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The paper presents a concurrent hybrid pattern recognition system. The feature extractor o f the 
system is based on optical properties o f ring-wedge detector (RWD) or computer generated 
hologram (CGH) which serves as RWD. The classifier is made as artificial neural network (ANN). 
Since the feature extraction is an optical and thus fully concurrent process, hence such systems 
can be designed for real time pattern recognition if only the classifier of characteristic features 
works fast enough. In presented system the optimized by first author’s original method CGH is 
used instead of widely described standard one. A comparison o f recognition results for both types 
o f feature extractors is also provided. Finally, a methodology of obtaining fully concurrent system 
with optimized CGH and optical ANN playing the role o f a classifier is proposed.

1. Introduction

The data processing system presented in Fig. 1, which is a typical example of pattern 
recognition system, consists of two major parts: a feature extractor and a classifier [1]. 
Many papers describe hybrid optical-digital system in which the feature extractor is 
based on very attractive properties of ring-wedge detector placed in the back 
focal plane of the lens [2]—[4]. These properties result in shift, scale and rotation 
invariance of feature, and furthermore the whole process of obtaining such a set of 
features is a purely optic and thus fully concurrent one. Yet, despite o f these 
unquestionably interesting potential possibilities of RWDs, they have drawbacks 
which eliminate them from many applications. The first disadvantage is their cost, 
since they are made up of expensive planar photodetectors. The second drawback is 
connected with the poor flexibility of RWD. Systems composed of such devices are 
therefore expensive and severe problems arise in practical aDDlications of the 
laboratory setups.

Both disadvantages are eliminated by using computer generated holograms (CGH) 
[5] also referred to as diffractive optical elements (DOE) [4]. What is worth stressing
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Fig. 1. Schematic diagram o f pattern recognition system.

here is that applying CGHs instead of RWD makes it also possibile, to further improve 
the recognition ability o f the system by the cost-effective optimization of the CGH. 
The stochastic evolutionary method of CGH optimization can be found in [6]. But this 
method was used only for computer simulations of DOE and therefore the concurrency 
inherently involved in optical processing has been lost.

This paper summarizes the above mentioned method of CGH optimization, and it 
also concerns the problem of obtaining real optimum optical element from computer 
simulation results. The methodology proposed yields better pattern recognition 
abilities of the system compared to a system with standard CGH and at the same time 
preserves the massively parallel processing characteristic for optical methods. 
Furthermore the possible use of optically implemented neural networks serving as the 
concurrent classifier o f features is discussed. The objective here is to obtain pattern 
recognition system working as a whole concurrently and therefore with possible use 
for working in real time regime.

2. Concurrency in optical feature extraction
The main purpose of using the RWD as a feature extractor in pattern recognition system 
is to obtain a set of features that are invariant with respect to typical transformations. 
It is also important that all features are obtained in parallel, since all operations needed 
to generate them are purely optical ones.

The properties of RWD are the result of placing it in the back focal plane of the 
lens. It is well known that the image F(u, v) generated in the back focal plane of the 
lens L is the Fourier transformed power spectrum of the image f(x, y ) passing through 
it. The above Fourier transformed image F(u, v) has attractive properties such as: 
symmetric, rotational and scaling of the FT pattern [2], which means that the detector 
used may contain wedge- and ring-shaped elements. Thus the RWD used to extract 
characteristic features o f the images in spatial frequency domain is a circular element 
divided into two halves. The first one is composed o f half-rings (further on referred to 
as rings) with the same width i (i.e., the difference between the outer and inner radii 
of the ring). The second half consists of pie-shaped wedges having the same angles. 
The standard RWD was patented and produced by ARC Incorporation. It is also 
commercially available and has got 32 rings and 32 pie shaped wedges [2].
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The division o f the whole circle into two halves does not reduce the amount of 
information about light intensity in any half-circle, since the power spectrum is 
characterized by symmetry. Hence all information about image intensity is separately 
covered in the area consisting of rings and also in the area consisting of wedges. Each 
of the rings and wedges is built as a planar silicon photodetector that integrates the 
intensity o f light passing through it. At the output of each photodetector the value of 
electrical signal corresponds to the value of the feature related with given RWD area 
(ring or wedge).

