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Hologram aberrations outside 
the binomial expansion* **

By applying an asymptotic expansion we have considered the point-object aberrations in an axiai hoiogram of Gabor-type 
outside the range of binomiai expansion in the case o f smait and great magnifications. Two cases have been calcuiated and compared 
with the spherical aberration. A  dependence of aberrations upon the hologram sizes has briefly given.

In the process of holographic imaging, even at 
the absence of lenses, there appear aberrations of 
the same kind as in the case of lens system [1].

The papers analysing the third order aberrations 
[2,3] appeared almost at the same time (1965). 
They include the deviation of third order aberrations 
and a broad analysis of possible reduction of aberra­
tions by an appropriate recording and reconstruction 
of the hologram. The later papers deal with non- 
paraxial imaging [4-7] and a possibility of reducing 
the imaging errors. OFNER [4] noticed a possibility 
of aberration compensation by introducing a prism 
to the system, while LtN and COLLINS, Jr., [8] discuss 
extensively the aberrations of holographic lens system 
indicating a possibility of applying the lenses of 
appropriately chosen aberrations to the compensation 
of unwanted aberrations. Their method of analysis 
is very general and comprises almost all the situa­
tions introducing imaging errors except for defor­
mations and noise of the him. The influence of de­
formation of the photographic materials and their 
tolerances were considered by MATSAMURA [9].

It seems that the case of imaging in holographic 
microscope [3] is both interesting and not fully 
analysed so far. The aberrations cause a restricted 
applicability of Gabor microscope [10]. Although, 
it is possible to choose the conditions of hologram 
reconstruction in such a way that the third order 
aberrations disappear [1-3], the practical signihcance 
of these conditions is limited. The analyses given 
in [1-3] lead to the conclusion that this is possible for
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magnifications Af =  1 and Af =  2. The case Af =  1 
requires, that the wavelengths used in the reconstruc­
tion and recording, respectively, were equal each 
other, i.e. p =  AJ Ao=l ,  while A f = 2  demands 
that /t =  2. It may be seen that no aberration free 
magnification is possible except for Af =  2. The case 
Af =  2 is realizable, for two sources of frequencies 
differing by an octave but it does not seem to be of 
practical importance in the optical holography.

The imposing of an additional condition, i.e. 
the demand of achieving a resolving power of order 
of A, requires a hologram of sizes comparable with 
the object-to-hologram distance [6]; it creates but 
then, however, such imaging conditions for which 
the estimation of aberrations based on binomial 
development are no longer sufficient. An analysis of 
imaging errors and their classification given by 
MEIER [3] is based on expanding into power series 
of the phase term calculated with respect to the holo­
gram centre

o ... if it is attributed to object wave, 
where ... r ... if it is attributed to reference wave, 

c ... if it is attributed to reconstructing 
wave

z ... coordinate of a Cartesian system 
associated with the hologram.

The series

f / l + ^ l + l ^ - l ^ + .........  (2)

s absolutely convergent for ' )̂ <7 1. In the general 
case the analysis based on such a development of
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wave phase o, r, c and the Gaussian spheres may be 
apphed only to definite fimiting apertures.

Under conditions, when ^ =  (/?—̂ )/zJ is greater 
than 1, the series (2) becomes divergent. Different 
approaches aiming at estimation of imaging errors 
may be found in the fiterature. CHAMPAGNE [5] 
applies a binomial development with respect to 
where 7?̂  =  p^+z^. The aberrational expressions 
obtained in the reversed reference systepi are rather 
troublesome while analysing. Other authors consider 
the problem from diffraction viewpoint [7] or use 
numerical ray-tracing [4, 6].

