then by the same 
means we may also determine the quantity T.
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However, it is also possible to derive the 
transforming formulae immediately for this 
quantity.

The transforming formula for the quantity 
T determining the position of the middle sur
face of the beam at its passage from the sur
face R to the next surface R* has the following 
form

T* =  T +  A, (22)
where:

T* or T denotes the position of the beam 
middle surface with respect to the surface 
R  (or R*),

A — the distance between the surfaces under 
consideration measured along the straight line 
(ray), for which the values T and T* are deter
mined.

By virtue of the expressions (20) it may be 
seen that the squares of the quantities 77, 
and 77' or the respective products of these 
quantities can be expressed by the coefficients 
(2%, B3, (2% and B3 , respectively, and by the 
coefficients <7%. After having risen to the 
second power both sides of each invariant (16) 
and taking account of (6) we get the transfor
ming formula for the quantity T at the reflection 
or refraction of the beam:

^  7̂# — 2TB,y +  —

=  < 7 3 - 2 2 % - + ( 2 3 )

5.4. Calculation of the coefficients <73 
of the imaging surfaces

The coefficients </3 for the consecutive 
imaging surfaces can be determined indirectly 
after the quantities and 77* are determined. 
The latter are calculated from a system of 
equations to be determined below.

First equation has been obtained owing to 
a suitable rearrangement of the product (1 x wt) 
(1 xwt*), where the quantities 1, wt and tw* are 
determined according to (9).

Finally, the obtained linear equation with 
respect to the quantities <̂* and 77* has the 
form:

Vyp*(îxw)(!xMt*)==B^* +  .F77*, (24)
where

=  (i722 +  AB22)  ̂—(<7i2 +  ABi2)T7,
^  =  (?11 +  AB^) 77 — (<7n +  AG12) ^.

The second equation is obtained by a suitable 
rearrangement of the relation

cos^i* =  (fm*)^,

which finally results in a quadratic equation 
y'sin'i* =  B f +  Q,7*3 +  3 f*77*, (25)

where

B = 2T*B?2- ^ - ( y 22,

Q = 2 2 " B * - ^ L % „ ,

B = 2 T % 2 - ^ ^ 2 -

The squares of the quantities and 77* obtained 
from the solutions of the equations (24) and 
(25) include the coefficients <7*, and <7*3. The 
coefficient <7*3 can be calculated from the de
finition of the discriminant <7*

<7* =  !<7̂ - (26)

Thus, with the parametrization chosen the 
calculation of the coefficients of the first qua
dratic form for the imaging surface is not 
a simple procedure. Many attempts have been 
made to find a simpler method, so far however, 
without success. Nevertheless it cannot be 
excluded that such a method does exist.

5.5. Calculation of the coefficients 
of a quadratic form of congruence 

and the reference surface in the object space

The first reference surface of the congruence 
is reduced to the object point (if the object is 
located at an arbitrary distance) or is an 
arbitrary surface perpendicular to the %-axis 
(if the beam comes from an infinitely distant 
point). In the case of a beam emerging from 
a point of finite distance the coefficients of the 
first quadratic form #3 are calculated from the 
definition (1) after computing the partial deriv
atives of the directional vectors f{7-, p, <7} with 
respect to the parameters p and <7.

The coefficients of the second quadratic 
form of the congruence can be calculated from 
the transforming formulae (18) bearing in 
mind that the coefficients B3 for an object 
point are equal to zero.
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The coefficients <7% of the first imaging sur
face cannot be estimated from the system of 
equations (24) and (25), because both the 
sides of those equations are equal to zero. 

