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Light propagation in optical waveguides 
with complex refractive indices
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The modal formalism of optical waveguides with loss and gain has been revised. Light propagation 
in an optical waveguide with a balance of gain and loss has been studied with beam-propagation 
method for a wide range of attenuation and amplification coefficients and the results are compared 
with numerical solution to the wave equation.

1. Theory and notation

With the advent of semiconductor optical amplifiers there is a growing interest in 
optical waveguides composed of active (with gain) and lossy media. Although the 
theoretical background of modes in waveguides with loss was established almost 
twenty five years ago [1], the diversity of appearing structures involves a consider
able and growing effort in studying optical phenomena in those devices, stimulated 
by availability of technology of such devices, and also by their potential use for 
optical signal processing in fibre-based telecommunication systems.

The attenuation or amplification of light propagating in a transparent medium 
can be described with a complex refractive index

n =  r i  —jn " , (1)

and a complex relative permittivity

e — n2 = e' —je". (2)

Let an optical beam propagate down the positive z-axis

E{x,y,z,t) = E0(x,y,z)cxp Q/(ftJi-kz)]. (3)

Here E0(x,y,z) is the field amplitude distribution, and the exponential factor 
accounts for field phase changes.

We introduce a complex wavenumber

k =  nk0 = rik0—jn"k0 (4)

where k0 =  I tz/X is the free-space wavenumber. Then (3) takes a form

E(x,y,z,t) =  E0(x,y,z)exp\J(cot—rik0z)~\exp(—ri'k0z). (5)
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Therefore, in the case of (3), positive values of n" represent the field exponential 
decay (and loss), while negative values of n" account for the field exponential growth 
(and gain).

For high intensities of light in semiconductor waveguide devices both gain and 
attenuation may show saturation effects. Therefore, the attenuation and amp
lification coefficients are intensity dependent. This is to be considered as a special 
case of optical nonlinearity that influences not the real, but the imaginary part of the 
index of refraction. However, in the present paper we restrict ourselves to the linear 
case, with constant values of n" and e".

nG = 3.252398 -  i n” 

fii_ — 3.252398 + i n”

‘ 0.5 pm2 L
0.5 pm

ns = 3.169355

Fig. 1. Two-layer waveguide with gain and loss
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Formally, the modal formalism for waveguides with complex refractive indices is 
similar to that for guides with real refractive indices. Let us assume a geometry of the 
waveguide as in Fig. 1, where there is no change in the refractive index in the y 
direction. We consider optical fields that are independent of the y coordinate. The 
fields satisfy in the i-th layer a scalar wave equation [2]

V2<Pi+kf<Pi = 0 (6)

where =  Ey/Hy for TE/TM wave, respectively, and kt =  /c0nf is the wavenumber in 
the layer. The upper infinite layer will be labelled as the 1st, while the lower infinite 
layer as the 4th.

We consider solutions to (1) in a form of eigenmodes

$i(x,z) = (pfixp(-jkzz). (7)

The eigenmodes of the form (7) differ from well-known modes of non-lossy guides 
in a way that the propagation constant is complex

K  = k0 [Re(N t(r) +jlm(N  cff)]

where N e{î is the mode effective index.
A substitution of (7) into (6) leads to the Helmholtz equation

d2<Pi
dx2

A-kl.qji^ 0

where

(8)

(9)

k2+k2Xl =  kf, (10)
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kXi =  U i - j V i ,  ( 11)

is an x-component of the wavevector in the i-th layer, u{ nad vt are the transversal 
phase and attenuation constant, respectively. It follows from (10) that Kt may have 
two opposite complex values, in the following we choose kxi such that vt >  0.

The modal fields have to satisfy boundary conditions at the interfaces between 
the i-th nad y'-th layers

<Pi =  <Pj 1 
<Pi =  y*ij<P'j]

(12)

where the prime denotes a derivative with respect to x, and 

fl for TE wave,
Wy — \in jn)2 for TM wave.

