
Probabilistic Mode! for Shape Errors of Spherical 
Surfaces in Optica! Elements

In this paper a probabiiistic model for shape errors of spherical surfaces in optical elements is described, and the formulae al
lowing to determine the tolerances are given.

The errors in shape of the spherical surfaces of 
optical elements (toricity of the surface) result in per
turbations in the rotational symmetry of the respective 
optical systems. In such systems the classical aberra
tions are different in both the main crosses, and conse
quently, the astigmatism on the axis of the system 
is also observed. Independently an anamorphosis 
appears. These are the so-called first order aberrations 
which are usually employed in estimation of the shape 
error tolerances for optically acting surfaces. Ana
morphosis of the image being of a practical importance 
only for measuring instruments of great field of view, 
the surface shape tolerances are usually determined 
from admissive value of astigmatism on the optica! 
axis. The axial astigmatism of the system depends 
on the value of deformations and on the spatial con
figuration of their directions. This is confirmed by 
a well-known fact that the axial astigmatism may 
be compensated during the mounting operations by 
rotating the elements around the optical axis of the 
system. For small deformations — which are typi
cally assumed when technological defects are con
sidered — the axial astigmatism of the system is 
given by the formula
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(see [1]), where
¿Ep — axial astigmatism of the system,
A — light wavelength,
Mp — refractive index in the image space,
Mp — image aperture angle of the system, 
p — number of system surfaces,
.4, — a coefficient dependent on constructional para

meters of the system.
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,4, is evaluated from the formula

(2)

where
— the respective image and object refractive 

indices at the i-th surface,
A, — height of incidence of the aperture ray 

on the i-th surface of the system,
0 . — acting diameter of the i-th surface,

J y  =  <p,—%  — angle of mutual spatial position of 
i-th and k-th deformations, respectively, 

/EV, — value of deformation of the surfaces 
weighted ovalisation of interference 
fringes,

y ., %  — directional azimuths of positions of i-th 
and k-th deformations, respectively.

If the compensating possibilities of the axial astig
matism connected with the spatial position of the 
deformation directions are not taken into considera
tion, i.e. if the directions of the deformations are 
assumed to lie in the same plane (to be consistent), 
then the axial astigmatism achieves its maximum 
value, and according to (1) it amounts to

4k ,
Æp = -----  ̂ J y  ,4,ÆV,. (3)

The above relation (1) allows to determine the 
axial astigmatism of the system, provided that the 
values of deformation J7V, , the azimuths of deforma
tion directions and the working conditions
and constructional parameters of the optical system 
are known. When, however the determination of 
tolerances is based on admissive astigmatism ¿Ep 
on the axis of the optical system then an additional 
condition should be introduced, namely p —1 addi
tional relations connecting the tolerances JiV, with 
each other. Usually, the method of equal influences 
is employed by assuming that for the case under
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consideration

y4,J7V, —const. (4)

In a genera! case the coeOicient /),. may take 
values /1,, - A',, where A", is a factor correcting the 
weight of the particular tolerances depending on the 
processing difficulties, economical effects and so on.

Considering compensation potentialities of axial 
astigmatism due to the spatial orientation of the defor
mation directions, as well as a low probability for 
elements of maximal working deviation to appear in 
the system, it is reasonable to determine the toleran
ces by the calculus of probability. According to a pro
babilistic nomenclature the axial astigmatism of the 
system is a random variable dependent on two random 
variables: the deformation value /17V,. and the spatial 
configuration of the deformation directions y,.. 
This suggests a geometrical (vectorial) summing of 
the partial astigmatisms. To simplify further conside
rations a notion of rotational vector of deformation 
is introduced (see also deformation vector). Its magni
tude characterises the value of deformation of the 
spherical surface, while its direction determines the 
angular position of this deformation in the plane 
perpendicular to the axis of optical system (Fig. 1).

a geometrical sum dependent on the deformation 
vectors while its modulus (5) depends on the square 
root of the two simple (linear) sums of the squared 
projections of the deformation vectors. By applying 
to these sums a centra! theorem of the probability cal
culus it may be concluded that the distribution of the 
sums will tend to a normal one.