Thus two cases should be considered:
a) An equation of the sphere in the form

(R-/?,)2 =  (27)

(where /y is the vector of the centre of the 
sphere and $ is its radius) together with the 
straight line equation

A =  const. (28)

b) An equation of the plane in the form

R =  R . +A7 (29)

together with (28).
By substitution of (29) for (27) in case of 

a spherical surface, or considering the condition

R A =  0

in case of a plane surface the following equa
tions are obtained

( R .+ M -y J s  =  (30)

R , A + A M = 0 .  (31)

After differentiating both sides of the last 
equations and a suitable transformation, the 
quantities for the first imaging surface are 
given by the formulae

A, =  A " d,
cost (32)

for the spherical surface, and by

cost (33)

the coefficients a% and are equal to zero 
in the object space.

The coefficients of the first quadratic form 
of the first surface of the system may be cal
culated from the definition, after differentiating 
both the sides of formulae (9j) with respect 
to the parameters y and 2. Calculation of 
those derivatives gives the following relations

R f =  Rot'+^t;
where the sign "prime" above the index % indi
cates that the derivatives are calculated with 
respect to the parameters y and 2 and not 
p and y.

When calculating the products R,-y, and 
taking account of the fact that R,y has the 
components {0 ,1 ,0 } and R.g—{0, 0,1} we 
obtain

=  1 + 2pAy +A ,̂
Pu =  (34)

<722 *  l + 2yAg-)-Ag.

The values A„ and A, are calculated by dif
ferentiating the relations (30) or (31). Thus, 
generally

At'
 ̂ ARot- 

cos^

After imaging on the first surface of the system 
the congruence ceases to be singular, therefore 
the coefficients (7^., and B^., are different from 
zero and can be calculated from the transform
ing formulae (21) and (19). After suitable 
transformations the following transforming for
mulae may be derived:

for the plane surface, respectively.
The values A,, for the first surface of the 

optical system are equal to  ̂ and y, respective
ly because of [14]. On the other hand, the 
squares  ̂ and y as well as their product ŷ 
contain the coefficients y^.

In the case of parallel beam (singular con
gruence) parametrization must be changed. 
Namely, the coordinates y and 2 of the point 
of intersection of the light beam with a plane 
R„ distant by from the first surface of the 
system and perpendicular to the axis of re
ference a? are introduced as the parameters. 
The components of the directional vector 7 do 
not depend on those parameters and therefore

<?n =  . 't% ,+ iW (p + A y )3 ,

a], =  + J W (p  +A„)(y +AJ, (35)

<4 =  .3 (% ,+ iW (,2+A j3 ,

where: a is calculated from (9g) and the quantity 
B  is determined as follows:

D / cosi \
y y ----- y- - 1  -\ COS3 /

Here, the sign "prime" above the coeffi
cients and <7;y  denotes that they are
expressed in the parametrization (y, 2).

The transition to the parametrization p, y is 
made by applying the transforming equations
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in the following form:

Photographic objective 
/ '  =  340 mm, A  =  5.6, 2tc =  40°

Table 1

R = R,
dM'' (36)

After having performed those transforma
tions the transforming formulae (18), (19), (21), 
(24), (25) derived above may be applied to 
evaluation of the coefficients of the quadratic 
formes of congruence and of the reference 
surface, when the beam is passing the optical 
system.

6. An application o f the theory o f 
congruences to the examination o f the 
imaging quality in the concentric opti

cal systems

As a result of calculation of the congruences, 
represented by the properly chosen rays emerg
ing from one object point, the quantities T, 
ii and ave obtained. These quantities deter
mine the points of the middle surface and the 
beam focus surfaces, respectively.

In order to examine the quality of imaging 
it is sufficient to consider the middle surface, 
because the more diffuse is such a surface the 
more diffuse are the focus surfaces. In the case 
of an ideal imaging all the three surfaces are 
reduced to one point, being the Gaussian 
image point. This point is a centre of curvature 
of the ideal spherical surface in the exit pupil 
of the system. If the radius R of the sphere is 
known, then the evaluation of two quantities 
AT. and <9T. characterizing the degree of 
deviation of the aberrated imaging from the 
ideal one is possible, and

Centered 
optical system

Decentered optical 
system

Lens 1 Ac =  0.07 
6 =  0°

Lens 3 Ac =  0.07 
6 =  90° 

Lens 5 Ac =  0.07 
6 =  225°

Field A T. 3T.

