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The rough surface assessment by light scattering methods is mostly preceded by the solution to 
the so-called direct and inverse problem. It requires assuming the mutual theoretical model, 
describing the phenomenon of light scattering by rough surfaces, for both problems. In general, 
despite application of numerous simplifications, it is an intricate diffraction model. The description 
of the rough surface geometry is also quite often complicated. Therefore, in many cases 
experimental verification of analytical solutions to the direct and inverse problems is very difficult. 
Under such circumstances it is advisable to verify the correctness of the solutions obtained using 
the computer-modeling methods. The paper presents the process of the direct and inverse problem 
modeling and covers the results of the model tests on selected surfaces.
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1. Introduction

The application of light scattering methods to the rough surface assessment is based 
on an electromagnetic field analysis of the light wave scattered by a rough surface [1], 
[2]. Two basic problems are distinguished in the scatterometry of the rough surface 
-  the direct and inverse ones [3]. They are presented schematically in Fig. 1. The direct 
problem consists in searching for the distribution of the electromagnetic field of the 
light wave scattered by the rough surface if the function describing the surface 
roughness z = f (x s, y5) is known and if we know the way of its illumination. The 
inverse problem consists in determination of the function describing the surface 
roughness z = f (x s, y5) from the measured intensity distribution I(xp, yp) of the light 
wave scattered by the rough surface.

In work [4], a solution to the inverse problem, which makes it possible to retrieve 
surface roughness by measuring the scattered field, was proposed. However, 
experimental investigations into the correctness of the proposed method of solving the 
inverse problem and the results obtained could be quite complicated. Numerical model 
tests seem to be much simpler. Therefore, the method and the results of the inverse 
problem modeling are presented briefly in further part of the paper. To verify the
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Fig. 1. Schematic representation of the direct problem (a), and of the inverse problem (b).

correctness of the assumed model of light scattering by a rough surface, the direct 
problem modeling preceded the modeling of the inverse problem.

Approaching the modeling of the direct and inverse problems a series of 
assumptions were made. First of all, it was assumed that the phenomenon of light 
scattering is described precisely enough in form of the scalar Kirchhoff theory of 
diffraction [5], [6]. Another assumption was that the surface of an object reflects the 
plane wave of monochromatic light with wavelength A striking on the surface at normal 
incidence. A paraxial approximation was also made. We also assumed that the 
scattering surface is situated in the primary focal plane of the lens with equal focal 
lengths. The scattered field with the application of Fraunhofer approximation was 
analyzed in the secondary focal plane of this lens. These assumptions made it possible 
to use Fourier transformation in the process of modeling the diffraction field 
distributions. Furthermore, the intensity of light striking on the surface and the value 
of the amplitude reflection coefficient were taken to be equal to 1.

2. Modeling of direct problem
Model tests on the direct problem were carried out using the special software. This 
software was developed in two options. One of them was designed for modeling the 
phenomenon of light diffraction on two-dimensional (2D) rough surfaces z = f(xs), 
whereas the other -  on three-dimensional (3D) rough surfaces z = f ( x v ys). Both 
software options made it possible to set the function determining the height of 
irregularities at individual points of the surface, and determine the complex light 
amplitude E(xs, ys) at those points according to the following equation:
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E(xs, y s) = exp [ / y / ( * 5, > g ] (1)

where i is the imaginary unit, A -  the wavelength of light, and/(;cy, y^) -  the function 
describing the height of surface irregularities.

The next stage of modeling included Fourier transformation of the complex light 
amplitude on the surface by means of the fast Fourier transform. Then the squared 
modulus of Fourier transform was calculated

Diffraction order

Fig. 2. Modeled distributions of the light intensity in Fraunhofer zone for scattered light from sinusoidal 
surface z = b + asin(jc5 + <p); light wavelength A = 632.8 nm.
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l(xp, y p) = \E(xp, y p)\2 = ys) ] |2 (2)
(A /)

where l(xp, yp) and E(xp, yp) are the intensity and the complex light amplitude in the 
secondary focal plane of the lens, respectively, A is the wavelength, /  -  the lens 
focal length, the symbol 3  stands for Fourier transformation, and E(xs, y5) is the 
complex amplitude on the scattering surface.