In other words, it may be assumed that a two- 
-dimensiona! norma! distribution with the centre at 
the point 0 is spread over an XOY plane (see Fig. 2), 
in which a rotational radius of the deformation vector 
moves. As the practical experience indicates that the 
probability distribution of the deformation vector 
azimuth y, is uniform, it may be proved mathematically 
[2] that the radius of the deformation vector is subjec
ted to the Rayleigh distribution (distribution % (2) 
i.e. disribution chi with two degrees of freedom) 
with density function

with the mean value

Fig. 1. An expianation of the principie of determining the di
rection of the rotational vector of deformation of the sphericai 
surfaces denoted by an arrow (for instance, the direction of 

maxima) power of the surface)

By applying the notion of the rotational vector of 
deformation, and by taking account of the condition 
/l,zl7V, =  <5, the formulae (1) can be transformed 
into the form

(5)

^  ' ' . " " f . ) '  + ( ^  6.'iny,

It should be mentioned that the present meaning 
of 4̂,zl7V, =  <5, has a statistical sense, 
i.e. <9, e(0, and ^ , J7V ,^, ^  =  const.

During the mounting operations the mutual posi
tioning of the deformation vectors (and more strictly 
their projections on the plane perpendicular to the 
optical axis) takes the form shown in Fig. 2. Hence, 
it follows that the axial astigmatism of the system is

Æ(y) =  — y ^  1.25-y,

and variance

ZF(x) =  ^2— — ^  0.43-y^,

where y is a distribution parameter. The graphical 
form of the distribution is given in Fig. 3. It may be

Fig. 3. Density function of Rayieigh distribution

proved moreover that the sums in relation (5) being 
assumed to be accurately consistent with the normal 
(and not asymptotic) distribution the Rayleigh 
distribution will also occur for the deformation,
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though the parameters of these distributions differ 
from one another. This case is assumed to be a stan
dard for shape errors of spherical surfaces of the 
optical elements within the considered model. A typi
cal case will be the tolerance /IA2 presented in Fig. 4. 
In the case of narrow tolerances this distribution will 
approach the uniform distribution (tolerance zlA, 
in Fig. 4), while for wide tolerances it will be close to 
a normal distribution (tolerance /IN, in Fig. 4).

where

(7 =
4A

The deformations of particular surfaces have 
Rayleigh distribution of density function

/(<$)

The unknown distribution parameter 3 may be 
determined in the following way

p p

' 42

It is requested that the probability of occurance of 
a correct system be great, i.e.

Fig. 4. The forms of Rayleigh distribution for different 
parameters e, — the assumed defectivity of a practicai 

spread of the working deviations

In accordance with the accepted probabilistic 
model the tolerance is determined by evaluating for 
separate surfaces of the system the upper limit of 
the interval [0, within which the variable <5, 
=  ,4,Z)JV, changes randomly, and such that the 
probability of occurance of a defective system with 
the axial astigmatism greater than its admissive 
value /l.Sp does not exceed the assumed value e. 
Therefore, the following statistical relation should be 
solved

1—exp /  I ^
\  3 2 2 ^  /3 2 2 ^

Hence, after elementary rearangements

 ̂=
42

l / ----*
r  4.6-p-lp-loge (7)

(6)

An additional assumption that (5, has a Rayleigh 
distribution allows to consider a standard case of 
the model. Then the random variables <5,cosy,, 
<3,siny, are subject to a normal distribution of para
meters JV(0, .s'), while

p p
J P  <5,cosy,, <3,siny,
<=1 <=1

have the same distribution but of parameters 
A(0, l/p ^). The whole square root expression follows 
the Rayleigh distribution [3] of the density function

