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The problem of temporal soliton propagation in a nonlinear Kerr medium with natural optical 
activity is considered. The evolution of the state of polarization of the soliton is described using the 
Stokes parameters. It is shown that due to the balance between the nonlinear optical activity and 
linear gyrotropy a special class of stationary elliptically polarized solitons appears.

The problem of soliton propagation in nonlinear media with natural [1], [2] and 
induced gyrotropy [3] in both the optical and phonon [2] frequency regions has 
attracted much attention in recent years. Our investigation is related to the 
particular problem of the evolution of the polarization state of soliton-like pulses in 
a naturally gyrotropic Kerr medium, which has important applications and has not 
been considered before. The approach we have introduced in this paper can be 
applied to the investigation of the self-guided beams as well. Spatial solitons with 
evolving polarization in Kerr media without natural gyrotropy were discussed by 
Snyder et al. [4].

It is known that the plane of polarization of linearly polarized light is rotating 
during the propagation through the linear gyrotropic medium (linear optical activity) 
[4]. In the case of elliptically polarized light the natural gyrotropy leads to the 
rotation of polarization ellipse. On the other hand, the ellipse of polarization of an 
eliptically polarized strong wave is also rotating in Kerr nonlinear media [5]. We 
shall call this effect nonlinear optical activity. Clearly, if these two effects exist 
simultaneously in the same medium, the evolution of the state of polarization 
becomes more complicated. In this work we show that in the case of elliptically 
polarized light propagating in the nonlinear Kerr medium it is possible to arrange 
special conditions such that the rotation of the polarization ellipse due to the 
nonlinearity (nonlinear optical activity) is compensated by the presence of natural 
gyrotropy (linear optical activity). Note that we do not consider the effect of the 
nonlinear gyration appearing due to the spatial dispersion of the third-order 
susceptibility [3].

The pulse propagation in a nonlinear Kerr medium with natural optical activity 
in the plane wave approximation can be described by the system of two coupled 
nonlinear Schrodinger equations for the complex amplitudes U and V of two
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circularly polarized components of an electric field: 

iUt +pU+^U„+(\U\2+A\V\2)U = 0,

iV( - p V + l-V„+{A\U\*+\V]2)V = 0  (1)

where £ is the normalized longitudinal coordinate z, t is the normalized retarded 
time, p and A  are the parameters of the medium which are responsible for the linear 
and nonlinear optical activity, respectively. The value of nonlinear factor (which 
determines the magnitude of the cross-phase modulation term) for the isotropic 
medium is A  =  2. The linear gyrotropic factor ft ~  is determined by the
relation between the electric field E' and the linear part of the electric flux density 
D in the isotropic medium with natural optical activity: D = e(0)E-l-i^v/e^ |E ez|, 
where e(0) is the dielectric constant, g is the component of gyration vector [5] and e2 
is the unit vector along z axis.

Let us suppose the existence of the pulse-like solutions of (1) in the separable 
form:

U = u(t, qv  q2)exp(iql £), V = v(r, q2, q2)exp(iq2{) (2)

where the parameters qi and q2 are the intensity-dependent shifts of the wavenumber 
resulting from the nonlinear coupling between the two components of the electric 
field as well as from the gyrotropic effect. Due to the absence of the linear coupling 
[7] there is no energy exchange between the two polarization components. Hence, 
the two components of the soliton-like pulse do not change their shapes (u(T,qltq2) 
and v(t,qitq2)) upon propagation along the ¿[-axis. For these stationary profiles of 
solitary waves we have the set of two second-order ordinary differential equations:

\u „ - (q i -P)u+{\u\2+A\u\2)u =  0,

\v „ -(q 2+P)v+(A\u\2 + \v]2)v =  0 (3)

where u and v are real functions subject to the boundary conditions: u, v-*0, and 
uxvz -* 0  when t —> ± o o .

