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A holographic zone plate has proper spatial frequency characteristics for use as a conventional 
optical lens. When illuminated by plane or spherical wave front of monochromatic light, produces 
only one real and one virtual point image. Such a holographic element for imaging purposes is 
considered, but its aberrations can only be minimized either by proper selection of the recording 
geometry, or by using special, disturbed recording wave fronts. As a result, we obtained the 
Newton’s equation that is a consequence of the treatment applied to a configuration to achieve the 
exact Fourier transform relationship between the amplitude distribution in the input and output 
planes.

1. Introduction
There exists a similarity between the optical properties of a transmission zone plate 
and a converging lens, therefore the possibility of its utilization in optical systems 
should be fully shown. The characteristic property of a zone plate lies in the fact 
that the light rays transmitted through the transparent zones reinforce each 
other, because the path from a point on the optical axis to the first zone is one 
wavelength shorter than the path to the third zone, and similarly for all adjacent 
transparent zones [1], [2]. It should be noted that a zone plate is a particular case 
of an artificially constructed point hologram with the specified characteristic of 
a positive and a negative primary focal lengths. But the zone plate has not only the 
primary foci. We can see here a number of higher order foci corresponding to powers 
which are odd integral multiples of the primary power. One can compare the zone 
plate to a square topped wave that has a large number of Fourier coefficients, 
therefore the sharper the boundaries in a zone plate, the greater number of orders 
are obtained. The holographic zone plate, on the other hand, produced during 
interference of two wave fronts by a continuous tone of photographic process, does 
not have sharp alternations, but only the sinusoidal variations. Thus, the intensity of 
the two interfering waves in emulsion should be arranged such that the information 
could be recorded on the linear portion of the amplitude transmission against the 
exposure characteristic. It will be noted that the greater part of the diffracted waves is 
concentrated in the first order diffraction pattern.
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2. Holographic zone plate

The holographic zone plate is generated by the interference between a divergent 
spherical wave front and a reference one, that is usually a plane wave front 
originated from an axial point at infinity. The spacing of the interference maxima 
varies with position across the recording medium, and contains enough information 
to provide a reconstruction of the object point. Such a holographic plate has 
a sinusoidal amplitude transmittance, and produces one virtual and one real image 
point It can be noticed that each zone plate made by the interference of two beams 
works as a sinusoidal diffraction grating which gives rise only to plus one and minus 
one diffraction order. Thus, the sinusoidal zone plate differs markedly from the 
Fresnel zone plate, since it has only one positive and one negative focal length. In the 
case of interfering a divergent object wave front with a collimated reference wave 
front in the recording medium, we obtain the phase function of the zone plate in the 
form

f(r) =  T [(r2+ / 2)1'2- / ]  (1)

where the focal length/is equal to the distance of the object point from the recording 
plate; r =  *Jx2+ y 2 is the radial coordinate defining the distance of the point on the 
hologram from the optical axis, whereas the radius of constant phase will be 
obtained by equating the phase variation (1) to 2nnt i.e.,

rn =  'J  n2X2 +  2nXf.

If the reference wave originates at a source point located on the optical axis at 
infinity and the object divergence wave emerges at a point located at a finite distance 
from the photographic plate, then the amplitude transmittance of the holographic 
zone plate that is a linear function of the incident light intensity takes the form of 
a square function of radial coordinate

t(r) = c[W+jf+2̂

where Ar and A J f  are the amplitudes of the reference and object waves at a point of 
the photographic plate, respectively; C is a constant for a given exposure. Due to the 
nonlinear effects of the photographic emulsion, one can obtain a generalized 
holographic zone plate which is distorted in such a way that the effects of 
nonlinearity not only truncate the crests and flatten the valleys of the transmission 
function, but also squeeze and enlarge the zone areas alternately [3]. In this case, in 
addition to the principal one, higher order foci will be retrieved that are located at 
./72,//3,//4,//5, ... , etc., whereas in the conventional Fresnel zone plate the higher 
order foci are located at positions of //3, f/5, f f l , . . .  , etc.
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3. Imaging equations

It is known that one of the most useful properties of a converging lens is its ability to 
perform two dimensional Fourier transformation [4]. For ideal Fourier transform 
lens, the transforming property does not depend on the aperture and field angles but 
is a space invariance. However, for the real optical systems it varies from lens to lens. 
The holographic zone plate is equivalent to a conventional optical lens, therefore it 
can be used for Fourier the transform realization. Analogically, as optical systems 
are corrected by introducing a plural spherical lens combination, the aberrations of 
the holographic zone plate are corrected by introducing a set of spherical surfaces 
whose principal planes are arranged identically [5]. This leads to generalized phase 
variation in the holographic zone plate; thus we have

* N(r) =  2? Z  [(r2+f,2)m - f , l  (2)
A n = l

H (x,y)

