
Æ a zM fM e fz  7 % ? ;* # .y z A ie w ;c z *

The Influence of Thermal Stress in Glass Disks 
on the Intensity Distribution in the Difïraction 
Image of a Point and on the Transfer Function

The influence of residual thermal stress in glass discs on the intensity distribution in the diffraction image of a pointobject, the 
resolving power and the modulation transfer function is examined.

1. Introduction

The residual thermal stresses in glass cause its 
birefringence, the latter, in turn, worsens the imaging 
quality. The question arises to what extent is this stress 
harmful. The first attempt to answer this question 
was made by KoMissARUK [1], [2]. He assumed that 
the birefringence in disks is proportional to the squared 
distance from the disk centre. Our earlier works [3] 
have shown that the birefringence distribution in 
the thermally stressed disks is of a different type. 
Therefore, it is necessary to calculate the influence of 
the real birefringence on the imaging quality. The 
effect of the birefringence on the Strehl definition 
was estimated in [4]. The discussion in the present 
paper is a natural continuation o f the former one.

As shown in [4] a plane wave after having passed 
the stressed disk suffers from splitting into two waves 
of deformed phase surfaces. The wave aberration of 
both the surfaces may be described with a formula

r ,(e ) =  r,(i)(o.6e"+o.4{?'), (l)

W  -  r ,(i)(0 .6 e* + o .4 e '),

where
p — is a normalized radius in the pupil, =  1 .

It is more convenient to express the aberrations 
with the help o f two other quantities i.e.

tr(p) =  i[F ,(p )+ ^ (p ) ] ,  (2)

R({?) =  r ,(p ) - r ,(p ) .

Both the quantities are mutually proportional 

W (p)= mR(p),

where: m — material constant (see [3] and [4]) 
the typical value o f which being m =  6.
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Since the disk shifts the plane of best focus we 
assume

r ;(e )= r ,(p )+ D p ', (3)
r ; (p )= r ,(p )+ D p ' .

Hence

R'(e) =  R(e), (4)
W"(p) =  W(p)+Dpi,

where D denotes the defocusing parameter.

2 . The intensity distribution

Let as assume, that a plane wave composed o f ele
mentary nonpolarized waves falls onto a stressed 
plate located in an optical system. The time-averaged 
amplitude o f such a wave is constant in an arbitrary 
direction. Denote it by a. Denote an instantenous 
value of the amplitude by ^4(i) and the components 
of y4(?) in x  and y  direction by /fi(?) and ^ ( f ) ,  
respectively. Consider first the component yfi-

After passing the disk the radial and tangential 
components and ^4,, o f the amplitude 
amount to

^  i cosy exp [!*kF,(x, y)],

/!,,, =  ,4isinyexp[% Fp(x,y)],

respectively. The exponential factors represent here 
the phase changes o f the respective components. The 
projections o f ^4,, and on the axes x  and y  are

,4^, =  ,4i,siny =  y4isinycosyexp(№ F,),

=  ^i,.cosy =  v4iCOs2yexp(%F,).

Similarly, for 4̂,̂  we obtain

=  —^,pCOsy =  —/4,sinycosyexp(% Fp),

=  ^ipSiny =  ,4iSin3yexp(%Fp).
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Hence, the components of the resulting vector in 
the y  and x  directions are:

=  /4, sin y  cos y  (exp (& M,) — exp(:Ar^)),

=  (cos^ y exp(% 1 .̂) +  sin  ̂y  exp(% ̂ ) ) .

Since both the components /4^  and are mu
tually incoherent we will first calculate the propagation 
of the first and the second components and o f the sum 
the intensities. Thus, the contribution to the intensity 
from the component amounting to Ci(M, M) 
will be equal to

6 i(M,v) =  C !F {^ 1 ,}!'+ C [F {,4JI' =
00

sin y  cos y  (exp (:% k',) — exp (% 1^)) exp [—2?ri (xu +y v)] ¿xa^j^+
—00

oo
+  IJY (cos^ y  exp ^,) +  sin  ̂y  exp (& M̂ )) exp [—2?rf (y x +  ry)] ̂   ̂j .

