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The problem of extraction of a contour from highly noised images is discussed. The method for 
contour extraction investigated is known in the literature as régularisation with discontinuities. 
This method, when applied to highly noised images, gives good results and, moreover, may by 
adapted to a simple cellular neural network. This possibility allows a real-time contour extraction 
to be performed. The idea of the method of régularisation with discontinuities is presented and one 
of its variants for the case of temperature noise is used for illustration. The method discussed is 
examined by means of different functions of the extinction noise temperature.

1. Introduction

Automatic recognition of image objects is based on extraction of their characteristic 
features [1], [2]. One of them is the object contour which, in turn, can be defined in 
different ways. Many papers dealing with contour extraction and régularisation have 
been published recently. In the case of clean images, the problem is trivial and can be 
solved using the well-known gradient or laplacian method. On the other hand, 
contour extraction from noised (camouflaged) images is not effective with the use of 
these methods. Several methods for contour extraction from noised images with 
subsequent régularisation are discussed in the literature. The régularisation method 
based on energy defined as a negative sum of scalar products of gradient vectors in 
neighbouring points of image has been proposed. The best knwon method for 
contour extraction from noised images applies operators choosing contour points as 
peaks of Gaussian-smoothed image gradients [3]. In this method, the operator finds 
directional gradient maximum parallel to gradient direction. This method is different 
from simple application of laplacian described by CANNY [4].

Contour extraction from noised images can also be performed by régularisation 
with discontinuities [5] —[9]. The latter term generally means the smoothing of 
a signal or its transform outside the points in which the gradient magnitude exceeds 
a given threshold. In the case of image analysis, régularisation with discontinuities 
consists in periodic averaging of the image or its transform in the areas with low 
gradient and, alternately, in the areas with high gradient as contour points. This
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method is time-consuming due to a large number of calculations and cannot be 
applied to fast contour extraction in the case of serial calculations. However, due to 
their locality, such a process can be easily performed in a neural network with 
suitable architecture [10], [11]. The locality of calculations means that only the 
image pixels which are placed inside the circle of a given radius are simultaneously 
introduced into calculations. Another advantage of the method presented here is 
small (equal to 1) radius of the neighbourhood which is satisfactory for practical 
accomplishment of the neutral network.

Parallel calculations in neural networks offer the possibility of real-time 
treatment of an image. Consequently, results are calculated irrespective of image 
dimensions. This feature is specially important when applying the régularisation 
method as an initial treatment and extraction of object features from an image.

The results of régularisation presented in this work have been obtained by means 
of software simulating the operation of a neural network. The network architec
ture employed here consists of two coupled neural layers. One of them describes 
the image — the results of régularisation, while the other describes the contour. 
Régularisation equations are derived from the definition of the eigenfunction of 
energy (the cost function) of states of the neural network. Afterwards, equations of 
the neural network movement in the space of its states are derived. Introduction 
of an additional temperature noise into the régularisation network constitutes 
the new element of the method discussed here. This step makes it possible to omit 
many local energy minima which are the main threat to correctness of régularisation 
results.

2. Functional scheme of the neural network

A functional scheme of the neural network performing régularisation with image 
discontinuities is presented in Fig. 1. This network consists of three general matrix 
elements: the image matrix d{ and two main layers of the neural network. The first 
layer of the network f{ represents the image being regularised, while the second layer 
lit represents the binary contour of the image regularised. Both layers are con-
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Fig. 1. Functional scheme of the architecture of the neural network performing image régularisation with 
discontinuities
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nected in a specific way described in detail in the following sections. In general, the 
layers f t and /, are connected recurrently, while the layer f t is undirectionally 
connected with the matrix d{. Moreover, local connections occur between neurons 
inside the f t and layers.

3. Definition of energy

The essence of the method applied is the equation describing the energy of 
neural-network states. For the one-dimensional signal, this equation has the form of 
a sum proposed by Gee [7]

E  = I [* 2( / ,- / ’№ , ) 2+^(V/)?(l-i1)+aii] (1)
i

where the subscript i stands for the number of signal samples, di — for the input 
signal, — for the regularised signal, and l{ — for the contour matrix. The last 
matrix is a zero-unitary matrix that takes the value of unity if the contour occurs in 
the i-th point and the value of zero, otherwise. The coefficients x, l and a can be 
interpreted as the weights of particular energy terms. The coefficient x  describes the 
weight of the trend of the regularised signal to the input signal. The coefficient 
l describes the weight of the term smoothing the regularised signal. The last 
coefficient a stabilises the energy giving the weight of the cost of introducing the 
unity into the contour matrix. Such a construction of this coefficient prevents the 
occurrence of a global minimum in case all the matrix elements should be unitary. 
The operator r(d) is an input operator acting on the signal d. In this work, the input 
operator of the form r{d) = d is accepted.

