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The influence of the layer thickness 
on the coupling efficiency of plane waveguide 

with periodically variable refractive index**

Coupling equations for the plane waveguide with periodically changing refractive index have been derived. A weak modulation 
of the refractive index has been assumed. Also it has been accepted that both the media surrounding the waveguide have the same 
refractive index equal to the average refractive index of the waveguide. The solution of coupling equation for a purely phase and 
purely amplitude modulation has been given and the influence of the layer thickness on the coupling value examined.

Consider a plane waveguide, which is unlimited 
in the direction of x and y axes, respectively, and 
has the thickness y — called layer thickness — along 
the z axis. The coupling may be great but not great 
enough to change considerably the amplitude along 
the way equal to one wavelength of the radiation 
used. This allows to neglect the second derivatives 
of the amplitude. Let us assume, that the refractive 
index changes periodically

H =  Ho +  ?7cos(j?-r+y). (1)
The vector /7 is perpendicular to the planes H =  

=  const. A medium of this kind may be realized, 
for instance, with the help o f accoustic waves pro
pagating in a dielectric medium. The change of the 
refractive index in an acoustic held propagates with 
the velocity of sound. This motion is not taken into 
account in the equation (1), which may be treated as 
being caused by the held at a given time. The refractive 
index distribution determined by equation (1) may 
be obtained, for instance, by taking a photo of a 
spatial interference pattern. After bleaching the 
distribution of the refractive index is equivalent to 
that of n (eq. (1)).

This is a three-dimensional distribution of the phase 
grating in the dielectric material. The geometry of the 
problem is shown in hg. 1. Besides the vector /?, the 
vector of incident plane, and vector 7c, o f  the 
scattered wave have been also marked.

Hereafter we will assume that the media surroun
ding the layer have the refractive indices H„. This 
considerably simplifies the discussion (allowing to 
neglect the reflection and refraction at the boundary
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surfaces) and does not restrict the generality o f the 
derived conclusions. The coefficient ?? is assumed to be 
small, hence eq. (1) can be written in the form

Fig. 1. Plane waveguide with periodically changing 
refractive index

Equation (2) may be generalized by introducing 
a complex refractive index

Ho =  n'—m". (3)

We assume that modulation o f the refractive 
index l??l is weak, and that the losses are defined in 
such a way that the amplitude along the way A 
changes only slightly (n" n'). This assumptions
enable to write the equation (2) in the form

2;n'n"—2^n' cos(/7-r). (4)

The restricting conditions are almost always 
satisfied, otherwice the absorption becomes so strong 
that the Bragg condition is no more valid. A medium 
of refractive index determined by equation (4) may 
play the part of a spatial grating of phase, amplitude 
or mixed type. For the wave falling in accordance 
with the geometry shown in fig. 1 the resulting field 
may be written in the form

y  =  A (z) exp (—z'A, - r )+2? (z) exp (—z'Tc, - r ) , (5)
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where the first term corresponds to the incident wave, 
and the second one to the diffracted wave. By inserting 
the wave function defined by eq. (5) into the wave 
equation and neglecting the second derivatives we get 
[1,2]:

3̂ 4
-2:'k, —------2m'u"/iQ yf+

3z[
A. Bexp (r (A,.—A,—j?) - r)j exp (— :A, -r)+  

T 3B
+  j — — 2fw'n"A:QR+

^ je x p ( - /A ,-r )++  exp (f (A,— -

+ rya'A. exp ( -  f (A, +^) - r)

+B exp(-i(A,-j?).r)] =  0 ,

3z (A,,

By muitipiying the equation (6) by exp(fAg-r) and 
integrating over the whole space we get the relation

3B
3 z

a'a"A:
(A..

(7a)

For a constant refractive index =  0) there is no 
coupling and the both equations (7) and (7a) are

identical. Then the solution of equation (7) is given 
by the following function

A =  ^ oexp (-u ,(z+ ^ )),
where (8)

a, =
A„

and the solution o f the equation (7a) is 

B =  B „exp(-a,(z+ .y)),
where (8a)

n'a"AQ

(6)

In this case the both waves are evanescent. For 
#  0 equations (7) and (7a) take the form

A4 An

where A,; and A,; are the z-components of the vectors 
A, and If the Bragg condition is fulfilled the expone
nt in the third term of the first and second squared 
brackets disappears. Let us multiply the both sides 
of (6) by exp (;'&,* r) and integrate over the whole 
space. The integration along the z-axis is here reduced 
to that along the layer thickness. Thus the integration 
path is short as compared to the distance along which 
^(z) and B(z) change considerable, but it covers 
simultaneously many periods of oscillation. Keeping 
in mind that it follows that all the

j y  J* exp(:'(A^—AJ-r)Ax3yJz (6a)

