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Multi-layered holograms and their fabrication
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Multi-layered holograms due to their multi-beam interference have other features contrary to usual 
bulk holograms. Analysis of the properties of such holograms is provided by coupled waves 
method. For two-layered holograms we can see oscillations of the dependence of diffraction 
efficiency on an angle incident onto a hologram or on the wavelength of incident beam, and besides 
oscillation period is defined mainly by the distance between holograms. Multi-layered holograms 
could be presented as two-dimensional periodic structures, for which variable of the dielectric 
constant (variable component of refractive index) could be shown as multiplication of two 
periodical functions.

1. Introduction

For the first time, analysis of multi-layered holograms was provided in [1] on the basis 
of Kogelnik diffraction [2]. In this work, analytical dependence of diffraction 
efficiency of multi-layered holograms is described and some of their properties 
presented. A theory concerning thin two-layered holograms and their properties is also 
provided in [3], [4]. Results of theoretical investigations of multi-layered holograms 
registered on photo-refractive materials are given in paper [5]. But previous theoretical 
investigations were based on the Kogelnik theory of light diffraction on bulk holograms 
[2]. This theory is approximate and thus it describes a simple thick hologram, but there 
is no certainty that it is applicable to theoretical model creation o f multi-layered 
holograms, as presented in [1], because of neglecting the second derivative. Based on 
the coupled modes theory for light diffraction on periodical structures [6], a system of 
exact differential equations was obtained without the second derivative being 
neglected, which was used for analysis of thick holograms [7]. Using this system of 
equations we performed digital analysis o f multi-layered holograms [8] by solving the 
system with the Runge-Kutta method of the fourth order, taking into consideration the 
second derivative and for a parabolic approximation [6]. A comparison of calculation
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results of exact equations and those for a parabolic approximation shows that they are 
similar. This is not surprising, because calculations were made for small modulation 
of refractive index of hologram medium under the following condition:

2- ^ T m <  1 (1)
A

where: nx is the amplitude of refractive index modulation, T -  thickness of one 
hologram, m -  number of holograms in multi-layered hologram, A -  wavelength of 
incident beam. So, fulfilling condition (1), which is easy to do in practice, we can use 
parabolic approximation and obtain the analytical dependence of diffraction efficiency 
on an incident angle and on the wavelength of beam incident onto multi-layered 
hologram and on other parameters of such a hologram. It is also necessary to analyse 
the properties of multi-layered holograms and indicate their possible application. 
Whereas two-layer holograms are easy to fabricate on the basis of photopolymeric 
composites [8], fabrication of multi-layered holograms, especially for large m (> 10), 
could bring about some technological difficulties. Therefore, the question arises 
whether it is possible to fabricate multi-layered holograms for large m, using, 
exceptionally, holographic process, which for this case is more acceptable.

2. Theoretical analysis of multi-layred holograms

Let relative permittivity into the first sub-hologram, with the thickness T, of multi 
-layered hologram (Fig.l) change in the following way:

e(x, y, z)

ea, -co <z <0, 

ea + e i cos(x * )>

T < z < T + d, 

0 <z<T,

-00 < X < 00

-00 < X < 00 (2)

where: A is the period of change along the OX axis, ea -  permittivity constant of 
medium besides sub-hologram, Sj -  the amplitude of variable component of 
permittivity constant o f sub-hologram, d -  distance between two neighbouring 
sub-holograms. Permittivity constant of other holograms changes the same way.

If a plane wave of one-amplitude electric field falls on such a hologram at an angle 
0O, then, besides incident wave, there also appear diffracted waves. It is well known 
from the theory of diffraction on thick holograms [2], [6] that in many cases it is 
sufficient to consider only two coupled waves, diffracting at zero and first orders at 
angles 0O and 0j, respectively. Let us limit the problem to consideration of an optical 
wave, the electric field tension of which is orthogonal to the plane of incidence. The 
electric field in a hologram is presented in the following way [6], [7]:

E(x, z) =
; = 0

1
JcosQi

exp[-j(ki Xx + kt Zz)] (3)
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Fig. 1. General view of multi-layered hologram, where wide black lines are sub-holograms with the 
thickness T at a distance d  to each other.

where: A t(z) are amplitudes o f non-diffracted (i = 0) or diffracted (i = 1) waves in 
hologram, k , x, kt z -  the projections of wave vectors onto OX  and OZ axes, 
respectively.

