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Electromagnetic wave scattering in an imperfectly 
conducting open-ended waveguide

S. Asghar, Tasawar Hayat

Mathematics Department, Quaid-i-Azam University, Islamabad, Pakistan.

The Wiener-Hopf method is used to obtain an exact solution to the problem of diffraction by 
imperfectly conducting parallel plates. The source point is assumed to be far from the waveguide 
so that the incident spherical wave is locally plane. A comparison has been made with the case of 
a perfectly conducting parallel plates waveguide.

1. Introduction
Scattering from a waveguide is a well-studied problem in diffraction theory. The 
names Schwinger, Heins, Carlson come to mind, and most of the results can be found 
in [1]. Related studies are in [2] —[8]. Only in a very limited number of cases have 
exact solutions of diffraction problems been obtained, and in all of them it has been 
assumed that the diffracting structures are of infinite conductivity. One such problem 
which is amenable to treatment is that of a perfectly conducting wedge, with the 
half-plane as a special case, based on which the pioneer work was done by 
Poincare [9], [10]. He succeeded in deriving the correct asymptotic field for 
a wedge, but it is Sommerfeld [11] to whom the credit is due for the first exact 
solution of diffraction at a plate. Later on the diffraction of electromagnetic waves 
from perfectly conducting obstacles, on which the tangential component of the 
electric field vanishes, has been treated by many authors. In practice, however, 
obstacles which have perfect conductivity are unlikely to be encountered and, 
therefore, it seems appropriate to investigate whether solutions are obtainable when 
better approximations to the boundary conditions are used in formulating a par
ticular diffraction problem. In view of the considerable amount of information 
available about diffraction it seems useful to examine the diffraction problems having 
impedance boundary conditions. RAMAN and KRISHNAN [12] have treated both the 
half-plane and wedge of finite conductivity using a modified Sommerfeld’s solution in 
which the image wave is multiplied by the Fresnel reflection coefficient for the screen; 
but their method appears somewhat artificial and violates the reciprocity condition 
concerning the interchangeability of transmitter and receiver. For a metallic wedge, 
JONES and Pidduck [13] have determined the diffracted wave at large angles. 
Subsequently, employing these impedance boundary conditions, solutions have 
been obtained by a half-plane or metallic sheet by Senior [14], [15] and
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Williams [16], and for the problem of diffraction by a wedge, by Williams [17], 
[18] and Senior [19]. Faulkner [20] extended this analysis to the problem of 
plane electromagnetic wave by a metallic strip.

However, no attempt has been made to discuss the diffraction of a spherical wave 
in an open-ended waveguide satisfying the impedance boundary conditions. Im 
pedance boundary conditions give rise to new mathematical complications. The 
essential part of this paper includes the following sections. Section 2 is devoted to 
formulation of the problem. In Section 3, the problem is solved by means of standard 
Wiener —Hopf technique [21] and an exact solution is obtained for the diffracted 
field. In Section 4, the saddle point method [22] and Cauchy’s residue theorem are 
used to solve the integrals appearing in the inverse Fourier transform. Finally, 
concluding remarks are given in Section 5.

2. Formulation of the problem

Let (x,y,z) be rectangular Cartesian coordinates. Then, consider a parallel-plate 
waveguide with imperfectly conducting plates at x = ±b. The geometry of the 
problem is shown in the Figure. The time harmonic factor e~lC0t (a) is the angular 
frequency) is assumed and will be suppressed throughout. We consider a point 
source of unit strength to be located at (x0,y 0,z 0). The total field Hj,(x,y,z) then 
satisfies the inhomogeneous wave equation

+  =  ^ -*o)< 5(y -> g< 5(z-Z o) (1)

where k = k l + ik2.

Open-ended parallel plates waveguide

The impedance boundary conditions at x  = ± b  are given by
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where: 5 — — (k is the wave number and n is the complex refractive index of the 
kn

plates). We remark that 5 =  0 corresponds to the boundary condition Hy(x,y,z) =  0
Q

and 5 = oo corresponds to the boundary condition —  Hy(x,y,z) =  0. These are the
l/A

usual boundary conditions for the insulating and perfectly conducting plates. The 
±  signs in Eq. (2) correspond to the upper and lower sides of each plate, respectively. 