—  OO

By applying a similar procedure for the component 
/42 we obtain

00
^(M , v) =  C/4,(f) (j^^ sinycosy (exp(iA;^) —exp(&k^))exp[—2^f(Mx+vy)]i&cdyj^ +

— OO

OO

+  IJY (sin  ̂y exp(% P,)+ cos^ y  exp(:A:l^)) exp [ —2 ? t : ( M X + j .

in  order to calculate the resultant intensity G(u, v) averaging concerns only the /4 ,(t) and /4 ,(t) values, 
the summation in G^M, v) and G2(u, v) must be Moreover, the time-averages are constants (by virtue 
carried out together with the time-averaging. This o f the assumption). Thus, we obtain

C(u, v) =  C^[^(cos^yexp(:^^,)+sin^yexp(:Arl^))exp[—2?t!(MX+vy)]d!xdy^ +
— OO

OO

+  j J Y  (sin^yexp(:^^)+cos^yexp(fAr^))exp[—2yrf(Mx+vy)]xdxdy]^ +  
—00

oo

+ 2  ] ^  sinycosy (exp(:&y,)—e x p ^ l ^ e x p t —2aH(Kx+vy)]<%M%yĵ .
— 00

After taking account o f (2) we get

G(u, v) =  cos y -  exp(fArBQexp[—2jrf(Mx+vy)]i4xd[v
—  OO 

OO

+  jJ*J* s in 2 y s in -y  exp(fAcBQexp[—2?rf(MX+!y)]iixafyj 
— 00

[ /* /* .  A;A ¡21
+  J j  cos2ysm — exp(:A:WQexp[—2?rf(MX+vy)]iixa[y J.

(5)

+

Both functions A and W have a rotational sym
metry and therefore we can introduce the polar co
ordinates

? =  yK2+ p 2 and y =  arctan — .
v

After carrying out the normalization we obtain 
finally

1 2

C(?) =  4 pcos— ^ -c o s A r ^ (p )7 o (? e )d ip j+ ^  pcos-^y —  sin^B"($)yo(?e)^pj +  (6)

. + g s i n - ^ y ^ - s i n ^ ^ p ) / , ^ ) ^  +  p s i n - ^ y ^ c o s A ; ^ ) ^ ^ ) ^ ^ ,
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where Jo and V, are the Bessel functions of zero and 
second orders, respectively.

By putting $ =  0 in (6) we obtain a formula for 
the Strehl definition, identical with that derived earlier 
in (3). Besides, for R(p) =  W(p) =  0 the formula (6) 
gives the intensity distribution for a perfect imaging 
of a point-object.

Now, let us assume that 71(1) ^  — . Then the
4

integrand in (6) may be expanded into series and inte
grated term-after-term, whereby the terms including 
71(1) of power greater than two may be neglected.

For example for m =  6 and D =  =  — W (l)
we obtain

/ 2V, \ /  R7t(l)
<%) =  t J  ) \— 5̂  /  ^  (?) [13-64287,(?)-1.50007,(?)]-55.4752 7,(<?)-11.0000 7 , ( ? ) -  (7)

-49.3324 A  (?)-36.0000 [J,(9) - A  (9)]'+0.0019 [7,(9) - 73(9) ] l  -

In the above formula 9 denotes the so-called di
mentionless optical coordinate

2n
9 =  - y 'o M ,

where r. — radius o f the exit pupil,
a) — angular distance of the given point from 

the system axis measured by the angle 
from the entrance pupil.

The course o f the function # ( 9) was evaluated with 
the help o f the ODRA 1204 computer. The results are 
presented in Fig. 1. From the graphs it may be conclu-

Fig. 1. The graphs of the intensity distribution in the diffraction 
image at the plane of best focus ; m =  6, g is an optical coordinate

R ( l )  =, ------------------------------0.0A
------------------------------0.2! A
- - - - - - -  - - -  0.5A
----------------------------- i.O A

ded that the birefringence causes reduction in centrât 
spot intensity o f the diffraction pattern (reduction in 
Strehl definition), while the higher order rings become 
brighter. Besides, the intensity at the minima does 
not drop to zero, as it is the case in perfect imaging 
(71(1) =  0). It is also characteristic that the central 
disk radius increases only slightly, consequently the 
two-point resolution is only slightly diminished
(Fig- 2).

Now let us calculate the total amount of energy L 
contained in a disk o f radius 9.

For this reason the integral

1 r
L(9) =  y J  9'6(9)<?9 

o

Fig. 2. A total amount of energy in the disk of radius 
go, for the best focus plane, m =  6

J -  0.0A, 2 -  0.25A, 3 -  0.3A, 4 -  O .tA

must be evaluated. The normalizing constant has been 
chosen so that

l im i(9) =  1 .

In the case of perfect imaging (71(1) =  0) the 
formula transforms into the known expression

¿ .(9 ) =  l - ^ ( 9 ) - ^ ( 9 ) -

The function L(9„) has been tabelarized numerically 
by applying the Simpson quadrature method to the 
function G(9), which was tabelarized earlier. The 
results in the form of graphs are given in Fig. 2. 
The points of inflection correspond to the minima of  
G(9) function (Fig. 1).

