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Hybrid modes in nonlinear Kerr media
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Institute of Physics, Warsaw University of Technology, uL Koszykowa 75, 00—662 Warszawa, Poland.

In the paper the hybrid modes in the isotropic nonlinear Kerr media are analyzed. The simple but 
approximate analytical description of the second order modes in the unbounded nonlinear medium 
is suggested. The accuracy of the approximation is discussed. The exact analytical solution 
describing the balanced field is found. The continuity conditions in the five layered planar structure 
are solved and the corresponding mode equation is obtained.

1. Introduction

The nonlinear hybrid modes are guided waves containing all six components of 
electromagnetic field propagating with the same velocity in the same direction and 
coupled between them by means of the interaction with the medium [1], [2]. Since 
Kerr dielectrics [3], [4] with positive nonlinearity focus the propagating fields [5], 
the hybrid modes can appear even in the unbounded (or semi-unbounded) media. 
Their fields can possess many maxima in space but the ratio of TE to TM 
components (polarization of the mode) is strictly determined for every particular 
mode [1], [2]. The structure of the modes depends significantly of the nature of 
nonlinear processes, for instance, the first order, soliton-like mode cannot appear for 
the isotropic mechanism of nonlinearity [1]. The first and second order hybrid 
modes have approximate, analytical description [2]. In the presented paper, the 
above description shall be applied to the isotropic (electrostrictive or thermal) 
mechanism of nonlinearity.

The Kerr nonlinearity of isotropic type enables us to obtain an analytical, exact 
solution of the hybrid modes equations. This solution (so-called balanced) corres
ponds to the situation in which the nonlinear dielectric permittivity generated by 
propagating field remains constant across the medium. Naturally, such distribution 
of the refractive index can result only in a nonlinear slab sandwiched between two 
linear media. By now this solution has been applied successfully to the pure TM case 
only [6]. Since the balanced solution exists for the hybrid cases too, we can try to fit 
the balanced fields into many layered nonlinear structure.

2. Asymptotic solutions in unbounded isotropic Kerr media

The hybrid wave of propagation constant p travelling along the z axis in the 
isotropic, nonlinear Kerr medium is described by electromagnetic field components
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of the form [1], [2]: E (x,y,z) = (Ex(x),Ey(x),iEz(x))exp(i(£z -  cot)), H*(x,y,z) = 
(Hx(x),Hy(x), — iH2(x) )exp(i(fiz—cot)), with ±i term in z components symbolizing 
the phase shift 7u/2 between them and the other components [4], [7]. In the Ken- 
dielectric of the electrostrictive or thermal type all electric components are involved 
in the material equation e =  el + u(EI + E2+E%), where a > 0. The equation des
cribing the hybrid fields attains the simplest form if we introduce the rescaled, 
dimensionless variables expressing fields: u = oiEy/ej  ̂ v =  /z§c2aH$/el, their deriva
tives: R = c2nl(û1E'i{dEJdx)2, Q = /j,QC*cc/co2El(dHy/dx)2, distance £ =  œ^/ëgx/c, pro
pagation constant b =  c2p2/mzeL and permittivity e = e/ el  [1], [2]:

Q(u, v,e) = e2( e - l  — u) — bv. (2)

The last equation, written as the partial differential equation satisfied by e(u,v) is [2]

\du 2 bv + e2J \dv
e(2b — e)\ 2 
2bv + e3J vQ. (3)

To solve Equation (3) and to determine e(u,v) we only need the algebraic 
equations (2), so it is the natural way to the set (1)—(3). But any solution of the 
differential equation depends on constant of integration. In the first of Eq. (2) (it is 
the first integral of the system of Maxwell’s equations [1] — [5]) this integration 
constant C vanishes in the infinite or semi-infinite Kerr medium [3], [7]. For the 
fields in the unbounded Kerr dielectric we shall apply two types of initial conditions. 
The first one e(0,0) =  1 or R(0,0) =  0 and Q(0,0) =  0 is appropriate to all physical 
solutions (vanishing for £->±oo), while the second one e(0,vo) = eo or 
R(0,v0) = R0 > 0 and Q(0,vo) = 0 describes antisymmetric Ey and symmetric Hy (this 
is the symmetry of the second order hybrid mode in the unbounded Kerr medium 
(2]).

The set of Equations (2), (3) has no exact, analytical solutions. Nevertheless, 
assuming the small field approximation [2] we can determine the analytical solution 
as Taylor’s series with respect to u and v. Keeping only the most significant terms we 
obtain the following functions R(u,v) and Q(u,v) satisfying the initial conditions of the 
first type:

R(u,v) = &2u + ...,
Q(u,v) = i22v + ... (4)

where Q2 = b — 1. Using series (4) we can try to solve differential Eq. (1). In this way 
we arrive at the functions u(g) and u(£) expressing approximate profiles of the
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hybrid fields. Unfortunately, for the isotropic Kerr medium we have no solutions 
describing the first-order soliton-like modes [1] —[3]. To determine the solution of 
the second-order we should consider the symmetry of the field. The symmetry 
requires that the functions satisfy Eqs. (1)—(3) and the initial conditions of both 
types. Thus, the approximate solution of the differential Eq. (3) and the initial 
condition of the secondy type are:

R = Q2v0

Q = ( n 2-

b2V o b2v0u ,
- ^  + - y -  +  a 2(r-t>0)+ ..., 

b(4-b)v0
u + . . .  . (5)

-6 -4 -2 0 2 4 6

x  [pm]

Fig. 1. Second order hybrid mode in the unbounded Kerr medium. Comparison of the exact, numerical 
solution and the analytical approximation (6). eL =  2.3716, a =  6.4· 10" 12 m2/V2.