It is convenient to write the total field as

H fo ,  y, z) = H ly(x, y, z) +  H aca(x, y, z) (3)

where Hly is the solution of inhomogeneous wave equation (1) that corresponds to the 
incident wave and If*ca is the solution of homogeneous version of wave equation (1) 
that corresponds to the scattered field. Thus, Hly and H™ satisfy the following 
equations:

f x i + ^yi + L i+ k2) Hiy =
/  d2 d2 d2 l2

H*ca =  0

(4)

(5)

where Eq. (4) is satisfied at the point (x0,y 0,z 0) and Eq. (5) is satisfied everywhere in 
space except at (x0,y 0,z 0).

In addition, we insist that HJca represents an outward radiating wavefield and 
satisfies the edge conditions [22]

H'y(x,y,z) = 0 (  1), '

-^-Hy(x,y,z) = 0(r~112) as r -* 0 (5a)

where r is the distance from (b,y,z) to (b,y, 0) or from ( — b,y,z) to ( — b,y, 0), 
respectively, with z >  0.

3. Solution of the problem

The Fourier transform and its inverse over the variable y are defined as

ę>t(x,(,z) =

H'y(x,y,z) =

J H ty(x ,y ,z ) e - ^ d y ,
— OO ►

A ] pXx.C, *)*»&«.
2 7 t-co -

(6)

The transform parameter is taken as k£ and £ is non-dimensional. For analytic 
convenience, k is assumed to be complex and has a small positive imaginary part. 
The decomposition (6) is common in other field theories as well, for example, Fourier 
optics [23], [24]. Using Equation (6), the problem becomes:
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y ? + l! ? +k1'l2] <pl(x>f>z) = ),

[ h +Ł i+ k lx l} p{x’c’z )= 0 ’

ę t(x, C, z) =  ±  id ̂  q>t(x, (, z), -  co <  z <  0,

(7)

(8) 

(9)

q>t(x, C, z) =  $,(x, C, z) +  <p(x* C, z), (10)

where 2 2 =  (1 —C2).
If ij/(x,C,(x) is the Fourier transform with respect to z of <p(x,(,z), i.e., 

i/r(x,C,a) =  — J (p(xt C, z)eittzdz =  ^  + (x, C, a) +  ̂  _ (x, £, a) (11)
-y/ ^ 7U — oo

where:

<A + (*, C, a) = J <p(x, C, z)eiaẑ z,
^ 2 n  o

<A-(x,C>a) = - j =  J (p(x,C,z)elazdz,
y/ln-ao

cc = (j + ix and the inverse transform which lies along the real line is 

q>(x,C,z) = - j =  J \jf/+(x, C,a) +  i/f_ (x,C, (xj]e~iazdec.
V  Z 7U -  oo

The solution of inhomogeneous wave equation (7) can be written as
e-my0

V i  =  - ^ ^ i 7 2 ^ 1 ) ( f e A [ ( x - x o) 2 +  ( z - z o) 2 ] 1 /2 )  =  £ ( 0 e  * * < * sJnV z c o s 30) 

where

E( 0  =  i ----—------- l_ g l< U r #- « /4>
^  4n(kXroy<2e ’

rl =  {xl + z l \  r0 -> oo and 0 <  50 <  u/2.

( 12)

(13)

(14)

Note that in Equation (11), ij/+(x, £, a) is regular (for Im a >  -Im kX)  in the upper half 
of the complex a-plane, \j/_(x,£,ct) is regular (for Im a <  Imfc/lcos90)) in the lower 
half-plane.

Application of a Fourier transform with respect to z to Eq. (8) leads to

*(*,£,«)
” A(ct)e vx, x  > h,

- B((x)e-yx+C(a)evx, - b < x < b ,  
.D (a)eyx, x  < — b (15)
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where y = y/(ot2 — k2X2), that branch of y being chosen such that y = — ikX when
a =  0.