Substituting Eq. (3) into the second order wave equation [6], [9] for electric field 
in which dielectric penetration is shown as Eq. (2), then, according to a procedure 
given in papers [6] and [7], we obtain the following system of differential equations:

Difference o f two projections of wave vectors onto OZ axis plays an important part 
for our problem

(4)

where:

(5)

The diffraction angle 0! is defined by condition approved in [7]

(6)
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It is well known that for considering the light diffraction on thick holograms when 
« :« 0, parabolic approximation is applied [6], and the essence of this approximation 

is that the system of Eqs. (4) neglects the second derivative. Then, on the basis of 
system (4) by changing the variables

Aq = C0e x p (-y |z ) ,

A,  = C ,e x p (y |z j,

we obtain the linear system o f differential equations with constant coefficients:

dC0 a
d i ~ J j C 0 - J x
dC

(7)

^ " - y x C o - y f c , .

Besides, the coefficient connecting both equations of the system equals

2kJcosQ0cosQl

It is worth mentioning that the system of Eqs. (7) describes also propagation of both 
waves between sub-holograms, but in this case x = 0, and the system (7) splits into 
two independent equations. The period A is defined at the stage of hologram recording 
correspondingly to the correlation [2], [10]

2n
A A,0

sincp ( 8)

where: cp is the angle of laser beam propagation in a medium upon hologram recording 
(the scheme of recording is symmetrical), 7.0 -  wavelength of laser irradiation upon 
hologram recording. In the following equation (p and A.0 will also mean the wavelength 
and the angle of beam propagation in the hologram, respectively, for which Bragg 
conditions are satisfied. Using Eqs. (6) and (8) we can define the angle of diffraction 
0 ] on the hologram for the stipulated wavelength X and the incident angle 0O

sin©, = 2 — sinip -  sin0o.
/-o

(9)
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Taking angle 0, defined by formula (9) and based on expression (5) we can 
calculate A

A =
27t«o

X
[cosG] -  cos0o]. ( 10)

Using the theory o f linear differential equations [11] and matrix calculation 
[11], [12], amplitudes of electric fields of non-diffracted and diffracted waves for 
z = T + d  could be written as matrix equation

C0(T+d)

C ^ T + d )
a l \  a \2 

a 21 a 22

C0( 0)
C ,(0 )

a \\ a \2 

a 2\ a 22
( 11)

where C0(0) = 1 and C ,(0 ) = 0 are initial conditions. 

a il = exp ( y ' )  C0S(yT) + i ^ -sin (y7)J, a22 = a*n ,

a  21 a *\2’a \2 = - i  ^ sin (Y T )exp^Y /

where y = J ( j )  + 1  ■

By direct checking using (12) and (13) we could prove the following: 

det(a,y) = 1,

kill = |a22| -  i·

( 12)

(13)

(14)

(15)

If multi-layered hologram consists of m sub-holograms, then the amplitude of electric 
field of both waves for z = m(T + d) taking into consideration (11) equals

C0(mT + m d) a l\ a l2
m

1 b n 1
C x(mT + m d) _a2] a22_ 0 p2\ b22 0

(16)

From Eq. (16) it follows that the diffraction efficiency r| of multi-layered hologram 
equals

r| = md )| = |62i |2- (17)
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From matrix calculation [11], [12] it is well-known that using conditions (14) and 
(15), b2l could be defined as follows:

¿21 «2l
sin(/»P)

sinp

where P is defined from formula

(18)

cosp = 0 .5 (au  + a 22) = c o s (y T )c o s (y  )  -  ^ -s in (y r )s in (^ y  ) .  (19)

From definition o f a n  and a22 (formula (12)) it follows that | cos p| < 1, and that is 
why P is real value. So, diffraction efficiency of multi-layered hologram taking into 
consideration (13), (17) and (18) equals

y . 2, ™ sin (/«P) x\ = A-sin (yT) ------ h-*-1 ·
y sin P

(20)