0° -1 .3 4 0.27
20° 5.18 0.32

0° -2 .3 0 0.59

20° 7.10 0.76

T a b l e  2

Microscope objective 10 x 
/ '  =  15 mm, .4 =  0.3

Field A T. <ST.

Centered 0 -0 .0 4 2 0.17
optical system 0.7 mm -0 .3 2 0.24

Decentered 
optical system 

Lens 1 Ac =  0.05 
6 =  45° 0 -2 5 .9 6.4

Lens 3 and 4
Ac =  0.05 

6 =  135°
6 =  0.003 0.7 mm -2 7 .9 7.6

T a b l e  3

Microscope ocular 8x 
A  =  10, 2to =  40°

AT. = T . - R ,  (37)

<$T
i  ( T . -T . , ) '
A=1

A ( A - l ) ;

where
T. — is the average value of the calculated 

quantities,
T.%. — is the quantity referred to the sphere 

of an ideal wave surface,
A  — is the number of rays being calculated.
The calculation of the proposed quality 

measures (37) have been programmed on 
a computer. The results of the measurement 
are presented in the Tables.

Field A T. <$T.

Centered 0° 0.26459 0.03103
optical system 15° 1.7938 0.02378

Decentered 
optical system 

Lens 1 Ac =  0.05 
6 =90° 0° 0.26531 0.03426

Lens 11 Ac =  0.05
6 =  225° 15° 1.6932 0.02733

Decentered 
optical system 

Lens 1 Ac =  0.1 
6 =  45° 0° 0.26658 0.03946

Lens 11 Ac =  0.1 
6 =  165° 15° 1.5830 0.03455
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Telescopis objective 
/  =  100 mm, JV =  4, 2w =  10°

Table 4

Field A T . 3T .

Centered 0° 0.09626 0.03433
optical system 5° -0 .21236 0.07625

Decentered 
optical system 

Lens 1 Ac =  0.1 
surface 1 8  =  0° 
surface 2 8 =  90° 0° 0.09700 0.04215
Lens 11 Ac =  0.1 

8 =  225° 5° -0 .23129 0.08135

Decentered 
optical system 

Lens 1 Ac =  0.05 
surface 1 8  =  45° 
surface 2 8 =  105° 0° 0.09644 0.03627
Lens 11
surface 3 8 =  165° 
surface 4 8 =  225° 5° -0 .21240 0.08172
surface 5 8 =  330°

7. Concluding remarks

In this paper the transforming formulae for 
the coefficients of the quadratic form of the 
beam — congruence describing the beam pas
sing through an arbitrary noncentric optical 
system have been derived.

The proposed measures of the décentration 
aberration after the advantage of being inde
pendent of the image surface position in the 
first order region. They do not contain, more
over, any approximations while including all the 
geometrical aberrations of a given beam, this 
being often more convenient than the discussion 
of single aberrations.

In view of the computation data presented 
in this paper it is clear that the décentration 
exerts an essential influence on the actual 
values of the measures, though the results 
obtained being too fragmentary, cannot be 
used to formulate a general criterion of imaging 
quality.

Применение теории нормальных конгруенций 
для оценки трансформационных свойств светового 
пучка и качества отображения в нецентрированных 

оптических системах

Трансформационные формулы для коэффициентов ква
дратной формы выведены для пучков лучей с произволь
ной расходимостью, рассматриваемых в качестве нормаль

ных конгруэнций, в случае нецентрированных оптических 
систем.

Предложенные меры качества отображения на основе 
изучения степени распространения серединных поверх
ностей для пучка-конгруэнции. Приведено несколько при
меров численного расчета для предложенных мер.
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