Equations (3) have simple exact solutions representing bright solitons with 
right- and left-hand circular polarization. The stationary profiles for these two 
solitons have the forms:

“ =  v '2(4 i-W sech(V/2(9 i- /0 A  v = 0;

u =  0, v — y/l(q2 + /J)sech ( , /  2(q2+P)x). (4)

We can also write down the solution for a linearly polarized wave for which
9i -« 2  =  2/J
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»  =  » =  « · 
V 1 + · ^

(5)

The exact stationary solutions with u and v ^  0 can be found only numerically. 
However, using the methods of the perturbation theory we can provide the analytical 
description of the elliptically polarized solutions which are close to the circularly 
polarized ones (4). In absence of the natural gyrotropy (/1 = 0) solutions of this type 
and their stability have been analysed in [8] —[11]. In our case (/? ^  ) they are:

u ~  „ ___________ p0

~  cosh(V2(9 l-/i)T)’ ~  cosh,(v/2 (i1—

and

u °

cosh1/v(N/2(^2+^)T)’ cosh(v^(g7+^T)

where:

(6)

(7)

v=vfif·v(v+1,=2-4· (8)
The amplitudes u0 and v0 can be easily obtained using the representation of the 

Eqs. (3) as the equations of motion for the particle in the two-dimensional potential 
well [12]. Note that the terms with /? in Eqs. (1) can be removed using the 
transformation U =  U'exp(i/?£), U = U'exp(—ifi£) and the system can be reduced to 
the simpler one considered in [8] —[11]. This simplified set of equations allows to 
find the profiles of the soliton components and the relation between their amplitudes 
but the main effect we are interested in, namely the evolution of the state of 
polarization, in this case will be lost.

The state of polarization of the pulse-like solution of (1) can be represented by 
a point on the Poincare sphere in the space of real Stokes parameters [13] which are 
defined as follows:

s0 = 2(|i/|2 +  |7 |2), 5, =  2(U*V+VV*\
s2 = —2i(U*V— UV*\ s3 =  2(\U\2—\V\2). (9)

Taking these definitions into account, and using the substitution (2), we can rewrite 
(1) in terms of the Stokes parameters [7]:

=  (o s2,

(10)

where co = q i~ q 2. The evolution of the state of polarization of any soliton-like 
solution of (1) during the propagation can then be qualitatively analyzed as a motion



270 N. N. Akhmediev, E. D. Ostrovskaya

of the Stokes vector s0 =  {slts2is3} for the centre of the pulse (t = 0) on the Poincare 
sphere. As the profiles of two components of the field are different, the state of 
polarization changes from the central part of the pulse to its tail. However, it is fixed 
at any point t. From practical point of view, it is convenient to follow the evolution 
at the centre of the pulse (t = 0), where the intensity is maximal. This evolution is 
governed by the solutions of (10) which have the form:

st =  socos0cos(co£+#),

s2 = — socos0sin(a)f+ $), s3 =  aosin0. (11)

The quantities s0 and s3 are conserved during the propagation, and the pulse 
evolution manifests itself as a rotation of the Stokes vector around the s3 axis on the 
Poincare sphere. The quantity 0 is the angle formed between s0 and the plane (s1,s2), 
which does not change with £ and defines the degree of ellipticity for the centre of the 
pulse. The constant angle <P defines the initial phase of the rotation.

Depending on the initial conditions and the values of parameters, the polariza
tion of the pulse exhibits qualitatively different types of evolution. Circularly 
polarized initial pulses (0 = ±n/2) are represented by the stationary points on the 
Poincare sphere {0,0, + s0}. The shapes of the pulses in this case are given by Eqs. (4). 
The rate of polarization rotation co for the pulses with nearly circular polarization can 
be obtained using the perturbation method. The profiles of these solitons are 
presented above (6), (7). The conditions of their existence (8) lead us to the following 
expression for the frequency:

co = (?“ - l) (q 2+P)+2P,(0 =  ±  jc/2) (12)

where v «  1.56. The values of co found from (12) (with the fixed q2+P = 1) are 
shown in Fig. 1.

In general, for —7c/2 < 0 < n/2 the state of polarization always remains elliptic or 
linear. The frequency of the polarization rotation can be written in the form

v i l^+ (l+ A )(.u l-vl)+ 2p  (13)

where: u0 =  u(x =  0), v0 = v(x =  0). We can see from expression (13) that the Stokes 
vector of a linearly polarized initial pulse (0 = 0, u0 =  v0), rotates along the 
equatorial line of the Poincare sphere. The frequency of this rotation is co = 2fi (see 
Fig. 1). In the absence of the linear optical activity =  0) the plane of polarization 
does not rotate. The shape of stationary linearly polarized solution is given by 
expression (5). For — tc/2 < 0 < 0 and 0 < 0 < n/2  the evolution of the polarization 
is described as a rotation of the Stokes vector along one of the circles parallel to the 
equatorial line on the Poincare sphere. In absence of the linear optical activity 
(P = 0), this rotation is due to the nonlinearity (A ^  1) only (the effect of nonlinear 
optical activity).