Two solutions (4) and (5) can agree in the limit b -* 1 (i2 -* 0) only if v0 ~  fi* and 
u -> v for small fields. Therefore the second-order solution satisfying the symmetry 
condition has both fields asymptotically (that is for £ -* ± oo) equal in normalized 
units. But the functions that describe spatial profiles of soliton-like waves with 
antisymmetric Ey and symmetric Hy are more complicated than Sech-like solution 
corresponding to the first-order modes [2]. Such functions satisfying all Equations 
(1)—(5) in the limit ±oo and O -> 0 have the form:
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12sinh2i2f
m  ~  (cosh2(2£+ 3/S22)2’

12cosh2Gf
8 ( 0  “ (cobh2G£+3/G2)2* (6)

In Figure 1, we compare two field diestributions of the second-order hybrid mode 
obtained for b = 1.01 (i2 =  0.1) — the first one describing the exact, numerical 
solution and the second, given by analytical functions (6). Nevertheless, the presented 
method estimates rather the exact fields (the coefficient in Eqs. (6) determined with 
accuracy to the most significant terms), while the similarity of both profiles is 
amazing.

3. Hybrid balanced solution

In the nonlinear Kerr slab an electromagnetic field of a specific shape can generate 
the constant value of the nonlinear permittivity across the whole slab. This so-called 
balanced field has been fitted to the pure TM case [6]. But analogous balanced 
solution also exists for the hybrid fields [1]. Assuming e(x) =  const >  eL we obtain in 
original units:

Ey = Ey0sm(kx—$),
Hy = Hy0cos(kx-<P)

where k2 =  co2e/c2—p2, while the amplitudes are given by:

Hy0 =
cob ¡s — eL

(7)

P
(8)

Using (7), (8) we can conclude from Maxwell’s equations that Ex is shifted in the 
phase by 7c/2 with respect to Ey and Ez and the amplitudes of the fields are chosen in 
a way guaranteeing the constancy of permittivity in the nonlinear Kerr medium.

The exact analytical solution (7), (8) cannot be fitted into three-layered system, 
but we can satisfy all continuity conditions by assuming additional linear layers 
between the nonlinear film and linear cover and substrate. For simplicity let us 
consider the symmetric structure containing the nonlinear film of thickness h sand
wiched between two linear buffers of thickness hb and permittivity eb < eL and linear 
covers of permittivity er  The fields in the buffer —hb < x <  0 and in the cover 
x <  —hb are described by the functions:

. = {Ebsin(kbx - $ E\  

y [-Ecexp(xcx + hb),

= (Hbcos(kbx - $ H),

y {Hĉ V ^cX + hb\

—hb <  x < 0, 

x <  - h b

—hb < x < 0 ,  

x <  - h b, (9)
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with: kb =  (d2eJ c2—p2 and x2 = p2 — cq2eJ c2. The continuity conditions across the 
interfaces determine the amplitudes Eh,Hb,Ec and He and the phases at boundaries 
$, <PE and <PH. Moreover, they also give the permittivity of the nonlinear film e(P, hb) 
and the mode equation:

, _____________ as._______________c — 9 jf£)*P
—y ~+ kltg(kbhb -  0E)tg(kbhb -  0H)

kh = 2arctg^ctg(fcfthfc- + inn, m = l, 2, ... (10)

where: 0E = arctg{xjkb\  BH = arctg{Ebxc/{Eekb)).

Fig. 2. Propagation constant against the thickness of the nonlinear slab for the lowest order hybrid 
balanced modes in a symmetric five-layered structure. The different fragments correspond to different 
orders in the buffer. eL = 2.3716, a =  6.4· 10"12 m2/V2

As in the pure TM case the mode equation determines the possible values of the 
propagation constant p in any given waveguide (Fig. 2). The thickness of the buffer hb 
is not arbitrary — we observe certain intervals (gaps) for which hybrid balanced 
modes cannot propagate. Moreover, similarly to the TM case, one could expect in 
a vicinity of the balanced modes a certain kind of quasi-balanced fields, also possible 
to describe analytically.



380 J. Jasiński

4. Summary and conclusions

A few types of the hybrid fields in the isotropic nonlinear Kerr media are possible to 
describe analytically. The second order hybrid mode in an unbounded nonlinear 
medium, that is the electromagnetic field with antisymmetric electric component Ey 
and symmetric magnetic Hy can be approximated by analytical expressions (6), 
describing Sech-like waves with two field maxima. The approximation works well 
only for small fields (near the linear limit). Another analytical and exact solution 
corresponds to the hybrid field propagating in a five-layered structure. When the 
electric components balance together to produce the constant value of the nonlinear 
permittivity across the Kerr film, we can describe the electromagnetic fields by 
trigonometric functions (7), (8). The hybrid balanced fields exist in the structures with 
negative permittivity of the cover (and the substrate) and the proper thickness of the 
buffer. Analogously to the pure TM case one could expect certain quasi-balanced 
modes.
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