A general solution to (9) is:

(13)

-  for kx. ^  0

<Pl{x) =  ^¿exp( ~ jkx.x)+ Bi exp {jkx.x \ (14)

-  for kkt — 0

<Pi(x) =  CiX+Di (15)

where Aiy Biy Ct, Dt are complex constants, they must ensure a fulfilment of the 
boundary conditions (12). For the purpose of numerical calculations it is important 
to include the linear solution to the wave equation (15) especially in the case of 
multilayer waveguides, in order to avoid numerical instabilities.

The field limitation condition (at the infinity) requires that in the outermost 
layers

=  0 (16)

provided that vk > 0 and 174. < 0 have been chosen in (11).
The fields (14), (15) that satisfy both the limiting conditions (16) and boundary 

conditions (12) constitute a discrete set of bounded eigenmodes of the structure. 
Thus, the conditions (16) and (12) are equivalent to dispersion equation of the 
waveguide. Those conditions occur simultaneously only for discrete values of mode 
effective indices, in analogy to well-known modes of non-lossy guides. But in general 
those effective indices are complex, according to (8), what implies a necessity of 
a two-dimensional search for the solution in the complex plane. This is in contrast to 
the non-lossy modes, where the discrete solutions are situated on the real axis. This is 
also what makes it rather difficult to find the complex modes.

2. Modes of the waveguide with a balance of gain and loss

The waveguide structure of interest is shown in Figure 1 and it was originally 
proposed within the framework of the COST 240 Project ’Techniques for Model-
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ling and Measuring Advanced Photonic Telecommunication Components” by H.-P. 
Nolting from Heidrich-Hertz Institute, Berlin, as a modelling task for the Working 
Group 2, Waveguides [3]. The waveguide with a balance of gain and loss may be 
fabricated in InGaAsP/InP technology and it consists of two layers with mutually 
complex conjugate refractive indices that are surrounded with a medium of a slightly 
lower real refractive index. The exact values of all parameters are given in Fig. 1. We 
emphasise that the absorbing and amplifying regions have the same absolute value of 
the imaginary part of refractive index and also the same thickness, thus a balance of 
gain and loss is assured. Also, the wavelength X =  1.55 pm corresponding to the 
m in im u m  loss of silica fibres that are widely used in optical telecommunication 
systems is assumed. The waveguide is designed in a way that it supports only the 
fundamental mode at 1.55 pm wavelength when the gain/loss coefficient is equal to 
zero.

The imaginary part of refractive indices of guiding layers may be tuned in a very 
broad range: in terms of the absorption (gain) coefficient a, between zero and 
±104 cm-1. The relation between the power absorption or gain coefficient a (in 
centimeters) and the imaginary part of refractive index is

n" = x̂ 1CT1. (17)
47C

The dispersion equation of the waveguide has been solved numerically in the 
complex plane for TE polarisation in the above range of a values and the obtained 
dispersion curves (the real and imaginary parts of effective refractive indices versus 
the absorption coefficient a) are plotted in Fig. 2. The field and phase distributions 
for the relevant cases of a <  abranch and a > abranch are shown in Figs. 3 and 4, 
respectively.

Fig. 2a
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Fig. 2. Effective refractive indices Re{Neff} and aefr =  (4n/A)Im{Nefr} versus a

It can be seen from Figure 2 that there is a special value of the coefficient 
a =  o(branch =  5226.3 cm-1 that divides the dispersion curves into two parts. Let us 
analyse first the behaviour of imaginary part of effective dielectric constant shown in 
Fig. 2. It is equal to zero up to the value of the coefficient a =  abranch. This means that 
the modes (or mode) are lossless, with field and phase distribution as in Fig. 3. 
For a >  abranch two modes exist, they have exactly opposite imaginary parts of the 
effective index. Thus one of the modes is attenuated along the direction of 
propagation, while the other is amplified. It can be seen from Fig. 4 that for at-

Transversal position x [ m ]

Fig. 3»
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Fig. 3. Modal field and phase distributions for a =  5000 cm 1 (below

tenuated mode the optical field is concentrated mainly in the lossy layer, while the 
field of amplified mode is cencentrated mainly in the layer with gain.