In the case of a two-dimensional image, the signal gradient becomes a vector with 
components equal to two image derivatives calculated in orthogonal directions. In 
this case, the energy of the neural network states can be expressed in the form 
proposed by Hertz [6] and Gee et al. [7]

E =  El +E 2 + E 2 +E 4  (2)

where Ei is the term responsible for the trend of the regularised signal to the original 
one

* i  = Z  (3)
U

where i and j  are the image coordinates, E 2  is the term responsible for the smoothing 
of the regularised image containing the spatial derivatives of the image

E2 =  Z ^ 2 l(f,j-f i+! j ) 2(l -  i)2(l -  lift, (4)

and E3 describes the cost of unity in the contour

E 3  =
1.1

(5)
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This term is introduced to remove the global m in im u m  of energy (energy would 
be equal to zero). This minimum may result from application of the previous energy 
term (4). This occurs when all the elements of the matrix /  are qual to 1, and it 
means that the system tends to introduce only units into this matrix.

The last term E4 is related to correction of the quality of the contour obtained 
(the energy increases if any irregularities and unclosed ends of the contour are 
created) and does not exist for the case of one-dimensional signal [7]

£ 4 =  —  Yj 1  j +  1  S* + 1  j + 1  ( 6)

UJ

where: Su  = ï l itJ— 1 is a bipolar equivalent of a unipolar contour value lltJ and y 
is the weight coefficient of this energy term.

Such an expression assumed for the energy of neural-network states describes the 
architecture and dynamics of this network. In the following, it is applied to define the 
rules of optimisation of the network.

The method for régularisation with discontinuities can also be part of the system 
for extracting characteristic information from images in various narrow spectral 
regions. In this case, the energy of the neural network comprises the states of all 
images. The terms of energy in the multispectral version take the following forms:

* i = *EZD& -<*j]2 (7)
i.J »

is the term responsible for the tendency of the fitted images /"  to respective originals 
dn, where: i j  are the coordinates of a pixel, n is the number of the image, and N  is 
the number of images;

e 2 =  i l l  [ ( / ■ ? + 1  J - /W 2(1 - n n + if u *  1  —/w )2(i -  M  (8)
Uj n

is the term smoothing the images in those places where the contour does not occur
Ifj = 0, l{j = 0);

* 3 - « E № + « j >  (9)
i.j

is the term removing the global minimum of energy introduced by E 2  (in the case 
when all values of Ifj and lyitj are equal to 1). The form of the fourth term of energy 
does not undergo changes, because in this method the contour image is generated on 
the basis of all spectral images and has identical structure of data as for 
monospectral case.

The possibility of simultaneous usage of a few images to generate the fitted image 
and the contour will allow the algorithms or the neural networks designed on the basis 
of the method presented for wide applications in multispectral detection systems.

3.1. Minimisation of energy

The states of fitting and the contour define a point in the space of states f x l  
The number of dimensions in this space is equal to the total number of neurons
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in the layers /  and /. The energy £  is a function of states in this space and is defined 
in each point of the space. It may be treated as a potential. The direction of energy 
decrease is opposite to its gradient vector. This means that the state of a system 
should be shifted along the direction of the following vector

W =  -g rad /XI£. (10)

The whole operation of energy decrease can be used to define changes of given 
points of fitting Afij and changes of contour Alitj in a single step

4 /ij

and

— step
ÔE

V u
(Ha)

Alu = - s te p — .
U

One can write

(lib)

“  = E{2*2(/u-<ii.>)+2A2[ ( i j - / ,+1.J)(i-/fJ)+WJ- / w+1)(i-/rJ)
ij

ij)(l “ ?- l , j - l)(l ” I f - 1J+1)]}· ( 12)

Due to two possible states of a single element Zf%J in the software simulating 
the network, the contour is updated in a slightly different way — the change in the 
value of a point from zero to one or inversely is performed only if the energy 
decreases.