The proposed approach is based on the so-called 
asymptotic development [12, 13]. For [̂ 1 ^  1

+  ........) . P ,

The lateral magnification is given by the relation 
[2, 3]

=  — \  (4)\  /4 z ,/

where
w — photographic magnification of hologram. 
The upper sign is attributed to the wavefront

=  <y,-V .+y,.

while the lower one to the wavefront

(5)

Depending on the situation defined by the holo­
gram and the object sizes, and the position of o, r, c 
sources the two square roots appearing in (1) may 
be developed according to (2) or (3). It is also pos­
sible that one of them is developed according to 
asymptotic expansion while the other according to 
traditional binomial one. Consider the case of a Gabor 
axial hologram (fig. 1) also discussed in [6].

H

Fig. 1

z

The wavefront sources o, c lie on one straight 
line and therefore

P. =  Pr =  Pc =  0 .

The source of the reference wave is close to the 
object and thus

Fig. 2 presents the dependence of the magnifi­
cation upon the recording and reconstruction con­
ditions determined by (4) for a Gabor axial ho­
logram

d
< 1. ^latR.E 1 (6)

Hence the magnification in the recording stage The position of a point Gaussian-conjugate with 
the point O satisfies the relations

1
m^z.

/4
??Fz, ' (7)

is great and the spatial frequency range is highly 
reduced [2]; z„ and d should be matched to the re­
solving power of the photographic material.

where the upper signs concern the 7? wavefront while 
the lower ones — the F wavefront.
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For the Gabor axial hologram they take the form will be equal to unity

ĜR 2 A ,

1 - ^ '

2%

.  \

(8)

IF?  („

/i =  m =  1.

z .  ^  '
=  ? - ]  ¡/* -/d  ) i +

8 ( ^ - ^ )  

8 ( /^ - ^ r

In the face of (9) the phases of the F  and F  wave- 
front will have the form

2?E 1 /---------
^R,V =  +

- -  - z ^ ) -
2 F x ^ + ^  \ w w '

1

Fig. 3

Fig. 3 being a graphical illustration of these rela­
tions.

Let us assume that Zo, z, and the dimensions of 
hologram are chosen so that the phases <po and <p, 
will be subject to an asymptotic development. The 
phase of the Gaussian references sphere will be 
subject to this development if

R̂,V

8 (x 3 + k ')^

+ ........-(^T/MZo±^Z,)}..

And similarly

2?r / ,---------
3>c =  +

wr /??

( 10)

2l^x^-)-y^

^G
(1 1 )

The sum of aberrations introduced during imaging 
by a hologram zone, for which the relations (10) and 
(11) are simultaneously valid, will be

< 1 -

These conditions reduce the values of z„ to

Z,
z.. ?  --------- — for A wave,

2^ +  \

)^2-^ F 2 . F 2 2
,------- -------------- - 0 ± ---- ^r**^G

1-

1 iz*=F —  z^4- z^—z ^
8(x^+y^)^^ \ ° ^

.... -(zy/4Zo±,M Z,-Zc)j

1 --------
Zn

for F  wave. 12?r f 1 ! (12)

If we require additionally that also % be subject 
to this development (small magnification) then the 
first of square roots in the expression (4) for the phase 
% will be expanded asymptotically while the other

The linear term F  and coefficients Q and F  at p" 
dependent on Zo, z, and ẑ . may be treated as new 
aberration coefficients. The commonly accepted de­
pendence of aberrations upon the hologram sizes [11] 
concerns only the aberrations introduced by the para-
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xiat part of the holograms (spherical aberration p^, 
coma astigmatism ^  p^, held curvature <-^p ,̂
distortion ^ p ) .  Within the range of the asymptotic 
development we observe the proportionality of aber­
rations to p * \  p " ^ , , then, however, aberration 
coeihcients take a new form.

The coefficients of "classical" aberrations are 
the functions of reciprocals of Zo, z„, z, and Zg, while 
the coeihcients (12) creating somehow their inversions 
(they are proportional to the positive powers of 
Zo, z„, z,, z<,) will compensate the influence of p"". 
When talking about the dependence of the hologram 
aberrations upon its sizes should be kept in mind that 
beside the explicite proportionality to p", it may also 
be comprised implicity in the aberrational coeihcients.