For m = 1 (one-layer hologram) we obtain the well-known expression [2], [10], 
and for m = 2 formula (20) becomes simpler, i.e.,

r) = 4 2Lsin2(y7^cos2p. (21)
Y

2 2 2It is easy to prove that if d -  0 and m = 2, then q = x sin {2yT)/y  , which is 
the diffraction efficiency o f one-layer hologram with 2T, according to [2], [10]. It is 
worth mentioning that formula (20) is analogous to corresponding equation in [1], 
although they are obtained in different ways.

3. Properties of multi-layered holograms

From the analysis of Eqs. (19), (20) it follows that in the case of T, m = 2 in the 
dependence of the diffraction efficiency r) on the incident angle 0O at the definite 
wavelength (or >n the dependence o f q to X at definite 9 ) there appear brightly 
marked oscillations, the period o f which is definite by cos p. The period of oscillations 
could be evaluated from correlation (19). For A » x  (at large deviations from Bragg 
conditions) cosp = cos(T A /2  + d \ / 2 ) ,  and in the case o f A<SCx (at minimum 
deviations from Bragg conditions) cosp = cos(c/A/2). In the first case ( A » x )  
oscillation period is defined from formula (T + d)6(A/2)  = n, and, in the other case, 
d6 (A /2 ) = 7i. On the basis o f formulae (9) and (10) at small deviations from Bragg 
angle it could be possible to define approximately A^ (wavelength of incident beam 
changes) and Ae (incident angle changes), which equal to:

47in0 47c«0
Ax =  — — tan(cp)sm((p)AA,, A0 = —— sin(<p)A0o

K
(2 2 )
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Analogously, from correlations (22) for A<SC% it follows that periods of 
oscillations upon the wavelength of incident beam changing and changing the angle 
incident onto the hologram equal

8(AA.) =
2£/w0 tan cp simp’

5(A0O) =
2c/«0 sincp’

(23)

Let us define the periods of oscillations for wavelength 8(AA.) and for angle 
8(A0O) for the following conditions: = 0.633 pm, d = 10000 pm, n0 = 1.52,
(p = n /4 .  By consistent substitution of those data into formula (23), we obtain 
the following: 8(AA.) = 0.019 nm, 8(A0O) = 2.94 x 10 5 rad = 0.1". So, such a 
two-layered hologram has high selectivity with respect to angle of incidence of light 
beam and wavelength.

X [jim] X [nm]

Fig. 2. Dependence of diffraction efficiency on wavelength for multi-layered holograms. 1, 2, 3 -  
one-layer, two- and ten-layered holograms, respectively.

Figure 2 shows dependences of diffraction efficiency on the wavelength of incident 
beam calculated with formula (21): for one-layer (curve 1) and two-layered (curve 2) 
holograms and ten-layered hologram (curve 3) under following conditions: 
A,0 = 0.633 pm, d = 100 pm, T = 20 pm, n0 = 1.52, cp = n/10 ,  0O = 7i / 10 , 
n xm = 0.015. Along curve 2 oscillations and diffractive efficiency changes from zero 
to one at wavelengths approximately equal to Bragg wavelength are observed. Besides, 
maximum values of diffraction efficiency for two-layered hologram are higher than 
values of diffraction efficiency of one-layer hologram for the same wavelengths. For 
ten-layered hologram only the ninth peak has considerable amplitude and, furthermore, 
the widths of peaks for this hologram are considerably less than for two-layered 
hologram. For all holograms, «, was selected such as to ensure that diffraction 
efficiency of holograms, when Bragg conditions are fulfilled, should equal 1.

Figure 3 shows dependences of diffraction efficiency on the wavelength for 
one-layer (curve 1), two-layered (curve 2) and one hundred-layered hologram
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Fig. 3. Dependence of diffraction efficiency on wavelengths for multi-layered holograms. 1, 2, 3 — 
one-layer, two- and one hundred-layered hologram, respectively.