=  (2n)3 <$(A^-AJ - <$(A^-A„) - 3 (A ^ -A J ,

we obtain that all the terms containing an exponential 
expression of quick oscillation will approximately 
cancel each other. This is valid for all the terms con
tained in the second squared bracket and for the first 
term in the third squared bracket. When Bragg con
dition holds, the second term in the third squared 
bracket is, however, different from zero and its negl
ecting as done by M A RCUSE [2, 3] is unjustified. 
The integrad of the remaining terms will be equal 
to zero for all x and y if the integrad is equal to zero, 
i.e. if

&4 a'a"An na'A.
° z t  =  -L— ?-B. (7)

+ a ,^  =  - f - — 3B, 
3z A,,

3B A„
— + a , B = - ; — 3.4, 

3z A„

(9)

where
3 =  ^a'Ag. (9a)

By excluding B from the second equation we obtain

3 ^  3^
— + (a ,+ a ,) — +

/ A°3^ \

("""-+TÂrM=° ( 10)

In this equation the 3  ̂̂ 4/3z  ̂may not be neglected, 
because the quantities a,, a ,, and 3 are small.

The solution of equation (10) my be sought in 
the form ^ =  exp (az). After substitution we obtain 
a quadratic equation for a

cA+(a,+<?,)<!+ =  0- (11)

By solving it with respect to a we obtain

a± =  —

( ...)
Thus solution o f equation (10) will be given by the 

function

A =  cexp (a+ (z+^)) +  3exp (a_ (z+^)). (12)

From the first o f equations (9) we get

k
B =  [(a+ +a,)cexp (a+ (z+^)) +

+ (a_+ a ,)3exp (a_(z+ ^ ))]. (13)

In order to examine the expression obtained let us 
divide the possible cases into two groups. The cases
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in which the scattered wave appears at the same side
as the incident wave, i.e. if

1!^
\ (14)

and

II (15)
belong to the first group. This scattering is called the 
backward or reflection scattering. The second group 
comprises the cases scattering in which the scattered 
wave appears at the opposite side with respect to 
the incident wave. Then

7 ? W ) =  o,

This scattering is called forward-scattering or 
transmission-scattering. For the first case (see eq. 
(14) we have

Generally, the amount o f the transmitted power 
depends upon the coupling and the thickness of the 
layer 3. For the very small thickness (2<3j 1) the
solution of equation (19) may be simplified to the form

=  - 2 i (21)

For the first case (backward-scattering) the direc
tion of the scattered wave is reverse to that o f the 
incident wave

4 ,  *4, <  0-

Parameter 6 is thus imaginary

a± =  ±l<3l, (22)

(a_ +a,)exp2ct_ .yy4„
(a_ +a,) exp2a_.y—(a^+a,) exp2a+.y '

(16)

(a++a,)exp2a,

while for the second one we get

(ct_+ a,) exp2a_^— (â _ -j-a,)cxp2a^s-

and the amplitude is represented as follows

c —  ? 
ct_ —

(17) cA)6l(z-s)
4̂ (z) = ----------------

cA2l^l s

- . /1a_ — R(z) =  f j /  -

for ^  z ^

l̂<3] (z—j) 
cA2l<5l 3

(23)

For a stricktly wave grating n' =  0, thus a, =  0, 
a, =  0. The equation (11a) may be simplified to the For this scattering there is no power oscillation 
form and the complete power transfer is impossible. The

a_j_ =  rh : <5, power transfer is the better the greater is the thickness.
(18) In this problem the thickness is not critical as it was

(3 = the case for forward-scattering. Now, consider the 
amplitude gratings with both the components of

The magnitude of amplitudes may be evaluated ^  refractive index admitted. To avoid amplification 
from equations (12) and (13). For the second case we we assume

get from (17)

for

y4(z) =  y4(,cos<l(z+.y),

F(z) — —¡'I / -^-y4oSin<$(z+.y),

— F <  Z  <  S'.

(19)

Thus exchange o f power occurs periodically. The 
effectivity will be equal to 100% if there exists only 
a scattered wave (y4(s) =  0)), i.e. for the thickness 
satisfying the relation

Now, the coefficient  ̂ is imaginery and <  0. 
To scatter the transmission

>  o .

For this case the equation (11a) is written as 
follows

=  —a ±  y,

a =  Y  (<*,+";). (24)

2<5y =  (2n + l) —,

n =  0, 1 , 2 ,  . . . . (20)
) '+ 4
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The amplitudes calculated from the equations (12) 
and (13) amount to

The amplitudes calculated from (25) — after 
small rearrangements — may be written in the form

^(z) =  exp(—a(z+y))^cA[y(z+^)] —

*  '^[y(2+-s)]j ^o- (25)

B(z) =  — exp(—a(z+^))^[y(z+i ) ]^Q.

From this equations it is visible that the full 
exchange of power is impossible.

Consider the normal incidence (I A:, I =  k, )̂. As we 
are interested in the scattering satisfying the Bragg 
condition

^ (z) =  exp( - y  a, (1 +m ) (z+^)) ĵ cA y  a, (1 +

2(1-m ) 1 1
+m )(z+^)------—----- jA — a,(l +m )(z+i) A ., (28)

1+m 2 J

27M̂ 4„ 1^(z) =  — ---- e x p ( -  — a ,(l+m )(z+y) x
1+m 2

X vA j^y a, (1 +m ) (z+ ^ )j.