Features generated by photodetectors in the shape of rings are invariant to rotation 
since rings integrate the light intensity throughout the whole possible positions of the 
input image transformed by rotation. Similarly the features that correspond to the 
photodetectors in the shape of wedges are invariant with respect to the scaling 
transformation of the input image. This is because these photodetectors integrate light 
intensity o f all possible sizes of input image. All features are also shift invariant, since 
light intensity of Fourier transform of the image is always shift invariant.

Despite of the relatively complex process of extraction o f characteristic features, 
as described above, this process is made with full concurrency. The concurrency here 
should be viewed at a few levels. The first level concerns the concurrency of different 
operations. More precisely, the process of transforming the image into frequency 
domain is performed in a full parallelism with the process of light integration and signal 
conversion in planar photodetectors. To realize how complex operations they are, it is 
enough to inspect the formulae describing the two-dimensional Fourier transform 
F(u, v)  of the function f(x, y ) and integration of light intensity in RWD rings /?, and 
wedges Wt, where / stands for the number of ring or wedge 1,2, ..., 32 , respectively. 
In formula below, FRi denotes the value of feature corresponding to ring F, and in 
formula (3), Fm  denotes the value of feature corresponding to wedge

OO 00

F ( m, v) = 3 { /(x ,y )}  = J  J  /(x,y)exp[-27t(w x + vy)]dxdy,  (1)
—oo—oo

Fr = J I F2(u, v)dwdv, (2)
u, v e Rt

F w , = J  J^ (w >  v)d«dv. (3)
u,v e IVt

One should also realize that in this signal processing the first specialized processor, 
namely the Fourier transform processor, is the lens and the second specialized 
processor (i.e., the integration and conversion processor) is the RWD itself. Both these 
processors co-operate forming together one concurrent lens-RWD-based feature 
extractor.
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b

Fig. 2. RWD element (a) and lens-RWD-based feature extractor (b) [7].

The second level of concurrency in this extractor is clear if we consider that the 
co-operating system composed of the lens and RWD generates not just one feature but 
a set of 64 features. All of them are of course generated at the same time. The photo 
of RWD and of optical RWD-based feature extraction system is presented in Fig. 2.

2.1. Computer simulated processing of images obtained from optic-fiber sensor
Despite of all the afore mentioned advantages of lens-RWD-based feature extractors 
some papers [5], [7], [8] claim that the RWD can be replaced by CGH. This gives the 
possibility of building feature extractor that would be cheaper and more suitable for 
given application compared to universal device such as RWD. The key point here is 
the fact that rings and wedges of CGH are not made of expensive planar silicon 
photodetectors, but they are rather the binary diffraction grating [5] described by the 
equation

(4)

where the function rect:9? —> {0, 1} is defined as

(5)

and the function s: 91 ->■ 91 is an ideal sampling function given by

( 6)

The function g(x) describes the rectangular wave with unit amplitude, wavelength 
d  and filling (A x ) /d .  This wave is defined for the area of the length L and is composed
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Fig. 3. Diagram o f fiber optic sensor (a) and speckle patterns from its output for 2 (b), 3 (c), 4 (d), and 5 
(e) modes propagating in few-mode fiber.

of N  fringes. In other words, d  is the distance between fringes, Ax is the width o f the 
fringe, whereas L is the length (in the direction perpendicular to fringes) o f the area 
covered with A fringes. Therefore, uh = \ / d  is the space frequency o f the diffraction 
grating defined by the wave g(x).

The binary grating causes that the light passing through a given area is diffracted 
in a given direction and focused on a much cheaper normal quasi-dot photodetector. 
In this way, the process o f light integration and conversion to electrical signal has been 
separated in space but not in time. Still these processes are performed in parallel and 
furthermore there is a possibility o f applying high-speed and high-sensitivity 
photodetectors. Sample images o f speckle patterns taken from the output of the optical 
fiber sensor [8] are shown in Fig. 3 together with the diagram of this sensor.

The feature extraction applied to such speckle patterns was performed in computer 
simulations o f CGH-based system.