The examples in table 1 illustrate the behaviour 
of aberration for two cases described by relation (12). 
For the point O lying on the axis, of all the classical 
aberrations only spherical aberration remains. For

the comparative reasons the coefficient and values 
of spherical aberration have been placed at the ini­
tial part of the table 1. The aberrations are expressed 
in z.2^/2?r units. Empty positions for the values 
p/z„ =  1 and p/z. =  1.1 in the first example are due 
to the fact that in this range the phase % cannot be 
subject to asymptotic development. The magnification 
corresponding to the conditions required by (12) is 
low being close to unity.

As may it be seen from table 1 the sums of "asym­
ptotic" aberrations have a minimum and the aberra­
tions of both wavefronts 7? and F  differ few times from 
each other. At slightly differing magnifications, all 
close to unity, it is possible to choose a variant of 
lower aberrations.

The high magnifications at fixed J  and z<./z. >  0 
(comp. fig. 2) require that ẑ ./z„ be close toz^/J +  l 
for the 7? branch or z ^ o o  for the F  branch. Under 
these circumstances the phase % will be subject to

T able 1

d  =  O.lz., z , =  l . l z . ,  Zc =  1.2zc

Aberration CoefHcient
Aberration

R
Aberration <5*

0.1 0.0000009 -0.0000004
0.2 0.0000158 -0.0000078

t <tc -  - 0  0792 0.3 0.0000799 -0.0000393
8 ^ 3+  =  0.0390 0.5 0.000619 -0.000305

0.7 0.00238 -0 .00 )17
0.9 0.00649 -0.00320
1.0 0.0099 -0.00487

1
1.1 0.0470 -0 .0180
1.2

- I P
C R =  -0 .0470 1.3
C r =  0-0180 1.5

1.7
2.0
2.3 0.0470 -0 .0180

1
1.1
1.2 -0 .0685 0.0330 0.0247 -0 .0106

1 7^ =  -0 .1644 1.3 -0 .0632 0.0267 0.0228 -0 .0088
P r  =  0.0593 1.5 -0 .0548 0.0201 0.0198 -0 .0070

1.7 -0 .0484 0.0178 0.0174 -0 .0067
2.0 -0.0411 0.0177 0.0148 -0 .0069
2.3 -0 .0357 0.0190 0.0129 -0 .0076

1
1.1
1.2 0.0545 -0 .0173

1
---------P <3a =  -0.7543 1.3 0.0429 -0 .0136

8e' 8 r  =  +0.2390 1.5 0.0279 -0 .0088
1.7 0.0192 -0.0061
2.0 0.0118 -0 .0037
2.3 0.0077 -0 .0025

Ahat a =  -1 .3470 Aijat =  1.0820
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T able 1 (cont.)

d  =  0.05z<;, z, =  1.05Zf, z . =  1-lz.

Aberration V Aberration ,4,.^
Aberration Coefficient P/z. 7? r

0.1 0.0000003 -0.0000001
0.2 0.0000048 -0.0000023

1 I f Sg =  -0 .0243 0.3 0.0000245 -0.0000120
g p ^ 3 ^ =  0.0119 0.5 0.000190 -0.0000920

0.7 0.000729 -0.000357
0.9 0.00199 -0.000976
1.0 0.00303 -0.00149

1.0 -0.0108 0.0921
1.2
1.3

- 1 - F Pj, =  0.0108 1.5
P r  =  0.0921 1.7

2.0
2.3 -0.0108 0.0921

1.1 -0 .0159 -0.0139 -0 .0895 0.0451
1.2 -0 .0146 -0 .0156 -0 .0 8 2 0 0.0428
1.3 -0 .0135 -0.0166 -0 .0757 0.04221

—  e
7^  =  -0 .0350 1.5 -0 .0117 -0.0175 -0 .0656 0.0433

2$ 7 ^  =  -0 .1969 1.7 -0.0103 -0 .0176 -0 .0579 0.0457
2.0 -0.0088 -0.0175 -0 .0492 0.0500
2.3 -0 .0076 -0 .0 )7 0 -0 .0428 0.0540