The optimisation of states of the contour image and the fitted images in the case 
of contour extraction from images in a few narrow spectral regions is made 
according to the direction of the energy gradient decrease in relation to their states of 
individual images. Omitting the term £ 4, the derivative of energy over the state of the 
fitted image takes the form

L _  2, [i f ’.j~ u ) ( l —if- ij)+(fî.j —/7+ —I'j)+

j  L v i j  ~ f u +1) ( i — j) ■ ] ,+ 2 * № '/  m ' (13)

The most convenient example for presentation is the one-dimensional case. For 
lt =  1, the energy becomes

W i  =  1) =  Y t* 2( f i - r m 2+ * l,l  (14)
i

while for /,· =  0, it becomes

m , = o)= i  № ( f , - m y + x * < y f ) r \  a s)
i

and the energy difference between the states which differ by the /, value takes the 
following form:
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AE =  E(lt =  0)—£(/| =  1) =  ¿2(V /)?-a. (16)

The magnitude of this energy should decrease after introducing lt =  1, i.e., AE > 0. 
Hence, we obtain the following inequality:

0 < A 2(V /)?-*, (17)

ue.,

(18)

Let us introduce the following substitution:

h =  V “M. (19)

thus

h1  < m l  (20)

The parameter h is the minimum value of the gradient module |V/j| in the i-th point 
in which the contour exists. In other words, the parameter h is the threshold of the 
gradient module |V/,| for introducing the unity in which indicates that contour 
exists in that place. In the cellular neural network, the parameter h describes the 
threshold of the function of transfer of neurons from the layer lltJ.

In the following, the results of the analysis of a sample image are presented. The 
values of individual function parameters have been selected experimentally. The 
coefficient h is helpful in defining the dependence between a and X since the gradient 
threshold is approximately known. The process of obtaining the parameter h can be 
automated. In this case, h is calculated from the difference between the values of 
averaged image points in different image areas.

32. Temperature noise

A serious threat to the method for contour extraction described is the occurrence of 
local minima of energy for neural-network states describing inaccurately the contour

Fig. 2. Schematic presentation of the network state achieving the minimum
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location. To reduce the possibility of achieving a local minimum the by network, the 
idea of temperature noise as a random change of neuron states has been introduced. 
This idea is illustrated in Fig. 2.

The noise introduced (for the matrix l itJ consists in random (with a certain 
probability) change in the neuron state. In the case of neurons of the layer 
the noise is a random distribution of the value of a neuron in this layer around its 
former value described by a certain function of probability of the value of this 
distribution.

It has been found experimentally (by computer simulation) that the introduction 
of the temperature noise of neurons in the layer I itj, describing the contour location, 
has a great impact on the contour quality in contradistinction to the neurons in the 
layer / | j ,  the values of which describe the regularised image.

Practical application of the method described is presented by the example of the 
analysis of a highly noised and low-contrast image shown in Fig. 3. In Figure 4, the 
result of contour extraction with the use of the temperature noise is demonstrated. 
Figure 5 presents the fitted image (the layer / o f  the neural network).

Fig. 4. Contour of image obtained by régularisation with discontinuities supported by the application of 
the temperature noise
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Fig. 5. Fitted image

33. Annealing

After introducing the temperature noise, the problem of how to adjust its level 
appears. A large value of the noise temperature (higher than the level of energy peak) 
causes nearly free movement of the network in the space of its states. This allows 
approaching the neighbourhood of the global minimum (corresponding approxima
tely with the ideal contour) by the network state. The high noise value does not allow 
the network state to remain in the minimum and enforces its continuous movement 
in the space of states. The network state can be “switched” close to the global 
minimum by annealing, i.e., continuous temperature decrease. In the neighbourhood 
of the global minimum, there exist also peaks. For this reason, adjustment of the 
annealing function is crucial for efficiency of the method in bringing the state to the 
global minimum.

Fig. 6. Effect of regularisation with linear annealing function
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Fig. 7. Effect of régularisation with quadratic annealing function

Fig. 8. Effect of régularisation with root annealing function

Figures 6—8 present examples of contours obtained by image régularisation for 
the time function of temperature decrease (annealing) defined respectively as linear, 
quadratic and root annealing ones. In all those examples, annealing stand decreasing 
probability of changing contour matrix element state to an opposite value is 
observed. As one can see, the choice of annealing function can crucially affect the 
contour extraction. The annealing function depends on the depth function of local 
energy minima, the distance from the global minimum, and the dynamics of energy 
minimisation selected. A more precise analysis of the effect of different annealing 
functions on régularisation is a separate problem surpassing the scope of this paper

4. Architecture of the cellular neural network

The idea of architecture of the neural network presented earlier should be developed 
in practice. The neural network structure depends on the neuron model and for
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Fig. 9. Block diagram of the cellular neural network accomplishing the method presented. The black dots 
represent neurons localised where the contour points probably are. The localisations of neurons indicated 
by light dots correspond to the localisations of pixels in the picture. The bold symbols represent matrices 
of f — fitted date, d — image date, N1 — fitted-image differences, N 2 — fitted smoothing, N3 
— unipolar—bipolar transfer, N41, N42 and N45 — calculate correction of r egularisation

the classical case may have up to fourteen layers. For the neuron model used (see 
Subsect. 4.1) the neural network implementing the method described here consists of 
an image data matrix d[i , j ]  and eight layers according to the block diagram 
presented in Fig. 9.