Separating the processes o f light intensity integration and signal conversion it 
is also possibile to modify with relative ease the widths of rings and angles of 
wedges in CGH. Since the sizes of these elements could be easily modified, hence 
the opportunity to optimize them occurs. The first author’s original method of 
optimizing the sizes o f rings and wedges was reported in detail in paper [9]. This 
method was based on stochastic evolutionary optimization with repair algorithm and 
the objective function was defined in terms o f rough set theory. The more precise 
rough set aspects of the problem were signalled in [10], [11], here only the objective 
function for evolutionary optimization will be introduced. For this purpose, 
the quality o f approximation yC(D*) o f classification family D with respect to the 
conditional attributes C (values o f features corresponding to rings and wedges) was 
used.
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The results obtained from the optimization were very promising, since it became 
clear that the standard CGH was outperformed by optimized one [12]. Yet this work 
was done only by computer simulation. The results o f feature extraction were better 
in the optimized model o f CGH compared to the standard one, but the processing was 
no more concurrent. Therefore, the approach was directly applicable only to those 
domains where real time recognition was not the case. But on the other hand, by even 
eliminating CGH and performing signal processing in computer software which 
simulated holographic element, yielded in maximum cost reduction and in many areas 
it is the cost and not the speed that is the most important criterion.

2.2. Concurrent signal processing in optimized CGH
In the case where the processing speed is not very important, the solution presented 
above is a good choice. But sometimes, real time operation is needed, and then 
computer simulated holographic elements are of no interest. Therefore, the next step 
should be taken to join promising results of computer optimization with concurrent 
processing of CGH. The task is to produce real CGH with sizes of rings and wedges 
calculated by computer simulations. Such a solution should give better recognition 
results compared to systems with standard CGH (or RWD, which, in addition, is a 
much more expensive device) and at the same time the work is performed with the 
same degree o f concurrency as was discussed for RWD operation.

The process of producing CGH consists of two steps. In the first one, a mask o f an 
optimized holographic element is generated by a computer and printed on a very high 
quality laser printer (1200 dpi or more). In the second step, the size of the printed mask 
is reduced by applying some photo-reduction method to obtain the intervals in gratings 
comparable with light length.

The mask of optimal DOE, generated by first author’s program, is presented in 
Fig. 4. This figure also shows the difference in sizes of rings and wedges in standard 
RWD element and optimized DOE.

After printing on a high quality laser printer, the CGH mask is reduced by means 
of photographic method. Then the gratings covering its rings and wedges become the

Fig. 4. Comparison o f region shapes in standard RWD (a) and those produced by computer mask for 
optimized DOE (b).
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Fig. 5. Feature extraction in optimized CGH based system [10].

diffraction gratings described by Eqs. (4)-(6). The feature extraction system which 
uses the optimal DOE thus obtained is schematically presented in Fig. 5.

If the grating described by g(x) is placed in the back focal plane of the lens L2, 
then the distribution of its Fourier transform amplitude occurring in correlation plane 
P3 is given by the equation

|G(«)| = LAxd sin n u Ax s(ud) X SÍn7lM¿
- nuAx nuL

(7)

where u = x3/'kfL̂  ( if the coherent light of the length A is used). Therefore the binary 
grating characterized by space frequency uh -  \ / d  in Fourier plane P2, gives in 
correlation plane P3 fringes o f «-th order. The strength o f these fringes weakens with 
the growth o f n, and the distance x3 between them is given by

*3 ( 8)

Since binary grating generates diffracted waves o f many orders (7), creating in P3 
fringes with spatial frequency equals /¿2/dU(8),  hence in CGH design there is a need 
to satisfy the non-overlapping condition. This condition is fulfilled if diffracted waves 
of the first order from any CGH region (ring or wedge) do not overlap in P3 with any 
other diffracted wave of higher order. If  this condition is guaranteed, then instead o f 
sinusoidal fringes the binary fringes can be used. Therefore, the complicated process 
of hologram design with the use o f optical methods can be replaced by the process of 
binary hologram mask generating with the use of computer software. Such a mask, 
after being printed with a high quality laser printer is then photoreduced, so that the 
binary grating becomes diffraction grating. Then the process of light diffraction in 
CGH regions directs coherent beams passing through these regions to unique locations 
in the correlation plane P3, where signal conversion is preformed by photodetector
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array. The efficiency o f such optical feature extractor is assured by results of 
optimization o f CGH model in computer simulated system.

