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Temporal pulse response of quasi-periodic 
Fibonacci Fabry-Perot type optical filters

E. Cojocaru

Department o f  Lasers, National Institute o f  Laser, Plasma and Radiation Physics, P.O. Box M G-36, 
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A  specific behaviour o f quasi-periodic multilayers is the existence o f isolated peaks inside the 
forbidden transmission gap. Thus, quasi-periodic multilayers may be an alternative to the periodic 
structures with defects. The compressing capacity o f  quasi-periodic Cantor filters has been 
presented by other authors. W e analyse comparatively the compressing capacity o f  quasi-periodic 
Fibonacci (F ) and Fibonacci Fabry-Perot (FFP) multilayers at normal incidence. Various pairs o f 
nondispersive layer refractive indices and different embedding media are considered. Symmetrical 
FFP multilayers admit wider ranges o f  layer refractive indices at which parameters characterising 
the compressing capacity attain certain levels.

1. Introduction

During the past few  years there has been observed a growing interest in the quasi 
-periodic dielectric structures. They fall between the complete perfect periodic and the 
random or disordered structures. Cantor and Fibonacci quasi-periodic fractal structures 
have been studied theoretically and experimentally [1]—[6]. The interest in these fractal 
structures is both for basic physics and for applications. A  specific behaviour o f the 
transmission spectrum from these quasi-periodic structures is the existence o f isolated 
peaks inside the forbidden gap. Thus, a quasi-periodic multilayer may be an alternative 
to the periodic structure with defects [7], [8]. Recently, Garzia et al. [9] analysed the 
temporal pulse response o f a Cantor fractal structure and they put in evidence the 
compression o f an input Gaussian temporal pulse.

In this paper, an analysis o f the compressing capacity o f Fibonacci (F ) and 
Fibonacci Fabry-Perot (FFP) filters at normal incidence is given. The optimal situation 
is considered when the frequency spectrum o f the Gaussian input pulse, which is 
centred in the middle o f the forbidden gap, is wide enough to cover the isolated peaks 
existing inside the gap. Various pairs o f nondispersive layer refractive indices and 
different embedding media are considered. The usual transfer matrix formalism is 
applied [10].

Throughout the paper all regions are assumed to be linear, homogeneous, 
nonabsorbing, and with no optical activity.
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2. Fibonacci and Fibonacci Fabry-Perot sequences

A  binary sequence F is constructed recursively [6] : Sk = { Sk _ 2Sk _ ! } ,  for k >  2, with 
S0 = { b } and S{ = {a}. It follows that S2 = {ba}, 53 = {aba}, S4 = {baaba}, etc. Thus, 
for k >  2, the sequence Sk is generated by transformations a —» ba, b —» a. I f  we 
apply transformations a —> ab, b —> a, the sequence S'k is generated recursively: 
S'k = {S'^ _ iS'k_ 2}, f ° r k >  2, with S'0 = S0 = {£ } and = 5! = {a}. It follows that 
S'2 = {ab}, S’2 = {aba}, 5'4 = {abaab}, etc. Consider that a and b are two dielectric 
layers o f optical thickness L and refractive indices nx and n2, respectively, with n{ < n 2. 
Note that L is expressed in terms o f a reference wavelength Aq, e.g., for quarterwave 
-thick layers L  = Aq/4. For a given stage k, both Sk and S'k have the same complex 
amplitude transmission coefficient tk. Thus, we consider both o f them as case A. An 
illustration o f sequences Sk and S'k is given in Fig. 1 (see the first two sequences from 
the upper side) at stage k - 1 .  The line OO' indicates the beginning o f the sequence. 
The difquasi-periodicference between sequences Sk and S'k is that, at various stages k, 
the light travelling from the left to the right side encounters the same layer a in the 
case o f sequences S'k, whereas in the case o f sequences Sk it may encounter either the

Case A

Case A
a

b

Case 8

Case C

Fig. 1. Illustrations o f F and FFP quasi-periodic sequences. Brighter and darker regions represent layers 
a and b o f  refractive indices rtl and n2, respectively, with n] < n2. The two sequences Sk and S'k from the 
upper side (case A ) are sets F at stage k = 7 that are generated by transformations a —» ba, b —> a and 
a —» ab, b —» a, respectively. OO' is the starting line. Cases B and C represent FFP sequences obtained 
by arrangements { _  j } and [S'k_ xSk_ j ) ,  respectively.
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layer a or the layer b, e.g., it encounters the layer a i f  k = 2 and the layer ¿ i f  k = 3. 
With sequences Sk_ j and S'k_ i one may generate two FFP sets, as shown in Fig. 1: 
the set [S*_ j } in case B and the set [S '*_ lSk_ ) }  in case C. In case B, sequences 
Sk_ ] and S'*_ ! have the same starting line 0 0 '  which is in the centre o f the set, whereas 
in case C the starting lines O O ' are symmetrical with respect to the centre o f the set. 
FFP sets o f cases B and C resemble the positive and negative thick lenses, respectively. 
In all cases A , B and C, we assume that the multilayers are embedded in a medium o f 
refractive index n0.