It may be deduced from Equations (15) that

iA + (h,C,°0 +  iA-(h + ,C,a) =  A{ot)e~yb, (16a)

!A + (^C,a) +  ̂ _(h",C,a) = E(a)e~yl, + C(a)ey6, (16b)

iM -fc,C,a) +  iM - fc +,C,a) =  B(*)eyb + C(ot)e-yb, (16c)

^ +(-fe,C ,« ) + * _ ( - * - ,  C,ct) =  D(x)e~yb, (16d)

* V ( « ,a )  +  ^ ( f c +,C,a) =  -yA(a)e~ybt (17a)

iAV(bXa) + iA'-(fc-,C,a) =  -yJ5(a)e-yft +  yC(a)eyfc, (17b)

r +( - b , ^ )  + r - ( - b \ C ,  a) =  -y B (a)eyfc +  r C(a)e- y6, (17c)

rA~b,C,oi) + r- ( -b - ,C ,o i)  = yD(ot)e-yb (116)

where

iA + (±h + ,C,a) = ,C,a) = lM ±  &»£»«).
and primes indicate differentiation with respect to x. 

Transforming the boundary conditions (9) we have

<l>.(b+,C,a) =  W - V M - — kXbsinS
kXcos9

0 \e - i k X b * in30

C,» )  -  ( —(2ity/zi \ a  — kXcos$0/  

iK ( - b  + ,C,a) = iSif,'-(-b+,(,a)-

(2n)1,2i \  ct — kXcos&

E(0  /l- /d < 5 s in fl0\
(2n)il2i \ a  —/dcos£0 ,

E( 0  if l  +  JcA<5sin90\
(27c)1/2I '̂ a —/cAcosS0/

,i*U > słn 3s b 1

, i * A 6sinS„

(18a)

(18b)

(18c)

(18d)

where: h + and b denote the upper and lower sides of the plates at x =  + b . 
From  Equations (16) and (17) we have:

A(a) =  [j_(b,U)Af_(b,i; ,<x) e » -

Z)(a) =  J '.(H .,f ,« )J e '* -^ .( t ,C ,« )+ lj '_ ( fc >C ,a)je-'* , (19d)

B(a) =  -

C(«)

(19a)

(19b)

(19c)
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where:

J '- ( -b ,c ,« )  = ^ [ P - ( - b - , ę , « ) - r - ( - b \ ( , c c ) ] . (20)

Now, from Equations (17)—(19) we obtain

»V(t,{,B) + j - ( ł ,C .a ) ( ^ + r V -  E(p kXs'm&0.id 1) (27u)l/2(a -U cos50)

= ye-2,* rJ .(-6 ,{ ,« )-!  J’.f-ft.C.a)],

♦V( -  b, f , a) -  J. (ł>,C,« ) ( 1  ■+  y)+  , 5 ^ a s i n a ° .  , .
i<5 /  (27i)1/2(a —/c2cosS0)

=  - y e - 2’* ^ . ( 6 , f , a ) + l j ' - ( 6 , { ,«)],

£ (Qei*Afcrin9#
. ( 2 „ ) 1 / ł ( a _ k A c o ł 9 o )

— _  ^-2y6

i \  Err)e_ikAfcsin50

(21)

(22)

(23)

=  _ e- ^ j _ ( b ,C ,a ) - ^ '- ( J b ,C ,a ) ] .  (24)

Next, adding and subtracting Equations (21) and (22), (23) and (24) and then using 
the extended form of Liouville’s theorem in the resulting expressions we arrive at

o iSU~ ^  V~(a) E(Q(a — kX)~l ikXsinS0 sm(kXbsm&0)________
° " (aj “  2h(a — fc2)G_(a)h(27c) 1/2(a — fcAcos50)(kX +  kXcos&0)G+(kAcos90)G_(a)’

(25a)
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D _ (a )=  -
^ X _ (a  )+ y_ (a)

2 (a  — fcA)1/2L _ (a )

E( 0(a — /cA) “ 1 /2/c Asin$0 cos (kXb sin$0)
(27c)1/2(a -  fcAcos S0)(fcA + /cAcosS0)1/2L+ (fc Acos S0)L_ (a)’