3. Concurrency in classifier
After obtaining a fully concurrent and optimized for a given recognition feature 
extractor it is reasonable to assure concurrency in classifier as well. Artificial neural 
networks (ANNs) can be a good choice here, because they are characterized by 
relatively low levels o f computation complexity, but very high degree o f parallelism 
and interconnectivity [13]. Then the resulting pattern recognition system would be 
characterized by great speed and maximum overall accuracy.

Since ANNs are well known for their good classification abilities, they are very 
often used as classifiers of characteristic features obtained from CGH. The following 
subsection will give a short presentation of ANNs with respect to their potential parallel 
processing. The last subsection will discuss especially interesting part of neural 
computing, namely, the optical implementations o f neural networks. They are of 
special interest in systems with CGHs mainly because o f the physical nature o f features 
extracted directly by CGH. Since the values o f features are in fact encoded into 
intensities o f light in given quasi-dot areas, therefore optical ANNs would eliminate 
the need of converting light intensities into electronic signals.

3.1. Neural classifiers
Good classification abilities of feed-forward ANN in implementation o f any nonlinear 
mappings are presented in many papers [1], [14]. Such ANNs are especially widely used 
in pattern recognition problems [ 15], [ 16], since their operation is a result of the adaptive 
training process without a priori knowledge about the rules governing the classification 
o f characteristic features o f input images.

The most commonly used feed-forward ANNs consist o f many very simple 
processors called neurons placed in layers, as shown in Fig. 6. Theoretically, there can 
be an arbitrary number of layers in a neural network, but practically three layers are 
enough.

The neurons (or the nodes o f the network) generate on their outputs y, a nonlinear 
sigmoid activation function h o f weighted sum of inputs Xj

T, = h(netj) , neti =
j

(9)

h(x)
1

1 + e x p (-x /0 )
( 10)

In the above formulae, wy are referred to as weights from the output o f neuron j  in 
the previous layer to the input of neuron i in layer level and 0 is a parameter influencing 
the slope o f the curve h(x).
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Fig. 6. Three layered feed-forward ANN.

In the experiment with recognition of 5-mode speckle patterns taken from the 
output o f optical fiber sensor (Fig. 3) a set of 128 images was used. These images were 
taken for different values of external force acting on the fiber. This was the laboratory 
simulation of stress or strain o f the fiber. Since such a stress has influence on images 
occurring at the output o f the fiber, the recognition of the stress class can be done by 
analysing o f the image. There were simulated (by different forces) eight different 
classes of stress, and for each class 16 sample images were taken (Fig. 7). Then 20% 
of images were used for testing and 80% for training of the ANN. For measuring the 
quality o f recognition, the normalized decision error, defined as: Ed = Nb/ N cNp, was 
used. In the above formula, Nb is the number of wrong classified images, Nc is the 
number of classes and Np is the number of all images in the set. For images used for 
training this error was equal to zero, for images from the testing set it was greater than 
zero, but still small.

The more detailed results o f experiment are presented in Tabs. 1 and 2. In these 
tables the following abbreviations are used:

Fig. 7. Examples o f images belonging to 8 classes to be recognized.
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T a b l e  1. Results o f recognition o f the stress class for T -  B.

TCGH E/ e, T, H Nr E j Ejc

5 0.1 0.400 N/N 13 360 4.8% 4.8%

0 0.1 0.400 N/N 13 343 5.8% 3.8%

O — 0.499 YIY 7 3826 3.4% 2.8%

O — 0.499 Y/Y 6 9950 3.4% 2.8%

T a b l e 2. Results o f recognition of the stress class for T = E.