Diffraction fields of the plane wave of coherent light in Fraunhofer zone were 
modeled for 2D and 3D surfaces. Periodic and aperiodic surfaces were tested. The 
plots of the light intensity obtained for the sinusoidal surfaces with different amplitudes 
are presented in Fig. 2. The normalized values of the light intensity are shown on 
vertical axes. Numbers of consecutive diffraction maxima are marked on horizontal 
axes. Comparing these results with the results presented by Goodman [5] and

Fig. 3. Results of computer modeling of diffraction field scattered from sinusoidal surface z = 
asin^n/jyOtj + ys)+(p] in Fraunhofer zone, for amplitude a = 1 pm, spatial frequency/^ = 20 mm-1, phase 
ę  = 3 rad and light wavelength A = 632.8 nm. Isometric plot of the scattering surface (a), intensity 
distribution of the scattered light I(xp, yp) 13[£(at5, y5)]|2 in Fraunhofer zone (b), images of real and
imaginary parts of the complex amplitude E{xs, ys) on sinusoidal surface and plots o f both the parts 
obtained for = ys (c).
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Cathey [7], obtained for the diffraction of light transmitted through the sinusoidal 
grating, is indicative of the correctly developed algorithm of modeling.

Model tests of the direct problem on 3D surfaces were carried out over the 
illuminated area of 256x256 pixels. Sample results of the modeling are illustrated in 
Fig. 3. The diffraction field in Fraunhofer zone was obtained for the sinusoidal surface 
with amplitude equal to 1 pm and spatial wavelength of 50 pm. In the course of the 
modeling calculations were made on 32-bit gray-level images. Figure 3a illustrates the 
shape of scattering surface, while Fig. 3b shows the calculated distribution of the 
intensity of light scattered by that surface.

The plots of the imaginary and real parts of complex amplitude E{xv  ys) on the 
sinusoidal surface are shown in Fig. 3c. They are traced along the line for which xs = ys. 
One can observe that these plots are similar to typical interferograms obtained during 
the harmonic motion of the interferometer mirror. This was already predicted in [8], 
where a laser interferometer was proposed to use for modeling the phenomenon of 
light scattering by rough surfaces.

It is clearly seen from Fig. 3c that the amplitude of functions ReE(xs, y5) and 
Im £ (x y, ys) in the area of increased signal frequency is not constant. This is caused 
mainly by a comparatively small spatial resolution of the function being modeled. It 
reduced the range of amplitudes and spatial frequencies of modeled functions and the 
accuracy of results obtained. It is necessary to apply a higher spatial resolution in order 
to obtain better results of modeling of the direct and inverse problems on 3D surfaces. 
Therefore, the inverse problem has been modeled mainly on 2D surfaces.

3. Modeling of inverse problem

Model tests of the inverse problem were carried out on 2D surfaces z = f ( xs) using 
specially designed computer software. It was possible, at consecutive stages, to 
generate the surface profile, modify the complex light amplitude and then reproduce 
the irregularity profile according to methods described in [4].

Assumptions made for model tests were similar to those for modeling the direct 
problem. The algorithm applied to the process of modeling of the inverse problem 
described to a greater extent in work [4] covered the following procedures:

-  generation of the odd function z = f ( xs) describing the surface,
-  determination of the complex amplitude EH(xs) on the surface (Hermitian 

function),
-  introduction of the unit pulse to the origin of coordinates,
-  calculation of the attenuating function and the complex amplitude EN(xs) after 

modification,
-  calculation of the scattered light intensity in Fraunhofer zone /(* ),
-  determination of the even and odd parts of the complex amplitude E(xp),
-  inverse Fourier transformation of the even and odd parts of E(xp),
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Fig. 4. Plots of real and imaginary parts of the complex amplitude EH(xs) on sinusoidal surface obtained 
for several values of amplitude a.