Let us denote A/,·, with ¿ = 1 , 2 ,  the transfer matrices [10] o f layers a and b,

sin (p
M,. =

COS (p 

-k0n (sin (p cos (p

k0n¡ , i =  1,2 (1)

where (p = &0L and k0 is a vacuum wave number. Let M  ®  and be the transfer 
matrices o f sets Sk and S'k, respectively. For k >  2 they obey the recurrent relations:

M (k) = M ik- ]]M {k- 2), (2a)

M 'W = M '(* ~ 2)M '(* _1), (2b)

with M (0) = M '(0) = M 2 and M (1) = A/'(1) = A/,. The overall transfer matrix is:

9 lt(*) = Af w  in case A ,

s # )  = M ' (k~ l)M (k- 1} in case B,

01l(k) = M ('k~ 1)M ' (k-  1} in case C.

3. Transmission properties

The complex amplitude transmission coefficient tk for a multilayer having the transfer 
matrix 01 is given by

th ~

04? -
011(*)21
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-jk0n09tt(i2) +  0K:(ii)

(3)

where j  is an imaginary unit and 0TC.j*) (/, m = 1,2)  are the elements o f 0tiw . In all 
cases A , B, and C, |f*| is a periodic function o f (p with the period (p = n. It is symmetric 
with respect to cp =  Till.

Further on we give some numerical examples for the common material pair 
S i02/Ti02 that is used in the multilayer interference film industry [11], [12] with
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Fig. 2. Variations o f ItJ against (pin in cases A , B and C, when n, = 1.46 and n2 = 2.4 at n0 = 1 (a ) and 
n0 = 1.5 (b ); (pin is varied in steps o f  0.0005.

refractive indices n{ = 1.46 and n2 = 2.4. The variation o f |ffc| is plotted against (phi in 
Figs. 2a and b, when n0 = 1 (air) and n0 = 1.5 (glass), respectively. There is a structured 
part with isolated peaks inside either forbidden gap. The gap is deeper and the 
structured central part is wider in case B. In case C the whole gap is structured with 
isolated peaks.

It has been shown in [4] that at (phi = 1/2 the transfer matrix o f the sequence F has 
a period o f six, that is, 9lL(i) = ?i\6k + 6) for any value o f k. Thus, at (phi = 1/2, in case A, 
9 1 = 91L(1) = M j and the sequence F behaves like a quarterwave-thick layer o f 
refractive index with the magnitude o f the transmission coefficient

2 nnn,
— —  (4)
n0 +  nl

Thus, the magnitude o f  transmission at the centre o f the spectrum in case A  does not 
depend on n2, and is greater for n0 = 1.5 than for n0 = 1, as may be seen in the respective 
subplots o f Figs. 2. In cases B and C, at (phi =  1/2, the FFP sets behave like a halfwave 
-thick layer, and thus \tkc\ = 1 for any value o f n0, nx and n2, as can be seen in Figs. 2.

4. Temporal pulse response

In what follows the pulse amplitude in the time domain will be denoted by the lower 
case letter x while the capital letter X w ill be used to represent the respective Fourier 
transform. Consider an input Gaussian temporal pulse o f the form

xin = x0e x p [- ( f/ T )2] (5)



Temporal pulse response... 89

where x0 is the pulse peak amplitude and 2ris the full pulse width at the e x p (- l )  level. 
The frequency spectrum o f this input pulse is also a Gaussian function that is centred 
in the middle o f the gap. Since tk represents the transfer function for a multilayer, upon 
the completion o f the Fourier transform we determine the amplitude o f the transmitted 
pulse for each Fourier component. The frequency-domain output pulse is then 
reconstructed in the time domain through the inverse Fourier transform. W e consider 
an optimal situation when the frequency spectrum o f the input pulse is wide enough 
to cover the isolated, structured central part inside the gap. Thus, we choose r  = 5. 
Output time-domain pulses are shown in Fig. 3 in cases A, B and C, at n0 = 1. Like 
Cantor filters [9], the F and FFP filters exhibit a compression behaviour: the output 
time-domain pulse is narrower, especially in case B than the input Gaussian pulse that 
is shown for comparison in Fig. 3 by a dotted line.

To characterise the compressing capacity we use three parameters [9]:
-  the compression ratio (CR), that is, the ratio between the widths at half height o f 

the input and output pulses;
-  the amplitude ratio (A R ), that is, the ratio between the peak amplitudes o f the output 

and input pulses;
-  the compression efficiency (CE), that is the product o f CR and AR.
The behaviour o f A R  for different pairs n2) o f the layer refractive indices, for 

the same optical thickness L, is shown in Fig. 4, when n0 = 1, in case B. I f  n2 has a 
fixed value, n2 = 2.3, A R  increases when nl takes values from 1.3 to 2, as can be seen

Fig. 3. Amplitude xout o f  the time-domain output pulse against T =  tlx in cases A, B, and C, when n0 = 1, 
n, -  1.46 and n2 =  2.4. For comparison, the input Gaussian time-domain pulse is represented by dotted 

lines.