T, H K E j Ejc

— 0.499 — 13 130.000 4.8% 4.8%

— 0.499 — 11 100.000 5.8% 4.8%

— 0.499 — 10 100.000 5.3% 3.8%

— 0.499 — 7 70.000 5.3% 7.7%

T - tra in in g  method (possible values are: B for backpropagation gradient-descent 
method and E  for stochastic evolutionary method),

^CGH -  type o f the CGH used: S -  standard, O -  optimized,
— training (learning) tolerance o f ANN used as a classifier, 

e, -  testing tolerance of ANN,
T, -  tolerance tuning/testing while training techniques has been applied in training 

o f the ANN (possible values of this option are: Y or N  for both techniques),
H -  number o f neurons in hidden layer,
Nr -  number of runs (epochs) in training,
Ed -  normalized decision error for testing set,
Edc -  normalized decision error for testing set after using competition mechanism. 
In theory o f neural networks the operation o f all neurons o f the same layer 

is performed in parallel. The problem o f time consuming learning o f ANN (see the 
Appendix for back propagation training mathematics) is unimportant for speed of 
the operation o f already trained network. Therefore, the total time of operation 
depends only on the number o f layers (and, o f course, on the time x o f processing in 
one neuron). Since the number o f layers is almost always equal to three and the first 
layer is only a buffering one (z'.e., not performing the calculations, see Fig. 4), therefore 
the time of ANN’s response is 2x and is almost independent o f the size o f task 
performed by ANN.
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In the last sentence the word “almost” is necessary since the size o f the task 
performed has influence on the number o f terms to be added in formula (4) and 
therefore the time i  is longer for more complicated calculations. Nevertheless, the 
speed-up o f parallel operations o f all neurons in a layer is impressive. However, such 
excellent results o f parallel processing in neural networks are possible only if the neural 
chips are used (in neural accelerators in standard computers or even in neural 
computers). In the majority o f situations this is not the case and then the computer 
simulation o f  neural network is performed. Certainly, the operations performed in all 
simulated neurons are then executed sequentially. Therefore in the concurrent system 
under consideration, usual computer simulated neural networks should be replaced by 
neural chips. But this is not the only solution. It is even more suitable to apply here 
optically implemented neural networks. In this case, as was already mentioned, the 
conversion from optical representation of characteristic features into electronic signals 
is not needed anymore. Furthermore, as it becomes clear after presentation o f operation 
in optical ANN, the time of data processing in purely optical ANN is independent of 
the complexity o f the problem to be solved if only the latter fits into three-layered 
architecture. In the majority o f cases it does fit, but if  not, the total time is increased 
to 3t instead of 2t, since all mappings used for classification can be done by four-layer 
architectures [17]. The complexity of the problem influences only the number of 
neurons in a layer but has no effect on the time of calculations.

3.2. Optical neural networks
In electronic processors the information channels are made o f conducting material on 
a two-dimensional surface. Hence, surface area and power dissipation concerns limit 
o f very high interconnectivity. Optics offers the promising alternative o f exploiting 
the third dimension by allowing free-space (i.e., three-dimensional) interconnections. 
Non-interference among intersecting optical channels and essentially instantaneous 
transport over short distances are inherent advantages in choosing optics. Therefore, 
optical technology in ANNs is very promising in real-time speech and vision 
processing problems [13]. As was already said, this technology is especially useful for 
building classifiers of features generated by CGHs, since these features are o f optical 
nature and it is very natural to process them further in optics. The basic process o f 
calculating the weighted sum of the inputs is done in a “Stanford” vector-matrix 
multiplier shown in Fig. 8.

A linear array of light sources, each encoding the input intensity value, are fanned 
out vertically by a cylindrical lens. In this way, each input is smeared across a column 
of a two-dimensional array. By adjusting the transmission o f each pixel of the two- 
dimensional array, often implemented by spatial light modulator (SLM), a unique 
weighted path or interconnection from each source to detector is defined. Note that 
these interconnections are defined in a three-dimensional space. Then the second 
cylindrical lens does fan-in along the horizontal direction giving the total weighted 
summation at each detector in the array.



686 K. A. Cyran et at.

Optical interconnections may be fixed or adaptive. Fixed interconnections are 
determined in advance by simulation and implemented in some permanent 
medium such as transparencies or fixed holograms. Adaptive paths demand more 
complicated hardware and can be implemented by SLMs or adaptive holographic 
interconnections [13].