(curve 3) under the following conditions: A,0 = 0.633 pm, n0 = 1.52, cp = 71/ IO , 
90 = k / 10, n xm = 0.03. In Figure 3a: d = 15 pm, T = 10 pm, and in Fig. 3b: 
d = 150 pm, 7 = 1 0  pm.

Whereas the properties of multi-layered holograms, accordingly to Figs. 2 and 3 
could, in general, be predictable without formula (21), the results of calculation of the 
envelope of diffraction efficiency for incident angle for two-layered hologram, as 
shown in Fig. 4, appear to be unpredictable. Curves 3 reflect the envelopes of 
oscillations of diffractive efficiency for incident angle for three wavelengths: 0.4, 0.6, 
0.8 pm at n x = 0.0092. From those curves it follows that if n x> n w for every 
wavelength, at least for some interval X < A.max, then, there exist incident angles onto 
the hologram, which are relatively symmetric Bragg angles (for each wavelength), at

0O [rad]

Fig. 4. Dependence of diffraction efficiency on incident angle for three wavelengths: 0.4, 0.6, 0.8 pm: 
curve 1-one-layer hologram, n, = 0.0092, curve 2 -one-layer hologram, = 0.0184, curve 3 - two 
-layered hologram, «, = 0.0092, d  = 5000 pm, T = 20 pm.
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which diffractive efficiency is close to unity. Connection between n l0 and >.max is 
expressed by correlation which could be obtained from [10]

_ ^maxC0S(P

Curves 1 and 2 in Fig. 4 are plotted for comparison purposes and it is shown how 
diffraction efficiency for one-layer hologram depends on them. It follows that only 
upon execution of Bragg condition and at a defined value of nx, for a given wavelength, 
diffraction efficiency equals one. The analysis of Figs. 2, 3 as well as formula (21) 
show that at large m = 10, 100, with diffraction efficiency depending on wavelength, 
narrow diffraction peaks appear at the expense of multi-beam interference.

This could be explained by that the multi-layered hologram could be presented as a 
periodic system, permittivity constant of which is described by the following expression:

e (x,y, z)

ea, - o o < z < 0, m {T + d )< z <  °o,

Ea + e , (z) cos 0 < z < m(T + d),

-00 <x < 00, 

—00 < x  <  00.
(24)

Furthermore, Ej(z) is a periodical function on coordinate z with period L = T+ d . 
The periodicity o f 8](z) explains the character of curves 3 in Figs. 2 and 3, because 
decomposition o f s t (z) into Fourier series in correspondence with F ig.l gives an 
infinite number of members, hence we have a large number of narrow peaks in the 
dependence o f diffractive efficiency on wavelength or angle of beam incidence onto 
hologram.
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Fig. 5. Dependence of diffraction efficiency on wavelength when permittivity constant e, (7) is defined 
by Eq. (25). Total thickness of hologram: 250 pm, L = 25 pm, n w = 0.002, nn  = 0.0011 (a), and 
750 pm, L = 75 pm, m10 = 0.00067, = 0.00037 (b).
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If e ,(z ) = e 10 + e n sin(27iz/L), where: e ]0 and e n are constant values, and L 
is the period of change e,, it is difficult to obtain analytical solution of the system 
of Eqs. (7). Because of that this system for this case was solved by numerical 
method o f Runge-Kutta of fourth order. In Figure 5 dependences of diffraction 
efficiency of multi-layered hologram on wavelength under the following conditions: 

-  0.55 pm, cp = 0O, = 0.175 rad, n0 = 1.52, A = 1 pm are shown.
For holograms shown in Fig. 5, correlation of general thickness o f hologram to the 

period L is 10:1, which leads to appearance of 8 peaks of small amplitude, placed 
between peaks of considerable amplitude. Since in decomposition of n ,(z) into 
Fourier complex series, as well as in e ,(z), there are only members of zero and ±1 
orders, we have in Fig. 5 only three strong peaks, the distance between which is defined 
by period L, peaks of higher orders are absent, contrary to Figs. 2 and 3, where those 
peaks are observed.