3 . The two-point resolution

Let us assume that the optical system images two 
points as shown in Fig. 3. At an arbitrary point on 
the straight line passing through the centres o f the 
images of these object points the intensity is expres
sed by the formula

G n(9) -  G i(9 )+ C ,(9 -2 9 .) .

It is assumed, after Rayleigh, that for the self- 
-shining sources and for ideal imaging the images are 
still distinguishable if the maximum of one diffraction 
pattern coincides with the first minimum of the other.

OpncA AppucATA VI/4, 1976 109



Fig. 3. The two-point tesoiving power versus the 
optical path difference at the edge of the disk, for 

/n =  6

Then the intensity at the distance between the pat
terns drops to 0.735 of the maximum intensity vaiue. 

The influence of the birefringence in the disk on the

two-point resolving power, for the incoherent light 
is presented in Fig. 3. The distance 2p. between the 
diffraction spot centres, at which the intensity at the 
middle point between these patterns drops to 0.735 
of the maximal intensity value has been accepted as 
a measure o f the two-point resolving power; From 
the graph it follows that the real birefringence worsens 
only slightly the resolving power. It does not mean, 
however, that the birefringence does not deteriorate 
the imaging quality, as the resolving power is a poor 
measure o f the optical imaging.

4 . Optical transfer function

The transfer function for incoherent imaging is 
defined as a Fourier transform o f the function G(u, v)

=  F{G(M, v)}.

Let us apply the above formulae to (6). Then we 
obtain

='{JY cos
k7f(x, y) %7t(x—F, y)

cos exp {:% [ W(x, y)— W(x—F, y)]}<&K?y+ (8)

+ sin2y(x, y)sin2p (x—F, y ) s i n ^ y ^ s i n  ^ ^ * 2  ^  exp{iA:[lF(x, y)—lF(x—F, y)]}ifxd[y+

+ J* J* cos2y (x, y)cos2y (x —F, y)sin
%7?(x, y) . %.R(x—f, y)

sin exp {% [№(x, y)— W ( x - F ,  y)]} (¿xJy L

where

F =  f / p + p .
After suitable transformations we get

¿(s)
k7i(x, y) . k7!(x—F, y)

sm cos2 [y(x, y )—y (x —F, y)]+cos
k7f(x, y) F, y)

cos X
2 2 

x exp {ik [W(x, y )— lF(x—F, y)]} ̂ xufy).

Since both the function 7?(x, y) and (F(x, y) have 
rotational symmetry, the function 6?(F) takes the real 
values. By inserting (3) and (4) into the above formula

and after some simplifications and normalizations we 
obtain

(9)

4<(<Sn) =  — f  f  jcos — (0.6p^+0.4p^)cos-^^-  (0 .6p ^ + 0 .4p ^ )+ sin -^ ^ - (0.6p^+0.4p^)sin 
J  ̂ 1 2 2 2

. ikR(l)
X

x  (0.6pi+0.4pi)^^  ----- ljjcos[/c/M J?(l)(0.6(p^-p^))+0.4(p^-p^)+/cD (p-pf)]Jxify,

where
P  =  x2+ y 2, P' =  (x -F j^ + y ^
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The formula (9) was a base for numerical calcu
lations. The results are collected in the form of graphs 
presented in Figs. 4 and 5. The graphs in Fig. 4 concern 
the optimal refocusing of the system, i.e. such a refo
cusing which maximizes the Strehl definition. On the

Fig. 4. Graphs of the transfer function for seiected values of 
H (l) in the best focus plane, for m =  6

1 -  0.02, 2 -  0 .]2 , 5 -  0.232, 4 -  0.32, 3 -  0.732, 6 -  i.0 2

Fig. 3. Graphs of the transfer function for selected values of 
R(l)  in the Gaussian plane (D <= 0), for m =  6

7 -  0.02, 2 -  0 .!2 , 3 -  0.252, 4 -  0.52, 3 -  1.02

other hand, Fig. 5 presents analogical graphs for the 
Gaussian plane D =  0. A comparison o f both the 
Figures shows that a proper focussing may consider
ably improve the imaging quality.

Влияние температурных напряжений 
и стеклянных дисках 

на распределение интенсивности 
в дифракционном изображении точки 

и передаточную функцию

Исследовано влияние остаточных температурных на
пряжений в стеклянных дисках на распределение интен
сивности в дифракционном изображении точки, разре
шающую способность и передаточную функцию кон- 
страста.
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