The more serious problem in optical implementations of ANNs is how realize the 
nonlinearity property o f the activation function h. The most promising solution is a 
liquid crystal light valve-based system. In these types o f devices the incoming light 
beam causes an electric field to be generated which controls the light modulating 
material to allow a nonlinear response approximating a soft threshold representing 
activation function h.

4. Conclusion
In the paper, a fully concurrent version of the pattern recognition system, used as a 
computer simulated model for speckle pattern classification, has been proposed. The 
first part of the system, i.e., feature extractor, is based on CGH optimized by the first 
author’s original method. The second part, the classifier, is a massively parallel neural 
network, preferably in optical implementation.

Computer simulations of optimized CGH-based extractor produced features 
that were classified, by neural networks with normalized classification error of 2.8% 
for the testing set, compared to the error of 4.8% in the case o f features obtained for 
the standard CGH. However, the better classification results were occupied by the non 
-concurrency in data processing by simulating optimal CGH. This paper presents the 
next step, which consist in obtaining the optimized, yet optical CGH, joining the 
optimum feature eeneration with the concurrency present in standard optical CGH 
devices.

The last part of the article gave the introduction to possible application of optical 
neural networks as classifiers of characteristic features generated by optimized CGH
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devices. It should, however, be stressed here that optical implementations o f ANNs, 
though being undoubtedly very attractive because o f their massively parallel nature, 
are still at the immature phase o f development.

Appendix

This appendix gives the mathematics o f the backpropagation algorithm used for ANN 
learning. The complex, time consuming operations of this algorithm, though very 
important for the performance o f the system, are executed only at the training stage, 
and therefore have no influence on the overall speed o f  trained network, and the whole 
pattern recognizer. However, since training is so important for the behaviour o f the 
ANN (whether simulated in computer, hardware implemented or optical one) this basic 
training algorithm o f  feed-forward networks is given below.

Backpropagation method modifies array of weights W according to the 
direction o f the gradient o f error occurring at the outputs of the network [18]. Its aim 
is to find a network with minimal functional of the root mean square error e(W ) for 
the whole training set consisting o f M  training facts. Each training fact is a pair 
(xOT, tm), where xm e 5H is an input vector and tm e 91 is a vector of expected 
answers for m-th training fact. If  we denote a vector o f real answers o f the ANN 
by ym(W ) e 91 , then for the i-th output neuron and the m-th training fact an error 
e™(W) is given by

e7( W ) = I ( i f - y f ( W ) ) 2. (A l)

The total error em for the m-th training fact is

em(W ) = ¿ > 7 ( W )  = I ^ f - y ^ W ) ) 2. (A2)
< = 1 / = 1

The total error e for all training facts is given by

M M I
n W ) = X  em(Vf) = i  £  ^ " ( W ) ) 2· (A3)

m = 1 m = 1; = 1

The training of the network consists in minimization of this error. It is the search 
for the minimum of the scalar field over the vector space. Such search can be done by 
a gradient descent method

AW = - r | V e(W ). (A4)

For elements Wy o f array W  we have

_  de(W ) 
y  1 d w  'ü

(A5)
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To fulfil the strict requirements o f gradient descent method the weight array 
modification should be performed once after the whole training set. In practice, 
however, more often weights are modified after each training fact. For this case, the 
changes o f weights are done according to the following formulae:

. dem(W) dem(W )d n e ti
Aw a = —T) — — - = —T|----1— - --------

'J d w r  -  m -, my dneti dW'j
(A6)

If we denote by [19]

g/n = ae"'(W)
dnet™

and taking into consideration (4) we finally have

a m ~m
Awtj = r1Si Oj .

For output neurons

sm _ de (W) dOi mw ™ m\
5 t = —  ̂ = h (<neti )('/ ~y> )·

(A 7)

(A8)

(A9)

However, for hidden neurons the value of is directly unknown, therefore there 
is a need to backpropagate errors from the output layer according to the chain rule

dem(W) = y  d ey \V )d n e t” = y  dem(W)dnet™ 

30? dnetm„ dOn;  dnetmn dO”
= - ¿ ^ bnwni 

n = 1
(A 10)

And finally, for hidden layer we have

57 = h '(n e O  X  5 > 7 ,
n= 1

( Al l )
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