£(0 sin(fcAfcsin50)
r > )  =  ^ ; , (gh F - w +2fc G _ (a) (27r)1/2(a -  kX cos90) G + (fc Acos 30)G _ (a) ’

1(5 JK_(a) + J_ (a) £(0(a -  fcA)1/2(a + U )1/2cos(/cAfcsin30)
2 ( a - a ) - 1/2L_(a)+ (27r)1/2i(a-kAcosS0)L+(fcAcos50)L_(a)'

In Equations (25),

y =  (ct2 — k2X2)112 =  (a +  /cA)1/2(a —/cA)1/2,

G(a) =
,-yfc sinhyfc

yb
= G+(a)G_(a) =  G+(a)G+( —a),

L(a) = e r6coshyb = L+(a)L_(a) =  L +(a)L+( —a),

S - ( ° 0
(a +  /cA)G+(a)

R ’-( <x)e~2yb 
(cc+kX)G+(ot)

D M

= U+( a) +  I/_(a),

=  F + ( a ) + F _ ( a ) ,

=  X + (a) +  X _ ( a ) ,

D (ct)e 2yh
= Y+(a) +  Y_(a), - y , : ; ,  =  F +(at) + F _ (a),

=  ty + ( a ) + iy _ ( a ) ,

(a + /cA)1/2L+(a)

r _ (  a ) c " 2y6 
(a + /cA)1/2L+(a)

£'_(«)(« + /cA)1/2 
L+(a)

5_(a)e"2y6(a + fcA)1/2
L +(a)

S_(a) = J_(b,C,«) +  J - ( - 6,C,a), 

D_(a) =  J_(b,C,a)-J_(-b,C,«),
*-(«) =  J ^ ,( ,a ) - J '_ ( - f r ,C ,a),

r_(a) = +

r-(«)
G +(a)

=  J V »  +  iV _ (a ),

G+(a)

/+(a) +  /_(a),

(25b)

(25c)

(25d)

(26)

and by [25],
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G+(«) = ( S1̂ b)  exp| “ t 1- C i  + ln(27u/Ufe) + i7r/2] |

(ihv ") 00
X exP In ((a — y)/kX) j  f ]  (1 + a /iy ll)el2afc/"*,

even

L+(a) = (cosUb)1'2 exp [1 -  C, +  ln(jt/2Ub)+ iit/2] j

iby 1 00
eXpj F I  (l + a/iyje'2"'”',

y. =  [fnn/2b)2 — k2X2Y 12,

C1 =  0.57721 .. .  is the Euler’s constant 

Using Equations (19) and (26) we can write:

B(a)+C(«) = -rS _ (sO + -R -(“) V 1*.
L y J

B(oi) — C(a) =  |^D_(a) +  ' r _ ( a ) J e - '6.

Equations (12) and (15) together with Eqs. (27) and (28) yield
oo + it

q>{x,C,z) =  ~ (2J)i/z J  _ (a)coshyx +  D _(a)sinhyx
— oo + i t

+  -R -(a)coshyx  +  -  T'_(a)sinh,yx je  vb ^doc,

where: — ImkX <  Im a <  Imfc2cos3n.

(27)

(28)

(29)

4. Field within the waveguide

The transmitted field inside the waveguide can be calculated from Eq. (29). For 
negative z, we enclose the contour of integration in the upper half-plane. The 
integrand has simple poles at (i) <x = kX and a =  kXcos30, (ii) a =  iyn (n =  0 ,2 ,4 , ...) 
in S_(a) and R'-{ol) corresponding to the equation G_(a) =  0, (iii) a =  iyn (n =  1, 3,
5, ...) in D_(a) and T'_(a) corresponding to L_(a) =  0. Evaluating the residues, we 
have

(p(x,&) = -E (0 [e * Urc~ (*“ V  +  ettA' c“ <»+*.>

-  9  t {kl cos&0)eikXrcoa9 -  ś?2(U cosS0) -  «?3(/d)elUrcosS] (30)
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where:

^U A c o sS q) =
sin(fcA6sin50)

(  ®
<$2{\acos90) =  £

kAbsm&0G-.(kA)G+(kAcos&oy

(—1)2 kAb sinS0 cos(fc26 sin &0)(kX+ iy J 1/2

(31a)