Fig. 4. Amplitude ratio in case B, when n2 =  2.3 and nt takes values from 1.3 to 2 (first part), and when 
nl = 1.46 and n2 takes values from 2 to 3.2 (second part), at n0 = 1. Refractive indices are varied in steps 
o f 0.01.
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Fig. 5. Compression ratio in cases A , B and C, when n2 = 2.3 and n, takes values from 1.3 to 2 (first part 
in either case), and when n, =  1.46 and n2 takes values from 2 to 3.2 (second part in either case), at n0 = 1. 
Refractive indices are varied in steps o f 0.01.

Fig. 6. Compression ratio against r  in cases A, B, and C, when n0 = 1, n, = 1.46, and n2 = 2.4; r  is varied 

in steps o f  0.1.

in the first part o f Fig. 4. I f  nx has a fixed value, nx = 1.46, A R  decreases when n2 takes 
values from 2 to 3.2, as one can see in the second part o f Fig. 4. The behaviour o f A R  
in cases A  and C is similar to that in case B. The behaviour o f CR for different pairs 
( « ! ,  n2) o f the layer refractive indices, for the same optical thickness L, is shown in 
cases A , B, and C in Fig. 5, when n0 = 1. It is remarkable that in case B, CR is constant 
over a wide interval o f nl and n2 variation. Thus, i f  n2 has a fixed value, n2 = 2.3, CR 
in case B is constant when nx takes values from 1.3 to 2, whereas i f  nl has a fixed 
value, n, = 1.46, CR in case B is constant when n2 takes values from 2 to 3. The 
behaviour o f CE for different pairs (nl , n2) o f the layer refractive indices is similar to 
that o f AR.

For the sake o f completeness, variation o f CR against r is  shown in Fig. 6, in cases 
A, B and C, for n0 = 1. The maximum o f CR is at r =  1.3, but for this value o f rthe 
frequency spectrum o f the input pulse may extend over the gap at some values o f nl 
and n2. The train o f time-domain output pulses is anyway characterised by a central 
intense pulse that can be shorter than the input pulse, but the first lateral pulses around 
the central pulse in the train may have an amplitude higher than one half o f the central 
amplitude.

Note that, comparWed to a Cantor set o f almost the same overall optical thickness 
[9], CR is smaller, but A R  is greater in the case o f F and FFP sets, and this is because 
the structured part with isolated peaks inside the gap is wider in the case o f F and FFP 
sets than in the case o f Cantor sets.
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Fig. 7. Diagrams showing the pairs (nt, n2) at which CR 3* 1 (hatched region bordered by the curve marked 
with asterisks) and CE 3* 0.6 (region hatched at opposite slope) in cases A , B and C, at n0 = 1. In the 
overlapping (double-hatched) regions both conditions for CR and CE are fulfilled; n{ and n2 are varied 
in steps o f  0.05.

Diagrams o f Fig. 7 show the pairs (nl, n2) o f the layer refractive indices at which 
parameters CR and CE that characterise the compressing capacity attain specified 
levels in cases A , B and C, by assuming the same optical thickness L, when r  = 5 and 
n0 = l -  From Fig. 7 we see that regions o f (nl , n2) values are considerably wider in 
case B. One can also see that, at some fixed value o f nl, the smaller the nx is, the 
narrower the interval o f n2 values at which CR and CE attain the specified levels, 
whereas at fixed value o f n2, the smaller the n2 is, the wider the interval o f « ,  values 
at which CR and CE attain the specified levels. Note that in case B, the regions o f 
( « ! ,  n2) values at which CR and CE attain the specified levels are wider when n0 = 1.5 
than when n0 = 1.

5. Summary

Recent advances in the technologies o f film synthesis make it possible to realise 
different values o f the layer refractive indices for various pairs o f optical materials 
[11], [12]. The paper presents an analysis o f the temporal pulse response from quasi 
-periodic F and FFP multilayers that are shown in Fig. 1, for various pairs (n lf n2) o f 
nondispersive layer refractive indices and different embedding media, at normal 
incidence. The optimal situation is chosen when the frequency spectrum o f the 
Gaussian input pulse, that is centred in the middle o f the gap, is wide enough to cover 
the isolated peaks existing inside the gap. The results show that the symmetrical FFP 
sequence o f case B admits wider intervals o f refractive indices at which the parameters 
characterising the compressing capacity attain specified levels. These results may be 
useful in the design o f nonlinear multilayers for optical limiting and switching o f short 
pulses [7], [8].
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