Finally, we consider the case of existence of both the nonlinear and linear 
gyration simultaneously (/? ^  0 and A  #  1). In this case, the expression of co (13) leads

1 / dzu I d2v
00 ~  2 \dx2 |t=oU° dx2
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Fig. 1. Rotation frequency co of the polarization ellipse vs. ellipticity 0 for the centre of the pulse. The 
values indicated by crosses are obtained analytically. The parameter q2 + P =  1 is fixed

to the remarkable conclusion. Suppose we have found the solution of Eq. (1) with 
certain degree of ellipticity O0(u0,v0) of the centre of the pulse. If co then occurs to be 
equal to zero for this value of 90, the rotation of the polarization ellipse due to the 
effect of nonlinear gyration is completely compensated by the natural activity. Solutions 
of this type with arbitrary initial phase #  and a certain 0o can be represented by the 
set of stationary points on the Poincare sphere which form a circle parallel to the 
equatorial line. Each stationary point of this set corresponds to the stationary 
pulse-like solutions of Eq. (1) with an elliptical polarization and with a. fixed direction 
of the axis of the polarization ellipse at the pulse centre. The directions of rotation of 
polarization ellipse are opposite above and below this circle.

The frequency of the rotation of the polarization ellipse depends on the degree of 
ellipticity through the amplitudes u0 and v0. This dependence for different given 
values of the linear gyrotropic factor fl can be obtained by numerical simulations (see 
Fig. 1). All simulations were carried out with the fixed parameter q2+ P=  1. As we 
can see, depending on the value of /?, the condition co =  0 becomes valid for different 
degrees of ellipticity 90 of the initial pulse. The values of /? which make the frequency 
vanish in the case of linear and nearly circular polarization of the pulse can be found 
analytically, using the solutions (5) and (6), (7). The trajectories of the Stokes vector 
with the fixed and rotating polarization on the Poincare sphere for three particular 
cases: 90 =  0, 90 = 7t/ 2  and 0 < 90 <  7t/2, are given in Fig. 2. In the case when 
90-> ±n/2, the circle of stationary solutions converges into the stationary point 
located on the pole (see Fig. 2c).

It is essential in our problem that for fixed parameters of the medium fi and A, 
there are two parameters of the solutions of Eq. (1): q1 and q2. Hence, the general 
solution of the set (1) is the continuous two-parameter family. This family of solutions
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S3

Fig. 2. Three different sets of the stationary solutions on the Poincare sphere with (a) linear, (b) elliptic, and 
(c) circular polarization. The trajectories with rotating polarization ellipse are shown by solid lines. The 
arrows indicate the direction of the rotation

can be presented in terms of two other parameters: the total energy of the soliton-like 
pulse Q =  ¡{\u\2 + \v\z)dz and the degree of ellipticity 0, which are experimentally 
measurable quantities. The continuity of the family of the solutions then have 
a simple physical meaning. Namely, the pulse of given degree of ellipticity 9 can have 
any value of the total energy Q, and vice versa, the pulse of given energy can be of 
any degree of ellipticity from 6 = —n /2 to 9 =  7c/2. In this problem there is no way to 
reduce the number of the parameters of the solution. The choice q2 +  /7 = 1 which 
we made in numerical simulations enables us to investigate the whole family of 
solutions varying the parameter fi instead of qz.

It is known that the solitons which we are studying are stable relative to the 
perturbation of their profiles [11] as well as to perturbations of their relative 
positions [14]. The question remains about polarization instabilities. According to 
the classification of the theory of dynamical systems, each stationary point on the
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Poincare sphere is an elliptic point, which means that all of them are stable. 
However, the value of the growth rate of the perturbation 5 is purely imaginary 
(5 = ico) in the case of the circularly polarized solitons, and is equal to zero (5 =  0) in 
the case of the stationary solitons with the elliptical polarization. Hence, circularly 
polarized solitons are stable and the stationary elliptically polarized soliton-like 
pulses are neutrally stable.

In conclusion, we have shown that linear rotation of the polarization ellipse 
caused by the Kerr nonlinearity can be cancelled due to the presence of natural 
(linear) optical activity. This phenomenon is of practical importance in the design of 
novel fast nonlinear all-optical switches.
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