4. Fabrication of multi-layered holograms

It is especially easy to record a two-layered hologram on photopolymeric materials 
[13] which have diffractive efficiency near 100% and resolution of more than 
6000 mm-1. Optical scheme of recording such a hologram is shown in Fig. 6a. The 
distance between holograms d is defined by the thickness of transparent glass substrate. 
At calibrated transparent substrates and calibrated thickness of photopolymeric 
material it is possible to record multi-layered hologram with m = 10, which for most 
applications is enough. It would seem possible to record multi-layered holograms using 
additional hologram according to Fig. 6b.

The analysis shows that spatial distribution of refractive index in photopolymer 
material according to Fig. 3b in the case of linear registration of interferometric picture 
can be expressed as follows:

Fig. 6. Optical schemes of recording multi-layered holograms, 1 -  glass substrate, 2 -  photopolymer: 
a -  two-layered hologram, 3 ,4 -  interference beams, b -  multi-layered holograms, 5 -  additional assisting 
hologram, 6 -  coherent beam normal to additional hologram.
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where L  can be expressed using A and the wavelength X0 of exposing light in the 
following form:

L = "oA 'O  + V t - ^ A 2) (26)
A-o

2If A0« :A , then formula (26) will become simpler and Z -«2n0A /A.0. To obtain a 
dependence of diffraction efficiency on wavelength, as shown in Fig. 5a (in some cases 
this dependence is optimum for light show), condition A0 = 2n0/2 5  [pm] has to be 
executed. At such a wavelength it is not possible to record a hologram on photopolymer 
composite. Besides, from formula (25) follows h10 = 0, and that is why central peak 
as in Fig. 5a will be absent.

In our opinion, multi-layered hologram on the thick substrate o f photopolymer 
composite can be recorded by holographic method using three-multiple exposures on 
usual holographic scheme at the angle of meeting of two beams on photopolymer of 
2cp. First exposition is along symmetrical scheme when bisector of the angle 2cp is 
normal to the surface of polymer. In the second and third exposures photopolymer 
between two glass plates turns to the small angle ±<x from symmetrical placement at 
first exposure. In this case, after recording the refractive index is determined by the 
following formula:

f2nn(x,z) = n0 +  n locosy— xj + rt,iSÍn̂  — zjcos^— X. f2n f2n
VA,

(27)

When recording the hologram angles a  and cp and also the wavelength A.0 define 
L, A and A,, the following correlations being true:

A =

L  =

A, =

2w0sin(p’

A
sin a ’

A
cosa

Ifa<SCl, then A « A [ ,  and in our case when L /  A = 25, q> = 0.175, A,0 = 0.55, 
then sin a  = 0.04 and cos a  = 0.9992, and scheme of recording of hologram with 
characteristics as in Fig. 5a could be realised.

5. Conclusions

As we could see, multi-layered holograms have interesting properties making them 
similar to Fabry-Perot interferometer, because in those holograms multi-beam
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interference is present. Two-layered holograms are characterized by oscillation o f the 
dependence o f diffraction efficiency due to either o f beam incidence onto the 
hologram, or on wavelength o f incident beam. Besides, for every wavelength there 
could be found such an incident angle at which diffraction efficiency o f hologram 
practically equals one. Such unique properties o f multi-layered holograms could have 
some applications. In our opinion, among such applications the following are 
worthwhile to mention: sensors o f small angle movements, dispersion element in 
tunable lasers, in systems of electric stabilisation of frequency o f semiconductor lasers, 
in optical devices based on control o f wave fronts, dispersion element for spectral 
devices, and also for grading of scales o f those devices on wavelengths, and, finally 
in light show. Obviously, every application will require multi-layered hologram with 
that or other properties. For example, two-layered hologram with characteristics shown 
in Fig. 4 could be used as dispersion element for selection o f wavelengths in lasers 
and as sensors o f angle movement, for grading o f scales o f spectral devices it is better 
to use multi-layered hologram, characteristics o f which are shown in Fig. 3b, and in 
light show it will be effective to apply o f multi-layered holograms with characteristics 
shown in Fig. 3a and in Fig. 5. Also other applications will be possible.
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