After the parameter g is determined the distribu
tion is already uniquely specified and therefore an 
arbitrary statistical problem may be solved within 
the given model. In our case we look for the upper 
limit of the random variable interval <5,e(0, <5^,), 
which fulfills the dependence (6). Hence

p(0$:<5, =  — <$-expi— jd<$

By assuming a priori the defectiveness €, of the 
practical spread of the working deviations (Fig. 4) 
we get

Hence

1 1

<5Lx =  ^ -4 .6 1 o g C i. (8)

By inserting the formulae (7) into (8) and taking 
account of <3, =  v4,z)A, we obtain finally that for 
spherical surfaces represented by ovality of the inter
ference fringes the tolerance of shape errors is given 
by the following expression

logei
ploge (9)

Now, we will consider the general case of an arbit
rary (but determined) distribution of deformations
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of the spherical surface. Then the random variables 

<$,cos%, <5,sin%

have no more the normal distribution, which however 
still remains the limit to which the sums of random 
variables tend usually.

Let the standard deviation of these distributions 
in the standard and general cases differ by a factor 
A*, i.e. the factor AT determines the influence of the kind 
of deformation on the parameter s of the axial astig
matism. Hence the random variables

p p
JSJ 5,cosy,, <9,siny,
i-I  '=1

have the normal distribution of parameters 
JV(0, A'Lp y). Then the distribution of axial astigma
tism has the form of Rayleigh distribution [3] of density 
function.

Hence, analogically to the standard case the para
meter s of the distribution of axial astigmatism 
amounts to

4AAT M 4.6/? log &

In this case for determining the tolerance the fol
lowing reasoning is made. If in both the standard 
and general cases the axial astigmatism distributions 
differ only by the parameter, then similarly to the 
method used to determine tolerance in the standard 
case it may be assumed, that in the general case the 
deformation has also the Rayleigh distribution but 
with a different parameter. Hence, by analogy to the 
standard case the tolerance amounts to

/MV, =
4Ы,АГ

logsi 
/? loge

In each probabilistic model the value of e, must 
be established. Thus, it is suggested to assume e, 
=  0.023 (by analogy to the defectiveness of six- 
standard held of tolerance in case of a normal 

distribution).
If we assume that e =  e, then

where again
/bp — axial astigmatism of the system (admis

sive value),
Ир — refractive index in the image space of the 

system,
Mp — image aperture angle,
,4, — coefficient determined from (2),
p — number of surface,
e — defectiveness of the series of systems mount

ed (e =  0.01 signifies 1%), 
e, — a priori accepted defectiveness of the prac

tical spread of the working deviation ele
ments,

Af — coefficient depending upon the kind of the 
deformation distribution /1#,.

The value of the coefficient AT — according to the 
assumption — may be determined by comparing the 
parameters of axial astigmatism distributions occurring 
for an arbitrary (general case) and Rayleigh (standard 
case) distributions of deformations. E. g. for a uniform 
distribution the value of the coefficient A* amounts 
to 1.5.

The tolerances /MV, obtained from the above 
formulae for an enlarger objective of the triplet type 
of local length / = 5 5  mm and the relative aperture 
l:Af =  1:4.5 given as an example are the following: 
the admissive value of axial astigmatism /1^ =  0.046 
(Marechal cryterion), the surface deformation distri
bution is uniform, the defectiveness e =  0.01; /MV, =  
0.93, /MV, =  1.02, /MV, =  0.45, /MV, =  0.45,
/MV, =  0.83, /MV„ =  0.79.

Finally it should be mentioned that since the toler
ances obtained have been determined by using the 
near-axial cryterion (axial astigmatism) then it should 
be verified whether the so deformed surfaces do not 
exceed the tolerances of the ray that result from the 
aberrational analysis of the systems composed of 
ideal spherical surfaces.
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Вероятностная модель для погрешностей формы 
сферических поверхностен оптических элементов

В статье описана вероятностная модель для погреш
ностей формы сферических поверхностей оптических эле
ментов и приведены зависимости, позволяющие опре
делять в ней допуски.
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