This figure presents individual neuron layers, sample connections between 
neurons of different layers, and weights of these connections. Inhibitory (blocking) 
connections can be replaced with an additional neuron layer with threshold transfer 
functions of neurons. To make the diagram clear, the connections are presented in 
their simple form.
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The neuron functions in the layers f[i,j](N l, N2) are linear regarding the sum of 
input enforcements. The neurons in the layers l[i,j] have the threshold function 
including the product of synapses signals. In turn, the neurons in the layers N3 and 
N5 react to the sum of enforcements minus 1 and the sum of enforcements minus 2, 
respectively.

The architecture of the cellular neural network can be expressed also by means of 
a pattern of intemeuron connections and functions of signal transfer of individual 
neurons belonging to particular layers [ 12].

4.1. Patterns of interneural connections

The architecture of the cellular neural network accomplishing the method described 
is presented by the patterns of connections. The patterns of this network have been 
described in more detail in [13]. The neural network accomplishing the above- 
mentioned method consists of the following layers: f, f x l ,  fx l ,  fy l , f y l ,  as well as lx  
and ly. In the layers /, f x l ,  f x l , fy l ,  f y l , linear transfer functions f(x) =  x, are 
applied whereas in the layers lx  and ly  the following threshold function is used:

/(*) =
jO for x <  0 
[ 1 for x >  0 . (21)

All of the neurons applied have construction presented schematically in Fig. 10.

Fig. 10. Schematic of the neuron model, where: I -  steering signal from neurons in the given layer, 
u — steering signal from neurons in other layers. If Z =  1 then y «  yf , if Z  =  0 then y =  0

The neurons have different transfer functions in different layers. The model of 
a neuron presented differs from the standard neuron of a neural network in that it 
has an additional multiplication element at its output. This element has been 
introduced in order to simplify the architecture of the network in which the problem 
of discontinuity is being accomplished.

The layer f  layer represents the fitted image. The input signals for this layer are 
the layers f x l ,  f x l , f y l  and f y l  and the image d. The connections of these layers
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the layer /  are represented by the matrices B fx l, B fx2 , B fy l, B fy2  and Bd. Local 
connections inside the layer are represented by the matrix A. The forms of these 
matrices (patterns of connections) are as follows:

A = 1 + step-2-k2,

B d=  — step-2-fc, Z — 1,

B fx l  =  step-2-A2, B fx l  =  step-2-22, B fy l  =  step-2-22, B fy l  =  step-2-22. (22)

It results from the above relations that they are one-element matrices.
The layers f x  1, f x 2, fy l ,  and f y l  have been created additionally and they do 

not represent a specific object by their values. The input signal for these layers is the 
layer f  The value of Z  depends on the layers lx  and ly. Let us denote M x  and M y  
as the matrices (patterns) acting locally (in the neighbourhood of a single neuron of 
the layer) on lx  and ly. The value Z  can be presented as Z =  1—M x lx —M yly. 
The forms of the matrices (patterns) of connections for individual layers are given in 
Tab. 1.

T a b l e  1. Form of the patterns of connections for individual layer

fyi__________

>4 =  0 
M x  =  0

[ 0 0 0"| 
0 1 0  
0 -1 o j

fy2

>4 =  0 
M x  =  0

T a b l e  2. Form of the patterns of connections for layers Ix  and l y

lx l y

A =  0 
/ = «

Ir o  0  0 1

^
 ¡

fa
t 

II 
II

R
 

©

r o  0 0"1
B  =  X1 0 - 1 0  

Lo l o j 1 0 - 1  1 Lo o oJ

In the case of the layers lx  and ly  (Tab. 2), the input signal is the matrix /. Due 
to simplicity, common serial calculation methods can be more useful here. This can 
also be solved in a “neural” way.

The last terms in the equations optimising the contour can be accomplished as 
a simple logic system and given to the input of neurons of the layers lx  and ly  
with the weight ly.
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5. Summary

In this work, the method for régularisation with discontinuities is presented in 
a version supported by the application of the temperature noise. This method was 
used for extraction of contours from highly noised images. The examples presented 
in figures show relatively high efficiency of the method proposed. The locality of 
calculations and their simplicity give the possibility of easy implementation in an 
actual solution of a cellular neural network. This should allow a contour to be 
extracted in a very short time. The advantages of the method presented (the 
simplicity of the technical implementation and the efficiency regarding noised 
images) suggest its application in devices of automated image recognition operating 
in real time.
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