In the paper, we consider the Fourier transform operation, the schematic 
diagram of which is shown in the Figure. The holographic zone plate working as 
a converging lens does not perform the Fourier transform in the coherent light. This 
is achieved by diffraction at the input aperture [4]. Therefore, let a plane object with 
the amplitude transmittance t(x1,y1) be inserted in the front focal plane F(x1,y 1) of 
the converging holographic zone plate, and the point source at point S on the optical 
axis at the distance z0 from the focal plane, as shown in the Figure. The plane 
P(x2, y2) placed at the distance zt from the back focal plane in the imaging space is 
the observation plane where the Fourier transform occurs. The point source located 
on the optical axis emits a diverging spherical wave which gives rise to disturbance at 
any point in the focal plane F(x1,y1). A portion of the spherical wave front is 
collected by the object transparency and by the holographic optical element that 
transforms it in the form of a spherical wave converging towards the appropriate 
point in the observation plane P(x2, y2). Using the paraxial approximation, the 
disturbance at any point in the focal plane F(x1,y 1) is given by



72 E. Jagoszewski, M. Gaj

y J  =  exp [> 2^  (*?+yi) ]

where the constant phase factor has been omitted; the wave number of propagating 
2n

wave is k =  — . If the transparence is illuminated by the monochromatic spherical
A

wave of the complex amplitude U(x1,y 1), then the amplitude distribution just behind 
the object plane can be written as

7i) =  ^ i .y J e x p l — (xf

Using the Fresnel formula, the amplitude distribution across the holographic 
zone plate takes the form

00

U(x,y) =  A(2) e x p ^ ( x 2+ / ) J | | c / 1(x1>j'l ) e x p ^ x ?  +  y?)J
—  00

x exp £ -  i j ( XXl +  yyŁ)J dxA dyv  (3)

Thus, in consequence of phase transformation in the optical element, the amplitude 
distribution behind the holographic zone plate may be written as

U \x ,y )=U (x ,y )exp^ jf (x1+ y ^ .

Therefore, we have

U'(x,y) =  A(z) J J u i (x1,y 1)expjj^ (xJ+  y?)J exp j ^ - i^ x x ^ y y j j j x ^ y ^
-  00

Applying the Fresnel diffraction integral in the image space, we calculate the 
amplitude distribution of light at the observation plane

or

00

U(x 2,x 2) =  A\z)  exp
ik{xl+yl)

w «>  ] I K
-  00

[ .k(xx2 +  yy2) l  
-  f + z ,  \ aXdy’

y)exp

U(x2,x 2) =  ^ ' ( z ) e x p | ^ ^ ^ ^ J | | [ / 1(x1,y 1)exp ^ (x5+ yl)J< ixd y
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x l l ex{ 1 ^ ] exK " 4 x( / +/ ^ ) + y ( / +/ f e ) ] } ^ y (4)— 00
where the amplitude and phase of light at coordinates

X2 =  (1 +/)X1 +X*’ y'2 =  ( 1 + / ) ^ 1 +  ̂ 2

are related to the amplitude and phase of zone plate spectrum frequencies

fy t . y2u =  l f c + - X'A / 7W A /  / w
Calculating the Fourier transform of the quadratic phase factor represented by 

the second integral of Eq. (4), we have

=eXP[ ~ !i  ̂ 7 ^  (x‘ +  )J exp -  i (*2+.Kl)] exP^ -  ‘^(*1*2+ • (5)

Thus, substituting expression (5) in Eq. (4), the quadratic phase factors depending on 
the coordinates (x2,y 2) are seen to cancel out, leaving Eq. (4) in the form

oo

U(x2,y2) =  A'(z) JJtC*!, y x) exp +  y f)J |

X

— 00

exp [  ~  f a 1X2+ • (6)

The above equation shows that the complex amplitude U(x2,y2) is the Fourier 
transform of the object transmittance modified by the phase factor depending on the 
position of the observation plane related to the position of the point source. When 
the phase curvature vanishes, we obtain the exact Fourier transform relationship at 
the spatial frequencies

y i
V

between the amplitude distribution in the observation plane and the object 
transmittance in the front focal plane. But the expression for phase curvature is seen 
to cancel out, when

The condition leads to the Newton’s equation, from which it folllows that for fixed
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object and image planes, we have

^ / = / 2. (7)

In our case, the two conjugate planes coincide with the point source and its image in 
the observation plane. It is evident that the conjugate object and image locations are 
often given by the respective distances z0 and zt from the front and the back focal 
points, as shown in the Figure. As a result, when Newton’s equation is satisfied, the 
Fourier transform operation between the front focal plane and the observation plane 
can be performed.

4. Conclusions

We have shown that the holographic zone plate is equivalent to a conventional 
imaging lens. The ray tracing originated at a point source on the optical axis, 
propagating as a divergent wave through the object transparence and the holograp­
hic zone plate, has been demonstrated. The considerations carried out in the paraxial 
region have proved that the exact Fourier transform operation between the front 
focal plane and the observation plane can be achieved when the Newton’s equation 
for the illuminating source point and its image is valid.
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