Let us calculate for which .s the amplitude B(^) 
is maximal

№ )  =
2in!^o

1 + m
exp ( - a , ( l  +

then the components x and y o f the vectors A, are 
identical with the respective components of the 
vector /?. For arbitrarily oriented planes of constant 
refractive index

+m)^)^A [a,. (1 -¡-?M).5]. (28a)

For maximal scattering the following condition 
must be fulfilled

W!

d R (j)

&

2;n!y4Q
1 + m

-a,. (1 +m)exp (—a,(l +

while

0 <  —  <  1. (26)

The coefficient of proportionality has been written 
in the form 1 /m, which will be convenient in further 
considerations. This leads to the following values of 
a,, a, and y (eq. (26)):

a, =  wa,.,

a =  -L a ,(l+ m ), (27)

y  =  - y  l / ( l - m ) 2 + 4 - ^ j -  m .
2 y n

Since n" ^  ?? then n" =  ¡̂ 1 will be the best 
assumption. For this value of the imaginary part of 
the refractive index we obtain

y  =  y ( l + w ) .  (27a)

From (24) we may be evaluated a_̂

"+ =  0 ,

a_ =  a, (;'+??!).

+/w)^)jA [a,(l + m )j]+ a ,(l +m )exp(—a,(l +

+m ) .y) cA [a, (1 +m ) y] j =  0 .
Hence we obtain

.s*A [a, (1 +m)^] =  cA [a, (1 +m).s]. (29)

This condition is satisfied for infinitely great 
thickness. Then

(30)
1 +7M

From (29) and (30) it may be seen that the maximal 
value of amplitude of scattering may be reached not 
only for very great thickness, but also that it depends 
on the orientation of periodical changes of refractive 
index. Thus for instance, if the planes o f constant 
refractive index are identical with z =  constant 
planes, m =  1, and the diffusion efficiency is equal to 
about 25%. The amplitude grating does not give the 
complete efiectivity, and the advantageous conditions 
(great thickness and suitable orientation) are not 
always possible to satisfy. Generally speaking, for 
the amplitude gratings the scattered wave is difficult 
distinguish from that incident.
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Now, consider the reflection scattering (^ '^ z  <  
<  0). The equations (11) become

a+ =  —a+<5,

a _  =  — n — <5, ( 3 i )

If there exists the maximum scattering with respect 
to the thickness the following condition must be 
satisfied

ifR(—y)
- ^ = ° -

=  у  ] /  (я ,+ аУ
,̂'z ẑ

The amplitudes may be presented as follows 

z4(z) =  г!дехр(—n(z+3.s)j X

0c/;r)(z .s') -^ (a ,-  aJ.s'A(i(z -.s),
dc/;2& +f(a,—

(32)

F(z) =  - ^oexp(—a(z+3y)j x  

y/?<5(z—y)
x -

bc/i2bs—) (я,.—a,) s/; 2 &

The scattered wave appears for z =  —.s. Let 
us calculate the extreme amplitude of scattering for 
normal incidence. Let

Ат,, =
1

?n Aj'z !

1
0 < —  <  1.

n;
(33)

From (31) we get

я, =  ma,, 

я =  1/2(1 —??:)я,,

<5 =  1/2(1—m)a,, (34)

This leads to the condition

(36)
(1 —w)^a,

(1 — ти)с/: [(1 — т)я ,у ]+ (1  +w)xA [(1 — т)я,у]

which is fulfilled only for inhnitely great thickness of 
the layer. Thus, the critical thickness does not exist.

For m =  1 the solution of equation (16) for c and 
</ cannot be applied, because there appears dividing 
by zero. Hence, the equation (12) should be a starting 
point. The value of amplitude of scattered wave is, 
however, so small that the application of the per
turbation calculus may generate great errors. More
over, the smallness of scattering amplitude leads to the 
case of no practical meaning.

Влияние толщины слоя
на эффективность связи плоских волноводов 

с периодически переменным 
коэффициентом преломления

Выведены уравнения связи для плоского волновода 
с периодически переменным коэффициентом преломления, 
причем была предположена слабая модуляция коэффи
циента преломления; принято также, что коэффициент 
преломления у окружающей среды равен среднему коэффи
циенту преломления волновода. Приведены решения урав
нения связи для собственно фазовой и амплитудной мо
дуляции. Проанализировано влияние толщины на зна
чение связи.

=  0,

а_ =  — (1—тм)я,. References

With the help of these relations the amplitude 
of the scattered wave for z =  —л will be

Д(—у) =  2нп4(, x

yA [(l—ти)я;У]

(1 —m)c/; [(1 —?и)я,у]+(1 tm ).s/i [(1 —?и)я,.у]
(35)
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