(n=l ri7i:(kA +  kAcos&0)1/z(iy„ — kAcos90)L +(kAcos90)L-(iy„)
odd

+ L
sin$0sin(fc26sinS0)

+ E

= 2 6(1 4- cos90)(/d  — iy„)(kX cos50 — zyJG+(/c2cos30)G'_ (żyj 

sin(fc26sinS0)
n7t(Jdcos$0—z'yJG+(/cAcos30)G/_ (żyj

odd

+ E
cos(fc26sinS0)

= 2 b(kAcos&0 -  zyJL+(/c2cos50)L'_(z'yJ
even

+ [M _ (żyj + Q_ (żyj + H _ (zyj +  G_ (żyj] - ~ j  cos(mtc(x -  b)/2b\

$ 3(kA) =
^-U_(kX)-V_(kX)  
id

2bG-(kA)E(Q ’

^ x _ ( i y j + y _ ( i y j

M - (iy") =  " 2 ( ż ^ d p L ^ ’ 

zW _ (zy J-F _ (zy J

(31b)

(31c)

G-(fy.) = -

J U W  = -

26G'_(zyJ ’

i G _ ( / y J - K . 0 * y J

26(ży„-/d)G -(żyJ’ 

dL_( a)
£-0yJ = d a * =  «y.

, G -0‘yJ =
dG_(a)

da “ =  *y«

Now, using Equations (14) and (30), in Equation (6) we have 

3i*/4 / k \ 1/2 f  e^[A{rc°s(9-9o) + ro}] + C(y-yo)]
H?*(x,y,z) =

8ti2 \ tJ S x
dC
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g -3 i* /4

8 tc2 e r f -
«c[A{rcosS+r0}+C(y-y„)]

(fc2cosS0)

—  00 

oo

e - 3 w 4 ^ y / 2  j" s?2( a c o s a 0) 

8tc2 ^ roy - o o

ifc[Ar0+((y—y0)]

<*C

y f k

m {r0+rcos3}+C(y-y0)]

<*C

p iKLAi/o-hrcostfj

w . r ^

e r l

dC

m{rcos(S+S0)+r0}+C(y-y0)]
e -3 W 4

~ 8 ^

<*c. (32)

In order to solve the integrals appearing in Equations (32), we introduce the 
transformation £ =  cos£(0 <  Re£ <  n). The integrals are then solved asymptotically 
by using saddle point method and the resulting expression is given by

nikr - (sin$1)1/2ei*ri
+  4 ^ 0-r 1) ^ 2 ^ l(feCOS9° S m 5 i )

+

4 n n  

( s w $ 2)l ,2 e i‘ (sin31)1/2eikri e lkr2i
* & * '* # *  ^ k cos9oSinS2)+ —  s in S , ) - —

22

(33)

where

r f i  = (r0 + rcos(,9-30))2 + (y - y 0)2,

A  =  r 7'0 +  7‘c°s5)2 +  (y —y0)2» 

d  =  ^ o + ( y - y 0)2»

7-22 =  (ro +  ̂ cos(5 + 50))2 +  (y—y0)2,

fcrŁ1 -> oo, kr1-*coi kr2 -> oo, kr22~* co.

5. Concluding remarks

A method based on the Wiener —H opf technique has been presented which allows 
calculation of the electromagnetic field within imperfectly conducting parallel plates. 
This field shows good agreement with the results of M ittra  and Lee [25] when 
conductivity is infinite. Further, as a check if we allow S — oo expression (33) reduces 
to the known result [21] for the acoustic field of a spherical wave by rigid parallel 
plates. The present work is also of much use in acoustics because double plate 
systems have many im portant engineering applications, both in buildings and as
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components of aircraft and marine structures. Sometimes they are useful purpose of 
sound control or as a result of streamlining requirements. Such plates are used to 
connect each other mechanically, either by common frames used to stiffen the 
structure, or as a result of imperfect construction. Particularly, when the double plate 
structure is used for noise control it is im portant to understand the acoustic 
properties of such connections between the plates.
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