1.0 0.0128 0.0425
1.2 0.0098 0.0327
1.3 0.0077 0.02581

---------7? Pj, -  -0 .1360 1.5 0.0050 0.0168
8p3 P r  =  -0.4528 1.7 0.0035 0.0115

2.0 0.0021 0.0071
2.3 0.0014 0.0047

a =  -1-1608 M,at r =  1-0453

the binomial development. Within the range where 
also tPg will be subject of such development the fol­
lowing relation is valid

27E i 1 1
— (T 4 ± z ? )  -

i 1
—/r(^Zo±Zr)+

+ T^+^(?
insted of (12).

(13)

The examples illustrating the relation (13) are 
given in table 2. The form of this table does not 
differ essentially from that of table 1. Here, no aber­
ration components are given but only their sums for 
both the kinds of expansion. Each pair of column 
for (Pj, and <Pp- corresponds to other recording and 
reconstruction conditions. As in table 1 there exists 
a possibility of choosing a variant of smaller aberra­
tions.

The sum of aberrations should be a continuous 
function of p/z„. Thus in both asymptotic and bino­
mial kinds of expansion, respectively, great number 
of terms should be taken into account. For p/z, 
tending to unity from the left hand side, it is no 
sufficient to restrict the attention to the third order 
spherical aberration only, while for p/z. tending to 1 
from the right hand side it is necessary to establish 
the optimal number of terms for asymptotic expansion 
which would assure the same accuracy of approximation 
as in the region p/z. <  1. This work will be continued.
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T able 2

z) = O.lzo, z„ =  12z< z) =  0.05z„, Zc =  22z„

Aberrations p/zo for Фд for Ф[̂ for Фд for Фу

0.1 0.000003 -0.000003 0.000002 -0.0000016
0.2 0.000050 -0.000049 0.000027 -0.0000271
0.3 0.000251 -0.000246 0.000137 -0.000137
0.5 0.00194 -0.00191 0.00106 -0.001058
0.7 0.00744 -0.00732 0.00408 -0.00407
0.9 0.0203 -0 .0200 0.0112 -0.01111
1.0 0.0300 -0 .0305 0.0170 -0.01693

1.0 -0.0481 0.0481 -0 .0236 0.0236
1.2 -0.0461 0.0461 -0.0222 0.0222
1.3 -0 .0456 0.0456 -0 .0229 0.0229

asympt 1.5 -0 .0472 0.0472 -0 .0238 0.0238
1.7 -0 .0500 0.0500 -0 .0254 0.0254
2.0 -0 .0548 0.0548 -0.0281 0.0281

1.1 0.0549 -0 .0559 0.0287 -0 .0289

binomial

1.2 0.0653 -0 .0666 0.0341 -0.0341
1.3 0.0766 -0 .0785 0.0399 -0.0405
1.5 0.1019 -0.1053 0.0531 -0.0541
1.7 0.1308 -0.1363 0.0680 -0 .0696
2.0 0.1806 -0 .1912 0.0937 -0 .1966

1.1 0.0068 -0.0078 0.0051 -0.0053
1.2 0.0192 -0 .0205 0.0119 -0 .0119
1.3 0.0310 -0 .0329 0.0170 -0 .0176
1.5 0.0547 -0.0581 0.0293 -0.0303
1.7 0.0808 -0 .0863 0.0426 -0 .0442
2.0 0.1258 -0 .1364 0.0656 -  0.0685

; 131.6 5.74 476 10.75

Аберрации голограммы вне двоичного разложения 
в ряд

С применением асимптотического разложения в ряд 
рассмотрены аберрации точечного объекта в осевой голо­
грамме Габора вне пределов двоичного разложения в ряд 
в случае малых и больших увеличений. Вычислены по два 
примера и, для примера, сопоставлены со сферической абе­
ррацией. Кратко представлена зависимость аберрации от 
размеров голограмм.
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