As the real part of mode effective index is concerned, for very small values of a the 
waveguide supports only one mode and the mode propagates without loss or gain. 
At a <  =  2725 cm-1 the second mode appears, which is also nonlossy. The two
nonlossy modes have symmetric field distribution and asymmetric phase distribution 
(see Fig. 3), corresponding to power flow from the layer with gain to the lossy

Transversal position x [m]

Fig. 4a
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Fig. 4. Modal field and phase distributions for a =  7000 cm 1 (above

layer. However, for a >  abranch the two modes have the same real part of effective 
index, thus they propagate with the same phase velocity. The field distributions of 
the two modes are mutually symmetrical with respect to the x  =  0 plane, while the 
phase distributions are asymmetrical with respect to that plane (Fig. 4). The mode 
field distributions are correspondingly concentrated in the layer with loss and gain, 
respectively. The phase distribution is such that the lossy mode absorbs power from 
the outer space while the mode with gain supplies power to the outer space.

Very special conditions are at a =  where the two modes become iden
tical, with the same propagation constant and also the field and phase distribu
tion.

3. Beam-propagation method analysis

Beam-Propagation Method (BPM) has been proved to be an excellent tool to study 
optical beam propagation in optical waveguides composed of passive media, with 
real refractive indices [4], [5]. Although up to now used only to model light 
propagation in non-lossy media, the method can be easily extended to transparent 
media with gain or loss.

For a planar isotropic waveguide a scalar wave equation is valid. Standard 
beam-propagation algorithms deal with a solution to hyperbolic Helmholtz equation

(18)

or with a solution to paraxial parabolic equation
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E(z) = £ 0exp [ £ + k20(n2 -  nf2)J j  (19)

where z is the direction of propagation, E0 is the initial field distribution at 
a cross-section z = 0, n =  n(x,z) is the refractive index distribution in the waveguide, 
and nr is the index of refraction of a reference medium in which the free-space 
propagation steps are to be carried out. It is assumed that the value of nr is real and 
close to those of the media constituting the system. E(x,z) is a slowly-varying field 
amplitude, and kr is the wavenumber in the reference medium, kr = nrco/c.

Now the occurrence of loss or gain in a medium may be automatically accounted 
for in the phase compensation steps, by an appropriate exponential change (increase 
for gain, decrease for loss) of the field amplitude according to the imaginary part of 
the refractive index n. This results directly from (18) and (19), when ns have complex 
values [6].

It has been assumed for the BPM investigation of the gain-loss waveguide that 
the exciting field is the fundamental TE mode of the waveguide with no loss and 
gain, i.e., a =  0. This field is not an eigenmode of the guide with a ^  0, but 
a superposition of its guided and radiation modes. For large distances of propaga
tion only the guided modes remain in the waveguide, while radiation part of the field 
is radiated away.

Fig. 5. Field evolution along the waveguide (BPM simulation), for a <  £ ,̂„,,-1,

Figure 5 shows the beam evolution for a small value of a, below abranch. As at this 
range of a two lossless modes exist with different phase velocity (see Fig. 2), beating 
effects in the field distribution can be seen. The spatial period of the beating is 
inversely proportional to the real propagation constant difference for the two
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lossless modes, and it becomes infinite when a approaches abraoch. As the two modes 
are lossless, the total power of the beam remains constant.

z = 50 ;um

z = 0 pm -------------------------------------------------------------------— — -------------

n"(y): ------------, r________________

0.07

Fig. 6. Field evolution along the waveguide (BPM simulation), for a >

Figure 6 shows the beam evolution for a above abranch. Now there are two modes 
with the same phase velocity (see Fig. 2), but one is attenuated while the other is 
amplified. At long distances of propagation only the amplified mode survives, while 
the attenuated one disappears. Therefore the total power exhibits an exponential 
growth, which is clearly shown in Fig. 6.

4. Conclusions

We have presented a comparison of two approaches to the problem of a waveguide 
with a balance of gain and loss: one is the numerical solution to the dispersion 
equation, the other is beam-propagation method simulation. The physical phenome
na predicted by modal theory have been observed with the BPM. This can give 
a more detailed insight into the physics of light propagation in such waveguides, as 
well as to enable one to design waveguides with desired performance. Therefore 
beam propagation method reveals to be a very useful tool for analysing phenomena 
of light propagation in media with gain and loss, in addition to its wide use for 
nonlossy (also nonlinear) waveguides.
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