-  removal of the unit pulse and amplification of the complex amplitude EN(xs),
-  reconstruction of the function z = f(xs) from the retrieval complex amplitude E ^ x s).
Model tests of the inverse problem were carried out for a series of selected periodic

profiles with amplitudes not exceeding 1 pm. In the case of a sinusoidal profile, like 
for other odd functions, the complex light amplitude EH(xs) is Hermitian function. 
Figure 4 includes the plots of the real and imaginary parts of the complex amplitude 
Eh(xs) for modeled sinusoidal profiles with different amplitudes a. One can notice that 
an increase of the profile amplitude causes an increase in the spatial frequencies of the 
complex amplitude EH{xs).

To analyze the effects of additional modification of the function EH(xs) on its 
amplitude spectrum, this spectrum was modeled before and after modification of the 
complex amplitude EH(xs). Figure 5 illustrates sample plots obtained at successive 
stages of modeling. The coordinate system was selected so as to determine the 
diffraction order q on the horizontal axis. These plots were determined for the 
sinusoidal surface, shown in Fig. 4, with the amplitude a equal to 0.15 pm.

The real part of Fourier transform of the complex amplitude EH(xs) before its 
modification is shown in Fig. 5a. It is obvious that the imaginary part of this transform 
is equal to zero. It results from Fig. 5a that Fourier transform of the complex amplitude 
Eh (xs) includes harmonics with different signs.
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d

Fig. 5. Plots obtained during modeling of Fourier transform of the complex amplitudes EH(xs) and EN(xs) 
on sinusoidal surface shown in Fig. 4, for amplitude a = 0.15 p.m. Plot of real part of (a), plot
of real part of 3[£^(jr5)] (b), plot of even part of (c), plot of odd part of 3[EN(xs)] (d).

The plot obtained by modeling Fourier transform of the complex amplitude EN(xs) 
is presented in Fig. 5b. The procedure for determination of the complex amplitude 
En (xs) is included in work [4]. Successive modification stages of the function EH(xs), 
allowing the complex amplitude EN{xs) to be obtained, are presented there. According 
to Fig. 5b all the values of Fourier transform of the complex amplitude EN(xs) are 
positive and equal to its modulus. Nevertheless, these values are about 1000 times 
lower than values of Fourier transform of the function EH(xs). This is affected by 
attenuation of the function EH(xs) during its modification. Such a reduction of 
measuring signals during the profile reconstruction based on measurements of the 
diffraction field is disadvantageous. In practice, it can be partly compensated for by 
applying light sources with increased power to illuminate the surface.

In the course of model tests the even part e(xp) and the odd part o(xp) of Fourier 
transform of the complex amplitude EN(xs) were determined as well. Both the parts 
were calculated making use of the light intensity values obtained by modeling. 
Figure 5c and d show the plots of the even and odd parts of Fourier transform of the 
function EN(xs). These plots, like previously, apply to the sinusoidal surface with the 
amplitude a = 0.15 pm.

At the next stage of modeling the inverse problem the light phase was retrieved on 
the rough surface. Therefore, the inverse Fourier transformation of the even part e(xp)
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and the odd part o(xp) of Fourier transform of the function EN(xs) was implemented. 
Then the transformations inverse to those which were performed during modification 
of the function EH(xs) were carried out. Owing to that, the real part and the imaginary 
part of the complex light amplitude EH(xs) were obtained on the rough surface.

The final stage of the inverse problem modeling was aimed to determine the surface 
profile z =f(xs) based on the real and imaginary parts of the complex amplitude EH(xs). 
At the same time, trigonometric functions, the arc sine and arc cosine, were applied. 
In every case, the model tests resulted in obtaining the correct profile of the surface
z =/(*,)■

4. Conclusions
The model tests proved that methods of solving the inverse problem proposed in [4] 
are correct. However, it should be taken into account that their implementation is not 
going to be easy regarding many conditions to be fulfilled. Application of these 
methods in practice should be preceded by further investigations. However, for the 
present one may say that these methods will be useful for assessment of periodic 
surfaces with small amplitudes. The proposed method of solving the inverse problem 
may also find application to more general problems where knowing the squared 
modulus of Fourier transform of the function with phase modulation one may aim at 
retrieving the information on the phase of this function.
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